llama.h 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUBLAS
  5. #include "ggml-cuda.h"
  6. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  7. #else
  8. #define LLAMA_MAX_DEVICES 1
  9. #endif // GGML_USE_CUBLAS
  10. #include <stddef.h>
  11. #include <stdint.h>
  12. #include <stdio.h>
  13. #include <stdbool.h>
  14. #ifdef LLAMA_SHARED
  15. # if defined(_WIN32) && !defined(__MINGW32__)
  16. # ifdef LLAMA_BUILD
  17. # define LLAMA_API __declspec(dllexport)
  18. # else
  19. # define LLAMA_API __declspec(dllimport)
  20. # endif
  21. # else
  22. # define LLAMA_API __attribute__ ((visibility ("default")))
  23. # endif
  24. #else
  25. # define LLAMA_API
  26. #endif
  27. #ifdef __GNUC__
  28. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  29. #elif defined(_MSC_VER)
  30. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  31. #else
  32. # define DEPRECATED(func, hint) func
  33. #endif
  34. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  35. #define LLAMA_MAX_RNG_STATE (64*1024)
  36. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  37. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  38. #define LLAMA_SESSION_VERSION 1
  39. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  40. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  41. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  42. #endif
  43. #ifdef __cplusplus
  44. extern "C" {
  45. #endif
  46. //
  47. // C interface
  48. //
  49. // TODO: show sample usage
  50. //
  51. struct llama_model;
  52. struct llama_context;
  53. typedef int32_t llama_pos;
  54. typedef int32_t llama_token;
  55. typedef int32_t llama_seq_id;
  56. enum llama_vocab_type {
  57. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  58. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  59. };
  60. enum llama_token_type {
  61. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  62. LLAMA_TOKEN_TYPE_NORMAL = 1,
  63. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  64. LLAMA_TOKEN_TYPE_CONTROL = 3,
  65. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  66. LLAMA_TOKEN_TYPE_UNUSED = 5,
  67. LLAMA_TOKEN_TYPE_BYTE = 6,
  68. };
  69. // model file types
  70. enum llama_ftype {
  71. LLAMA_FTYPE_ALL_F32 = 0,
  72. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  73. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  74. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  76. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  77. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  78. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  79. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  90. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  91. };
  92. typedef struct llama_token_data {
  93. llama_token id; // token id
  94. float logit; // log-odds of the token
  95. float p; // probability of the token
  96. } llama_token_data;
  97. typedef struct llama_token_data_array {
  98. llama_token_data * data;
  99. size_t size;
  100. bool sorted;
  101. } llama_token_data_array;
  102. typedef void (*llama_progress_callback)(float progress, void *ctx);
  103. // Input data for llama_decode
  104. // A llama_batch object can contain input about one or many sequences
  105. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  106. //
  107. // - token : the token ids of the input (used when embd is NULL)
  108. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  109. // - pos : the positions of the respective token in the sequence
  110. // - seq_id : the sequence to which the respective token belongs
  111. // - logits : if zero, the logits for the respective token will not be output
  112. //
  113. typedef struct llama_batch {
  114. int32_t n_tokens;
  115. llama_token * token;
  116. float * embd;
  117. llama_pos * pos;
  118. llama_seq_id * seq_id;
  119. int8_t * logits;
  120. // NOTE: helpers for smooth API transition - can be deprecated in the future
  121. // for future-proof code, use the above fields instead and ignore everything below
  122. //
  123. // pos[i] = all_pos_0 + i*all_pos_1
  124. //
  125. llama_pos all_pos_0; // used if pos == NULL
  126. llama_pos all_pos_1; // used if pos == NULL
  127. llama_seq_id all_seq_id; // used if seq_id == NULL
  128. } llama_batch;
  129. struct llama_model_params {
  130. int32_t n_gpu_layers; // number of layers to store in VRAM
  131. int32_t main_gpu; // the GPU that is used for scratch and small tensors
  132. const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
  133. // called with a progress value between 0 and 1, pass NULL to disable
  134. llama_progress_callback progress_callback;
  135. // context pointer passed to the progress callback
  136. void * progress_callback_user_data;
  137. // Keep the booleans together to avoid misalignment during copy-by-value.
  138. bool vocab_only; // only load the vocabulary, no weights
  139. bool use_mmap; // use mmap if possible
  140. bool use_mlock; // force system to keep model in RAM
  141. };
  142. struct llama_context_params {
  143. uint32_t seed; // RNG seed, -1 for random
  144. uint32_t n_ctx; // text context, 0 = from model
  145. uint32_t n_batch; // prompt processing maximum batch size
  146. uint32_t n_threads; // number of threads to use for generation
  147. uint32_t n_threads_batch; // number of threads to use for batch processing
  148. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  149. float rope_freq_base; // RoPE base frequency, 0 = from model
  150. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  151. // Keep the booleans together to avoid misalignment during copy-by-value.
  152. bool mul_mat_q; // if true, use experimental mul_mat_q kernels
  153. bool f16_kv; // use fp16 for KV cache, fp32 otherwise
  154. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  155. bool embedding; // embedding mode only
  156. };
  157. // model quantization parameters
  158. typedef struct llama_model_quantize_params {
  159. int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  160. enum llama_ftype ftype; // quantize to this llama_ftype
  161. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  162. bool quantize_output_tensor; // quantize output.weight
  163. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  164. } llama_model_quantize_params;
  165. // grammar types
  166. struct llama_grammar;
  167. // grammar element type
  168. enum llama_gretype {
  169. // end of rule definition
  170. LLAMA_GRETYPE_END = 0,
  171. // start of alternate definition for rule
  172. LLAMA_GRETYPE_ALT = 1,
  173. // non-terminal element: reference to rule
  174. LLAMA_GRETYPE_RULE_REF = 2,
  175. // terminal element: character (code point)
  176. LLAMA_GRETYPE_CHAR = 3,
  177. // inverse char(s) ([^a], [^a-b] [^abc])
  178. LLAMA_GRETYPE_CHAR_NOT = 4,
  179. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  180. // be an inclusive range ([a-z])
  181. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  182. // modifies a preceding LLAMA_GRETYPE_CHAR or
  183. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  184. LLAMA_GRETYPE_CHAR_ALT = 6,
  185. };
  186. typedef struct llama_grammar_element {
  187. enum llama_gretype type;
  188. uint32_t value; // Unicode code point or rule ID
  189. } llama_grammar_element;
  190. // performance timing information
  191. struct llama_timings {
  192. double t_start_ms;
  193. double t_end_ms;
  194. double t_load_ms;
  195. double t_sample_ms;
  196. double t_p_eval_ms;
  197. double t_eval_ms;
  198. int32_t n_sample;
  199. int32_t n_p_eval;
  200. int32_t n_eval;
  201. };
  202. // Helpers for getting default parameters
  203. LLAMA_API struct llama_model_params llama_model_default_params(void);
  204. LLAMA_API struct llama_context_params llama_context_default_params(void);
  205. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  206. // Initialize the llama + ggml backend
  207. // If numa is true, use NUMA optimizations
  208. // Call once at the start of the program
  209. LLAMA_API void llama_backend_init(bool numa);
  210. // Call once at the end of the program - currently only used for MPI
  211. LLAMA_API void llama_backend_free(void);
  212. LLAMA_API struct llama_model * llama_load_model_from_file(
  213. const char * path_model,
  214. struct llama_model_params params);
  215. LLAMA_API void llama_free_model(struct llama_model * model);
  216. LLAMA_API struct llama_context * llama_new_context_with_model(
  217. struct llama_model * model,
  218. struct llama_context_params params);
  219. // Frees all allocated memory
  220. LLAMA_API void llama_free(struct llama_context * ctx);
  221. LLAMA_API int64_t llama_time_us(void);
  222. LLAMA_API int llama_max_devices (void);
  223. LLAMA_API bool llama_mmap_supported (void);
  224. LLAMA_API bool llama_mlock_supported(void);
  225. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  226. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  227. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  228. LLAMA_API int llama_n_vocab (const struct llama_model * model);
  229. LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
  230. LLAMA_API int llama_n_embd (const struct llama_model * model);
  231. // Get a string describing the model type
  232. LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  233. // Returns the total size of all the tensors in the model in bytes
  234. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  235. // Returns the total number of parameters in the model
  236. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  237. // Get a llama model tensor
  238. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  239. // Returns 0 on success
  240. LLAMA_API int llama_model_quantize(
  241. const char * fname_inp,
  242. const char * fname_out,
  243. const llama_model_quantize_params * params);
  244. // Apply a LoRA adapter to a loaded model
  245. // path_base_model is the path to a higher quality model to use as a base for
  246. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  247. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  248. // will be applied on top of the previous one
  249. // Returns 0 on success
  250. LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
  251. struct llama_context * ctx,
  252. const char * path_lora,
  253. float scale,
  254. const char * path_base_model,
  255. int n_threads),
  256. "use llama_model_apply_lora_from_file instead");
  257. LLAMA_API int llama_model_apply_lora_from_file(
  258. const struct llama_model * model,
  259. const char * path_lora,
  260. float scale,
  261. const char * path_base_model,
  262. int n_threads);
  263. //
  264. // KV cache
  265. //
  266. // Returns the number of tokens in the KV cache
  267. LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
  268. "avoid using this, it will be removed in the future, instead - count the tokens in user code");
  269. // Remove all tokens data of cells in [c0, c1)
  270. LLAMA_API void llama_kv_cache_tokens_rm(
  271. struct llama_context * ctx,
  272. int32_t c0,
  273. int32_t c1);
  274. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  275. LLAMA_API void llama_kv_cache_seq_rm(
  276. struct llama_context * ctx,
  277. llama_seq_id seq_id,
  278. llama_pos p0,
  279. llama_pos p1);
  280. // Copy all tokens that belong to the specified sequence to another sequence
  281. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  282. LLAMA_API void llama_kv_cache_seq_cp(
  283. struct llama_context * ctx,
  284. llama_seq_id seq_id_src,
  285. llama_seq_id seq_id_dst,
  286. llama_pos p0,
  287. llama_pos p1);
  288. // Removes all tokens that do not belong to the specified sequence
  289. LLAMA_API void llama_kv_cache_seq_keep(
  290. struct llama_context * ctx,
  291. llama_seq_id seq_id);
  292. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  293. // If the KV cache is RoPEd, the KV data is updated accordingly
  294. LLAMA_API void llama_kv_cache_seq_shift(
  295. struct llama_context * ctx,
  296. llama_seq_id seq_id,
  297. llama_pos p0,
  298. llama_pos p1,
  299. llama_pos delta);
  300. //
  301. // State / sessions
  302. //
  303. // Returns the maximum size in bytes of the state (rng, logits, embedding
  304. // and kv_cache) - will often be smaller after compacting tokens
  305. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  306. // Copies the state to the specified destination address.
  307. // Destination needs to have allocated enough memory.
  308. // Returns the number of bytes copied
  309. LLAMA_API size_t llama_copy_state_data(
  310. struct llama_context * ctx,
  311. uint8_t * dst);
  312. // Set the state reading from the specified address
  313. // Returns the number of bytes read
  314. LLAMA_API size_t llama_set_state_data(
  315. struct llama_context * ctx,
  316. uint8_t * src);
  317. // Save/load session file
  318. LLAMA_API bool llama_load_session_file(
  319. struct llama_context * ctx,
  320. const char * path_session,
  321. llama_token * tokens_out,
  322. size_t n_token_capacity,
  323. size_t * n_token_count_out);
  324. LLAMA_API bool llama_save_session_file(
  325. struct llama_context * ctx,
  326. const char * path_session,
  327. const llama_token * tokens,
  328. size_t n_token_count);
  329. //
  330. // Decoding
  331. //
  332. // Run the llama inference to obtain the logits and probabilities for the next token(s).
  333. // tokens + n_tokens is the provided batch of new tokens to process
  334. // n_past is the number of tokens to use from previous eval calls
  335. // Returns 0 on success
  336. // DEPRECATED: use llama_decode() instead
  337. LLAMA_API DEPRECATED(int llama_eval(
  338. struct llama_context * ctx,
  339. llama_token * tokens,
  340. int32_t n_tokens,
  341. int n_past),
  342. "use llama_decode() instead");
  343. // Same as llama_eval, but use float matrix input directly.
  344. // DEPRECATED: use llama_decode() instead
  345. LLAMA_API DEPRECATED(int llama_eval_embd(
  346. struct llama_context * ctx,
  347. float * embd,
  348. int32_t n_tokens,
  349. int n_past),
  350. "use llama_decode() instead");
  351. // Return batch for single sequence of tokens starting at pos_0
  352. //
  353. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  354. //
  355. LLAMA_API struct llama_batch llama_batch_get_one(
  356. llama_token * tokens,
  357. int32_t n_tokens,
  358. llama_pos pos_0,
  359. llama_seq_id seq_id);
  360. // Allocates a batch of tokens on the heap
  361. // The batch has to be freed with llama_batch_free()
  362. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  363. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  364. // The rest of the llama_batch members are allocated with size n_tokens
  365. // All members are left uninitialized
  366. LLAMA_API struct llama_batch llama_batch_init(
  367. int32_t n_tokens,
  368. int32_t embd);
  369. // Frees a batch of tokens allocated with llama_batch_init()
  370. LLAMA_API void llama_batch_free(struct llama_batch batch);
  371. // Positive return values does not mean a fatal error, but rather a warning.
  372. // 0 - success
  373. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  374. // < 0 - error
  375. LLAMA_API int llama_decode(
  376. struct llama_context * ctx,
  377. struct llama_batch batch);
  378. // Set the number of threads used for decoding
  379. // n_threads is the number of threads used for generation (single token)
  380. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  381. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  382. // Token logits obtained from the last call to llama_eval()
  383. // The logits for the last token are stored in the last row
  384. // Logits for which llama_batch.logits[i] == 0 are undefined
  385. // Rows: n_tokens provided with llama_batch
  386. // Cols: n_vocab
  387. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  388. // Logits for the ith token. Equivalent to:
  389. // llama_get_logits(ctx) + i*n_vocab
  390. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  391. // Get the embeddings for the input
  392. // shape: [n_embd] (1-dimensional)
  393. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  394. //
  395. // Vocab
  396. //
  397. LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
  398. LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
  399. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
  400. // Special tokens
  401. LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
  402. LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
  403. LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
  404. // codellama infill tokens
  405. LLAMA_API llama_token llama_token_prefix(const struct llama_context * ctx); // Beginning of infill prefix
  406. LLAMA_API llama_token llama_token_middle(const struct llama_context * ctx); // Beginning of infill middle
  407. LLAMA_API llama_token llama_token_suffix(const struct llama_context * ctx); // Beginning of infill suffix
  408. LLAMA_API llama_token llama_token_eot (const struct llama_context * ctx); // End of infill middle
  409. //
  410. // Tokenization
  411. //
  412. // Convert the provided text into tokens.
  413. // The tokens pointer must be large enough to hold the resulting tokens.
  414. // Returns the number of tokens on success, no more than n_max_tokens
  415. // Returns a negative number on failure - the number of tokens that would have been returned
  416. LLAMA_API int llama_tokenize(
  417. const struct llama_model * model,
  418. const char * text,
  419. int text_len,
  420. llama_token * tokens,
  421. int n_max_tokens,
  422. bool add_bos);
  423. // Token Id -> Piece.
  424. // Uses the vocabulary in the provided context.
  425. // Does not write null terminator to the buffer.
  426. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  427. LLAMA_API int llama_token_to_piece(
  428. const struct llama_model * model,
  429. llama_token token,
  430. char * buf,
  431. int length);
  432. //
  433. // Grammar
  434. //
  435. LLAMA_API struct llama_grammar * llama_grammar_init(
  436. const llama_grammar_element ** rules,
  437. size_t n_rules,
  438. size_t start_rule_index);
  439. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  440. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  441. //
  442. // Sampling functions
  443. //
  444. // Sets the current rng seed.
  445. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  446. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  447. LLAMA_API void llama_sample_repetition_penalty(
  448. struct llama_context * ctx,
  449. llama_token_data_array * candidates,
  450. const llama_token * last_tokens,
  451. size_t last_tokens_size,
  452. float penalty);
  453. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  454. LLAMA_API void llama_sample_frequency_and_presence_penalties(
  455. struct llama_context * ctx,
  456. llama_token_data_array * candidates,
  457. const llama_token * last_tokens,
  458. size_t last_tokens_size,
  459. float alpha_frequency,
  460. float alpha_presence);
  461. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  462. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
  463. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  464. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  465. LLAMA_API void llama_sample_classifier_free_guidance(
  466. struct llama_context * ctx,
  467. llama_token_data_array * candidates,
  468. struct llama_context * guidance_ctx,
  469. float scale);
  470. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  471. LLAMA_API void llama_sample_softmax(
  472. struct llama_context * ctx,
  473. llama_token_data_array * candidates);
  474. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  475. LLAMA_API void llama_sample_top_k(
  476. struct llama_context * ctx,
  477. llama_token_data_array * candidates,
  478. int k,
  479. size_t min_keep);
  480. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  481. LLAMA_API void llama_sample_top_p(
  482. struct llama_context * ctx,
  483. llama_token_data_array * candidates,
  484. float p,
  485. size_t min_keep);
  486. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  487. LLAMA_API void llama_sample_tail_free(
  488. struct llama_context * ctx,
  489. llama_token_data_array * candidates,
  490. float z,
  491. size_t min_keep);
  492. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  493. LLAMA_API void llama_sample_typical(
  494. struct llama_context * ctx,
  495. llama_token_data_array * candidates,
  496. float p,
  497. size_t min_keep);
  498. LLAMA_API void llama_sample_temp(
  499. struct llama_context * ctx,
  500. llama_token_data_array * candidates,
  501. float temp);
  502. LLAMA_API DEPRECATED(void llama_sample_temperature(
  503. struct llama_context * ctx,
  504. llama_token_data_array * candidates,
  505. float temp),
  506. "use llama_sample_temp instead");
  507. /// @details Apply constraints from grammar
  508. LLAMA_API void llama_sample_grammar(
  509. struct llama_context * ctx,
  510. llama_token_data_array * candidates,
  511. const struct llama_grammar * grammar);
  512. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  513. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  514. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  515. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  516. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  517. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  518. LLAMA_API llama_token llama_sample_token_mirostat(
  519. struct llama_context * ctx,
  520. llama_token_data_array * candidates,
  521. float tau,
  522. float eta,
  523. int m,
  524. float * mu);
  525. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  526. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  527. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  528. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  529. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  530. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  531. struct llama_context * ctx,
  532. llama_token_data_array * candidates,
  533. float tau,
  534. float eta,
  535. float * mu);
  536. /// @details Selects the token with the highest probability.
  537. LLAMA_API llama_token llama_sample_token_greedy(
  538. struct llama_context * ctx,
  539. llama_token_data_array * candidates);
  540. /// @details Randomly selects a token from the candidates based on their probabilities.
  541. LLAMA_API llama_token llama_sample_token(
  542. struct llama_context * ctx,
  543. llama_token_data_array * candidates);
  544. /// @details Accepts the sampled token into the grammar
  545. LLAMA_API void llama_grammar_accept_token(
  546. struct llama_context * ctx,
  547. struct llama_grammar * grammar,
  548. llama_token token);
  549. //
  550. // Beam search
  551. //
  552. struct llama_beam_view {
  553. const llama_token * tokens;
  554. size_t n_tokens;
  555. float p; // Cumulative beam probability (renormalized relative to all beams)
  556. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  557. };
  558. // Passed to beam_search_callback function.
  559. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  560. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  561. // These pointers are valid only during the synchronous callback, so should not be saved.
  562. struct llama_beams_state {
  563. struct llama_beam_view * beam_views;
  564. size_t n_beams; // Number of elements in beam_views[].
  565. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  566. bool last_call; // True iff this is the last callback invocation.
  567. };
  568. // Type of pointer to the beam_search_callback function.
  569. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  570. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  571. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  572. /// @details Deterministically returns entire sentence constructed by a beam search.
  573. /// @param ctx Pointer to the llama_context.
  574. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  575. /// @param callback_data A pointer that is simply passed back to callback.
  576. /// @param n_beams Number of beams to use.
  577. /// @param n_past Number of tokens already evaluated.
  578. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  579. LLAMA_API void llama_beam_search(
  580. struct llama_context * ctx,
  581. llama_beam_search_callback_fn_t callback,
  582. void * callback_data,
  583. size_t n_beams,
  584. int n_past,
  585. int n_predict);
  586. // Performance information
  587. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  588. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  589. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  590. // Print system information
  591. LLAMA_API const char * llama_print_system_info(void);
  592. // Set callback for all future logging events.
  593. // If this is not called, or NULL is supplied, everything is output on stderr.
  594. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  595. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  596. #ifdef __cplusplus
  597. }
  598. #endif
  599. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  600. #ifdef LLAMA_API_INTERNAL
  601. #include <vector>
  602. #include <string>
  603. struct ggml_tensor;
  604. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  605. struct llama_context * ctx
  606. );
  607. #endif // LLAMA_API_INTERNAL
  608. #endif // LLAMA_H