ggml.c 332 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if __ARM_NEON || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. #if QK == 32
  412. const vector float v85 = vec_splats(8.5f);
  413. for (int i = 0; i < nb; i++) {
  414. float amax = 0.0f; // absolute max
  415. vector float srcv [8];
  416. vector float asrcv[8];
  417. vector float amaxv[8];
  418. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  419. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  420. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  421. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  422. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  423. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  424. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  425. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  426. amax = MAX(
  427. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  428. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  429. const float d = amax / ((1 << 3) - 1);
  430. const float id = d ? 1.0/d : 0.0;
  431. *(float *)pd = d;
  432. pd += bs;
  433. const vector float vid = vec_splats(id);
  434. for (int l = 0; l < 8; l++) {
  435. const vector float vf = vec_madd(srcv[l], vid, v85);
  436. const vector signed int vi = vec_signed(vf);
  437. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  438. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  439. }
  440. //memcpy(pb, pp, sizeof(pp));
  441. pb += bs;
  442. }
  443. #else
  444. #error "not implemented for QK"
  445. #endif
  446. #elif __ARM_NEON
  447. #if QK == 32
  448. for (int i = 0; i < nb; i++) {
  449. float amax = 0.0f; // absolute max
  450. float32x4_t srcv [8];
  451. float32x4_t asrcv[8];
  452. float32x4_t amaxv[8];
  453. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  454. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  455. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  456. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  457. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  458. amax = MAX(
  459. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  460. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  461. const float d = amax / ((1 << 3) - 1);
  462. const float id = d ? 1.0/d : 0.0;
  463. *(float *)pd = d;
  464. pd += bs;
  465. for (int l = 0; l < 8; l++) {
  466. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  467. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  468. const int32x4_t vi = vcvtq_s32_f32(vf);
  469. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  470. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  471. }
  472. memcpy(pb, pp, sizeof(pp));
  473. pb += bs;
  474. }
  475. #else
  476. #error "not implemented for QK"
  477. #endif
  478. #elif defined(__AVX2__)
  479. #if QK == 32
  480. for (int i = 0; i < nb; i++) {
  481. // Load elements into 4 AVX vectors
  482. __m256 v0 = _mm256_loadu_ps( x );
  483. __m256 v1 = _mm256_loadu_ps( x + 8 );
  484. __m256 v2 = _mm256_loadu_ps( x + 16 );
  485. __m256 v3 = _mm256_loadu_ps( x + 24 );
  486. x += 32;
  487. // Compute max(abs(e)) for the block
  488. const __m256 signBit = _mm256_set1_ps( -0.0f );
  489. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  490. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  491. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  492. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  493. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  494. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  495. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  496. const float maxScalar = _mm_cvtss_f32( max4 );
  497. // Quantize these floats
  498. const float d = maxScalar / 7.0f;
  499. *(float *)pd = d;
  500. pd += bs;
  501. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  502. const __m256 mul = _mm256_set1_ps( id );
  503. // Apply the multiplier
  504. v0 = _mm256_mul_ps( v0, mul );
  505. v1 = _mm256_mul_ps( v1, mul );
  506. v2 = _mm256_mul_ps( v2, mul );
  507. v3 = _mm256_mul_ps( v3, mul );
  508. // Round to nearest integer
  509. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  510. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  511. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  512. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  513. // Convert floats to integers
  514. __m256i i0 = _mm256_cvtps_epi32( v0 );
  515. __m256i i1 = _mm256_cvtps_epi32( v1 );
  516. __m256i i2 = _mm256_cvtps_epi32( v2 );
  517. __m256i i3 = _mm256_cvtps_epi32( v3 );
  518. // Convert int32 to int16
  519. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  520. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  521. // Convert int16 to int8
  522. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  523. // We got our precious signed bytes, but the order is now wrong
  524. // These AVX2 pack instructions process 16-byte pieces independently
  525. // The following instruction is fixing the order
  526. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  527. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  528. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  529. const __m256i off = _mm256_set1_epi8( 8 );
  530. i0 = _mm256_add_epi8( i0, off );
  531. // Compress the vector into 4 bit/value, and store
  532. __m128i res = packNibbles( i0 );
  533. _mm_storeu_si128( ( __m128i* )pb, res );
  534. pb += bs;
  535. }
  536. #else
  537. #error "not implemented for QK"
  538. #endif
  539. #elif defined(__wasm_simd128__)
  540. #if QK == 32
  541. for (int i = 0; i < nb; i++) {
  542. float amax = 0.0f; // absolute max
  543. v128_t srcv [8];
  544. v128_t asrcv[8];
  545. v128_t amaxv[8];
  546. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  547. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  548. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  549. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  550. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  551. amax = MAX(
  552. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  553. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  554. const float d = amax / ((1 << 3) - 1);
  555. const float id = d ? 1.0/d : 0.0;
  556. *(float *)pd = d;
  557. pd += bs;
  558. for (int l = 0; l < 8; l++) {
  559. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  560. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  561. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  562. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  563. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  564. }
  565. memcpy(pb, pp, sizeof(pp));
  566. pb += bs;
  567. }
  568. #else
  569. #error "not implemented for QK"
  570. #endif
  571. #else
  572. // scalar
  573. quantize_row_q4_0_reference(x, y, k);
  574. #endif
  575. }
  576. // method 4
  577. // blocks of QK elements
  578. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  579. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  580. assert(k % QK == 0);
  581. const int nb = k / QK;
  582. const size_t bs = 2*sizeof(float) + QK/2;
  583. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  584. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  585. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  586. uint8_t pp[QK/2];
  587. for (int i = 0; i < nb; i++) {
  588. float min = FLT_MAX;
  589. float max = -FLT_MAX;
  590. for (int l = 0; l < QK; l++) {
  591. const float v = x[i*QK + l];
  592. if (v < min) min = v;
  593. if (v > max) max = v;
  594. }
  595. const float d = (max - min) / ((1 << 4) - 1);
  596. const float id = d ? 1.0f/d : 0.0f;
  597. *(float *)pm = min;
  598. *(float *)pd = d;
  599. pm += bs;
  600. pd += bs;
  601. for (int l = 0; l < QK; l += 2) {
  602. const float v0 = (x[i*QK + l + 0] - min)*id;
  603. const float v1 = (x[i*QK + l + 1] - min)*id;
  604. const uint8_t vi0 = round(v0);
  605. const uint8_t vi1 = round(v1);
  606. assert(vi0 >= 0 && vi0 < 16);
  607. assert(vi1 >= 0 && vi1 < 16);
  608. pp[l/2] = vi0 | (vi1 << 4);
  609. }
  610. memcpy(pb, pp, sizeof(pp));
  611. pb += bs;
  612. }
  613. }
  614. // TODO: vectorize
  615. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  616. assert(k % QK == 0);
  617. const int nb = k / QK;
  618. const size_t bs = sizeof(float) + QK/2;
  619. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  620. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  621. #if defined(__AVX2__) && QK % 32 == 0
  622. for (int i = 0; i < nb; i++) {
  623. // scale factor
  624. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  625. const uint8_t * restrict pp = pb + i*bs;
  626. for (int l = 0; l < QK; l += 32) {
  627. // Load 32x4-bit integers into 32x8-bit integers
  628. __m256i vx8 = bytesFromNibbles(pp+l/2);
  629. // Subtract 8 from the integers
  630. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  631. // Convert to 16-bit int
  632. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  633. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  634. // Convert to 32-bit int -> float 32
  635. const __m256 vf[4] = {
  636. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  637. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  638. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  639. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  640. };
  641. // Scale and store
  642. for (int j = 0; j < 4; j++) {
  643. __m256 result = _mm256_mul_ps(vf[j], d_v);
  644. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  645. }
  646. }
  647. }
  648. #else
  649. // scalar
  650. for (int i = 0; i < nb; i++) {
  651. const float d = *(const float *) (pd + i*bs);
  652. const uint8_t * restrict pp = pb + i*bs;
  653. for (int l = 0; l < QK; l += 2) {
  654. const uint8_t vi = pp[l/2];
  655. const int8_t vi0 = vi & 0xf;
  656. const int8_t vi1 = vi >> 4;
  657. const float v0 = (vi0 - 8)*d;
  658. const float v1 = (vi1 - 8)*d;
  659. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  660. y[i*QK + l + 0] = v0;
  661. y[i*QK + l + 1] = v1;
  662. assert(!isnan(y[i*QK + l + 0]));
  663. assert(!isnan(y[i*QK + l + 1]));
  664. }
  665. }
  666. #endif
  667. }
  668. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  669. assert(k % QK == 0);
  670. const int nb = k / QK;
  671. const size_t bs = 2*sizeof(float) + QK/2;
  672. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  673. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  674. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  675. for (int i = 0; i < nb; i++) {
  676. const float d = *(const float *) (pd + i*bs);
  677. const float m = *(const float *) (pm + i*bs);
  678. const uint8_t * restrict pp = pb + i*bs;
  679. for (int l = 0; l < QK; l += 2) {
  680. const uint8_t vi = pp[l/2];
  681. const int8_t vi0 = vi & 0xf;
  682. const int8_t vi1 = vi >> 4;
  683. const float v0 = vi0*d + m;
  684. const float v1 = vi1*d + m;
  685. y[i*QK + l + 0] = v0;
  686. y[i*QK + l + 1] = v1;
  687. assert(!isnan(y[i*QK + l + 0]));
  688. assert(!isnan(y[i*QK + l + 1]));
  689. }
  690. }
  691. }
  692. //
  693. // simd mappings
  694. //
  695. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  696. // we then implement the fundamental computation operations below using only these macros
  697. // adding support for new architectures requires to define the corresponding SIMD macros
  698. //
  699. // GGML_F32_STEP / GGML_F16_STEP
  700. // number of elements to process in a single step
  701. //
  702. // GGML_F32_EPR / GGML_F16_EPR
  703. // number of elements to fit in a single register
  704. //
  705. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  706. #define GGML_SIMD
  707. // F32 NEON
  708. #define GGML_F32_STEP 16
  709. #define GGML_F32_EPR 4
  710. #define GGML_F32x4 float32x4_t
  711. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  712. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  713. #define GGML_F32x4_LOAD vld1q_f32
  714. #define GGML_F32x4_STORE vst1q_f32
  715. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  716. #define GGML_F32x4_ADD vaddq_f32
  717. #define GGML_F32x4_MUL vmulq_f32
  718. #if defined(__ARM_FEATURE_QRDMX)
  719. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  720. #else
  721. #define GGML_F32x4_REDUCE_ONE(x) \
  722. (vgetq_lane_f32(x, 0) + \
  723. vgetq_lane_f32(x, 1) + \
  724. vgetq_lane_f32(x, 2) + \
  725. vgetq_lane_f32(x, 3))
  726. #endif
  727. #define GGML_F32x4_REDUCE(res, x) \
  728. { \
  729. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  730. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  731. } \
  732. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  733. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  734. } \
  735. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  736. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  737. } \
  738. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  739. }
  740. #define GGML_F32_VEC GGML_F32x4
  741. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  742. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  743. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  744. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  745. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  746. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  747. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  748. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  749. // F16 NEON
  750. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  751. #define GGML_F16_STEP 32
  752. #define GGML_F16_EPR 8
  753. #define GGML_F16x8 float16x8_t
  754. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  755. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  756. #define GGML_F16x8_LOAD vld1q_f16
  757. #define GGML_F16x8_STORE vst1q_f16
  758. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  759. #define GGML_F16x8_ADD vaddq_f16
  760. #define GGML_F16x8_MUL vmulq_f16
  761. #define GGML_F16x8_REDUCE(res, x) \
  762. { \
  763. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  764. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  765. } \
  766. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  767. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  768. } \
  769. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  770. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  771. } \
  772. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  773. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  774. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  775. }
  776. #define GGML_F16_VEC GGML_F16x8
  777. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  778. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  779. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  780. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  781. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  782. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  783. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  784. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  785. #else
  786. // if FP16 vector arithmetic is not supported, we use FP32 instead
  787. // and take advantage of the vcvt_ functions to convert to/from FP16
  788. #define GGML_F16_STEP 16
  789. #define GGML_F16_EPR 4
  790. #define GGML_F32Cx4 float32x4_t
  791. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  792. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  793. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  794. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  795. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  796. #define GGML_F32Cx4_ADD vaddq_f32
  797. #define GGML_F32Cx4_MUL vmulq_f32
  798. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  799. #define GGML_F16_VEC GGML_F32Cx4
  800. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  801. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  802. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  803. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  804. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  805. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  806. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  807. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  808. #endif
  809. #elif defined(__AVX__)
  810. #define GGML_SIMD
  811. // F32 AVX
  812. #define GGML_F32_STEP 32
  813. #define GGML_F32_EPR 8
  814. #define GGML_F32x8 __m256
  815. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  816. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  817. #define GGML_F32x8_LOAD _mm256_loadu_ps
  818. #define GGML_F32x8_STORE _mm256_storeu_ps
  819. #if defined(__FMA__)
  820. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  821. #else
  822. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  823. #endif
  824. #define GGML_F32x8_ADD _mm256_add_ps
  825. #define GGML_F32x8_MUL _mm256_mul_ps
  826. #define GGML_F32x8_REDUCE(res, x) \
  827. { \
  828. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  829. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  830. } \
  831. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  832. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  833. } \
  834. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  835. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  836. } \
  837. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  838. _mm256_extractf128_ps(x[0], 1)); \
  839. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  840. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  841. }
  842. // TODO: is this optimal ?
  843. #define GGML_F32_VEC GGML_F32x8
  844. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  845. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  846. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  847. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  848. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  849. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  850. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  851. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  852. // F16 AVX
  853. #define GGML_F16_STEP 32
  854. #define GGML_F16_EPR 8
  855. // F16 arithmetic is not supported by AVX, so we use F32 instead
  856. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  857. #define GGML_F32Cx8 __m256
  858. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  859. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  860. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  861. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  862. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  863. #define GGML_F32Cx8_ADD _mm256_add_ps
  864. #define GGML_F32Cx8_MUL _mm256_mul_ps
  865. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  866. #define GGML_F16_VEC GGML_F32Cx8
  867. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  868. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  869. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  870. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  871. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  872. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  873. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  874. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  875. #elif defined(__POWER9_VECTOR__)
  876. #define GGML_SIMD
  877. // F32 POWER9
  878. #define GGML_F32_STEP 32
  879. #define GGML_F32_EPR 4
  880. #define GGML_F32x4 vector float
  881. #define GGML_F32x4_ZERO 0.0f
  882. #define GGML_F32x4_SET1 vec_splats
  883. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  884. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  885. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  886. #define GGML_F32x4_ADD vec_add
  887. #define GGML_F32x4_MUL vec_mul
  888. #define GGML_F32x4_REDUCE(res, x) \
  889. { \
  890. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  891. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  892. } \
  893. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  894. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  895. } \
  896. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  897. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  898. } \
  899. res = vec_extract(x[0], 0) + \
  900. vec_extract(x[0], 1) + \
  901. vec_extract(x[0], 2) + \
  902. vec_extract(x[0], 3); \
  903. }
  904. #define GGML_F32_VEC GGML_F32x4
  905. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  906. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  907. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  908. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  909. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  910. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  911. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  912. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  913. // F16 POWER9
  914. #define GGML_F16_STEP GGML_F32_STEP
  915. #define GGML_F16_EPR GGML_F32_EPR
  916. #define GGML_F16_VEC GGML_F32x4
  917. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  918. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  919. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  920. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  921. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  922. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  923. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  924. vec_extract_fp32_from_shortl(vec_xl(0, p))
  925. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  926. #define GGML_F16_VEC_STORE(p, r, i) \
  927. if (i & 0x1) \
  928. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  929. r[i - GGML_ENDIAN_BYTE(0)]), \
  930. 0, p - GGML_F16_EPR)
  931. #elif defined(__wasm_simd128__)
  932. #define GGML_SIMD
  933. // F32 WASM
  934. #define GGML_F32_STEP 16
  935. #define GGML_F32_EPR 4
  936. #define GGML_F32x4 v128_t
  937. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  938. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  939. #define GGML_F32x4_LOAD wasm_v128_load
  940. #define GGML_F32x4_STORE wasm_v128_store
  941. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  942. #define GGML_F32x4_ADD wasm_f32x4_add
  943. #define GGML_F32x4_MUL wasm_f32x4_mul
  944. #define GGML_F32x4_REDUCE(res, x) \
  945. { \
  946. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  947. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  948. } \
  949. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  950. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  951. } \
  952. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  953. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  954. } \
  955. res = wasm_f32x4_extract_lane(x[0], 0) + \
  956. wasm_f32x4_extract_lane(x[0], 1) + \
  957. wasm_f32x4_extract_lane(x[0], 2) + \
  958. wasm_f32x4_extract_lane(x[0], 3); \
  959. }
  960. #define GGML_F32_VEC GGML_F32x4
  961. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  962. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  963. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  964. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  965. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  966. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  967. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  968. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  969. // F16 WASM
  970. #define GGML_F16_STEP 16
  971. #define GGML_F16_EPR 4
  972. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  973. float tmp[4];
  974. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  975. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  976. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  977. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  978. return wasm_v128_load(tmp);
  979. }
  980. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  981. float tmp[4];
  982. wasm_v128_store(tmp, x);
  983. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  984. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  985. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  986. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  987. }
  988. #define GGML_F16x4 v128_t
  989. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  990. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  991. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  992. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  993. #define GGML_F16x4_FMA GGML_F32x4_FMA
  994. #define GGML_F16x4_ADD wasm_f32x4_add
  995. #define GGML_F16x4_MUL wasm_f32x4_mul
  996. #define GGML_F16x4_REDUCE(res, x) \
  997. { \
  998. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  999. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1000. } \
  1001. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1002. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1003. } \
  1004. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1005. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1006. } \
  1007. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1008. wasm_f32x4_extract_lane(x[0], 1) + \
  1009. wasm_f32x4_extract_lane(x[0], 2) + \
  1010. wasm_f32x4_extract_lane(x[0], 3); \
  1011. }
  1012. #define GGML_F16_VEC GGML_F16x4
  1013. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1014. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1015. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1016. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1017. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1018. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1019. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1020. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1021. #elif defined(__SSE3__)
  1022. #define GGML_SIMD
  1023. // F32 SSE
  1024. #define GGML_F32_STEP 32
  1025. #define GGML_F32_EPR 4
  1026. #define GGML_F32x4 __m128
  1027. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1028. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1029. #define GGML_F32x4_LOAD _mm_loadu_ps
  1030. #define GGML_F32x4_STORE _mm_storeu_ps
  1031. #if defined(__FMA__)
  1032. // TODO: Does this work?
  1033. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1034. #else
  1035. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1036. #endif
  1037. #define GGML_F32x4_ADD _mm_add_ps
  1038. #define GGML_F32x4_MUL _mm_mul_ps
  1039. #define GGML_F32x4_REDUCE(res, x) \
  1040. { \
  1041. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1042. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1043. } \
  1044. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1045. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1046. } \
  1047. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1048. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1049. } \
  1050. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1051. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1052. }
  1053. // TODO: is this optimal ?
  1054. #define GGML_F32_VEC GGML_F32x4
  1055. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1056. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1057. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1058. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1059. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1060. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1061. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1062. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1063. // F16 SSE
  1064. #define GGML_F16_STEP 32
  1065. #define GGML_F16_EPR 4
  1066. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1067. float tmp[4];
  1068. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1069. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1070. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1071. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1072. return _mm_loadu_ps(tmp);
  1073. }
  1074. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1075. float arr[4];
  1076. _mm_storeu_ps(arr, y);
  1077. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1078. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1079. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1080. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1081. }
  1082. #define GGML_F32Cx4 __m128
  1083. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1084. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1085. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1086. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1087. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1088. #define GGML_F32Cx4_ADD _mm_add_ps
  1089. #define GGML_F32Cx4_MUL _mm_mul_ps
  1090. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1091. #define GGML_F16_VEC GGML_F32Cx4
  1092. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1093. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1094. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1095. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1096. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1097. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1098. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1099. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1100. #endif
  1101. // GGML_F32_ARR / GGML_F16_ARR
  1102. // number of registers to use per step
  1103. #ifdef GGML_SIMD
  1104. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1105. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1106. #endif
  1107. //
  1108. // fundamental operations
  1109. //
  1110. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1111. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1112. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1113. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1114. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1115. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1116. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1117. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1118. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1119. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1120. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1121. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1122. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1123. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1124. ggml_float sumf = 0.0;
  1125. #ifdef GGML_SIMD
  1126. const int np = (n & ~(GGML_F32_STEP - 1));
  1127. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1128. GGML_F32_VEC ax[GGML_F32_ARR];
  1129. GGML_F32_VEC ay[GGML_F32_ARR];
  1130. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1131. for (int j = 0; j < GGML_F32_ARR; j++) {
  1132. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1133. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1134. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1135. }
  1136. }
  1137. // reduce sum0..sum3 to sum0
  1138. GGML_F32_VEC_REDUCE(sumf, sum);
  1139. // leftovers
  1140. for (int i = np; i < n; ++i) {
  1141. sumf += x[i]*y[i];
  1142. }
  1143. #else
  1144. // scalar
  1145. for (int i = 0; i < n; ++i) {
  1146. sumf += x[i]*y[i];
  1147. }
  1148. #endif
  1149. *s = sumf;
  1150. }
  1151. #if __AVX512F__ && QK == 32
  1152. static inline __m512 dot_q4_0_oneblock_avx512(
  1153. __m512 acc,
  1154. const uint8_t * pd0,
  1155. const uint8_t * pd1,
  1156. const uint8_t * pb0,
  1157. const uint8_t * pb1,
  1158. size_t bs,
  1159. int i
  1160. ) {
  1161. const float * d0_0 = (const float *) (pd0 + i*bs);
  1162. const float * d1_0 = (const float *) (pd1 + i*bs);
  1163. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1164. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1165. // Compute combined scale for the block
  1166. float scaleScalar = d0_0[0] * d1_0[0];
  1167. __m512 scale = _mm512_set1_ps( scaleScalar );
  1168. __m256i bx = bytesFromNibbles( p0 );
  1169. __m256i by = bytesFromNibbles( p1 );
  1170. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1171. const __m256i off = _mm256_set1_epi8( 8 );
  1172. bx = _mm256_sub_epi8( bx, off );
  1173. by = _mm256_sub_epi8( by, off );
  1174. // Sign-extend 16 signed bytes into int16_t
  1175. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1176. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1177. // Compute products of int16_t integers, add pairwise
  1178. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1179. // Convert int32_t to float
  1180. __m512 p = _mm512_cvtepi32_ps( i64 );
  1181. // Apply the scale, and accumulate
  1182. return _mm512_fmadd_ps( scale, p, acc );
  1183. }
  1184. #endif
  1185. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1186. ggml_float sumf = 0.0;
  1187. #if defined(GGML_SIMD)
  1188. const int np = (n & ~(GGML_F16_STEP - 1));
  1189. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1190. GGML_F16_VEC ax[GGML_F16_ARR];
  1191. GGML_F16_VEC ay[GGML_F16_ARR];
  1192. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1193. for (int j = 0; j < GGML_F16_ARR; j++) {
  1194. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1195. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1196. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1197. }
  1198. }
  1199. // reduce sum0..sum3 to sum0
  1200. GGML_F16_VEC_REDUCE(sumf, sum);
  1201. // leftovers
  1202. for (int i = np; i < n; ++i) {
  1203. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1204. }
  1205. #else
  1206. for (int i = 0; i < n; ++i) {
  1207. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1208. }
  1209. #endif
  1210. *s = sumf;
  1211. }
  1212. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1213. const int nb = n / QK;
  1214. assert(n % QK == 0);
  1215. assert(nb % 2 == 0);
  1216. const size_t bs = sizeof(float) + QK/2;
  1217. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1218. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1219. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1220. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1221. float sumf = 0.0;
  1222. #ifdef __ARM_NEON
  1223. #if QK == 32
  1224. float sum0 = 0.0f;
  1225. float sum1 = 0.0f;
  1226. for (int i = 0; i < nb; i += 2) {
  1227. const float d0_0 = *(const float *) (pd0 + i*bs);
  1228. const float d1_0 = *(const float *) (pd1 + i*bs);
  1229. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1230. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1231. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1232. const uint8_t * restrict p0 = pb0 + i*bs;
  1233. const uint8_t * restrict p1 = pb1 + i*bs;
  1234. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1235. const int8x16_t s8b = vdupq_n_s8(0x8);
  1236. const uint8x16_t v0_0 = vld1q_u8(p0);
  1237. const uint8x16_t v1_0 = vld1q_u8(p1);
  1238. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1239. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1240. // 4-bit -> 8-bit
  1241. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1242. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1243. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1244. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1245. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1246. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1247. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1248. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1249. // sub 8
  1250. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1251. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1252. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1253. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1254. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1255. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1256. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1257. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1258. #if defined(__ARM_FEATURE_DOTPROD)
  1259. // dot product into int16x8_t
  1260. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1261. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1262. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1263. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1264. // scalar
  1265. #if defined(__ARM_FEATURE_QRDMX)
  1266. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1267. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1268. #else
  1269. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1270. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1271. #endif
  1272. #else
  1273. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1274. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1275. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1276. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1277. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1278. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1279. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1280. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1281. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1282. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1283. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1284. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1285. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1286. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1287. // scalar
  1288. #if defined(__ARM_FEATURE_QRDMX)
  1289. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1290. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1291. #else
  1292. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1293. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1294. #endif
  1295. #endif
  1296. }
  1297. sumf = sum0 + sum1;
  1298. #else
  1299. #error "not implemented for QK"
  1300. #endif
  1301. #elif defined(__AVX512F__)
  1302. #if QK == 32
  1303. // Initialize accumulator with zeros
  1304. __m512 acc0 = _mm512_setzero_ps();
  1305. __m512 acc1 = _mm512_setzero_ps();
  1306. const int superblock_size = 8;
  1307. const int superblock_count = nb / superblock_size;
  1308. const int remainder = nb % superblock_size;
  1309. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1310. int i = superblock_ix * superblock_size;
  1311. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1312. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1313. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1314. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1315. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1316. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1317. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1318. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1319. }
  1320. // Remainders
  1321. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1322. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1323. }
  1324. // Horizontal sum of all lanes of the accumulator
  1325. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1326. #else
  1327. #error "not implemented for QK"
  1328. #endif
  1329. #elif defined(__AVX2__)
  1330. #if QK == 32
  1331. const size_t countBlocks = nb;
  1332. // Initialize accumulator with zeros
  1333. __m256 acc = _mm256_setzero_ps();
  1334. // Main loop
  1335. for (int i = 0; i < nb; ++i) {
  1336. const float * d0_0 = (const float *) (pd0 + i*bs);
  1337. const float * d1_0 = (const float *) (pd1 + i*bs);
  1338. const uint8_t * restrict p0 = pb0 + i*bs;
  1339. const uint8_t * restrict p1 = pb1 + i*bs;
  1340. // Compute combined scale for the block
  1341. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1342. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1343. __m256i bx = bytesFromNibbles( p0 );
  1344. __m256i by = bytesFromNibbles( p1 );
  1345. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1346. const __m256i off = _mm256_set1_epi8( 8 );
  1347. bx = _mm256_sub_epi8( bx, off );
  1348. by = _mm256_sub_epi8( by, off );
  1349. // Sign-extend first 16 signed bytes into int16_t
  1350. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1351. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1352. // Compute products of int16_t integers, add pairwise
  1353. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1354. // Sign-extend last 16 signed bytes into int16_t vectors
  1355. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1356. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1357. // Accumulate products of int16_t integers
  1358. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1359. // Convert int32_t to float
  1360. __m256 p = _mm256_cvtepi32_ps( i32 );
  1361. // Apply the scale, and accumulate
  1362. acc = _mm256_fmadd_ps( scale, p, acc );
  1363. }
  1364. // Return horizontal sum of the acc vector
  1365. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1366. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1367. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1368. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1369. sumf = _mm_cvtss_f32( res );
  1370. #else
  1371. #error "not implemented for QK"
  1372. #endif
  1373. #elif defined(__wasm_simd128__)
  1374. #if QK == 32
  1375. // wasm simd
  1376. float sum0 = 0.0f;
  1377. float sum1 = 0.0f;
  1378. for (int i = 0; i < nb; i += 2) {
  1379. const float d0_0 = *(const float *) (pd0 + i*bs);
  1380. const float d1_0 = *(const float *) (pd1 + i*bs);
  1381. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1382. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1383. const uint8_t * restrict p0 = pb0 + i*bs;
  1384. const uint8_t * restrict p1 = pb1 + i*bs;
  1385. const v128_t m4b = wasm_u8x16_splat(0xf);
  1386. const v128_t s8b = wasm_i8x16_splat(0x8);
  1387. const v128_t v0_0 = wasm_v128_load(p0);
  1388. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1389. const v128_t v1_0 = wasm_v128_load(p1);
  1390. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1391. // 4-bit -> 8-bit
  1392. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1393. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1394. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1395. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1396. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1397. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1398. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1399. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1400. // sub 8
  1401. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1402. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1403. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1404. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1405. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1406. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1407. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1408. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1409. // dot product into int16x8_t
  1410. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1411. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1412. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1413. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1414. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1415. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1416. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1417. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1418. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1419. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1420. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1421. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1422. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1423. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1424. sum0 += d0_0*d1_0*(
  1425. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1426. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1427. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1428. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1429. sum1 += d0_1*d1_1*(
  1430. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1431. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1432. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1433. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1434. }
  1435. sumf = sum0 + sum1;
  1436. #else
  1437. #error "not implemented for QK"
  1438. #endif
  1439. #else
  1440. // scalar
  1441. for (int i = 0; i < nb; i++) {
  1442. const float d0 = *(const float *) (pd0 + i*bs);
  1443. const float d1 = *(const float *) (pd1 + i*bs);
  1444. const uint8_t * restrict p0 = pb0 + i*bs;
  1445. const uint8_t * restrict p1 = pb1 + i*bs;
  1446. for (int j = 0; j < QK/2; j++) {
  1447. const uint8_t v0 = p0[j];
  1448. const uint8_t v1 = p1[j];
  1449. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1450. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1451. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1452. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1453. sumf += f0*f2 + f1*f3;
  1454. }
  1455. }
  1456. #endif
  1457. *s = sumf;
  1458. }
  1459. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1460. const int nb = n / QK;
  1461. const size_t bs = 2*sizeof(float) + QK/2;
  1462. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1463. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1464. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1465. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1466. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1467. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1468. float sumf = 0.0;
  1469. #if defined(__AVX2__)
  1470. #if QK == 32
  1471. // Initialize accumulator with zeros
  1472. __m256 acc = _mm256_setzero_ps();
  1473. // Accumulator for constant offsets
  1474. float acc_offset = 0.0f;
  1475. // Main loop
  1476. for (int i = 0; i < nb; ++i) {
  1477. const float * m0 = (const float *) (pm0 + i*bs);
  1478. const float * m1 = (const float *) (pm1 + i*bs);
  1479. const float * d0 = (const float *) (pd0 + i*bs);
  1480. const float * d1 = (const float *) (pd1 + i*bs);
  1481. const uint8_t * restrict p0 = pb0 + i*bs;
  1482. const uint8_t * restrict p1 = pb1 + i*bs;
  1483. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1484. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1485. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1486. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1487. // Compute combined scale for the block
  1488. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1489. // Compute cross scales for the block
  1490. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1491. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1492. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1493. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1494. __m256i bx = bytesFromNibbles( p0 );
  1495. __m256i by = bytesFromNibbles( p1 );
  1496. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1497. // Sign-extend first 16 signed bytes into int16_t
  1498. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1499. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1500. // Compute products of int16_t integers, add pairwise
  1501. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1502. // Sign-extend last 16 signed bytes into int16_t vectors
  1503. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1504. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1505. // Accumulate products of int16_t integers
  1506. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1507. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1508. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1509. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1510. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1511. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1512. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1513. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1514. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1515. // Convert int32_t to float
  1516. __m256 p = _mm256_cvtepi32_ps( i32 );
  1517. // Apply the scale, and accumulate
  1518. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1519. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1520. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1521. // acc_offset += m0*m1 (for each entry in the block)
  1522. acc_offset += (*m0)*(*m1);
  1523. }
  1524. // Return horizontal sum of the acc vector
  1525. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1526. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1527. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1528. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1529. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1530. #else
  1531. #error "not implemented for QK"
  1532. #endif
  1533. #else
  1534. // scalar
  1535. for (int i = 0; i < nb; i++) {
  1536. const float m0 = *(const float *) (pm0 + i*bs);
  1537. const float m1 = *(const float *) (pm1 + i*bs);
  1538. const float d0 = *(const float *) (pd0 + i*bs);
  1539. const float d1 = *(const float *) (pd1 + i*bs);
  1540. const uint8_t * restrict p0 = pb0 + i*bs;
  1541. const uint8_t * restrict p1 = pb1 + i*bs;
  1542. for (int j = 0; j < QK/2; j++) {
  1543. const uint8_t v0 = p0[j];
  1544. const uint8_t v1 = p1[j];
  1545. const float f0 = d0*(v0 & 0xf) + m0;
  1546. const float f1 = d0*(v0 >> 4) + m0;
  1547. const float f2 = d1*(v1 & 0xf) + m1;
  1548. const float f3 = d1*(v1 >> 4) + m1;
  1549. sumf += f0*f2 + f1*f3;
  1550. }
  1551. }
  1552. #endif
  1553. *s = sumf;
  1554. }
  1555. // compute GGML_VEC_DOT_UNROLL dot products at once
  1556. // xs - x row stride in bytes
  1557. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1558. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1559. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1560. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1561. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1562. }
  1563. #if defined(GGML_SIMD)
  1564. const int np = (n & ~(GGML_F16_STEP - 1));
  1565. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1566. GGML_F16_VEC ax[GGML_F16_ARR];
  1567. GGML_F16_VEC ay[GGML_F16_ARR];
  1568. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1569. for (int j = 0; j < GGML_F16_ARR; j++) {
  1570. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1571. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1572. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1573. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1574. }
  1575. }
  1576. }
  1577. // reduce sum0..sum3 to sum0
  1578. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1579. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1580. }
  1581. // leftovers
  1582. for (int i = np; i < n; ++i) {
  1583. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1584. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1585. }
  1586. }
  1587. #else
  1588. for (int i = 0; i < n; ++i) {
  1589. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1590. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1591. }
  1592. }
  1593. #endif
  1594. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1595. s[i] = sumf[i];
  1596. }
  1597. }
  1598. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1599. #if defined(GGML_SIMD)
  1600. const int np = (n & ~(GGML_F32_STEP - 1));
  1601. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1602. GGML_F32_VEC ax[GGML_F32_ARR];
  1603. GGML_F32_VEC ay[GGML_F32_ARR];
  1604. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1605. for (int j = 0; j < GGML_F32_ARR; j++) {
  1606. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1607. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1608. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1609. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1610. }
  1611. }
  1612. // leftovers
  1613. for (int i = np; i < n; ++i) {
  1614. y[i] += x[i]*v;
  1615. }
  1616. #else
  1617. // scalar
  1618. for (int i = 0; i < n; ++i) {
  1619. y[i] += x[i]*v;
  1620. }
  1621. #endif
  1622. }
  1623. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1624. #if defined(GGML_SIMD)
  1625. const int np = (n & ~(GGML_F16_STEP - 1));
  1626. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1627. GGML_F16_VEC ax[GGML_F16_ARR];
  1628. GGML_F16_VEC ay[GGML_F16_ARR];
  1629. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1630. for (int j = 0; j < GGML_F16_ARR; j++) {
  1631. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1632. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1633. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1634. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1635. }
  1636. }
  1637. // leftovers
  1638. for (int i = np; i < n; ++i) {
  1639. GGML_ASSERT(false);
  1640. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1641. }
  1642. #else
  1643. for (int i = 0; i < n; ++i) {
  1644. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1645. }
  1646. #endif
  1647. }
  1648. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1649. assert(n % QK == 0);
  1650. const int nb = n / QK;
  1651. const size_t bs = sizeof(float) + QK/2;
  1652. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1653. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1654. #if __ARM_NEON
  1655. #if QK == 32
  1656. for (int i = 0; i < nb; ++i) {
  1657. const float d0 = v*(*(const float *) (pd + i*bs));
  1658. const uint8_t * restrict pp = pb + i*bs;
  1659. const uint8x8_t m4b = vdup_n_u8(0xf);
  1660. const int8x8_t s8b = vdup_n_s8(0x8);
  1661. const float32x4_t vd = vdupq_n_f32(d0);
  1662. for (int j = 0; j < 2; j++) {
  1663. const uint8x8_t vx = vld1_u8(pp + j*8);
  1664. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1665. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1666. // sub 8
  1667. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1668. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1669. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1670. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1671. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1672. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1673. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1674. // convert to 2x int16x8_t
  1675. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1676. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1677. // convert to 4x float32x4_t
  1678. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1679. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1680. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1681. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1682. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1683. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1684. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1685. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1686. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1687. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1688. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1689. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1690. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1691. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1692. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1693. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1694. }
  1695. }
  1696. #endif
  1697. #else
  1698. // scalar
  1699. for (int i = 0; i < nb; i++) {
  1700. const float d = *(const float *) (pd + i*bs);
  1701. const uint8_t * restrict pp = pb + i*bs;
  1702. for (int l = 0; l < QK; l += 2) {
  1703. const uint8_t vi = pp[l/2];
  1704. const int8_t vi0 = vi & 0xf;
  1705. const int8_t vi1 = vi >> 4;
  1706. const float v0 = (vi0 - 8)*d;
  1707. const float v1 = (vi1 - 8)*d;
  1708. y[i*QK + l + 0] += v0*v;
  1709. y[i*QK + l + 1] += v1*v;
  1710. assert(!isnan(y[i*QK + l + 0]));
  1711. assert(!isnan(y[i*QK + l + 1]));
  1712. assert(!isinf(y[i*QK + l + 0]));
  1713. assert(!isinf(y[i*QK + l + 1]));
  1714. }
  1715. }
  1716. #endif
  1717. }
  1718. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1719. assert(n % QK == 0);
  1720. const int nb = n / QK;
  1721. const size_t bs = 2*sizeof(float) + QK/2;
  1722. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1723. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1724. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1725. for (int i = 0; i < nb; i++) {
  1726. const float d = *(const float *) (pd + i*bs);
  1727. const float m = *(const float *) (pm + i*bs);
  1728. const uint8_t * restrict pp = pb + i*bs;
  1729. for (int l = 0; l < QK; l += 2) {
  1730. const uint8_t vi = pp[l/2];
  1731. const uint8_t vi0 = vi & 0xf;
  1732. const uint8_t vi1 = vi >> 4;
  1733. const float v0 = d*vi0 + m;
  1734. const float v1 = d*vi1 + m;
  1735. y[i*QK + l + 0] += v0*v;
  1736. y[i*QK + l + 1] += v1*v;
  1737. assert(!isnan(y[i*QK + l + 0]));
  1738. assert(!isnan(y[i*QK + l + 1]));
  1739. assert(!isinf(y[i*QK + l + 0]));
  1740. assert(!isinf(y[i*QK + l + 1]));
  1741. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1742. }
  1743. }
  1744. }
  1745. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1746. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1747. #if defined(GGML_SIMD)
  1748. const int np = (n & ~(GGML_F32_STEP - 1));
  1749. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1750. GGML_F32_VEC ay[GGML_F32_ARR];
  1751. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1752. for (int j = 0; j < GGML_F32_ARR; j++) {
  1753. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1754. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1755. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1756. }
  1757. }
  1758. // leftovers
  1759. for (int i = np; i < n; ++i) {
  1760. y[i] *= v;
  1761. }
  1762. #else
  1763. // scalar
  1764. for (int i = 0; i < n; ++i) {
  1765. y[i] *= v;
  1766. }
  1767. #endif
  1768. }
  1769. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1770. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1771. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1772. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1773. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1774. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1775. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1776. static const ggml_float GELU_COEF_A = 0.044715;
  1777. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1778. inline static float ggml_gelu_f32(float x) {
  1779. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1780. }
  1781. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1782. const uint16_t * i16 = (const uint16_t *) x;
  1783. for (int i = 0; i < n; ++i) {
  1784. y[i] = table_gelu_f16[i16[i]];
  1785. }
  1786. }
  1787. #ifdef GGML_GELU_FP16
  1788. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1789. uint16_t t;
  1790. for (int i = 0; i < n; ++i) {
  1791. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1792. memcpy(&t, &fp16, sizeof(uint16_t));
  1793. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1794. }
  1795. }
  1796. #else
  1797. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1798. for (int i = 0; i < n; ++i) {
  1799. y[i] = ggml_gelu_f32(x[i]);
  1800. }
  1801. }
  1802. #endif
  1803. // Sigmoid Linear Unit (SiLU) function
  1804. inline static float ggml_silu_f32(float x) {
  1805. return x/(1.0 + exp(-x));
  1806. }
  1807. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1808. const uint16_t * i16 = (const uint16_t *) x;
  1809. for (int i = 0; i < n; ++i) {
  1810. y[i] = table_silu_f16[i16[i]];
  1811. }
  1812. }
  1813. #ifdef GGML_SILU_FP16
  1814. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1815. uint16_t t;
  1816. for (int i = 0; i < n; ++i) {
  1817. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1818. memcpy(&t, &fp16, sizeof(uint16_t));
  1819. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1820. }
  1821. }
  1822. #else
  1823. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1824. for (int i = 0; i < n; ++i) {
  1825. y[i] = ggml_silu_f32(x[i]);
  1826. }
  1827. }
  1828. #endif
  1829. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1830. #ifndef GGML_USE_ACCELERATE
  1831. ggml_float sum = 0.0;
  1832. for (int i = 0; i < n; ++i) {
  1833. sum += x[i];
  1834. }
  1835. *s = sum;
  1836. #else
  1837. vDSP_sve(x, 1, s, n);
  1838. #endif
  1839. }
  1840. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1841. #ifndef GGML_USE_ACCELERATE
  1842. ggml_float max = -INFINITY;
  1843. for (int i = 0; i < n; ++i) {
  1844. max = MAX(max, x[i]);
  1845. }
  1846. *s = max;
  1847. #else
  1848. vDSP_maxv(x, 1, s, n);
  1849. #endif
  1850. }
  1851. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1852. //
  1853. // logging
  1854. //
  1855. #if (GGML_DEBUG >= 1)
  1856. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1857. #else
  1858. #define GGML_PRINT_DEBUG(...)
  1859. #endif
  1860. #if (GGML_DEBUG >= 5)
  1861. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1862. #else
  1863. #define GGML_PRINT_DEBUG_5(...)
  1864. #endif
  1865. #if (GGML_DEBUG >= 10)
  1866. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1867. #else
  1868. #define GGML_PRINT_DEBUG_10(...)
  1869. #endif
  1870. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1871. //
  1872. // data types
  1873. //
  1874. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1875. QK,
  1876. QK,
  1877. 1,
  1878. 1,
  1879. 1,
  1880. 1,
  1881. 1,
  1882. };
  1883. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1884. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1885. sizeof(float ) + QK/2,
  1886. sizeof(float )*2 + QK/2,
  1887. sizeof(int8_t ),
  1888. sizeof(int16_t),
  1889. sizeof(int32_t),
  1890. sizeof(ggml_fp16_t),
  1891. sizeof(float ),
  1892. };
  1893. // don't forget to update the array above when adding new types
  1894. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1895. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1896. "NONE",
  1897. "DUP",
  1898. "ADD",
  1899. "SUB",
  1900. "MUL",
  1901. "DIV",
  1902. "SQR",
  1903. "SQRT",
  1904. "SUM",
  1905. "MEAN",
  1906. "REPEAT",
  1907. "ABS",
  1908. "SGN",
  1909. "NEG",
  1910. "STEP",
  1911. "RELU",
  1912. "GELU",
  1913. "SILU",
  1914. "NORM",
  1915. "RMS_NORM",
  1916. "MUL_MAT",
  1917. "SCALE",
  1918. "CPY",
  1919. "RESHAPE",
  1920. "VIEW",
  1921. "PERMUTE",
  1922. "TRANSPOSE",
  1923. "GET_ROWS",
  1924. "DIAG_MASK_INF",
  1925. "SOFT_MAX",
  1926. "ROPE",
  1927. "CONV_1D_1S",
  1928. "CONV_1D_2S",
  1929. "FLASH_ATTN",
  1930. "FLASH_FF",
  1931. };
  1932. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1933. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1934. "none",
  1935. "x",
  1936. "x+y",
  1937. "x-y",
  1938. "x*y",
  1939. "x/y",
  1940. "x^2",
  1941. "√x",
  1942. "Σx",
  1943. "Σx/n",
  1944. "repeat(x)",
  1945. "abs(x)",
  1946. "sgn(x)",
  1947. "-x",
  1948. "step(x)",
  1949. "relu(x)",
  1950. "gelu(x)",
  1951. "silu(x)",
  1952. "norm(x)",
  1953. "rms_norm(x)",
  1954. "X*Y",
  1955. "x*v",
  1956. "x-\\>y",
  1957. "reshape(x)",
  1958. "view(x)",
  1959. "permute(x)",
  1960. "transpose(x)",
  1961. "get_rows(x)",
  1962. "diag_mask_inf(x)",
  1963. "soft_max(x)",
  1964. "rope(x)",
  1965. "conv_1d_1s(x)",
  1966. "conv_1d_2s(x)",
  1967. "flash_attn(x)",
  1968. "flash_ff(x)",
  1969. };
  1970. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1971. //
  1972. // ggml object
  1973. //
  1974. struct ggml_object {
  1975. size_t offs;
  1976. size_t size;
  1977. struct ggml_object * next;
  1978. char padding[8];
  1979. };
  1980. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1981. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1982. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1983. //
  1984. // ggml context
  1985. //
  1986. struct ggml_context {
  1987. size_t mem_size;
  1988. void * mem_buffer;
  1989. bool mem_buffer_owned;
  1990. bool mem_buffer_mlocked;
  1991. int n_objects;
  1992. struct ggml_object * objects_begin;
  1993. struct ggml_object * objects_end;
  1994. struct ggml_scratch scratch;
  1995. struct ggml_scratch scratch_save;
  1996. };
  1997. struct ggml_context_container {
  1998. bool used;
  1999. struct ggml_context context;
  2000. };
  2001. //
  2002. // compute types
  2003. //
  2004. enum ggml_task_type {
  2005. GGML_TASK_INIT = 0,
  2006. GGML_TASK_COMPUTE,
  2007. GGML_TASK_FINALIZE,
  2008. };
  2009. struct ggml_compute_params {
  2010. enum ggml_task_type type;
  2011. int ith, nth;
  2012. // work buffer for all threads
  2013. size_t wsize;
  2014. void * wdata;
  2015. };
  2016. //
  2017. // ggml state
  2018. //
  2019. struct ggml_state {
  2020. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2021. };
  2022. // global state
  2023. static struct ggml_state g_state;
  2024. static atomic_int g_state_barrier = 0;
  2025. // barrier via spin lock
  2026. inline static void ggml_critical_section_start(void) {
  2027. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2028. while (processing > 0) {
  2029. // wait for other threads to finish
  2030. atomic_fetch_sub(&g_state_barrier, 1);
  2031. sched_yield(); // TODO: reconsider this
  2032. processing = atomic_fetch_add(&g_state_barrier, 1);
  2033. }
  2034. }
  2035. // TODO: make this somehow automatically executed
  2036. // some sort of "sentry" mechanism
  2037. inline static void ggml_critical_section_end(void) {
  2038. atomic_fetch_sub(&g_state_barrier, 1);
  2039. }
  2040. ////////////////////////////////////////////////////////////////////////////////
  2041. void ggml_print_object(const struct ggml_object * obj) {
  2042. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2043. obj->offs, obj->size, (const void *) obj->next);
  2044. }
  2045. void ggml_print_objects(const struct ggml_context * ctx) {
  2046. struct ggml_object * obj = ctx->objects_begin;
  2047. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2048. while (obj != NULL) {
  2049. ggml_print_object(obj);
  2050. obj = obj->next;
  2051. }
  2052. GGML_PRINT("%s: --- end ---\n", __func__);
  2053. }
  2054. int ggml_nelements(const struct ggml_tensor * tensor) {
  2055. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2056. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2057. }
  2058. int ggml_nrows(const struct ggml_tensor * tensor) {
  2059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2060. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2061. }
  2062. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2063. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2064. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2065. }
  2066. int ggml_blck_size(enum ggml_type type) {
  2067. return GGML_BLCK_SIZE[type];
  2068. }
  2069. size_t ggml_type_size(enum ggml_type type) {
  2070. return GGML_TYPE_SIZE[type];
  2071. }
  2072. float ggml_type_sizef(enum ggml_type type) {
  2073. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2074. }
  2075. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2076. return GGML_TYPE_SIZE[tensor->type];
  2077. }
  2078. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2079. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2080. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2081. }
  2082. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2083. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2084. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2085. }
  2086. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2087. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2088. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2089. }
  2090. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2092. return
  2093. (t0->ne[0] == t1->ne[0]) &&
  2094. (t0->ne[2] == t1->ne[2]) &&
  2095. (t0->ne[3] == t1->ne[3]);
  2096. }
  2097. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2098. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2099. return
  2100. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2101. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2102. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2103. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2104. }
  2105. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2106. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2107. return
  2108. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2109. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2110. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2111. }
  2112. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2113. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2114. return
  2115. (t0->ne[0] == t1->ne[0] ) &&
  2116. (t0->ne[1] == t1->ne[1] ) &&
  2117. (t0->ne[2] == t1->ne[2] ) &&
  2118. (t0->ne[3] == t1->ne[3] );
  2119. }
  2120. // check if t1 can be represented as a repeatition of t0
  2121. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2122. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2123. return
  2124. (t1->ne[0]%t0->ne[0] == 0) &&
  2125. (t1->ne[1]%t0->ne[1] == 0) &&
  2126. (t1->ne[2]%t0->ne[2] == 0) &&
  2127. (t1->ne[3]%t0->ne[3] == 0);
  2128. }
  2129. static inline int ggml_up32(int n) {
  2130. return (n + 31) & ~31;
  2131. }
  2132. static inline int ggml_up64(int n) {
  2133. return (n + 63) & ~63;
  2134. }
  2135. static inline int ggml_up(int n, int m) {
  2136. // assert m is a power of 2
  2137. GGML_ASSERT((m & (m - 1)) == 0);
  2138. return (n + m - 1) & ~(m - 1);
  2139. }
  2140. // assert that pointer is aligned to GGML_MEM_ALIGN
  2141. #define ggml_assert_aligned(ptr) \
  2142. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2143. ////////////////////////////////////////////////////////////////////////////////
  2144. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2145. // make this function thread safe
  2146. ggml_critical_section_start();
  2147. static bool is_first_call = true;
  2148. if (is_first_call) {
  2149. // initialize GELU, SILU and EXP F32 tables
  2150. {
  2151. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2152. ggml_fp16_t ii;
  2153. for (int i = 0; i < (1 << 16); ++i) {
  2154. uint16_t ui = i;
  2155. memcpy(&ii, &ui, sizeof(ii));
  2156. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2157. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2158. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2159. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2160. }
  2161. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2162. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2163. }
  2164. // initialize g_state
  2165. {
  2166. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2167. g_state = (struct ggml_state) {
  2168. /*.contexts =*/ { { 0 } },
  2169. };
  2170. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2171. g_state.contexts[i].used = false;
  2172. }
  2173. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2174. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2175. }
  2176. is_first_call = false;
  2177. }
  2178. // find non-used context in g_state
  2179. struct ggml_context * ctx = NULL;
  2180. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2181. if (!g_state.contexts[i].used) {
  2182. g_state.contexts[i].used = true;
  2183. ctx = &g_state.contexts[i].context;
  2184. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2185. break;
  2186. }
  2187. }
  2188. if (ctx == NULL) {
  2189. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2190. ggml_critical_section_end();
  2191. return NULL;
  2192. }
  2193. *ctx = (struct ggml_context) {
  2194. /*.mem_size =*/ params.mem_size,
  2195. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2196. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2197. /*.mem_buffer_mlocked =*/ false,
  2198. /*.n_objects =*/ 0,
  2199. /*.objects_begin =*/ NULL,
  2200. /*.objects_end =*/ NULL,
  2201. /*.scratch =*/ { 0, 0, NULL, },
  2202. /*.scratch_save =*/ { 0, 0, NULL, },
  2203. };
  2204. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2205. ggml_assert_aligned(ctx->mem_buffer);
  2206. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2207. ggml_critical_section_end();
  2208. return ctx;
  2209. }
  2210. void ggml_free(struct ggml_context * ctx) {
  2211. // make this function thread safe
  2212. ggml_critical_section_start();
  2213. bool found = false;
  2214. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2215. if (&g_state.contexts[i].context == ctx) {
  2216. g_state.contexts[i].used = false;
  2217. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2218. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2219. #if GGML_MLOCK_SUPPORT
  2220. if (ctx->mem_buffer_mlocked) {
  2221. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2222. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2223. }
  2224. }
  2225. #endif
  2226. if (ctx->mem_buffer_owned) {
  2227. free(ctx->mem_buffer);
  2228. }
  2229. found = true;
  2230. break;
  2231. }
  2232. }
  2233. if (!found) {
  2234. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2235. }
  2236. ggml_critical_section_end();
  2237. }
  2238. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2239. return ctx->objects_end->offs + ctx->objects_end->size;
  2240. }
  2241. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2242. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2243. ctx->scratch = scratch;
  2244. return result;
  2245. }
  2246. bool ggml_mlock_supported(void) {
  2247. return GGML_MLOCK_SUPPORT;
  2248. }
  2249. #if GGML_MLOCK_SUPPORT
  2250. #ifdef __APPLE__
  2251. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2252. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2253. #else
  2254. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2255. #endif
  2256. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2257. if (ctx->mem_buffer_mlocked) {
  2258. return true;
  2259. }
  2260. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2261. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2262. ctx->mem_size, strerror(errno));
  2263. GGML_ASSERT(ret >= 0);
  2264. return false;
  2265. }
  2266. ctx->mem_buffer_mlocked = true;
  2267. return true;
  2268. }
  2269. #else // GGML_MLOCK_SUPPORT
  2270. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2271. *err_p = strdup("can't mlock because it's not supported on this system");
  2272. return false;
  2273. }
  2274. #endif // GGML_MLOCK_SUPPORT
  2275. ////////////////////////////////////////////////////////////////////////////////
  2276. struct ggml_tensor * ggml_new_tensor_impl(
  2277. struct ggml_context * ctx,
  2278. enum ggml_type type,
  2279. int n_dims,
  2280. const int* ne,
  2281. void* data) {
  2282. // always insert objects at the end of the context's memory pool
  2283. struct ggml_object * obj_cur = ctx->objects_end;
  2284. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2285. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2286. const size_t cur_end = cur_offs + cur_size;
  2287. size_t size_needed = 0;
  2288. if (data == NULL) {
  2289. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2290. for (int i = 1; i < n_dims; i++) {
  2291. size_needed *= ne[i];
  2292. }
  2293. // align to GGML_MEM_ALIGN
  2294. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2295. }
  2296. char * const mem_buffer = ctx->mem_buffer;
  2297. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2298. if (ctx->scratch.data == NULL || data != NULL) {
  2299. size_needed += sizeof(struct ggml_tensor);
  2300. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2301. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2302. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2303. assert(false);
  2304. return NULL;
  2305. }
  2306. *obj_new = (struct ggml_object) {
  2307. .offs = cur_end + GGML_OBJECT_SIZE,
  2308. .size = size_needed,
  2309. .next = NULL,
  2310. };
  2311. } else {
  2312. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2313. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2314. assert(false);
  2315. return NULL;
  2316. }
  2317. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2318. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2319. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2320. assert(false);
  2321. return NULL;
  2322. }
  2323. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2324. *obj_new = (struct ggml_object) {
  2325. .offs = cur_end + GGML_OBJECT_SIZE,
  2326. .size = sizeof(struct ggml_tensor),
  2327. .next = NULL,
  2328. };
  2329. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2330. ctx->scratch.offs += size_needed;
  2331. }
  2332. if (obj_cur != NULL) {
  2333. obj_cur->next = obj_new;
  2334. } else {
  2335. // this is the first object in this context
  2336. ctx->objects_begin = obj_new;
  2337. }
  2338. ctx->objects_end = obj_new;
  2339. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2340. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2341. ggml_assert_aligned(result);
  2342. *result = (struct ggml_tensor) {
  2343. /*.type =*/ type,
  2344. /*.n_dims =*/ n_dims,
  2345. /*.ne =*/ { 1, 1, 1, 1 },
  2346. /*.nb =*/ { 0, 0, 0, 0 },
  2347. /*.op =*/ GGML_OP_NONE,
  2348. /*.is_param =*/ false,
  2349. /*.grad =*/ NULL,
  2350. /*.src0 =*/ NULL,
  2351. /*.src1 =*/ NULL,
  2352. /*.opt =*/ { NULL },
  2353. /*.n_tasks =*/ 0,
  2354. /*.perf_runs =*/ 0,
  2355. /*.perf_cycles =*/ 0,
  2356. /*.perf_time_us =*/ 0,
  2357. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2358. /*.pad =*/ { 0 },
  2359. };
  2360. ggml_assert_aligned(result->data);
  2361. for (int i = 0; i < n_dims; i++) {
  2362. result->ne[i] = ne[i];
  2363. }
  2364. result->nb[0] = GGML_TYPE_SIZE[type];
  2365. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2366. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2367. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2368. }
  2369. ctx->n_objects++;
  2370. return result;
  2371. }
  2372. struct ggml_tensor * ggml_new_tensor(
  2373. struct ggml_context * ctx,
  2374. enum ggml_type type,
  2375. int n_dims,
  2376. const int * ne) {
  2377. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2378. }
  2379. struct ggml_tensor * ggml_new_tensor_1d(
  2380. struct ggml_context * ctx,
  2381. enum ggml_type type,
  2382. int ne0) {
  2383. return ggml_new_tensor(ctx, type, 1, &ne0);
  2384. }
  2385. struct ggml_tensor * ggml_new_tensor_2d(
  2386. struct ggml_context * ctx,
  2387. enum ggml_type type,
  2388. int ne0,
  2389. int ne1) {
  2390. const int ne[2] = { ne0, ne1 };
  2391. return ggml_new_tensor(ctx, type, 2, ne);
  2392. }
  2393. struct ggml_tensor * ggml_new_tensor_3d(
  2394. struct ggml_context * ctx,
  2395. enum ggml_type type,
  2396. int ne0,
  2397. int ne1,
  2398. int ne2) {
  2399. const int ne[3] = { ne0, ne1, ne2 };
  2400. return ggml_new_tensor(ctx, type, 3, ne);
  2401. }
  2402. struct ggml_tensor * ggml_new_tensor_4d(
  2403. struct ggml_context * ctx,
  2404. enum ggml_type type,
  2405. int ne0,
  2406. int ne1,
  2407. int ne2,
  2408. int ne3) {
  2409. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2410. return ggml_new_tensor(ctx, type, 4, ne);
  2411. }
  2412. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2413. ctx->scratch_save = ctx->scratch;
  2414. ctx->scratch.data = NULL;
  2415. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2416. ctx->scratch = ctx->scratch_save;
  2417. ggml_set_i32(result, value);
  2418. return result;
  2419. }
  2420. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2421. ctx->scratch_save = ctx->scratch;
  2422. ctx->scratch.data = NULL;
  2423. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2424. ctx->scratch = ctx->scratch_save;
  2425. ggml_set_f32(result, value);
  2426. return result;
  2427. }
  2428. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2429. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2430. }
  2431. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2432. memset(tensor->data, 0, ggml_nbytes(tensor));
  2433. return tensor;
  2434. }
  2435. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2436. const int n = ggml_nrows(tensor);
  2437. const int nc = tensor->ne[0];
  2438. const size_t n1 = tensor->nb[1];
  2439. char * const data = tensor->data;
  2440. switch (tensor->type) {
  2441. case GGML_TYPE_Q4_0:
  2442. {
  2443. GGML_ASSERT(false);
  2444. } break;
  2445. case GGML_TYPE_Q4_1:
  2446. {
  2447. GGML_ASSERT(false);
  2448. } break;
  2449. case GGML_TYPE_I8:
  2450. {
  2451. assert(tensor->nb[0] == sizeof(int8_t));
  2452. for (int i = 0; i < n; i++) {
  2453. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2454. }
  2455. } break;
  2456. case GGML_TYPE_I16:
  2457. {
  2458. assert(tensor->nb[0] == sizeof(int16_t));
  2459. for (int i = 0; i < n; i++) {
  2460. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2461. }
  2462. } break;
  2463. case GGML_TYPE_I32:
  2464. {
  2465. assert(tensor->nb[0] == sizeof(int32_t));
  2466. for (int i = 0; i < n; i++) {
  2467. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2468. }
  2469. } break;
  2470. case GGML_TYPE_F16:
  2471. {
  2472. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2473. for (int i = 0; i < n; i++) {
  2474. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2475. }
  2476. } break;
  2477. case GGML_TYPE_F32:
  2478. {
  2479. assert(tensor->nb[0] == sizeof(float));
  2480. for (int i = 0; i < n; i++) {
  2481. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2482. }
  2483. } break;
  2484. case GGML_TYPE_COUNT:
  2485. {
  2486. GGML_ASSERT(false);
  2487. } break;
  2488. }
  2489. return tensor;
  2490. }
  2491. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2492. const int n = ggml_nrows(tensor);
  2493. const int nc = tensor->ne[0];
  2494. const size_t n1 = tensor->nb[1];
  2495. char * const data = tensor->data;
  2496. switch (tensor->type) {
  2497. case GGML_TYPE_Q4_0:
  2498. {
  2499. GGML_ASSERT(false);
  2500. } break;
  2501. case GGML_TYPE_Q4_1:
  2502. {
  2503. GGML_ASSERT(false);
  2504. } break;
  2505. case GGML_TYPE_I8:
  2506. {
  2507. assert(tensor->nb[0] == sizeof(int8_t));
  2508. for (int i = 0; i < n; i++) {
  2509. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2510. }
  2511. } break;
  2512. case GGML_TYPE_I16:
  2513. {
  2514. assert(tensor->nb[0] == sizeof(int16_t));
  2515. for (int i = 0; i < n; i++) {
  2516. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2517. }
  2518. } break;
  2519. case GGML_TYPE_I32:
  2520. {
  2521. assert(tensor->nb[0] == sizeof(int32_t));
  2522. for (int i = 0; i < n; i++) {
  2523. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2524. }
  2525. } break;
  2526. case GGML_TYPE_F16:
  2527. {
  2528. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2529. for (int i = 0; i < n; i++) {
  2530. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2531. }
  2532. } break;
  2533. case GGML_TYPE_F32:
  2534. {
  2535. assert(tensor->nb[0] == sizeof(float));
  2536. for (int i = 0; i < n; i++) {
  2537. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2538. }
  2539. } break;
  2540. case GGML_TYPE_COUNT:
  2541. {
  2542. GGML_ASSERT(false);
  2543. } break;
  2544. }
  2545. return tensor;
  2546. }
  2547. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2548. switch (tensor->type) {
  2549. case GGML_TYPE_Q4_0:
  2550. {
  2551. GGML_ASSERT(false);
  2552. } break;
  2553. case GGML_TYPE_Q4_1:
  2554. {
  2555. GGML_ASSERT(false);
  2556. } break;
  2557. case GGML_TYPE_I8:
  2558. {
  2559. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2560. return ((int8_t *)(tensor->data))[i];
  2561. } break;
  2562. case GGML_TYPE_I16:
  2563. {
  2564. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2565. return ((int16_t *)(tensor->data))[i];
  2566. } break;
  2567. case GGML_TYPE_I32:
  2568. {
  2569. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2570. return ((int32_t *)(tensor->data))[i];
  2571. } break;
  2572. case GGML_TYPE_F16:
  2573. {
  2574. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2575. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2576. } break;
  2577. case GGML_TYPE_F32:
  2578. {
  2579. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2580. return ((float *)(tensor->data))[i];
  2581. } break;
  2582. case GGML_TYPE_COUNT:
  2583. {
  2584. GGML_ASSERT(false);
  2585. } break;
  2586. }
  2587. return 0.0f;
  2588. }
  2589. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2590. switch (tensor->type) {
  2591. case GGML_TYPE_Q4_0:
  2592. {
  2593. GGML_ASSERT(false);
  2594. } break;
  2595. case GGML_TYPE_Q4_1:
  2596. {
  2597. GGML_ASSERT(false);
  2598. } break;
  2599. case GGML_TYPE_I8:
  2600. {
  2601. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2602. ((int8_t *)(tensor->data))[i] = value;
  2603. } break;
  2604. case GGML_TYPE_I16:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2607. ((int16_t *)(tensor->data))[i] = value;
  2608. } break;
  2609. case GGML_TYPE_I32:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2612. ((int32_t *)(tensor->data))[i] = value;
  2613. } break;
  2614. case GGML_TYPE_F16:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2617. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2618. } break;
  2619. case GGML_TYPE_F32:
  2620. {
  2621. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2622. ((float *)(tensor->data))[i] = value;
  2623. } break;
  2624. case GGML_TYPE_COUNT:
  2625. {
  2626. GGML_ASSERT(false);
  2627. } break;
  2628. }
  2629. }
  2630. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2631. switch (tensor->type) {
  2632. case GGML_TYPE_Q4_0:
  2633. {
  2634. GGML_ASSERT(false);
  2635. } break;
  2636. case GGML_TYPE_Q4_1:
  2637. {
  2638. GGML_ASSERT(false);
  2639. } break;
  2640. case GGML_TYPE_I8:
  2641. {
  2642. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2643. return ((int8_t *)(tensor->data))[i];
  2644. } break;
  2645. case GGML_TYPE_I16:
  2646. {
  2647. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2648. return ((int16_t *)(tensor->data))[i];
  2649. } break;
  2650. case GGML_TYPE_I32:
  2651. {
  2652. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2653. return ((int32_t *)(tensor->data))[i];
  2654. } break;
  2655. case GGML_TYPE_F16:
  2656. {
  2657. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2658. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2659. } break;
  2660. case GGML_TYPE_F32:
  2661. {
  2662. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2663. return ((float *)(tensor->data))[i];
  2664. } break;
  2665. case GGML_TYPE_COUNT:
  2666. {
  2667. GGML_ASSERT(false);
  2668. } break;
  2669. }
  2670. return 0.0f;
  2671. }
  2672. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2673. switch (tensor->type) {
  2674. case GGML_TYPE_Q4_0:
  2675. {
  2676. GGML_ASSERT(false);
  2677. } break;
  2678. case GGML_TYPE_Q4_1:
  2679. {
  2680. GGML_ASSERT(false);
  2681. } break;
  2682. case GGML_TYPE_I8:
  2683. {
  2684. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2685. ((int8_t *)(tensor->data))[i] = value;
  2686. } break;
  2687. case GGML_TYPE_I16:
  2688. {
  2689. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2690. ((int16_t *)(tensor->data))[i] = value;
  2691. } break;
  2692. case GGML_TYPE_I32:
  2693. {
  2694. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2695. ((int32_t *)(tensor->data))[i] = value;
  2696. } break;
  2697. case GGML_TYPE_F16:
  2698. {
  2699. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2700. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2701. } break;
  2702. case GGML_TYPE_F32:
  2703. {
  2704. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2705. ((float *)(tensor->data))[i] = value;
  2706. } break;
  2707. case GGML_TYPE_COUNT:
  2708. {
  2709. GGML_ASSERT(false);
  2710. } break;
  2711. }
  2712. }
  2713. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2714. return tensor->data;
  2715. }
  2716. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2717. assert(tensor->type == GGML_TYPE_F32);
  2718. return (float *)(tensor->data);
  2719. }
  2720. struct ggml_tensor * ggml_view_tensor(
  2721. struct ggml_context * ctx,
  2722. const struct ggml_tensor * src) {
  2723. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2724. }
  2725. ////////////////////////////////////////////////////////////////////////////////
  2726. // ggml_dup
  2727. struct ggml_tensor * ggml_dup_impl(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. bool inplace) {
  2731. bool is_node = false;
  2732. if (!inplace && (a->grad)) {
  2733. is_node = true;
  2734. }
  2735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2736. result->op = GGML_OP_DUP;
  2737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2738. result->src0 = a;
  2739. result->src1 = NULL;
  2740. return result;
  2741. }
  2742. struct ggml_tensor * ggml_dup(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * a) {
  2745. return ggml_dup_impl(ctx, a, false);
  2746. }
  2747. struct ggml_tensor * ggml_dup_inplace(
  2748. struct ggml_context * ctx,
  2749. struct ggml_tensor * a) {
  2750. return ggml_dup_impl(ctx, a, true);
  2751. }
  2752. // ggml_add
  2753. struct ggml_tensor * ggml_add_impl(
  2754. struct ggml_context * ctx,
  2755. struct ggml_tensor * a,
  2756. struct ggml_tensor * b,
  2757. bool inplace) {
  2758. GGML_ASSERT(ggml_are_same_shape(a, b));
  2759. bool is_node = false;
  2760. if (!inplace && (a->grad || b->grad)) {
  2761. is_node = true;
  2762. }
  2763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2764. result->op = GGML_OP_ADD;
  2765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2766. result->src0 = a;
  2767. result->src1 = b;
  2768. return result;
  2769. }
  2770. struct ggml_tensor * ggml_add(
  2771. struct ggml_context * ctx,
  2772. struct ggml_tensor * a,
  2773. struct ggml_tensor * b) {
  2774. return ggml_add_impl(ctx, a, b, false);
  2775. }
  2776. struct ggml_tensor * ggml_add_inplace(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b) {
  2780. return ggml_add_impl(ctx, a, b, true);
  2781. }
  2782. // ggml_sub
  2783. struct ggml_tensor * ggml_sub_impl(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a,
  2786. struct ggml_tensor * b,
  2787. bool inplace) {
  2788. GGML_ASSERT(ggml_are_same_shape(a, b));
  2789. bool is_node = false;
  2790. if (!inplace && (a->grad || b->grad)) {
  2791. is_node = true;
  2792. }
  2793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2794. result->op = GGML_OP_SUB;
  2795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2796. result->src0 = a;
  2797. result->src1 = b;
  2798. return result;
  2799. }
  2800. struct ggml_tensor * ggml_sub(
  2801. struct ggml_context * ctx,
  2802. struct ggml_tensor * a,
  2803. struct ggml_tensor * b) {
  2804. return ggml_sub_impl(ctx, a, b, false);
  2805. }
  2806. struct ggml_tensor * ggml_sub_inplace(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a,
  2809. struct ggml_tensor * b) {
  2810. return ggml_sub_impl(ctx, a, b, true);
  2811. }
  2812. // ggml_mul
  2813. struct ggml_tensor * ggml_mul_impl(
  2814. struct ggml_context * ctx,
  2815. struct ggml_tensor * a,
  2816. struct ggml_tensor * b,
  2817. bool inplace) {
  2818. GGML_ASSERT(ggml_are_same_shape(a, b));
  2819. bool is_node = false;
  2820. if (!inplace && (a->grad || b->grad)) {
  2821. is_node = true;
  2822. }
  2823. if (inplace) {
  2824. GGML_ASSERT(is_node == false);
  2825. }
  2826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2827. result->op = GGML_OP_MUL;
  2828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2829. result->src0 = a;
  2830. result->src1 = b;
  2831. return result;
  2832. }
  2833. struct ggml_tensor * ggml_mul(
  2834. struct ggml_context * ctx,
  2835. struct ggml_tensor * a,
  2836. struct ggml_tensor * b) {
  2837. return ggml_mul_impl(ctx, a, b, false);
  2838. }
  2839. struct ggml_tensor * ggml_mul_inplace(
  2840. struct ggml_context * ctx,
  2841. struct ggml_tensor * a,
  2842. struct ggml_tensor * b) {
  2843. return ggml_mul_impl(ctx, a, b, true);
  2844. }
  2845. // ggml_div
  2846. struct ggml_tensor * ggml_div_impl(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b,
  2850. bool inplace) {
  2851. GGML_ASSERT(ggml_are_same_shape(a, b));
  2852. bool is_node = false;
  2853. if (!inplace && (a->grad || b->grad)) {
  2854. is_node = true;
  2855. }
  2856. if (inplace) {
  2857. GGML_ASSERT(is_node == false);
  2858. }
  2859. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2860. result->op = GGML_OP_DIV;
  2861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2862. result->src0 = a;
  2863. result->src1 = b;
  2864. return result;
  2865. }
  2866. struct ggml_tensor * ggml_div(
  2867. struct ggml_context * ctx,
  2868. struct ggml_tensor * a,
  2869. struct ggml_tensor * b) {
  2870. return ggml_div_impl(ctx, a, b, false);
  2871. }
  2872. struct ggml_tensor * ggml_div_inplace(
  2873. struct ggml_context * ctx,
  2874. struct ggml_tensor * a,
  2875. struct ggml_tensor * b) {
  2876. return ggml_div_impl(ctx, a, b, true);
  2877. }
  2878. // ggml_sqr
  2879. struct ggml_tensor * ggml_sqr_impl(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. bool inplace) {
  2883. bool is_node = false;
  2884. if (!inplace && (a->grad)) {
  2885. is_node = true;
  2886. }
  2887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2888. result->op = GGML_OP_SQR;
  2889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2890. result->src0 = a;
  2891. result->src1 = NULL;
  2892. return result;
  2893. }
  2894. struct ggml_tensor * ggml_sqr(
  2895. struct ggml_context * ctx,
  2896. struct ggml_tensor * a) {
  2897. return ggml_sqr_impl(ctx, a, false);
  2898. }
  2899. struct ggml_tensor * ggml_sqr_inplace(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a) {
  2902. return ggml_sqr_impl(ctx, a, true);
  2903. }
  2904. // ggml_sqrt
  2905. struct ggml_tensor * ggml_sqrt_impl(
  2906. struct ggml_context * ctx,
  2907. struct ggml_tensor * a,
  2908. bool inplace) {
  2909. bool is_node = false;
  2910. if (!inplace && (a->grad)) {
  2911. is_node = true;
  2912. }
  2913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2914. result->op = GGML_OP_SQRT;
  2915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2916. result->src0 = a;
  2917. result->src1 = NULL;
  2918. return result;
  2919. }
  2920. struct ggml_tensor * ggml_sqrt(
  2921. struct ggml_context * ctx,
  2922. struct ggml_tensor * a) {
  2923. return ggml_sqrt_impl(ctx, a, false);
  2924. }
  2925. struct ggml_tensor * ggml_sqrt_inplace(
  2926. struct ggml_context * ctx,
  2927. struct ggml_tensor * a) {
  2928. return ggml_sqrt_impl(ctx, a, true);
  2929. }
  2930. // ggml_sum
  2931. struct ggml_tensor * ggml_sum(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a) {
  2934. bool is_node = false;
  2935. if (a->grad) {
  2936. is_node = true;
  2937. }
  2938. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2939. result->op = GGML_OP_SUM;
  2940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2941. result->src0 = a;
  2942. result->src1 = NULL;
  2943. return result;
  2944. }
  2945. // ggml_mean
  2946. struct ggml_tensor * ggml_mean(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a) {
  2949. bool is_node = false;
  2950. if (a->grad) {
  2951. GGML_ASSERT(false); // TODO: implement
  2952. is_node = true;
  2953. }
  2954. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2955. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2956. result->op = GGML_OP_MEAN;
  2957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2958. result->src0 = a;
  2959. result->src1 = NULL;
  2960. return result;
  2961. }
  2962. // ggml_repeat
  2963. struct ggml_tensor * ggml_repeat(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a,
  2966. struct ggml_tensor * b) {
  2967. GGML_ASSERT(ggml_can_repeat(a, b));
  2968. bool is_node = false;
  2969. if (a->grad) {
  2970. is_node = true;
  2971. }
  2972. if (ggml_are_same_shape(a, b) && !is_node) {
  2973. return a;
  2974. }
  2975. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2976. result->op = GGML_OP_REPEAT;
  2977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2978. result->src0 = a;
  2979. result->src1 = b;
  2980. return result;
  2981. }
  2982. // ggml_abs
  2983. struct ggml_tensor * ggml_abs_impl(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. bool inplace) {
  2987. bool is_node = false;
  2988. if (!inplace && (a->grad)) {
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2992. result->op = GGML_OP_ABS;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src0 = a;
  2995. result->src1 = NULL;
  2996. return result;
  2997. }
  2998. struct ggml_tensor * ggml_abs(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a) {
  3001. return ggml_abs_impl(ctx, a, false);
  3002. }
  3003. struct ggml_tensor * ggml_abs_inplace(
  3004. struct ggml_context * ctx,
  3005. struct ggml_tensor * a) {
  3006. return ggml_abs_impl(ctx, a, true);
  3007. }
  3008. // ggml_sgn
  3009. struct ggml_tensor * ggml_sgn_impl(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a,
  3012. bool inplace) {
  3013. bool is_node = false;
  3014. if (!inplace && (a->grad)) {
  3015. is_node = true;
  3016. }
  3017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3018. result->op = GGML_OP_SGN;
  3019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3020. result->src0 = a;
  3021. result->src1 = NULL;
  3022. return result;
  3023. }
  3024. struct ggml_tensor * ggml_sgn(
  3025. struct ggml_context * ctx,
  3026. struct ggml_tensor * a) {
  3027. return ggml_sgn_impl(ctx, a, false);
  3028. }
  3029. struct ggml_tensor * ggml_sgn_inplace(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a) {
  3032. return ggml_sgn_impl(ctx, a, true);
  3033. }
  3034. // ggml_neg
  3035. struct ggml_tensor * ggml_neg_impl(
  3036. struct ggml_context * ctx,
  3037. struct ggml_tensor * a,
  3038. bool inplace) {
  3039. bool is_node = false;
  3040. if (!inplace && (a->grad)) {
  3041. is_node = true;
  3042. }
  3043. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3044. result->op = GGML_OP_NEG;
  3045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3046. result->src0 = a;
  3047. result->src1 = NULL;
  3048. return result;
  3049. }
  3050. struct ggml_tensor * ggml_neg(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a) {
  3053. return ggml_neg_impl(ctx, a, false);
  3054. }
  3055. struct ggml_tensor * ggml_neg_inplace(
  3056. struct ggml_context * ctx,
  3057. struct ggml_tensor * a) {
  3058. return ggml_neg_impl(ctx, a, true);
  3059. }
  3060. // ggml_step
  3061. struct ggml_tensor * ggml_step_impl(
  3062. struct ggml_context * ctx,
  3063. struct ggml_tensor * a,
  3064. bool inplace) {
  3065. bool is_node = false;
  3066. if (!inplace && (a->grad)) {
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3070. result->op = GGML_OP_STEP;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src0 = a;
  3073. result->src1 = NULL;
  3074. return result;
  3075. }
  3076. struct ggml_tensor * ggml_step(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a) {
  3079. return ggml_step_impl(ctx, a, false);
  3080. }
  3081. struct ggml_tensor * ggml_step_inplace(
  3082. struct ggml_context * ctx,
  3083. struct ggml_tensor * a) {
  3084. return ggml_step_impl(ctx, a, true);
  3085. }
  3086. // ggml_relu
  3087. struct ggml_tensor * ggml_relu_impl(
  3088. struct ggml_context * ctx,
  3089. struct ggml_tensor * a,
  3090. bool inplace) {
  3091. bool is_node = false;
  3092. if (!inplace && (a->grad)) {
  3093. is_node = true;
  3094. }
  3095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3096. result->op = GGML_OP_RELU;
  3097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3098. result->src0 = a;
  3099. result->src1 = NULL;
  3100. return result;
  3101. }
  3102. struct ggml_tensor * ggml_relu(
  3103. struct ggml_context * ctx,
  3104. struct ggml_tensor * a) {
  3105. return ggml_relu_impl(ctx, a, false);
  3106. }
  3107. struct ggml_tensor * ggml_relu_inplace(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a) {
  3110. return ggml_relu_impl(ctx, a, true);
  3111. }
  3112. // ggml_gelu
  3113. struct ggml_tensor * ggml_gelu_impl(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a,
  3116. bool inplace) {
  3117. bool is_node = false;
  3118. if (!inplace && (a->grad)) {
  3119. is_node = true;
  3120. }
  3121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3122. result->op = GGML_OP_GELU;
  3123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3124. result->src0 = a;
  3125. result->src1 = NULL;
  3126. return result;
  3127. }
  3128. struct ggml_tensor * ggml_gelu(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_gelu_impl(ctx, a, false);
  3132. }
  3133. struct ggml_tensor * ggml_gelu_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_gelu_impl(ctx, a, true);
  3137. }
  3138. // ggml_silu
  3139. struct ggml_tensor * ggml_silu_impl(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a,
  3142. bool inplace) {
  3143. bool is_node = false;
  3144. if (!inplace && (a->grad)) {
  3145. is_node = true;
  3146. }
  3147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3148. result->op = GGML_OP_SILU;
  3149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3150. result->src0 = a;
  3151. result->src1 = NULL;
  3152. return result;
  3153. }
  3154. struct ggml_tensor * ggml_silu(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. return ggml_silu_impl(ctx, a, false);
  3158. }
  3159. struct ggml_tensor * ggml_silu_inplace(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a) {
  3162. return ggml_silu_impl(ctx, a, true);
  3163. }
  3164. // ggml_norm
  3165. struct ggml_tensor * ggml_norm_impl(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a,
  3168. bool inplace) {
  3169. bool is_node = false;
  3170. if (!inplace && (a->grad)) {
  3171. GGML_ASSERT(false); // TODO: implement backward
  3172. is_node = true;
  3173. }
  3174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3175. result->op = GGML_OP_NORM;
  3176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3177. result->src0 = a;
  3178. result->src1 = NULL; // TODO: maybe store epsilon here?
  3179. return result;
  3180. }
  3181. struct ggml_tensor * ggml_norm(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a) {
  3184. return ggml_norm_impl(ctx, a, false);
  3185. }
  3186. struct ggml_tensor * ggml_norm_inplace(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. return ggml_norm_impl(ctx, a, true);
  3190. }
  3191. struct ggml_tensor * ggml_rms_norm_impl(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a,
  3194. bool inplace) {
  3195. bool is_node = false;
  3196. if (!inplace && (a->grad)) {
  3197. GGML_ASSERT(false); // TODO: implement backward
  3198. is_node = true;
  3199. }
  3200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3201. result->op = GGML_OP_RMS_NORM;
  3202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3203. result->src0 = a;
  3204. result->src1 = NULL; // TODO: maybe store epsilon here?
  3205. return result;
  3206. }
  3207. struct ggml_tensor * ggml_rms_norm(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a) {
  3210. return ggml_rms_norm_impl(ctx, a, false);
  3211. }
  3212. struct ggml_tensor * ggml_rms_norm_inplace(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a) {
  3215. return ggml_rms_norm_impl(ctx, a, true);
  3216. }
  3217. // ggml_mul_mat
  3218. struct ggml_tensor * ggml_mul_mat(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a,
  3221. struct ggml_tensor * b) {
  3222. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3223. bool is_node = false;
  3224. if (a->grad || b->grad) {
  3225. is_node = true;
  3226. }
  3227. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3228. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3229. result->op = GGML_OP_MUL_MAT;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src0 = a;
  3232. result->src1 = b;
  3233. return result;
  3234. }
  3235. // ggml_scale
  3236. struct ggml_tensor * ggml_scale_impl(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a,
  3239. struct ggml_tensor * b,
  3240. bool inplace) {
  3241. GGML_ASSERT(ggml_is_scalar(b));
  3242. GGML_ASSERT(ggml_is_padded_1d(a));
  3243. bool is_node = false;
  3244. if (!inplace && (a->grad || b->grad)) {
  3245. GGML_ASSERT(false); // TODO: implement backward
  3246. is_node = true;
  3247. }
  3248. // TODO: when implement backward, fix this:
  3249. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3250. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3251. result->op = GGML_OP_SCALE;
  3252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3253. result->src0 = a;
  3254. result->src1 = b;
  3255. return result;
  3256. }
  3257. struct ggml_tensor * ggml_scale(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. struct ggml_tensor * b) {
  3261. return ggml_scale_impl(ctx, a, b, false);
  3262. }
  3263. struct ggml_tensor * ggml_scale_inplace(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. struct ggml_tensor * b) {
  3267. return ggml_scale_impl(ctx, a, b, true);
  3268. }
  3269. // ggml_cpy
  3270. struct ggml_tensor * ggml_cpy_impl(
  3271. struct ggml_context * ctx,
  3272. struct ggml_tensor * a,
  3273. struct ggml_tensor * b,
  3274. bool inplace) {
  3275. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3276. bool is_node = false;
  3277. if (!inplace && (a->grad || b->grad)) {
  3278. GGML_ASSERT(false); // TODO: implement backward
  3279. is_node = true;
  3280. }
  3281. // make a view of the destination
  3282. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3283. result->op = GGML_OP_CPY;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src0 = a;
  3286. result->src1 = b;
  3287. return result;
  3288. }
  3289. struct ggml_tensor * ggml_cpy(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a,
  3292. struct ggml_tensor * b) {
  3293. return ggml_cpy_impl(ctx, a, b, false);
  3294. }
  3295. struct ggml_tensor * ggml_cpy_inplace(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a,
  3298. struct ggml_tensor * b) {
  3299. return ggml_cpy_impl(ctx, a, b, true);
  3300. }
  3301. // ggml_reshape
  3302. struct ggml_tensor * ggml_reshape(
  3303. struct ggml_context * ctx,
  3304. struct ggml_tensor * a,
  3305. struct ggml_tensor * b) {
  3306. GGML_ASSERT(ggml_is_contiguous(a));
  3307. GGML_ASSERT(ggml_is_contiguous(b));
  3308. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3309. bool is_node = false;
  3310. if (a->grad || b->grad) {
  3311. GGML_ASSERT(false); // TODO: implement backward
  3312. is_node = true;
  3313. }
  3314. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3315. result->op = GGML_OP_RESHAPE;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src0 = a;
  3318. result->src1 = NULL;
  3319. return result;
  3320. }
  3321. struct ggml_tensor * ggml_reshape_2d(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. int ne0,
  3325. int ne1) {
  3326. GGML_ASSERT(ggml_is_contiguous(a));
  3327. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3328. bool is_node = false;
  3329. if (a->grad) {
  3330. GGML_ASSERT(false); // TODO: implement backward
  3331. is_node = true;
  3332. }
  3333. const int ne[2] = { ne0, ne1 };
  3334. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3335. result->op = GGML_OP_RESHAPE;
  3336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3337. result->src0 = a;
  3338. result->src1 = NULL;
  3339. return result;
  3340. }
  3341. struct ggml_tensor * ggml_reshape_3d(
  3342. struct ggml_context * ctx,
  3343. struct ggml_tensor * a,
  3344. int ne0,
  3345. int ne1,
  3346. int ne2) {
  3347. GGML_ASSERT(ggml_is_contiguous(a));
  3348. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3349. bool is_node = false;
  3350. if (a->grad) {
  3351. GGML_ASSERT(false); // TODO: implement backward
  3352. is_node = true;
  3353. }
  3354. const int ne[3] = { ne0, ne1, ne2 };
  3355. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3356. result->op = GGML_OP_RESHAPE;
  3357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3358. result->src0 = a;
  3359. result->src1 = NULL;
  3360. return result;
  3361. }
  3362. // ggml_view_1d
  3363. struct ggml_tensor * ggml_view_1d(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. int ne0,
  3367. size_t offset) {
  3368. if (a->grad) {
  3369. GGML_ASSERT(false); // gradient propagation is not supported
  3370. }
  3371. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3372. result->op = GGML_OP_VIEW;
  3373. result->grad = NULL;
  3374. result->src0 = a;
  3375. result->src1 = NULL; // TODO: maybe store the offset here?
  3376. return result;
  3377. }
  3378. // ggml_view_2d
  3379. struct ggml_tensor * ggml_view_2d(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a,
  3382. int ne0,
  3383. int ne1,
  3384. size_t nb1,
  3385. size_t offset) {
  3386. if (a->grad) {
  3387. GGML_ASSERT(false); // gradient propagation is not supported
  3388. }
  3389. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3390. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3391. result->nb[1] = nb1;
  3392. result->nb[2] = result->nb[1]*ne1;
  3393. result->nb[3] = result->nb[2];
  3394. result->op = GGML_OP_VIEW;
  3395. result->grad = NULL;
  3396. result->src0 = a;
  3397. result->src1 = NULL; // TODO: maybe store the offset here?
  3398. return result;
  3399. }
  3400. // ggml_permute
  3401. struct ggml_tensor * ggml_permute(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. int axis0,
  3405. int axis1,
  3406. int axis2,
  3407. int axis3) {
  3408. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3409. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3410. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3411. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3412. GGML_ASSERT(axis0 != axis1);
  3413. GGML_ASSERT(axis0 != axis2);
  3414. GGML_ASSERT(axis0 != axis3);
  3415. GGML_ASSERT(axis1 != axis2);
  3416. GGML_ASSERT(axis1 != axis3);
  3417. GGML_ASSERT(axis2 != axis3);
  3418. bool is_node = false;
  3419. if (a->grad) {
  3420. GGML_ASSERT(false); // TODO: implement backward
  3421. is_node = true;
  3422. }
  3423. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3424. int ne[GGML_MAX_DIMS];
  3425. int nb[GGML_MAX_DIMS];
  3426. ne[axis0] = a->ne[0];
  3427. ne[axis1] = a->ne[1];
  3428. ne[axis2] = a->ne[2];
  3429. ne[axis3] = a->ne[3];
  3430. nb[axis0] = a->nb[0];
  3431. nb[axis1] = a->nb[1];
  3432. nb[axis2] = a->nb[2];
  3433. nb[axis3] = a->nb[3];
  3434. result->ne[0] = ne[0];
  3435. result->ne[1] = ne[1];
  3436. result->ne[2] = ne[2];
  3437. result->ne[3] = ne[3];
  3438. result->nb[0] = nb[0];
  3439. result->nb[1] = nb[1];
  3440. result->nb[2] = nb[2];
  3441. result->nb[3] = nb[3];
  3442. result->op = GGML_OP_PERMUTE;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src0 = a;
  3445. result->src1 = NULL; // TODO: maybe store the permutation here?
  3446. return result;
  3447. }
  3448. // ggml_transpose
  3449. struct ggml_tensor * ggml_transpose(
  3450. struct ggml_context * ctx,
  3451. struct ggml_tensor * a) {
  3452. bool is_node = false;
  3453. if (a->grad) {
  3454. GGML_ASSERT(false); // TODO: implement backward
  3455. is_node = true;
  3456. }
  3457. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3458. result->ne[0] = a->ne[1];
  3459. result->ne[1] = a->ne[0];
  3460. result->nb[0] = a->nb[1];
  3461. result->nb[1] = a->nb[0];
  3462. result->op = GGML_OP_TRANSPOSE;
  3463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3464. result->src0 = a;
  3465. result->src1 = NULL;
  3466. return result;
  3467. }
  3468. // ggml_get_rows
  3469. struct ggml_tensor * ggml_get_rows(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. struct ggml_tensor * b) {
  3473. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3474. bool is_node = false;
  3475. if (a->grad || b->grad) {
  3476. GGML_ASSERT(false); // TODO: implement backward
  3477. is_node = true;
  3478. }
  3479. // TODO: implement non F32 return
  3480. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3481. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3482. result->op = GGML_OP_GET_ROWS;
  3483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3484. result->src0 = a;
  3485. result->src1 = b;
  3486. return result;
  3487. }
  3488. // ggml_diag_mask_inf
  3489. struct ggml_tensor * ggml_diag_mask_inf(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a,
  3492. int n_past) {
  3493. bool is_node = false;
  3494. if (a->grad) {
  3495. GGML_ASSERT(false); // TODO: implement backward
  3496. is_node = true;
  3497. }
  3498. // TODO: when implement backward, fix this:
  3499. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3500. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3501. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3502. result->op = GGML_OP_DIAG_MASK_INF;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src0 = a;
  3505. result->src1 = b;
  3506. return result;
  3507. }
  3508. // ggml_soft_max
  3509. struct ggml_tensor * ggml_soft_max(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a) {
  3512. bool is_node = false;
  3513. if (a->grad) {
  3514. GGML_ASSERT(false); // TODO: implement backward
  3515. is_node = true;
  3516. }
  3517. // TODO: when implement backward, fix this:
  3518. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3519. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3520. result->op = GGML_OP_SOFT_MAX;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src0 = a;
  3523. result->src1 = NULL;
  3524. return result;
  3525. }
  3526. // ggml_rope
  3527. struct ggml_tensor * ggml_rope(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a,
  3530. int n_past,
  3531. int n_dims,
  3532. int mode) {
  3533. GGML_ASSERT(n_past >= 0);
  3534. bool is_node = false;
  3535. if (a->grad) {
  3536. GGML_ASSERT(false); // TODO: implement backward
  3537. is_node = true;
  3538. }
  3539. // TODO: when implement backward, fix this:
  3540. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3541. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3542. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3543. ((int32_t *) b->data)[0] = n_past;
  3544. ((int32_t *) b->data)[1] = n_dims;
  3545. ((int32_t *) b->data)[2] = mode;
  3546. result->op = GGML_OP_ROPE;
  3547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3548. result->src0 = a;
  3549. result->src1 = b;
  3550. return result;
  3551. }
  3552. // ggml_conv_1d_1s
  3553. struct ggml_tensor * ggml_conv_1d_1s(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. struct ggml_tensor * b) {
  3557. GGML_ASSERT(ggml_is_matrix(b));
  3558. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3559. GGML_ASSERT(a->ne[3] == 1);
  3560. bool is_node = false;
  3561. if (a->grad || b->grad) {
  3562. GGML_ASSERT(false); // TODO: implement backward
  3563. is_node = true;
  3564. }
  3565. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3566. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3567. result->op = GGML_OP_CONV_1D_1S;
  3568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3569. result->src0 = a;
  3570. result->src1 = b;
  3571. return result;
  3572. }
  3573. // ggml_conv_1d_2s
  3574. struct ggml_tensor * ggml_conv_1d_2s(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. struct ggml_tensor * b) {
  3578. GGML_ASSERT(ggml_is_matrix(b));
  3579. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3580. GGML_ASSERT(a->ne[3] == 1);
  3581. bool is_node = false;
  3582. if (a->grad || b->grad) {
  3583. GGML_ASSERT(false); // TODO: implement backward
  3584. is_node = true;
  3585. }
  3586. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3587. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3588. result->op = GGML_OP_CONV_1D_2S;
  3589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3590. result->src0 = a;
  3591. result->src1 = b;
  3592. return result;
  3593. }
  3594. // ggml_flash_attn
  3595. struct ggml_tensor * ggml_flash_attn(
  3596. struct ggml_context * ctx,
  3597. struct ggml_tensor * q,
  3598. struct ggml_tensor * k,
  3599. struct ggml_tensor * v,
  3600. bool masked) {
  3601. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3602. // TODO: check if vT can be multiplied by (k*qT)
  3603. bool is_node = false;
  3604. if (q->grad || k->grad || v->grad) {
  3605. GGML_ASSERT(false); // TODO: implement backward
  3606. is_node = true;
  3607. }
  3608. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3609. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3610. result->op = GGML_OP_FLASH_ATTN;
  3611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3612. result->src0 = q;
  3613. result->src1 = k;
  3614. result->opt[0] = v;
  3615. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3616. return result;
  3617. }
  3618. // ggml_flash_ff
  3619. struct ggml_tensor * ggml_flash_ff(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. struct ggml_tensor * b0,
  3623. struct ggml_tensor * b1,
  3624. struct ggml_tensor * c0,
  3625. struct ggml_tensor * c1) {
  3626. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3627. // TODO: more checks
  3628. bool is_node = false;
  3629. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3630. GGML_ASSERT(false); // TODO: implement backward
  3631. is_node = true;
  3632. }
  3633. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3634. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3635. result->op = GGML_OP_FLASH_FF;
  3636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3637. result->src0 = a;
  3638. result->src1 = b0;
  3639. result->opt[0] = b1;
  3640. result->opt[1] = c0;
  3641. result->opt[2] = c1;
  3642. return result;
  3643. }
  3644. ////////////////////////////////////////////////////////////////////////////////
  3645. void ggml_set_param(
  3646. struct ggml_context * ctx,
  3647. struct ggml_tensor * tensor) {
  3648. tensor->is_param = true;
  3649. GGML_ASSERT(tensor->grad == NULL);
  3650. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3651. }
  3652. // ggml_compute_forward_dup
  3653. static void ggml_compute_forward_dup_f16(
  3654. const struct ggml_compute_params * params,
  3655. const struct ggml_tensor * src0,
  3656. struct ggml_tensor * dst) {
  3657. GGML_ASSERT(params->ith == 0);
  3658. GGML_ASSERT(ggml_is_contiguous(dst));
  3659. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3661. return;
  3662. }
  3663. const int ne00 = src0->ne[0];
  3664. const int ne01 = src0->ne[1];
  3665. const int ne02 = src0->ne[2];
  3666. const int ne03 = src0->ne[3];
  3667. const size_t nb00 = src0->nb[0];
  3668. const size_t nb01 = src0->nb[1];
  3669. const size_t nb02 = src0->nb[2];
  3670. const size_t nb03 = src0->nb[3];
  3671. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3672. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3673. return;
  3674. }
  3675. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3676. if (dst->type == GGML_TYPE_F16) {
  3677. size_t id = 0;
  3678. const size_t rs = ne00*nb00;
  3679. for (int i03 = 0; i03 < ne03; i03++) {
  3680. for (int i02 = 0; i02 < ne02; i02++) {
  3681. for (int i01 = 0; i01 < ne01; i01++) {
  3682. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3683. char * dst_ptr = (char *) dst->data + id*rs;
  3684. memcpy(dst_ptr, src0_ptr, rs);
  3685. id++;
  3686. }
  3687. }
  3688. }
  3689. } else if (dst->type == GGML_TYPE_F32) {
  3690. size_t id = 0;
  3691. float * dst_ptr = (float *) dst->data;
  3692. for (int i03 = 0; i03 < ne03; i03++) {
  3693. for (int i02 = 0; i02 < ne02; i02++) {
  3694. for (int i01 = 0; i01 < ne01; i01++) {
  3695. for (int i00 = 0; i00 < ne00; i00++) {
  3696. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3697. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3698. id++;
  3699. }
  3700. }
  3701. }
  3702. }
  3703. } else {
  3704. GGML_ASSERT(false); // TODO: implement
  3705. }
  3706. } else {
  3707. //printf("%s: this is not optimal - fix me\n", __func__);
  3708. if (dst->type == GGML_TYPE_F32) {
  3709. size_t id = 0;
  3710. float * dst_ptr = (float *) dst->data;
  3711. for (int i03 = 0; i03 < ne03; i03++) {
  3712. for (int i02 = 0; i02 < ne02; i02++) {
  3713. for (int i01 = 0; i01 < ne01; i01++) {
  3714. for (int i00 = 0; i00 < ne00; i00++) {
  3715. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3716. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3717. id++;
  3718. }
  3719. }
  3720. }
  3721. }
  3722. } else if (dst->type == GGML_TYPE_F16) {
  3723. size_t id = 0;
  3724. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3725. for (int i03 = 0; i03 < ne03; i03++) {
  3726. for (int i02 = 0; i02 < ne02; i02++) {
  3727. for (int i01 = 0; i01 < ne01; i01++) {
  3728. for (int i00 = 0; i00 < ne00; i00++) {
  3729. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3730. dst_ptr[id] = *src0_ptr;
  3731. id++;
  3732. }
  3733. }
  3734. }
  3735. }
  3736. } else {
  3737. GGML_ASSERT(false); // TODO: implement
  3738. }
  3739. }
  3740. }
  3741. static void ggml_compute_forward_dup_f32(
  3742. const struct ggml_compute_params * params,
  3743. const struct ggml_tensor * src0,
  3744. struct ggml_tensor * dst) {
  3745. GGML_ASSERT(params->ith == 0);
  3746. GGML_ASSERT(ggml_is_contiguous(dst));
  3747. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3748. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3749. return;
  3750. }
  3751. const int ne00 = src0->ne[0];
  3752. const int ne01 = src0->ne[1];
  3753. const int ne02 = src0->ne[2];
  3754. const int ne03 = src0->ne[3];
  3755. const size_t nb00 = src0->nb[0];
  3756. const size_t nb01 = src0->nb[1];
  3757. const size_t nb02 = src0->nb[2];
  3758. const size_t nb03 = src0->nb[3];
  3759. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3760. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3761. return;
  3762. }
  3763. if (src0->nb[0] == sizeof(float)) {
  3764. if (dst->type == GGML_TYPE_F32) {
  3765. size_t id = 0;
  3766. const size_t rs = ne00*nb00;
  3767. for (int i03 = 0; i03 < ne03; i03++) {
  3768. for (int i02 = 0; i02 < ne02; i02++) {
  3769. for (int i01 = 0; i01 < ne01; i01++) {
  3770. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3771. char * dst_ptr = (char *) dst->data + id*rs;
  3772. memcpy(dst_ptr, src0_ptr, rs);
  3773. id++;
  3774. }
  3775. }
  3776. }
  3777. } else if (dst->type == GGML_TYPE_F16) {
  3778. size_t id = 0;
  3779. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3780. for (int i03 = 0; i03 < ne03; i03++) {
  3781. for (int i02 = 0; i02 < ne02; i02++) {
  3782. for (int i01 = 0; i01 < ne01; i01++) {
  3783. for (int i00 = 0; i00 < ne00; i00++) {
  3784. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3785. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3786. id++;
  3787. }
  3788. }
  3789. }
  3790. }
  3791. } else {
  3792. GGML_ASSERT(false); // TODO: implement
  3793. }
  3794. } else {
  3795. //printf("%s: this is not optimal - fix me\n", __func__);
  3796. if (dst->type == GGML_TYPE_F32) {
  3797. size_t id = 0;
  3798. float * dst_ptr = (float *) dst->data;
  3799. for (int i03 = 0; i03 < ne03; i03++) {
  3800. for (int i02 = 0; i02 < ne02; i02++) {
  3801. for (int i01 = 0; i01 < ne01; i01++) {
  3802. for (int i00 = 0; i00 < ne00; i00++) {
  3803. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3804. dst_ptr[id] = *src0_ptr;
  3805. id++;
  3806. }
  3807. }
  3808. }
  3809. }
  3810. } else if (dst->type == GGML_TYPE_F16) {
  3811. size_t id = 0;
  3812. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3813. for (int i03 = 0; i03 < ne03; i03++) {
  3814. for (int i02 = 0; i02 < ne02; i02++) {
  3815. for (int i01 = 0; i01 < ne01; i01++) {
  3816. for (int i00 = 0; i00 < ne00; i00++) {
  3817. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3818. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3819. id++;
  3820. }
  3821. }
  3822. }
  3823. }
  3824. } else {
  3825. GGML_ASSERT(false); // TODO: implement
  3826. }
  3827. }
  3828. }
  3829. static void ggml_compute_forward_dup(
  3830. const struct ggml_compute_params * params,
  3831. const struct ggml_tensor * src0,
  3832. struct ggml_tensor * dst) {
  3833. switch (src0->type) {
  3834. case GGML_TYPE_F16:
  3835. {
  3836. ggml_compute_forward_dup_f16(params, src0, dst);
  3837. } break;
  3838. case GGML_TYPE_F32:
  3839. {
  3840. ggml_compute_forward_dup_f32(params, src0, dst);
  3841. } break;
  3842. case GGML_TYPE_Q4_0:
  3843. case GGML_TYPE_Q4_1:
  3844. case GGML_TYPE_I8:
  3845. case GGML_TYPE_I16:
  3846. case GGML_TYPE_I32:
  3847. case GGML_TYPE_COUNT:
  3848. {
  3849. GGML_ASSERT(false);
  3850. } break;
  3851. }
  3852. }
  3853. // ggml_compute_forward_add
  3854. static void ggml_compute_forward_add_f32(
  3855. const struct ggml_compute_params * params,
  3856. const struct ggml_tensor * src0,
  3857. const struct ggml_tensor * src1,
  3858. struct ggml_tensor * dst) {
  3859. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3861. return;
  3862. }
  3863. const int ith = params->ith;
  3864. const int nth = params->nth;
  3865. const int n = ggml_nrows(src0);
  3866. const int nc = src0->ne[0];
  3867. const size_t nb00 = src0->nb[0];
  3868. const size_t nb01 = src0->nb[1];
  3869. const size_t nb10 = src1->nb[0];
  3870. const size_t nb11 = src1->nb[1];
  3871. const size_t nb0 = dst->nb[0];
  3872. const size_t nb1 = dst->nb[1];
  3873. GGML_ASSERT( nb0 == sizeof(float));
  3874. GGML_ASSERT(nb00 == sizeof(float));
  3875. if (nb10 == sizeof(float)) {
  3876. const int j0 = (n/nth)*ith;
  3877. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3878. for (int j = j0; j < j1; j++) {
  3879. ggml_vec_add_f32(nc,
  3880. (float *) ((char *) dst->data + j*nb1),
  3881. (float *) ((char *) src0->data + j*nb01),
  3882. (float *) ((char *) src1->data + j*nb11));
  3883. }
  3884. } else {
  3885. // src1 is not contiguous
  3886. for (int j = ith; j < n; j += nth) {
  3887. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3888. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3889. for (int i = 0; i < nc; i++) {
  3890. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3891. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3892. }
  3893. }
  3894. }
  3895. }
  3896. static void ggml_compute_forward_add(
  3897. const struct ggml_compute_params * params,
  3898. const struct ggml_tensor * src0,
  3899. const struct ggml_tensor * src1,
  3900. struct ggml_tensor * dst) {
  3901. switch (src0->type) {
  3902. case GGML_TYPE_F32:
  3903. {
  3904. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3905. } break;
  3906. case GGML_TYPE_Q4_0:
  3907. case GGML_TYPE_Q4_1:
  3908. case GGML_TYPE_I8:
  3909. case GGML_TYPE_I16:
  3910. case GGML_TYPE_I32:
  3911. case GGML_TYPE_F16:
  3912. case GGML_TYPE_COUNT:
  3913. {
  3914. GGML_ASSERT(false);
  3915. } break;
  3916. }
  3917. }
  3918. // ggml_compute_forward_sub
  3919. static void ggml_compute_forward_sub_f32(
  3920. const struct ggml_compute_params * params,
  3921. const struct ggml_tensor * src0,
  3922. const struct ggml_tensor * src1,
  3923. struct ggml_tensor * dst) {
  3924. assert(params->ith == 0);
  3925. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3927. return;
  3928. }
  3929. const int n = ggml_nrows(src0);
  3930. const int nc = src0->ne[0];
  3931. assert( dst->nb[0] == sizeof(float));
  3932. assert(src0->nb[0] == sizeof(float));
  3933. assert(src1->nb[0] == sizeof(float));
  3934. for (int i = 0; i < n; i++) {
  3935. ggml_vec_sub_f32(nc,
  3936. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3937. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3938. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3939. }
  3940. }
  3941. static void ggml_compute_forward_sub(
  3942. const struct ggml_compute_params * params,
  3943. const struct ggml_tensor * src0,
  3944. const struct ggml_tensor * src1,
  3945. struct ggml_tensor * dst) {
  3946. switch (src0->type) {
  3947. case GGML_TYPE_F32:
  3948. {
  3949. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3950. } break;
  3951. case GGML_TYPE_Q4_0:
  3952. case GGML_TYPE_Q4_1:
  3953. case GGML_TYPE_I8:
  3954. case GGML_TYPE_I16:
  3955. case GGML_TYPE_I32:
  3956. case GGML_TYPE_F16:
  3957. case GGML_TYPE_COUNT:
  3958. {
  3959. GGML_ASSERT(false);
  3960. } break;
  3961. }
  3962. }
  3963. // ggml_compute_forward_mul
  3964. static void ggml_compute_forward_mul_f32(
  3965. const struct ggml_compute_params * params,
  3966. const struct ggml_tensor * src0,
  3967. const struct ggml_tensor * src1,
  3968. struct ggml_tensor * dst) {
  3969. assert(params->ith == 0);
  3970. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3972. return;
  3973. }
  3974. const int n = ggml_nrows(src0);
  3975. const int nc = src0->ne[0];
  3976. assert( dst->nb[0] == sizeof(float));
  3977. assert(src0->nb[0] == sizeof(float));
  3978. assert(src1->nb[0] == sizeof(float));
  3979. for (int i = 0; i < n; i++) {
  3980. ggml_vec_mul_f32(nc,
  3981. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3982. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3983. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3984. }
  3985. }
  3986. static void ggml_compute_forward_mul(
  3987. const struct ggml_compute_params * params,
  3988. const struct ggml_tensor * src0,
  3989. const struct ggml_tensor * src1,
  3990. struct ggml_tensor * dst) {
  3991. switch (src0->type) {
  3992. case GGML_TYPE_F32:
  3993. {
  3994. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3995. } break;
  3996. case GGML_TYPE_Q4_0:
  3997. case GGML_TYPE_Q4_1:
  3998. case GGML_TYPE_I8:
  3999. case GGML_TYPE_I16:
  4000. case GGML_TYPE_I32:
  4001. case GGML_TYPE_F16:
  4002. case GGML_TYPE_COUNT:
  4003. {
  4004. GGML_ASSERT(false);
  4005. } break;
  4006. }
  4007. }
  4008. // ggml_compute_forward_div
  4009. static void ggml_compute_forward_div_f32(
  4010. const struct ggml_compute_params * params,
  4011. const struct ggml_tensor * src0,
  4012. const struct ggml_tensor * src1,
  4013. struct ggml_tensor * dst) {
  4014. assert(params->ith == 0);
  4015. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4017. return;
  4018. }
  4019. const int n = ggml_nrows(src0);
  4020. const int nc = src0->ne[0];
  4021. assert( dst->nb[0] == sizeof(float));
  4022. assert(src0->nb[0] == sizeof(float));
  4023. assert(src1->nb[0] == sizeof(float));
  4024. for (int i = 0; i < n; i++) {
  4025. ggml_vec_div_f32(nc,
  4026. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4027. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4028. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4029. }
  4030. }
  4031. static void ggml_compute_forward_div(
  4032. const struct ggml_compute_params * params,
  4033. const struct ggml_tensor * src0,
  4034. const struct ggml_tensor * src1,
  4035. struct ggml_tensor * dst) {
  4036. switch (src0->type) {
  4037. case GGML_TYPE_F32:
  4038. {
  4039. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4040. } break;
  4041. case GGML_TYPE_Q4_0:
  4042. case GGML_TYPE_Q4_1:
  4043. case GGML_TYPE_I8:
  4044. case GGML_TYPE_I16:
  4045. case GGML_TYPE_I32:
  4046. case GGML_TYPE_F16:
  4047. case GGML_TYPE_COUNT:
  4048. {
  4049. GGML_ASSERT(false);
  4050. } break;
  4051. }
  4052. }
  4053. // ggml_compute_forward_sqr
  4054. static void ggml_compute_forward_sqr_f32(
  4055. const struct ggml_compute_params * params,
  4056. const struct ggml_tensor * src0,
  4057. struct ggml_tensor * dst) {
  4058. assert(params->ith == 0);
  4059. assert(ggml_are_same_shape(src0, dst));
  4060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4061. return;
  4062. }
  4063. const int n = ggml_nrows(src0);
  4064. const int nc = src0->ne[0];
  4065. assert( dst->nb[0] == sizeof(float));
  4066. assert(src0->nb[0] == sizeof(float));
  4067. for (int i = 0; i < n; i++) {
  4068. ggml_vec_sqr_f32(nc,
  4069. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4070. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4071. }
  4072. }
  4073. static void ggml_compute_forward_sqr(
  4074. const struct ggml_compute_params * params,
  4075. const struct ggml_tensor * src0,
  4076. struct ggml_tensor * dst) {
  4077. switch (src0->type) {
  4078. case GGML_TYPE_F32:
  4079. {
  4080. ggml_compute_forward_sqr_f32(params, src0, dst);
  4081. } break;
  4082. case GGML_TYPE_Q4_0:
  4083. case GGML_TYPE_Q4_1:
  4084. case GGML_TYPE_I8:
  4085. case GGML_TYPE_I16:
  4086. case GGML_TYPE_I32:
  4087. case GGML_TYPE_F16:
  4088. case GGML_TYPE_COUNT:
  4089. {
  4090. GGML_ASSERT(false);
  4091. } break;
  4092. }
  4093. }
  4094. // ggml_compute_forward_sqrt
  4095. static void ggml_compute_forward_sqrt_f32(
  4096. const struct ggml_compute_params * params,
  4097. const struct ggml_tensor * src0,
  4098. struct ggml_tensor * dst) {
  4099. assert(params->ith == 0);
  4100. assert(ggml_are_same_shape(src0, dst));
  4101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4102. return;
  4103. }
  4104. const int n = ggml_nrows(src0);
  4105. const int nc = src0->ne[0];
  4106. assert( dst->nb[0] == sizeof(float));
  4107. assert(src0->nb[0] == sizeof(float));
  4108. for (int i = 0; i < n; i++) {
  4109. ggml_vec_sqrt_f32(nc,
  4110. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4111. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4112. }
  4113. }
  4114. static void ggml_compute_forward_sqrt(
  4115. const struct ggml_compute_params * params,
  4116. const struct ggml_tensor * src0,
  4117. struct ggml_tensor * dst) {
  4118. switch (src0->type) {
  4119. case GGML_TYPE_F32:
  4120. {
  4121. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4122. } break;
  4123. case GGML_TYPE_Q4_0:
  4124. case GGML_TYPE_Q4_1:
  4125. case GGML_TYPE_I8:
  4126. case GGML_TYPE_I16:
  4127. case GGML_TYPE_I32:
  4128. case GGML_TYPE_F16:
  4129. case GGML_TYPE_COUNT:
  4130. {
  4131. GGML_ASSERT(false);
  4132. } break;
  4133. }
  4134. }
  4135. // ggml_compute_forward_sum
  4136. static void ggml_compute_forward_sum_f32(
  4137. const struct ggml_compute_params * params,
  4138. const struct ggml_tensor * src0,
  4139. struct ggml_tensor * dst) {
  4140. assert(params->ith == 0);
  4141. assert(ggml_is_scalar(dst));
  4142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4143. return;
  4144. }
  4145. assert(ggml_is_scalar(dst));
  4146. assert(src0->nb[0] == sizeof(float));
  4147. const int ne00 = src0->ne[0];
  4148. const int ne01 = src0->ne[1];
  4149. const int ne02 = src0->ne[2];
  4150. const int ne03 = src0->ne[3];
  4151. const size_t nb01 = src0->nb[1];
  4152. const size_t nb02 = src0->nb[2];
  4153. const size_t nb03 = src0->nb[3];
  4154. for (int i03 = 0; i03 < ne03; i03++) {
  4155. for (int i02 = 0; i02 < ne02; i02++) {
  4156. for (int i01 = 0; i01 < ne01; i01++) {
  4157. ggml_vec_sum_f32(ne00,
  4158. (float *) (dst->data),
  4159. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4160. }
  4161. }
  4162. }
  4163. }
  4164. static void ggml_compute_forward_sum(
  4165. const struct ggml_compute_params * params,
  4166. const struct ggml_tensor * src0,
  4167. struct ggml_tensor * dst) {
  4168. switch (src0->type) {
  4169. case GGML_TYPE_F32:
  4170. {
  4171. ggml_compute_forward_sum_f32(params, src0, dst);
  4172. } break;
  4173. case GGML_TYPE_Q4_0:
  4174. case GGML_TYPE_Q4_1:
  4175. case GGML_TYPE_I8:
  4176. case GGML_TYPE_I16:
  4177. case GGML_TYPE_I32:
  4178. case GGML_TYPE_F16:
  4179. case GGML_TYPE_COUNT:
  4180. {
  4181. GGML_ASSERT(false);
  4182. } break;
  4183. }
  4184. }
  4185. // ggml_compute_forward_mean
  4186. static void ggml_compute_forward_mean_f32(
  4187. const struct ggml_compute_params * params,
  4188. const struct ggml_tensor * src0,
  4189. struct ggml_tensor * dst) {
  4190. assert(params->ith == 0);
  4191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4192. return;
  4193. }
  4194. assert(src0->nb[0] == sizeof(float));
  4195. const int ne00 = src0->ne[0];
  4196. const int ne01 = src0->ne[1];
  4197. const int ne02 = src0->ne[2];
  4198. const int ne03 = src0->ne[3];
  4199. const size_t nb01 = src0->nb[1];
  4200. const size_t nb02 = src0->nb[2];
  4201. const size_t nb03 = src0->nb[3];
  4202. const int ne0 = dst->ne[0];
  4203. const int ne1 = dst->ne[1];
  4204. const int ne2 = dst->ne[2];
  4205. const int ne3 = dst->ne[3];
  4206. assert(ne0 == 1);
  4207. assert(ne1 == ne01);
  4208. assert(ne2 == ne02);
  4209. assert(ne3 == ne03);
  4210. UNUSED(ne0);
  4211. UNUSED(ne1);
  4212. UNUSED(ne2);
  4213. UNUSED(ne3);
  4214. const size_t nb1 = dst->nb[1];
  4215. const size_t nb2 = dst->nb[2];
  4216. const size_t nb3 = dst->nb[3];
  4217. for (int i03 = 0; i03 < ne03; i03++) {
  4218. for (int i02 = 0; i02 < ne02; i02++) {
  4219. for (int i01 = 0; i01 < ne01; i01++) {
  4220. ggml_vec_sum_f32(ne00,
  4221. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4222. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4223. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4224. }
  4225. }
  4226. }
  4227. }
  4228. static void ggml_compute_forward_mean(
  4229. const struct ggml_compute_params * params,
  4230. const struct ggml_tensor * src0,
  4231. struct ggml_tensor * dst) {
  4232. switch (src0->type) {
  4233. case GGML_TYPE_F32:
  4234. {
  4235. ggml_compute_forward_mean_f32(params, src0, dst);
  4236. } break;
  4237. case GGML_TYPE_Q4_0:
  4238. case GGML_TYPE_Q4_1:
  4239. case GGML_TYPE_I8:
  4240. case GGML_TYPE_I16:
  4241. case GGML_TYPE_I32:
  4242. case GGML_TYPE_F16:
  4243. case GGML_TYPE_COUNT:
  4244. {
  4245. GGML_ASSERT(false);
  4246. } break;
  4247. }
  4248. }
  4249. // ggml_compute_forward_repeat
  4250. static void ggml_compute_forward_repeat_f32(
  4251. const struct ggml_compute_params * params,
  4252. const struct ggml_tensor * src0,
  4253. struct ggml_tensor * dst) {
  4254. assert(params->ith == 0);
  4255. assert(ggml_can_repeat(src0, dst));
  4256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4257. return;
  4258. }
  4259. // TODO: implement support for rank > 2 tensors
  4260. assert(src0->ne[2] == 1);
  4261. assert(src0->ne[3] == 1);
  4262. assert( dst->ne[2] == 1);
  4263. assert( dst->ne[3] == 1);
  4264. const int nc = dst->ne[0];
  4265. const int nr = dst->ne[1];
  4266. const int nc0 = src0->ne[0];
  4267. const int nr0 = src0->ne[1];
  4268. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4269. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4270. // TODO: support for transposed / permuted tensors
  4271. assert( dst->nb[0] == sizeof(float));
  4272. assert(src0->nb[0] == sizeof(float));
  4273. // TODO: maybe this is not optimal?
  4274. for (int i = 0; i < nrr; i++) {
  4275. for (int j = 0; j < ncr; j++) {
  4276. for (int k = 0; k < nr0; k++) {
  4277. ggml_vec_cpy_f32(nc0,
  4278. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4279. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4280. }
  4281. }
  4282. }
  4283. }
  4284. static void ggml_compute_forward_repeat(
  4285. const struct ggml_compute_params * params,
  4286. const struct ggml_tensor * src0,
  4287. struct ggml_tensor * dst) {
  4288. switch (src0->type) {
  4289. case GGML_TYPE_F32:
  4290. {
  4291. ggml_compute_forward_repeat_f32(params, src0, dst);
  4292. } break;
  4293. case GGML_TYPE_Q4_0:
  4294. case GGML_TYPE_Q4_1:
  4295. case GGML_TYPE_I8:
  4296. case GGML_TYPE_I16:
  4297. case GGML_TYPE_I32:
  4298. case GGML_TYPE_F16:
  4299. case GGML_TYPE_COUNT:
  4300. {
  4301. GGML_ASSERT(false);
  4302. } break;
  4303. }
  4304. }
  4305. // ggml_compute_forward_abs
  4306. static void ggml_compute_forward_abs_f32(
  4307. const struct ggml_compute_params * params,
  4308. const struct ggml_tensor * src0,
  4309. struct ggml_tensor * dst) {
  4310. assert(params->ith == 0);
  4311. assert(ggml_are_same_shape(src0, dst));
  4312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4313. return;
  4314. }
  4315. const int n = ggml_nrows(src0);
  4316. const int nc = src0->ne[0];
  4317. assert(dst->nb[0] == sizeof(float));
  4318. assert(src0->nb[0] == sizeof(float));
  4319. for (int i = 0; i < n; i++) {
  4320. ggml_vec_abs_f32(nc,
  4321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4322. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4323. }
  4324. }
  4325. static void ggml_compute_forward_abs(
  4326. const struct ggml_compute_params * params,
  4327. const struct ggml_tensor * src0,
  4328. struct ggml_tensor * dst) {
  4329. switch (src0->type) {
  4330. case GGML_TYPE_F32:
  4331. {
  4332. ggml_compute_forward_abs_f32(params, src0, dst);
  4333. } break;
  4334. case GGML_TYPE_Q4_0:
  4335. case GGML_TYPE_Q4_1:
  4336. case GGML_TYPE_I8:
  4337. case GGML_TYPE_I16:
  4338. case GGML_TYPE_I32:
  4339. case GGML_TYPE_F16:
  4340. case GGML_TYPE_COUNT:
  4341. {
  4342. GGML_ASSERT(false);
  4343. } break;
  4344. }
  4345. }
  4346. // ggml_compute_forward_sgn
  4347. static void ggml_compute_forward_sgn_f32(
  4348. const struct ggml_compute_params * params,
  4349. const struct ggml_tensor * src0,
  4350. struct ggml_tensor * dst) {
  4351. assert(params->ith == 0);
  4352. assert(ggml_are_same_shape(src0, dst));
  4353. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4354. return;
  4355. }
  4356. const int n = ggml_nrows(src0);
  4357. const int nc = src0->ne[0];
  4358. assert(dst->nb[0] == sizeof(float));
  4359. assert(src0->nb[0] == sizeof(float));
  4360. for (int i = 0; i < n; i++) {
  4361. ggml_vec_sgn_f32(nc,
  4362. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4363. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4364. }
  4365. }
  4366. static void ggml_compute_forward_sgn(
  4367. const struct ggml_compute_params * params,
  4368. const struct ggml_tensor * src0,
  4369. struct ggml_tensor * dst) {
  4370. switch (src0->type) {
  4371. case GGML_TYPE_F32:
  4372. {
  4373. ggml_compute_forward_sgn_f32(params, src0, dst);
  4374. } break;
  4375. case GGML_TYPE_Q4_0:
  4376. case GGML_TYPE_Q4_1:
  4377. case GGML_TYPE_I8:
  4378. case GGML_TYPE_I16:
  4379. case GGML_TYPE_I32:
  4380. case GGML_TYPE_F16:
  4381. case GGML_TYPE_COUNT:
  4382. {
  4383. GGML_ASSERT(false);
  4384. } break;
  4385. }
  4386. }
  4387. // ggml_compute_forward_neg
  4388. static void ggml_compute_forward_neg_f32(
  4389. const struct ggml_compute_params * params,
  4390. const struct ggml_tensor * src0,
  4391. struct ggml_tensor * dst) {
  4392. assert(params->ith == 0);
  4393. assert(ggml_are_same_shape(src0, dst));
  4394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4395. return;
  4396. }
  4397. const int n = ggml_nrows(src0);
  4398. const int nc = src0->ne[0];
  4399. assert(dst->nb[0] == sizeof(float));
  4400. assert(src0->nb[0] == sizeof(float));
  4401. for (int i = 0; i < n; i++) {
  4402. ggml_vec_neg_f32(nc,
  4403. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4404. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4405. }
  4406. }
  4407. static void ggml_compute_forward_neg(
  4408. const struct ggml_compute_params * params,
  4409. const struct ggml_tensor * src0,
  4410. struct ggml_tensor * dst) {
  4411. switch (src0->type) {
  4412. case GGML_TYPE_F32:
  4413. {
  4414. ggml_compute_forward_neg_f32(params, src0, dst);
  4415. } break;
  4416. case GGML_TYPE_Q4_0:
  4417. case GGML_TYPE_Q4_1:
  4418. case GGML_TYPE_I8:
  4419. case GGML_TYPE_I16:
  4420. case GGML_TYPE_I32:
  4421. case GGML_TYPE_F16:
  4422. case GGML_TYPE_COUNT:
  4423. {
  4424. GGML_ASSERT(false);
  4425. } break;
  4426. }
  4427. }
  4428. // ggml_compute_forward_step
  4429. static void ggml_compute_forward_step_f32(
  4430. const struct ggml_compute_params * params,
  4431. const struct ggml_tensor * src0,
  4432. struct ggml_tensor * dst) {
  4433. assert(params->ith == 0);
  4434. assert(ggml_are_same_shape(src0, dst));
  4435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4436. return;
  4437. }
  4438. const int n = ggml_nrows(src0);
  4439. const int nc = src0->ne[0];
  4440. assert(dst->nb[0] == sizeof(float));
  4441. assert(src0->nb[0] == sizeof(float));
  4442. for (int i = 0; i < n; i++) {
  4443. ggml_vec_step_f32(nc,
  4444. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4445. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4446. }
  4447. }
  4448. static void ggml_compute_forward_step(
  4449. const struct ggml_compute_params * params,
  4450. const struct ggml_tensor * src0,
  4451. struct ggml_tensor * dst) {
  4452. switch (src0->type) {
  4453. case GGML_TYPE_F32:
  4454. {
  4455. ggml_compute_forward_step_f32(params, src0, dst);
  4456. } break;
  4457. case GGML_TYPE_Q4_0:
  4458. case GGML_TYPE_Q4_1:
  4459. case GGML_TYPE_I8:
  4460. case GGML_TYPE_I16:
  4461. case GGML_TYPE_I32:
  4462. case GGML_TYPE_F16:
  4463. case GGML_TYPE_COUNT:
  4464. {
  4465. GGML_ASSERT(false);
  4466. } break;
  4467. }
  4468. }
  4469. // ggml_compute_forward_relu
  4470. static void ggml_compute_forward_relu_f32(
  4471. const struct ggml_compute_params * params,
  4472. const struct ggml_tensor * src0,
  4473. struct ggml_tensor * dst) {
  4474. assert(params->ith == 0);
  4475. assert(ggml_are_same_shape(src0, dst));
  4476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4477. return;
  4478. }
  4479. const int n = ggml_nrows(src0);
  4480. const int nc = src0->ne[0];
  4481. assert(dst->nb[0] == sizeof(float));
  4482. assert(src0->nb[0] == sizeof(float));
  4483. for (int i = 0; i < n; i++) {
  4484. ggml_vec_relu_f32(nc,
  4485. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4486. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4487. }
  4488. }
  4489. static void ggml_compute_forward_relu(
  4490. const struct ggml_compute_params * params,
  4491. const struct ggml_tensor * src0,
  4492. struct ggml_tensor * dst) {
  4493. switch (src0->type) {
  4494. case GGML_TYPE_F32:
  4495. {
  4496. ggml_compute_forward_relu_f32(params, src0, dst);
  4497. } break;
  4498. case GGML_TYPE_Q4_0:
  4499. case GGML_TYPE_Q4_1:
  4500. case GGML_TYPE_I8:
  4501. case GGML_TYPE_I16:
  4502. case GGML_TYPE_I32:
  4503. case GGML_TYPE_F16:
  4504. case GGML_TYPE_COUNT:
  4505. {
  4506. GGML_ASSERT(false);
  4507. } break;
  4508. }
  4509. }
  4510. // ggml_compute_forward_gelu
  4511. static void ggml_compute_forward_gelu_f32(
  4512. const struct ggml_compute_params * params,
  4513. const struct ggml_tensor * src0,
  4514. struct ggml_tensor * dst) {
  4515. GGML_ASSERT(ggml_is_contiguous(src0));
  4516. GGML_ASSERT(ggml_is_contiguous(dst));
  4517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4519. return;
  4520. }
  4521. const int ith = params->ith;
  4522. const int nth = params->nth;
  4523. const int nc = src0->ne[0];
  4524. const int nr = ggml_nrows(src0);
  4525. // rows per thread
  4526. const int dr = (nr + nth - 1)/nth;
  4527. // row range for this thread
  4528. const int ir0 = dr*ith;
  4529. const int ir1 = MIN(ir0 + dr, nr);
  4530. for (int i1 = ir0; i1 < ir1; i1++) {
  4531. ggml_vec_gelu_f32(nc,
  4532. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4533. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4534. #ifndef NDEBUG
  4535. for (int k = 0; k < nc; k++) {
  4536. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4537. UNUSED(x);
  4538. assert(!isnan(x));
  4539. assert(!isinf(x));
  4540. }
  4541. #endif
  4542. }
  4543. }
  4544. static void ggml_compute_forward_gelu(
  4545. const struct ggml_compute_params * params,
  4546. const struct ggml_tensor * src0,
  4547. struct ggml_tensor * dst) {
  4548. switch (src0->type) {
  4549. case GGML_TYPE_F32:
  4550. {
  4551. ggml_compute_forward_gelu_f32(params, src0, dst);
  4552. } break;
  4553. case GGML_TYPE_Q4_0:
  4554. case GGML_TYPE_Q4_1:
  4555. case GGML_TYPE_I8:
  4556. case GGML_TYPE_I16:
  4557. case GGML_TYPE_I32:
  4558. case GGML_TYPE_F16:
  4559. case GGML_TYPE_COUNT:
  4560. {
  4561. GGML_ASSERT(false);
  4562. } break;
  4563. }
  4564. //printf("XXXXXXXX gelu\n");
  4565. }
  4566. // ggml_compute_forward_silu
  4567. static void ggml_compute_forward_silu_f32(
  4568. const struct ggml_compute_params * params,
  4569. const struct ggml_tensor * src0,
  4570. struct ggml_tensor * dst) {
  4571. GGML_ASSERT(ggml_is_contiguous(src0));
  4572. GGML_ASSERT(ggml_is_contiguous(dst));
  4573. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4575. return;
  4576. }
  4577. const int ith = params->ith;
  4578. const int nth = params->nth;
  4579. const int nc = src0->ne[0];
  4580. const int nr = ggml_nrows(src0);
  4581. // rows per thread
  4582. const int dr = (nr + nth - 1)/nth;
  4583. // row range for this thread
  4584. const int ir0 = dr*ith;
  4585. const int ir1 = MIN(ir0 + dr, nr);
  4586. for (int i1 = ir0; i1 < ir1; i1++) {
  4587. ggml_vec_silu_f32(nc,
  4588. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4589. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4590. #ifndef NDEBUG
  4591. for (int k = 0; k < nc; k++) {
  4592. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4593. UNUSED(x);
  4594. assert(!isnan(x));
  4595. assert(!isinf(x));
  4596. }
  4597. #endif
  4598. }
  4599. }
  4600. static void ggml_compute_forward_silu(
  4601. const struct ggml_compute_params * params,
  4602. const struct ggml_tensor * src0,
  4603. struct ggml_tensor * dst) {
  4604. switch (src0->type) {
  4605. case GGML_TYPE_F32:
  4606. {
  4607. ggml_compute_forward_silu_f32(params, src0, dst);
  4608. } break;
  4609. case GGML_TYPE_Q4_0:
  4610. case GGML_TYPE_Q4_1:
  4611. case GGML_TYPE_I8:
  4612. case GGML_TYPE_I16:
  4613. case GGML_TYPE_I32:
  4614. case GGML_TYPE_F16:
  4615. case GGML_TYPE_COUNT:
  4616. {
  4617. GGML_ASSERT(false);
  4618. } break;
  4619. }
  4620. }
  4621. // ggml_compute_forward_norm
  4622. static void ggml_compute_forward_norm_f32(
  4623. const struct ggml_compute_params * params,
  4624. const struct ggml_tensor * src0,
  4625. struct ggml_tensor * dst) {
  4626. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4628. return;
  4629. }
  4630. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4631. const int ith = params->ith;
  4632. const int nth = params->nth;
  4633. const int ne00 = src0->ne[0];
  4634. const int ne01 = src0->ne[1];
  4635. const int ne02 = src0->ne[2];
  4636. const int ne03 = src0->ne[3];
  4637. const size_t nb01 = src0->nb[1];
  4638. const size_t nb02 = src0->nb[2];
  4639. const size_t nb03 = src0->nb[3];
  4640. const size_t nb1 = dst->nb[1];
  4641. const size_t nb2 = dst->nb[2];
  4642. const size_t nb3 = dst->nb[3];
  4643. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4644. // TODO: optimize
  4645. for (int i03 = 0; i03 < ne03; i03++) {
  4646. for (int i02 = 0; i02 < ne02; i02++) {
  4647. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4648. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4649. ggml_float mean = 0.0;
  4650. for (int i00 = 0; i00 < ne00; i00++) {
  4651. mean += x[i00];
  4652. }
  4653. mean /= ne00;
  4654. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4655. ggml_float sum2 = 0.0;
  4656. for (int i00 = 0; i00 < ne00; i00++) {
  4657. ggml_float v = x[i00] - mean;
  4658. y[i00] = v;
  4659. sum2 += v*v;
  4660. }
  4661. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4662. ggml_vec_scale_f32(ne00, y, scale);
  4663. }
  4664. }
  4665. }
  4666. }
  4667. static void ggml_compute_forward_norm(
  4668. const struct ggml_compute_params * params,
  4669. const struct ggml_tensor * src0,
  4670. struct ggml_tensor * dst) {
  4671. switch (src0->type) {
  4672. case GGML_TYPE_F32:
  4673. {
  4674. ggml_compute_forward_norm_f32(params, src0, dst);
  4675. } break;
  4676. case GGML_TYPE_Q4_0:
  4677. case GGML_TYPE_Q4_1:
  4678. case GGML_TYPE_I8:
  4679. case GGML_TYPE_I16:
  4680. case GGML_TYPE_I32:
  4681. case GGML_TYPE_F16:
  4682. case GGML_TYPE_COUNT:
  4683. {
  4684. GGML_ASSERT(false);
  4685. } break;
  4686. }
  4687. }
  4688. static void ggml_compute_forward_rms_norm_f32(
  4689. const struct ggml_compute_params * params,
  4690. const struct ggml_tensor * src0,
  4691. struct ggml_tensor * dst) {
  4692. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4694. return;
  4695. }
  4696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4697. const int ith = params->ith;
  4698. const int nth = params->nth;
  4699. const int ne00 = src0->ne[0];
  4700. const int ne01 = src0->ne[1];
  4701. const int ne02 = src0->ne[2];
  4702. const int ne03 = src0->ne[3];
  4703. const size_t nb01 = src0->nb[1];
  4704. const size_t nb02 = src0->nb[2];
  4705. const size_t nb03 = src0->nb[3];
  4706. const size_t nb1 = dst->nb[1];
  4707. const size_t nb2 = dst->nb[2];
  4708. const size_t nb3 = dst->nb[3];
  4709. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4710. // TODO: optimize
  4711. for (int i03 = 0; i03 < ne03; i03++) {
  4712. for (int i02 = 0; i02 < ne02; i02++) {
  4713. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4714. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4715. ggml_float mean = 0.0;
  4716. for (int i00 = 0; i00 < ne00; i00++) {
  4717. mean += x[i00] * x[i00];
  4718. }
  4719. mean /= ne00;
  4720. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4721. memcpy(y, x, ne00 * sizeof(float));
  4722. // for (int i00 = 0; i00 < ne00; i00++) {
  4723. // y[i00] = x[i00];
  4724. // }
  4725. const float scale = 1.0/sqrt(mean + eps);
  4726. ggml_vec_scale_f32(ne00, y, scale);
  4727. }
  4728. }
  4729. }
  4730. }
  4731. static void ggml_compute_forward_rms_norm(
  4732. const struct ggml_compute_params * params,
  4733. const struct ggml_tensor * src0,
  4734. struct ggml_tensor * dst) {
  4735. switch (src0->type) {
  4736. case GGML_TYPE_F32:
  4737. {
  4738. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4739. } break;
  4740. case GGML_TYPE_Q4_0:
  4741. case GGML_TYPE_Q4_1:
  4742. case GGML_TYPE_I8:
  4743. case GGML_TYPE_I16:
  4744. case GGML_TYPE_I32:
  4745. case GGML_TYPE_F16:
  4746. case GGML_TYPE_COUNT:
  4747. {
  4748. GGML_ASSERT(false);
  4749. } break;
  4750. }
  4751. }
  4752. // ggml_compute_forward_mul_mat
  4753. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4754. // helper function to determine if it is better to use BLAS or not
  4755. // for large matrices, BLAS is faster
  4756. static bool ggml_compute_forward_mul_mat_use_blas(
  4757. const struct ggml_tensor * src0,
  4758. const struct ggml_tensor * src1,
  4759. struct ggml_tensor * dst) {
  4760. const int ne00 = src0->ne[0];
  4761. const int ne01 = src0->ne[1];
  4762. const int ne10 = src1->ne[0];
  4763. const int ne0 = dst->ne[0];
  4764. const int ne1 = dst->ne[1];
  4765. // TODO: find the optimal values for these
  4766. if (ggml_is_contiguous(src0) &&
  4767. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4768. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4769. return true;
  4770. }
  4771. return false;
  4772. }
  4773. #endif
  4774. static void ggml_compute_forward_mul_mat_f32(
  4775. const struct ggml_compute_params * params,
  4776. const struct ggml_tensor * src0,
  4777. const struct ggml_tensor * src1,
  4778. struct ggml_tensor * dst) {
  4779. int64_t t0 = ggml_perf_time_us();
  4780. UNUSED(t0);
  4781. const int ne00 = src0->ne[0];
  4782. const int ne01 = src0->ne[1];
  4783. const int ne02 = src0->ne[2];
  4784. const int ne03 = src0->ne[3];
  4785. const int ne10 = src1->ne[0];
  4786. const int ne11 = src1->ne[1];
  4787. const int ne12 = src1->ne[2];
  4788. const int ne13 = src1->ne[3];
  4789. const int ne0 = dst->ne[0];
  4790. const int ne1 = dst->ne[1];
  4791. const int ne2 = dst->ne[2];
  4792. const int ne3 = dst->ne[3];
  4793. const int ne = ne0*ne1*ne2*ne3;
  4794. const int nb00 = src0->nb[0];
  4795. const int nb01 = src0->nb[1];
  4796. const int nb02 = src0->nb[2];
  4797. const int nb03 = src0->nb[3];
  4798. const int nb10 = src1->nb[0];
  4799. const int nb11 = src1->nb[1];
  4800. const int nb12 = src1->nb[2];
  4801. const int nb13 = src1->nb[3];
  4802. const int nb0 = dst->nb[0];
  4803. const int nb1 = dst->nb[1];
  4804. const int nb2 = dst->nb[2];
  4805. const int nb3 = dst->nb[3];
  4806. const int ith = params->ith;
  4807. const int nth = params->nth;
  4808. assert(ne02 == ne12);
  4809. assert(ne03 == ne13);
  4810. assert(ne2 == ne12);
  4811. assert(ne3 == ne13);
  4812. // TODO: we don't support permuted src0
  4813. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4814. // dst cannot be transposed or permuted
  4815. assert(nb0 == sizeof(float));
  4816. assert(nb0 <= nb1);
  4817. assert(nb1 <= nb2);
  4818. assert(nb2 <= nb3);
  4819. assert(ne0 == ne01);
  4820. assert(ne1 == ne11);
  4821. assert(ne2 == ne02);
  4822. assert(ne3 == ne03);
  4823. // nb01 >= nb00 - src0 is not transposed
  4824. // compute by src0 rows
  4825. //
  4826. // nb00 < nb01 - src0 is transposed
  4827. // compute by src0 columns
  4828. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4829. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4830. GGML_ASSERT(nb10 == sizeof(float));
  4831. if (params->ith != 0) {
  4832. return;
  4833. }
  4834. if (params->type == GGML_TASK_INIT) {
  4835. return;
  4836. }
  4837. if (params->type == GGML_TASK_FINALIZE) {
  4838. return;
  4839. }
  4840. for (int i03 = 0; i03 < ne03; i03++) {
  4841. for (int i02 = 0; i02 < ne02; i02++) {
  4842. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4843. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4844. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4845. // zT = y * xT
  4846. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4847. ne11, ne01, ne10,
  4848. 1.0f, y, ne10,
  4849. x, ne10,
  4850. 0.0f, d, ne01);
  4851. }
  4852. }
  4853. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4854. return;
  4855. }
  4856. #endif
  4857. if (params->type == GGML_TASK_INIT) {
  4858. if (nb01 >= nb00) {
  4859. return;
  4860. }
  4861. // TODO: fix this memset (wsize is overestimated)
  4862. memset(params->wdata, 0, params->wsize);
  4863. return;
  4864. }
  4865. if (params->type == GGML_TASK_FINALIZE) {
  4866. if (nb01 >= nb00) {
  4867. return;
  4868. }
  4869. // TODO: fix this memset (wsize is overestimated)
  4870. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4871. float * const wdata = params->wdata;
  4872. // cols per thread
  4873. const int dc = (ne + nth - 1)/nth;
  4874. // col range for this thread
  4875. const int ic0 = dc*ith;
  4876. const int ic1 = MIN(ic0 + dc, ne);
  4877. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4878. for (int k = 1; k < nth; k++) {
  4879. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4880. }
  4881. return;
  4882. }
  4883. if (nb01 >= nb00) {
  4884. // TODO: do not support transposed src1
  4885. assert(nb10 == sizeof(float));
  4886. // parallelize by src0 rows using ggml_vec_dot_f32
  4887. // total rows in src0
  4888. const int nr = ne01*ne02*ne03;
  4889. // rows per thread
  4890. const int dr = (nr + nth - 1)/nth;
  4891. // row range for this thread
  4892. const int ir0 = dr*ith;
  4893. const int ir1 = MIN(ir0 + dr, nr);
  4894. for (int ir = ir0; ir < ir1; ++ir) {
  4895. // src0 indices
  4896. const int i03 = ir/(ne02*ne01);
  4897. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4898. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4899. for (int ic = 0; ic < ne11; ++ic) {
  4900. // src1 indices
  4901. const int i13 = i03;
  4902. const int i12 = i02;
  4903. const int i11 = ic;
  4904. // dst indices
  4905. const int i0 = i01;
  4906. const int i1 = i11;
  4907. const int i2 = i02;
  4908. const int i3 = i03;
  4909. ggml_vec_dot_f32(ne00,
  4910. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4911. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4912. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4913. }
  4914. }
  4915. } else {
  4916. // parallelize by src1 columns using ggml_vec_mad_f32
  4917. // each thread has its own work data
  4918. // during FINALIZE we accumulate all work data into dst
  4919. // total columns in src1
  4920. const int nc = ne10;
  4921. // columns per thread
  4922. const int dc = (nc + nth - 1)/nth;
  4923. // column range for this thread
  4924. const int ic0 = dc*ith;
  4925. const int ic1 = MIN(ic0 + dc, nc);
  4926. // work data for thread
  4927. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4928. float * const wdata = params->wdata;
  4929. for (int i13 = 0; i13 < ne13; ++i13) {
  4930. for (int i12 = 0; i12 < ne12; ++i12) {
  4931. for (int i11 = 0; i11 < ne11; ++i11) {
  4932. for (int ic = ic0; ic < ic1; ++ic) {
  4933. // src1 indices
  4934. const int i10 = ic;
  4935. // src0 indices
  4936. const int i03 = i13;
  4937. const int i02 = i12;
  4938. const int i00 = ic;
  4939. // dst indices
  4940. const int i1 = i11;
  4941. const int i2 = i12;
  4942. const int i3 = i13;
  4943. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4944. ggml_vec_mad_f32(ne01,
  4945. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4946. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4947. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4948. }
  4949. }
  4950. }
  4951. }
  4952. }
  4953. //int64_t t1 = ggml_perf_time_us();
  4954. //static int64_t acc = 0;
  4955. //acc += t1 - t0;
  4956. //if (t1 - t0 > 10) {
  4957. // printf("\n");
  4958. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4959. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4960. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4961. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4962. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4963. //}
  4964. }
  4965. static void ggml_compute_forward_mul_mat_f16_f32(
  4966. const struct ggml_compute_params * params,
  4967. const struct ggml_tensor * src0,
  4968. const struct ggml_tensor * src1,
  4969. struct ggml_tensor * dst) {
  4970. int64_t t0 = ggml_perf_time_us();
  4971. UNUSED(t0);
  4972. const int ne00 = src0->ne[0];
  4973. const int ne01 = src0->ne[1];
  4974. const int ne02 = src0->ne[2];
  4975. const int ne03 = src0->ne[3];
  4976. const int ne10 = src1->ne[0];
  4977. const int ne11 = src1->ne[1];
  4978. const int ne12 = src1->ne[2];
  4979. const int ne13 = src1->ne[3];
  4980. const int ne0 = dst->ne[0];
  4981. const int ne1 = dst->ne[1];
  4982. const int ne2 = dst->ne[2];
  4983. const int ne3 = dst->ne[3];
  4984. const int ne = ne0*ne1*ne2*ne3;
  4985. const int nb00 = src0->nb[0];
  4986. const int nb01 = src0->nb[1];
  4987. const int nb02 = src0->nb[2];
  4988. const int nb03 = src0->nb[3];
  4989. const int nb10 = src1->nb[0];
  4990. const int nb11 = src1->nb[1];
  4991. const int nb12 = src1->nb[2];
  4992. const int nb13 = src1->nb[3];
  4993. const int nb0 = dst->nb[0];
  4994. const int nb1 = dst->nb[1];
  4995. const int nb2 = dst->nb[2];
  4996. const int nb3 = dst->nb[3];
  4997. const int ith = params->ith;
  4998. const int nth = params->nth;
  4999. GGML_ASSERT(ne02 == ne12);
  5000. GGML_ASSERT(ne03 == ne13);
  5001. GGML_ASSERT(ne2 == ne12);
  5002. GGML_ASSERT(ne3 == ne13);
  5003. // TODO: we don't support permuted src0
  5004. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  5005. // dst cannot be transposed or permuted
  5006. GGML_ASSERT(nb0 == sizeof(float));
  5007. GGML_ASSERT(nb0 <= nb1);
  5008. GGML_ASSERT(nb1 <= nb2);
  5009. GGML_ASSERT(nb2 <= nb3);
  5010. GGML_ASSERT(ne0 == ne01);
  5011. GGML_ASSERT(ne1 == ne11);
  5012. GGML_ASSERT(ne2 == ne02);
  5013. GGML_ASSERT(ne3 == ne03);
  5014. // nb01 >= nb00 - src0 is not transposed
  5015. // compute by src0 rows
  5016. //
  5017. // nb00 < nb01 - src0 is transposed
  5018. // compute by src0 columns
  5019. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5020. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5021. GGML_ASSERT(nb10 == sizeof(float));
  5022. if (params->ith != 0) {
  5023. return;
  5024. }
  5025. if (params->type == GGML_TASK_INIT) {
  5026. return;
  5027. }
  5028. if (params->type == GGML_TASK_FINALIZE) {
  5029. return;
  5030. }
  5031. float * const wdata = params->wdata;
  5032. for (int i03 = 0; i03 < ne03; i03++) {
  5033. for (int i02 = 0; i02 < ne02; i02++) {
  5034. {
  5035. size_t id = 0;
  5036. for (int i01 = 0; i01 < ne01; ++i01) {
  5037. for (int i00 = 0; i00 < ne00; ++i00) {
  5038. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5039. }
  5040. }
  5041. }
  5042. const float * x = wdata;
  5043. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5044. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5045. // zT = y * xT
  5046. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5047. ne11, ne01, ne10,
  5048. 1.0f, y, ne10,
  5049. x, ne10,
  5050. 0.0f, d, ne01);
  5051. }
  5052. }
  5053. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5054. return;
  5055. }
  5056. #endif
  5057. if (params->type == GGML_TASK_INIT) {
  5058. if (nb01 >= nb00) {
  5059. ggml_fp16_t * const wdata = params->wdata;
  5060. size_t id = 0;
  5061. for (int i13 = 0; i13 < ne13; ++i13) {
  5062. for (int i12 = 0; i12 < ne12; ++i12) {
  5063. for (int i11 = 0; i11 < ne11; ++i11) {
  5064. for (int i10 = 0; i10 < ne10; ++i10) {
  5065. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5066. }
  5067. }
  5068. }
  5069. }
  5070. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5071. return;
  5072. }
  5073. // TODO: fix this memset (wsize is overestimated)
  5074. memset(params->wdata, 0, params->wsize);
  5075. return;
  5076. }
  5077. if (params->type == GGML_TASK_FINALIZE) {
  5078. if (nb01 >= nb00) {
  5079. return;
  5080. }
  5081. // TODO: fix this memset (wsize is overestimated)
  5082. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  5083. ggml_fp16_t * const wdata = params->wdata;
  5084. // cols per thread
  5085. const int dc = (ne + nth - 1)/nth;
  5086. // col range for this thread
  5087. const int ic0 = dc*ith;
  5088. const int ic1 = MIN(ic0 + dc, ne);
  5089. for (int i = ic0; i < ic1; ++i) {
  5090. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  5091. }
  5092. for (int k = 1; k < nth; k++) {
  5093. for (int i = ic0; i < ic1; ++i) {
  5094. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  5095. }
  5096. }
  5097. return;
  5098. }
  5099. if (nb01 >= nb00) {
  5100. // fp16 -> half the size, so divide by 2
  5101. // TODO: do not support transposed src1
  5102. assert(nb10/2 == sizeof(ggml_fp16_t));
  5103. // parallelize by src0 rows using ggml_vec_dot_f16
  5104. // total rows in src0
  5105. const int nr = ne01*ne02*ne03;
  5106. // rows per thread
  5107. const int dr = (nr + nth - 1)/nth;
  5108. // row range for this thread
  5109. const int ir0 = dr*ith;
  5110. const int ir1 = MIN(ir0 + dr, nr);
  5111. ggml_fp16_t * wdata = params->wdata;
  5112. for (int ir = ir0; ir < ir1; ++ir) {
  5113. // src0 indices
  5114. const int i03 = ir/(ne02*ne01);
  5115. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5116. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5117. const int i13 = i03;
  5118. const int i12 = i02;
  5119. const int i0 = i01;
  5120. const int i2 = i02;
  5121. const int i3 = i03;
  5122. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5123. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5124. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5125. for (int ic = 0; ic < ne11; ++ic) {
  5126. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5127. }
  5128. }
  5129. } else {
  5130. // parallelize by src1 columns using ggml_vec_mad_f16
  5131. // each thread has its own work data
  5132. // during FINALIZE we accumulate all work data into dst
  5133. // total columns in src1
  5134. const int nc = ne10;
  5135. // columns per thread
  5136. const int dc = (nc + nth - 1)/nth;
  5137. // column range for this thread
  5138. const int ic0 = dc*ith;
  5139. const int ic1 = MIN(ic0 + dc, nc);
  5140. // work data for thread
  5141. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5142. ggml_fp16_t * const wdata = params->wdata;
  5143. for (int i13 = 0; i13 < ne13; ++i13) {
  5144. for (int i12 = 0; i12 < ne12; ++i12) {
  5145. for (int i11 = 0; i11 < ne11; ++i11) {
  5146. // dst indices
  5147. const int i1 = i11;
  5148. const int i2 = i12;
  5149. const int i3 = i13;
  5150. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5151. for (int ic = ic0; ic < ic1; ++ic) {
  5152. // src1 indices
  5153. const int i10 = ic;
  5154. // src0 indices
  5155. const int i03 = i13;
  5156. const int i02 = i12;
  5157. const int i00 = ic;
  5158. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5159. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5160. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5161. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5162. }
  5163. }
  5164. }
  5165. }
  5166. }
  5167. //int64_t t1 = ggml_time_us();
  5168. //static int64_t acc = 0;
  5169. //acc += t1 - t0;
  5170. //if (t1 - t0 > 10) {
  5171. // printf("\n");
  5172. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5173. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5174. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5175. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5176. //}
  5177. }
  5178. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5179. const struct ggml_compute_params * params,
  5180. const struct ggml_tensor * src0,
  5181. const struct ggml_tensor * src1,
  5182. struct ggml_tensor * dst) {
  5183. int64_t t0 = ggml_perf_time_us();
  5184. UNUSED(t0);
  5185. const int ne00 = src0->ne[0];
  5186. const int ne01 = src0->ne[1];
  5187. const int ne02 = src0->ne[2];
  5188. const int ne03 = src0->ne[3];
  5189. const int ne10 = src1->ne[0];
  5190. const int ne11 = src1->ne[1];
  5191. const int ne12 = src1->ne[2];
  5192. const int ne13 = src1->ne[3];
  5193. const int ne0 = dst->ne[0];
  5194. const int ne1 = dst->ne[1];
  5195. const int ne2 = dst->ne[2];
  5196. const int ne3 = dst->ne[3];
  5197. const int ne = ne0*ne1*ne2*ne3;
  5198. const int nb00 = src0->nb[0];
  5199. const int nb01 = src0->nb[1];
  5200. const int nb02 = src0->nb[2];
  5201. const int nb03 = src0->nb[3];
  5202. const int nb10 = src1->nb[0];
  5203. const int nb11 = src1->nb[1];
  5204. const int nb12 = src1->nb[2];
  5205. const int nb13 = src1->nb[3];
  5206. const int nb0 = dst->nb[0];
  5207. const int nb1 = dst->nb[1];
  5208. const int nb2 = dst->nb[2];
  5209. const int nb3 = dst->nb[3];
  5210. const int ith = params->ith;
  5211. const int nth = params->nth;
  5212. GGML_ASSERT(ne02 == ne12);
  5213. GGML_ASSERT(ne03 == ne13);
  5214. GGML_ASSERT(ne2 == ne12);
  5215. GGML_ASSERT(ne3 == ne13);
  5216. // TODO: we don't support permuted src0
  5217. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5218. // dst cannot be transposed or permuted
  5219. GGML_ASSERT(nb0 == sizeof(float));
  5220. GGML_ASSERT(nb0 <= nb1);
  5221. GGML_ASSERT(nb1 <= nb2);
  5222. GGML_ASSERT(nb2 <= nb3);
  5223. GGML_ASSERT(ne0 == ne01);
  5224. GGML_ASSERT(ne1 == ne11);
  5225. GGML_ASSERT(ne2 == ne02);
  5226. GGML_ASSERT(ne3 == ne03);
  5227. // nb01 >= nb00 - src0 is not transposed
  5228. // compute by src0 rows
  5229. //
  5230. // nb00 < nb01 - src0 is transposed
  5231. // compute by src0 columns
  5232. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5233. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5234. GGML_ASSERT(nb10 == sizeof(float));
  5235. if (params->ith != 0) {
  5236. return;
  5237. }
  5238. if (params->type == GGML_TASK_INIT) {
  5239. return;
  5240. }
  5241. if (params->type == GGML_TASK_FINALIZE) {
  5242. return;
  5243. }
  5244. float * const wdata = params->wdata;
  5245. for (int i03 = 0; i03 < ne03; i03++) {
  5246. for (int i02 = 0; i02 < ne02; i02++) {
  5247. {
  5248. size_t id = 0;
  5249. for (int i01 = 0; i01 < ne01; ++i01) {
  5250. //for (int i00 = 0; i00 < ne00; ++i00) {
  5251. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5252. //}
  5253. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5254. id += ne00;
  5255. }
  5256. }
  5257. const float * x = wdata;
  5258. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5259. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5260. // zT = y * xT
  5261. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5262. ne11, ne01, ne10,
  5263. 1.0f, y, ne10,
  5264. x, ne10,
  5265. 0.0f, d, ne01);
  5266. }
  5267. }
  5268. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5269. return;
  5270. }
  5271. #endif
  5272. if (params->type == GGML_TASK_INIT) {
  5273. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5274. if (nb01 >= nb00) {
  5275. char * wdata = params->wdata;
  5276. for (int i13 = 0; i13 < ne13; ++i13) {
  5277. for (int i12 = 0; i12 < ne12; ++i12) {
  5278. for (int i11 = 0; i11 < ne11; ++i11) {
  5279. //for (int i10 = 0; i10 < ne10; ++i10) {
  5280. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5281. //}
  5282. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5283. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5284. }
  5285. }
  5286. }
  5287. return;
  5288. }
  5289. // TODO: fix this memset (wsize is overestimated)
  5290. memset(params->wdata, 0, params->wsize);
  5291. return;
  5292. }
  5293. if (params->type == GGML_TASK_FINALIZE) {
  5294. if (nb01 >= nb00) {
  5295. return;
  5296. }
  5297. float * const wdata = params->wdata;
  5298. // cols per thread
  5299. const int dc = (ne + nth - 1)/nth;
  5300. // col range for this thread
  5301. const int ic0 = dc*ith;
  5302. const int ic1 = MIN(ic0 + dc, ne);
  5303. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5304. for (int k = 1; k < nth; k++) {
  5305. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5306. }
  5307. return;
  5308. }
  5309. if (nb01 >= nb00) {
  5310. // TODO: do not support transposed src1
  5311. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5312. // total rows in src0
  5313. const int nr = ne01*ne02*ne03;
  5314. // rows per thread
  5315. const int dr = (nr + nth - 1)/nth;
  5316. // row range for this thread
  5317. const int ir0 = dr*ith;
  5318. const int ir1 = MIN(ir0 + dr, nr);
  5319. void * wdata = params->wdata;
  5320. for (int ir = ir0; ir < ir1; ++ir) {
  5321. // src0 indices
  5322. const int i03 = ir/(ne02*ne01);
  5323. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5324. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5325. const int i13 = i03;
  5326. const int i12 = i02;
  5327. const int i0 = i01;
  5328. const int i2 = i02;
  5329. const int i3 = i03;
  5330. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5331. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5332. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5333. assert(ne00 % 32 == 0);
  5334. for (int ic = 0; ic < ne11; ++ic) {
  5335. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5336. }
  5337. }
  5338. } else {
  5339. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5340. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5341. // each thread has its own work data
  5342. // during FINALIZE we accumulate all work data into dst
  5343. // total columns in src1
  5344. const int nc = ne10;
  5345. // columns per thread
  5346. const int dc = (nc + nth - 1)/nth;
  5347. // column range for this thread
  5348. const int ic0 = dc*ith;
  5349. const int ic1 = MIN(ic0 + dc, nc);
  5350. // work data for thread
  5351. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5352. float * const wdata = params->wdata;
  5353. for (int i13 = 0; i13 < ne13; ++i13) {
  5354. for (int i12 = 0; i12 < ne12; ++i12) {
  5355. for (int i11 = 0; i11 < ne11; ++i11) {
  5356. // dst indices
  5357. const int i1 = i11;
  5358. const int i2 = i12;
  5359. const int i3 = i13;
  5360. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5361. for (int ic = ic0; ic < ic1; ++ic) {
  5362. // src1 indices
  5363. const int i10 = ic;
  5364. // src0 indices
  5365. const int i03 = i13;
  5366. const int i02 = i12;
  5367. const int i00 = ic;
  5368. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5369. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5370. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5371. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5372. }
  5373. }
  5374. }
  5375. }
  5376. }
  5377. //int64_t t1 = ggml_time_us();
  5378. //static int64_t acc = 0;
  5379. //acc += t1 - t0;
  5380. //if (t1 - t0 > 10) {
  5381. // printf("\n");
  5382. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5383. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5384. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5385. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5386. //}
  5387. }
  5388. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5389. const struct ggml_compute_params * params,
  5390. const struct ggml_tensor * src0,
  5391. const struct ggml_tensor * src1,
  5392. struct ggml_tensor * dst) {
  5393. int64_t t0 = ggml_perf_time_us();
  5394. UNUSED(t0);
  5395. const int ne00 = src0->ne[0];
  5396. const int ne01 = src0->ne[1];
  5397. const int ne02 = src0->ne[2];
  5398. const int ne03 = src0->ne[3];
  5399. const int ne10 = src1->ne[0];
  5400. const int ne11 = src1->ne[1];
  5401. const int ne12 = src1->ne[2];
  5402. const int ne13 = src1->ne[3];
  5403. const int ne0 = dst->ne[0];
  5404. const int ne1 = dst->ne[1];
  5405. const int ne2 = dst->ne[2];
  5406. const int ne3 = dst->ne[3];
  5407. const int ne = ne0*ne1*ne2*ne3;
  5408. const int nb00 = src0->nb[0];
  5409. const int nb01 = src0->nb[1];
  5410. const int nb02 = src0->nb[2];
  5411. const int nb03 = src0->nb[3];
  5412. const int nb10 = src1->nb[0];
  5413. const int nb11 = src1->nb[1];
  5414. const int nb12 = src1->nb[2];
  5415. const int nb13 = src1->nb[3];
  5416. const int nb0 = dst->nb[0];
  5417. const int nb1 = dst->nb[1];
  5418. const int nb2 = dst->nb[2];
  5419. const int nb3 = dst->nb[3];
  5420. const int ith = params->ith;
  5421. const int nth = params->nth;
  5422. GGML_ASSERT(ne02 == ne12);
  5423. GGML_ASSERT(ne03 == ne13);
  5424. GGML_ASSERT(ne2 == ne12);
  5425. GGML_ASSERT(ne3 == ne13);
  5426. // TODO: we don't support permuted src0
  5427. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5428. // dst cannot be transposed or permuted
  5429. GGML_ASSERT(nb0 == sizeof(float));
  5430. GGML_ASSERT(nb0 <= nb1);
  5431. GGML_ASSERT(nb1 <= nb2);
  5432. GGML_ASSERT(nb2 <= nb3);
  5433. GGML_ASSERT(ne0 == ne01);
  5434. GGML_ASSERT(ne1 == ne11);
  5435. GGML_ASSERT(ne2 == ne02);
  5436. GGML_ASSERT(ne3 == ne03);
  5437. // nb01 >= nb00 - src0 is not transposed
  5438. // compute by src0 rows
  5439. //
  5440. // nb00 < nb01 - src0 is transposed
  5441. // compute by src0 columns
  5442. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5443. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5444. GGML_ASSERT(nb10 == sizeof(float));
  5445. if (params->ith != 0) {
  5446. return;
  5447. }
  5448. if (params->type == GGML_TASK_INIT) {
  5449. return;
  5450. }
  5451. if (params->type == GGML_TASK_FINALIZE) {
  5452. return;
  5453. }
  5454. float * const wdata = params->wdata;
  5455. for (int i03 = 0; i03 < ne03; i03++) {
  5456. for (int i02 = 0; i02 < ne02; i02++) {
  5457. {
  5458. size_t id = 0;
  5459. for (int i01 = 0; i01 < ne01; ++i01) {
  5460. //for (int i00 = 0; i00 < ne00; ++i00) {
  5461. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5462. //}
  5463. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5464. id += ne00;
  5465. }
  5466. }
  5467. const float * x = wdata;
  5468. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5469. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5470. // zT = y * xT
  5471. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5472. ne11, ne01, ne10,
  5473. 1.0f, y, ne10,
  5474. x, ne10,
  5475. 0.0f, d, ne01);
  5476. }
  5477. }
  5478. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5479. return;
  5480. }
  5481. #endif
  5482. if (params->type == GGML_TASK_INIT) {
  5483. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5484. if (nb01 >= nb00) {
  5485. char * wdata = params->wdata;
  5486. for (int i13 = 0; i13 < ne13; ++i13) {
  5487. for (int i12 = 0; i12 < ne12; ++i12) {
  5488. for (int i11 = 0; i11 < ne11; ++i11) {
  5489. //for (int i10 = 0; i10 < ne10; ++i10) {
  5490. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5491. //}
  5492. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5493. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5494. }
  5495. }
  5496. }
  5497. return;
  5498. }
  5499. // TODO: fix this memset (wsize is overestimated)
  5500. memset(params->wdata, 0, params->wsize);
  5501. return;
  5502. }
  5503. if (params->type == GGML_TASK_FINALIZE) {
  5504. if (nb01 >= nb00) {
  5505. return;
  5506. }
  5507. float * const wdata = params->wdata;
  5508. // cols per thread
  5509. const int dc = (ne + nth - 1)/nth;
  5510. // col range for this thread
  5511. const int ic0 = dc*ith;
  5512. const int ic1 = MIN(ic0 + dc, ne);
  5513. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5514. for (int k = 1; k < nth; k++) {
  5515. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5516. }
  5517. return;
  5518. }
  5519. if (nb01 >= nb00) {
  5520. // TODO: do not support transposed src1
  5521. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5522. // total rows in src0
  5523. const int nr = ne01*ne02*ne03;
  5524. // rows per thread
  5525. const int dr = (nr + nth - 1)/nth;
  5526. // row range for this thread
  5527. const int ir0 = dr*ith;
  5528. const int ir1 = MIN(ir0 + dr, nr);
  5529. void * wdata = params->wdata;
  5530. for (int ir = ir0; ir < ir1; ++ir) {
  5531. // src0 indices
  5532. const int i03 = ir/(ne02*ne01);
  5533. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5534. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5535. const int i13 = i03;
  5536. const int i12 = i02;
  5537. const int i0 = i01;
  5538. const int i2 = i02;
  5539. const int i3 = i03;
  5540. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5541. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5542. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5543. assert(ne00 % 32 == 0);
  5544. for (int ic = 0; ic < ne11; ++ic) {
  5545. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5546. }
  5547. }
  5548. } else {
  5549. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5550. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5551. // each thread has its own work data
  5552. // during FINALIZE we accumulate all work data into dst
  5553. // total columns in src1
  5554. const int nc = ne10;
  5555. // columns per thread
  5556. const int dc = (nc + nth - 1)/nth;
  5557. // column range for this thread
  5558. const int ic0 = dc*ith;
  5559. const int ic1 = MIN(ic0 + dc, nc);
  5560. // work data for thread
  5561. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5562. float * const wdata = params->wdata;
  5563. for (int i13 = 0; i13 < ne13; ++i13) {
  5564. for (int i12 = 0; i12 < ne12; ++i12) {
  5565. for (int i11 = 0; i11 < ne11; ++i11) {
  5566. // dst indices
  5567. const int i1 = i11;
  5568. const int i2 = i12;
  5569. const int i3 = i13;
  5570. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5571. for (int ic = ic0; ic < ic1; ++ic) {
  5572. // src1 indices
  5573. const int i10 = ic;
  5574. // src0 indices
  5575. const int i03 = i13;
  5576. const int i02 = i12;
  5577. const int i00 = ic;
  5578. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5579. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5580. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5581. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5582. }
  5583. }
  5584. }
  5585. }
  5586. }
  5587. //int64_t t1 = ggml_time_us();
  5588. //static int64_t acc = 0;
  5589. //acc += t1 - t0;
  5590. //if (t1 - t0 > 10) {
  5591. // printf("\n");
  5592. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5593. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5594. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5595. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5596. //}
  5597. }
  5598. static void ggml_compute_forward_mul_mat(
  5599. const struct ggml_compute_params * params,
  5600. const struct ggml_tensor * src0,
  5601. const struct ggml_tensor * src1,
  5602. struct ggml_tensor * dst) {
  5603. switch (src0->type) {
  5604. case GGML_TYPE_Q4_0:
  5605. {
  5606. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5607. } break;
  5608. case GGML_TYPE_Q4_1:
  5609. {
  5610. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5611. } break;
  5612. case GGML_TYPE_F16:
  5613. {
  5614. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5615. } break;
  5616. case GGML_TYPE_F32:
  5617. {
  5618. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5619. } break;
  5620. case GGML_TYPE_I8:
  5621. case GGML_TYPE_I16:
  5622. case GGML_TYPE_I32:
  5623. case GGML_TYPE_COUNT:
  5624. {
  5625. GGML_ASSERT(false);
  5626. } break;
  5627. }
  5628. #if 0
  5629. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5630. static int first = 8;
  5631. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5632. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5633. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5634. if (first) {
  5635. --first;
  5636. } else {
  5637. for (int k = 0; k < dst->ne[1]; ++k) {
  5638. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5639. for (int i = 0; i < 16; ++i) {
  5640. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5641. }
  5642. printf("\n");
  5643. }
  5644. printf("\n");
  5645. }
  5646. printf("\n");
  5647. exit(0);
  5648. }
  5649. } else {
  5650. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5651. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5652. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5653. }
  5654. #endif
  5655. }
  5656. // ggml_compute_forward_scale
  5657. static void ggml_compute_forward_scale_f32(
  5658. const struct ggml_compute_params * params,
  5659. const struct ggml_tensor * src0,
  5660. const struct ggml_tensor * src1,
  5661. struct ggml_tensor * dst) {
  5662. GGML_ASSERT(ggml_is_contiguous(src0));
  5663. GGML_ASSERT(ggml_is_contiguous(dst));
  5664. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5665. GGML_ASSERT(ggml_is_scalar(src1));
  5666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5667. return;
  5668. }
  5669. // scale factor
  5670. const float v = *(float *) src1->data;
  5671. const int ith = params->ith;
  5672. const int nth = params->nth;
  5673. const int nc = src0->ne[0];
  5674. const int nr = ggml_nrows(src0);
  5675. // rows per thread
  5676. const int dr = (nr + nth - 1)/nth;
  5677. // row range for this thread
  5678. const int ir0 = dr*ith;
  5679. const int ir1 = MIN(ir0 + dr, nr);
  5680. for (int i1 = ir0; i1 < ir1; i1++) {
  5681. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5682. }
  5683. }
  5684. static void ggml_compute_forward_scale(
  5685. const struct ggml_compute_params * params,
  5686. const struct ggml_tensor * src0,
  5687. const struct ggml_tensor * src1,
  5688. struct ggml_tensor * dst) {
  5689. switch (src0->type) {
  5690. case GGML_TYPE_F32:
  5691. {
  5692. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5693. } break;
  5694. case GGML_TYPE_Q4_0:
  5695. case GGML_TYPE_Q4_1:
  5696. case GGML_TYPE_I8:
  5697. case GGML_TYPE_I16:
  5698. case GGML_TYPE_I32:
  5699. case GGML_TYPE_F16:
  5700. case GGML_TYPE_COUNT:
  5701. {
  5702. GGML_ASSERT(false);
  5703. } break;
  5704. }
  5705. }
  5706. // ggml_compute_forward_cpy
  5707. static void ggml_compute_forward_cpy(
  5708. const struct ggml_compute_params * params,
  5709. const struct ggml_tensor * src0,
  5710. struct ggml_tensor * dst) {
  5711. ggml_compute_forward_dup(params, src0, dst);
  5712. }
  5713. // ggml_compute_forward_reshape
  5714. static void ggml_compute_forward_reshape(
  5715. const struct ggml_compute_params * params,
  5716. const struct ggml_tensor * src0,
  5717. struct ggml_tensor * dst) {
  5718. // NOP
  5719. UNUSED(params);
  5720. UNUSED(src0);
  5721. UNUSED(dst);
  5722. }
  5723. // ggml_compute_forward_view
  5724. static void ggml_compute_forward_view(
  5725. const struct ggml_compute_params * params,
  5726. const struct ggml_tensor * src0) {
  5727. // NOP
  5728. UNUSED(params);
  5729. UNUSED(src0);
  5730. }
  5731. // ggml_compute_forward_permute
  5732. static void ggml_compute_forward_permute(
  5733. const struct ggml_compute_params * params,
  5734. const struct ggml_tensor * src0) {
  5735. // NOP
  5736. UNUSED(params);
  5737. UNUSED(src0);
  5738. }
  5739. // ggml_compute_forward_transpose
  5740. static void ggml_compute_forward_transpose(
  5741. const struct ggml_compute_params * params,
  5742. const struct ggml_tensor * src0) {
  5743. // NOP
  5744. UNUSED(params);
  5745. UNUSED(src0);
  5746. }
  5747. // ggml_compute_forward_get_rows
  5748. static void ggml_compute_forward_get_rows_q4_0(
  5749. const struct ggml_compute_params * params,
  5750. const struct ggml_tensor * src0,
  5751. const struct ggml_tensor * src1,
  5752. struct ggml_tensor * dst) {
  5753. assert(params->ith == 0);
  5754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5755. return;
  5756. }
  5757. const int nc = src0->ne[0];
  5758. const int nr = ggml_nelements(src1);
  5759. assert( dst->ne[0] == nc);
  5760. assert( dst->ne[1] == nr);
  5761. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5762. for (int i = 0; i < nr; ++i) {
  5763. const int r = ((int32_t *) src1->data)[i];
  5764. dequantize_row_q4_0(
  5765. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5766. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5767. }
  5768. }
  5769. static void ggml_compute_forward_get_rows_q4_1(
  5770. const struct ggml_compute_params * params,
  5771. const struct ggml_tensor * src0,
  5772. const struct ggml_tensor * src1,
  5773. struct ggml_tensor * dst) {
  5774. assert(params->ith == 0);
  5775. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5776. return;
  5777. }
  5778. const int nc = src0->ne[0];
  5779. const int nr = ggml_nelements(src1);
  5780. assert( dst->ne[0] == nc);
  5781. assert( dst->ne[1] == nr);
  5782. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5783. for (int i = 0; i < nr; ++i) {
  5784. const int r = ((int32_t *) src1->data)[i];
  5785. dequantize_row_q4_1(
  5786. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5787. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5788. }
  5789. }
  5790. static void ggml_compute_forward_get_rows_f16(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. const struct ggml_tensor * src1,
  5794. struct ggml_tensor * dst) {
  5795. assert(params->ith == 0);
  5796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5797. return;
  5798. }
  5799. const int nc = src0->ne[0];
  5800. const int nr = ggml_nelements(src1);
  5801. assert( dst->ne[0] == nc);
  5802. assert( dst->ne[1] == nr);
  5803. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5804. for (int i = 0; i < nr; ++i) {
  5805. const int r = ((int32_t *) src1->data)[i];
  5806. for (int j = 0; j < nc; ++j) {
  5807. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5808. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5809. }
  5810. }
  5811. }
  5812. static void ggml_compute_forward_get_rows_f32(
  5813. const struct ggml_compute_params * params,
  5814. const struct ggml_tensor * src0,
  5815. const struct ggml_tensor * src1,
  5816. struct ggml_tensor * dst) {
  5817. assert(params->ith == 0);
  5818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5819. return;
  5820. }
  5821. const int nc = src0->ne[0];
  5822. const int nr = ggml_nelements(src1);
  5823. assert( dst->ne[0] == nc);
  5824. assert( dst->ne[1] == nr);
  5825. assert(src0->nb[0] == sizeof(float));
  5826. for (int i = 0; i < nr; ++i) {
  5827. const int r = ((int32_t *) src1->data)[i];
  5828. ggml_vec_cpy_f32(nc,
  5829. (float *) ((char *) dst->data + i*dst->nb[1]),
  5830. (float *) ((char *) src0->data + r*src0->nb[1]));
  5831. }
  5832. }
  5833. static void ggml_compute_forward_get_rows(
  5834. const struct ggml_compute_params * params,
  5835. const struct ggml_tensor * src0,
  5836. const struct ggml_tensor * src1,
  5837. struct ggml_tensor * dst) {
  5838. switch (src0->type) {
  5839. case GGML_TYPE_Q4_0:
  5840. {
  5841. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5842. } break;
  5843. case GGML_TYPE_Q4_1:
  5844. {
  5845. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5846. } break;
  5847. case GGML_TYPE_F16:
  5848. {
  5849. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5850. } break;
  5851. case GGML_TYPE_F32:
  5852. {
  5853. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5854. } break;
  5855. case GGML_TYPE_I8:
  5856. case GGML_TYPE_I16:
  5857. case GGML_TYPE_I32:
  5858. case GGML_TYPE_COUNT:
  5859. {
  5860. GGML_ASSERT(false);
  5861. } break;
  5862. }
  5863. //static bool first = true;
  5864. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5865. //if (first) {
  5866. // first = false;
  5867. //} else {
  5868. // for (int k = 0; k < dst->ne[1]; ++k) {
  5869. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5870. // for (int i = 0; i < 16; ++i) {
  5871. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5872. // }
  5873. // printf("\n");
  5874. // }
  5875. // printf("\n");
  5876. // }
  5877. // printf("\n");
  5878. // exit(0);
  5879. //}
  5880. }
  5881. // ggml_compute_forward_diag_mask_inf
  5882. static void ggml_compute_forward_diag_mask_inf_f32(
  5883. const struct ggml_compute_params * params,
  5884. const struct ggml_tensor * src0,
  5885. const struct ggml_tensor * src1,
  5886. struct ggml_tensor * dst) {
  5887. assert(params->ith == 0);
  5888. assert(src1->type == GGML_TYPE_I32);
  5889. assert(ggml_nelements(src1) == 1);
  5890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5891. return;
  5892. }
  5893. const int n_past = ((int32_t *) src1->data)[0];
  5894. // TODO: handle transposed/permuted matrices
  5895. const int n = ggml_nrows(src0);
  5896. const int nc = src0->ne[0];
  5897. const int nr = src0->ne[1];
  5898. const int nz = n/nr;
  5899. assert( dst->nb[0] == sizeof(float));
  5900. assert(src0->nb[0] == sizeof(float));
  5901. for (int k = 0; k < nz; k++) {
  5902. for (int j = 0; j < nr; j++) {
  5903. for (int i = n_past; i < nc; i++) {
  5904. if (i > n_past + j) {
  5905. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5906. }
  5907. }
  5908. }
  5909. }
  5910. }
  5911. static void ggml_compute_forward_diag_mask_inf(
  5912. const struct ggml_compute_params * params,
  5913. const struct ggml_tensor * src0,
  5914. const struct ggml_tensor * src1,
  5915. struct ggml_tensor * dst) {
  5916. switch (src0->type) {
  5917. case GGML_TYPE_F32:
  5918. {
  5919. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5920. } break;
  5921. case GGML_TYPE_Q4_0:
  5922. case GGML_TYPE_Q4_1:
  5923. case GGML_TYPE_I8:
  5924. case GGML_TYPE_I16:
  5925. case GGML_TYPE_I32:
  5926. case GGML_TYPE_F16:
  5927. case GGML_TYPE_COUNT:
  5928. {
  5929. GGML_ASSERT(false);
  5930. } break;
  5931. }
  5932. }
  5933. // ggml_compute_forward_soft_max
  5934. static void ggml_compute_forward_soft_max_f32(
  5935. const struct ggml_compute_params * params,
  5936. const struct ggml_tensor * src0,
  5937. struct ggml_tensor * dst) {
  5938. GGML_ASSERT(ggml_is_contiguous(src0));
  5939. GGML_ASSERT(ggml_is_contiguous(dst));
  5940. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5942. return;
  5943. }
  5944. // TODO: handle transposed/permuted matrices
  5945. const int ith = params->ith;
  5946. const int nth = params->nth;
  5947. const int nc = src0->ne[0];
  5948. const int nr = ggml_nrows(src0);
  5949. // rows per thread
  5950. const int dr = (nr + nth - 1)/nth;
  5951. // row range for this thread
  5952. const int ir0 = dr*ith;
  5953. const int ir1 = MIN(ir0 + dr, nr);
  5954. for (int i1 = ir0; i1 < ir1; i1++) {
  5955. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5956. #ifndef NDEBUG
  5957. for (int i = 0; i < nc; ++i) {
  5958. //printf("p[%d] = %f\n", i, p[i]);
  5959. assert(!isnan(p[i]));
  5960. }
  5961. #endif
  5962. float max = -INFINITY;
  5963. ggml_vec_max_f32(nc, &max, p);
  5964. ggml_float sum = 0.0;
  5965. uint16_t scvt;
  5966. for (int i = 0; i < nc; i++) {
  5967. if (p[i] == -INFINITY) {
  5968. p[i] = 0.0f;
  5969. } else {
  5970. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5971. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5972. memcpy(&scvt, &s, sizeof(scvt));
  5973. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5974. sum += val;
  5975. p[i] = val;
  5976. }
  5977. }
  5978. assert(sum > 0.0f);
  5979. sum = 1.0/sum;
  5980. ggml_vec_scale_f32(nc, p, sum);
  5981. #ifndef NDEBUG
  5982. for (int i = 0; i < nc; ++i) {
  5983. assert(!isnan(p[i]));
  5984. assert(!isinf(p[i]));
  5985. }
  5986. #endif
  5987. }
  5988. }
  5989. static void ggml_compute_forward_soft_max(
  5990. const struct ggml_compute_params * params,
  5991. const struct ggml_tensor * src0,
  5992. struct ggml_tensor * dst) {
  5993. switch (src0->type) {
  5994. case GGML_TYPE_F32:
  5995. {
  5996. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5997. } break;
  5998. case GGML_TYPE_Q4_0:
  5999. case GGML_TYPE_Q4_1:
  6000. case GGML_TYPE_I8:
  6001. case GGML_TYPE_I16:
  6002. case GGML_TYPE_I32:
  6003. case GGML_TYPE_F16:
  6004. case GGML_TYPE_COUNT:
  6005. {
  6006. GGML_ASSERT(false);
  6007. } break;
  6008. }
  6009. }
  6010. // ggml_compute_forward_rope
  6011. static void ggml_compute_forward_rope_f32(
  6012. const struct ggml_compute_params * params,
  6013. const struct ggml_tensor * src0,
  6014. const struct ggml_tensor * src1,
  6015. struct ggml_tensor * dst) {
  6016. assert(params->ith == 0);
  6017. assert(src1->type == GGML_TYPE_I32);
  6018. assert(ggml_nelements(src1) == 3);
  6019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6020. return;
  6021. }
  6022. const int n_past = ((int32_t *) src1->data)[0];
  6023. const int n_dims = ((int32_t *) src1->data)[1];
  6024. const int mode = ((int32_t *) src1->data)[2];
  6025. //const int ne0 = src0->ne[0];
  6026. const int ne1 = src0->ne[1];
  6027. const int ne2 = src0->ne[2];
  6028. const int ne3 = src0->ne[3];
  6029. const int nb0 = src0->nb[0];
  6030. const int nb1 = src0->nb[1];
  6031. const int nb2 = src0->nb[2];
  6032. const int nb3 = src0->nb[3];
  6033. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6034. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6035. assert(nb0 == sizeof(float));
  6036. // TODO: optimize
  6037. for (int i3 = 0; i3 < ne3; i3++) {
  6038. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6039. const int p = (mode == 0 ? n_past + i2 : i2);
  6040. for (int i1 = 0; i1 < ne1; i1++) {
  6041. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6042. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6043. const double cos_theta = cos(p*theta);
  6044. const double sin_theta = sin(p*theta);
  6045. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6046. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6047. double x0 = src[0];
  6048. double x1 = src[1];
  6049. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6050. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6051. }
  6052. }
  6053. }
  6054. }
  6055. }
  6056. static void ggml_compute_forward_rope_f16(
  6057. const struct ggml_compute_params * params,
  6058. const struct ggml_tensor * src0,
  6059. const struct ggml_tensor * src1,
  6060. struct ggml_tensor * dst) {
  6061. assert(params->ith == 0);
  6062. assert(src1->type == GGML_TYPE_I32);
  6063. assert(ggml_nelements(src1) == 3);
  6064. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6065. return;
  6066. }
  6067. const int n_past = ((int32_t *) src1->data)[0];
  6068. const int n_dims = ((int32_t *) src1->data)[1];
  6069. const int mode = ((int32_t *) src1->data)[2];
  6070. //const int ne0 = src0->ne[0];
  6071. const int ne1 = src0->ne[1];
  6072. const int ne2 = src0->ne[2];
  6073. const int ne3 = src0->ne[3];
  6074. const int nb0 = src0->nb[0];
  6075. const int nb1 = src0->nb[1];
  6076. const int nb2 = src0->nb[2];
  6077. const int nb3 = src0->nb[3];
  6078. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6079. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6080. assert(nb0 == sizeof(ggml_fp16_t));
  6081. for (int i3 = 0; i3 < ne3; i3++) {
  6082. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6083. const int p = (mode == 0 ? n_past + i2 : i2);
  6084. for (int i1 = 0; i1 < ne1; i1++) {
  6085. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6086. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6087. const double cos_theta = cos(p*theta);
  6088. const double sin_theta = sin(p*theta);
  6089. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6090. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6091. double x0 = ggml_fp16_to_fp32(src[0]);
  6092. double x1 = ggml_fp16_to_fp32(src[1]);
  6093. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6094. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6095. }
  6096. }
  6097. }
  6098. }
  6099. }
  6100. static void ggml_compute_forward_rope(
  6101. const struct ggml_compute_params * params,
  6102. const struct ggml_tensor * src0,
  6103. const struct ggml_tensor * src1,
  6104. struct ggml_tensor * dst) {
  6105. switch (src0->type) {
  6106. case GGML_TYPE_F16:
  6107. {
  6108. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6109. } break;
  6110. case GGML_TYPE_F32:
  6111. {
  6112. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6113. } break;
  6114. case GGML_TYPE_Q4_0:
  6115. case GGML_TYPE_Q4_1:
  6116. case GGML_TYPE_I8:
  6117. case GGML_TYPE_I16:
  6118. case GGML_TYPE_I32:
  6119. case GGML_TYPE_COUNT:
  6120. {
  6121. GGML_ASSERT(false);
  6122. } break;
  6123. }
  6124. }
  6125. // ggml_compute_forward_conv_1d_1s
  6126. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6127. const struct ggml_compute_params * params,
  6128. const struct ggml_tensor * src0,
  6129. const struct ggml_tensor * src1,
  6130. struct ggml_tensor * dst) {
  6131. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6132. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6133. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6134. int64_t t0 = ggml_perf_time_us();
  6135. UNUSED(t0);
  6136. const int ne00 = src0->ne[0];
  6137. const int ne01 = src0->ne[1];
  6138. const int ne02 = src0->ne[2];
  6139. //const int ne03 = src0->ne[3];
  6140. const int ne10 = src1->ne[0];
  6141. const int ne11 = src1->ne[1];
  6142. //const int ne12 = src1->ne[2];
  6143. //const int ne13 = src1->ne[3];
  6144. //const int ne0 = dst->ne[0];
  6145. //const int ne1 = dst->ne[1];
  6146. //const int ne2 = dst->ne[2];
  6147. //const int ne3 = dst->ne[3];
  6148. //const int ne = ne0*ne1*ne2*ne3;
  6149. const int nb00 = src0->nb[0];
  6150. const int nb01 = src0->nb[1];
  6151. const int nb02 = src0->nb[2];
  6152. //const int nb03 = src0->nb[3];
  6153. const int nb10 = src1->nb[0];
  6154. const int nb11 = src1->nb[1];
  6155. //const int nb12 = src1->nb[2];
  6156. //const int nb13 = src1->nb[3];
  6157. //const int nb0 = dst->nb[0];
  6158. const int nb1 = dst->nb[1];
  6159. //const int nb2 = dst->nb[2];
  6160. //const int nb3 = dst->nb[3];
  6161. const int ith = params->ith;
  6162. const int nth = params->nth;
  6163. const int nk = ne00;
  6164. const int nh = nk/2;
  6165. const int ew0 = ggml_up32(ne01);
  6166. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6167. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6168. GGML_ASSERT(nb10 == sizeof(float));
  6169. if (params->type == GGML_TASK_INIT) {
  6170. // TODO: fix this memset (wsize is overestimated)
  6171. memset(params->wdata, 0, params->wsize);
  6172. // prepare kernel data (src0)
  6173. {
  6174. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6175. for (int i02 = 0; i02 < ne02; i02++) {
  6176. for (int i01 = 0; i01 < ne01; i01++) {
  6177. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6178. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6179. for (int i00 = 0; i00 < ne00; i00++) {
  6180. dst_data[i00*ew0 + i01] = src[i00];
  6181. }
  6182. }
  6183. }
  6184. }
  6185. // prepare source data (src1)
  6186. {
  6187. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6188. for (int i11 = 0; i11 < ne11; i11++) {
  6189. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6190. ggml_fp16_t * dst_data = wdata;
  6191. for (int i10 = 0; i10 < ne10; i10++) {
  6192. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6193. }
  6194. }
  6195. }
  6196. return;
  6197. }
  6198. if (params->type == GGML_TASK_FINALIZE) {
  6199. return;
  6200. }
  6201. // total rows in dst
  6202. const int nr = ne02;
  6203. // rows per thread
  6204. const int dr = (nr + nth - 1)/nth;
  6205. // row range for this thread
  6206. const int ir0 = dr*ith;
  6207. const int ir1 = MIN(ir0 + dr, nr);
  6208. for (int i1 = ir0; i1 < ir1; i1++) {
  6209. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6210. for (int i0 = 0; i0 < ne10; ++i0) {
  6211. dst_data[i0] = 0;
  6212. for (int k = -nh; k <= nh; k++) {
  6213. float v = 0.0f;
  6214. ggml_vec_dot_f16(ew0, &v,
  6215. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6216. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6217. dst_data[i0] += v;
  6218. }
  6219. }
  6220. }
  6221. }
  6222. static void ggml_compute_forward_conv_1d_1s_f32(
  6223. const struct ggml_compute_params * params,
  6224. const struct ggml_tensor * src0,
  6225. const struct ggml_tensor * src1,
  6226. struct ggml_tensor * dst) {
  6227. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6228. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6229. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6230. int64_t t0 = ggml_perf_time_us();
  6231. UNUSED(t0);
  6232. const int ne00 = src0->ne[0];
  6233. const int ne01 = src0->ne[1];
  6234. const int ne02 = src0->ne[2];
  6235. //const int ne03 = src0->ne[3];
  6236. const int ne10 = src1->ne[0];
  6237. const int ne11 = src1->ne[1];
  6238. //const int ne12 = src1->ne[2];
  6239. //const int ne13 = src1->ne[3];
  6240. //const int ne0 = dst->ne[0];
  6241. //const int ne1 = dst->ne[1];
  6242. //const int ne2 = dst->ne[2];
  6243. //const int ne3 = dst->ne[3];
  6244. //const int ne = ne0*ne1*ne2*ne3;
  6245. const int nb00 = src0->nb[0];
  6246. const int nb01 = src0->nb[1];
  6247. const int nb02 = src0->nb[2];
  6248. //const int nb03 = src0->nb[3];
  6249. const int nb10 = src1->nb[0];
  6250. const int nb11 = src1->nb[1];
  6251. //const int nb12 = src1->nb[2];
  6252. //const int nb13 = src1->nb[3];
  6253. //const int nb0 = dst->nb[0];
  6254. const int nb1 = dst->nb[1];
  6255. //const int nb2 = dst->nb[2];
  6256. //const int nb3 = dst->nb[3];
  6257. const int ith = params->ith;
  6258. const int nth = params->nth;
  6259. const int nk = ne00;
  6260. const int nh = nk/2;
  6261. const int ew0 = ggml_up32(ne01);
  6262. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6263. GGML_ASSERT(nb00 == sizeof(float));
  6264. GGML_ASSERT(nb10 == sizeof(float));
  6265. if (params->type == GGML_TASK_INIT) {
  6266. // TODO: fix this memset (wsize is overestimated)
  6267. memset(params->wdata, 0, params->wsize);
  6268. // prepare kernel data (src0)
  6269. {
  6270. float * const wdata = (float *) params->wdata + 0;
  6271. for (int i02 = 0; i02 < ne02; i02++) {
  6272. for (int i01 = 0; i01 < ne01; i01++) {
  6273. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6274. float * dst_data = wdata + i02*ew0*ne00;
  6275. for (int i00 = 0; i00 < ne00; i00++) {
  6276. dst_data[i00*ew0 + i01] = src[i00];
  6277. }
  6278. }
  6279. }
  6280. }
  6281. // prepare source data (src1)
  6282. {
  6283. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6284. for (int i11 = 0; i11 < ne11; i11++) {
  6285. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6286. float * dst_data = wdata;
  6287. for (int i10 = 0; i10 < ne10; i10++) {
  6288. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6289. }
  6290. }
  6291. }
  6292. return;
  6293. }
  6294. if (params->type == GGML_TASK_FINALIZE) {
  6295. return;
  6296. }
  6297. // total rows in dst
  6298. const int nr = ne02;
  6299. // rows per thread
  6300. const int dr = (nr + nth - 1)/nth;
  6301. // row range for this thread
  6302. const int ir0 = dr*ith;
  6303. const int ir1 = MIN(ir0 + dr, nr);
  6304. for (int i1 = ir0; i1 < ir1; i1++) {
  6305. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6306. for (int i0 = 0; i0 < ne10; ++i0) {
  6307. dst_data[i0] = 0;
  6308. for (int k = -nh; k <= nh; k++) {
  6309. float v = 0.0f;
  6310. ggml_vec_dot_f32(ew0, &v,
  6311. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6312. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6313. dst_data[i0] += v;
  6314. }
  6315. }
  6316. }
  6317. }
  6318. static void ggml_compute_forward_conv_1d_1s(
  6319. const struct ggml_compute_params * params,
  6320. const struct ggml_tensor * src0,
  6321. const struct ggml_tensor * src1,
  6322. struct ggml_tensor * dst) {
  6323. switch (src0->type) {
  6324. case GGML_TYPE_F16:
  6325. {
  6326. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6327. } break;
  6328. case GGML_TYPE_F32:
  6329. {
  6330. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6331. } break;
  6332. case GGML_TYPE_Q4_0:
  6333. case GGML_TYPE_Q4_1:
  6334. case GGML_TYPE_I8:
  6335. case GGML_TYPE_I16:
  6336. case GGML_TYPE_I32:
  6337. case GGML_TYPE_COUNT:
  6338. {
  6339. GGML_ASSERT(false);
  6340. } break;
  6341. }
  6342. }
  6343. // ggml_compute_forward_conv_1d_2s
  6344. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6345. const struct ggml_compute_params * params,
  6346. const struct ggml_tensor * src0,
  6347. const struct ggml_tensor * src1,
  6348. struct ggml_tensor * dst) {
  6349. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6350. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6351. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6352. int64_t t0 = ggml_perf_time_us();
  6353. UNUSED(t0);
  6354. const int ne00 = src0->ne[0];
  6355. const int ne01 = src0->ne[1];
  6356. const int ne02 = src0->ne[2];
  6357. //const int ne03 = src0->ne[3];
  6358. const int ne10 = src1->ne[0];
  6359. const int ne11 = src1->ne[1];
  6360. //const int ne12 = src1->ne[2];
  6361. //const int ne13 = src1->ne[3];
  6362. //const int ne0 = dst->ne[0];
  6363. //const int ne1 = dst->ne[1];
  6364. //const int ne2 = dst->ne[2];
  6365. //const int ne3 = dst->ne[3];
  6366. //const int ne = ne0*ne1*ne2*ne3;
  6367. const int nb00 = src0->nb[0];
  6368. const int nb01 = src0->nb[1];
  6369. const int nb02 = src0->nb[2];
  6370. //const int nb03 = src0->nb[3];
  6371. const int nb10 = src1->nb[0];
  6372. const int nb11 = src1->nb[1];
  6373. //const int nb12 = src1->nb[2];
  6374. //const int nb13 = src1->nb[3];
  6375. //const int nb0 = dst->nb[0];
  6376. const int nb1 = dst->nb[1];
  6377. //const int nb2 = dst->nb[2];
  6378. //const int nb3 = dst->nb[3];
  6379. const int ith = params->ith;
  6380. const int nth = params->nth;
  6381. const int nk = ne00;
  6382. const int nh = nk/2;
  6383. const int ew0 = ggml_up32(ne01);
  6384. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6385. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6386. GGML_ASSERT(nb10 == sizeof(float));
  6387. if (params->type == GGML_TASK_INIT) {
  6388. // TODO: fix this memset (wsize is overestimated)
  6389. memset(params->wdata, 0, params->wsize);
  6390. // prepare kernel data (src0)
  6391. {
  6392. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6393. for (int i02 = 0; i02 < ne02; i02++) {
  6394. for (int i01 = 0; i01 < ne01; i01++) {
  6395. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6396. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6397. for (int i00 = 0; i00 < ne00; i00++) {
  6398. dst_data[i00*ew0 + i01] = src[i00];
  6399. }
  6400. }
  6401. }
  6402. }
  6403. // prepare source data (src1)
  6404. {
  6405. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6406. for (int i11 = 0; i11 < ne11; i11++) {
  6407. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6408. ggml_fp16_t * dst_data = wdata;
  6409. for (int i10 = 0; i10 < ne10; i10++) {
  6410. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6411. }
  6412. }
  6413. }
  6414. return;
  6415. }
  6416. if (params->type == GGML_TASK_FINALIZE) {
  6417. return;
  6418. }
  6419. // total rows in dst
  6420. const int nr = ne02;
  6421. // rows per thread
  6422. const int dr = (nr + nth - 1)/nth;
  6423. // row range for this thread
  6424. const int ir0 = dr*ith;
  6425. const int ir1 = MIN(ir0 + dr, nr);
  6426. for (int i1 = ir0; i1 < ir1; i1++) {
  6427. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6428. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6429. dst_data[i0/2] = 0;
  6430. for (int k = -nh; k <= nh; k++) {
  6431. float v = 0.0f;
  6432. ggml_vec_dot_f16(ew0, &v,
  6433. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6434. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6435. dst_data[i0/2] += v;
  6436. }
  6437. }
  6438. }
  6439. }
  6440. static void ggml_compute_forward_conv_1d_2s_f32(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * src0,
  6443. const struct ggml_tensor * src1,
  6444. struct ggml_tensor * dst) {
  6445. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6446. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6447. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6448. int64_t t0 = ggml_perf_time_us();
  6449. UNUSED(t0);
  6450. const int ne00 = src0->ne[0];
  6451. const int ne01 = src0->ne[1];
  6452. const int ne02 = src0->ne[2];
  6453. //const int ne03 = src0->ne[3];
  6454. const int ne10 = src1->ne[0];
  6455. const int ne11 = src1->ne[1];
  6456. //const int ne12 = src1->ne[2];
  6457. //const int ne13 = src1->ne[3];
  6458. //const int ne0 = dst->ne[0];
  6459. //const int ne1 = dst->ne[1];
  6460. //const int ne2 = dst->ne[2];
  6461. //const int ne3 = dst->ne[3];
  6462. //const int ne = ne0*ne1*ne2*ne3;
  6463. const int nb00 = src0->nb[0];
  6464. const int nb01 = src0->nb[1];
  6465. const int nb02 = src0->nb[2];
  6466. //const int nb03 = src0->nb[3];
  6467. const int nb10 = src1->nb[0];
  6468. const int nb11 = src1->nb[1];
  6469. //const int nb12 = src1->nb[2];
  6470. //const int nb13 = src1->nb[3];
  6471. //const int nb0 = dst->nb[0];
  6472. const int nb1 = dst->nb[1];
  6473. //const int nb2 = dst->nb[2];
  6474. //const int nb3 = dst->nb[3];
  6475. const int ith = params->ith;
  6476. const int nth = params->nth;
  6477. const int nk = ne00;
  6478. const int nh = nk/2;
  6479. const int ew0 = ggml_up32(ne01);
  6480. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6481. GGML_ASSERT(nb00 == sizeof(float));
  6482. GGML_ASSERT(nb10 == sizeof(float));
  6483. if (params->type == GGML_TASK_INIT) {
  6484. // TODO: fix this memset (wsize is overestimated)
  6485. memset(params->wdata, 0, params->wsize);
  6486. // prepare kernel data (src0)
  6487. {
  6488. float * const wdata = (float *) params->wdata + 0;
  6489. for (int i02 = 0; i02 < ne02; i02++) {
  6490. for (int i01 = 0; i01 < ne01; i01++) {
  6491. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6492. float * dst_data = wdata + i02*ew0*ne00;
  6493. for (int i00 = 0; i00 < ne00; i00++) {
  6494. dst_data[i00*ew0 + i01] = src[i00];
  6495. }
  6496. }
  6497. }
  6498. }
  6499. // prepare source data (src1)
  6500. {
  6501. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6502. for (int i11 = 0; i11 < ne11; i11++) {
  6503. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6504. float * dst_data = wdata;
  6505. for (int i10 = 0; i10 < ne10; i10++) {
  6506. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6507. }
  6508. }
  6509. }
  6510. return;
  6511. }
  6512. if (params->type == GGML_TASK_FINALIZE) {
  6513. return;
  6514. }
  6515. // total rows in dst
  6516. const int nr = ne02;
  6517. // rows per thread
  6518. const int dr = (nr + nth - 1)/nth;
  6519. // row range for this thread
  6520. const int ir0 = dr*ith;
  6521. const int ir1 = MIN(ir0 + dr, nr);
  6522. for (int i1 = ir0; i1 < ir1; i1++) {
  6523. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6524. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6525. dst_data[i0/2] = 0;
  6526. for (int k = -nh; k <= nh; k++) {
  6527. float v = 0.0f;
  6528. ggml_vec_dot_f32(ew0, &v,
  6529. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6530. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6531. dst_data[i0/2] += v;
  6532. }
  6533. }
  6534. }
  6535. }
  6536. static void ggml_compute_forward_conv_1d_2s(
  6537. const struct ggml_compute_params * params,
  6538. const struct ggml_tensor * src0,
  6539. const struct ggml_tensor * src1,
  6540. struct ggml_tensor * dst) {
  6541. switch (src0->type) {
  6542. case GGML_TYPE_F16:
  6543. {
  6544. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6545. } break;
  6546. case GGML_TYPE_F32:
  6547. {
  6548. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6549. } break;
  6550. case GGML_TYPE_Q4_0:
  6551. case GGML_TYPE_Q4_1:
  6552. case GGML_TYPE_I8:
  6553. case GGML_TYPE_I16:
  6554. case GGML_TYPE_I32:
  6555. case GGML_TYPE_COUNT:
  6556. {
  6557. GGML_ASSERT(false);
  6558. } break;
  6559. }
  6560. }
  6561. // ggml_compute_forward_flash_attn
  6562. static void ggml_compute_forward_flash_attn_f32(
  6563. const struct ggml_compute_params * params,
  6564. const struct ggml_tensor * q,
  6565. const struct ggml_tensor * k,
  6566. const struct ggml_tensor * v,
  6567. const bool masked,
  6568. struct ggml_tensor * dst) {
  6569. int64_t t0 = ggml_perf_time_us();
  6570. UNUSED(t0);
  6571. const int neq0 = q->ne[0];
  6572. const int neq1 = q->ne[1];
  6573. const int neq2 = q->ne[2];
  6574. const int neq3 = q->ne[3];
  6575. const int nek0 = k->ne[0];
  6576. const int nek1 = k->ne[1];
  6577. //const int nek2 = k->ne[2];
  6578. //const int nek3 = k->ne[3];
  6579. //const int nev0 = v->ne[0];
  6580. const int nev1 = v->ne[1];
  6581. //const int nev2 = v->ne[2];
  6582. //const int nev3 = v->ne[3];
  6583. const int ne0 = dst->ne[0];
  6584. const int ne1 = dst->ne[1];
  6585. //const int ne2 = dst->ne[2];
  6586. //const int ne3 = dst->ne[3];
  6587. const int nbk0 = k->nb[0];
  6588. const int nbk1 = k->nb[1];
  6589. const int nbk2 = k->nb[2];
  6590. const int nbk3 = k->nb[3];
  6591. const int nbq0 = q->nb[0];
  6592. const int nbq1 = q->nb[1];
  6593. const int nbq2 = q->nb[2];
  6594. const int nbq3 = q->nb[3];
  6595. const int nbv0 = v->nb[0];
  6596. const int nbv1 = v->nb[1];
  6597. const int nbv2 = v->nb[2];
  6598. const int nbv3 = v->nb[3];
  6599. const int nb0 = dst->nb[0];
  6600. const int nb1 = dst->nb[1];
  6601. const int nb2 = dst->nb[2];
  6602. const int nb3 = dst->nb[3];
  6603. const int ith = params->ith;
  6604. const int nth = params->nth;
  6605. const int D = neq0;
  6606. const int N = neq1;
  6607. const int P = nek1 - N;
  6608. const int M = P + N;
  6609. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6610. GGML_ASSERT(ne0 == D);
  6611. GGML_ASSERT(ne1 == N);
  6612. GGML_ASSERT(P >= 0);
  6613. GGML_ASSERT(nbq0 == sizeof(float));
  6614. GGML_ASSERT(nbk0 == sizeof(float));
  6615. GGML_ASSERT(nbv0 == sizeof(float));
  6616. GGML_ASSERT(neq0 == D);
  6617. GGML_ASSERT(nek0 == D);
  6618. GGML_ASSERT(nev1 == D);
  6619. GGML_ASSERT(neq1 == N);
  6620. GGML_ASSERT(nek1 == N + P);
  6621. GGML_ASSERT(nev1 == D);
  6622. // dst cannot be transposed or permuted
  6623. GGML_ASSERT(nb0 == sizeof(float));
  6624. GGML_ASSERT(nb0 <= nb1);
  6625. GGML_ASSERT(nb1 <= nb2);
  6626. GGML_ASSERT(nb2 <= nb3);
  6627. if (params->type == GGML_TASK_INIT) {
  6628. return;
  6629. }
  6630. if (params->type == GGML_TASK_FINALIZE) {
  6631. return;
  6632. }
  6633. // parallelize by q rows using ggml_vec_dot_f32
  6634. // total rows in q
  6635. const int nr = neq1*neq2*neq3;
  6636. // rows per thread
  6637. const int dr = (nr + nth - 1)/nth;
  6638. // row range for this thread
  6639. const int ir0 = dr*ith;
  6640. const int ir1 = MIN(ir0 + dr, nr);
  6641. const float scale = 1.0/sqrt((double) D);
  6642. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6643. for (int ir = ir0; ir < ir1; ++ir) {
  6644. // q indices
  6645. const int iq3 = ir/(neq2*neq1);
  6646. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6647. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6648. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6649. for (int i = M; i < Mup; ++i) {
  6650. S[i] = -INFINITY;
  6651. }
  6652. for (int ic = 0; ic < nek1; ++ic) {
  6653. // k indices
  6654. const int ik3 = iq3;
  6655. const int ik2 = iq2;
  6656. const int ik1 = ic;
  6657. // S indices
  6658. const int i1 = ik1;
  6659. ggml_vec_dot_f32(neq0,
  6660. S + i1,
  6661. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6662. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6663. }
  6664. // scale
  6665. ggml_vec_scale_f32(nek1, S, scale);
  6666. if (masked) {
  6667. for (int i = P; i < M; i++) {
  6668. if (i > P + iq1) {
  6669. S[i] = -INFINITY;
  6670. }
  6671. }
  6672. }
  6673. // softmax
  6674. {
  6675. float max = -INFINITY;
  6676. ggml_vec_max_f32(M, &max, S);
  6677. float sum = 0.0f;
  6678. {
  6679. #ifdef GGML_SOFT_MAX_ACCELERATE
  6680. max = -max;
  6681. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6682. vvexpf(S, S, &Mup);
  6683. ggml_vec_sum_f32(Mup, &sum, S);
  6684. #else
  6685. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6686. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6687. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6688. float * SS = S + i;
  6689. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6690. if (SS[j] == -INFINITY) {
  6691. SS[j] = 0.0f;
  6692. } else {
  6693. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6694. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6695. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6696. sump[j] += val;
  6697. SS[j] = val;
  6698. }
  6699. }
  6700. }
  6701. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6702. sum += sump[i];
  6703. }
  6704. #endif
  6705. }
  6706. assert(sum > 0.0f);
  6707. sum = 1.0/sum;
  6708. ggml_vec_scale_f32(M, S, sum);
  6709. #ifndef NDEBUG
  6710. for (int i = 0; i < M; ++i) {
  6711. assert(!isnan(S[i]));
  6712. assert(!isinf(S[i]));
  6713. }
  6714. #endif
  6715. }
  6716. for (int ic = 0; ic < nev1; ++ic) {
  6717. // dst indices
  6718. const int i1 = iq1;
  6719. const int i2 = iq2;
  6720. const int i3 = iq3;
  6721. ggml_vec_dot_f32(nek1,
  6722. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6723. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6724. S);
  6725. }
  6726. }
  6727. }
  6728. static void ggml_compute_forward_flash_attn_f16(
  6729. const struct ggml_compute_params * params,
  6730. const struct ggml_tensor * q,
  6731. const struct ggml_tensor * k,
  6732. const struct ggml_tensor * v,
  6733. const bool masked,
  6734. struct ggml_tensor * dst) {
  6735. int64_t t0 = ggml_perf_time_us();
  6736. UNUSED(t0);
  6737. const int neq0 = q->ne[0];
  6738. const int neq1 = q->ne[1];
  6739. const int neq2 = q->ne[2];
  6740. const int neq3 = q->ne[3];
  6741. const int nek0 = k->ne[0];
  6742. const int nek1 = k->ne[1];
  6743. //const int nek2 = k->ne[2];
  6744. //const int nek3 = k->ne[3];
  6745. //const int nev0 = v->ne[0];
  6746. const int nev1 = v->ne[1];
  6747. //const int nev2 = v->ne[2];
  6748. //const int nev3 = v->ne[3];
  6749. const int ne0 = dst->ne[0];
  6750. const int ne1 = dst->ne[1];
  6751. //const int ne2 = dst->ne[2];
  6752. //const int ne3 = dst->ne[3];
  6753. const int nbk0 = k->nb[0];
  6754. const int nbk1 = k->nb[1];
  6755. const int nbk2 = k->nb[2];
  6756. const int nbk3 = k->nb[3];
  6757. const int nbq0 = q->nb[0];
  6758. const int nbq1 = q->nb[1];
  6759. const int nbq2 = q->nb[2];
  6760. const int nbq3 = q->nb[3];
  6761. const int nbv0 = v->nb[0];
  6762. const int nbv1 = v->nb[1];
  6763. const int nbv2 = v->nb[2];
  6764. const int nbv3 = v->nb[3];
  6765. const int nb0 = dst->nb[0];
  6766. const int nb1 = dst->nb[1];
  6767. const int nb2 = dst->nb[2];
  6768. const int nb3 = dst->nb[3];
  6769. const int ith = params->ith;
  6770. const int nth = params->nth;
  6771. const int D = neq0;
  6772. const int N = neq1;
  6773. const int P = nek1 - N;
  6774. const int M = P + N;
  6775. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6776. GGML_ASSERT(ne0 == D);
  6777. GGML_ASSERT(ne1 == N);
  6778. GGML_ASSERT(P >= 0);
  6779. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6780. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6781. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6782. GGML_ASSERT(neq0 == D);
  6783. GGML_ASSERT(nek0 == D);
  6784. GGML_ASSERT(nev1 == D);
  6785. GGML_ASSERT(neq1 == N);
  6786. GGML_ASSERT(nek1 == N + P);
  6787. GGML_ASSERT(nev1 == D);
  6788. // dst cannot be transposed or permuted
  6789. GGML_ASSERT(nb0 == sizeof(float));
  6790. GGML_ASSERT(nb0 <= nb1);
  6791. GGML_ASSERT(nb1 <= nb2);
  6792. GGML_ASSERT(nb2 <= nb3);
  6793. if (params->type == GGML_TASK_INIT) {
  6794. return;
  6795. }
  6796. if (params->type == GGML_TASK_FINALIZE) {
  6797. return;
  6798. }
  6799. // parallelize by q rows using ggml_vec_dot_f32
  6800. // total rows in q
  6801. const int nr = neq1*neq2*neq3;
  6802. // rows per thread
  6803. const int dr = (nr + nth - 1)/nth;
  6804. // row range for this thread
  6805. const int ir0 = dr*ith;
  6806. const int ir1 = MIN(ir0 + dr, nr);
  6807. const float scale = 1.0/sqrt((double) D);
  6808. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6809. for (int ir = ir0; ir < ir1; ++ir) {
  6810. // q indices
  6811. const int iq3 = ir/(neq2*neq1);
  6812. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6813. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6814. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6815. for (int i = M; i < Mup; ++i) {
  6816. S[i] = -INFINITY;
  6817. }
  6818. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6819. for (int ic = 0; ic < nek1; ++ic) {
  6820. // k indices
  6821. const int ik3 = iq3;
  6822. const int ik2 = iq2;
  6823. const int ik1 = ic;
  6824. // S indices
  6825. const int i1 = ik1;
  6826. ggml_vec_dot_f16(neq0,
  6827. S + i1,
  6828. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6829. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6830. }
  6831. } else {
  6832. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6833. // k indices
  6834. const int ik3 = iq3;
  6835. const int ik2 = iq2;
  6836. const int ik1 = ic;
  6837. // S indices
  6838. const int i1 = ik1;
  6839. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6840. S + i1,
  6841. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6842. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6843. }
  6844. }
  6845. // scale
  6846. ggml_vec_scale_f32(nek1, S, scale);
  6847. if (masked) {
  6848. for (int i = P; i < M; i++) {
  6849. if (i > P + iq1) {
  6850. S[i] = -INFINITY;
  6851. }
  6852. }
  6853. }
  6854. // softmax
  6855. {
  6856. float max = -INFINITY;
  6857. ggml_vec_max_f32(M, &max, S);
  6858. float sum = 0.0f;
  6859. {
  6860. #ifdef GGML_SOFT_MAX_ACCELERATE
  6861. max = -max;
  6862. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6863. vvexpf(S, S, &Mup);
  6864. ggml_vec_sum_f32(Mup, &sum, S);
  6865. #else
  6866. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6867. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6868. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6869. float * SS = S + i;
  6870. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6871. if (SS[j] == -INFINITY) {
  6872. SS[j] = 0.0f;
  6873. } else {
  6874. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6875. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6876. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6877. sump[j] += val;
  6878. SS[j] = val;
  6879. }
  6880. }
  6881. }
  6882. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6883. sum += sump[i];
  6884. }
  6885. #endif
  6886. }
  6887. assert(sum > 0.0f);
  6888. sum = 1.0/sum;
  6889. ggml_vec_scale_f32(M, S, sum);
  6890. #ifndef NDEBUG
  6891. for (int i = 0; i < M; ++i) {
  6892. assert(!isnan(S[i]));
  6893. assert(!isinf(S[i]));
  6894. }
  6895. #endif
  6896. }
  6897. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6898. for (int i = 0; i < M; i++) {
  6899. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6900. }
  6901. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6902. for (int ic = 0; ic < nev1; ++ic) {
  6903. // dst indices
  6904. const int i1 = iq1;
  6905. const int i2 = iq2;
  6906. const int i3 = iq3;
  6907. ggml_vec_dot_f16(nek1,
  6908. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6909. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6910. S16);
  6911. }
  6912. } else {
  6913. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6914. // dst indices
  6915. const int i1 = iq1;
  6916. const int i2 = iq2;
  6917. const int i3 = iq3;
  6918. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6919. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6920. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6921. S16);
  6922. }
  6923. }
  6924. }
  6925. }
  6926. static void ggml_compute_forward_flash_attn(
  6927. const struct ggml_compute_params * params,
  6928. const struct ggml_tensor * q,
  6929. const struct ggml_tensor * k,
  6930. const struct ggml_tensor * v,
  6931. const bool masked,
  6932. struct ggml_tensor * dst) {
  6933. switch (q->type) {
  6934. case GGML_TYPE_F16:
  6935. {
  6936. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6937. } break;
  6938. case GGML_TYPE_F32:
  6939. {
  6940. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6941. } break;
  6942. case GGML_TYPE_Q4_0:
  6943. case GGML_TYPE_Q4_1:
  6944. case GGML_TYPE_I8:
  6945. case GGML_TYPE_I16:
  6946. case GGML_TYPE_I32:
  6947. case GGML_TYPE_COUNT:
  6948. {
  6949. GGML_ASSERT(false);
  6950. } break;
  6951. }
  6952. }
  6953. // ggml_compute_forward_flash_ff
  6954. static void ggml_compute_forward_flash_ff_f16(
  6955. const struct ggml_compute_params * params,
  6956. const struct ggml_tensor * a, // F16
  6957. const struct ggml_tensor * b0, // F16 fc_w
  6958. const struct ggml_tensor * b1, // F32 fc_b
  6959. const struct ggml_tensor * c0, // F16 proj_w
  6960. const struct ggml_tensor * c1, // F32 proj_b
  6961. struct ggml_tensor * dst) {
  6962. int64_t t0 = ggml_perf_time_us();
  6963. UNUSED(t0);
  6964. const int nea0 = a->ne[0];
  6965. const int nea1 = a->ne[1];
  6966. const int nea2 = a->ne[2];
  6967. const int nea3 = a->ne[3];
  6968. const int neb00 = b0->ne[0];
  6969. const int neb01 = b0->ne[1];
  6970. //const int neb02 = b0->ne[2];
  6971. //const int neb03 = b0->ne[3];
  6972. const int neb10 = b1->ne[0];
  6973. const int neb11 = b1->ne[1];
  6974. //const int neb12 = b1->ne[2];
  6975. //const int neb13 = b1->ne[3];
  6976. const int nec00 = c0->ne[0];
  6977. const int nec01 = c0->ne[1];
  6978. //const int nec02 = c0->ne[2];
  6979. //const int nec03 = c0->ne[3];
  6980. const int nec10 = c1->ne[0];
  6981. const int nec11 = c1->ne[1];
  6982. //const int nec12 = c1->ne[2];
  6983. //const int nec13 = c1->ne[3];
  6984. const int ne0 = dst->ne[0];
  6985. const int ne1 = dst->ne[1];
  6986. const int ne2 = dst->ne[2];
  6987. //const int ne3 = dst->ne[3];
  6988. const int nba0 = a->nb[0];
  6989. const int nba1 = a->nb[1];
  6990. const int nba2 = a->nb[2];
  6991. const int nba3 = a->nb[3];
  6992. const int nbb00 = b0->nb[0];
  6993. const int nbb01 = b0->nb[1];
  6994. const int nbb02 = b0->nb[2];
  6995. const int nbb03 = b0->nb[3];
  6996. const int nbb10 = b1->nb[0];
  6997. //const int nbb11 = b1->nb[1];
  6998. //const int nbb12 = b1->nb[2];
  6999. //const int nbb13 = b1->nb[3];
  7000. const int nbc00 = c0->nb[0];
  7001. const int nbc01 = c0->nb[1];
  7002. const int nbc02 = c0->nb[2];
  7003. const int nbc03 = c0->nb[3];
  7004. const int nbc10 = c1->nb[0];
  7005. //const int nbc11 = c1->nb[1];
  7006. //const int nbc12 = c1->nb[2];
  7007. //const int nbc13 = c1->nb[3];
  7008. const int nb0 = dst->nb[0];
  7009. const int nb1 = dst->nb[1];
  7010. const int nb2 = dst->nb[2];
  7011. const int nb3 = dst->nb[3];
  7012. const int ith = params->ith;
  7013. const int nth = params->nth;
  7014. const int D = nea0;
  7015. //const int N = nea1;
  7016. const int M = neb01;
  7017. GGML_ASSERT(ne0 == nea0);
  7018. GGML_ASSERT(ne1 == nea1);
  7019. GGML_ASSERT(ne2 == nea2);
  7020. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7021. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7022. GGML_ASSERT(nbb10 == sizeof(float));
  7023. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7024. GGML_ASSERT(nbc10 == sizeof(float));
  7025. GGML_ASSERT(neb00 == D);
  7026. GGML_ASSERT(neb01 == M);
  7027. GGML_ASSERT(neb10 == M);
  7028. GGML_ASSERT(neb11 == 1);
  7029. GGML_ASSERT(nec00 == M);
  7030. GGML_ASSERT(nec01 == D);
  7031. GGML_ASSERT(nec10 == D);
  7032. GGML_ASSERT(nec11 == 1);
  7033. // dst cannot be transposed or permuted
  7034. GGML_ASSERT(nb0 == sizeof(float));
  7035. GGML_ASSERT(nb0 <= nb1);
  7036. GGML_ASSERT(nb1 <= nb2);
  7037. GGML_ASSERT(nb2 <= nb3);
  7038. if (params->type == GGML_TASK_INIT) {
  7039. return;
  7040. }
  7041. if (params->type == GGML_TASK_FINALIZE) {
  7042. return;
  7043. }
  7044. // parallelize by a rows using ggml_vec_dot_f32
  7045. // total rows in a
  7046. const int nr = nea1*nea2*nea3;
  7047. // rows per thread
  7048. const int dr = (nr + nth - 1)/nth;
  7049. // row range for this thread
  7050. const int ir0 = dr*ith;
  7051. const int ir1 = MIN(ir0 + dr, nr);
  7052. for (int ir = ir0; ir < ir1; ++ir) {
  7053. // a indices
  7054. const int ia3 = ir/(nea2*nea1);
  7055. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7056. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7057. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7058. for (int ic = 0; ic < neb01; ++ic) {
  7059. // b0 indices
  7060. const int ib03 = ia3;
  7061. const int ib02 = ia2;
  7062. const int ib01 = ic;
  7063. // S indices
  7064. const int i1 = ib01;
  7065. ggml_vec_dot_f16(nea0,
  7066. S + i1,
  7067. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7068. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7069. }
  7070. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7071. //ggml_vec_gelu_f32(neb01, S, S);
  7072. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7073. for (int i = 0; i < M; i++) {
  7074. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7075. }
  7076. ggml_vec_gelu_f16(neb01, S16, S16);
  7077. {
  7078. // dst indices
  7079. const int i1 = ia1;
  7080. const int i2 = ia2;
  7081. const int i3 = ia3;
  7082. for (int ic = 0; ic < nec01; ++ic) {
  7083. ggml_vec_dot_f16(neb01,
  7084. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7085. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7086. S16);
  7087. }
  7088. ggml_vec_add_f32(nec01,
  7089. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7090. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7091. (float *) c1->data);
  7092. }
  7093. }
  7094. }
  7095. static void ggml_compute_forward_flash_ff(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * a,
  7098. const struct ggml_tensor * b0,
  7099. const struct ggml_tensor * b1,
  7100. const struct ggml_tensor * c0,
  7101. const struct ggml_tensor * c1,
  7102. struct ggml_tensor * dst) {
  7103. switch (b0->type) {
  7104. case GGML_TYPE_F16:
  7105. {
  7106. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7107. } break;
  7108. case GGML_TYPE_F32:
  7109. {
  7110. GGML_ASSERT(false); // TODO
  7111. } break;
  7112. case GGML_TYPE_Q4_0:
  7113. case GGML_TYPE_Q4_1:
  7114. case GGML_TYPE_I8:
  7115. case GGML_TYPE_I16:
  7116. case GGML_TYPE_I32:
  7117. case GGML_TYPE_COUNT:
  7118. {
  7119. GGML_ASSERT(false);
  7120. } break;
  7121. }
  7122. }
  7123. /////////////////////////////////
  7124. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7125. GGML_ASSERT(params);
  7126. switch (tensor->op) {
  7127. case GGML_OP_DUP:
  7128. {
  7129. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7130. } break;
  7131. case GGML_OP_ADD:
  7132. {
  7133. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7134. } break;
  7135. case GGML_OP_SUB:
  7136. {
  7137. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7138. } break;
  7139. case GGML_OP_MUL:
  7140. {
  7141. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7142. } break;
  7143. case GGML_OP_DIV:
  7144. {
  7145. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7146. } break;
  7147. case GGML_OP_SQR:
  7148. {
  7149. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7150. } break;
  7151. case GGML_OP_SQRT:
  7152. {
  7153. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7154. } break;
  7155. case GGML_OP_SUM:
  7156. {
  7157. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7158. } break;
  7159. case GGML_OP_MEAN:
  7160. {
  7161. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7162. } break;
  7163. case GGML_OP_REPEAT:
  7164. {
  7165. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7166. } break;
  7167. case GGML_OP_ABS:
  7168. {
  7169. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7170. } break;
  7171. case GGML_OP_SGN:
  7172. {
  7173. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7174. } break;
  7175. case GGML_OP_NEG:
  7176. {
  7177. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7178. } break;
  7179. case GGML_OP_STEP:
  7180. {
  7181. ggml_compute_forward_step(params, tensor->src0, tensor);
  7182. } break;
  7183. case GGML_OP_RELU:
  7184. {
  7185. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7186. } break;
  7187. case GGML_OP_GELU:
  7188. {
  7189. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7190. } break;
  7191. case GGML_OP_SILU:
  7192. {
  7193. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7194. } break;
  7195. case GGML_OP_NORM:
  7196. {
  7197. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7198. } break;
  7199. case GGML_OP_RMS_NORM:
  7200. {
  7201. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7202. } break;
  7203. case GGML_OP_MUL_MAT:
  7204. {
  7205. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7206. } break;
  7207. case GGML_OP_SCALE:
  7208. {
  7209. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7210. } break;
  7211. case GGML_OP_CPY:
  7212. {
  7213. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7214. } break;
  7215. case GGML_OP_RESHAPE:
  7216. {
  7217. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7218. } break;
  7219. case GGML_OP_VIEW:
  7220. {
  7221. ggml_compute_forward_view(params, tensor->src0);
  7222. } break;
  7223. case GGML_OP_PERMUTE:
  7224. {
  7225. ggml_compute_forward_permute(params, tensor->src0);
  7226. } break;
  7227. case GGML_OP_TRANSPOSE:
  7228. {
  7229. ggml_compute_forward_transpose(params, tensor->src0);
  7230. } break;
  7231. case GGML_OP_GET_ROWS:
  7232. {
  7233. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7234. } break;
  7235. case GGML_OP_DIAG_MASK_INF:
  7236. {
  7237. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7238. } break;
  7239. case GGML_OP_SOFT_MAX:
  7240. {
  7241. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7242. } break;
  7243. case GGML_OP_ROPE:
  7244. {
  7245. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7246. } break;
  7247. case GGML_OP_CONV_1D_1S:
  7248. {
  7249. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7250. } break;
  7251. case GGML_OP_CONV_1D_2S:
  7252. {
  7253. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7254. } break;
  7255. case GGML_OP_FLASH_ATTN:
  7256. {
  7257. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7258. GGML_ASSERT(t == 0 || t == 1);
  7259. bool masked = t != 0;
  7260. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7261. } break;
  7262. case GGML_OP_FLASH_FF:
  7263. {
  7264. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7265. } break;
  7266. case GGML_OP_NONE:
  7267. {
  7268. // nop
  7269. } break;
  7270. case GGML_OP_COUNT:
  7271. {
  7272. GGML_ASSERT(false);
  7273. } break;
  7274. }
  7275. }
  7276. ////////////////////////////////////////////////////////////////////////////////
  7277. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7278. struct ggml_tensor * src0 = tensor->src0;
  7279. struct ggml_tensor * src1 = tensor->src1;
  7280. switch (tensor->op) {
  7281. case GGML_OP_DUP:
  7282. {
  7283. if (src0->grad) {
  7284. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7285. }
  7286. } break;
  7287. case GGML_OP_ADD:
  7288. {
  7289. if (src0->grad) {
  7290. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7291. }
  7292. if (src1->grad) {
  7293. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7294. }
  7295. } break;
  7296. case GGML_OP_SUB:
  7297. {
  7298. if (src0->grad) {
  7299. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7300. }
  7301. if (src1->grad) {
  7302. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7303. }
  7304. } break;
  7305. case GGML_OP_MUL:
  7306. {
  7307. if (src0->grad) {
  7308. src0->grad =
  7309. ggml_add_impl(ctx,
  7310. src0->grad,
  7311. ggml_mul(ctx, src1, tensor->grad),
  7312. inplace);
  7313. }
  7314. if (src1->grad) {
  7315. src1->grad =
  7316. ggml_add_impl(ctx,
  7317. src1->grad,
  7318. ggml_mul(ctx, src0, tensor->grad),
  7319. inplace);
  7320. }
  7321. } break;
  7322. case GGML_OP_DIV:
  7323. {
  7324. if (src0->grad) {
  7325. src0->grad =
  7326. ggml_add_impl(ctx,
  7327. src0->grad,
  7328. ggml_div(ctx, tensor->grad, src1),
  7329. inplace);
  7330. }
  7331. if (src1->grad) {
  7332. src1->grad =
  7333. ggml_sub_impl(ctx,
  7334. src1->grad,
  7335. ggml_mul(ctx,
  7336. tensor->grad,
  7337. ggml_div(ctx, tensor, src1)),
  7338. inplace);
  7339. }
  7340. } break;
  7341. case GGML_OP_SQR:
  7342. {
  7343. if (src0->grad) {
  7344. src0->grad =
  7345. ggml_add_impl(ctx,
  7346. src0->grad,
  7347. ggml_mul(ctx,
  7348. ggml_mul(ctx, src0, tensor->grad),
  7349. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7350. inplace);
  7351. }
  7352. } break;
  7353. case GGML_OP_SQRT:
  7354. {
  7355. if (src0->grad) {
  7356. src0->grad =
  7357. ggml_add_impl(ctx,
  7358. src0->grad,
  7359. ggml_div(ctx,
  7360. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7361. tensor),
  7362. inplace);
  7363. }
  7364. } break;
  7365. case GGML_OP_SUM:
  7366. {
  7367. if (src0->grad) {
  7368. src0->grad =
  7369. ggml_add_impl(ctx,
  7370. src0->grad,
  7371. ggml_repeat(ctx, tensor->grad, src0->grad),
  7372. inplace);
  7373. }
  7374. } break;
  7375. case GGML_OP_MEAN:
  7376. {
  7377. GGML_ASSERT(false); // TODO: implement
  7378. } break;
  7379. case GGML_OP_REPEAT:
  7380. {
  7381. if (src0->grad) {
  7382. src0->grad =
  7383. ggml_add_impl(ctx,
  7384. src0->grad,
  7385. ggml_sum(ctx, tensor->grad),
  7386. inplace);
  7387. }
  7388. } break;
  7389. case GGML_OP_ABS:
  7390. {
  7391. if (src0->grad) {
  7392. src0->grad =
  7393. ggml_add_impl(ctx,
  7394. src0->grad,
  7395. ggml_mul(ctx,
  7396. ggml_sgn(ctx, src0),
  7397. tensor->grad),
  7398. inplace);
  7399. }
  7400. } break;
  7401. case GGML_OP_SGN:
  7402. {
  7403. if (src0->grad) {
  7404. // noop
  7405. }
  7406. } break;
  7407. case GGML_OP_NEG:
  7408. {
  7409. if (src0->grad) {
  7410. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7411. }
  7412. } break;
  7413. case GGML_OP_STEP:
  7414. {
  7415. if (src0->grad) {
  7416. // noop
  7417. }
  7418. } break;
  7419. case GGML_OP_RELU:
  7420. {
  7421. if (src0->grad) {
  7422. src0->grad = ggml_sub_impl(ctx,
  7423. src0->grad,
  7424. ggml_mul(ctx,
  7425. ggml_step(ctx, src0),
  7426. tensor->grad),
  7427. inplace);
  7428. }
  7429. } break;
  7430. case GGML_OP_GELU:
  7431. {
  7432. GGML_ASSERT(false); // TODO: not implemented
  7433. } break;
  7434. case GGML_OP_SILU:
  7435. {
  7436. GGML_ASSERT(false); // TODO: not implemented
  7437. } break;
  7438. case GGML_OP_NORM:
  7439. {
  7440. GGML_ASSERT(false); // TODO: not implemented
  7441. } break;
  7442. case GGML_OP_RMS_NORM:
  7443. {
  7444. GGML_ASSERT(false); // TODO: not implemented
  7445. } break;
  7446. case GGML_OP_MUL_MAT:
  7447. {
  7448. if (src0->grad) {
  7449. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7450. GGML_ASSERT(false);
  7451. }
  7452. if (src1->grad) {
  7453. src1->grad =
  7454. ggml_add_impl(ctx,
  7455. src1->grad,
  7456. // TODO: fix transpose, the node will break the graph connections
  7457. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7458. inplace);
  7459. }
  7460. } break;
  7461. case GGML_OP_SCALE:
  7462. {
  7463. GGML_ASSERT(false); // TODO: not implemented
  7464. } break;
  7465. case GGML_OP_CPY:
  7466. {
  7467. GGML_ASSERT(false); // TODO: not implemented
  7468. } break;
  7469. case GGML_OP_RESHAPE:
  7470. {
  7471. GGML_ASSERT(false); // TODO: not implemented
  7472. } break;
  7473. case GGML_OP_VIEW:
  7474. {
  7475. GGML_ASSERT(false); // not supported
  7476. } break;
  7477. case GGML_OP_PERMUTE:
  7478. {
  7479. GGML_ASSERT(false); // TODO: not implemented
  7480. } break;
  7481. case GGML_OP_TRANSPOSE:
  7482. {
  7483. GGML_ASSERT(false); // TODO: not implemented
  7484. } break;
  7485. case GGML_OP_GET_ROWS:
  7486. {
  7487. GGML_ASSERT(false); // TODO: not implemented
  7488. } break;
  7489. case GGML_OP_DIAG_MASK_INF:
  7490. {
  7491. GGML_ASSERT(false); // TODO: not implemented
  7492. } break;
  7493. case GGML_OP_SOFT_MAX:
  7494. {
  7495. GGML_ASSERT(false); // TODO: not implemented
  7496. } break;
  7497. case GGML_OP_ROPE:
  7498. {
  7499. GGML_ASSERT(false); // TODO: not implemented
  7500. } break;
  7501. case GGML_OP_CONV_1D_1S:
  7502. {
  7503. GGML_ASSERT(false); // TODO: not implemented
  7504. } break;
  7505. case GGML_OP_CONV_1D_2S:
  7506. {
  7507. GGML_ASSERT(false); // TODO: not implemented
  7508. } break;
  7509. case GGML_OP_FLASH_ATTN:
  7510. {
  7511. GGML_ASSERT(false); // not supported
  7512. } break;
  7513. case GGML_OP_FLASH_FF:
  7514. {
  7515. GGML_ASSERT(false); // not supported
  7516. } break;
  7517. case GGML_OP_NONE:
  7518. {
  7519. // nop
  7520. } break;
  7521. case GGML_OP_COUNT:
  7522. {
  7523. GGML_ASSERT(false);
  7524. } break;
  7525. }
  7526. }
  7527. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7528. if (node->grad == NULL) {
  7529. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7530. // it can also happen during forward pass, if the user performs computations with constants
  7531. if (node->op != GGML_OP_NONE) {
  7532. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7533. }
  7534. }
  7535. // check if already visited
  7536. for (int i = 0; i < cgraph->n_nodes; i++) {
  7537. if (cgraph->nodes[i] == node) {
  7538. return;
  7539. }
  7540. }
  7541. for (int i = 0; i < cgraph->n_leafs; i++) {
  7542. if (cgraph->leafs[i] == node) {
  7543. return;
  7544. }
  7545. }
  7546. if (node->src0) {
  7547. ggml_visit_parents(cgraph, node->src0);
  7548. }
  7549. if (node->src1) {
  7550. ggml_visit_parents(cgraph, node->src1);
  7551. }
  7552. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7553. if (node->opt[i]) {
  7554. ggml_visit_parents(cgraph, node->opt[i]);
  7555. }
  7556. }
  7557. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7558. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7559. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7560. cgraph->leafs[cgraph->n_leafs] = node;
  7561. cgraph->n_leafs++;
  7562. } else {
  7563. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7564. cgraph->nodes[cgraph->n_nodes] = node;
  7565. cgraph->grads[cgraph->n_nodes] = node->grad;
  7566. cgraph->n_nodes++;
  7567. }
  7568. }
  7569. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7570. if (!expand) {
  7571. cgraph->n_nodes = 0;
  7572. cgraph->n_leafs = 0;
  7573. }
  7574. const int n0 = cgraph->n_nodes;
  7575. UNUSED(n0);
  7576. ggml_visit_parents(cgraph, tensor);
  7577. const int n_new = cgraph->n_nodes - n0;
  7578. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7579. if (n_new > 0) {
  7580. // the last added node should always be starting point
  7581. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7582. }
  7583. }
  7584. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7585. ggml_build_forward_impl(cgraph, tensor, true);
  7586. }
  7587. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7588. struct ggml_cgraph result = {
  7589. /*.n_nodes =*/ 0,
  7590. /*.n_leafs =*/ 0,
  7591. /*.n_threads =*/ 0,
  7592. /*.work_size =*/ 0,
  7593. /*.work =*/ NULL,
  7594. /*.nodes =*/ { NULL },
  7595. /*.grads =*/ { NULL },
  7596. /*.leafs =*/ { NULL },
  7597. /*.perf_runs =*/ 0,
  7598. /*.perf_cycles =*/ 0,
  7599. /*.perf_time_us =*/ 0,
  7600. };
  7601. ggml_build_forward_impl(&result, tensor, false);
  7602. return result;
  7603. }
  7604. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7605. struct ggml_cgraph result = *gf;
  7606. GGML_ASSERT(gf->n_nodes > 0);
  7607. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7608. if (keep) {
  7609. for (int i = 0; i < gf->n_nodes; i++) {
  7610. struct ggml_tensor * node = gf->nodes[i];
  7611. if (node->grad) {
  7612. node->grad = ggml_dup_tensor(ctx, node);
  7613. gf->grads[i] = node->grad;
  7614. }
  7615. }
  7616. }
  7617. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7618. struct ggml_tensor * node = gf->nodes[i];
  7619. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7620. if (node->grad) {
  7621. ggml_compute_backward(ctx, node, keep);
  7622. }
  7623. }
  7624. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7625. struct ggml_tensor * node = gf->nodes[i];
  7626. if (node->is_param) {
  7627. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7628. ggml_build_forward_impl(&result, node->grad, true);
  7629. }
  7630. }
  7631. return result;
  7632. }
  7633. //
  7634. // thread data
  7635. //
  7636. // synchronization is done via busy loops
  7637. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7638. //
  7639. #ifdef __APPLE__
  7640. //#include <os/lock.h>
  7641. //
  7642. //typedef os_unfair_lock ggml_lock_t;
  7643. //
  7644. //#define ggml_lock_init(x) UNUSED(x)
  7645. //#define ggml_lock_destroy(x) UNUSED(x)
  7646. //#define ggml_lock_lock os_unfair_lock_lock
  7647. //#define ggml_lock_unlock os_unfair_lock_unlock
  7648. //
  7649. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7650. typedef int ggml_lock_t;
  7651. #define ggml_lock_init(x) UNUSED(x)
  7652. #define ggml_lock_destroy(x) UNUSED(x)
  7653. #define ggml_lock_lock(x) UNUSED(x)
  7654. #define ggml_lock_unlock(x) UNUSED(x)
  7655. #define GGML_LOCK_INITIALIZER 0
  7656. typedef pthread_t ggml_thread_t;
  7657. #define ggml_thread_create pthread_create
  7658. #define ggml_thread_join pthread_join
  7659. #else
  7660. //typedef pthread_spinlock_t ggml_lock_t;
  7661. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7662. //#define ggml_lock_destroy pthread_spin_destroy
  7663. //#define ggml_lock_lock pthread_spin_lock
  7664. //#define ggml_lock_unlock pthread_spin_unlock
  7665. typedef int ggml_lock_t;
  7666. #define ggml_lock_init(x) UNUSED(x)
  7667. #define ggml_lock_destroy(x) UNUSED(x)
  7668. #define ggml_lock_lock(x) UNUSED(x)
  7669. #define ggml_lock_unlock(x) UNUSED(x)
  7670. #define GGML_LOCK_INITIALIZER 0
  7671. typedef pthread_t ggml_thread_t;
  7672. #define ggml_thread_create pthread_create
  7673. #define ggml_thread_join pthread_join
  7674. #endif
  7675. struct ggml_compute_state_shared {
  7676. ggml_lock_t spin;
  7677. int n_threads;
  7678. // synchronization primitives
  7679. atomic_int n_ready;
  7680. atomic_bool has_work;
  7681. atomic_bool stop; // stop all threads
  7682. };
  7683. struct ggml_compute_state {
  7684. ggml_thread_t thrd;
  7685. struct ggml_compute_params params;
  7686. struct ggml_tensor * node;
  7687. struct ggml_compute_state_shared * shared;
  7688. };
  7689. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7690. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7691. const int n_threads = state->shared->n_threads;
  7692. while (true) {
  7693. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7694. atomic_store(&state->shared->has_work, false);
  7695. } else {
  7696. while (atomic_load(&state->shared->has_work)) {
  7697. if (atomic_load(&state->shared->stop)) {
  7698. return 0;
  7699. }
  7700. ggml_lock_lock (&state->shared->spin);
  7701. ggml_lock_unlock(&state->shared->spin);
  7702. }
  7703. }
  7704. atomic_fetch_sub(&state->shared->n_ready, 1);
  7705. // wait for work
  7706. while (!atomic_load(&state->shared->has_work)) {
  7707. if (atomic_load(&state->shared->stop)) {
  7708. return 0;
  7709. }
  7710. ggml_lock_lock (&state->shared->spin);
  7711. ggml_lock_unlock(&state->shared->spin);
  7712. }
  7713. // check if we should stop
  7714. if (atomic_load(&state->shared->stop)) {
  7715. break;
  7716. }
  7717. if (state->node) {
  7718. if (state->params.ith < state->params.nth) {
  7719. ggml_compute_forward(&state->params, state->node);
  7720. }
  7721. state->node = NULL;
  7722. } else {
  7723. break;
  7724. }
  7725. }
  7726. return 0;
  7727. }
  7728. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7729. const int n_threads = cgraph->n_threads;
  7730. struct ggml_compute_state_shared state_shared = {
  7731. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7732. /*.n_threads =*/ n_threads,
  7733. /*.n_ready =*/ 0,
  7734. /*.has_work =*/ false,
  7735. /*.stop =*/ false,
  7736. };
  7737. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7738. // create thread pool
  7739. if (n_threads > 1) {
  7740. ggml_lock_init(&state_shared.spin);
  7741. atomic_store(&state_shared.has_work, true);
  7742. for (int j = 0; j < n_threads - 1; j++) {
  7743. workers[j] = (struct ggml_compute_state) {
  7744. .thrd = 0,
  7745. .params = {
  7746. .type = GGML_TASK_COMPUTE,
  7747. .ith = j + 1,
  7748. .nth = n_threads,
  7749. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7750. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7751. },
  7752. .node = NULL,
  7753. .shared = &state_shared,
  7754. };
  7755. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7756. GGML_ASSERT(rc == 0);
  7757. UNUSED(rc);
  7758. }
  7759. }
  7760. // initialize tasks + work buffer
  7761. {
  7762. size_t work_size = 0;
  7763. // thread scheduling for the different operations
  7764. for (int i = 0; i < cgraph->n_nodes; i++) {
  7765. struct ggml_tensor * node = cgraph->nodes[i];
  7766. switch (node->op) {
  7767. case GGML_OP_DUP:
  7768. {
  7769. node->n_tasks = 1;
  7770. } break;
  7771. case GGML_OP_ADD:
  7772. {
  7773. node->n_tasks = n_threads;
  7774. } break;
  7775. case GGML_OP_SUB:
  7776. case GGML_OP_MUL:
  7777. case GGML_OP_DIV:
  7778. case GGML_OP_SQR:
  7779. case GGML_OP_SQRT:
  7780. case GGML_OP_SUM:
  7781. case GGML_OP_MEAN:
  7782. case GGML_OP_REPEAT:
  7783. case GGML_OP_ABS:
  7784. case GGML_OP_SGN:
  7785. case GGML_OP_NEG:
  7786. case GGML_OP_STEP:
  7787. case GGML_OP_RELU:
  7788. {
  7789. node->n_tasks = 1;
  7790. } break;
  7791. case GGML_OP_GELU:
  7792. {
  7793. node->n_tasks = n_threads;
  7794. } break;
  7795. case GGML_OP_SILU:
  7796. {
  7797. node->n_tasks = n_threads;
  7798. } break;
  7799. case GGML_OP_NORM:
  7800. case GGML_OP_RMS_NORM:
  7801. {
  7802. node->n_tasks = n_threads;
  7803. } break;
  7804. case GGML_OP_MUL_MAT:
  7805. {
  7806. node->n_tasks = n_threads;
  7807. // TODO: use different scheduling for different matrix sizes
  7808. //const int nr0 = ggml_nrows(node->src0);
  7809. //const int nr1 = ggml_nrows(node->src1);
  7810. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7811. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7812. size_t cur = 0;
  7813. // TODO: better way to determine if the matrix is transposed
  7814. if (node->src0->nb[1] < node->src0->nb[0]) {
  7815. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7816. // TODO: overestimated by factor of x2 for FP16
  7817. } else {
  7818. if (node->src0->type == GGML_TYPE_F16 &&
  7819. node->src1->type == GGML_TYPE_F32) {
  7820. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7821. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7822. node->n_tasks = 1; // TODO: this actually is doing nothing
  7823. // the threads are still spinning
  7824. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7825. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7826. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7827. //printf("cur = %zu\n", cur);
  7828. } else {
  7829. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7830. }
  7831. #else
  7832. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7833. #endif
  7834. } else if (node->src0->type == GGML_TYPE_F32 &&
  7835. node->src1->type == GGML_TYPE_F32) {
  7836. cur = 0;
  7837. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7838. node->src1->type == GGML_TYPE_F32) {
  7839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7840. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7841. node->n_tasks = 1;
  7842. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7843. } else {
  7844. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7845. }
  7846. #else
  7847. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7848. #endif
  7849. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7850. node->src1->type == GGML_TYPE_F32) {
  7851. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7852. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7853. node->n_tasks = 1;
  7854. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7855. } else {
  7856. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7857. }
  7858. #else
  7859. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7860. #endif
  7861. } else {
  7862. GGML_ASSERT(false);
  7863. }
  7864. }
  7865. work_size = MAX(work_size, cur);
  7866. } break;
  7867. case GGML_OP_SCALE:
  7868. {
  7869. node->n_tasks = n_threads;
  7870. } break;
  7871. case GGML_OP_CPY:
  7872. case GGML_OP_RESHAPE:
  7873. case GGML_OP_VIEW:
  7874. case GGML_OP_PERMUTE:
  7875. case GGML_OP_TRANSPOSE:
  7876. case GGML_OP_GET_ROWS:
  7877. case GGML_OP_DIAG_MASK_INF:
  7878. {
  7879. node->n_tasks = 1;
  7880. } break;
  7881. case GGML_OP_SOFT_MAX:
  7882. {
  7883. node->n_tasks = n_threads;
  7884. } break;
  7885. case GGML_OP_ROPE:
  7886. {
  7887. node->n_tasks = 1;
  7888. } break;
  7889. case GGML_OP_CONV_1D_1S:
  7890. case GGML_OP_CONV_1D_2S:
  7891. {
  7892. node->n_tasks = n_threads;
  7893. GGML_ASSERT(node->src0->ne[3] == 1);
  7894. GGML_ASSERT(node->src1->ne[2] == 1);
  7895. GGML_ASSERT(node->src1->ne[3] == 1);
  7896. size_t cur = 0;
  7897. const int nk = node->src0->ne[0];
  7898. if (node->src0->type == GGML_TYPE_F16 &&
  7899. node->src1->type == GGML_TYPE_F32) {
  7900. cur = sizeof(ggml_fp16_t)*(
  7901. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7902. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7903. );
  7904. } else if (node->src0->type == GGML_TYPE_F32 &&
  7905. node->src1->type == GGML_TYPE_F32) {
  7906. cur = sizeof(float)*(
  7907. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7908. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7909. );
  7910. } else {
  7911. GGML_ASSERT(false);
  7912. }
  7913. work_size = MAX(work_size, cur);
  7914. } break;
  7915. case GGML_OP_FLASH_ATTN:
  7916. {
  7917. node->n_tasks = n_threads;
  7918. size_t cur = 0;
  7919. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7920. if (node->src1->type == GGML_TYPE_F32) {
  7921. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7922. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7923. }
  7924. if (node->src1->type == GGML_TYPE_F16) {
  7925. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7926. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7927. }
  7928. work_size = MAX(work_size, cur);
  7929. } break;
  7930. case GGML_OP_FLASH_FF:
  7931. {
  7932. node->n_tasks = n_threads;
  7933. size_t cur = 0;
  7934. if (node->src1->type == GGML_TYPE_F32) {
  7935. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7936. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7937. }
  7938. if (node->src1->type == GGML_TYPE_F16) {
  7939. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7940. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7941. }
  7942. work_size = MAX(work_size, cur);
  7943. } break;
  7944. case GGML_OP_NONE:
  7945. {
  7946. node->n_tasks = 1;
  7947. } break;
  7948. case GGML_OP_COUNT:
  7949. {
  7950. GGML_ASSERT(false);
  7951. } break;
  7952. }
  7953. }
  7954. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7955. GGML_ASSERT(false); // TODO: better handling
  7956. }
  7957. if (work_size > 0 && cgraph->work == NULL) {
  7958. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7959. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7960. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7961. }
  7962. }
  7963. const int64_t perf_start_cycles = ggml_perf_cycles();
  7964. const int64_t perf_start_time_us = ggml_perf_time_us();
  7965. for (int i = 0; i < cgraph->n_nodes; i++) {
  7966. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7967. struct ggml_tensor * node = cgraph->nodes[i];
  7968. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7969. //if (node->grad == NULL && node->perf_runs > 0) {
  7970. // continue;
  7971. //}
  7972. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7973. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7974. // INIT
  7975. struct ggml_compute_params params = {
  7976. /*.type =*/ GGML_TASK_INIT,
  7977. /*.ith =*/ 0,
  7978. /*.nth =*/ node->n_tasks,
  7979. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7980. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7981. };
  7982. ggml_compute_forward(&params, node);
  7983. // COMPUTE
  7984. if (node->n_tasks > 1) {
  7985. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7986. atomic_store(&state_shared.has_work, false);
  7987. }
  7988. while (atomic_load(&state_shared.has_work)) {
  7989. ggml_lock_lock (&state_shared.spin);
  7990. ggml_lock_unlock(&state_shared.spin);
  7991. }
  7992. // launch thread pool
  7993. for (int j = 0; j < n_threads - 1; j++) {
  7994. workers[j].params = (struct ggml_compute_params) {
  7995. .type = GGML_TASK_COMPUTE,
  7996. .ith = j + 1,
  7997. .nth = node->n_tasks,
  7998. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7999. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8000. };
  8001. workers[j].node = node;
  8002. }
  8003. atomic_fetch_sub(&state_shared.n_ready, 1);
  8004. while (atomic_load(&state_shared.n_ready) > 0) {
  8005. ggml_lock_lock (&state_shared.spin);
  8006. ggml_lock_unlock(&state_shared.spin);
  8007. }
  8008. atomic_store(&state_shared.has_work, true);
  8009. }
  8010. params.type = GGML_TASK_COMPUTE;
  8011. ggml_compute_forward(&params, node);
  8012. // wait for thread pool
  8013. if (node->n_tasks > 1) {
  8014. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8015. atomic_store(&state_shared.has_work, false);
  8016. }
  8017. while (atomic_load(&state_shared.has_work)) {
  8018. ggml_lock_lock (&state_shared.spin);
  8019. ggml_lock_unlock(&state_shared.spin);
  8020. }
  8021. atomic_fetch_sub(&state_shared.n_ready, 1);
  8022. while (atomic_load(&state_shared.n_ready) != 0) {
  8023. ggml_lock_lock (&state_shared.spin);
  8024. ggml_lock_unlock(&state_shared.spin);
  8025. }
  8026. }
  8027. // FINALIZE
  8028. if (node->n_tasks > 1) {
  8029. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8030. atomic_store(&state_shared.has_work, false);
  8031. }
  8032. while (atomic_load(&state_shared.has_work)) {
  8033. ggml_lock_lock (&state_shared.spin);
  8034. ggml_lock_unlock(&state_shared.spin);
  8035. }
  8036. // launch thread pool
  8037. for (int j = 0; j < n_threads - 1; j++) {
  8038. workers[j].params = (struct ggml_compute_params) {
  8039. .type = GGML_TASK_FINALIZE,
  8040. .ith = j + 1,
  8041. .nth = node->n_tasks,
  8042. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8043. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8044. };
  8045. workers[j].node = node;
  8046. }
  8047. atomic_fetch_sub(&state_shared.n_ready, 1);
  8048. while (atomic_load(&state_shared.n_ready) > 0) {
  8049. ggml_lock_lock (&state_shared.spin);
  8050. ggml_lock_unlock(&state_shared.spin);
  8051. }
  8052. atomic_store(&state_shared.has_work, true);
  8053. }
  8054. params.type = GGML_TASK_FINALIZE;
  8055. ggml_compute_forward(&params, node);
  8056. // wait for thread pool
  8057. if (node->n_tasks > 1) {
  8058. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8059. atomic_store(&state_shared.has_work, false);
  8060. }
  8061. while (atomic_load(&state_shared.has_work)) {
  8062. ggml_lock_lock (&state_shared.spin);
  8063. ggml_lock_unlock(&state_shared.spin);
  8064. }
  8065. atomic_fetch_sub(&state_shared.n_ready, 1);
  8066. while (atomic_load(&state_shared.n_ready) != 0) {
  8067. ggml_lock_lock (&state_shared.spin);
  8068. ggml_lock_unlock(&state_shared.spin);
  8069. }
  8070. }
  8071. // performance stats (node)
  8072. {
  8073. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8074. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8075. node->perf_runs++;
  8076. node->perf_cycles += perf_cycles_cur;
  8077. node->perf_time_us += perf_time_us_cur;
  8078. }
  8079. }
  8080. // join thread pool
  8081. if (n_threads > 1) {
  8082. atomic_store(&state_shared.stop, true);
  8083. atomic_store(&state_shared.has_work, true);
  8084. for (int j = 0; j < n_threads - 1; j++) {
  8085. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8086. GGML_ASSERT(rc == 0);
  8087. UNUSED(rc);
  8088. }
  8089. ggml_lock_destroy(&state_shared.spin);
  8090. }
  8091. // performance stats (graph)
  8092. {
  8093. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8094. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8095. cgraph->perf_runs++;
  8096. cgraph->perf_cycles += perf_cycles_cur;
  8097. cgraph->perf_time_us += perf_time_us_cur;
  8098. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8099. __func__, cgraph->perf_runs,
  8100. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8101. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8102. (double) perf_time_us_cur / 1000.0,
  8103. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8104. }
  8105. }
  8106. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8107. for (int i = 0; i < cgraph->n_nodes; i++) {
  8108. struct ggml_tensor * grad = cgraph->grads[i];
  8109. if (grad) {
  8110. ggml_set_zero(grad);
  8111. }
  8112. }
  8113. }
  8114. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8115. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8116. GGML_PRINT("=== GRAPH ===\n");
  8117. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8118. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8119. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8120. for (int i = 0; i < cgraph->n_nodes; i++) {
  8121. struct ggml_tensor * node = cgraph->nodes[i];
  8122. perf_total_per_op_us[node->op] += node->perf_time_us;
  8123. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8124. i,
  8125. node->ne[0], node->ne[1], node->ne[2],
  8126. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8127. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8128. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8129. (double) node->perf_time_us / 1000.0,
  8130. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8131. }
  8132. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8133. for (int i = 0; i < cgraph->n_leafs; i++) {
  8134. struct ggml_tensor * node = cgraph->leafs[i];
  8135. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8136. i,
  8137. node->ne[0], node->ne[1],
  8138. GGML_OP_LABEL[node->op]);
  8139. }
  8140. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8141. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8142. }
  8143. GGML_PRINT("========================================\n");
  8144. }
  8145. // check if node is part of the graph
  8146. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8147. if (cgraph == NULL) {
  8148. return true;
  8149. }
  8150. for (int i = 0; i < cgraph->n_nodes; i++) {
  8151. if (cgraph->nodes[i] == node) {
  8152. return true;
  8153. }
  8154. }
  8155. return false;
  8156. }
  8157. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8158. for (int i = 0; i < cgraph->n_nodes; i++) {
  8159. struct ggml_tensor * parent = cgraph->nodes[i];
  8160. if (parent->grad == node) {
  8161. return parent;
  8162. }
  8163. }
  8164. return NULL;
  8165. }
  8166. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8167. char color[16];
  8168. FILE * fp = fopen(filename, "w");
  8169. GGML_ASSERT(fp);
  8170. fprintf(fp, "digraph G {\n");
  8171. fprintf(fp, " newrank = true;\n");
  8172. fprintf(fp, " rankdir = LR;\n");
  8173. for (int i = 0; i < gb->n_nodes; i++) {
  8174. struct ggml_tensor * node = gb->nodes[i];
  8175. if (ggml_graph_get_parent(gb, node) != NULL) {
  8176. continue;
  8177. }
  8178. if (node->is_param) {
  8179. snprintf(color, sizeof(color), "yellow");
  8180. } else if (node->grad) {
  8181. if (ggml_graph_find(gf, node)) {
  8182. snprintf(color, sizeof(color), "green");
  8183. } else {
  8184. snprintf(color, sizeof(color), "lightblue");
  8185. }
  8186. } else {
  8187. snprintf(color, sizeof(color), "white");
  8188. }
  8189. fprintf(fp, " \"%p\" [ \
  8190. style = filled; fillcolor = %s; shape = record; \
  8191. label=\"%d [%d, %d] | <x>%s",
  8192. (void *) node, color,
  8193. i, node->ne[0], node->ne[1],
  8194. GGML_OP_SYMBOL[node->op]);
  8195. if (node->grad) {
  8196. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8197. } else {
  8198. fprintf(fp, "\"; ]\n");
  8199. }
  8200. }
  8201. for (int i = 0; i < gb->n_leafs; i++) {
  8202. struct ggml_tensor * node = gb->leafs[i];
  8203. snprintf(color, sizeof(color), "pink");
  8204. if (ggml_nelements(node) == 1) {
  8205. fprintf(fp, " \"%p\" [ \
  8206. style = filled; fillcolor = %s; shape = record; \
  8207. label=\"<x>%.1e\"; ]\n",
  8208. (void *) node, color, ggml_get_f32_1d(node, 0));
  8209. } else {
  8210. fprintf(fp, " \"%p\" [ \
  8211. style = filled; fillcolor = %s; shape = record; \
  8212. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8213. (void *) node, color,
  8214. i, node->ne[0], node->ne[1]);
  8215. }
  8216. }
  8217. for (int i = 0; i < gb->n_nodes; i++) {
  8218. struct ggml_tensor * node = gb->nodes[i];
  8219. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8220. if (node->src0) {
  8221. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8222. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8223. parent0 ? (void *) parent0 : (void *) node->src0,
  8224. parent0 ? "g" : "x",
  8225. parent ? (void *) parent : (void *) node,
  8226. parent ? "g" : "x",
  8227. parent ? "empty" : "vee",
  8228. parent ? "dashed" : "solid");
  8229. }
  8230. if (node->src1) {
  8231. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8232. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8233. parent1 ? (void *) parent1 : (void *) node->src1,
  8234. parent1 ? "g" : "x",
  8235. parent ? (void *) parent : (void *) node,
  8236. parent ? "g" : "x",
  8237. parent ? "empty" : "vee",
  8238. parent ? "dashed" : "solid");
  8239. }
  8240. }
  8241. for (int i = 0; i < gb->n_leafs; i++) {
  8242. struct ggml_tensor * node = gb->leafs[i];
  8243. if (node->src0) {
  8244. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8245. (void *) node->src0, "x",
  8246. (void *) node, "x");
  8247. }
  8248. if (node->src1) {
  8249. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8250. (void *) node->src1, "x",
  8251. (void *) node, "x");
  8252. }
  8253. }
  8254. fprintf(fp, "}\n");
  8255. fclose(fp);
  8256. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8257. }
  8258. ////////////////////////////////////////////////////////////////////////////////
  8259. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8260. int i = 0;
  8261. for (int p = 0; p < np; ++p) {
  8262. const int ne = ggml_nelements(ps[p]) ;
  8263. // TODO: add function to set tensor from array
  8264. for (int j = 0; j < ne; ++j) {
  8265. ggml_set_f32_1d(ps[p], j, x[i++]);
  8266. }
  8267. }
  8268. }
  8269. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8270. int i = 0;
  8271. for (int p = 0; p < np; ++p) {
  8272. const int ne = ggml_nelements(ps[p]) ;
  8273. // TODO: add function to get all elements at once
  8274. for (int j = 0; j < ne; ++j) {
  8275. x[i++] = ggml_get_f32_1d(ps[p], j);
  8276. }
  8277. }
  8278. }
  8279. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8280. int i = 0;
  8281. for (int p = 0; p < np; ++p) {
  8282. const int ne = ggml_nelements(ps[p]) ;
  8283. // TODO: add function to get all elements at once
  8284. for (int j = 0; j < ne; ++j) {
  8285. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8286. }
  8287. }
  8288. }
  8289. //
  8290. // ADAM
  8291. //
  8292. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8293. //
  8294. static enum ggml_opt_result ggml_opt_adam(
  8295. struct ggml_context * ctx,
  8296. struct ggml_opt_params params,
  8297. struct ggml_tensor * f,
  8298. struct ggml_cgraph * gf,
  8299. struct ggml_cgraph * gb) {
  8300. GGML_ASSERT(ggml_is_scalar(f));
  8301. gf->n_threads = params.n_threads;
  8302. gb->n_threads = params.n_threads;
  8303. // these will store the parameters we want to optimize
  8304. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8305. int np = 0;
  8306. int nx = 0;
  8307. for (int i = 0; i < gf->n_nodes; ++i) {
  8308. if (gf->nodes[i]->is_param) {
  8309. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8310. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8311. ps[np++] = gf->nodes[i];
  8312. nx += ggml_nelements(gf->nodes[i]);
  8313. }
  8314. }
  8315. // constants
  8316. const float alpha = params.adam.alpha;
  8317. const float beta1 = params.adam.beta1;
  8318. const float beta2 = params.adam.beta2;
  8319. const float eps = params.adam.eps;
  8320. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8321. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8322. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8323. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8324. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8325. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8326. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8327. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8328. // initialize
  8329. ggml_vec_set_f32(nx, m, 0.0f);
  8330. ggml_vec_set_f32(nx, v, 0.0f);
  8331. // update view
  8332. ggml_opt_get_params(np, ps, x);
  8333. // compute the function value
  8334. ggml_graph_reset (gf);
  8335. ggml_set_f32 (f->grad, 1.0f);
  8336. ggml_graph_compute(ctx, gb);
  8337. float fx_prev = ggml_get_f32_1d(f, 0);
  8338. if (pf) {
  8339. pf[0] = fx_prev;
  8340. }
  8341. int n_no_improvement = 0;
  8342. float fx_best = fx_prev;
  8343. // run the optimizer
  8344. for (int t = 0; t < params.adam.n_iter; ++t) {
  8345. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8346. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8347. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8348. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8349. for (int i = 0; i < np; ++i) {
  8350. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8351. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8352. }
  8353. const int64_t t_start_wall = ggml_time_us();
  8354. const int64_t t_start_cpu = ggml_cycles();
  8355. UNUSED(t_start_wall);
  8356. UNUSED(t_start_cpu);
  8357. {
  8358. // update the gradient
  8359. ggml_opt_get_grad(np, ps, g1);
  8360. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8361. ggml_vec_scale_f32(nx, m, beta1);
  8362. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8363. // g2 = g1^2
  8364. ggml_vec_sqr_f32 (nx, g2, g1);
  8365. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8366. ggml_vec_scale_f32(nx, v, beta2);
  8367. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8368. // m^hat = m_t / (1 - beta1^t)
  8369. // v^hat = v_t / (1 - beta2^t)
  8370. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8371. ggml_vec_cpy_f32 (nx, mh, m);
  8372. ggml_vec_cpy_f32 (nx, vh, v);
  8373. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8374. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8375. ggml_vec_sqrt_f32 (nx, vh, vh);
  8376. ggml_vec_acc1_f32 (nx, vh, eps);
  8377. ggml_vec_div_f32 (nx, mh, mh, vh);
  8378. ggml_vec_sub_f32 (nx, x, x, mh);
  8379. // update the parameters
  8380. ggml_opt_set_params(np, ps, x);
  8381. }
  8382. ggml_graph_reset (gf);
  8383. ggml_set_f32 (f->grad, 1.0f);
  8384. ggml_graph_compute(ctx, gb);
  8385. const float fx = ggml_get_f32_1d(f, 0);
  8386. // check convergence
  8387. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8388. GGML_PRINT_DEBUG("converged\n");
  8389. return GGML_OPT_OK;
  8390. }
  8391. // delta-based convergence test
  8392. if (pf != NULL) {
  8393. // need at least params.past iterations to start checking for convergence
  8394. if (params.past <= t) {
  8395. const float rate = (pf[t%params.past] - fx)/fx;
  8396. if (fabs(rate) < params.delta) {
  8397. return GGML_OPT_OK;
  8398. }
  8399. }
  8400. pf[t%params.past] = fx;
  8401. }
  8402. // check for improvement
  8403. if (params.max_no_improvement > 0) {
  8404. if (fx_best > fx) {
  8405. fx_best = fx;
  8406. n_no_improvement = 0;
  8407. } else {
  8408. ++n_no_improvement;
  8409. if (n_no_improvement >= params.max_no_improvement) {
  8410. return GGML_OPT_OK;
  8411. }
  8412. }
  8413. }
  8414. fx_prev = fx;
  8415. {
  8416. const int64_t t_end_cpu = ggml_cycles();
  8417. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8418. UNUSED(t_end_cpu);
  8419. const int64_t t_end_wall = ggml_time_us();
  8420. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8421. UNUSED(t_end_wall);
  8422. }
  8423. }
  8424. return GGML_OPT_DID_NOT_CONVERGE;
  8425. }
  8426. //
  8427. // L-BFGS
  8428. //
  8429. // the L-BFGS implementation below is based on the following implementation:
  8430. //
  8431. // https://github.com/chokkan/liblbfgs
  8432. //
  8433. struct ggml_lbfgs_iteration_data {
  8434. float alpha;
  8435. float ys;
  8436. float * s;
  8437. float * y;
  8438. };
  8439. static enum ggml_opt_result linesearch_backtracking(
  8440. struct ggml_context * ctx,
  8441. const struct ggml_opt_params * params,
  8442. int nx,
  8443. float * x,
  8444. float * fx,
  8445. float * g,
  8446. float * d,
  8447. float * step,
  8448. const float * xp,
  8449. struct ggml_tensor * f,
  8450. struct ggml_cgraph * gf,
  8451. struct ggml_cgraph * gb,
  8452. const int np,
  8453. struct ggml_tensor * ps[]) {
  8454. int count = 0;
  8455. float width = 0.0f;
  8456. float dg = 0.0f;
  8457. float finit = 0.0f;
  8458. float dginit = 0.0f;
  8459. float dgtest = 0.0f;
  8460. const float dec = 0.5f;
  8461. const float inc = 2.1f;
  8462. if (*step <= 0.) {
  8463. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8464. }
  8465. // compute the initial gradient in the search direction
  8466. ggml_vec_dot_f32(nx, &dginit, g, d);
  8467. // make sure that d points to a descent direction
  8468. if (0 < dginit) {
  8469. return GGML_LINESEARCH_FAIL;
  8470. }
  8471. // initialize local variables
  8472. finit = *fx;
  8473. dgtest = params->lbfgs.ftol*dginit;
  8474. while (true) {
  8475. ggml_vec_cpy_f32(nx, x, xp);
  8476. ggml_vec_mad_f32(nx, x, d, *step);
  8477. // evaluate the function and gradient values
  8478. {
  8479. ggml_opt_set_params(np, ps, x);
  8480. ggml_graph_reset (gf);
  8481. ggml_set_f32 (f->grad, 1.0f);
  8482. ggml_graph_compute(ctx, gb);
  8483. ggml_opt_get_grad(np, ps, g);
  8484. *fx = ggml_get_f32_1d(f, 0);
  8485. }
  8486. ++count;
  8487. if (*fx > finit + (*step)*dgtest) {
  8488. width = dec;
  8489. } else {
  8490. // Armijo condition is satisfied
  8491. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8492. return count;
  8493. }
  8494. ggml_vec_dot_f32(nx, &dg, g, d);
  8495. // check the Wolfe condition
  8496. if (dg < params->lbfgs.wolfe * dginit) {
  8497. width = inc;
  8498. } else {
  8499. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8500. // regular Wolfe conditions
  8501. return count;
  8502. }
  8503. if(dg > -params->lbfgs.wolfe*dginit) {
  8504. width = dec;
  8505. } else {
  8506. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8507. return count;
  8508. }
  8509. return count;
  8510. }
  8511. }
  8512. if (*step < params->lbfgs.min_step) {
  8513. return GGML_LINESEARCH_MINIMUM_STEP;
  8514. }
  8515. if (*step > params->lbfgs.max_step) {
  8516. return GGML_LINESEARCH_MAXIMUM_STEP;
  8517. }
  8518. if (params->lbfgs.max_linesearch <= count) {
  8519. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8520. }
  8521. (*step) *= width;
  8522. }
  8523. return GGML_LINESEARCH_FAIL;
  8524. }
  8525. static enum ggml_opt_result ggml_opt_lbfgs(
  8526. struct ggml_context * ctx,
  8527. struct ggml_opt_params params,
  8528. struct ggml_tensor * f,
  8529. struct ggml_cgraph * gf,
  8530. struct ggml_cgraph * gb) {
  8531. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8532. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8533. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8534. return GGML_OPT_INVALID_WOLFE;
  8535. }
  8536. }
  8537. gf->n_threads = params.n_threads;
  8538. gb->n_threads = params.n_threads;
  8539. const int m = params.lbfgs.m;
  8540. // these will store the parameters we want to optimize
  8541. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8542. int np = 0;
  8543. int nx = 0;
  8544. for (int i = 0; i < gf->n_nodes; ++i) {
  8545. if (gf->nodes[i]->is_param) {
  8546. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8547. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8548. ps[np++] = gf->nodes[i];
  8549. nx += ggml_nelements(gf->nodes[i]);
  8550. }
  8551. }
  8552. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8553. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8554. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8555. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8556. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8557. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8558. float fx = 0.0f; // cost function value
  8559. float xnorm = 0.0f; // ||x||
  8560. float gnorm = 0.0f; // ||g||
  8561. float step = 0.0f;
  8562. // initialize x from the graph nodes
  8563. ggml_opt_get_params(np, ps, x);
  8564. // the L-BFGS memory
  8565. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8566. for (int i = 0; i < m; ++i) {
  8567. lm[i].alpha = 0.0f;
  8568. lm[i].ys = 0.0f;
  8569. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8570. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8571. }
  8572. // evaluate the function value and its gradient
  8573. {
  8574. ggml_opt_set_params(np, ps, x);
  8575. ggml_graph_reset (gf);
  8576. ggml_set_f32 (f->grad, 1.0f);
  8577. ggml_graph_compute(ctx, gb);
  8578. ggml_opt_get_grad(np, ps, g);
  8579. fx = ggml_get_f32_1d(f, 0);
  8580. }
  8581. if (pf) {
  8582. pf[0] = fx;
  8583. }
  8584. float fx_best = fx;
  8585. // search direction = -gradient
  8586. ggml_vec_neg_f32(nx, d, g);
  8587. // ||x||, ||g||
  8588. ggml_vec_norm_f32(nx, &xnorm, x);
  8589. ggml_vec_norm_f32(nx, &gnorm, g);
  8590. if (xnorm < 1.0f) {
  8591. xnorm = 1.0f;
  8592. }
  8593. // already optimized
  8594. if (gnorm/xnorm <= params.lbfgs.eps) {
  8595. return GGML_OPT_OK;
  8596. }
  8597. // initial step
  8598. ggml_vec_norm_inv_f32(nx, &step, d);
  8599. int j = 0;
  8600. int k = 1;
  8601. int ls = 0;
  8602. int end = 0;
  8603. int bound = 0;
  8604. int n_no_improvement = 0;
  8605. float ys = 0.0f;
  8606. float yy = 0.0f;
  8607. float beta = 0.0f;
  8608. while (true) {
  8609. // store the current position and gradient vectors
  8610. ggml_vec_cpy_f32(nx, xp, x);
  8611. ggml_vec_cpy_f32(nx, gp, g);
  8612. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8613. if (ls < 0) {
  8614. // linesearch failed - go back to the previous point and return
  8615. ggml_vec_cpy_f32(nx, x, xp);
  8616. ggml_vec_cpy_f32(nx, g, gp);
  8617. return ls;
  8618. }
  8619. ggml_vec_norm_f32(nx, &xnorm, x);
  8620. ggml_vec_norm_f32(nx, &gnorm, g);
  8621. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8622. if (xnorm < 1.0) {
  8623. xnorm = 1.0;
  8624. }
  8625. if (gnorm/xnorm <= params.lbfgs.eps) {
  8626. // converged
  8627. return GGML_OPT_OK;
  8628. }
  8629. // delta-based convergence test
  8630. if (pf != NULL) {
  8631. // need at least params.past iterations to start checking for convergence
  8632. if (params.past <= k) {
  8633. const float rate = (pf[k%params.past] - fx)/fx;
  8634. if (fabs(rate) < params.delta) {
  8635. return GGML_OPT_OK;
  8636. }
  8637. }
  8638. pf[k%params.past] = fx;
  8639. }
  8640. // check for improvement
  8641. if (params.max_no_improvement > 0) {
  8642. if (fx < fx_best) {
  8643. fx_best = fx;
  8644. n_no_improvement = 0;
  8645. } else {
  8646. n_no_improvement++;
  8647. if (n_no_improvement >= params.max_no_improvement) {
  8648. return GGML_OPT_OK;
  8649. }
  8650. }
  8651. }
  8652. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8653. // reached the maximum number of iterations
  8654. return GGML_OPT_DID_NOT_CONVERGE;
  8655. }
  8656. // update vectors s and y:
  8657. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8658. // y_{k+1} = g_{k+1} - g_{k}.
  8659. //
  8660. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8661. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8662. // compute scalars ys and yy:
  8663. // ys = y^t \cdot s -> 1 / \rho.
  8664. // yy = y^t \cdot y.
  8665. //
  8666. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8667. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8668. lm[end].ys = ys;
  8669. // find new search direction
  8670. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8671. bound = (m <= k) ? m : k;
  8672. k++;
  8673. end = (end + 1)%m;
  8674. // initialize search direction with -g
  8675. ggml_vec_neg_f32(nx, d, g);
  8676. j = end;
  8677. for (int i = 0; i < bound; ++i) {
  8678. j = (j + m - 1) % m;
  8679. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8680. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8681. lm[j].alpha /= lm[j].ys;
  8682. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8683. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8684. }
  8685. ggml_vec_scale_f32(nx, d, ys/yy);
  8686. for (int i = 0; i < bound; ++i) {
  8687. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8688. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8689. beta /= lm[j].ys;
  8690. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8691. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8692. j = (j + 1)%m;
  8693. }
  8694. step = 1.0;
  8695. }
  8696. return GGML_OPT_DID_NOT_CONVERGE;
  8697. }
  8698. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8699. struct ggml_opt_params result;
  8700. switch (type) {
  8701. case GGML_OPT_ADAM:
  8702. {
  8703. result = (struct ggml_opt_params) {
  8704. .type = GGML_OPT_ADAM,
  8705. .n_threads = 1,
  8706. .past = 0,
  8707. .delta = 1e-5f,
  8708. .max_no_improvement = 100,
  8709. .print_forward_graph = true,
  8710. .print_backward_graph = true,
  8711. .adam = {
  8712. .n_iter = 10000,
  8713. .alpha = 0.001f,
  8714. .beta1 = 0.9f,
  8715. .beta2 = 0.999f,
  8716. .eps = 1e-8f,
  8717. .eps_f = 1e-5f,
  8718. .eps_g = 1e-3f,
  8719. },
  8720. };
  8721. } break;
  8722. case GGML_OPT_LBFGS:
  8723. {
  8724. result = (struct ggml_opt_params) {
  8725. .type = GGML_OPT_LBFGS,
  8726. .n_threads = 1,
  8727. .past = 0,
  8728. .delta = 1e-5f,
  8729. .max_no_improvement = 0,
  8730. .print_forward_graph = true,
  8731. .print_backward_graph = true,
  8732. .lbfgs = {
  8733. .m = 6,
  8734. .n_iter = 100,
  8735. .max_linesearch = 20,
  8736. .eps = 1e-5f,
  8737. .ftol = 1e-4f,
  8738. .wolfe = 0.9f,
  8739. .min_step = 1e-20f,
  8740. .max_step = 1e+20f,
  8741. .linesearch = GGML_LINESEARCH_DEFAULT,
  8742. },
  8743. };
  8744. } break;
  8745. }
  8746. return result;
  8747. }
  8748. enum ggml_opt_result ggml_opt(
  8749. struct ggml_context * ctx,
  8750. struct ggml_opt_params params,
  8751. struct ggml_tensor * f) {
  8752. bool free_ctx = false;
  8753. if (ctx == NULL) {
  8754. struct ggml_init_params params_ctx = {
  8755. .mem_size = 16*1024*1024,
  8756. .mem_buffer = NULL,
  8757. };
  8758. ctx = ggml_init(params_ctx);
  8759. if (ctx == NULL) {
  8760. return GGML_OPT_NO_CONTEXT;
  8761. }
  8762. free_ctx = true;
  8763. }
  8764. enum ggml_opt_result result = GGML_OPT_OK;
  8765. // build forward + backward compute graphs
  8766. struct ggml_cgraph gf = ggml_build_forward (f);
  8767. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8768. switch (params.type) {
  8769. case GGML_OPT_ADAM:
  8770. {
  8771. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8772. } break;
  8773. case GGML_OPT_LBFGS:
  8774. {
  8775. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8776. } break;
  8777. }
  8778. if (params.print_forward_graph) {
  8779. ggml_graph_print (&gf);
  8780. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8781. }
  8782. if (params.print_backward_graph) {
  8783. ggml_graph_print (&gb);
  8784. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8785. }
  8786. if (free_ctx) {
  8787. ggml_free(ctx);
  8788. }
  8789. return result;
  8790. }
  8791. ////////////////////////////////////////////////////////////////////////////////
  8792. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8793. const int nb = k / qk;
  8794. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8795. const size_t row_size = nb*bs;
  8796. assert(k % qk == 0);
  8797. char * pdst = (char *) dst;
  8798. for (int j = 0; j < n; j += k) {
  8799. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8800. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8801. quantize_row_q4_0_reference(src + j, pd, k);
  8802. for (int i = 0; i < nb; i++) {
  8803. for (int l = 0; l < qk; l += 2) {
  8804. const uint8_t vi0 = pb[l/2] & 0xF;
  8805. const uint8_t vi1 = pb[l/2] >> 4;
  8806. hist[vi0]++;
  8807. hist[vi1]++;
  8808. }
  8809. pb += bs;
  8810. }
  8811. }
  8812. return (n/k)*row_size;
  8813. }
  8814. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8815. const int nb = k / qk;
  8816. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8817. const size_t row_size = nb*bs;
  8818. assert(k % qk == 0);
  8819. char * pdst = (char *) dst;
  8820. for (int j = 0; j < n; j += k) {
  8821. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8822. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8823. quantize_row_q4_1(src + j, pd, k);
  8824. for (int i = 0; i < nb; i++) {
  8825. for (int l = 0; l < qk; l += 2) {
  8826. const uint8_t vi0 = pb[l/2] & 0xF;
  8827. const uint8_t vi1 = pb[l/2] >> 4;
  8828. hist[vi0]++;
  8829. hist[vi1]++;
  8830. }
  8831. pb += bs;
  8832. }
  8833. }
  8834. return (n/k)*row_size;
  8835. }
  8836. ////////////////////////////////////////////////////////////////////////////////
  8837. int ggml_cpu_has_avx(void) {
  8838. #if defined(__AVX__)
  8839. return 1;
  8840. #else
  8841. return 0;
  8842. #endif
  8843. }
  8844. int ggml_cpu_has_avx2(void) {
  8845. #if defined(__AVX2__)
  8846. return 1;
  8847. #else
  8848. return 0;
  8849. #endif
  8850. }
  8851. int ggml_cpu_has_avx512(void) {
  8852. #if defined(__AVX512F__)
  8853. return 1;
  8854. #else
  8855. return 0;
  8856. #endif
  8857. }
  8858. int ggml_cpu_has_fma(void) {
  8859. #if defined(__FMA__)
  8860. return 1;
  8861. #else
  8862. return 0;
  8863. #endif
  8864. }
  8865. int ggml_cpu_has_neon(void) {
  8866. #if defined(__ARM_NEON)
  8867. return 1;
  8868. #else
  8869. return 0;
  8870. #endif
  8871. }
  8872. int ggml_cpu_has_arm_fma(void) {
  8873. #if defined(__ARM_FEATURE_FMA)
  8874. return 1;
  8875. #else
  8876. return 0;
  8877. #endif
  8878. }
  8879. int ggml_cpu_has_f16c(void) {
  8880. #if defined(__F16C__)
  8881. return 1;
  8882. #else
  8883. return 0;
  8884. #endif
  8885. }
  8886. int ggml_cpu_has_fp16_va(void) {
  8887. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8888. return 1;
  8889. #else
  8890. return 0;
  8891. #endif
  8892. }
  8893. int ggml_cpu_has_wasm_simd(void) {
  8894. #if defined(__wasm_simd128__)
  8895. return 1;
  8896. #else
  8897. return 0;
  8898. #endif
  8899. }
  8900. int ggml_cpu_has_blas(void) {
  8901. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8902. return 1;
  8903. #else
  8904. return 0;
  8905. #endif
  8906. }
  8907. int ggml_cpu_has_sse3(void) {
  8908. #if defined(__SSE3__)
  8909. return 1;
  8910. #else
  8911. return 0;
  8912. #endif
  8913. }
  8914. int ggml_cpu_has_vsx(void) {
  8915. #if defined(__POWER9_VECTOR__)
  8916. return 1;
  8917. #else
  8918. return 0;
  8919. #endif
  8920. }
  8921. ////////////////////////////////////////////////////////////////////////////////