ggml-opencl.cpp 407 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <inttypes.h>
  15. #include <string.h>
  16. #include <cstddef>
  17. #include <cstdint>
  18. #include <fstream>
  19. #include <vector>
  20. #include <string>
  21. #include <cmath>
  22. #include <map>
  23. #include <memory>
  24. #include <charconv>
  25. #include <mutex>
  26. #undef MIN
  27. #undef MAX
  28. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  29. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  30. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  31. #define UNUSED(x) (void)(x)
  32. #define CL_CHECK(err) \
  33. do { \
  34. cl_int err_ = (err); \
  35. if (err_ != CL_SUCCESS) { \
  36. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  37. #err, err_, __FILE__, __LINE__); \
  38. GGML_ASSERT(0); \
  39. } \
  40. } while (0)
  41. //------------------------------------------------------------------------------
  42. // OpenCL
  43. //------------------------------------------------------------------------------
  44. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  45. // See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
  46. // Precompute mp (m' in the paper) and L such that division
  47. // can be computed using a multiply (high 32b of 64b result)
  48. // and a shift:
  49. //
  50. // n/d = (mulhi(n, mp) + n) >> L;
  51. struct fastdiv_vals {
  52. uint32_t mp;
  53. uint32_t L;
  54. uint32_t d;
  55. uint32_t pad;
  56. };
  57. static_assert(sizeof(fastdiv_vals) == 16, "fastdiv_vals size incorrect");
  58. static fastdiv_vals init_fastdiv_values(uint64_t d_64) {
  59. GGML_ASSERT(d_64 != 0);
  60. GGML_ASSERT(d_64 <= std::numeric_limits<uint32_t>::max());
  61. uint32_t d = (uint32_t)d_64;
  62. // compute L = ceil(log2(d));
  63. uint32_t L = 0;
  64. while (L < 32 && (uint32_t{ 1 } << L) < d) {
  65. L++;
  66. }
  67. uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
  68. // pack divisor as well to reduce error surface
  69. return { mp, L, d, 0 };
  70. }
  71. enum GPU_FAMILY {
  72. ADRENO,
  73. INTEL,
  74. UNKNOWN,
  75. };
  76. enum ADRENO_GPU_GEN {
  77. ADRENO_UNKNOWN,
  78. A7X,
  79. A8X,
  80. X1E,
  81. };
  82. enum ADRENO_CL_COMPILER_TYPE {
  83. E031,
  84. DX,
  85. };
  86. struct ggml_cl_version {
  87. cl_uint major = 0;
  88. cl_uint minor = 0;
  89. };
  90. struct ggml_cl_compiler_version {
  91. ADRENO_CL_COMPILER_TYPE type;
  92. int major = -1;
  93. int minor = -1;
  94. int patch = -1;
  95. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  96. return major == x && minor == y && patch == z && type == t;
  97. }
  98. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  99. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  100. }
  101. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  102. return same(t, x, y, z) || newer_than(t, x, y, z);
  103. }
  104. };
  105. static size_t align_to(size_t value, size_t to_alignment) {
  106. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  107. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  108. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  109. }
  110. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  111. static ggml_cl_version parse_cl_version(std::string_view str) {
  112. size_t major_str_begin = 0;
  113. size_t major_str_end = str.find(".", major_str_begin);
  114. if (major_str_end == std::string::npos) {
  115. return {};
  116. }
  117. size_t minor_str_begin = major_str_end + 1;
  118. size_t minor_str_end = str.find(" ", minor_str_begin);
  119. if (minor_str_end == std::string::npos) {
  120. return {};
  121. }
  122. cl_uint version_major;
  123. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  124. return {};
  125. }
  126. cl_uint version_minor;
  127. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  128. return {};
  129. }
  130. return { version_major, version_minor };
  131. }
  132. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  133. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  134. size_t param_size;
  135. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  136. std::unique_ptr<char[]> param_storage(new char[param_size]);
  137. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  138. auto param_value = std::string_view(param_storage.get(), param_size);
  139. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  140. if (param_value.find(version_prefix) != 0) {
  141. return {};
  142. }
  143. param_value.remove_prefix(version_prefix.length());
  144. return parse_cl_version(param_value);
  145. }
  146. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  147. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  148. size_t param_size;
  149. #if CL_TARGET_OPENCL_VERSION >= 300
  150. if (platform_version.major >= 3) {
  151. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  152. if (!param_size) {
  153. return {};
  154. }
  155. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  156. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  157. unsigned versions_count = param_size / sizeof(cl_name_version);
  158. cl_version version_max = 0;
  159. for (unsigned i = 0; i < versions_count; i++) {
  160. version_max = std::max<cl_version>(versions[i].version, version_max);
  161. }
  162. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  163. }
  164. #else
  165. GGML_UNUSED(platform_version);
  166. #endif // CL_TARGET_OPENCL_VERSION >= 300
  167. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  168. if (!param_size) {
  169. return {};
  170. }
  171. std::unique_ptr<char[]> param_storage(new char[param_size]);
  172. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  173. auto param_value = std::string_view(param_storage.get(), param_size);
  174. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  175. if (param_value.find(version_prefix) != 0) {
  176. return {};
  177. }
  178. param_value.remove_prefix(version_prefix.length());
  179. return parse_cl_version(param_value);
  180. }
  181. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  182. if (strstr(device_name, "730") ||
  183. strstr(device_name, "740") ||
  184. strstr(device_name, "750")) {
  185. return ADRENO_GPU_GEN::A7X;
  186. }
  187. if (strstr(device_name, "830")) {
  188. return ADRENO_GPU_GEN::A8X;
  189. }
  190. if (strstr(device_name, "X1")) {
  191. return ADRENO_GPU_GEN::X1E;
  192. }
  193. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  194. }
  195. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  196. std::string driver_ver_str(driver_version);
  197. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  198. size_t compiler_ver_pos = driver_ver_str.find("E031");
  199. size_t compiler_ver_len = 13;
  200. size_t compiler_major_offset = 5;
  201. size_t compiler_minor_offset = 8;
  202. size_t compiler_patch_offset = 11;
  203. if (compiler_ver_pos == std::string::npos) {
  204. compiler_ver_pos = driver_ver_str.find("DX");
  205. if (compiler_ver_pos == std::string::npos) {
  206. return {};
  207. }
  208. type = ADRENO_CL_COMPILER_TYPE::DX;
  209. compiler_ver_len = 11;
  210. compiler_major_offset = 3;
  211. }
  212. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  213. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  214. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  215. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  216. return { type, major, minor, patch };
  217. }
  218. // Profiling
  219. struct ProfilingInfo {
  220. std::string op_name;
  221. std::string kernel_name;
  222. cl_kernel kernel;
  223. cl_event evt;
  224. cl_ulong cmd_queued;
  225. cl_ulong cmd_submit;
  226. cl_ulong cmd_start;
  227. cl_ulong cmd_end;
  228. cl_ulong overhead_start;
  229. cl_ulong overhead_end;
  230. // For the times below, see spec for clGetEventProfilingInfo
  231. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  232. cl_ulong cmd_queued_duration_ns;
  233. // The time kernel spent for submission - START - SUBMIT
  234. cl_ulong cmd_submit_duration_ns;
  235. // Kernel execution time in nanoseconds - END - START
  236. cl_ulong cmd_duration_ns;
  237. // The time for the kernel to complete - COMPLETE - END
  238. cl_ulong cmd_complete_duration_ns;
  239. // Total time to finish the kernel - COMPELTE - QUEUED
  240. cl_ulong cmd_total_duration_ns;
  241. // Global and local work sizes.
  242. size_t global_size[3];
  243. size_t local_size[3];
  244. // Op output size.
  245. size_t output_size[4];
  246. };
  247. static void populateProfilingInfo(
  248. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  249. size_t global_size[3], size_t local_size[3],
  250. const ggml_tensor * tensor) {
  251. info.op_name = tensor->name;
  252. info.kernel = kernel;
  253. info.evt = evt;
  254. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  255. info.local_size[0] = 0;
  256. info.local_size[1] = 0;
  257. info.local_size[2] = 0;
  258. info.global_size[0] = 0;
  259. info.global_size[1] = 0;
  260. info.global_size[2] = 0;
  261. if (local_size) {
  262. for (cl_uint i = 0; i < work_dim; ++i) {
  263. info.local_size[i] = local_size[i];
  264. }
  265. }
  266. for (cl_uint i = 0; i < work_dim; ++i) {
  267. info.global_size[i] = global_size[i];
  268. }
  269. info.output_size[0] = tensor->ne[0];
  270. info.output_size[1] = tensor->ne[1];
  271. info.output_size[2] = tensor->ne[2];
  272. info.output_size[3] = tensor->ne[3];
  273. }
  274. struct ggml_backend_opencl_context;
  275. // backend device context
  276. struct ggml_backend_opencl_device_context {
  277. cl_platform_id platform;
  278. std::string platform_name;
  279. cl_device_id device;
  280. std::string device_name;
  281. cl_device_type device_type;
  282. std::string device_version;
  283. // Initialized by ggml_cl2_init().
  284. ggml_backend_opencl_context * backend_ctx = nullptr;
  285. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  286. ggml_backend_buffer_type buffer_type;
  287. cl_context context = nullptr;
  288. };
  289. // backend context
  290. struct ggml_backend_opencl_context {
  291. int ref_count;
  292. cl_device_id device;
  293. std::string device_name;
  294. std::string driver_version;
  295. GPU_FAMILY gpu_family;
  296. ADRENO_GPU_GEN adreno_gen;
  297. cl_int alignment;
  298. size_t max_alloc_size;
  299. size_t max_workgroup_size;
  300. bool fp16_support;
  301. bool has_vector_subgroup_broadcast;
  302. bool disable_fusion;
  303. ggml_cl_compiler_version adreno_cl_compiler_version;
  304. int adreno_wave_size;
  305. cl_bool non_uniform_workgroups;
  306. cl_context context;
  307. cl_command_queue queue;
  308. cl_program program_add;
  309. cl_program program_add_id;
  310. cl_program program_clamp;
  311. cl_program program_cpy;
  312. cl_program program_cvt;
  313. cl_program program_diag_mask_inf;
  314. cl_program program_gelu;
  315. cl_program program_gemv_noshuffle_general;
  316. cl_program program_gemv_noshuffle;
  317. cl_program program_get_rows;
  318. cl_program program_set_rows;
  319. cl_program program_glu;
  320. cl_program program_im2col_f16;
  321. cl_program program_im2col_f32;
  322. cl_program program_mul_mat_Ab_Bi_8x4;
  323. cl_program program_mul_mv_q4_0_f32;
  324. cl_program program_mul_mv_q4_0_f32_v;
  325. cl_program program_mul_mv_q4_0_f32_8x_flat;
  326. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  327. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  328. cl_program program_mul_mv_q6_K;
  329. cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
  330. cl_program program_mul_mv_mxfp4_f32;
  331. cl_program program_mul_mv_mxfp4_f32_flat;
  332. cl_program program_mul_mv_f16_f16;
  333. cl_program program_mul_mv_f16_f32_1row;
  334. cl_program program_mul_mv_f16_f32_l4;
  335. cl_program program_mul_mv_f16_f32;
  336. cl_program program_mul_mv_f32_f32;
  337. cl_program program_mul;
  338. cl_program program_mul_mat_f16_f32_tiled;
  339. cl_program program_mul_mm_f16_f32_kqv;
  340. cl_program program_mul_mm_f16_f32_kq;
  341. cl_program program_div;
  342. cl_program program_sub;
  343. cl_program program_norm;
  344. cl_program program_relu;
  345. cl_program program_rms_norm;
  346. cl_program program_group_norm;
  347. cl_program program_rope;
  348. cl_program program_scale;
  349. cl_program program_silu;
  350. cl_program program_sigmoid;
  351. cl_program program_softmax_f32;
  352. cl_program program_softmax_f16;
  353. cl_program program_softmax_4_f32;
  354. cl_program program_softmax_4_f16;
  355. cl_program program_argsort_f32_i32;
  356. cl_program program_sum_rows_f32;
  357. cl_program program_repeat;
  358. cl_program program_pad;
  359. cl_program program_tanh;
  360. cl_program program_upscale;
  361. cl_program program_concat;
  362. cl_program program_conv_2d_f16;
  363. cl_program program_conv_2d_f32;
  364. cl_program program_conv_2d_f16_f32;
  365. cl_program program_tsembd;
  366. cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
  367. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  368. cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
  369. cl_program program_mul_mv_id_mxfp4_f32;
  370. cl_program program_mul_mv_id_mxfp4_f32_flat;
  371. cl_program program_mul_mm_f32_f32_l4_lm;
  372. cl_program program_mul_mm_f16_f32_l4_lm;
  373. cl_program program_mul_mm_q8_0_f32_l4_lm;
  374. cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
  375. cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
  376. cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
  377. cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
  378. cl_kernel kernel_add_id;
  379. cl_kernel kernel_scale;
  380. cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
  381. cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
  382. cl_kernel kernel_mean_f32;
  383. cl_kernel kernel_silu, kernel_silu_4;
  384. cl_kernel kernel_gelu, kernel_gelu_4;
  385. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  386. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  387. cl_kernel kernel_relu;
  388. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  389. cl_kernel kernel_clamp;
  390. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
  391. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  392. cl_kernel kernel_norm, kernel_norm_mul_add;
  393. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  394. cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
  395. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  396. cl_kernel kernel_soft_max, kernel_soft_max_4;
  397. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  398. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
  399. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
  400. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
  401. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
  402. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
  403. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
  404. std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
  405. std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
  406. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  407. cl_kernel kernel_set_rows_f32_i64, kernel_set_rows_f32_i32, kernel_set_rows_f16_i64, kernel_set_rows_f16_i32;
  408. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  409. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  410. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  411. cl_kernel kernel_mul_mat_f32_f32;
  412. cl_kernel kernel_mul_mat_f16_f16;
  413. cl_kernel kernel_mul_mat_f16_f32_1row;
  414. cl_kernel kernel_mul_mat_f16_f32;
  415. cl_kernel kernel_mul_mat_f16_f32_l4;
  416. cl_kernel kernel_mul_mat_f16_f32_tiled;
  417. cl_kernel kernel_mul_mm_f16_f32_kqv;
  418. cl_kernel kernel_mul_mm_f16_f32_kq;
  419. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  420. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  421. cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
  422. cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
  423. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  424. cl_kernel kernel_convert_block_q4_0_noshuffle;
  425. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  426. cl_kernel kernel_mul_mv_q6_K_f32;
  427. cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
  428. cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
  429. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  430. cl_kernel kernel_argsort_f32_i32;
  431. cl_kernel kernel_sum_rows_f32;
  432. cl_kernel kernel_repeat;
  433. cl_kernel kernel_pad;
  434. cl_kernel kernel_tanh_f32_nd;
  435. cl_kernel kernel_tanh_f16_nd;
  436. cl_kernel kernel_upscale;
  437. cl_kernel kernel_upscale_bilinear;
  438. cl_kernel kernel_concat_f32_contiguous;
  439. cl_kernel kernel_concat_f32_non_contiguous;
  440. cl_kernel kernel_conv_2d_f16;
  441. cl_kernel kernel_conv_2d_f32;
  442. cl_kernel kernel_conv_2d_f16_f32;
  443. cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
  444. cl_kernel kernel_timestep_embedding;
  445. cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
  446. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  447. cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
  448. cl_kernel kernel_mul_mv_id_mxfp4_f32;
  449. cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
  450. cl_kernel kernel_mul_mm_f32_f32_l4_lm;
  451. cl_kernel kernel_mul_mm_f16_f32_l4_lm;
  452. cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
  453. std::vector<ProfilingInfo> profiling_info;
  454. void write_profiling_info() {
  455. FILE * fperf = fopen("cl_profiling.csv", "w");
  456. if (!fperf) {
  457. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  458. return;
  459. }
  460. // Populate profiling info
  461. for (ProfilingInfo & info : profiling_info) {
  462. cl_ulong cmd_queued;
  463. cl_ulong cmd_submit;
  464. cl_ulong cmd_start;
  465. cl_ulong cmd_end;
  466. cl_ulong cmd_complete;
  467. CL_CHECK(clWaitForEvents(1, &info.evt));
  468. CL_CHECK(clGetEventProfilingInfo(
  469. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  470. CL_CHECK(clGetEventProfilingInfo(
  471. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  472. CL_CHECK(clGetEventProfilingInfo(
  473. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  474. CL_CHECK(clGetEventProfilingInfo(
  475. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  476. CL_CHECK(clGetEventProfilingInfo(
  477. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  478. CL_CHECK(clReleaseEvent(info.evt));
  479. char kernel_name[512];
  480. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  481. sizeof(kernel_name), kernel_name, NULL));
  482. info.kernel_name = kernel_name;
  483. info.cmd_queued = cmd_queued;
  484. info.cmd_submit = cmd_submit;
  485. info.cmd_start = cmd_start;
  486. info.cmd_end = cmd_end;
  487. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  488. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  489. info.cmd_duration_ns = cmd_end - cmd_start;
  490. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  491. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  492. }
  493. // Dump a csv
  494. fprintf(fperf, "op name, kernel name, exec duration (ms), global size, local size, output size\n");
  495. for (const ProfilingInfo & info : profiling_info) {
  496. fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  497. info.op_name.c_str(), info.kernel_name.c_str(),
  498. info.cmd_duration_ns/1.e6f,
  499. info.global_size[0], info.global_size[1], info.global_size[2],
  500. info.local_size[0], info.local_size[1], info.local_size[2],
  501. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  502. }
  503. fclose(fperf);
  504. // Dump a simple chrome trace
  505. FILE* ftrace = fopen("cl_trace.json", "w");
  506. if (!ftrace) {
  507. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  508. return;
  509. }
  510. fprintf(ftrace, "[\n");
  511. for (const ProfilingInfo & info : profiling_info) {
  512. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  513. info.kernel_name.c_str(), info.cmd_queued/1000);
  514. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  515. info.kernel_name.c_str(), info.cmd_submit/1000);
  516. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  517. info.kernel_name.c_str(), info.cmd_start/1000);
  518. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  519. info.kernel_name.c_str(), info.cmd_end/1000);
  520. }
  521. fclose(ftrace);
  522. }
  523. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  524. size_t workgroup_size = 0;
  525. size_t ret_size = 0;
  526. CL_CHECK(
  527. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  528. sizeof(size_t), &workgroup_size, &ret_size));
  529. GGML_ASSERT(sizeof(size_t) == ret_size);
  530. return workgroup_size;
  531. }
  532. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  533. #ifdef GGML_OPENCL_PROFILING
  534. cl_event evt;
  535. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  536. profiling_info.emplace_back();
  537. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  538. #else
  539. GGML_UNUSED(tensor);
  540. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  541. #endif
  542. }
  543. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  544. // Transpose kernels
  545. cl_program program_transpose;
  546. cl_kernel kernel_transpose_32;
  547. cl_kernel kernel_transpose_32_16;
  548. cl_kernel kernel_transpose_16;
  549. cl_kernel kernel_transpose_16_4x1;
  550. cl_mem A_s_d_max; // max scale buffer size for transpose
  551. cl_mem A_q_d_max; // max weight buffer size for transpose
  552. cl_mem B_d_max; // max activation buffer size for transpose
  553. // Gemm and Gemv related programs, kernels, etc
  554. cl_program program_CL_gemm;
  555. cl_program program_CL_gemv_general;
  556. cl_program program_CL_gemv_4096_1_11008;
  557. cl_program program_CL_gemv_4096_1_4096;
  558. cl_program program_CL_gemv_11008_1_4096;
  559. cl_program program_CL_gemv_32000_1_4096;
  560. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  561. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  562. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  563. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  564. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  565. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  566. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  567. void free() {
  568. ref_count--;
  569. if (ref_count == 0) {
  570. #ifdef GGML_OPENCL_PROFILING
  571. write_profiling_info();
  572. profiling_info.clear();
  573. #endif
  574. }
  575. }
  576. };
  577. // All registered devices with a default device in the front.
  578. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  579. inline std::string read_file(const std::string &path) {
  580. std::ifstream ifs(path);
  581. if (!ifs) {
  582. return "";
  583. }
  584. std::string text;
  585. ifs.seekg(0, std::ios::end);
  586. text.resize(ifs.tellg());
  587. ifs.seekg(0, std::ios::beg);
  588. ifs.read(&text[0], text.size());
  589. return text;
  590. }
  591. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  592. cl_program p;
  593. char *program_log;
  594. size_t program_size;
  595. size_t log_size;
  596. int err;
  597. program_size = strlen(program_buffer);
  598. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  599. if(err < 0) {
  600. GGML_LOG_ERROR("OpenCL error creating program");
  601. exit(1);
  602. }
  603. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  604. if(err < 0) {
  605. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  606. program_log = (char*) malloc(log_size + 1);
  607. program_log[log_size] = '\0';
  608. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  609. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  610. free(program_log);
  611. exit(1);
  612. }
  613. return p;
  614. }
  615. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  616. cl_int err;
  617. // compiler options for general kernels
  618. auto opencl_c_std =
  619. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  620. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  621. " -cl-mad-enable -cl-unsafe-math-optimizations"
  622. " -cl-finite-math-only -cl-fast-relaxed-math";
  623. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  624. // add
  625. {
  626. #ifdef GGML_OPENCL_EMBED_KERNELS
  627. const std::string kernel_src {
  628. #include "add.cl.h"
  629. };
  630. #else
  631. const std::string kernel_src = read_file("add.cl");
  632. #endif
  633. backend_ctx->program_add =
  634. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  635. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  636. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  637. CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
  638. CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
  639. GGML_LOG_CONT(".");
  640. }
  641. // add_id
  642. {
  643. #ifdef GGML_OPENCL_EMBED_KERNELS
  644. const std::string kernel_src {
  645. #include "add_id.cl.h"
  646. };
  647. #else
  648. const std::string kernel_src = read_file("add_id.cl");
  649. #endif
  650. backend_ctx->program_add_id =
  651. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  652. CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
  653. GGML_LOG_CONT(".");
  654. }
  655. // clamp
  656. {
  657. #ifdef GGML_OPENCL_EMBED_KERNELS
  658. const std::string kernel_src {
  659. #include "clamp.cl.h"
  660. };
  661. #else
  662. const std::string kernel_src = read_file("clamp.cl");
  663. #endif
  664. backend_ctx->program_clamp =
  665. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  666. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  667. GGML_LOG_CONT(".");
  668. }
  669. // cpy
  670. {
  671. #ifdef GGML_OPENCL_EMBED_KERNELS
  672. const std::string kernel_src {
  673. #include "cpy.cl.h"
  674. };
  675. #else
  676. const std::string kernel_src = read_file("cpy.cl");
  677. #endif
  678. backend_ctx->program_cpy =
  679. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  680. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  681. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  682. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  683. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  684. GGML_LOG_CONT(".");
  685. }
  686. // cvt
  687. {
  688. #ifdef GGML_OPENCL_EMBED_KERNELS
  689. const std::string kernel_src {
  690. #include "cvt.cl.h"
  691. };
  692. #else
  693. const std::string kernel_src = read_file("cvt.cl");
  694. #endif
  695. backend_ctx->program_cvt =
  696. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  697. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  698. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  699. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  700. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
  701. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
  702. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
  703. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
  704. CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
  705. CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
  706. GGML_LOG_CONT(".");
  707. }
  708. // diag_mask_inf
  709. {
  710. #ifdef GGML_OPENCL_EMBED_KERNELS
  711. const std::string kernel_src {
  712. #include "diag_mask_inf.cl.h"
  713. };
  714. #else
  715. const std::string kernel_src = read_file("diag_mask_inf.cl");
  716. #endif
  717. backend_ctx->program_diag_mask_inf =
  718. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  719. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  720. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  721. GGML_LOG_CONT(".");
  722. }
  723. // gelu
  724. {
  725. #ifdef GGML_OPENCL_EMBED_KERNELS
  726. const std::string kernel_src {
  727. #include "gelu.cl.h"
  728. };
  729. #else
  730. const std::string kernel_src = read_file("gelu.cl");
  731. #endif
  732. backend_ctx->program_gelu =
  733. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  734. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  735. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  736. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  737. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  738. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  739. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  740. GGML_LOG_CONT(".");
  741. }
  742. // glu
  743. {
  744. #ifdef GGML_OPENCL_EMBED_KERNELS
  745. const std::string kernel_src {
  746. #include "glu.cl.h"
  747. };
  748. #else
  749. const std::string kernel_src = read_file("glu.cl");
  750. #endif
  751. backend_ctx->program_glu =
  752. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  753. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  754. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  755. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  756. CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
  757. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  758. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  759. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  760. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  761. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  762. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  763. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  764. GGML_LOG_CONT(".");
  765. }
  766. // get_rows
  767. {
  768. #ifdef GGML_OPENCL_EMBED_KERNELS
  769. const std::string kernel_src {
  770. #include "get_rows.cl.h"
  771. };
  772. #else
  773. const std::string kernel_src = read_file("get_rows.cl");
  774. #endif
  775. backend_ctx->program_get_rows =
  776. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  777. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  778. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  779. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  780. GGML_LOG_CONT(".");
  781. }
  782. // im2col_f32
  783. {
  784. #ifdef GGML_OPENCL_EMBED_KERNELS
  785. const std::string kernel_src {
  786. #include "im2col_f32.cl.h"
  787. };
  788. #else
  789. const std::string kernel_src = read_file("im2col_f32.cl");
  790. #endif
  791. backend_ctx->program_im2col_f32 =
  792. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  793. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  794. GGML_LOG_CONT(".");
  795. }
  796. // im2col_f16
  797. {
  798. #ifdef GGML_OPENCL_EMBED_KERNELS
  799. const std::string kernel_src {
  800. #include "im2col_f16.cl.h"
  801. };
  802. #else
  803. const std::string kernel_src = read_file("im2col_f16.cl");
  804. #endif
  805. backend_ctx->program_im2col_f16 =
  806. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  807. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  808. GGML_LOG_CONT(".");
  809. }
  810. // mul_mv_q4_0_f32
  811. {
  812. #ifdef GGML_OPENCL_EMBED_KERNELS
  813. const std::string kernel_src {
  814. #include "mul_mv_q4_0_f32.cl.h"
  815. };
  816. #else
  817. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  818. #endif
  819. backend_ctx->program_mul_mv_q4_0_f32 =
  820. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  821. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  822. GGML_LOG_CONT(".");
  823. }
  824. // mul_mv_q4_0_f32_v
  825. {
  826. #ifdef GGML_OPENCL_EMBED_KERNELS
  827. const std::string kernel_src {
  828. #include "mul_mv_q4_0_f32_v.cl.h"
  829. };
  830. #else
  831. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  832. #endif
  833. backend_ctx->program_mul_mv_q4_0_f32_v =
  834. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  835. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  836. GGML_LOG_CONT(".");
  837. }
  838. // mul_mv_q4_0_f32_8x_flat
  839. {
  840. #ifdef GGML_OPENCL_EMBED_KERNELS
  841. const std::string kernel_src {
  842. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  843. };
  844. #else
  845. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  846. #endif
  847. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  848. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  849. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  850. GGML_LOG_CONT(".");
  851. }
  852. // mul_mv_q4_0_f32_1d_8x_flat
  853. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  854. // those compiler versions since it is anyway not used for Adreno.
  855. if (backend_ctx->gpu_family != ADRENO ||
  856. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  857. backend_ctx->adreno_cl_compiler_version.type == DX) {
  858. #ifdef GGML_OPENCL_EMBED_KERNELS
  859. const std::string kernel_src {
  860. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  861. };
  862. #else
  863. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  864. #endif
  865. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  866. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  867. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  868. GGML_LOG_CONT(".");
  869. }
  870. // mul_mv_q4_0_f32_1d_16x_flat
  871. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  872. // those compiler versions since it is anyway not used for Adreno.
  873. if (backend_ctx->gpu_family != ADRENO ||
  874. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  875. backend_ctx->adreno_cl_compiler_version.type == DX) {
  876. #ifdef GGML_OPENCL_EMBED_KERNELS
  877. const std::string kernel_src {
  878. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  879. };
  880. #else
  881. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  882. #endif
  883. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  884. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  885. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  886. GGML_LOG_CONT(".");
  887. }
  888. // mul_mv_q6_k
  889. {
  890. #ifdef GGML_OPENCL_EMBED_KERNELS
  891. const std::string kernel_src {
  892. #include "mul_mv_q6_k.cl.h"
  893. };
  894. #else
  895. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  896. #endif
  897. backend_ctx->program_mul_mv_q6_K =
  898. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  899. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  900. GGML_LOG_CONT(".");
  901. }
  902. // mul_mv_q8_0_f32
  903. {
  904. #ifdef GGML_OPENCL_EMBED_KERNELS
  905. const std::string kernel_src {
  906. #include "mul_mv_q8_0_f32.cl.h"
  907. };
  908. #else
  909. const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
  910. #endif
  911. backend_ctx->program_mul_mv_q8_0_f32 =
  912. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  913. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
  914. GGML_LOG_CONT(".");
  915. }
  916. // mul_mv_q8_0_f32_flat
  917. {
  918. #ifdef GGML_OPENCL_EMBED_KERNELS
  919. const std::string kernel_src {
  920. #include "mul_mv_q8_0_f32_flat.cl.h"
  921. };
  922. #else
  923. const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
  924. #endif
  925. backend_ctx->program_mul_mv_q8_0_f32_flat =
  926. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  927. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
  928. GGML_LOG_CONT(".");
  929. }
  930. // mul_mv_mxfp4_f32
  931. {
  932. #ifdef GGML_OPENCL_EMBED_KERNELS
  933. const std::string kernel_src {
  934. #include "mul_mv_mxfp4_f32.cl.h"
  935. };
  936. #else
  937. const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
  938. #endif
  939. backend_ctx->program_mul_mv_mxfp4_f32 =
  940. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  941. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
  942. GGML_LOG_CONT(".");
  943. }
  944. // mul_mv_mxfp4_f32_flat
  945. {
  946. #ifdef GGML_OPENCL_EMBED_KERNELS
  947. const std::string kernel_src {
  948. #include "mul_mv_mxfp4_f32_flat.cl.h"
  949. };
  950. #else
  951. const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
  952. #endif
  953. backend_ctx->program_mul_mv_mxfp4_f32_flat =
  954. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  955. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
  956. GGML_LOG_CONT(".");
  957. }
  958. // mul_mv_f16_f16
  959. {
  960. #ifdef GGML_OPENCL_EMBED_KERNELS
  961. const std::string kernel_src {
  962. #include "mul_mv_f16_f16.cl.h"
  963. };
  964. #else
  965. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  966. #endif
  967. backend_ctx->program_mul_mv_f16_f16 =
  968. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  969. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  970. GGML_LOG_CONT(".");
  971. }
  972. // mul_mv_f16_f32_1row
  973. {
  974. #ifdef GGML_OPENCL_EMBED_KERNELS
  975. const std::string kernel_src {
  976. #include "mul_mv_f16_f32_1row.cl.h"
  977. };
  978. #else
  979. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  980. #endif
  981. backend_ctx->program_mul_mv_f16_f32_1row =
  982. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  983. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  984. GGML_LOG_CONT(".");
  985. }
  986. // mul_mv_f16_f32_l4
  987. {
  988. #ifdef GGML_OPENCL_EMBED_KERNELS
  989. const std::string kernel_src {
  990. #include "mul_mv_f16_f32_l4.cl.h"
  991. };
  992. #else
  993. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  994. #endif
  995. backend_ctx->program_mul_mv_f16_f32_l4 =
  996. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  997. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  998. GGML_LOG_CONT(".");
  999. }
  1000. // mul_mv_f16_f32
  1001. {
  1002. #ifdef GGML_OPENCL_EMBED_KERNELS
  1003. const std::string kernel_src {
  1004. #include "mul_mv_f16_f32.cl.h"
  1005. };
  1006. #else
  1007. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  1008. #endif
  1009. backend_ctx->program_mul_mv_f16_f32 =
  1010. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1011. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  1012. GGML_LOG_CONT(".");
  1013. }
  1014. // mul_mv_f32_f32
  1015. {
  1016. #ifdef GGML_OPENCL_EMBED_KERNELS
  1017. const std::string kernel_src {
  1018. #include "mul_mv_f32_f32.cl.h"
  1019. };
  1020. #else
  1021. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  1022. #endif
  1023. backend_ctx->program_mul_mv_f32_f32 =
  1024. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1025. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  1026. GGML_LOG_CONT(".");
  1027. }
  1028. // mul_mat_f16_f32_tiled
  1029. {
  1030. #ifdef GGML_OPENCL_EMBED_KERNELS
  1031. const std::string kernel_src {
  1032. #include "mul_mat_f16_f32.cl.h"
  1033. };
  1034. #else
  1035. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  1036. #endif
  1037. backend_ctx->program_mul_mat_f16_f32_tiled =
  1038. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1039. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  1040. GGML_LOG_CONT(".");
  1041. }
  1042. // mul_mm_f32_f32_l4_lm
  1043. {
  1044. #ifdef GGML_OPENCL_EMBED_KERNELS
  1045. const std::string kernel_src {
  1046. #include "mul_mm_f32_f32_l4_lm.cl.h"
  1047. };
  1048. #else
  1049. const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
  1050. #endif
  1051. backend_ctx->program_mul_mm_f32_f32_l4_lm =
  1052. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1053. CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
  1054. GGML_LOG_CONT(".");
  1055. }
  1056. // mul_mm_f16_f32_l4_lm
  1057. {
  1058. #ifdef GGML_OPENCL_EMBED_KERNELS
  1059. const std::string kernel_src {
  1060. #include "mul_mm_f16_f32_l4_lm.cl.h"
  1061. };
  1062. #else
  1063. const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
  1064. #endif
  1065. backend_ctx->program_mul_mm_f16_f32_l4_lm =
  1066. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1067. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
  1068. GGML_LOG_CONT(".");
  1069. }
  1070. // mul_mm_q8_0_f32_l4_lm
  1071. {
  1072. #ifdef GGML_OPENCL_EMBED_KERNELS
  1073. const std::string kernel_src {
  1074. #include "mul_mm_q8_0_f32_l4_lm.cl.h"
  1075. };
  1076. #else
  1077. const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
  1078. #endif
  1079. backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
  1080. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1081. CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
  1082. GGML_LOG_CONT(".");
  1083. }
  1084. // mul_mm_f16_f32_kq_kqv
  1085. {
  1086. #ifdef GGML_OPENCL_EMBED_KERNELS
  1087. const std::string kernel_src {
  1088. #include "mul_mm_f16_f32_kq_kqv.cl.h"
  1089. };
  1090. #else
  1091. const std::string kernel_src = read_file("mul_mm_f16_f32_kq_kqv.cl");
  1092. #endif
  1093. backend_ctx->program_mul_mm_f16_f32_kqv =
  1094. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts+" -DKQV ");
  1095. backend_ctx->program_mul_mm_f16_f32_kq =
  1096. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1097. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kqv = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kqv, "mul_mm_f16_f32_kqv", &err), err));
  1098. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kq = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kq, "mul_mm_f16_f32_kq", &err), err));
  1099. GGML_LOG_CONT(".");
  1100. }
  1101. // mul
  1102. {
  1103. #ifdef GGML_OPENCL_EMBED_KERNELS
  1104. const std::string kernel_src {
  1105. #include "mul.cl.h"
  1106. };
  1107. #else
  1108. const std::string kernel_src = read_file("mul.cl");
  1109. #endif
  1110. backend_ctx->program_mul =
  1111. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1112. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  1113. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  1114. CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
  1115. CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
  1116. GGML_LOG_CONT(".");
  1117. }
  1118. // norm
  1119. {
  1120. #ifdef GGML_OPENCL_EMBED_KERNELS
  1121. const std::string kernel_src {
  1122. #include "norm.cl.h"
  1123. };
  1124. #else
  1125. const std::string kernel_src = read_file("norm.cl");
  1126. #endif
  1127. backend_ctx->program_norm =
  1128. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1129. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  1130. CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
  1131. GGML_LOG_CONT(".");
  1132. }
  1133. // relu
  1134. {
  1135. #ifdef GGML_OPENCL_EMBED_KERNELS
  1136. const std::string kernel_src {
  1137. #include "relu.cl.h"
  1138. };
  1139. #else
  1140. const std::string kernel_src = read_file("relu.cl");
  1141. #endif
  1142. backend_ctx->program_relu =
  1143. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1144. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  1145. GGML_LOG_CONT(".");
  1146. }
  1147. // rms_norm
  1148. {
  1149. #ifdef GGML_OPENCL_EMBED_KERNELS
  1150. const std::string kernel_src {
  1151. #include "rms_norm.cl.h"
  1152. };
  1153. #else
  1154. const std::string kernel_src = read_file("rms_norm.cl");
  1155. #endif
  1156. backend_ctx->program_rms_norm =
  1157. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1158. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  1159. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  1160. GGML_LOG_CONT(".");
  1161. }
  1162. // rope
  1163. {
  1164. #ifdef GGML_OPENCL_EMBED_KERNELS
  1165. const std::string kernel_src {
  1166. #include "rope.cl.h"
  1167. };
  1168. #else
  1169. const std::string kernel_src = read_file("rope.cl");
  1170. #endif
  1171. backend_ctx->program_rope =
  1172. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1173. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  1174. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  1175. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  1176. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  1177. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  1178. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  1179. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  1180. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  1181. GGML_LOG_CONT(".");
  1182. }
  1183. // scale
  1184. {
  1185. #ifdef GGML_OPENCL_EMBED_KERNELS
  1186. const std::string kernel_src {
  1187. #include "scale.cl.h"
  1188. };
  1189. #else
  1190. const std::string kernel_src = read_file("scale.cl");
  1191. #endif
  1192. backend_ctx->program_scale =
  1193. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1194. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  1195. GGML_LOG_CONT(".");
  1196. }
  1197. // silu
  1198. {
  1199. #ifdef GGML_OPENCL_EMBED_KERNELS
  1200. const std::string kernel_src {
  1201. #include "silu.cl.h"
  1202. };
  1203. #else
  1204. const std::string kernel_src = read_file("silu.cl");
  1205. #endif
  1206. backend_ctx->program_silu =
  1207. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1208. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1209. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1210. GGML_LOG_CONT(".");
  1211. }
  1212. // softmax_f32
  1213. {
  1214. #ifdef GGML_OPENCL_EMBED_KERNELS
  1215. const std::string kernel_src {
  1216. #include "softmax_f32.cl.h"
  1217. };
  1218. #else
  1219. const std::string kernel_src = read_file("softmax_f32.cl");
  1220. #endif
  1221. backend_ctx->program_softmax_f32 =
  1222. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1223. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1224. GGML_LOG_CONT(".");
  1225. }
  1226. // softmax_f16
  1227. {
  1228. #ifdef GGML_OPENCL_EMBED_KERNELS
  1229. const std::string kernel_src {
  1230. #include "softmax_f16.cl.h"
  1231. };
  1232. #else
  1233. const std::string kernel_src = read_file("softmax_f16.cl");
  1234. #endif
  1235. backend_ctx->program_softmax_f16 =
  1236. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1237. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1238. GGML_LOG_CONT(".");
  1239. }
  1240. // softmax_4_f32
  1241. {
  1242. #ifdef GGML_OPENCL_EMBED_KERNELS
  1243. const std::string kernel_src {
  1244. #include "softmax_4_f32.cl.h"
  1245. };
  1246. #else
  1247. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1248. #endif
  1249. backend_ctx->program_softmax_4_f32 =
  1250. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1251. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1252. GGML_LOG_CONT(".");
  1253. }
  1254. // softmax_4_f16
  1255. {
  1256. #ifdef GGML_OPENCL_EMBED_KERNELS
  1257. const std::string kernel_src {
  1258. #include "softmax_4_f16.cl.h"
  1259. };
  1260. #else
  1261. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1262. #endif
  1263. backend_ctx->program_softmax_4_f16 =
  1264. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1265. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1266. GGML_LOG_CONT(".");
  1267. }
  1268. // flash_attn
  1269. {
  1270. #ifdef GGML_OPENCL_EMBED_KERNELS
  1271. const std::string kernel_src_f16 {
  1272. #include "flash_attn_f16.cl.h"
  1273. };
  1274. const std::string kernel_src_f32 {
  1275. #include "flash_attn_f32.cl.h"
  1276. };
  1277. const std::string kernel_src_f32_f16 {
  1278. #include "flash_attn_f32_f16.cl.h"
  1279. };
  1280. #else
  1281. const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
  1282. const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
  1283. const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
  1284. #endif
  1285. if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
  1286. const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
  1287. { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
  1288. {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
  1289. {192, 192, 16, 16}, {256, 256, 16, 16},
  1290. };
  1291. for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
  1292. const int dk = fa_dims[i].dk;
  1293. const int dv = fa_dims[i].dv;
  1294. const int bm = fa_dims[i].bm;
  1295. const int bn = fa_dims[i].bn;
  1296. std::string OPTS = compile_opts +
  1297. " -D DK=" + std::to_string(dk) +
  1298. " -D DV=" + std::to_string(dv) +
  1299. " -D BLOCK_M=" + std::to_string(bm) +
  1300. " -D BLOCK_N=" + std::to_string(bn);
  1301. cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
  1302. cl_kernel k_f16, k_f16_q1;
  1303. CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
  1304. CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
  1305. backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
  1306. backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
  1307. CL_CHECK(clReleaseProgram(prog_f16));
  1308. cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
  1309. cl_kernel k_f32, k_f32_q1;
  1310. CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
  1311. CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
  1312. backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
  1313. backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
  1314. CL_CHECK(clReleaseProgram(prog_f32));
  1315. cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
  1316. cl_kernel k_f32_f16, k_f32_f16_q1;
  1317. CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
  1318. CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
  1319. backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
  1320. backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
  1321. CL_CHECK(clReleaseProgram(prog_f32_f16));
  1322. backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
  1323. backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
  1324. }
  1325. GGML_LOG_CONT(".");
  1326. }
  1327. }
  1328. // argsort
  1329. {
  1330. #ifdef GGML_OPENCL_EMBED_KERNELS
  1331. const std::string kernel_src {
  1332. #include "argsort.cl.h"
  1333. };
  1334. #else
  1335. const std::string kernel_src = read_file("argsort.cl");
  1336. #endif
  1337. backend_ctx->program_argsort_f32_i32 =
  1338. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1339. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1340. GGML_LOG_CONT(".");
  1341. }
  1342. // div
  1343. {
  1344. #ifdef GGML_OPENCL_EMBED_KERNELS
  1345. const std::string kernel_src {
  1346. #include "div.cl.h"
  1347. };
  1348. #else
  1349. const std::string kernel_src = read_file("div.cl");
  1350. #endif
  1351. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  1352. " -cl-mad-enable -cl-finite-math-only ";
  1353. backend_ctx->program_div =
  1354. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1355. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1356. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1357. CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
  1358. CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
  1359. GGML_LOG_CONT(".");
  1360. }
  1361. // sqr
  1362. {
  1363. #ifdef GGML_OPENCL_EMBED_KERNELS
  1364. const std::string kernel_src {
  1365. #include "sqr.cl.h"
  1366. };
  1367. #else
  1368. const std::string kernel_src = read_file("sqr.cl");
  1369. #endif
  1370. cl_program prog =
  1371. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1372. CL_CHECK((backend_ctx->kernel_sqr_cont_f32 = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
  1373. CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4 = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
  1374. CL_CHECK((backend_ctx->kernel_sqr_cont_f16 = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
  1375. CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4 = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
  1376. CL_CHECK(clReleaseProgram(prog));
  1377. GGML_LOG_CONT(".");
  1378. }
  1379. // sqrt
  1380. {
  1381. #ifdef GGML_OPENCL_EMBED_KERNELS
  1382. const std::string kernel_src {
  1383. #include "sqrt.cl.h"
  1384. };
  1385. #else
  1386. const std::string kernel_src = read_file("sqrt.cl");
  1387. #endif
  1388. cl_program prog =
  1389. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1390. CL_CHECK((backend_ctx->kernel_sqrt_cont_f32 = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
  1391. CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4 = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
  1392. CL_CHECK((backend_ctx->kernel_sqrt_cont_f16 = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
  1393. CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4 = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
  1394. CL_CHECK(clReleaseProgram(prog));
  1395. GGML_LOG_CONT(".");
  1396. }
  1397. // mean
  1398. {
  1399. #ifdef GGML_OPENCL_EMBED_KERNELS
  1400. const std::string kernel_src {
  1401. #include "mean.cl.h"
  1402. };
  1403. #else
  1404. const std::string kernel_src = read_file("mean.cl");
  1405. #endif
  1406. cl_program prog =
  1407. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1408. CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
  1409. CL_CHECK(clReleaseProgram(prog));
  1410. GGML_LOG_CONT(".");
  1411. }
  1412. // sub
  1413. {
  1414. #ifdef GGML_OPENCL_EMBED_KERNELS
  1415. const std::string kernel_src {
  1416. #include "sub.cl.h"
  1417. };
  1418. #else
  1419. const std::string kernel_src = read_file("sub.cl");
  1420. #endif
  1421. backend_ctx->program_sub =
  1422. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1423. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1424. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1425. CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
  1426. CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
  1427. GGML_LOG_CONT(".");
  1428. }
  1429. // sum_rows
  1430. {
  1431. #ifdef GGML_OPENCL_EMBED_KERNELS
  1432. const std::string kernel_src {
  1433. #include "sum_rows.cl.h"
  1434. };
  1435. #else
  1436. const std::string kernel_src = read_file("sum_rows.cl");
  1437. #endif
  1438. backend_ctx->program_sum_rows_f32 =
  1439. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1440. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1441. GGML_LOG_CONT(".");
  1442. }
  1443. // sigmoid
  1444. {
  1445. #ifdef GGML_OPENCL_EMBED_KERNELS
  1446. const std::string kernel_src {
  1447. #include "sigmoid.cl.h"
  1448. };
  1449. #else
  1450. const std::string kernel_src = read_file("sigmoid.cl");
  1451. #endif
  1452. backend_ctx->program_sigmoid =
  1453. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1454. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1455. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1456. GGML_LOG_CONT(".");
  1457. }
  1458. // group_norm
  1459. {
  1460. #ifdef GGML_OPENCL_EMBED_KERNELS
  1461. const std::string kernel_src {
  1462. #include "group_norm.cl.h"
  1463. };
  1464. #else
  1465. const std::string kernel_src = read_file("group_norm.cl");
  1466. #endif
  1467. backend_ctx->program_group_norm =
  1468. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1469. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1470. CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
  1471. GGML_LOG_CONT(".");
  1472. }
  1473. // repeat
  1474. {
  1475. #ifdef GGML_OPENCL_EMBED_KERNELS
  1476. const std::string kernel_src {
  1477. #include "repeat.cl.h"
  1478. };
  1479. #else
  1480. const std::string kernel_src = read_file("repeat.cl");
  1481. #endif
  1482. if (!kernel_src.empty()) {
  1483. backend_ctx->program_repeat =
  1484. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1485. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1486. GGML_LOG_CONT(".");
  1487. } else {
  1488. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1489. backend_ctx->program_repeat = nullptr;
  1490. backend_ctx->kernel_repeat = nullptr;
  1491. }
  1492. }
  1493. // pad
  1494. {
  1495. #ifdef GGML_OPENCL_EMBED_KERNELS
  1496. const std::string kernel_src {
  1497. #include "pad.cl.h"
  1498. };
  1499. #else
  1500. const std::string kernel_src = read_file("pad.cl");
  1501. #endif
  1502. if (!kernel_src.empty()) {
  1503. backend_ctx->program_pad =
  1504. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1505. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1506. GGML_LOG_CONT(".");
  1507. } else {
  1508. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1509. backend_ctx->program_pad = nullptr;
  1510. backend_ctx->kernel_pad = nullptr;
  1511. }
  1512. }
  1513. // tanh
  1514. {
  1515. #ifdef GGML_OPENCL_EMBED_KERNELS
  1516. const std::string kernel_src {
  1517. #include "tanh.cl.h"
  1518. };
  1519. #else
  1520. const std::string kernel_src = read_file("tanh.cl");
  1521. #endif
  1522. if (!kernel_src.empty()) {
  1523. backend_ctx->program_tanh =
  1524. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1525. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1526. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1527. GGML_LOG_CONT(".");
  1528. } else {
  1529. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1530. backend_ctx->program_tanh = nullptr;
  1531. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1532. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1533. }
  1534. }
  1535. // upscale
  1536. {
  1537. #ifdef GGML_OPENCL_EMBED_KERNELS
  1538. const std::string kernel_src {
  1539. #include "upscale.cl.h"
  1540. };
  1541. #else
  1542. const std::string kernel_src = read_file("upscale.cl");
  1543. #endif
  1544. if (!kernel_src.empty()) {
  1545. backend_ctx->program_upscale =
  1546. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1547. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1548. if (backend_ctx->program_upscale) {
  1549. cl_int err_bilinear;
  1550. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1551. if (err_bilinear != CL_SUCCESS) {
  1552. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1553. backend_ctx->kernel_upscale_bilinear = nullptr;
  1554. }
  1555. } else {
  1556. backend_ctx->kernel_upscale_bilinear = nullptr;
  1557. }
  1558. GGML_LOG_CONT(".");
  1559. } else {
  1560. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1561. backend_ctx->program_upscale = nullptr;
  1562. backend_ctx->kernel_upscale = nullptr;
  1563. backend_ctx->kernel_upscale_bilinear = nullptr;
  1564. }
  1565. }
  1566. // concat
  1567. {
  1568. #ifdef GGML_OPENCL_EMBED_KERNELS
  1569. const std::string kernel_src {
  1570. #include "concat.cl.h"
  1571. };
  1572. #else
  1573. const std::string kernel_src = read_file("concat.cl");
  1574. #endif
  1575. if (!kernel_src.empty()) {
  1576. backend_ctx->program_concat =
  1577. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1578. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1579. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1580. GGML_LOG_CONT(".");
  1581. } else {
  1582. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1583. backend_ctx->program_concat = nullptr;
  1584. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1585. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1586. }
  1587. }
  1588. // timestep_embedding
  1589. {
  1590. #ifdef GGML_OPENCL_EMBED_KERNELS
  1591. const std::string kernel_src {
  1592. #include "tsembd.cl.h"
  1593. };
  1594. #else
  1595. const std::string kernel_src = read_file("tsembd.cl");
  1596. #endif
  1597. if (!kernel_src.empty()) {
  1598. backend_ctx->program_tsembd =
  1599. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1600. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1601. GGML_LOG_CONT(".");
  1602. } else {
  1603. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1604. backend_ctx->program_tsembd = nullptr;
  1605. backend_ctx->kernel_timestep_embedding = nullptr;
  1606. }
  1607. }
  1608. // set_rows
  1609. {
  1610. #ifdef GGML_OPENCL_EMBED_KERNELS
  1611. const std::string kernel_src {
  1612. #include "set_rows.cl.h"
  1613. };
  1614. #else
  1615. const std::string kernel_src = read_file("set_rows.cl");
  1616. #endif
  1617. backend_ctx->program_set_rows =
  1618. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1619. CL_CHECK((backend_ctx->kernel_set_rows_f32_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i64", &err), err));
  1620. CL_CHECK((backend_ctx->kernel_set_rows_f32_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i32", &err), err));
  1621. CL_CHECK((backend_ctx->kernel_set_rows_f16_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i64", &err), err));
  1622. CL_CHECK((backend_ctx->kernel_set_rows_f16_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i32", &err), err));
  1623. GGML_LOG_CONT(".");
  1624. }
  1625. // conv2d
  1626. {
  1627. #ifdef GGML_OPENCL_EMBED_KERNELS
  1628. const std::string kernel_src {
  1629. #include "conv2d.cl.h"
  1630. };
  1631. const std::string kernel_src_f16_f32 {
  1632. #include "conv2d_f16_f32.cl.h"
  1633. };
  1634. #else
  1635. const std::string kernel_src = read_file("conv2d.cl");
  1636. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1637. #endif
  1638. if (!kernel_src.empty()) {
  1639. backend_ctx->program_conv_2d_f16 =
  1640. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1641. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1642. GGML_LOG_CONT(".");
  1643. backend_ctx->program_conv_2d_f32 =
  1644. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1645. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1646. GGML_LOG_CONT(".");
  1647. } else {
  1648. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1649. backend_ctx->program_conv_2d_f16 = nullptr;
  1650. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1651. backend_ctx->program_conv_2d_f32 = nullptr;
  1652. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1653. }
  1654. if (!kernel_src_f16_f32.empty()) {
  1655. backend_ctx->program_conv_2d_f16_f32 =
  1656. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1657. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1658. GGML_LOG_CONT(".");
  1659. } else {
  1660. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1661. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1662. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1663. }
  1664. }
  1665. // ssm_conv
  1666. {
  1667. #ifdef GGML_OPENCL_EMBED_KERNELS
  1668. const std::string kernel_src {
  1669. #include "ssm_conv.cl.h"
  1670. };
  1671. #else
  1672. const std::string kernel_src = read_file("ssm_conv.cl");
  1673. #endif
  1674. cl_program prog =
  1675. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1676. CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
  1677. CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
  1678. CL_CHECK(clReleaseProgram(prog));
  1679. GGML_LOG_CONT(".");
  1680. }
  1681. // mul_mv_id_q4_0_f32_8x_flat
  1682. {
  1683. #ifdef GGML_OPENCL_EMBED_KERNELS
  1684. const std::string kernel_src {
  1685. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1686. };
  1687. #else
  1688. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1689. #endif
  1690. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1691. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1692. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1693. GGML_LOG_CONT(".");
  1694. }
  1695. // mul_mv_id_q8_0_f32
  1696. {
  1697. #ifdef GGML_OPENCL_EMBED_KERNELS
  1698. const std::string kernel_src {
  1699. #include "mul_mv_id_q8_0_f32.cl.h"
  1700. };
  1701. #else
  1702. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
  1703. #endif
  1704. backend_ctx->program_mul_mv_id_q8_0_f32 =
  1705. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1706. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
  1707. GGML_LOG_CONT(".");
  1708. }
  1709. // mul_mv_id_q8_0_f32_flat
  1710. {
  1711. #ifdef GGML_OPENCL_EMBED_KERNELS
  1712. const std::string kernel_src {
  1713. #include "mul_mv_id_q8_0_f32_flat.cl.h"
  1714. };
  1715. #else
  1716. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
  1717. #endif
  1718. backend_ctx->program_mul_mv_id_q8_0_f32_flat =
  1719. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1720. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
  1721. GGML_LOG_CONT(".");
  1722. }
  1723. // mul_mv_id_mxfp4_f32
  1724. {
  1725. #ifdef GGML_OPENCL_EMBED_KERNELS
  1726. const std::string kernel_src {
  1727. #include "mul_mv_id_mxfp4_f32.cl.h"
  1728. };
  1729. #else
  1730. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
  1731. #endif
  1732. backend_ctx->program_mul_mv_id_mxfp4_f32 =
  1733. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1734. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
  1735. GGML_LOG_CONT(".");
  1736. }
  1737. // mul_mv_id_mxfp4_f32_flat
  1738. {
  1739. #ifdef GGML_OPENCL_EMBED_KERNELS
  1740. const std::string kernel_src {
  1741. #include "mul_mv_id_mxfp4_f32_flat.cl.h"
  1742. };
  1743. #else
  1744. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
  1745. #endif
  1746. backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
  1747. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1748. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
  1749. GGML_LOG_CONT(".");
  1750. }
  1751. // Adreno kernels
  1752. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1753. // transpose
  1754. {
  1755. #ifdef GGML_OPENCL_EMBED_KERNELS
  1756. const std::string kernel_src {
  1757. #include "transpose.cl.h"
  1758. };
  1759. #else
  1760. const std::string kernel_src = read_file("transpose.cl");
  1761. #endif
  1762. backend_ctx->program_transpose =
  1763. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1764. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1765. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1766. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1767. CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
  1768. GGML_LOG_CONT(".");
  1769. }
  1770. // gemv_noshuffle_general
  1771. {
  1772. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1773. " -cl-mad-enable "
  1774. " -DSIMDGROUP_WIDTH=" +
  1775. std::to_string(backend_ctx->adreno_wave_size);
  1776. if (backend_ctx->has_vector_subgroup_broadcast) {
  1777. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1778. }
  1779. #ifdef GGML_OPENCL_EMBED_KERNELS
  1780. const std::string kernel_src_CL_gemv_general {
  1781. #include "gemv_noshuffle_general.cl.h"
  1782. };
  1783. #else
  1784. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1785. #endif
  1786. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1787. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1788. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1789. GGML_LOG_CONT(".");
  1790. }
  1791. // gemv_noshuffle
  1792. {
  1793. // Gemv 2048, 16384
  1794. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1795. " -cl-mad-enable "
  1796. " -DLINE_STRIDE_A=2048 "
  1797. " -DBLOCK_STRIDE_A=16384 "
  1798. " -DSIMDGROUP_WIDTH=" +
  1799. std::to_string(backend_ctx->adreno_wave_size);
  1800. if (backend_ctx->has_vector_subgroup_broadcast) {
  1801. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1802. }
  1803. #ifdef GGML_OPENCL_EMBED_KERNELS
  1804. const std::string kernel_src_CL_gemv {
  1805. #include "gemv_noshuffle.cl.h"
  1806. };
  1807. #else
  1808. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1809. #endif
  1810. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1811. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1812. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1813. GGML_LOG_CONT(".");
  1814. // Gemv 2048, 16384
  1815. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1816. " -cl-mad-enable "
  1817. " -DLINE_STRIDE_A=2048 "
  1818. " -DBLOCK_STRIDE_A=16384 "
  1819. " -DSIMDGROUP_WIDTH=" +
  1820. std::to_string(backend_ctx->adreno_wave_size);
  1821. if (backend_ctx->has_vector_subgroup_broadcast) {
  1822. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1823. }
  1824. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1825. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1826. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1827. GGML_LOG_CONT(".");
  1828. // Gemv 5504, 44032
  1829. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1830. " -cl-mad-enable "
  1831. " -DLINE_STRIDE_A=5504 "
  1832. " -DBLOCK_STRIDE_A=44032 "
  1833. " -DSIMDGROUP_WIDTH=" +
  1834. std::to_string(backend_ctx->adreno_wave_size);
  1835. if (backend_ctx->has_vector_subgroup_broadcast) {
  1836. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1837. }
  1838. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1839. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1840. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1841. GGML_LOG_CONT(".");
  1842. // Gemv 16000, 128000
  1843. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1844. " -cl-mad-enable "
  1845. " -DLINE_STRIDE_A=16000 "
  1846. " -DBLOCK_STRIDE_A=128000 "
  1847. " -DSIMDGROUP_WIDTH=" +
  1848. std::to_string(backend_ctx->adreno_wave_size);
  1849. if (backend_ctx->has_vector_subgroup_broadcast) {
  1850. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1851. }
  1852. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1853. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1854. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1855. GGML_LOG_CONT(".");
  1856. }
  1857. // mul_mat_Ab_Bi_8x4
  1858. {
  1859. #ifdef GGML_OPENCL_EMBED_KERNELS
  1860. const std::string kernel_src_CL_gemm {
  1861. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1862. };
  1863. #else
  1864. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1865. #endif
  1866. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1867. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1868. GGML_LOG_CONT(".");
  1869. }
  1870. std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1871. " -cl-mad-enable "
  1872. " -cl-fast-relaxed-math";
  1873. // gemv_moe_mxfp4_f32
  1874. {
  1875. #ifdef GGML_OPENCL_EMBED_KERNELS
  1876. const std::string kernel_src {
  1877. #include "gemv_moe_mxfp4_f32.cl.h"
  1878. };
  1879. #else
  1880. const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
  1881. #endif
  1882. backend_ctx->program_gemv_moe_mxfp4_f32 =
  1883. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1884. CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
  1885. GGML_LOG_CONT(".");
  1886. }
  1887. // gemm_moe_mxfp4_f32
  1888. {
  1889. #ifdef GGML_OPENCL_EMBED_KERNELS
  1890. const std::string kernel_src {
  1891. #include "gemm_moe_mxfp4_f32.cl.h"
  1892. };
  1893. #else
  1894. const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
  1895. #endif
  1896. backend_ctx->program_gemm_moe_mxfp4_f32 =
  1897. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1898. CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
  1899. GGML_LOG_CONT(".");
  1900. }
  1901. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1902. GGML_LOG_CONT("\n");
  1903. }
  1904. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1905. // XXX static bool initialized = false;
  1906. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1907. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1908. namespace /* anonymous */ {
  1909. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1910. }
  1911. // Look for available and suitable devices.
  1912. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1913. std::vector<ggml_backend_device> found_devices;
  1914. #ifdef GGML_OPENCL_PROFILING
  1915. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1916. #endif
  1917. struct cl_device;
  1918. struct cl_platform {
  1919. cl_platform_id id;
  1920. unsigned number;
  1921. char name[128];
  1922. char vendor[128];
  1923. struct cl_device * devices;
  1924. unsigned n_devices;
  1925. struct cl_device * default_device;
  1926. };
  1927. struct cl_device {
  1928. struct cl_platform * platform;
  1929. cl_device_id id;
  1930. unsigned number;
  1931. cl_device_type type;
  1932. char name[128];
  1933. char version[128];
  1934. };
  1935. enum { NPLAT = 16, NDEV = 16 };
  1936. struct cl_platform platforms[NPLAT];
  1937. unsigned n_platforms = 0;
  1938. struct cl_device devices[NDEV];
  1939. unsigned n_devices = 0;
  1940. struct cl_device * default_device = NULL;
  1941. unsigned default_platform_number = 0;
  1942. cl_platform_id platform_ids[NPLAT];
  1943. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1944. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1945. return found_devices;
  1946. }
  1947. for (unsigned i = 0; i < n_platforms; i++) {
  1948. struct cl_platform * p = &platforms[i];
  1949. p->number = i;
  1950. p->id = platform_ids[i];
  1951. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1952. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1953. cl_device_id device_ids[NDEV];
  1954. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1955. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1956. p->n_devices = 0;
  1957. } else {
  1958. CL_CHECK(clGetDeviceIDsError);
  1959. }
  1960. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1961. p->default_device = NULL;
  1962. for (unsigned j = 0; j < p->n_devices; j++) {
  1963. struct cl_device * d = &devices[n_devices];
  1964. d->number = n_devices++;
  1965. d->id = device_ids[j];
  1966. d->platform = p;
  1967. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1968. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1969. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1970. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1971. p->default_device = d;
  1972. }
  1973. }
  1974. if (default_device == NULL && p->default_device != NULL) {
  1975. default_device = p->default_device;
  1976. default_platform_number = i;
  1977. }
  1978. }
  1979. if (n_devices == 0) {
  1980. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1981. return found_devices;
  1982. }
  1983. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1984. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1985. int user_platform_number = -1;
  1986. int user_device_number = -1;
  1987. cl_device * candidate_devices = nullptr;
  1988. unsigned n_candidate_devices = 0;
  1989. unsigned n;
  1990. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1991. user_platform_number = (int)n;
  1992. }
  1993. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1994. user_device_number = (int)n;
  1995. }
  1996. if (user_platform_number != -1 && user_device_number != -1) {
  1997. cl_platform* platform = &platforms[user_platform_number];
  1998. if ((unsigned)user_device_number >= platform->n_devices) {
  1999. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  2000. exit(1);
  2001. }
  2002. default_device = &platform->devices[user_device_number];
  2003. candidate_devices = platform->devices;
  2004. n_candidate_devices = platform->n_devices;
  2005. } else {
  2006. // Choose a platform by matching a substring.
  2007. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  2008. for (unsigned i = 0; i < n_platforms; i++) {
  2009. struct cl_platform * p = &platforms[i];
  2010. if (strstr(p->name, user_platform_string) != NULL ||
  2011. strstr(p->vendor, user_platform_string) != NULL) {
  2012. user_platform_number = (int)i;
  2013. break;
  2014. }
  2015. }
  2016. if (user_platform_number == -1) {
  2017. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  2018. exit(1);
  2019. }
  2020. }
  2021. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  2022. struct cl_platform * p = &platforms[platform_idx];
  2023. candidate_devices = p->devices;
  2024. n_candidate_devices = p->n_devices;
  2025. default_device = p->default_device;
  2026. if (n_candidate_devices == 0) {
  2027. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  2028. exit(1);
  2029. }
  2030. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  2031. for (unsigned i = 0; i < n_candidate_devices; i++) {
  2032. struct cl_device * d = &candidate_devices[i];
  2033. if (strstr(d->name, user_device_string) != NULL) {
  2034. user_device_number = d->number;
  2035. break;
  2036. }
  2037. }
  2038. if (user_device_number == -1) {
  2039. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  2040. exit(1);
  2041. }
  2042. }
  2043. if (user_device_number != -1) {
  2044. candidate_devices = &devices[user_device_number];
  2045. n_candidate_devices = 1;
  2046. default_device = &candidate_devices[0];
  2047. }
  2048. GGML_ASSERT(n_candidate_devices > 0);
  2049. if (default_device == NULL) {
  2050. default_device = &candidate_devices[0];
  2051. }
  2052. }
  2053. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  2054. // Put the default device in front.
  2055. for (unsigned i = 1; i < n_candidate_devices; i++) {
  2056. if (&candidate_devices[i] == default_device) {
  2057. std::swap(candidate_devices[0], candidate_devices[i]);
  2058. default_device = &candidate_devices[0];
  2059. break;
  2060. }
  2061. }
  2062. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  2063. std::vector<cl_device_id> device_ids;
  2064. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  2065. device_ids.push_back(dev->id);
  2066. }
  2067. cl_int err;
  2068. cl_context shared_context;
  2069. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  2070. CL_CHECK(
  2071. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  2072. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  2073. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  2074. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  2075. /*.platform =*/dev->platform->id,
  2076. /*.platform_nane =*/dev->platform->name,
  2077. /*.device =*/dev->id,
  2078. /*.device_name =*/dev->name,
  2079. /*.device_type =*/dev->type,
  2080. /*.device_version =*/dev->version,
  2081. /*.backend_ctx =*/nullptr,
  2082. /*.buffer_type =*/{},
  2083. /*.context =*/shared_context,
  2084. });
  2085. found_devices.push_back(ggml_backend_device{
  2086. /* .iface = */ ggml_backend_opencl_device_i,
  2087. /* .reg = */ reg,
  2088. /* .context = */ dev_ctx.get(),
  2089. });
  2090. if (!ggml_cl2_init(&found_devices.back())) {
  2091. found_devices.pop_back();
  2092. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  2093. continue;
  2094. }
  2095. dev_ctx.release();
  2096. }
  2097. if (found_devices.size()) {
  2098. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  2099. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  2100. dev_ctx->device_version.c_str());
  2101. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  2102. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  2103. dev_ctx->device_name.c_str());
  2104. }
  2105. }
  2106. return found_devices;
  2107. }
  2108. // Initialize device if it is supported (returns nullptr if it is not).
  2109. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  2110. GGML_ASSERT(dev);
  2111. GGML_ASSERT(dev->context);
  2112. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2113. GGML_ASSERT(dev_ctx->platform);
  2114. GGML_ASSERT(dev_ctx->device);
  2115. if (dev_ctx->backend_ctx) {
  2116. return dev_ctx->backend_ctx;
  2117. }
  2118. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  2119. backend_ctx->device = dev_ctx->device;
  2120. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2121. // ref_count get increased in ggml_backend_opencl_device_init
  2122. // This function is also used to retrieve backend context, so we don't want
  2123. // to increase ref_count for each call. We only want to increase ref_count
  2124. // when the associated device is initialized
  2125. backend_ctx->ref_count = 0;
  2126. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  2127. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  2128. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  2129. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  2130. // Usually device version contains the detailed device name
  2131. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  2132. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  2133. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  2134. }
  2135. // Use wave size of 64 for all Adreno GPUs.
  2136. backend_ctx->adreno_wave_size = 64;
  2137. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  2138. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  2139. } else {
  2140. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  2141. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2142. return nullptr;
  2143. }
  2144. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2145. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  2146. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  2147. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  2148. return nullptr;
  2149. }
  2150. #endif
  2151. // Populate backend device name
  2152. backend_ctx->device_name = dev_ctx->device_name;
  2153. // A local ref of cl_device_id for convenience
  2154. cl_device_id device = backend_ctx->device;
  2155. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  2156. // Check device OpenCL version, OpenCL 2.0 or above is required
  2157. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  2158. if (opencl_c_version.major < 2) {
  2159. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  2160. return nullptr;
  2161. }
  2162. // Check driver version
  2163. size_t driver_version_str_size;
  2164. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  2165. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  2166. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  2167. driver_version[driver_version_str_size] = '\0';
  2168. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  2169. backend_ctx->driver_version = driver_version;
  2170. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  2171. backend_ctx->has_vector_subgroup_broadcast =
  2172. (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
  2173. (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
  2174. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  2175. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  2176. size_t ext_str_size;
  2177. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  2178. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  2179. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  2180. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  2181. // Check if ext_buffer contains cl_khr_fp16
  2182. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  2183. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  2184. // fp16 is required
  2185. if (!backend_ctx->fp16_support) {
  2186. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  2187. return nullptr;
  2188. }
  2189. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  2190. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  2191. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  2192. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  2193. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  2194. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  2195. return nullptr;
  2196. }
  2197. cl_uint base_align_in_bits;
  2198. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  2199. GGML_ASSERT(base_align_in_bits % 8u == 0);
  2200. backend_ctx->alignment = base_align_in_bits / 8u;
  2201. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  2202. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  2203. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  2204. clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
  2205. GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
  2206. // Check SVM.
  2207. cl_device_svm_capabilities svm_caps;
  2208. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  2209. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  2210. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  2211. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  2212. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  2213. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  2214. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  2215. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  2216. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  2217. if (opencl_c_version.major >= 3) {
  2218. // Assume it is not available for 3.0, since it is optional in 3.0.
  2219. // If compiling against 3.0, then we can query.
  2220. backend_ctx->non_uniform_workgroups = false;
  2221. #if CL_TARGET_OPENCL_VERSION >= 300
  2222. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  2223. &backend_ctx->non_uniform_workgroups, 0));
  2224. #endif
  2225. } else {
  2226. GGML_ASSERT(opencl_c_version.major == 2);
  2227. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  2228. backend_ctx->non_uniform_workgroups = true;
  2229. }
  2230. // Print out configurations
  2231. #ifdef GGML_OPENCL_SOA_Q
  2232. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  2233. #endif // GGML_OPENCL_SOA_Q
  2234. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2235. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  2236. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2237. cl_int err;
  2238. // A local ref of cl_context for convenience
  2239. cl_context context = backend_ctx->context = dev_ctx->context;
  2240. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  2241. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  2242. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  2243. //)));
  2244. cl_command_queue_properties command_queue_props = 0;
  2245. #ifdef GGML_OPENCL_PROFILING
  2246. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  2247. #endif
  2248. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  2249. // Load kernels
  2250. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  2251. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2252. // Allocate intermediate buffers and images
  2253. size_t required_A_q_d_bytes = 311164928;
  2254. size_t required_A_s_d_bytes = 38895616;
  2255. size_t required_B_d_bytes = 45088768;
  2256. // Ensure buffer sizes do not exceed the maximum allocation size
  2257. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  2258. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  2259. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  2260. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  2261. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2262. required_A_q_d_bytes, max_A_q_d_bytes);
  2263. }
  2264. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  2265. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2266. required_A_s_d_bytes, max_A_s_d_bytes);
  2267. }
  2268. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  2269. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2270. required_B_d_bytes, max_B_d_bytes);
  2271. }
  2272. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  2273. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  2274. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  2275. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2276. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  2277. dev_ctx->backend_ctx = backend_ctx.release();
  2278. return dev_ctx->backend_ctx;
  2279. }
  2280. static void ggml_cl2_free(ggml_backend_t backend) {
  2281. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  2282. ctx->free();
  2283. // The CL context is shared by all backends, release it if all backends have been released
  2284. bool should_release_opencl = true;
  2285. for (auto device : g_ggml_backend_opencl_devices) {
  2286. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  2287. if (ctx_dev->backend_ctx->ref_count > 0) {
  2288. should_release_opencl = false;
  2289. }
  2290. }
  2291. if (should_release_opencl) {
  2292. CL_CHECK(clReleaseContext(ctx->context));
  2293. }
  2294. }
  2295. //------------------------------------------------------------------------------
  2296. // Tensor extra management
  2297. //------------------------------------------------------------------------------
  2298. struct ggml_tensor_extra_cl {
  2299. // The buffer object that holds the data.
  2300. cl_mem data_device;
  2301. // The offset into the buffer object. This is primarily for scratch buffer
  2302. // and view operation.
  2303. // NB: this offset no longer includes view offset (view_offs). Whenever this
  2304. // offset is used, view_offs should be considered.
  2305. cl_ulong offset;
  2306. // The actual size of the cl_mem object. This is needed when returning the
  2307. // block to the pool.
  2308. size_t actual_size;
  2309. void reset() {
  2310. data_device = nullptr;
  2311. offset = 0;
  2312. actual_size = 0;
  2313. }
  2314. };
  2315. // Additional tensor extra structs for quantized tensors.
  2316. // These tensors are loaded from files and should not be allocated in scratch --
  2317. // they should always be allocated from the pool. Hence, they do not have an
  2318. // `offset`, which indicate their locations in the scratch buffer.
  2319. struct ggml_tensor_extra_cl_q4_0 {
  2320. // Quantized values.
  2321. cl_mem q = nullptr;
  2322. // Quantized values in image1d_buffer_t.
  2323. cl_mem q_img = nullptr;
  2324. // Scales.
  2325. cl_mem d = nullptr;
  2326. // Scales in image1d_buffer_t.
  2327. cl_mem d_img = nullptr;
  2328. // Size of quantized values.
  2329. size_t size_q = 0;
  2330. // Size of scales.
  2331. size_t size_d = 0;
  2332. ~ggml_tensor_extra_cl_q4_0() {
  2333. reset();
  2334. }
  2335. void reset() {
  2336. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2337. // They must be properly released so that the original buffer can be
  2338. // properly released to avoid memory leak.
  2339. if (q != nullptr) {
  2340. CL_CHECK(clReleaseMemObject(q));
  2341. q = nullptr;
  2342. }
  2343. if (d != nullptr) {
  2344. CL_CHECK(clReleaseMemObject(d));
  2345. d = nullptr;
  2346. }
  2347. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  2348. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  2349. // So, there is no need to release them here.
  2350. // TODO: initialize them for non SMALL_PATH path, or remove them.
  2351. q_img = nullptr;
  2352. d_img = nullptr;
  2353. size_q = 0;
  2354. size_d = 0;
  2355. }
  2356. };
  2357. struct ggml_tensor_extra_cl_mxfp4 {
  2358. // Quantized values.
  2359. cl_mem q = nullptr;
  2360. // Quantized values in image1d_buffer_t.
  2361. cl_mem q_img = nullptr;
  2362. // Scales in E8M0.
  2363. cl_mem e = nullptr;
  2364. // Scales in image1d_buffer_t.
  2365. cl_mem e_img = nullptr;
  2366. // Size of quantized values.
  2367. size_t size_q = 0;
  2368. // Size of scales.
  2369. size_t size_e = 0;
  2370. ~ggml_tensor_extra_cl_mxfp4() {
  2371. reset();
  2372. }
  2373. void reset() {
  2374. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2375. // They must be properly released so that the original buffer can be
  2376. // properly released to avoid memory leak.
  2377. if (q != nullptr) {
  2378. CL_CHECK(clReleaseMemObject(q));
  2379. q = nullptr;
  2380. }
  2381. if (e != nullptr) {
  2382. CL_CHECK(clReleaseMemObject(e));
  2383. e = nullptr;
  2384. }
  2385. if (q != nullptr) {
  2386. CL_CHECK(clReleaseMemObject(q_img));
  2387. q = nullptr;
  2388. }
  2389. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2390. // that wraps around q and d to utilize image access path.
  2391. q_img = nullptr;
  2392. e_img = nullptr;
  2393. size_q = 0;
  2394. size_e = 0;
  2395. }
  2396. };
  2397. struct ggml_tensor_extra_cl_q8_0 {
  2398. cl_mem q = nullptr;
  2399. cl_mem q_img = nullptr;
  2400. cl_mem d = nullptr;
  2401. cl_mem d_img = nullptr;
  2402. size_t size_q = 0;
  2403. size_t size_d = 0;
  2404. ~ggml_tensor_extra_cl_q8_0() {
  2405. reset();
  2406. }
  2407. void reset() {
  2408. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2409. // They must be properly released so that the original buffer can be
  2410. // properly released to avoid memory leak.
  2411. if (q != nullptr) {
  2412. CL_CHECK(clReleaseMemObject(q));
  2413. q = nullptr;
  2414. }
  2415. if (d != nullptr) {
  2416. CL_CHECK(clReleaseMemObject(d));
  2417. d = nullptr;
  2418. }
  2419. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2420. // that wraps around q and d to utilize image access path.
  2421. q_img = nullptr;
  2422. d_img = nullptr;
  2423. size_q = 0;
  2424. size_d = 0;
  2425. }
  2426. };
  2427. //------------------------------------------------------------------------------
  2428. // Backend API
  2429. //------------------------------------------------------------------------------
  2430. //
  2431. // backend
  2432. //
  2433. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  2434. return "OpenCL";
  2435. UNUSED(backend);
  2436. }
  2437. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  2438. ggml_cl2_free(backend);
  2439. }
  2440. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2441. GGML_UNUSED(backend);
  2442. GGML_UNUSED(tensor);
  2443. GGML_UNUSED(data);
  2444. GGML_UNUSED(offset);
  2445. GGML_UNUSED(size);
  2446. }
  2447. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2448. GGML_UNUSED(backend);
  2449. GGML_UNUSED(tensor);
  2450. GGML_UNUSED(data);
  2451. GGML_UNUSED(offset);
  2452. GGML_UNUSED(size);
  2453. }
  2454. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  2455. GGML_UNUSED(backend);
  2456. GGML_UNUSED(src);
  2457. GGML_UNUSED(dst);
  2458. return false;
  2459. }
  2460. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  2461. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2462. cl_event evt;
  2463. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  2464. CL_CHECK(clWaitForEvents(1, &evt));
  2465. CL_CHECK(clReleaseEvent(evt));
  2466. }
  2467. // Syncronizes the 'backend_ctx's device with others so that commands
  2468. // enqueued to it won't start until commands in the other devices have
  2469. // completed.
  2470. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  2471. if (g_ggml_backend_opencl_devices.size() < 2)
  2472. return; // No other devices to synchronize with.
  2473. std::vector<cl_event> events;
  2474. events.reserve(g_ggml_backend_opencl_devices.size());
  2475. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  2476. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  2477. if (backend_ctx != other_backend_ctx) {
  2478. cl_event ev;
  2479. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  2480. CL_CHECK(clFlush(other_backend_ctx->queue));
  2481. events.push_back(ev);
  2482. }
  2483. }
  2484. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  2485. for (auto ev : events) {
  2486. CL_CHECK(clReleaseEvent(ev));
  2487. }
  2488. }
  2489. static void sync_with_other_backends(ggml_backend_t backend) {
  2490. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2491. sync_with_other_backends(backend_ctx);
  2492. }
  2493. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  2494. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  2495. return false;
  2496. }
  2497. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  2498. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  2499. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2500. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  2501. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  2502. // rms_norm only supports f32
  2503. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2504. mul->src[1]->type != GGML_TYPE_F32 ||
  2505. mul->type != GGML_TYPE_F32) {
  2506. return false;
  2507. }
  2508. // if rms_norm is the B operand, then we don't handle broadcast
  2509. if (rms_norm == mul->src[1] &&
  2510. !ggml_are_same_shape(mul->src[0], rms_norm)) {
  2511. return false;
  2512. }
  2513. // rms_norm assumes contiguous rows
  2514. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2515. return false;
  2516. }
  2517. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2518. const ggml_tensor *norm = cgraph->nodes[node_idx];
  2519. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2520. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2521. const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
  2522. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2523. // norm fusion only supports F32
  2524. if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2525. return false;
  2526. }
  2527. if (norm->src[0]->ne[0] % 4 != 0) {
  2528. return false;
  2529. }
  2530. if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2531. return false;
  2532. }
  2533. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2534. const ggml_tensor *gn = cgraph->nodes[node_idx];
  2535. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2536. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2537. const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
  2538. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2539. if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2540. return false;
  2541. }
  2542. if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2543. return false;
  2544. }
  2545. }
  2546. return true;
  2547. }
  2548. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2549. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2550. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2551. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2552. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2553. for (int i = 0; i < cgraph->n_nodes; i++) {
  2554. ggml_tensor * node = cgraph->nodes[i];
  2555. // NOTE: this may oversynchronize by synchronizing with
  2556. // backends/devices which don't compute 'cgraph's
  2557. // dependencies.
  2558. sync_with_other_backends(backend);
  2559. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2560. continue;
  2561. }
  2562. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2563. ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2564. i += 2;
  2565. continue;
  2566. }
  2567. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2568. ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2569. i += 2;
  2570. continue;
  2571. }
  2572. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2573. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2574. i++;
  2575. continue;
  2576. }
  2577. bool ok = ggml_cl_compute_forward(backend, node);
  2578. if (!ok) {
  2579. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2580. }
  2581. GGML_ASSERT(ok);
  2582. }
  2583. return GGML_STATUS_SUCCESS;
  2584. }
  2585. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2586. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  2587. ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
  2588. switch (op->op) {
  2589. case GGML_OP_NONE:
  2590. return true;
  2591. case GGML_OP_GET_ROWS:
  2592. switch (op->src[0]->type) {
  2593. case GGML_TYPE_F32:
  2594. case GGML_TYPE_F16:
  2595. return true;
  2596. case GGML_TYPE_Q4_0:
  2597. #ifdef GGML_OPENCL_SOA_Q
  2598. // We do not support flattened Q4_0 (and possibly other Q's)
  2599. return false;
  2600. #else // GGML_OPENCL_SOA_Q
  2601. return true;
  2602. #endif // GGML_OPENCL_SOA_Q
  2603. default:
  2604. return false;
  2605. }
  2606. case GGML_OP_SET_ROWS:
  2607. {
  2608. // TODO: add support
  2609. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2610. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2611. if (op->src[0]->type != GGML_TYPE_F32) {
  2612. return false;
  2613. }
  2614. switch (op->type) {
  2615. case GGML_TYPE_F16:
  2616. case GGML_TYPE_F32:
  2617. return (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
  2618. default:
  2619. return false;
  2620. }
  2621. }
  2622. case GGML_OP_CPY:
  2623. case GGML_OP_DUP:
  2624. case GGML_OP_CONT:
  2625. switch (op->src[0]->type) {
  2626. case GGML_TYPE_F32:
  2627. switch (op->type) {
  2628. case GGML_TYPE_F16:
  2629. case GGML_TYPE_F32:
  2630. return true;
  2631. default:
  2632. return false;
  2633. }
  2634. case GGML_TYPE_F16:
  2635. switch (op->type) {
  2636. case GGML_TYPE_F16:
  2637. case GGML_TYPE_F32:
  2638. return true;
  2639. default:
  2640. return false;
  2641. }
  2642. default:
  2643. return false;
  2644. }
  2645. case GGML_OP_SCALE:
  2646. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2647. case GGML_OP_ADD:
  2648. if (op->type == GGML_TYPE_F16) {
  2649. const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
  2650. const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
  2651. if (src0_ok && src1_ok) {
  2652. return true;
  2653. }
  2654. }
  2655. case GGML_OP_MUL:
  2656. case GGML_OP_DIV:
  2657. case GGML_OP_SUB:
  2658. return (op->src[0]->type == op->src[1]->type) &&
  2659. (op->src[0]->type == op->type) &&
  2660. (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
  2661. case GGML_OP_ADD_ID:
  2662. return op->src[0]->type == GGML_TYPE_F32;
  2663. case GGML_OP_SQR:
  2664. case GGML_OP_SQRT:
  2665. return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
  2666. ggml_is_contiguous(op->src[0]);
  2667. case GGML_OP_UNARY:
  2668. switch (ggml_get_unary_op(op)) {
  2669. case GGML_UNARY_OP_GELU:
  2670. case GGML_UNARY_OP_SILU:
  2671. case GGML_UNARY_OP_RELU:
  2672. case GGML_UNARY_OP_GELU_ERF:
  2673. case GGML_UNARY_OP_GELU_QUICK:
  2674. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2675. case GGML_UNARY_OP_SIGMOID:
  2676. return ggml_is_contiguous(op->src[0]);
  2677. case GGML_UNARY_OP_TANH:
  2678. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2679. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2680. default:
  2681. return false;
  2682. }
  2683. case GGML_OP_GLU:
  2684. switch (ggml_get_glu_op(op)) {
  2685. case GGML_GLU_OP_GEGLU:
  2686. case GGML_GLU_OP_REGLU:
  2687. case GGML_GLU_OP_SWIGLU:
  2688. case GGML_GLU_OP_SWIGLU_OAI:
  2689. case GGML_GLU_OP_GEGLU_ERF:
  2690. case GGML_GLU_OP_GEGLU_QUICK:
  2691. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2692. default:
  2693. return false;
  2694. }
  2695. case GGML_OP_CLAMP:
  2696. return op->src[0]->type == GGML_TYPE_F32;
  2697. case GGML_OP_SOFT_MAX:
  2698. case GGML_OP_NORM:
  2699. return true;
  2700. case GGML_OP_RMS_NORM:
  2701. return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
  2702. case GGML_OP_REPEAT:
  2703. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2704. case GGML_OP_PAD:
  2705. // TODO: add circular padding support for opencl, see https://github.com/ggml-org/llama.cpp/pull/16985
  2706. if (ggml_get_op_params_i32(op, 8) != 0) {
  2707. return false;
  2708. }
  2709. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2710. case GGML_OP_UPSCALE: {
  2711. ggml_scale_mode mode = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & 0xFF);
  2712. const bool antialias = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & GGML_SCALE_FLAG_ANTIALIAS);
  2713. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
  2714. (mode == GGML_SCALE_MODE_NEAREST || mode == GGML_SCALE_MODE_BILINEAR) && !antialias;
  2715. }
  2716. case GGML_OP_CONV_2D:
  2717. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2718. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2719. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2720. case GGML_OP_SSM_CONV:
  2721. return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2722. case GGML_OP_CONCAT:
  2723. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2724. case GGML_OP_TIMESTEP_EMBEDDING:
  2725. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2726. case GGML_OP_GROUP_NORM:
  2727. return ggml_is_contiguous(op->src[0]);
  2728. case GGML_OP_MUL_MAT:
  2729. if (op->src[0]->type == GGML_TYPE_F16) {
  2730. return true;
  2731. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2732. return op->src[1]->type == GGML_TYPE_F32;
  2733. } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
  2734. op->src[0]->type == GGML_TYPE_Q6_K) {
  2735. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2736. } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
  2737. return op->src[1]->type == GGML_TYPE_F32;
  2738. }
  2739. return false;
  2740. case GGML_OP_MUL_MAT_ID:
  2741. if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2742. op->src[0]->type == GGML_TYPE_Q8_0 ||
  2743. op->src[0]->type == GGML_TYPE_MXFP4) {
  2744. if (op->src[1]->type == GGML_TYPE_F32) {
  2745. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2746. }
  2747. }
  2748. return false;
  2749. case GGML_OP_RESHAPE:
  2750. case GGML_OP_VIEW:
  2751. case GGML_OP_PERMUTE:
  2752. case GGML_OP_TRANSPOSE:
  2753. return true;
  2754. case GGML_OP_DIAG_MASK_INF:
  2755. return op->ne[3] == 1;
  2756. case GGML_OP_ROPE: {
  2757. const int mode = ((const int32_t *) op->op_params)[2];
  2758. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2759. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2760. if (is_mrope && !is_vision) {
  2761. if (op->src[0]->type == GGML_TYPE_F32 ||
  2762. op->src[0]->type == GGML_TYPE_F16) {
  2763. return true;
  2764. }
  2765. return false;
  2766. }
  2767. if (is_vision) {
  2768. if (op->src[0]->type == GGML_TYPE_F32 ||
  2769. op->src[0]->type == GGML_TYPE_F16) {
  2770. return true;
  2771. }
  2772. return false;
  2773. }
  2774. return true;
  2775. }
  2776. case GGML_OP_IM2COL:
  2777. return true;
  2778. case GGML_OP_ARGSORT: {
  2779. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  2780. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  2781. int cols = 1;
  2782. while (cols < op->ne[0]) {
  2783. cols *= 2;
  2784. }
  2785. return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
  2786. }
  2787. case GGML_OP_SUM_ROWS:
  2788. case GGML_OP_MEAN:
  2789. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2790. case GGML_OP_FLASH_ATTN_EXT:
  2791. {
  2792. const ggml_tensor * q = op->src[0];
  2793. const ggml_tensor * k = op->src[1];
  2794. const ggml_tensor * v = op->src[2];
  2795. const int dk = q->ne[0];
  2796. const int dv = v->ne[0];
  2797. const struct { int dk; int dv; } supported_dims[] = {
  2798. { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
  2799. {112, 112}, {128, 128}, {192, 128},
  2800. {192, 192}, {256, 256},
  2801. };
  2802. bool dims_supported = false;
  2803. for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
  2804. if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
  2805. dims_supported = true;
  2806. break;
  2807. }
  2808. }
  2809. if (!dims_supported) {
  2810. return false;
  2811. }
  2812. const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
  2813. v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2814. const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
  2815. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
  2816. const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
  2817. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
  2818. return is_f32_f32 || is_f16_f16 || is_f32_f16;
  2819. }
  2820. default:
  2821. return false;
  2822. }
  2823. }
  2824. // Forward declaration - implementation appears later in the file.
  2825. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2826. static ggml_guid_t ggml_backend_opencl_guid() {
  2827. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2828. return &guid;
  2829. }
  2830. static ggml_backend_i ggml_backend_opencl_i = {
  2831. /* .get_name = */ ggml_backend_opencl_name,
  2832. /* .free = */ ggml_backend_opencl_free,
  2833. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2834. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2835. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2836. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2837. /* .graph_plan_create = */ NULL,
  2838. /* .graph_plan_free = */ NULL,
  2839. /* .graph_plan_update = */ NULL,
  2840. /* .graph_plan_compute = */ NULL,
  2841. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2842. /* .event_record = */ NULL,
  2843. /* .event_wait = */ NULL,
  2844. /* .graph_optimize = */ NULL,
  2845. };
  2846. ggml_backend_t ggml_backend_opencl_init(void) {
  2847. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2848. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2849. ggml_backend_t backend = new ggml_backend {
  2850. /* .guid = */ ggml_backend_opencl_guid(),
  2851. /* .iface = */ ggml_backend_opencl_i,
  2852. /* .device = */ dev,
  2853. /* .context = */ backend_ctx
  2854. };
  2855. return backend;
  2856. }
  2857. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2858. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2859. }
  2860. //
  2861. // buffer
  2862. //
  2863. struct ggml_backend_opencl_buffer_context {
  2864. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2865. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2866. // each tensor is allocated a separate buffer. When flattening is enabled
  2867. // with small allocation, each tensor is backed by two cl_mem objects (for
  2868. // quants and scales) packed into a backend_opencl_buffer.
  2869. ggml_backend_opencl_buffer_context(cl_mem buf)
  2870. : name("OpenCL") {
  2871. buffer.push_back(buf);
  2872. }
  2873. ~ggml_backend_opencl_buffer_context() {
  2874. for (cl_mem buf : buffer) {
  2875. CL_CHECK(clReleaseMemObject(buf));
  2876. }
  2877. for (cl_mem im : img) {
  2878. CL_CHECK(clReleaseMemObject(im));
  2879. }
  2880. // Delete all extras to trigger their destructors
  2881. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2882. delete e;
  2883. }
  2884. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2885. delete e;
  2886. }
  2887. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2888. delete e;
  2889. }
  2890. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2891. delete e;
  2892. }
  2893. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
  2894. delete e;
  2895. }
  2896. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2897. delete e;
  2898. }
  2899. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
  2900. delete e;
  2901. }
  2902. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2903. delete e;
  2904. }
  2905. }
  2906. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2907. ggml_tensor_extra_cl * extra;
  2908. if (temp_tensor_extras.empty()) {
  2909. extra = new ggml_tensor_extra_cl();
  2910. } else {
  2911. extra = temp_tensor_extras.back();
  2912. temp_tensor_extras.pop_back();
  2913. }
  2914. temp_tensor_extras_in_use.push_back(extra);
  2915. extra->reset();
  2916. return extra;
  2917. }
  2918. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2919. ggml_tensor_extra_cl_q4_0 * extra;
  2920. if (temp_tensor_extras_q4_0.empty()) {
  2921. extra = new ggml_tensor_extra_cl_q4_0();
  2922. } else {
  2923. extra = temp_tensor_extras_q4_0.back();
  2924. temp_tensor_extras_q4_0.pop_back();
  2925. }
  2926. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2927. extra->reset();
  2928. return extra;
  2929. }
  2930. ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
  2931. ggml_tensor_extra_cl_mxfp4 * extra;
  2932. if (temp_tensor_extras_mxfp4.empty()) {
  2933. extra = new ggml_tensor_extra_cl_mxfp4();
  2934. } else {
  2935. extra = temp_tensor_extras_mxfp4.back();
  2936. temp_tensor_extras_mxfp4.pop_back();
  2937. }
  2938. temp_tensor_extras_mxfp4_in_use.push_back(extra);
  2939. extra->reset();
  2940. return extra;
  2941. }
  2942. ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
  2943. ggml_tensor_extra_cl_q8_0 * extra;
  2944. if (temp_tensor_extras_q8_0.empty()) {
  2945. extra = new ggml_tensor_extra_cl_q8_0();
  2946. } else {
  2947. extra = temp_tensor_extras_q8_0.back();
  2948. temp_tensor_extras_q8_0.pop_back();
  2949. }
  2950. temp_tensor_extras_q8_0_in_use.push_back(extra);
  2951. extra->reset();
  2952. return extra;
  2953. }
  2954. void reset() {
  2955. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2956. temp_tensor_extras.push_back(e);
  2957. }
  2958. temp_tensor_extras_in_use.clear();
  2959. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2960. temp_tensor_extras_q4_0.push_back(e);
  2961. }
  2962. temp_tensor_extras_q4_0_in_use.clear();
  2963. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2964. temp_tensor_extras_mxfp4.push_back(e);
  2965. }
  2966. temp_tensor_extras_mxfp4_in_use.clear();
  2967. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2968. temp_tensor_extras_q8_0.push_back(e);
  2969. }
  2970. temp_tensor_extras_q8_0_in_use.clear();
  2971. }
  2972. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2973. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2974. // extras get created and put in `in_use`. When the buffer is reset via
  2975. // the `reset` callback, all extras in `in_use` get moved to available extras
  2976. // for reuse.
  2977. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2978. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2979. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2980. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2981. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
  2982. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
  2983. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
  2984. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
  2985. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2986. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2987. // Hence, there is alway a buffer object in this vector. When each tensor is
  2988. // being initialized, this original buffer object will be released if both
  2989. // flattening and small allocation are enabled, and additional buffer
  2990. // objects will be created in init_tensor to represent flattened quantized
  2991. // weights.
  2992. std::vector<cl_mem> buffer;
  2993. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2994. // For Q4_0 quantization, there should be two of them - one for quants and
  2995. // one for scales. They should be populated only when flattening and small
  2996. // allocation are enabled.
  2997. std::vector<cl_mem> img;
  2998. std::string name;
  2999. };
  3000. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  3001. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3002. delete ctx;
  3003. }
  3004. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  3005. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  3006. return (void *) (uintptr_t) backend_ctx->alignment;
  3007. }
  3008. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  3009. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3010. ggml_cl2_init(buffer->buft->device);
  3011. if (tensor->view_src != nullptr) {
  3012. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  3013. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  3014. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  3015. // Reuse extra of the parent tensor. The offset of this view tensor
  3016. // becomes `extra->offset + view_offs` and needs to be calculated when
  3017. // it is used. This changes is needed because of the change to
  3018. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  3019. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  3020. // to allocate extras from the same buffer context for ordinary
  3021. // intermediate tensors. But for views into kv cache tensors, doing so
  3022. // would mess up the extras used by kv cache.
  3023. // Before #7640, `buffer` is for intermediate tensors, which is always
  3024. // different from that of kv cache tensors.
  3025. //
  3026. // NB: now extra->offset no longer accounts for view_offs.
  3027. // NB: this should not apply to weight tensors (for end-to-end runs, but
  3028. // may apply for test-backend-ops).
  3029. // FIXME: if any unexpected results are seen, double check the offset -
  3030. // there could be other places that need fix.
  3031. tensor->extra = view_extra;
  3032. } else {
  3033. {
  3034. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  3035. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  3036. extra->offset = offset;
  3037. extra->data_device = ctx->buffer[0];
  3038. extra->actual_size = ggml_nbytes(tensor);
  3039. tensor->extra = extra;
  3040. }
  3041. }
  3042. return GGML_STATUS_SUCCESS;
  3043. }
  3044. // The optimized gemm and gemv kernels are used for large matrices without batch.
  3045. // tensor is the quantized weights matrix.
  3046. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  3047. int64_t threshold_ne0 = 512;
  3048. int64_t threshold_ne1 = 512;
  3049. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  3050. backend_ctx->adreno_cl_compiler_version.type != DX) {
  3051. threshold_ne0 = 128;
  3052. threshold_ne1 = 128;
  3053. }
  3054. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  3055. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3056. }
  3057. inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  3058. GGML_UNUSED(backend_ctx);
  3059. int ne01 = tensor->ne[1];
  3060. return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
  3061. }
  3062. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  3063. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3064. cl_context context = backend_ctx->context;
  3065. cl_command_queue queue = backend_ctx->queue;
  3066. #ifdef GGML_OPENCL_SOA_Q
  3067. // We separate the quantized bits and scale from block_q4_0 by using an
  3068. // additional kernel, where each thread handles a block. We first read the
  3069. // original weights into a temporary buffer, then create two separate
  3070. // buffers for quantized bits and scales, which are then populated by the
  3071. // conversion kernel.
  3072. if (tensor->type == GGML_TYPE_Q4_0) {
  3073. // Tensors should have been preallocated, therefore they should
  3074. // already have ggml_tensor_extra_cl as extra.
  3075. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3076. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3077. // Allocate the new extra and create aliases from the original.
  3078. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3079. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  3080. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3081. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3082. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3083. cl_int err;
  3084. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3085. ggml_nbytes(tensor), NULL, &err);
  3086. CL_CHECK(err);
  3087. CL_CHECK(clEnqueueWriteBuffer(
  3088. queue, data_device, CL_TRUE, 0,
  3089. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3090. // We consider the specified offset arg as always, although For weights
  3091. // the offset arg should be 0 (we do not assert this).
  3092. //GGML_ASSERT(offset == 0);
  3093. // We create subbuffers from the original tensor buffer for scales and
  3094. // quants - i.e., scales and quants are aliases into the buffer obejct
  3095. // that backs the original tensor. This is a cleaner way to adapt to the
  3096. // new memory management.
  3097. // In the old code, we allocate new buffers for scales and quants
  3098. // respectively, which could still be done but would result in double
  3099. // allocation; properly deallocating the preallocated buffer that backs
  3100. // the tensors is tricky and would leak the backend specific information
  3101. // into the general backend code.
  3102. // Does this create misaligned subbuffers (alignment is 1024) in certain
  3103. // cases ?
  3104. cl_buffer_region region;
  3105. // The original tensor memory is divided into scales and quants, i.e.,
  3106. // we first store scales, then quants.
  3107. // Create subbuffer for scales.
  3108. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3109. region.size = size_d;
  3110. extra->d = clCreateSubBuffer(
  3111. extra_orig->data_device, CL_MEM_READ_WRITE,
  3112. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3113. CL_CHECK(err);
  3114. auto previous_origin = region.origin;
  3115. // Create subbuffer for quants.
  3116. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3117. region.size = size_q;
  3118. extra->q = clCreateSubBuffer(
  3119. extra_orig->data_device, CL_MEM_READ_WRITE,
  3120. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3121. CL_CHECK(err);
  3122. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3123. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3124. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3125. // The optimized kernels need weights in natural order, so unshuffle.
  3126. if (use_adreno_kernels(backend_ctx, tensor)) {
  3127. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  3128. }
  3129. #else
  3130. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3131. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3132. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3133. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3134. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3135. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3136. size_t local_work_size[] = {64, 1, 1};
  3137. cl_event evt;
  3138. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3139. CL_CHECK(clWaitForEvents(1, &evt));
  3140. CL_CHECK(clReleaseMemObject(data_device));
  3141. tensor->extra = extra;
  3142. // transpose the weights and scales
  3143. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3144. // Only do transpose for large, non batched matrix
  3145. // TODO: use preallocated images instead of sub-buffer then image
  3146. if (use_adreno_kernels(backend_ctx, tensor)) {
  3147. // <----------------------------------------------------------------------------------> //
  3148. // start transpose
  3149. // <----------------------------------------------------------------------------------> //
  3150. int M = tensor->ne[1]; // ne01
  3151. int K = tensor->ne[0]; // ne00
  3152. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  3153. GGML_ASSERT(K % 32 == 0);
  3154. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  3155. GGML_ASSERT(M % 4 == 0);
  3156. // transpose is out of place, so we need to allocate transposed buffers
  3157. // <----------------------------------------------------------------------------------> //
  3158. // use sub_buffer of max buffer size instead
  3159. size_t q_size_bytes = K * M / 8 * sizeof(float);
  3160. cl_buffer_region region;
  3161. region.origin = 0;
  3162. region.size = q_size_bytes;
  3163. cl_mem qT_d = clCreateSubBuffer(
  3164. backend_ctx->A_q_d_max,
  3165. 0,
  3166. CL_BUFFER_CREATE_TYPE_REGION,
  3167. &region,
  3168. &err);
  3169. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  3170. CL_CHECK(err);
  3171. bool K_tile_trans = true;
  3172. if ((K / 32) % 4 != 0){
  3173. K_tile_trans =false;
  3174. }
  3175. size_t d_size_bytes = M * (K / 32) * 2;
  3176. region.origin = 0;
  3177. region.size = d_size_bytes;
  3178. cl_mem dT_d = clCreateSubBuffer(
  3179. backend_ctx->A_s_d_max,
  3180. 0,
  3181. CL_BUFFER_CREATE_TYPE_REGION,
  3182. &region,
  3183. &err);
  3184. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  3185. CL_CHECK(err);
  3186. // <----------------------------------------------------------------------------------> //
  3187. // create images from the buffers
  3188. // <----------------------------------------------------------------------------------> //
  3189. cl_mem q_d_image1D;
  3190. cl_mem d_d_image1D;
  3191. cl_mem qT_d_image1D;
  3192. cl_mem dT_d_image1D;
  3193. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3194. cl_image_desc img_desc_1d;
  3195. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3196. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3197. img_desc_1d.image_width = M * K / 4 / 4;
  3198. img_desc_1d.buffer = extra->q;
  3199. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3200. CL_CHECK(err);
  3201. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3202. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3203. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3204. img_desc_1d.image_width = M * K / 4 / 4;
  3205. img_desc_1d.buffer = qT_d;
  3206. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3207. CL_CHECK(err);
  3208. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3209. if (K_tile_trans) {
  3210. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3211. img_desc_1d.image_width = M * K / 32 / 4;
  3212. } else {
  3213. img_fmt_1d = { CL_R, CL_HALF_FLOAT };
  3214. img_desc_1d.image_width = M * K / 32;
  3215. }
  3216. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3217. img_desc_1d.buffer = extra->d;
  3218. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3219. CL_CHECK(err);
  3220. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3221. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3222. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3223. img_desc_1d.image_width = M * K / 32 / 4;
  3224. img_desc_1d.buffer = dT_d;
  3225. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3226. CL_CHECK(err);
  3227. // <----------------------------------------------------------------------------------> //
  3228. // set up and call the transpose kernels
  3229. // <----------------------------------------------------------------------------------> //
  3230. // weights
  3231. int height_q = M / 4;
  3232. int width_q = K / 4 / 4;
  3233. kernel = backend_ctx->kernel_transpose_16;
  3234. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  3235. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  3236. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  3237. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  3238. size_t local_size_q[3] = {4, 16, 1};
  3239. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  3240. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  3241. CL_CHECK(clWaitForEvents(1, &evt));
  3242. // scales
  3243. int height_s = M / 4;
  3244. int width_s = K / 32 / 4;
  3245. kernel = backend_ctx->kernel_transpose_16;
  3246. if (!K_tile_trans) {
  3247. kernel = backend_ctx->kernel_transpose_16_4x1;
  3248. width_s = K / 32;
  3249. }
  3250. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  3251. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  3252. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  3253. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  3254. size_t local_size_s[3] = {4, 16, 1};
  3255. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  3256. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  3257. CL_CHECK(clWaitForEvents(1, &evt));
  3258. // <----------------------------------------------------------------------------------> //
  3259. // copy transposed buffer contents to original buffers
  3260. // <----------------------------------------------------------------------------------> //
  3261. // weights
  3262. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  3263. CL_CHECK(clWaitForEvents(1, &evt));
  3264. // scales
  3265. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  3266. CL_CHECK(clWaitForEvents(1, &evt));
  3267. // <----------------------------------------------------------------------------------> //
  3268. // deallocate transpose buffers
  3269. // <----------------------------------------------------------------------------------> //
  3270. CL_CHECK(clReleaseMemObject(qT_d));
  3271. CL_CHECK(clReleaseMemObject(dT_d));
  3272. // deallocate temporary images
  3273. CL_CHECK(clReleaseMemObject(q_d_image1D));
  3274. CL_CHECK(clReleaseMemObject(d_d_image1D));
  3275. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  3276. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  3277. // <----------------------------------------------------------------------------------> //
  3278. // end transpose
  3279. // <----------------------------------------------------------------------------------> //
  3280. }
  3281. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3282. return;
  3283. }
  3284. if (tensor->type == GGML_TYPE_MXFP4) {
  3285. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3286. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3287. // Allocate the new extra and create aliases from the original.
  3288. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3289. ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
  3290. size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
  3291. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3292. GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3293. cl_int err;
  3294. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3295. ggml_nbytes(tensor), NULL, &err);
  3296. CL_CHECK(err);
  3297. CL_CHECK(clEnqueueWriteBuffer(
  3298. queue, data_device, CL_TRUE, 0,
  3299. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3300. // The original tensor memory is divided into scales and quants, i.e.,
  3301. // we first store scales, then quants.
  3302. cl_buffer_region region;
  3303. // Create subbuffer for scales.
  3304. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3305. region.size = size_e;
  3306. extra->e = clCreateSubBuffer(
  3307. extra_orig->data_device, CL_MEM_READ_WRITE,
  3308. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3309. CL_CHECK(err);
  3310. auto previous_origin = region.origin;
  3311. // Create subbuffer for quants.
  3312. region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
  3313. region.size = size_q;
  3314. extra->q = clCreateSubBuffer(
  3315. extra_orig->data_device, CL_MEM_READ_WRITE,
  3316. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3317. CL_CHECK(err);
  3318. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3319. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3320. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
  3321. int ne00 = tensor->ne[0];
  3322. int ne01 = tensor->ne[1];
  3323. int ne02 = tensor->ne[2];
  3324. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3325. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3326. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3327. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
  3328. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
  3329. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3330. size_t local_work_size[3] = {64, 2, 1};
  3331. cl_event evt;
  3332. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3333. CL_CHECK(clWaitForEvents(1, &evt));
  3334. CL_CHECK(clReleaseMemObject(data_device));
  3335. tensor->extra = extra;
  3336. return;
  3337. }
  3338. #endif
  3339. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
  3340. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3341. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3342. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3343. size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3344. size_t local_work_size[3] = {64, 1, 1};
  3345. cl_event evt;
  3346. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3347. CL_CHECK(clWaitForEvents(1, &evt));
  3348. CL_CHECK(clReleaseMemObject(data_device));
  3349. // Create image for Q
  3350. cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
  3351. cl_image_desc img_desc_q = {
  3352. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3353. static_cast<size_t>(ggml_nelements(tensor)/32*2),
  3354. 0, 0, 0, 0, 0, 0, 0,
  3355. { extra->q }
  3356. };
  3357. extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
  3358. tensor->extra = extra;
  3359. return;
  3360. }
  3361. if (tensor->type == GGML_TYPE_Q8_0) {
  3362. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3363. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3364. // Allocate the new extra and create aliases from the original.
  3365. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3366. ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
  3367. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3368. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
  3369. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3370. cl_int err;
  3371. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3372. ggml_nbytes(tensor), NULL, &err);
  3373. CL_CHECK(err);
  3374. CL_CHECK(clEnqueueWriteBuffer(
  3375. queue, data_device, CL_TRUE, 0,
  3376. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3377. // The original tensor memory is divided into scales and quants, i.e.,
  3378. // we first store scales, then quants.
  3379. cl_buffer_region region;
  3380. // Create subbuffer for scales.
  3381. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3382. region.size = size_d;
  3383. extra->d = clCreateSubBuffer(
  3384. extra_orig->data_device, CL_MEM_READ_WRITE,
  3385. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3386. CL_CHECK(err);
  3387. auto previous_origin = region.origin;
  3388. // Create subbuffer for quants.
  3389. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3390. region.size = size_q;
  3391. extra->q = clCreateSubBuffer(
  3392. extra_orig->data_device, CL_MEM_READ_WRITE,
  3393. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3394. CL_CHECK(err);
  3395. cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
  3396. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3397. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3398. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3399. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3400. size_t local_work_size[] = {64, 1, 1};
  3401. cl_event evt;
  3402. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3403. CL_CHECK(clWaitForEvents(1, &evt));
  3404. CL_CHECK(clReleaseMemObject(data_device));
  3405. tensor->extra = extra;
  3406. return;
  3407. }
  3408. #endif // GGML_OPENCL_SOA_Q
  3409. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3410. GGML_ASSERT(extra);
  3411. CL_CHECK(clEnqueueWriteBuffer(
  3412. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  3413. size, data, 0, NULL, NULL));
  3414. GGML_UNUSED(buffer);
  3415. }
  3416. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3417. GGML_ASSERT(tensor->extra);
  3418. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3419. cl_context context = backend_ctx->context;
  3420. cl_command_queue queue = backend_ctx->queue;
  3421. // Make sure all previously submitted commands in other devices are finished.
  3422. sync_with_other_backends(backend_ctx);
  3423. #ifdef GGML_OPENCL_SOA_Q
  3424. // In end-to-end runs, get_tensor is usually used to get back the logits,
  3425. // where we can simply do clEnqueueReadBuffer since they are f32.
  3426. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  3427. // which requires reading back quantized weight tensors.
  3428. // To properly support this, we need to restore block_q4_0 struct arrays
  3429. // from the flattened buffers.
  3430. if (tensor->type == GGML_TYPE_Q4_0) {
  3431. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  3432. cl_int err;
  3433. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3434. ggml_nbytes(tensor), NULL, &err);
  3435. CL_CHECK(err);
  3436. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  3437. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3438. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3439. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3440. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3441. size_t local_work_size[] = {1, 1, 1};
  3442. cl_event evt;
  3443. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3444. global_work_size, local_work_size, 0, NULL, &evt));
  3445. CL_CHECK(clWaitForEvents(1, &evt));
  3446. CL_CHECK(clEnqueueReadBuffer(
  3447. queue, data_device, CL_TRUE, offset,
  3448. size, data, 0, NULL, NULL));
  3449. CL_CHECK(clReleaseMemObject(data_device));
  3450. return;
  3451. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3452. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
  3453. cl_int err;
  3454. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3455. ggml_nbytes(tensor), NULL, &err);
  3456. CL_CHECK(err);
  3457. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3458. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3459. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
  3460. int ne00 = tensor->ne[0];
  3461. int ne01 = tensor->ne[1];
  3462. int ne02 = tensor->ne[2];
  3463. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3464. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3465. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3466. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
  3467. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
  3468. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3469. size_t local_work_size[3] = {64, 2, 1};
  3470. cl_event evt;
  3471. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3472. global_work_size, local_work_size, 0, NULL, &evt));
  3473. CL_CHECK(clWaitForEvents(1, &evt));
  3474. CL_CHECK(clEnqueueReadBuffer(
  3475. queue, data_device, CL_TRUE, offset,
  3476. size, data, 0, NULL, NULL));
  3477. CL_CHECK(clReleaseMemObject(data_device));
  3478. return;
  3479. }
  3480. #endif
  3481. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
  3482. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3483. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3484. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3485. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3486. size_t local_work_size[] = {1, 1, 1};
  3487. cl_event evt;
  3488. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3489. global_work_size, local_work_size, 0, NULL, &evt));
  3490. CL_CHECK(clWaitForEvents(1, &evt));
  3491. CL_CHECK(clEnqueueReadBuffer(
  3492. queue, data_device, CL_TRUE, offset,
  3493. size, data, 0, NULL, NULL));
  3494. CL_CHECK(clReleaseMemObject(data_device));
  3495. return;
  3496. }
  3497. if (tensor->type == GGML_TYPE_Q8_0) {
  3498. ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
  3499. cl_int err;
  3500. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3501. ggml_nbytes(tensor), NULL, &err);
  3502. CL_CHECK(err);
  3503. cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
  3504. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3505. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3506. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3507. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3508. size_t local_work_size[] = {1, 1, 1};
  3509. cl_event evt;
  3510. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3511. global_work_size, local_work_size, 0, NULL, &evt));
  3512. CL_CHECK(clWaitForEvents(1, &evt));
  3513. CL_CHECK(clEnqueueReadBuffer(
  3514. queue, data_device, CL_TRUE, offset,
  3515. size, data, 0, NULL, NULL));
  3516. CL_CHECK(clReleaseMemObject(data_device));
  3517. return;
  3518. }
  3519. #endif // GGML_OPENCL_SOA_Q
  3520. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3521. CL_CHECK(clEnqueueReadBuffer(
  3522. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  3523. size, data, 0, NULL, NULL));
  3524. GGML_UNUSED(buffer);
  3525. }
  3526. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3527. ggml_backend_dev_t dev = buffer->buft->device;
  3528. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  3529. cl_command_queue queue = backend_ctx->queue;
  3530. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3531. for (cl_mem buf : ctx->buffer) {
  3532. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  3533. }
  3534. CL_CHECK(clFinish(queue));
  3535. }
  3536. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  3537. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3538. ctx->reset();
  3539. }
  3540. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  3541. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  3542. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  3543. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  3544. /* .memset_tensor = */ NULL,
  3545. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  3546. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  3547. /* .cpy_tensor = */ NULL,
  3548. /* .clear = */ ggml_backend_opencl_buffer_clear,
  3549. /* .reset = */ ggml_backend_opencl_buffer_reset,
  3550. };
  3551. //
  3552. // buffer type
  3553. //
  3554. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  3555. return "OpenCL";
  3556. GGML_UNUSED(buffer_type);
  3557. }
  3558. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  3559. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  3560. // clCreateBuffer returns -61 for size 0
  3561. size = std::max(size, (size_t)1);
  3562. cl_int err;
  3563. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  3564. if (err != CL_SUCCESS) {
  3565. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  3566. return nullptr;
  3567. }
  3568. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  3569. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  3570. }
  3571. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  3572. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3573. return backend_ctx->alignment;
  3574. }
  3575. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  3576. static size_t max_size = -1;
  3577. if (max_size == (size_t)-1) {
  3578. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3579. max_size = backend_ctx->max_alloc_size;
  3580. }
  3581. return max_size;
  3582. }
  3583. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3584. return ggml_backend_is_opencl(backend);
  3585. UNUSED(buft);
  3586. }
  3587. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  3588. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  3589. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  3590. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  3591. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  3592. /* .get_alloc_size = */ NULL,
  3593. /* .is_host = */ NULL,
  3594. };
  3595. //
  3596. // backend device
  3597. //
  3598. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  3599. return "GPUOpenCL";
  3600. GGML_UNUSED(dev);
  3601. }
  3602. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  3603. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  3604. return dev_ctx->device_name.c_str();
  3605. }
  3606. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  3607. *free = 1;
  3608. *total = 1;
  3609. GGML_UNUSED(dev);
  3610. }
  3611. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  3612. return GGML_BACKEND_DEVICE_TYPE_GPU;
  3613. GGML_UNUSED(dev);
  3614. }
  3615. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  3616. props->name = ggml_backend_opencl_device_get_name(dev);
  3617. props->description = ggml_backend_opencl_device_get_description(dev);
  3618. props->type = ggml_backend_opencl_device_get_type(dev);
  3619. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  3620. props->caps = ggml_backend_dev_caps {
  3621. /* .async = */ false,
  3622. /* .host_buffer = */ false,
  3623. /* .buffer_from_host_ptr = */ false,
  3624. /* .events = */ false,
  3625. };
  3626. }
  3627. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  3628. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  3629. // Getting a new reference to the backend, increase ref_count
  3630. backend_ctx->ref_count++;
  3631. ggml_backend_t backend = new ggml_backend {
  3632. /* .guid = */ ggml_backend_opencl_guid(),
  3633. /* .interface = */ ggml_backend_opencl_i,
  3634. /* .device = */ dev,
  3635. /* .context = */ backend_ctx,
  3636. };
  3637. return backend;
  3638. GGML_UNUSED(params);
  3639. }
  3640. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  3641. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  3642. dev_ctx->buffer_type = ggml_backend_buffer_type{
  3643. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  3644. /* .device = */ dev,
  3645. /* .context = */ nullptr,
  3646. };
  3647. return &dev_ctx->buffer_type;
  3648. }
  3649. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  3650. GGML_UNUSED(dev);
  3651. GGML_UNUSED(ptr);
  3652. GGML_UNUSED(size);
  3653. GGML_UNUSED(max_tensor_size);
  3654. return nullptr;
  3655. }
  3656. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  3657. return ggml_opencl_supports_op(dev, op);
  3658. }
  3659. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  3660. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  3661. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  3662. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  3663. return false;
  3664. }
  3665. // Check cl_context is the same. clEnqueue* commands may not use
  3666. // buffers from another cl_context.
  3667. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  3668. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  3669. return backend_ctx0->context == backend_ctx1->context;
  3670. }
  3671. namespace /* anonymous */ {
  3672. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  3673. /* .get_name = */ ggml_backend_opencl_device_get_name,
  3674. /* .get_description = */ ggml_backend_opencl_device_get_description,
  3675. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  3676. /* .get_type = */ ggml_backend_opencl_device_get_type,
  3677. /* .get_props = */ ggml_backend_opencl_device_get_props,
  3678. /* .init_backend = */ ggml_backend_opencl_device_init,
  3679. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  3680. /* .get_host_buffer_type = */ NULL,
  3681. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  3682. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  3683. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  3684. /* .offload_op = */ NULL,
  3685. /* .event_new = */ NULL,
  3686. /* .event_free = */ NULL,
  3687. /* .event_synchronize = */ NULL,
  3688. };
  3689. }
  3690. // Backend registry
  3691. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  3692. return "OpenCL";
  3693. GGML_UNUSED(reg);
  3694. }
  3695. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  3696. return g_ggml_backend_opencl_devices.size();
  3697. GGML_UNUSED(reg);
  3698. }
  3699. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  3700. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  3701. return &g_ggml_backend_opencl_devices[index];
  3702. GGML_UNUSED(reg);
  3703. GGML_UNUSED(index);
  3704. }
  3705. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  3706. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  3707. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  3708. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  3709. /* .get_proc_address = */ NULL,
  3710. };
  3711. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  3712. static std::mutex mutex;
  3713. static ggml_backend_reg reg;
  3714. static bool initialized = false;
  3715. std::lock_guard<std::mutex> lock(mutex);
  3716. if (initialized) {
  3717. return &reg;
  3718. }
  3719. initialized = true;
  3720. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  3721. reg = ggml_backend_reg{
  3722. /* .api_version = */ GGML_BACKEND_API_VERSION,
  3723. /* .iface = */ ggml_backend_opencl_reg_i,
  3724. /* .context = */ NULL,
  3725. };
  3726. return &reg;
  3727. }
  3728. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  3729. //------------------------------------------------------------------------------
  3730. // Debugging utils
  3731. //------------------------------------------------------------------------------
  3732. #if 0
  3733. #define QK4_0 32
  3734. typedef struct {
  3735. ggml_fp16_t d; // delta
  3736. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  3737. } block_q4_0;
  3738. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  3739. "wrong q4_0 block size/padding");
  3740. #include <math.h>
  3741. #ifdef __cplusplus
  3742. #include "half.hpp"
  3743. #endif
  3744. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  3745. void * buf = malloc(ggml_nbytes(tensor));
  3746. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3747. cl_command_queue queue = backend_ctx->queue;
  3748. #ifdef GGML_OPENCL_SOA_Q
  3749. void * buf_q;
  3750. void * buf_d;
  3751. #endif
  3752. // Make sure everything is done.
  3753. CL_CHECK(clFinish(queue));
  3754. #ifdef GGML_OPENCL_SOA_Q
  3755. if (tensor->type == GGML_TYPE_Q4_0) {
  3756. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  3757. GGML_ASSERT(extra);
  3758. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  3759. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  3760. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  3761. buf_q = malloc(size_q);
  3762. buf_d = malloc(size_d);
  3763. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3764. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  3765. CL_CHECK(clFinish(queue));
  3766. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3767. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
  3768. GGML_ASSERT(extra);
  3769. size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
  3770. size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
  3771. GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
  3772. buf_q = malloc(size_q);
  3773. buf_d = malloc(size_e);
  3774. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3775. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
  3776. CL_CHECK(clFinish(queue));
  3777. } else {
  3778. // Read out the tensor from GPU memory.
  3779. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3780. GGML_ASSERT(extra);
  3781. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3782. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3783. CL_CHECK(clFinish(queue));
  3784. }
  3785. #else
  3786. // Read out the tensor from GPU memory.
  3787. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3788. GGML_ASSERT(extra);
  3789. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3790. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3791. CL_CHECK(clFinish(queue));
  3792. #endif // GGML_OPENCL_SOA_Q
  3793. // Open file and dump.
  3794. char fname[512];
  3795. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  3796. FILE * f = fopen(fname, "w");
  3797. if (!f) {
  3798. printf("Failed to open %s\n", fname);
  3799. return;
  3800. }
  3801. if (tensor->type == GGML_TYPE_F32) {
  3802. float * data = (float *) buf;
  3803. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3804. if (isnan(data[i])) {
  3805. printf("NaN found: %s\n", tensor->name);
  3806. break;
  3807. }
  3808. fprintf(f, "%f\n", data[i]);
  3809. }
  3810. } else if (tensor->type == GGML_TYPE_I32) {
  3811. int * data = (int *) buf;
  3812. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3813. if (isnan(data[i])) {
  3814. printf("NaN found: %s\n", tensor->name);
  3815. break;
  3816. }
  3817. fprintf(f, "%d\n", data[i]);
  3818. }
  3819. } else if (tensor->type == GGML_TYPE_F16) {
  3820. #ifdef __cplusplus
  3821. half_float::half * data = (half_float::half *) buf;
  3822. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3823. if (std::isnan(data[i])) {
  3824. printf("NaN found: %s\n", tensor->name);
  3825. break;
  3826. }
  3827. fprintf(f, "%f\n", float(data[i]));
  3828. }
  3829. #endif
  3830. } else if (tensor->type == GGML_TYPE_Q4_0) {
  3831. #ifdef GGML_OPENCL_SOA_Q
  3832. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  3833. unsigned char * data_q = (unsigned char *)buf_q;
  3834. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3835. fprintf(f, "%04x, ", data_d[i]);
  3836. for (int k = 0; k < QK4_0/2; ++k) {
  3837. fprintf(f, "%02x, ", data_q[k]);
  3838. }
  3839. fprintf(f, "\n");
  3840. data_q += QK4_0/2;
  3841. }
  3842. free(buf_d);
  3843. free(buf_q);
  3844. #else
  3845. block_q4_0 * data = (block_q4_0 *) buf;
  3846. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3847. fprintf(f, "%04x, ", data[i].d);
  3848. for (int k = 0; k < QK4_0/2; ++k) {
  3849. fprintf(f, "%02x, ", data[i].qs[k]);
  3850. }
  3851. fprintf(f, "\n");
  3852. }
  3853. #endif // GGML_OPENCL_SOA_Q
  3854. }
  3855. free(buf);
  3856. fflush(f);
  3857. fclose(f);
  3858. }
  3859. #else
  3860. #define dump_tensor(tensor)
  3861. #endif
  3862. //------------------------------------------------------------------------------
  3863. // Ops
  3864. //------------------------------------------------------------------------------
  3865. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  3866. const int64_t ne10 = src1->ne[0];
  3867. const int64_t ne0 = dst->ne[0];
  3868. const int64_t ne1 = dst->ne[1];
  3869. // TODO: find the optimal values for these
  3870. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  3871. src1->type == GGML_TYPE_F32 &&
  3872. dst->type == GGML_TYPE_F32 &&
  3873. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  3874. }
  3875. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3876. UNUSED(backend);
  3877. UNUSED(src0);
  3878. UNUSED(src1);
  3879. UNUSED(dst);
  3880. }
  3881. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3882. GGML_ASSERT(src0);
  3883. GGML_ASSERT(src0->extra);
  3884. GGML_ASSERT(src1);
  3885. GGML_ASSERT(src1->extra);
  3886. GGML_ASSERT(dst);
  3887. GGML_ASSERT(dst->extra);
  3888. const int ne00 = src0->ne[0];
  3889. const cl_ulong nb01 = src0->nb[1];
  3890. const cl_ulong nb02 = src0->nb[2];
  3891. const cl_ulong nb03 = src0->nb[3];
  3892. const int ne10 = src1->ne[0];
  3893. const cl_ulong nb10 = src1->nb[0];
  3894. const int ne11 = src1->ne[1];
  3895. const int ne12 = src1->ne[2];
  3896. const cl_ulong nb11 = src1->nb[1];
  3897. const cl_ulong nb12 = src1->nb[2];
  3898. const cl_ulong nb1 = dst->nb[1];
  3899. const cl_ulong nb2 = dst->nb[2];
  3900. const cl_ulong nb3 = dst->nb[3];
  3901. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3902. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3903. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3904. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3905. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3906. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3907. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3908. cl_kernel kernel;
  3909. switch (src0->type) {
  3910. case GGML_TYPE_F32:
  3911. kernel = backend_ctx->kernel_get_rows_f32;
  3912. break;
  3913. case GGML_TYPE_F16:
  3914. kernel = backend_ctx->kernel_get_rows_f16;
  3915. break;
  3916. case GGML_TYPE_Q4_0:
  3917. kernel = backend_ctx->kernel_get_rows_q4_0;
  3918. break;
  3919. default:
  3920. GGML_ASSERT(false && "not implemented");
  3921. }
  3922. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3923. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3924. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3925. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3926. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3927. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3928. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3929. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3930. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3931. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3932. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3933. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb10));
  3934. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  3935. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  3936. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
  3937. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
  3938. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
  3939. size_t global_work_size[] = {(size_t)ne10*64, (size_t)ne11, (size_t)ne12};
  3940. size_t local_work_size[] = {64, 1, 1};
  3941. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3942. }
  3943. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3944. GGML_ASSERT(src0);
  3945. GGML_ASSERT(src0->extra);
  3946. GGML_ASSERT(src1);
  3947. GGML_ASSERT(src1->extra);
  3948. GGML_ASSERT(dst);
  3949. GGML_ASSERT(dst->extra);
  3950. GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
  3951. // ne0 = ne00
  3952. // ne2 = ne02
  3953. // ne3 = ne03
  3954. const int ne01 = src0->ne[1];
  3955. const int ne02 = src0->ne[2];
  3956. const int ne03 = src0->ne[3];
  3957. const cl_ulong nb01 = src0->nb[1];
  3958. const cl_ulong nb02 = src0->nb[2];
  3959. const cl_ulong nb03 = src0->nb[3];
  3960. const int ne11 = src1->ne[1];
  3961. const int ne12 = src1->ne[2];
  3962. const cl_ulong nb10 = src1->nb[0];
  3963. const cl_ulong nb11 = src1->nb[1];
  3964. const cl_ulong nb12 = src1->nb[2];
  3965. const int ne0 = dst->ne[0];
  3966. const cl_ulong nb1 = dst->nb[1];
  3967. const cl_ulong nb2 = dst->nb[2];
  3968. const cl_ulong nb3 = dst->nb[3];
  3969. const int nblk0 = ne0/ggml_blck_size(dst->type);
  3970. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3971. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3972. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3973. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3974. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3975. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3976. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3977. cl_kernel kernel;
  3978. switch (dst->type) {
  3979. case GGML_TYPE_F32:
  3980. if (src1->type == GGML_TYPE_I64) {
  3981. kernel = backend_ctx->kernel_set_rows_f32_i64;
  3982. } else {
  3983. kernel = backend_ctx->kernel_set_rows_f32_i32;
  3984. }
  3985. break;
  3986. case GGML_TYPE_F16:
  3987. if (src1->type == GGML_TYPE_I64) {
  3988. kernel = backend_ctx->kernel_set_rows_f16_i64;
  3989. } else {
  3990. kernel = backend_ctx->kernel_set_rows_f16_i32;
  3991. }
  3992. break;
  3993. default:
  3994. GGML_ABORT("not implemented");
  3995. }
  3996. fastdiv_vals ne11_ = init_fastdiv_values(ne11);
  3997. fastdiv_vals ne12_ = init_fastdiv_values(ne12);
  3998. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3999. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4000. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4001. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4002. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4003. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4004. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  4005. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4006. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4007. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4008. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(fastdiv_vals), &ne11_));
  4009. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(fastdiv_vals), &ne12_));
  4010. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  4011. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  4012. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  4013. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  4014. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  4015. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  4016. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  4017. int nth0 = 64;
  4018. if (backend_ctx->gpu_family == INTEL) {
  4019. nth0 = 32;
  4020. } else if (backend_ctx->gpu_family == ADRENO) {
  4021. nth0 = 64;
  4022. }
  4023. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4024. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  4025. nth0 *= 2;
  4026. }
  4027. int rows_per_workgroup = 1;
  4028. if (nth0 > nblk0) {
  4029. rows_per_workgroup = nth0 / nblk0;
  4030. nth0 = nblk0;
  4031. }
  4032. size_t global_work_size[] = {
  4033. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  4034. (size_t)ne02*rows_per_workgroup,
  4035. (size_t)ne03};
  4036. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  4037. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4038. }
  4039. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4040. GGML_ASSERT(src0);
  4041. GGML_ASSERT(src0->extra);
  4042. GGML_ASSERT(src1);
  4043. GGML_ASSERT(src1->extra);
  4044. GGML_ASSERT(dst);
  4045. GGML_ASSERT(dst->extra);
  4046. const int ne00 = src0->ne[0];
  4047. const int ne01 = src0->ne[1];
  4048. const int ne02 = src0->ne[2];
  4049. const int ne03 = src0->ne[3];
  4050. const cl_ulong nb00 = src0->nb[0];
  4051. const cl_ulong nb01 = src0->nb[1];
  4052. const cl_ulong nb02 = src0->nb[2];
  4053. const cl_ulong nb03 = src0->nb[3];
  4054. const int ne10 = src1->ne[0];
  4055. const int ne11 = src1->ne[1];
  4056. const int ne12 = src1->ne[2];
  4057. const int ne13 = src1->ne[3];
  4058. const cl_ulong nb10 = src1->nb[0];
  4059. const cl_ulong nb11 = src1->nb[1];
  4060. const cl_ulong nb12 = src1->nb[2];
  4061. const cl_ulong nb13 = src1->nb[3];
  4062. const int ne0 = dst->ne[0];
  4063. const int ne1 = dst->ne[1];
  4064. const int ne2 = dst->ne[2];
  4065. const int ne3 = dst->ne[3];
  4066. const cl_ulong nb0 = dst->nb[0];
  4067. const cl_ulong nb1 = dst->nb[1];
  4068. const cl_ulong nb2 = dst->nb[2];
  4069. const cl_ulong nb3 = dst->nb[3];
  4070. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4071. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4072. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4073. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4074. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4075. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4076. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4077. cl_kernel kernel;
  4078. const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
  4079. if (bcast_row) {
  4080. GGML_ASSERT(ggml_is_contiguous(src0));
  4081. GGML_ASSERT(ne11 == 1);
  4082. }
  4083. if (dst->type == GGML_TYPE_F32) {
  4084. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
  4085. if (bcast_row) {
  4086. kernel = backend_ctx->kernel_add_row;
  4087. const int ne = ne00 / 4;
  4088. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4089. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4090. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4091. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4092. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4093. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4094. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4095. } else {
  4096. kernel = backend_ctx->kernel_add;
  4097. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4098. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4099. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4100. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4101. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4102. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4103. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4104. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4105. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4106. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4107. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4108. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4109. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4110. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4111. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4112. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4113. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4114. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4115. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4116. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4117. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4118. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4119. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4120. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4121. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4122. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4123. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4124. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4125. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4126. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4127. }
  4128. } else if (dst->type == GGML_TYPE_F16) {
  4129. GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
  4130. GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
  4131. const int type_src0 = (src0->type == GGML_TYPE_F32);
  4132. const int type_src1 = (src1->type == GGML_TYPE_F32);
  4133. if (bcast_row) {
  4134. kernel = backend_ctx->kernel_add_row_f16;
  4135. const int ne = ne00 / 4;
  4136. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4137. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4138. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4139. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4140. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4141. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4142. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4143. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
  4144. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
  4145. } else {
  4146. kernel = backend_ctx->kernel_add_f16;
  4147. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4148. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4149. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4150. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4151. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4152. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4153. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4154. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4155. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4156. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4157. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4158. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4159. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4160. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4161. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4162. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4163. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4164. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4165. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4166. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4167. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4168. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4169. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4170. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4171. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4172. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4173. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4174. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4175. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4176. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4177. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
  4178. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
  4179. }
  4180. } else {
  4181. GGML_ASSERT(false && "unsupported data types for add");
  4182. }
  4183. if (bcast_row) {
  4184. int n = ggml_nelements(dst)/4;
  4185. size_t global_work_size[] = {(size_t)n, 1, 1};
  4186. size_t local_work_size[] = {64, 1, 1};
  4187. size_t * local_work_size_ptr = local_work_size;
  4188. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4189. local_work_size_ptr = nullptr;
  4190. }
  4191. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
  4192. } else {
  4193. unsigned int nth = MIN(64, ne0);
  4194. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4195. size_t local_work_size[] = {nth, 1, 1};
  4196. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4197. }
  4198. }
  4199. static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4200. GGML_ASSERT(src0);
  4201. GGML_ASSERT(src0->extra);
  4202. GGML_ASSERT(src1);
  4203. GGML_ASSERT(src1->extra);
  4204. GGML_ASSERT(dst);
  4205. GGML_ASSERT(dst->extra);
  4206. const ggml_tensor * src2 = dst->src[2];
  4207. GGML_ASSERT(src2);
  4208. GGML_ASSERT(src2->extra);
  4209. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4210. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4211. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  4212. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4213. GGML_ASSERT(ggml_is_contiguous_rows(src0));
  4214. const int ne00 = src0->ne[0];
  4215. const int ne01 = src0->ne[1];
  4216. const int ne02 = src0->ne[2];
  4217. const cl_ulong nb01 = src0->nb[1];
  4218. const cl_ulong nb02 = src0->nb[2];
  4219. const cl_ulong nb11 = src1->nb[1];
  4220. const cl_ulong nb21 = src2->nb[1];
  4221. const int ne0 = dst->ne[0];
  4222. const int ne1 = dst->ne[1];
  4223. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4224. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4225. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4226. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4227. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4228. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4229. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4230. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4231. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4232. cl_kernel kernel = backend_ctx->kernel_add_id;
  4233. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4234. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4235. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4236. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4237. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4238. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4239. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4240. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4241. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4242. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4243. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4244. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
  4245. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
  4246. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
  4247. int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
  4248. size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
  4249. size_t local_work_size[] = { (size_t)nth, 1, 1 };
  4250. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4251. }
  4252. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4253. GGML_ASSERT(src0);
  4254. GGML_ASSERT(src0->extra);
  4255. GGML_ASSERT(src1);
  4256. GGML_ASSERT(src1->extra);
  4257. GGML_ASSERT(dst);
  4258. GGML_ASSERT(dst->extra);
  4259. GGML_ASSERT(src0->type == src1->type);
  4260. GGML_ASSERT(src0->type == dst->type);
  4261. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4262. const int ne00 = src0->ne[0];
  4263. const int ne01 = src0->ne[1];
  4264. const int ne02 = src0->ne[2];
  4265. const int ne03 = src0->ne[3];
  4266. const cl_ulong nb00 = src0->nb[0];
  4267. const cl_ulong nb01 = src0->nb[1];
  4268. const cl_ulong nb02 = src0->nb[2];
  4269. const cl_ulong nb03 = src0->nb[3];
  4270. const int ne10 = src1->ne[0];
  4271. const int ne11 = src1->ne[1];
  4272. const int ne12 = src1->ne[2];
  4273. const int ne13 = src1->ne[3]; UNUSED(ne13);
  4274. const cl_ulong nb10 = src1->nb[0];
  4275. const cl_ulong nb11 = src1->nb[1];
  4276. const cl_ulong nb12 = src1->nb[2];
  4277. const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
  4278. const int ne0 = dst->ne[0];
  4279. const int ne1 = dst->ne[1];
  4280. const int ne2 = dst->ne[2];
  4281. const int ne3 = dst->ne[3];
  4282. const cl_ulong nb0 = dst->nb[0];
  4283. const cl_ulong nb1 = dst->nb[1];
  4284. const cl_ulong nb2 = dst->nb[2];
  4285. const cl_ulong nb3 = dst->nb[3];
  4286. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4287. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4288. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4289. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4290. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4291. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4292. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4293. bool bcast_row = false;
  4294. cl_kernel kernel;
  4295. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4296. GGML_ASSERT(ggml_is_contiguous(src0));
  4297. // src1 is a row
  4298. GGML_ASSERT(ne11 == 1);
  4299. bcast_row = true;
  4300. int ne = ne00 / 4;
  4301. if (src0->type == GGML_TYPE_F32) {
  4302. kernel = backend_ctx->kernel_mul_row;
  4303. } else {
  4304. kernel = backend_ctx->kernel_mul_row_f16;
  4305. }
  4306. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4307. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4308. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4309. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4310. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4311. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4312. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4313. } else {
  4314. if (src0->type == GGML_TYPE_F32) {
  4315. kernel = backend_ctx->kernel_mul;
  4316. } else {
  4317. kernel = backend_ctx->kernel_mul_f16;
  4318. }
  4319. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4320. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4321. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4322. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4323. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4324. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4325. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4326. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4327. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4328. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4329. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4330. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4331. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4332. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4333. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4334. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4335. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4336. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4337. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4338. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4339. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4340. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4341. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4342. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4343. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4344. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4345. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4346. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4347. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4348. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4349. }
  4350. if (bcast_row) {
  4351. int n = ggml_nelements(dst)/4;
  4352. size_t global_work_size[] = {(size_t)n, 1, 1};
  4353. size_t local_work_size[] = {64, 1, 1};
  4354. size_t * local_work_size_ptr = local_work_size;
  4355. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4356. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4357. }
  4358. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4359. } else {
  4360. unsigned int nth = MIN(64, ne0);
  4361. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4362. size_t local_work_size[] = {nth, 1, 1};
  4363. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4364. }
  4365. }
  4366. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4367. GGML_ASSERT(src0);
  4368. GGML_ASSERT(src0->extra);
  4369. GGML_ASSERT(src1);
  4370. GGML_ASSERT(src1->extra);
  4371. GGML_ASSERT(dst);
  4372. GGML_ASSERT(dst->extra);
  4373. GGML_ASSERT(src0->type == src1->type);
  4374. GGML_ASSERT(src0->type == dst->type);
  4375. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4376. const int ne00 = src0->ne[0];
  4377. const int ne01 = src0->ne[1];
  4378. const int ne02 = src0->ne[2];
  4379. const int ne03 = src0->ne[3];
  4380. const cl_ulong nb00 = src0->nb[0];
  4381. const cl_ulong nb01 = src0->nb[1];
  4382. const cl_ulong nb02 = src0->nb[2];
  4383. const cl_ulong nb03 = src0->nb[3];
  4384. const int ne10 = src1->ne[0];
  4385. const int ne11 = src1->ne[1];
  4386. const int ne12 = src1->ne[2];
  4387. const int ne13 = src1->ne[3];
  4388. const cl_ulong nb10 = src1->nb[0];
  4389. const cl_ulong nb11 = src1->nb[1];
  4390. const cl_ulong nb12 = src1->nb[2];
  4391. const cl_ulong nb13 = src1->nb[3];
  4392. const int ne0 = dst->ne[0];
  4393. const cl_ulong nb0 = dst->nb[0];
  4394. const cl_ulong nb1 = dst->nb[1];
  4395. const cl_ulong nb2 = dst->nb[2];
  4396. const cl_ulong nb3 = dst->nb[3];
  4397. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4398. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4399. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4400. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4401. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4402. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4403. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4404. bool bcast_row = false;
  4405. cl_kernel kernel;
  4406. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4407. GGML_ASSERT(ggml_is_contiguous(src0));
  4408. // src1 is a row
  4409. GGML_ASSERT(ne11 == 1);
  4410. bcast_row = true;
  4411. int ne = ne00 / 4;
  4412. if (src0->type == GGML_TYPE_F32) {
  4413. kernel = backend_ctx->kernel_div_row;
  4414. } else {
  4415. kernel = backend_ctx->kernel_div_row_f16;
  4416. }
  4417. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4418. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4419. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4420. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4421. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4422. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4423. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4424. } else {
  4425. if (src0->type == GGML_TYPE_F32) {
  4426. kernel = backend_ctx->kernel_div;
  4427. } else {
  4428. kernel = backend_ctx->kernel_div_f16;
  4429. }
  4430. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4431. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4432. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4433. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4434. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4435. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4436. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4437. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4438. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4439. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4440. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4441. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4442. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4443. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4444. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4445. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4446. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4447. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4448. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4449. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4450. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4451. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4452. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4453. }
  4454. if (bcast_row) {
  4455. int n = ggml_nelements(dst)/4;
  4456. size_t global_work_size[] = {(size_t)n, 1, 1};
  4457. size_t local_work_size[] = {64, 1, 1};
  4458. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4459. } else {
  4460. unsigned int nth = MIN(64, ne0);
  4461. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4462. size_t local_work_size[] = {nth, 1, 1};
  4463. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4464. }
  4465. }
  4466. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4467. GGML_ASSERT(src0);
  4468. GGML_ASSERT(src0->extra);
  4469. GGML_ASSERT(src1);
  4470. GGML_ASSERT(src1->extra);
  4471. GGML_ASSERT(dst);
  4472. GGML_ASSERT(dst->extra);
  4473. GGML_ASSERT(src0->type == src1->type);
  4474. GGML_ASSERT(src0->type == dst->type);
  4475. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4476. const int ne00 = src0->ne[0];
  4477. const int ne01 = src0->ne[1];
  4478. const int ne02 = src0->ne[2];
  4479. const int ne03 = src0->ne[3];
  4480. const cl_ulong nb00 = src0->nb[0];
  4481. const cl_ulong nb01 = src0->nb[1];
  4482. const cl_ulong nb02 = src0->nb[2];
  4483. const cl_ulong nb03 = src0->nb[3];
  4484. const int ne10 = src1->ne[0];
  4485. const int ne11 = src1->ne[1];
  4486. const int ne12 = src1->ne[2];
  4487. const int ne13 = src1->ne[3];
  4488. const cl_ulong nb10 = src1->nb[0];
  4489. const cl_ulong nb11 = src1->nb[1];
  4490. const cl_ulong nb12 = src1->nb[2];
  4491. const cl_ulong nb13 = src1->nb[3];
  4492. const int ne0 = dst->ne[0];
  4493. const cl_ulong nb0 = dst->nb[0];
  4494. const cl_ulong nb1 = dst->nb[1];
  4495. const cl_ulong nb2 = dst->nb[2];
  4496. const cl_ulong nb3 = dst->nb[3];
  4497. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4498. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4499. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4500. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4501. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4502. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4503. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4504. bool bcast_row = false;
  4505. cl_kernel kernel;
  4506. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4507. GGML_ASSERT(ggml_is_contiguous(src0));
  4508. // src1 is a row
  4509. GGML_ASSERT(ne11 == 1);
  4510. bcast_row = true;
  4511. int ne = ne00 / 4;
  4512. if (src0->type == GGML_TYPE_F32) {
  4513. kernel = backend_ctx->kernel_sub_row;
  4514. } else {
  4515. kernel = backend_ctx->kernel_sub_row_f16;
  4516. }
  4517. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4518. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4519. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4520. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4521. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4522. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4523. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4524. } else {
  4525. if (src0->type == GGML_TYPE_F32) {
  4526. kernel = backend_ctx->kernel_sub;
  4527. } else {
  4528. kernel = backend_ctx->kernel_sub_f16;
  4529. }
  4530. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4531. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4532. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4533. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4534. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4535. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4536. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4537. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4538. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4539. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4540. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4541. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4542. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4543. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4544. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4545. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4546. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4547. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4548. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4549. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4550. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4551. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4552. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4553. }
  4554. if (bcast_row) {
  4555. int n = ggml_nelements(dst)/4;
  4556. size_t global_work_size[] = {(size_t)n, 1, 1};
  4557. size_t local_work_size[] = {64, 1, 1};
  4558. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4559. } else {
  4560. unsigned int nth = MIN(64, ne0);
  4561. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4562. size_t local_work_size[] = {nth, 1, 1};
  4563. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4564. }
  4565. }
  4566. static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4567. GGML_ASSERT(src0);
  4568. GGML_ASSERT(src0->extra);
  4569. GGML_ASSERT(dst);
  4570. GGML_ASSERT(dst->extra);
  4571. UNUSED(src1);
  4572. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4573. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4574. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4575. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4576. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4577. cl_kernel kernel;
  4578. // Currently assumes src0 is contiguous
  4579. int n = ggml_nelements(dst);
  4580. if (n % 4 == 0) {
  4581. if (src0->type == GGML_TYPE_F32) {
  4582. kernel = backend_ctx->kernel_sqr_cont_f32_4;
  4583. } else {
  4584. kernel = backend_ctx->kernel_sqr_cont_f16_4;
  4585. }
  4586. n /= 4;
  4587. } else {
  4588. if (src0->type == GGML_TYPE_F32) {
  4589. kernel = backend_ctx->kernel_sqr_cont_f32;
  4590. } else {
  4591. kernel = backend_ctx->kernel_sqr_cont_f16;
  4592. }
  4593. }
  4594. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4595. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4596. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4597. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4598. size_t global_work_size[] = {(size_t)n, 1, 1};
  4599. size_t local_work_size[] = {64, 1, 1};
  4600. size_t * local_work_size_ptr = local_work_size;
  4601. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4602. local_work_size_ptr = nullptr;
  4603. }
  4604. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4605. }
  4606. static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4607. GGML_ASSERT(src0);
  4608. GGML_ASSERT(src0->extra);
  4609. GGML_ASSERT(dst);
  4610. GGML_ASSERT(dst->extra);
  4611. UNUSED(src1);
  4612. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4613. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4614. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4615. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4616. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4617. cl_kernel kernel;
  4618. // Currently assumes src0 is contiguous
  4619. int n = ggml_nelements(dst);
  4620. if (n % 4 == 0) {
  4621. if (src0->type == GGML_TYPE_F32) {
  4622. kernel = backend_ctx->kernel_sqrt_cont_f32_4;
  4623. } else {
  4624. kernel = backend_ctx->kernel_sqrt_cont_f16_4;
  4625. }
  4626. n /= 4;
  4627. } else {
  4628. if (src0->type == GGML_TYPE_F32) {
  4629. kernel = backend_ctx->kernel_sqrt_cont_f32;
  4630. } else {
  4631. kernel = backend_ctx->kernel_sqrt_cont_f16;
  4632. }
  4633. }
  4634. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4635. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4636. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4637. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4638. size_t global_work_size[] = {(size_t)n, 1, 1};
  4639. size_t local_work_size[] = {64, 1, 1};
  4640. size_t * local_work_size_ptr = local_work_size;
  4641. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4642. local_work_size_ptr = nullptr;
  4643. }
  4644. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4645. }
  4646. static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4647. GGML_ASSERT(src0);
  4648. GGML_ASSERT(src0->extra);
  4649. GGML_ASSERT(dst);
  4650. GGML_ASSERT(dst->extra);
  4651. GGML_UNUSED(src1);
  4652. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  4653. GGML_ASSERT(ggml_is_contiguous(src0));
  4654. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4655. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4656. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4657. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4658. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4659. const int ne00 = src0->ne[0];
  4660. const int ne01 = src0->ne[1];
  4661. const int ne02 = src0->ne[2];
  4662. const int ne03 = src0->ne[3];
  4663. const cl_ulong nb01 = src0->nb[1];
  4664. const cl_ulong nb02 = src0->nb[2];
  4665. const cl_ulong nb03 = src0->nb[3];
  4666. const cl_ulong nb1 = dst->nb[1];
  4667. const cl_ulong nb2 = dst->nb[2];
  4668. const cl_ulong nb3 = dst->nb[3];
  4669. cl_kernel kernel = backend_ctx->kernel_mean_f32;
  4670. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4671. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4672. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4673. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4674. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4675. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4676. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4677. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4678. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4679. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4680. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4681. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  4682. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  4683. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  4684. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  4685. size_t local_work_size[] = {(size_t)64, 1, 1};
  4686. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4687. }
  4688. static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4689. GGML_ASSERT(src0);
  4690. GGML_ASSERT(src0->extra);
  4691. GGML_ASSERT(src1);
  4692. GGML_ASSERT(src1->extra);
  4693. GGML_ASSERT(dst);
  4694. GGML_ASSERT(dst->extra);
  4695. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4696. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4697. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4698. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4699. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4700. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4701. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4702. int ne01 = src0->ne[1];
  4703. cl_ulong nb00 = src0->nb[0];
  4704. cl_ulong nb01 = src0->nb[1];
  4705. cl_ulong nb02 = src0->nb[2];
  4706. int ne10 = src1->ne[0];
  4707. cl_ulong nb11 = src1->nb[1];
  4708. int ne1 = dst->ne[1];
  4709. int ne2 = dst->ne[2];
  4710. cl_ulong nb0 = dst->nb[0];
  4711. cl_ulong nb1 = dst->nb[1];
  4712. cl_ulong nb2 = dst->nb[2];
  4713. cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
  4714. if (ne10 % 4 == 0) {
  4715. kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
  4716. }
  4717. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4718. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4719. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4720. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4721. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4722. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4723. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4724. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4725. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4726. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4727. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4728. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
  4729. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  4730. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  4731. size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
  4732. size_t local_work_size[] = {64, 1, 1};
  4733. size_t * local_work_size_ptr = local_work_size;
  4734. if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4735. local_work_size_ptr = nullptr;
  4736. }
  4737. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4738. }
  4739. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4740. GGML_ASSERT(src0);
  4741. GGML_ASSERT(src0->extra);
  4742. GGML_ASSERT(dst);
  4743. GGML_ASSERT(dst->extra);
  4744. UNUSED(src1);
  4745. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4746. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4747. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4748. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4749. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4750. cl_kernel kernel;
  4751. int n = ggml_nelements(dst);
  4752. if (n % 4 == 0) {
  4753. kernel = backend_ctx->kernel_gelu_4;
  4754. n /= 4;
  4755. } else {
  4756. kernel = backend_ctx->kernel_gelu;
  4757. }
  4758. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4759. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4760. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4761. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4762. size_t global_work_size[] = {(size_t)n, 1, 1};
  4763. size_t local_work_size[] = {64, 1, 1};
  4764. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4765. }
  4766. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4767. GGML_ASSERT(src0);
  4768. GGML_ASSERT(src0->extra);
  4769. GGML_ASSERT(dst);
  4770. GGML_ASSERT(dst->extra);
  4771. UNUSED(src1);
  4772. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4773. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4774. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4775. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4776. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4777. cl_kernel kernel;
  4778. int n = ggml_nelements(dst);
  4779. if (n % 4 == 0) {
  4780. kernel = backend_ctx->kernel_gelu_erf_4;
  4781. n /= 4;
  4782. } else {
  4783. kernel = backend_ctx->kernel_gelu_erf;
  4784. }
  4785. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4786. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4787. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4788. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4789. size_t global_work_size[] = {(size_t)n, 1, 1};
  4790. size_t local_work_size[] = {64, 1, 1};
  4791. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4792. }
  4793. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4794. GGML_ASSERT(src0);
  4795. GGML_ASSERT(src0->extra);
  4796. GGML_ASSERT(dst);
  4797. GGML_ASSERT(dst->extra);
  4798. UNUSED(src1);
  4799. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4800. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4801. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4802. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4803. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4804. cl_kernel kernel;
  4805. int n = ggml_nelements(dst);
  4806. if (n % 4 == 0) {
  4807. kernel = backend_ctx->kernel_gelu_quick_4;
  4808. n /= 4;
  4809. } else {
  4810. kernel = backend_ctx->kernel_gelu_quick;
  4811. }
  4812. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4813. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4814. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4815. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4816. size_t global_work_size[] = {(size_t)n, 1, 1};
  4817. size_t local_work_size[] = {64, 1, 1};
  4818. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4819. }
  4820. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4821. GGML_ASSERT(src0);
  4822. GGML_ASSERT(src0->extra);
  4823. GGML_ASSERT(dst);
  4824. GGML_ASSERT(dst->extra);
  4825. UNUSED(src1);
  4826. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4827. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4828. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4829. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4830. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4831. cl_kernel kernel;
  4832. int n = ggml_nelements(dst);
  4833. if (n % 4 == 0) {
  4834. kernel = backend_ctx->kernel_silu_4;
  4835. n /= 4;
  4836. } else {
  4837. kernel = backend_ctx->kernel_silu;
  4838. }
  4839. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4840. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4841. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4842. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4843. size_t global_work_size[] = {(size_t)n, 1, 1};
  4844. size_t local_work_size[] = {64, 1, 1};
  4845. size_t * local_work_size_ptr = local_work_size;
  4846. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4847. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4848. }
  4849. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4850. }
  4851. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4852. GGML_ASSERT(src0);
  4853. GGML_ASSERT(src0->extra);
  4854. GGML_ASSERT(dst);
  4855. GGML_ASSERT(dst->extra);
  4856. UNUSED(src1);
  4857. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4858. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4859. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4860. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4861. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4862. cl_kernel kernel = backend_ctx->kernel_relu;
  4863. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4864. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4865. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4866. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4867. const int64_t n = ggml_nelements(dst);
  4868. size_t global_work_size[] = {(size_t)n, 1, 1};
  4869. size_t local_work_size[] = {64, 1, 1};
  4870. size_t * local_work_size_ptr = local_work_size;
  4871. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4872. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4873. }
  4874. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4875. }
  4876. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4877. GGML_ASSERT(src0);
  4878. GGML_ASSERT(src0->extra);
  4879. GGML_ASSERT(dst);
  4880. GGML_ASSERT(dst->extra);
  4881. UNUSED(src1);
  4882. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4883. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4884. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4885. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4886. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4887. cl_kernel kernel;
  4888. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  4889. kernel = backend_ctx->kernel_sigmoid_f32;
  4890. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  4891. kernel = backend_ctx->kernel_sigmoid_f16;
  4892. } else {
  4893. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  4894. }
  4895. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4896. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4897. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4898. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4899. const int64_t n = ggml_nelements(dst);
  4900. size_t global_work_size[] = {(size_t)n, 1, 1};
  4901. size_t local_work_size[] = {64, 1, 1};
  4902. size_t * local_work_size_ptr = local_work_size;
  4903. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4904. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4905. }
  4906. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4907. }
  4908. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4909. GGML_ASSERT(src0);
  4910. GGML_ASSERT(src0->extra);
  4911. GGML_ASSERT(dst);
  4912. GGML_ASSERT(dst->extra);
  4913. UNUSED(src1);
  4914. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4915. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4916. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4917. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4918. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4919. float min;
  4920. float max;
  4921. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  4922. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  4923. cl_kernel kernel = backend_ctx->kernel_clamp;
  4924. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4925. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4926. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4927. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4928. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  4929. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  4930. const int64_t n = ggml_nelements(dst);
  4931. size_t global_work_size[] = {(size_t)n, 1, 1};
  4932. size_t local_work_size[] = {64, 1, 1};
  4933. size_t * local_work_size_ptr = local_work_size;
  4934. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4935. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4936. }
  4937. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4938. }
  4939. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4940. GGML_ASSERT(src0);
  4941. GGML_ASSERT(src0->extra);
  4942. GGML_ASSERT(dst);
  4943. GGML_ASSERT(dst->extra);
  4944. UNUSED(src1);
  4945. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4946. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4947. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4948. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4949. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4950. float eps;
  4951. memcpy(&eps, dst->op_params, sizeof(float));
  4952. const int ne00 = src0 ? src0->ne[0] : 0;
  4953. const int ne01 = src0 ? src0->ne[1] : 0;
  4954. const int ne02 = src0 ? src0->ne[2] : 0;
  4955. const int ne03 = src0 ? src0->ne[3] : 0;
  4956. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4957. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4958. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4959. const int nth = MIN(64, ne00);
  4960. cl_kernel kernel = backend_ctx->kernel_norm;
  4961. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4962. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4963. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4964. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4965. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4966. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4967. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4968. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4969. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4970. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4971. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4972. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4973. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  4974. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4975. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4976. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4977. }
  4978. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4979. GGML_ASSERT(src0);
  4980. GGML_ASSERT(src0->extra);
  4981. GGML_ASSERT(dst);
  4982. GGML_ASSERT(dst->extra);
  4983. UNUSED(src1);
  4984. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4985. //ggml_backend_opencl_device_context * dev_ctx =
  4986. // (ggml_backend_opencl_device_context *)backend->device->context;
  4987. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4988. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4989. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4990. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4991. float eps;
  4992. memcpy(&eps, dst->op_params, sizeof(float));
  4993. const int ne00 = src0 ? src0->ne[0] : 0;
  4994. const int ne01 = src0 ? src0->ne[1] : 0;
  4995. const int ne02 = src0 ? src0->ne[2] : 0;
  4996. const int ne03 = src0 ? src0->ne[3] : 0;
  4997. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4998. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4999. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5000. GGML_ASSERT(ne00 % 4 == 0);
  5001. const int nth = MIN(64, ne00);
  5002. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5003. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5004. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  5005. // Note, this kernel declares local memory in kernel args and the size
  5006. // depends on subgroup size.
  5007. // Note, this requires OpenCL 2.1 and above
  5008. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  5009. size_t sgs;
  5010. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  5011. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  5012. // sizeof(local_work_size), local_work_size,
  5013. // sizeof(size_t), &sgs, NULL));
  5014. if (backend_ctx->gpu_family == ADRENO) {
  5015. sgs = 64;
  5016. } else if (backend_ctx->gpu_family == INTEL) {
  5017. sgs = 32;
  5018. } else {
  5019. GGML_ASSERT(false && "Unsupported GPU");
  5020. }
  5021. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5022. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5023. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5024. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5025. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5026. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5027. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5028. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5029. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  5030. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  5031. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  5032. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  5033. // This is local memory - the size depends on subgroup size.
  5034. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  5035. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5036. }
  5037. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  5038. GGML_ASSERT(mul_tensor);
  5039. GGML_ASSERT(rms_norm_tensor);
  5040. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  5041. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  5042. const ggml_tensor * src1;
  5043. if (mul_tensor->src[0] == rms_norm_tensor) {
  5044. src1 = mul_tensor->src[1];
  5045. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  5046. src1 = mul_tensor->src[0];
  5047. } else {
  5048. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  5049. }
  5050. const ggml_tensor * dst = mul_tensor;
  5051. GGML_ASSERT(src0);
  5052. GGML_ASSERT(src0->extra);
  5053. GGML_ASSERT(src1);
  5054. GGML_ASSERT(src1->extra);
  5055. GGML_ASSERT(dst);
  5056. GGML_ASSERT(dst->extra);
  5057. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5058. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5059. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5060. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5061. cl_ulong offset1 = extra1->offset + src0->view_offs;
  5062. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5063. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5064. float eps;
  5065. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  5066. const int ne00 = src0->ne[0];
  5067. const int ne01 = src0->ne[1];
  5068. const int ne02 = src0->ne[2];
  5069. const int ne03 = src0->ne[3];
  5070. const cl_ulong nb01 = src0->nb[1];
  5071. const cl_ulong nb02 = src0->nb[2];
  5072. const cl_ulong nb03 = src0->nb[3];
  5073. const int ne10 = src1->ne[0];
  5074. const int ne11 = src1->ne[1];
  5075. const int ne12 = src1->ne[2];
  5076. const int ne13 = src1->ne[3];
  5077. const cl_ulong nb11 = src1->nb[1];
  5078. const cl_ulong nb12 = src1->nb[2];
  5079. const cl_ulong nb13 = src1->nb[3];
  5080. const cl_ulong nb1 = dst->nb[1];
  5081. const cl_ulong nb2 = dst->nb[2];
  5082. const cl_ulong nb3 = dst->nb[3];
  5083. GGML_ASSERT(ne00 % 4 == 0);
  5084. size_t sgs;
  5085. if (backend_ctx->gpu_family == ADRENO) {
  5086. sgs = 64;
  5087. } else if (backend_ctx->gpu_family == INTEL) {
  5088. sgs = 32;
  5089. } else {
  5090. GGML_ASSERT(false && "Unsupported GPU");
  5091. }
  5092. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  5093. int nth = sgs;
  5094. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  5095. while (nth < ne00 && nth < max_workgroup_size) {
  5096. nth *= 2;
  5097. }
  5098. nth = MIN(nth, max_workgroup_size);
  5099. nth = MIN(nth, ne00);
  5100. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5101. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5102. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5103. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5104. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5105. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5106. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5107. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5108. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5109. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5110. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5111. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  5112. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  5113. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  5114. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  5115. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  5116. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  5117. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  5118. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  5119. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  5120. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  5121. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  5122. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  5123. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  5124. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  5125. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  5126. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs, NULL));
  5127. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5128. }
  5129. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  5130. GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
  5131. const ggml_tensor * src0 = norm_tensor->src[0];
  5132. const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  5133. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  5134. const ggml_tensor * dst = add_tensor;
  5135. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5136. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5137. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  5138. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5139. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5140. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5141. cl_ulong offset2 = extra2->offset + src2->view_offs;
  5142. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5143. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5144. float eps;
  5145. memcpy(&eps, norm_tensor->op_params, sizeof(float));
  5146. const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5147. const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5148. const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
  5149. const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5150. const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
  5151. const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
  5152. const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
  5153. size_t sgs;
  5154. if (backend_ctx->gpu_family == ADRENO) sgs = 64;
  5155. else if (backend_ctx->gpu_family == INTEL) sgs = 32;
  5156. else GGML_ASSERT(false && "Unsupported GPU");
  5157. cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
  5158. int nth = sgs;
  5159. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  5160. while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
  5161. nth = MIN(nth, max_workgroup_size);
  5162. nth = MIN(nth, ne00/4);
  5163. size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5164. size_t lws[] = {(size_t)nth, 1, 1};
  5165. size_t num_subgroups = (nth + sgs - 1) / sgs;
  5166. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5167. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5168. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5169. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5170. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5171. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5172. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5173. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5174. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5175. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5176. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  5177. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  5178. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
  5179. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
  5180. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
  5181. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
  5182. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
  5183. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
  5184. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
  5185. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  5186. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  5187. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  5188. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
  5189. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
  5190. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
  5191. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
  5192. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
  5193. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
  5194. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
  5195. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
  5196. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
  5197. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
  5198. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
  5199. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
  5200. backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
  5201. }
  5202. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  5203. GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
  5204. const ggml_tensor * src0 = gn_tensor->src[0];
  5205. const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  5206. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  5207. const ggml_tensor * dst = add_tensor;
  5208. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5209. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5210. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  5211. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5212. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5213. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5214. cl_ulong offset2 = extra2->offset + src2->view_offs;
  5215. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5216. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5217. int groups;
  5218. float eps;
  5219. memcpy(&groups, gn_tensor->op_params, sizeof(int));
  5220. memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
  5221. cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
  5222. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  5223. int ne = ggml_nelements(src0);
  5224. int group_size = ne / groups;
  5225. size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
  5226. size_t gws[] = { (size_t)groups * lws[0] };
  5227. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5228. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5229. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5230. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5231. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5232. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5233. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5234. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5235. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
  5236. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
  5237. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
  5238. backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
  5239. }
  5240. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5241. GGML_ASSERT(src0);
  5242. GGML_ASSERT(src0->extra);
  5243. GGML_ASSERT(dst);
  5244. GGML_ASSERT(dst->extra);
  5245. UNUSED(src1);
  5246. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5247. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5248. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5249. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5250. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5251. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  5252. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  5253. float eps = ((const float *) dst->op_params)[1];
  5254. const int ne00 = src0->ne[0];
  5255. const int ne01 = src0->ne[1];
  5256. const int ne02 = src0->ne[2];
  5257. const int ne = ne00*ne01*ne02;
  5258. cl_kernel kernel = backend_ctx->kernel_group_norm;
  5259. size_t sgs = 64;
  5260. if (backend_ctx->gpu_family == ADRENO) {
  5261. sgs = 64;
  5262. } else if (backend_ctx->gpu_family == INTEL) {
  5263. sgs = 32;
  5264. } else {
  5265. GGML_ASSERT(false && "Unsupported GPU");
  5266. }
  5267. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5268. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5269. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5270. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5271. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  5272. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  5273. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  5274. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  5275. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  5276. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5277. }
  5278. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5279. GGML_ASSERT(src0);
  5280. GGML_ASSERT(src0->extra);
  5281. GGML_ASSERT(dst);
  5282. GGML_ASSERT(dst->extra);
  5283. UNUSED(src1);
  5284. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5285. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5286. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5287. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  5288. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  5289. cl_kernel kernel;
  5290. if (dst->type == GGML_TYPE_F32) {
  5291. kernel = backend_ctx->kernel_tanh_f32_nd;
  5292. } else if (dst->type == GGML_TYPE_F16) {
  5293. kernel = backend_ctx->kernel_tanh_f16_nd;
  5294. } else {
  5295. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  5296. }
  5297. GGML_ASSERT(kernel != nullptr);
  5298. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  5299. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  5300. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  5301. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  5302. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5303. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  5304. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5305. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  5306. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5307. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5308. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5309. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5310. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5311. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5312. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  5313. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  5314. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5315. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5316. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5317. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5318. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  5319. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  5320. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  5321. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  5322. size_t global_work_size[3];
  5323. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  5324. return;
  5325. }
  5326. global_work_size[0] = (size_t)ne10;
  5327. global_work_size[1] = (size_t)ne11;
  5328. global_work_size[2] = (size_t)ne12;
  5329. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  5330. if (ne10 < 16) lws0 = ne10;
  5331. if (ne11 < 4) lws1 = ne11;
  5332. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  5333. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  5334. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  5335. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  5336. size_t local_work_size[] = {lws0, lws1, lws2};
  5337. size_t* local_work_size_ptr = local_work_size;
  5338. if (!backend_ctx->non_uniform_workgroups) {
  5339. if (global_work_size[0] % local_work_size[0] != 0 ||
  5340. global_work_size[1] % local_work_size[1] != 0 ||
  5341. global_work_size[2] % local_work_size[2] != 0) {
  5342. local_work_size_ptr = NULL;
  5343. }
  5344. }
  5345. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  5346. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5347. }
  5348. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  5349. GGML_ASSERT(src0);
  5350. GGML_ASSERT(src0->extra);
  5351. GGML_ASSERT(dst);
  5352. GGML_ASSERT(dst->extra);
  5353. GGML_ASSERT(dst->type == src0->type);
  5354. UNUSED(src1_shape_def);
  5355. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5356. if (backend_ctx->kernel_repeat == nullptr) {
  5357. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  5358. return;
  5359. }
  5360. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5361. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5362. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5363. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5364. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  5365. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  5366. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  5367. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  5368. cl_kernel kernel = backend_ctx->kernel_repeat;
  5369. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5370. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  5371. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  5372. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5373. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  5374. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  5375. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  5376. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  5377. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  5378. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  5379. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  5380. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  5381. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  5382. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  5383. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  5384. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  5385. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  5386. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  5387. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  5388. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  5389. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  5390. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  5391. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  5392. size_t global_work_size[] = { gws0, gws1, gws2 };
  5393. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5394. }
  5395. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5396. GGML_ASSERT(src0);
  5397. GGML_ASSERT(src0->extra);
  5398. GGML_ASSERT(dst);
  5399. GGML_ASSERT(dst->extra);
  5400. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5401. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5402. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5403. if (backend_ctx->kernel_pad == nullptr) {
  5404. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  5405. return;
  5406. }
  5407. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5408. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5409. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5410. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5411. const int s_ne0 = src0->ne[0];
  5412. const int s_ne1 = src0->ne[1];
  5413. const int s_ne2 = src0->ne[2];
  5414. const int s_ne3 = src0->ne[3];
  5415. const int s_nb0 = src0->nb[0];
  5416. const int s_nb1 = src0->nb[1];
  5417. const int s_nb2 = src0->nb[2];
  5418. const int s_nb3 = src0->nb[3];
  5419. const int d_ne0 = dst->ne[0];
  5420. const int d_ne1 = dst->ne[1];
  5421. const int d_ne2 = dst->ne[2];
  5422. const int d_ne3 = dst->ne[3];
  5423. const int d_nb0 = dst->nb[0];
  5424. const int d_nb1 = dst->nb[1];
  5425. const int d_nb2 = dst->nb[2];
  5426. const int d_nb3 = dst->nb[3];
  5427. const int lp0 = ((const int*)(dst->op_params))[0];
  5428. const int rp0 = ((const int*)(dst->op_params))[1];
  5429. const int lp1 = ((const int*)(dst->op_params))[2];
  5430. const int rp1 = ((const int*)(dst->op_params))[3];
  5431. const int lp2 = ((const int*)(dst->op_params))[4];
  5432. const int rp2 = ((const int*)(dst->op_params))[5];
  5433. const int lp3 = ((const int*)(dst->op_params))[6];
  5434. const int rp3 = ((const int*)(dst->op_params))[7];
  5435. cl_kernel kernel = backend_ctx->kernel_pad;
  5436. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5437. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5438. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5439. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5440. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  5441. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  5442. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  5443. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &s_ne3));
  5444. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &s_nb0));
  5445. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &s_nb1));
  5446. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &s_nb2));
  5447. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &s_nb3));
  5448. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5449. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5450. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5451. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &d_ne3));
  5452. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &d_nb0));
  5453. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &d_nb1));
  5454. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &d_nb2));
  5455. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &d_nb3));
  5456. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &lp0));
  5457. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &rp0));
  5458. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &lp1));
  5459. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &rp1));
  5460. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &lp2));
  5461. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &rp2));
  5462. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &lp3));
  5463. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(int), &rp3));
  5464. size_t lws0 = 64;
  5465. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  5466. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2*d_ne3 };
  5467. size_t local_work_size[] = { lws0, 1, 1 };
  5468. size_t * local_work_size_ptr = local_work_size;
  5469. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  5470. local_work_size_ptr = nullptr;
  5471. }
  5472. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5473. }
  5474. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5475. GGML_ASSERT(src0);
  5476. GGML_ASSERT(src0->extra);
  5477. GGML_ASSERT(dst);
  5478. GGML_ASSERT(dst->extra);
  5479. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5480. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5481. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5482. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  5483. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  5484. cl_kernel kernel = nullptr;
  5485. if (mode == GGML_SCALE_MODE_NEAREST) {
  5486. kernel = backend_ctx->kernel_upscale;
  5487. if (kernel == nullptr) {
  5488. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5489. return;
  5490. }
  5491. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5492. kernel = backend_ctx->kernel_upscale_bilinear;
  5493. if (kernel == nullptr) {
  5494. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5495. return;
  5496. }
  5497. } else {
  5498. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  5499. return;
  5500. }
  5501. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5502. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5503. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5504. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5505. const cl_ulong nb00 = src0->nb[0];
  5506. const cl_ulong nb01 = src0->nb[1];
  5507. const cl_ulong nb02 = src0->nb[2];
  5508. const cl_ulong nb03 = src0->nb[3];
  5509. const int ne00 = src0->ne[0];
  5510. const int ne01 = src0->ne[1];
  5511. const int ne02 = src0->ne[2];
  5512. const int ne03 = src0->ne[3];
  5513. const int ne0 = dst->ne[0];
  5514. const int ne1 = dst->ne[1];
  5515. const int ne2 = dst->ne[2];
  5516. const int ne3 = dst->ne[3];
  5517. float sf0 = (float)ne0 / ne00;
  5518. float sf1 = (float)ne1 / ne01;
  5519. float sf2 = (float)ne2 / ne02;
  5520. float sf3 = (float)ne3 / ne03;
  5521. float pixel_offset = 0.5f;
  5522. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5523. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5524. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5525. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5526. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  5527. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  5528. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  5529. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  5530. if (mode == GGML_SCALE_MODE_NEAREST) {
  5531. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5532. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  5533. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  5534. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  5535. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  5536. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  5537. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  5538. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  5539. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5540. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  5541. sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
  5542. sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
  5543. pixel_offset = 0.0f;
  5544. }
  5545. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5546. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5547. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  5548. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  5549. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  5550. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  5551. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  5552. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  5553. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  5554. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  5555. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  5556. }
  5557. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  5558. if (dst_total_elements == 0) {
  5559. return;
  5560. }
  5561. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  5562. size_t local_work_size_pref = 256;
  5563. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  5564. size_t * local_work_size_ptr = local_work_size;
  5565. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  5566. local_work_size_ptr = nullptr;
  5567. }
  5568. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5569. }
  5570. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5571. GGML_ASSERT(src0);
  5572. GGML_ASSERT(src0->extra);
  5573. GGML_ASSERT(src1);
  5574. GGML_ASSERT(src1->extra);
  5575. GGML_ASSERT(dst);
  5576. GGML_ASSERT(dst->extra);
  5577. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5578. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5579. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5580. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5581. cl_command_queue queue = backend_ctx->queue;
  5582. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  5583. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  5584. return;
  5585. }
  5586. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  5587. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  5588. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  5589. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  5590. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  5591. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  5592. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  5593. GGML_ASSERT(dim >= 0 && dim <= 3);
  5594. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  5595. if (dim == 3) {
  5596. size_t nbytes_src0 = ggml_nbytes(src0);
  5597. size_t nbytes_src1 = ggml_nbytes(src1);
  5598. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  5599. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  5600. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  5601. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  5602. } else {
  5603. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  5604. size_t global_work_size[3];
  5605. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  5606. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  5607. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  5608. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  5609. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  5610. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  5611. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  5612. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5613. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  5614. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5615. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  5616. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5617. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  5618. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  5619. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  5620. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  5621. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  5622. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  5623. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  5624. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5625. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5626. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5627. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  5628. global_work_size[0] = d_ne0;
  5629. global_work_size[1] = d_ne1;
  5630. global_work_size[2] = d_ne2;
  5631. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5632. }
  5633. }
  5634. } else {
  5635. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  5636. cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5637. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5638. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5639. cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  5640. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  5641. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5642. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5643. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5644. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  5645. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5646. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  5647. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
  5648. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
  5649. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
  5650. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
  5651. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  5652. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  5653. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5654. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  5655. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  5656. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  5657. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  5658. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  5659. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
  5660. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
  5661. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
  5662. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
  5663. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  5664. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  5665. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  5666. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  5667. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  5668. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  5669. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  5670. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  5671. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  5672. }
  5673. }
  5674. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5675. GGML_ASSERT(src0);
  5676. GGML_ASSERT(src0->extra);
  5677. GGML_ASSERT(dst);
  5678. GGML_ASSERT(dst->extra);
  5679. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5680. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5681. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5682. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  5683. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  5684. return;
  5685. }
  5686. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5687. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5688. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5689. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5690. const int logical_dim = dst->op_params[0];
  5691. const int max_period = dst->op_params[1];
  5692. const int dst_nb1_bytes = dst->nb[1];
  5693. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  5694. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5695. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5696. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5697. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5698. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  5699. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  5700. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  5701. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  5702. size_t gws1 = (size_t)src0->ne[0];
  5703. size_t global_work_size[] = {gws0, gws1, 1};
  5704. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5705. }
  5706. static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
  5707. const ggml_tensor * v = dst->src[2];
  5708. const ggml_tensor * mask = dst->src[3];
  5709. const ggml_tensor * sinks = dst->src[4];
  5710. GGML_ASSERT(q->extra);
  5711. GGML_ASSERT(k->extra);
  5712. GGML_ASSERT(v->extra);
  5713. GGML_ASSERT(dst->extra);
  5714. if (mask) {
  5715. GGML_ASSERT(mask->extra);
  5716. }
  5717. if (sinks) {
  5718. GGML_ASSERT(sinks->extra);
  5719. }
  5720. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5721. const int n_q = q->ne[1];
  5722. const int n_kv = k->ne[1];
  5723. const int d_head_q = q->ne[0];
  5724. const int d_head_v = v->ne[0];
  5725. const int n_head = q->ne[2];
  5726. const int n_head_kv = k->ne[2];
  5727. const int n_batch = q->ne[3];
  5728. cl_kernel kernel = NULL;
  5729. const bool is_f16 = q->type == GGML_TYPE_F16;
  5730. const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
  5731. const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
  5732. if (n_q == 1) {
  5733. if (is_mixed) {
  5734. kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
  5735. } else if (is_f16) {
  5736. kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
  5737. } else {
  5738. kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
  5739. }
  5740. } else {
  5741. if (is_mixed) {
  5742. kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
  5743. } else if (is_f16) {
  5744. kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
  5745. } else {
  5746. kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
  5747. }
  5748. }
  5749. GGML_ASSERT(kernel != NULL);
  5750. ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
  5751. ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
  5752. ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
  5753. ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
  5754. ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
  5755. ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
  5756. cl_ulong offset_q = extra_q->offset + q->view_offs;
  5757. cl_ulong offset_k = extra_k->offset + k->view_offs;
  5758. cl_ulong offset_v = extra_v->offset + v->view_offs;
  5759. cl_ulong offset_o = extra_o->offset + dst->view_offs;
  5760. cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
  5761. cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
  5762. cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
  5763. cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
  5764. const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
  5765. const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
  5766. const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
  5767. const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
  5768. const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
  5769. const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
  5770. const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
  5771. const int mask_ne2 = mask ? mask->ne[2] : 0;
  5772. const int mask_ne3 = mask ? mask->ne[3] : 0;
  5773. float scale, max_bias, logit_softcap;
  5774. const float * params = (const float *)dst->op_params;
  5775. scale = params[0];
  5776. max_bias = params[1];
  5777. logit_softcap = params[2];
  5778. const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
  5779. const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
  5780. const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
  5781. const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
  5782. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
  5783. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
  5784. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
  5785. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
  5786. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
  5787. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
  5788. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
  5789. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
  5790. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
  5791. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
  5792. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
  5793. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
  5794. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
  5795. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
  5796. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
  5797. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
  5798. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
  5799. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
  5800. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
  5801. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
  5802. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
  5803. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
  5804. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
  5805. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
  5806. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
  5807. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
  5808. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
  5809. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
  5810. CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
  5811. CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
  5812. CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
  5813. CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
  5814. CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
  5815. if (n_q == 1) {
  5816. const size_t wg_size = 64;
  5817. size_t local_work_size[] = { wg_size, 1 };
  5818. size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
  5819. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5820. } else {
  5821. const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
  5822. const size_t wg_size = block_m;
  5823. size_t local_work_size[] = { wg_size, 1 };
  5824. size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
  5825. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5826. }
  5827. }
  5828. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5829. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5830. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5831. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5832. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5833. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5834. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5835. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5836. const int M = src0->ne[1];
  5837. const int N = src1->ne[1];
  5838. const int K = src0->ne[0];
  5839. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  5840. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  5841. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  5842. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  5843. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  5844. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  5845. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  5846. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  5847. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  5848. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  5849. // Tiling parameters. These need to be tuned for optimal performance.
  5850. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  5851. //
  5852. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  5853. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  5854. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  5855. //
  5856. // The following relationships must hold:
  5857. // OPWM = TPWM * OPTM
  5858. // OPWN = TPWN * OPTN
  5859. //
  5860. const int OPWM = 64;
  5861. const int OPWN = 64;
  5862. const int TPWM = 16;
  5863. const int TPWN = 8;
  5864. size_t local_work_size[2] = { TPWM, TPWN };
  5865. size_t global_work_size[2] = {
  5866. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  5867. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  5868. };
  5869. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5870. }
  5871. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5872. GGML_TENSOR_BINARY_OP_LOCALS;
  5873. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5874. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5875. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5876. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5877. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5878. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5879. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5880. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  5881. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  5882. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  5883. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  5884. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  5885. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  5886. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  5887. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  5888. const int64_t NPQ = (int64_t)N * OW * OH;
  5889. const uint32_t BS_K = 64;
  5890. const uint32_t BS_NPQ = 64;
  5891. const uint32_t BS_CRS = 16;
  5892. const uint32_t VEC_SIZE = 4;
  5893. const uint32_t TS_K = 4;
  5894. const uint32_t TS_NPQ = 8;
  5895. const uint32_t WG_K = BS_K / TS_K;
  5896. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  5897. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  5898. const uint32_t NB_K = splitWork(Cout, BS_K);
  5899. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  5900. cl_kernel kernel;
  5901. size_t shmem_size;
  5902. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  5903. kernel = backend_ctx->kernel_conv_2d_f16;
  5904. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  5905. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  5906. kernel = backend_ctx->kernel_conv_2d_f32;
  5907. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5908. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  5909. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  5910. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5911. } else {
  5912. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  5913. }
  5914. cl_uint idx = 0;
  5915. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  5916. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  5917. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  5918. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  5919. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  5920. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  5921. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  5922. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  5923. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  5924. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  5925. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  5926. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  5927. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  5928. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  5929. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5930. }
  5931. static void ggml_cl_mul_mat_kq_kqv_adreno(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5932. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5933. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5934. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5935. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5936. const int ne00 = src0->ne[0];
  5937. const int ne01 = src0->ne[1];
  5938. const int ne02 = src0->ne[2];
  5939. const cl_ulong nb01 = src0->nb[1];
  5940. const cl_ulong nb02 = src0->nb[2];
  5941. const int ne10 = src1->ne[0];
  5942. const int ne11 = src1->ne[1];
  5943. const int ne12 = src1->ne[2];
  5944. const cl_ulong nb10 = src1->nb[0];
  5945. const int ne0 = dst->ne[0];
  5946. const int ne1 = dst->ne[1];
  5947. GGML_ASSERT(ne00 == ne10);
  5948. cl_kernel kernel;
  5949. cl_context context = backend_ctx->context;
  5950. cl_int status;
  5951. cl_image_format img_fmt_1d;
  5952. cl_image_desc img_desc_1d;
  5953. cl_buffer_region region;
  5954. cl_mem A_image1d;
  5955. cl_mem A_sub_buffer;
  5956. cl_mem B_sub_buffer;
  5957. cl_mem D_image1d;
  5958. cl_mem D_sub_buffer;
  5959. int M = ne01;
  5960. int N = ne1;
  5961. int K = ne00;
  5962. if (nb01 > nb02) {
  5963. // KQ
  5964. kernel = backend_ctx->kernel_mul_mm_f16_f32_kq;
  5965. } else {
  5966. // KQV
  5967. kernel = backend_ctx->kernel_mul_mm_f16_f32_kqv;
  5968. }
  5969. // create sub-buffer for A
  5970. // <--------------------------------------------> //
  5971. extra0 = src0->view_src ? (ggml_tensor_extra_cl *)src0->view_src->extra : (ggml_tensor_extra_cl *)src0->extra;
  5972. region.origin = (extra0->offset);
  5973. if (nb01 > nb02) {
  5974. // KQ
  5975. region.size = nb01 * ne01;
  5976. } else {
  5977. // KQV
  5978. region.size = nb02 * ne02;
  5979. }
  5980. A_sub_buffer = clCreateSubBuffer((extra0->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5981. CL_CHECK(status);
  5982. // <--------------------------------------------> //
  5983. // create sub-buffer for B
  5984. // <--------------------------------------------> //
  5985. region.origin = (extra1->offset);
  5986. region.size = nb10 * ne10 * ne11 * ne12;
  5987. B_sub_buffer = clCreateSubBuffer((extra1->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5988. CL_CHECK(status);
  5989. // <--------------------------------------------> //
  5990. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  5991. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5992. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5993. if (nb01 > nb02) {
  5994. img_desc_1d.image_width = (nb01 * ne01 / 4)/4;
  5995. }
  5996. else {
  5997. img_desc_1d.image_width = (nb02 * ne02 / 4)/4;
  5998. }
  5999. img_desc_1d.buffer = A_sub_buffer;
  6000. A_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
  6001. CL_CHECK(status);
  6002. // create sub-buffer for output C
  6003. // <--------------------------------------------> //
  6004. region.origin = (extrad->offset);
  6005. region.size = ne0 * ne1 * dst->ne[2] * dst->nb[0]; // size of C in bytes
  6006. D_sub_buffer = clCreateSubBuffer((extrad->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6007. CL_CHECK(status);
  6008. // <--------------------------------------------> //
  6009. // create image for C output
  6010. // <--------------------------------------------> //
  6011. img_fmt_1d = {CL_R, CL_FLOAT};
  6012. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6013. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6014. img_desc_1d.image_width = ne0 * ne1 * dst->ne[2] * dst->nb[0] / 4;
  6015. img_desc_1d.buffer = D_sub_buffer;
  6016. D_image1d = clCreateImage(context, CL_MEM_WRITE_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
  6017. CL_CHECK(status);
  6018. // <--------------------------------------------> //
  6019. int offset_src0 = 0;
  6020. int offset_src1 = 0;
  6021. // set kernel args
  6022. // <--------------------------------------------> //
  6023. cl_uint k_arg = 0;
  6024. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  6025. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src0));
  6026. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_sub_buffer));
  6027. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src1));
  6028. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &D_image1d));
  6029. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &extrad->offset));
  6030. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &M));
  6031. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &K));
  6032. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &N));
  6033. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  6034. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  6035. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &nb01));
  6036. size_t global_work_size[3] = {64, static_cast<size_t>(((M+63)/64)), static_cast<size_t>(((N+31)/32)*ne12)};
  6037. size_t local_work_size[3] = {64, 1, 2};
  6038. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6039. // deallocate sub buffers and images
  6040. // <--------------------------------------------> //
  6041. CL_CHECK(clReleaseMemObject(A_image1d));
  6042. CL_CHECK(clReleaseMemObject(D_image1d));
  6043. CL_CHECK(clReleaseMemObject(A_sub_buffer));
  6044. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  6045. CL_CHECK(clReleaseMemObject(D_sub_buffer));
  6046. }
  6047. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6048. GGML_ASSERT(src0);
  6049. GGML_ASSERT(src0->extra);
  6050. GGML_ASSERT(src1);
  6051. GGML_ASSERT(src1->extra);
  6052. GGML_ASSERT(dst);
  6053. GGML_ASSERT(dst->extra);
  6054. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  6055. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  6056. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6057. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6058. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6059. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6060. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6061. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6062. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6063. #ifdef GGML_OPENCL_SOA_Q
  6064. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  6065. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  6066. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  6067. #endif
  6068. const int ne00 = src0 ? src0->ne[0] : 0;
  6069. const int ne01 = src0 ? src0->ne[1] : 0;
  6070. const int ne02 = src0 ? src0->ne[2] : 0;
  6071. const int ne03 = src0 ? src0->ne[3] : 0;
  6072. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  6073. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  6074. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  6075. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  6076. const int ne10 = src1 ? src1->ne[0] : 0;
  6077. const int ne11 = src1 ? src1->ne[1] : 0;
  6078. const int ne12 = src1 ? src1->ne[2] : 0;
  6079. const int ne13 = src1 ? src1->ne[3] : 0;
  6080. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  6081. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  6082. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  6083. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  6084. const int ne0 = dst ? dst->ne[0] : 0;
  6085. const int ne1 = dst ? dst->ne[1] : 0;
  6086. int r2 = ne12/ne02;
  6087. int r3 = ne13/ne03;
  6088. GGML_ASSERT(ne00 == ne10);
  6089. int nth0 = 32;
  6090. int nth1 = 1;
  6091. int nrows = 1;
  6092. // The number of values produced by each subgroup
  6093. int ndst = 4;
  6094. cl_kernel kernel;
  6095. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  6096. cl_context context = backend_ctx->context;
  6097. if(src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32){
  6098. if (ne01 >= 64 && ne1 >= 32 && ne00 >= 16 && (ne12 % ne02) == 0) {
  6099. // For KQ
  6100. if (ggml_is_permuted(src0) && ggml_is_permuted(src1) &&
  6101. nb00 <= nb02 &&
  6102. nb02 <= nb01 &&
  6103. nb01 <= nb03 &&
  6104. nb10 <= nb12 &&
  6105. nb12 <= nb11 &&
  6106. nb11 <= nb13) {
  6107. ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
  6108. return;
  6109. }
  6110. // For KQV
  6111. if (!ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
  6112. ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
  6113. return;
  6114. }
  6115. }
  6116. }
  6117. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  6118. // init CL objects
  6119. // <--------------------------------------------> //
  6120. cl_int status;
  6121. cl_image_format img_fmt_1d;
  6122. cl_image_desc img_desc_1d;
  6123. cl_buffer_region region;
  6124. cl_mem A_image1d = nullptr;
  6125. cl_mem B_image1d = nullptr;
  6126. cl_mem B_sub_buffer = nullptr;
  6127. cl_mem C_d = nullptr;
  6128. // for B transpose
  6129. cl_mem B_d = nullptr;
  6130. cl_mem B_d_input_image = nullptr;
  6131. // <--------------------------------------------> //
  6132. // define matrix dimensions
  6133. // <--------------------------------------------> //
  6134. int M = ne01;
  6135. int N = ne1;
  6136. int K = ne00;
  6137. int padding;
  6138. // <--------------------------------------------> //
  6139. // q4_0 x fp32
  6140. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  6141. // TODO: remove duplicate definitions of image description + format -- move to top
  6142. // create an image for A
  6143. // <--------------------------------------------> //
  6144. if (N == 1) {
  6145. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  6146. } else {
  6147. img_fmt_1d = { CL_R, CL_FLOAT};
  6148. }
  6149. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6150. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6151. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  6152. img_desc_1d.buffer = extra0_q4_0->q;
  6153. A_image1d = clCreateImage(
  6154. context,
  6155. CL_MEM_READ_ONLY,
  6156. &img_fmt_1d,
  6157. &img_desc_1d,
  6158. NULL,
  6159. &status);
  6160. CL_CHECK(status);
  6161. // <--------------------------------------------> //
  6162. // create a sub_buffer for B
  6163. // <--------------------------------------------> //
  6164. region.origin = (extra1->offset);
  6165. region.size = K * N * sizeof(float);
  6166. B_sub_buffer = clCreateSubBuffer(
  6167. extra1->data_device,
  6168. 0,
  6169. CL_BUFFER_CREATE_TYPE_REGION,
  6170. &region,
  6171. &status);
  6172. CL_CHECK(status);
  6173. // <--------------------------------------------> //
  6174. // transpose activation for Skyler's gemm
  6175. if (N != 1) {
  6176. //how many extra elements beyond multiple of 8
  6177. int extra_elements = N % 8;
  6178. //how much padding to add
  6179. padding = 0;
  6180. if (extra_elements > 0){
  6181. padding = 8 - extra_elements;
  6182. }
  6183. // Specify the starting offset (in bytes)
  6184. region.origin = 0;
  6185. // Specify the size of the sub-buffer (divide by 2 for FP16)
  6186. region.size = K * (N + padding) * sizeof(float)/2;
  6187. B_d = clCreateSubBuffer(
  6188. backend_ctx->B_d_max,
  6189. 0,
  6190. CL_BUFFER_CREATE_TYPE_REGION,
  6191. &region,
  6192. &status);
  6193. CL_CHECK(status);
  6194. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  6195. cl_image_desc image_desc_B_d_input = {
  6196. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  6197. static_cast<size_t>(K * N / 4),
  6198. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  6199. };
  6200. B_d_input_image = clCreateImage(
  6201. context,
  6202. 0,
  6203. &image_format_B_d_input,
  6204. &image_desc_B_d_input,
  6205. NULL,
  6206. &status);
  6207. CL_CHECK(status);
  6208. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  6209. cl_image_desc image_desc_B_d_output = {
  6210. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  6211. static_cast<size_t>(K * (N + padding)/4),
  6212. 0, 0, 0, 0, 0, 0, 0, { B_d }
  6213. };
  6214. B_image1d = clCreateImage(
  6215. context,
  6216. 0,
  6217. &image_format_B_d_output,
  6218. &image_desc_B_d_output,
  6219. NULL,
  6220. &status);
  6221. CL_CHECK(status);
  6222. int height_B = N/4;
  6223. if (height_B == 0) {
  6224. height_B = 1;
  6225. }
  6226. int width_B = K/4;
  6227. int padded_height_B = (N + padding)/4;
  6228. kernel = backend_ctx->kernel_transpose_32_16;
  6229. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  6230. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  6231. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  6232. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  6233. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  6234. size_t local_size_t[2] = { 1, 16 };
  6235. //WGS tuning
  6236. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  6237. local_size_t[0]=4;
  6238. local_size_t[1]=8;
  6239. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  6240. local_size_t[0]=2;
  6241. local_size_t[1]=8;
  6242. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  6243. local_size_t[0]=1;
  6244. local_size_t[1]=8;
  6245. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  6246. local_size_t[0]=2;
  6247. local_size_t[1]=8;
  6248. }
  6249. size_t global_size_t[2] = {
  6250. static_cast<size_t>(width_B),
  6251. static_cast<size_t>(padded_height_B)
  6252. };
  6253. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  6254. } else {
  6255. // no need to transpose B in other cases
  6256. // create an image for B from sub_buffer
  6257. // <--------------------------------------------> //
  6258. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  6259. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  6260. img_desc_1d.image_width = K * N / 4;
  6261. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  6262. img_desc_1d.buffer = B_sub_buffer;
  6263. B_image1d = clCreateImage(
  6264. context,
  6265. CL_MEM_READ_ONLY,
  6266. &img_fmt_1d,
  6267. &img_desc_1d,
  6268. NULL,
  6269. &status);
  6270. CL_CHECK(status);
  6271. // <--------------------------------------------> //
  6272. }
  6273. // choose gemm or gemv kernel
  6274. // <--------------------------------------------> //
  6275. if (N == 1) {
  6276. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  6277. if (M == 4096 && K == 4096) {
  6278. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  6279. } else if (M == 4096 && K == 11008) {
  6280. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  6281. } else if (M == 11008 && K == 4096) {
  6282. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  6283. } else if (M == 32000 && K == 4096) {
  6284. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  6285. }
  6286. } else {
  6287. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  6288. }
  6289. // <--------------------------------------------> //
  6290. // set kernel args
  6291. // <--------------------------------------------> //
  6292. cl_uint k_arg = 0;
  6293. if (N == 1) {
  6294. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  6295. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  6296. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  6297. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  6298. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  6299. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  6300. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  6301. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  6302. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  6303. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  6304. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  6305. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  6306. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  6307. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  6308. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  6309. } else {
  6310. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  6311. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  6312. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6313. CL_CHECK(status);
  6314. int padded_N = ne1 + padding;
  6315. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  6316. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  6317. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  6318. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  6319. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  6320. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  6321. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  6322. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  6323. }
  6324. // <--------------------------------------------> //
  6325. // choose workgroup size
  6326. // <--------------------------------------------> //
  6327. size_t global_work_size[3] = {
  6328. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  6329. size_t local_work_size[3] = {64, 2, 4};
  6330. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  6331. global_work_size[1] = (size_t)(ne01/4);
  6332. global_work_size[2] = (size_t)(1);
  6333. local_work_size[0] = (size_t)(1); //4x32 for FP32
  6334. local_work_size[1] = (size_t)(128);
  6335. local_work_size[2] = (size_t)(1);
  6336. //WGS tuning
  6337. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  6338. local_work_size[0] = 1;
  6339. local_work_size[1] = 128;
  6340. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  6341. local_work_size[0] = 2;
  6342. local_work_size[1] = 64;
  6343. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  6344. local_work_size[0] = 2;
  6345. local_work_size[1] = 64;
  6346. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  6347. local_work_size[0] = 2;
  6348. local_work_size[1] = 64;
  6349. }
  6350. if (N == 1) {
  6351. size_t wavesize = backend_ctx->adreno_wave_size;
  6352. local_work_size[0] = wavesize; // localsize
  6353. local_work_size[1] = 4; // reduce factor
  6354. local_work_size[2] = 1;
  6355. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  6356. global_work_size[1] = 4; // reduce factor
  6357. global_work_size[2] = 1;
  6358. }
  6359. // <--------------------------------------------> //
  6360. // enqueue kernel with profiling
  6361. // <--------------------------------------------> //
  6362. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6363. // <--------------------------------------------> //
  6364. // deallocate sub buffers and images
  6365. // <--------------------------------------------> //
  6366. CL_CHECK(clReleaseMemObject(A_image1d));
  6367. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  6368. CL_CHECK(clReleaseMemObject(B_image1d));
  6369. if (N != 1) {
  6370. CL_CHECK(clReleaseMemObject(B_d));
  6371. CL_CHECK(clReleaseMemObject(B_d_input_image));
  6372. CL_CHECK(clReleaseMemObject(C_d));
  6373. }
  6374. // <--------------------------------------------> //
  6375. return;
  6376. }
  6377. } // if (ne01 && ne1)
  6378. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  6379. // GEMM using local memory
  6380. // Current BK = 16, so ne00 % 16 == 0
  6381. if (ggml_is_contiguous(src0) &&
  6382. ggml_is_contiguous(src1) &&
  6383. src1t == GGML_TYPE_F32 &&
  6384. ne00 % 16 == 0 &&
  6385. ne11 > 1) {
  6386. switch(src0t) {
  6387. case GGML_TYPE_F32: {
  6388. kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
  6389. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6390. int batch_stride_a = ne00*ne01;
  6391. int batch_stride_b = ne10*ne11;
  6392. int batch_stride_d = ne0*ne1;
  6393. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6394. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6395. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6396. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6397. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6398. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6399. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6400. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6401. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6402. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6403. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6404. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6405. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6406. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6407. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6408. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6409. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6410. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6411. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6412. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6413. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6414. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6415. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6416. return;
  6417. }
  6418. case GGML_TYPE_F16: {
  6419. kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
  6420. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6421. int batch_stride_a = ne00*ne01;
  6422. int batch_stride_b = ne10*ne11;
  6423. int batch_stride_d = ne0*ne1;
  6424. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6425. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6426. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6427. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6428. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6429. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6430. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6431. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6432. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6433. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6434. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6435. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6436. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6437. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6438. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6439. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6440. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6441. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6442. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6443. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6444. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6445. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6446. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6447. return;
  6448. }
  6449. case GGML_TYPE_Q8_0: {
  6450. if (ne11 < 32) {
  6451. break;
  6452. }
  6453. kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
  6454. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6455. int batch_stride_a = ne00*ne01;
  6456. int batch_stride_b = ne10*ne11;
  6457. int batch_stride_d = ne0*ne1;
  6458. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6459. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6460. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6461. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6462. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6463. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6464. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6465. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6466. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6467. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6468. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6469. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6470. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6471. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6472. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6473. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6474. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6475. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6476. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6477. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6478. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6479. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6480. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6481. return;
  6482. }
  6483. default:
  6484. break;
  6485. }
  6486. }
  6487. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  6488. src0->ne[1] > 32 && // M > 32
  6489. src1->ne[1] > 32 && // N > 32
  6490. src0->ne[0] > 32 && // K > 32
  6491. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  6492. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  6493. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  6494. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  6495. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  6496. return;
  6497. }
  6498. if (!ggml_is_transposed(src0) &&
  6499. !ggml_is_transposed(src1) &&
  6500. src1t == GGML_TYPE_F32 &&
  6501. ne00%32 == 0 &&
  6502. ne11 > 2) {
  6503. #ifdef GGML_OPENCL_SOA_Q
  6504. // Set up kernel.
  6505. switch(src0t) {
  6506. case GGML_TYPE_Q4_0:
  6507. // This should have been satisfied.
  6508. GGML_ASSERT(ne11 == ne1);
  6509. GGML_ASSERT(ne01 == ne0);
  6510. if (backend_ctx->gpu_family == INTEL) {
  6511. nth0 = 16;
  6512. nth1 = 1;
  6513. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  6514. } else if (backend_ctx->gpu_family == ADRENO) {
  6515. nth0 = 64;
  6516. nth1 = 1;
  6517. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  6518. } else {
  6519. GGML_ASSERT(false && "TODO: Unknown GPU");
  6520. }
  6521. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6522. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6523. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6524. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6525. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6526. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6527. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6528. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6529. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6530. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6531. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6532. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6533. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6534. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6535. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6536. break;
  6537. default:
  6538. break;
  6539. }
  6540. // Launch kernel.
  6541. if (src0t == GGML_TYPE_Q4_0) {
  6542. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6543. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6544. if (backend_ctx->gpu_family == INTEL) {
  6545. // Set global size for Intel. It uses 16x output values.
  6546. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  6547. global_work_size[1] = (size_t)ne11*nth1;
  6548. global_work_size[2] = (size_t)ne12*ne13;
  6549. }
  6550. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6551. return;
  6552. }
  6553. #else // GGML_OPENCL_SOA_Q
  6554. // TODO: add block_q4_0 variant.
  6555. #endif // GGML_OPENCL_SOA_Q
  6556. }
  6557. // use custom matrix x vector kernel
  6558. switch (src0t) {
  6559. case GGML_TYPE_F32:
  6560. //GGML_ASSERT(ne02 == ne12);
  6561. GGML_ASSERT(src1t == GGML_TYPE_F32);
  6562. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  6563. nrows = 4;
  6564. if (backend_ctx->gpu_family == INTEL) {
  6565. nth0 = 32;
  6566. nth1 = 1;
  6567. } else if (backend_ctx->gpu_family == ADRENO) {
  6568. nth0 = 64;
  6569. nth1 = 1;
  6570. } else {
  6571. GGML_ASSERT(false && "TODO: Unknown GPU");
  6572. }
  6573. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6574. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6575. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6576. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6577. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6578. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6579. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6580. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6581. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6582. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6583. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6584. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6585. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6586. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6587. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6588. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6589. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6590. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6591. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6592. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6593. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6594. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6595. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6596. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6597. break;
  6598. case GGML_TYPE_F16:
  6599. //GGML_ASSERT(ne02 == ne12);
  6600. if (backend_ctx->gpu_family == INTEL) {
  6601. nth0 = 32;
  6602. nth1 = 1;
  6603. } else if (backend_ctx->gpu_family == ADRENO) {
  6604. nth0 = 64;
  6605. nth1 = 1;
  6606. } else {
  6607. GGML_ASSERT(false && "TODO: Unknown GPU");
  6608. }
  6609. if (src1t == GGML_TYPE_F32) {
  6610. if (ne11 * ne12 < 4) {
  6611. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  6612. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  6613. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  6614. nrows = ne11;
  6615. } else {
  6616. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  6617. nrows = 4;
  6618. }
  6619. } else {
  6620. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  6621. nrows = 4;
  6622. }
  6623. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6624. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6625. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6626. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6627. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6628. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6629. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6630. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6631. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6632. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6633. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6634. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6635. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6636. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6637. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6638. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6639. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6640. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6641. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6642. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6643. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6644. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6645. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6646. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6647. break;
  6648. case GGML_TYPE_Q4_0:
  6649. // This should have been satisfied.
  6650. GGML_ASSERT(ne11 == ne1);
  6651. GGML_ASSERT(ne01 == ne0);
  6652. #ifdef GGML_OPENCL_SOA_Q
  6653. if (backend_ctx->gpu_family == INTEL) {
  6654. nth0 = 16;
  6655. nth1 = 1;
  6656. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6657. ndst = 8;
  6658. } else if (backend_ctx->gpu_family == ADRENO) {
  6659. nth0 = 64;
  6660. nth1 = 1;
  6661. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6662. ndst =8;
  6663. } else {
  6664. GGML_ASSERT(false && "TODO: Unknown GPU");
  6665. }
  6666. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6667. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6668. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6669. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6670. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6671. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6672. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6673. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6674. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6675. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6676. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6677. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6678. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6679. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6680. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6681. #else // GGML_OPENCL_SOA_Q
  6682. if (backend_ctx->gpu_family == INTEL) {
  6683. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  6684. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  6685. // The number of workgroups on dim 0 (the leading dimension) is
  6686. // the nearest multiple of 4 that covers ne0 (equals ne01).
  6687. nth0 = 16;
  6688. nth1 = 1;
  6689. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  6690. ndst = 4;
  6691. } else if (backend_ctx->gpu_family == ADRENO) {
  6692. nth0 = 64;
  6693. nth1 = 1;
  6694. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  6695. ndst = 4;
  6696. } else {
  6697. GGML_ASSERT(false && "TODO: Unknown GPU");
  6698. }
  6699. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6700. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6701. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6702. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6703. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6704. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6705. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6706. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6707. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6708. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6709. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6710. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6711. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6712. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6713. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6714. #endif // GGML_OPENCL_SOA_Q
  6715. break;
  6716. case GGML_TYPE_Q4_1:
  6717. case GGML_TYPE_Q8_0: {
  6718. #ifdef GGML_OPENCL_SOA_Q
  6719. kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
  6720. // nth0 - subgroup size
  6721. // nth1 - number of subgroups per workgroup
  6722. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6723. if (backend_ctx->gpu_family == INTEL) {
  6724. nth0 = 16;
  6725. nth1 = 2;
  6726. ndst = nth1*4;
  6727. } else if (backend_ctx->gpu_family == ADRENO) {
  6728. nth0 = 64;
  6729. nth1 = 2;
  6730. ndst = nth1*4;
  6731. } else {
  6732. GGML_ASSERT(false && "TODO: Unknown GPU");
  6733. }
  6734. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6735. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6736. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6737. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6738. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6739. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6740. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6741. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6742. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6743. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6744. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6745. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6746. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6747. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6748. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6749. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6750. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6751. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6752. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6753. #else
  6754. kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
  6755. // nth0 - subgroup size
  6756. // nth1 - number of subgroups per workgroup
  6757. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6758. if (backend_ctx->gpu_family == INTEL) {
  6759. nth0 = 16;
  6760. nth1 = 2;
  6761. ndst = nth1*4;
  6762. } else if (backend_ctx->gpu_family == ADRENO) {
  6763. nth0 = 64;
  6764. nth1 = 2;
  6765. ndst = nth1*4;
  6766. } else {
  6767. GGML_ASSERT(false && "TODO: Unknown GPU");
  6768. }
  6769. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6770. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6771. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6772. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6773. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6774. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6775. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6776. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6777. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6778. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6779. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6780. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6781. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6782. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6783. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6784. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6785. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6786. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6787. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6788. #endif // GGML_OPENCL_SOA_Q
  6789. break;
  6790. }
  6791. case GGML_TYPE_Q2_K:
  6792. case GGML_TYPE_Q3_K:
  6793. case GGML_TYPE_Q4_K:
  6794. case GGML_TYPE_Q5_K:
  6795. case GGML_TYPE_Q6_K:
  6796. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  6797. if (backend_ctx->gpu_family == INTEL) {
  6798. nth0 = 2;
  6799. nth1 = 16;
  6800. } else if (backend_ctx->gpu_family == ADRENO) {
  6801. nth0 = 2;
  6802. nth1 = 64;
  6803. } else {
  6804. GGML_ASSERT(false && "TODO: Unknown GPU");
  6805. }
  6806. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6807. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6808. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6809. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6810. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6811. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6812. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6813. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6814. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6815. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6816. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6817. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6818. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6819. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6820. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6821. break;
  6822. case GGML_TYPE_MXFP4: {
  6823. #ifdef GGML_OPENCL_SOA_Q
  6824. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
  6825. cl_mem q;
  6826. if (backend_ctx->gpu_family == INTEL) {
  6827. nth0 = 16;
  6828. nth1 = 2;
  6829. ndst = nth1*2;
  6830. q = extra0_mxfp4->q;
  6831. } else if (backend_ctx->gpu_family == ADRENO) {
  6832. nth0 = 64;
  6833. nth1 = 2;
  6834. ndst = nth1*2;
  6835. q = extra0_mxfp4->q_img;
  6836. } else {
  6837. GGML_ASSERT(false && "TODO: Unknown GPU");
  6838. }
  6839. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6840. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6841. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6842. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6843. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6844. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6845. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6846. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6847. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6848. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6849. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6850. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6851. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6852. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6853. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6854. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6855. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6856. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6857. #else
  6858. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
  6859. if (backend_ctx->gpu_family == INTEL) {
  6860. nth0 = 16;
  6861. nth1 = 2;
  6862. ndst = nth1*2;
  6863. } else if (backend_ctx->gpu_family == ADRENO) {
  6864. nth0 = 64;
  6865. nth1 = 2;
  6866. ndst = nth1*2;
  6867. } else {
  6868. GGML_ASSERT(false && "TODO: Unknown GPU");
  6869. }
  6870. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6871. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6872. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6873. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6874. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6875. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6876. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6877. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6878. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6879. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6880. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6881. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6882. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6883. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6884. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6885. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6886. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6887. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6888. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
  6889. #endif
  6890. break;
  6891. }
  6892. default:
  6893. GGML_ASSERT(false && "not implemented");
  6894. }
  6895. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
  6896. src0t == GGML_TYPE_Q4_1 ||
  6897. src0t == GGML_TYPE_Q8_0 ||
  6898. src0t == GGML_TYPE_Q2_K) {
  6899. // Each SIMD group produces N_DST values in the result. Assuming each
  6900. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  6901. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  6902. // (number of workgroups) will be a nearest multiple of
  6903. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  6904. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  6905. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6906. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6907. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6908. } else if (src0t == GGML_TYPE_Q4_K) {
  6909. GGML_ASSERT(false && "not implemented");
  6910. } else if (src0t == GGML_TYPE_Q3_K) {
  6911. GGML_ASSERT(false && "not implemented");
  6912. } else if (src0t == GGML_TYPE_Q5_K) {
  6913. GGML_ASSERT(false && "not implemented");
  6914. } else if (src0t == GGML_TYPE_Q6_K) {
  6915. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6916. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6917. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6918. } else {
  6919. int64_t ny = (ne11 + nrows - 1)/nrows;
  6920. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  6921. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6922. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6923. }
  6924. }
  6925. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6926. GGML_ASSERT(src0);
  6927. GGML_ASSERT(src0->extra);
  6928. GGML_ASSERT(src1);
  6929. GGML_ASSERT(src1->extra);
  6930. GGML_ASSERT(dst);
  6931. GGML_ASSERT(dst->extra);
  6932. const ggml_tensor * src2 = dst->src[2];
  6933. GGML_ASSERT(src2);
  6934. GGML_ASSERT(src2->extra);
  6935. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6936. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6937. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6938. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  6939. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6940. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6941. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6942. cl_ulong offset2 = extra2->offset + src2->view_offs;
  6943. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6944. GGML_UNUSED(offset0);
  6945. #ifdef GGML_OPENCL_SOA_Q
  6946. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  6947. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  6948. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  6949. #endif
  6950. const int ne00 = src0->ne[0];
  6951. const int ne01 = src0->ne[1];
  6952. const int ne02 = src0->ne[2];
  6953. const int ne03 = src0->ne[3];
  6954. const cl_ulong nb00 = src0->nb[0];
  6955. const cl_ulong nb01 = src0->nb[1];
  6956. const cl_ulong nb02 = src0->nb[2];
  6957. const cl_ulong nb03 = src0->nb[3];
  6958. const int ne10 = src1->ne[0];
  6959. const int ne11 = src1->ne[1];
  6960. const int ne12 = src1->ne[2];
  6961. const int ne13 = src1->ne[3];
  6962. const cl_ulong nb11 = src1->nb[1];
  6963. const cl_ulong nb12 = src1->nb[2];
  6964. const cl_ulong nb13 = src1->nb[3];
  6965. const int ne20 = src2->ne[0];
  6966. const int ne21 = src2->ne[1];
  6967. const cl_ulong nb21 = src2->nb[1];
  6968. const cl_ulong nb20 = src2->nb[0];
  6969. UNUSED(nb20);
  6970. const int ne0 = dst->ne[0];
  6971. const int ne1 = dst->ne[1];
  6972. const int r2 = ne12/ne02;
  6973. const int r3 = ne13/ne03;
  6974. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  6975. GGML_ASSERT(ne00 == ne10);
  6976. int sgs = 32; // subgroup size
  6977. int nsg = 1; // number of subgroups
  6978. int nrows = 1; // number of row in src1
  6979. int ndst = 4; // number of values produced by each subgroup
  6980. cl_kernel kernel;
  6981. // subgroup mat vec
  6982. switch (src0->type) {
  6983. case GGML_TYPE_Q4_0: {
  6984. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  6985. if (backend_ctx->gpu_family == INTEL) {
  6986. sgs = 16;
  6987. nsg = 1;
  6988. ndst = 8;
  6989. } else if (backend_ctx->gpu_family == ADRENO) {
  6990. sgs = 64;
  6991. nsg = 1;
  6992. ndst = 8;
  6993. } else {
  6994. GGML_ASSERT(false && "TODO: Unknown GPU");
  6995. }
  6996. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6997. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6998. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6999. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7000. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7001. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7002. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7003. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7004. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7005. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7006. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7007. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  7008. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  7009. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  7010. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  7011. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  7012. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  7013. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  7014. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  7015. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  7016. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  7017. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  7018. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  7019. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  7020. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  7021. break;
  7022. }
  7023. case GGML_TYPE_Q8_0: {
  7024. #ifdef GGML_OPENCL_SOA_Q
  7025. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
  7026. if (backend_ctx->gpu_family == INTEL) {
  7027. sgs = 16;
  7028. nsg = 2;
  7029. ndst = 4;
  7030. } else if (backend_ctx->gpu_family == ADRENO) {
  7031. sgs = 64;
  7032. nsg = 2;
  7033. ndst = 4;
  7034. } else {
  7035. GGML_ASSERT(false && "TODO: Unknown GPU");
  7036. }
  7037. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  7038. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  7039. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7040. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7041. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7042. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7043. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7044. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7045. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7046. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7047. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  7048. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  7049. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7050. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7051. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7052. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7053. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  7054. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  7055. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  7056. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  7057. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  7058. #else
  7059. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
  7060. if (backend_ctx->gpu_family == INTEL) {
  7061. sgs = 16;
  7062. nsg = 2;
  7063. ndst = 4;
  7064. } else if (backend_ctx->gpu_family == ADRENO) {
  7065. sgs = 64;
  7066. nsg = 2;
  7067. ndst = 4;
  7068. } else {
  7069. GGML_ASSERT(false && "TODO: Unknown GPU");
  7070. }
  7071. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7072. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7073. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7074. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7075. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7076. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7077. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7078. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7079. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7080. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7081. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  7082. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  7083. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7084. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7085. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7086. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7087. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  7088. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  7089. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  7090. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  7091. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  7092. #endif // GGML_OPENCL_SOA_Q
  7093. break;
  7094. }
  7095. case GGML_TYPE_MXFP4: {
  7096. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  7097. if (use_adreno_moe_kernels(backend_ctx, src0)) {
  7098. cl_int status;
  7099. size_t local_size[3] = {64, 2, 1};
  7100. size_t global_size[3] = {64, 2, 1};
  7101. cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
  7102. int tile_size = 320;
  7103. if (ne12 == 1) { // for gemv
  7104. kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
  7105. // create a sub_buffer for src2
  7106. cl_buffer_region region;
  7107. region.origin = offset2;
  7108. region.size = ne20 * ne21 * sizeof(int);
  7109. buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  7110. CL_CHECK(status);
  7111. // set thread grid
  7112. global_size[0] = static_cast<size_t>(ne01);
  7113. global_size[1] = 4;
  7114. global_size[2] = static_cast<size_t>(ne20);
  7115. local_size[1] = 4;
  7116. } else { // for gemm
  7117. kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
  7118. // preprocess router table
  7119. int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
  7120. void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
  7121. void * host_src2 = malloc(ne21 * nb21);
  7122. CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
  7123. int total_experts = nb21 / nb20;
  7124. int out_idx = 0;
  7125. for (int i_expert = 0; i_expert < ne02; i_expert++) {
  7126. for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
  7127. for (int j = 0; j < ne21; j++) {
  7128. for (int i = 0; i < ne20; i++) {
  7129. int expert = ((int *)host_src2)[j * total_experts + i];
  7130. if (i_expert == expert) {
  7131. ((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
  7132. ((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
  7133. ((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
  7134. ((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
  7135. out_idx += 4;
  7136. }
  7137. }
  7138. }
  7139. }
  7140. }
  7141. buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
  7142. CL_CHECK(status);
  7143. // set thread grid
  7144. global_size[0] = static_cast<size_t>(tile_size);
  7145. global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
  7146. }
  7147. // create a sub_buffer for src1
  7148. cl_buffer_region region;
  7149. region.origin = offset1;
  7150. region.size = ne10 * ne11 * ne12 * sizeof(float);
  7151. src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  7152. CL_CHECK(status);
  7153. // create image for src1
  7154. cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
  7155. cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
  7156. buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
  7157. CL_CHECK(status);
  7158. // Set kernel args
  7159. int arg_idx = 0;
  7160. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
  7161. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
  7162. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
  7163. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
  7164. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
  7165. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
  7166. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
  7167. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
  7168. if (ne12 == 1) {
  7169. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
  7170. } else {
  7171. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
  7172. }
  7173. // launch kernel
  7174. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
  7175. // deallocate sub buffers and images
  7176. CL_CHECK(clReleaseMemObject(src1_sub_buffer));
  7177. CL_CHECK(clReleaseMemObject(buf_src1_image));
  7178. CL_CHECK(clReleaseMemObject(buf_src2));
  7179. return;
  7180. } // else fallback to generic kernel
  7181. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  7182. #ifdef GGML_OPENCL_SOA_Q
  7183. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
  7184. cl_mem q;
  7185. if (backend_ctx->gpu_family == INTEL) {
  7186. sgs = 16;
  7187. nsg = 2;
  7188. ndst = 2;
  7189. q = extra0_mxfp4->q;
  7190. } else if (backend_ctx->gpu_family == ADRENO) {
  7191. sgs = 64;
  7192. nsg = 1;
  7193. ndst = 4;
  7194. q = extra0_mxfp4->q_img;
  7195. } else {
  7196. GGML_ASSERT(false && "TODO: Unknown GPU");
  7197. }
  7198. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  7199. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  7200. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7201. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7202. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7203. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7204. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7205. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7206. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7207. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7208. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7209. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7210. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7211. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7212. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7213. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7214. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7215. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  7216. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  7217. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  7218. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  7219. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  7220. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  7221. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  7222. #else // GGML_OPENCL_SOA_Q
  7223. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
  7224. if (backend_ctx->gpu_family == INTEL) {
  7225. sgs = 16;
  7226. nsg = 2;
  7227. ndst = 2;
  7228. } else if (backend_ctx->gpu_family == ADRENO) {
  7229. sgs = 64;
  7230. nsg = 2;
  7231. ndst = 2;
  7232. } else {
  7233. GGML_ASSERT(false && "TODO: Unknown GPU");
  7234. }
  7235. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7236. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7237. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7238. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7239. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  7240. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7241. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7242. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7243. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7244. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7245. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7246. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7247. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  7248. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  7249. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7250. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7251. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7252. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  7253. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  7254. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  7255. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  7256. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  7257. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  7258. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  7259. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
  7260. #endif // GGML_OPENCL_SOA_Q
  7261. break;
  7262. }
  7263. default:
  7264. GGML_ASSERT(false && "not implemented");;
  7265. }
  7266. int _ne1 = 1;
  7267. int ne123 = dst_rows;
  7268. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  7269. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  7270. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7271. }
  7272. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7273. GGML_ASSERT(src0);
  7274. GGML_ASSERT(src0->extra);
  7275. GGML_ASSERT(dst);
  7276. GGML_ASSERT(dst->extra);
  7277. GGML_UNUSED(src1);
  7278. GGML_ASSERT(ggml_is_contiguous(src0));
  7279. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7280. float scale;
  7281. float bias;
  7282. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  7283. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  7284. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7285. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7286. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7287. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7288. cl_kernel kernel = backend_ctx->kernel_scale;
  7289. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7290. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7291. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7292. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7293. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  7294. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  7295. int n = ggml_nelements(dst)/4;
  7296. size_t global_work_size[] = {(size_t)n, 1, 1};
  7297. size_t local_work_size[] = {64, 1, 1};
  7298. size_t * local_work_size_ptr = local_work_size;
  7299. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  7300. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  7301. }
  7302. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7303. }
  7304. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7305. GGML_ASSERT(src0);
  7306. GGML_ASSERT(src0->extra);
  7307. GGML_ASSERT(src1);
  7308. GGML_ASSERT(src1->extra);
  7309. // GGML_OP_CPY happens between src0 and src1.
  7310. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  7311. UNUSED(dst);
  7312. const int ne00 = src0 ? src0->ne[0] : 0;
  7313. const int ne01 = src0 ? src0->ne[1] : 0;
  7314. const int ne02 = src0 ? src0->ne[2] : 0;
  7315. const int ne03 = src0 ? src0->ne[3] : 0;
  7316. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7317. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7318. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7319. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7320. const int ne10 = src1 ? src1->ne[0] : 0;
  7321. const int ne11 = src1 ? src1->ne[1] : 0;
  7322. const int ne12 = src1 ? src1->ne[2] : 0;
  7323. const int ne13 = src1 ? src1->ne[3] : 0;
  7324. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  7325. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  7326. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  7327. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  7328. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  7329. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  7330. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7331. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7332. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7333. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7334. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7335. cl_kernel kernel;
  7336. switch (src0t) {
  7337. case GGML_TYPE_F32:
  7338. switch (src1t) {
  7339. case GGML_TYPE_F16:
  7340. kernel = backend_ctx->kernel_cpy_f32_f16;
  7341. break;
  7342. case GGML_TYPE_F32:
  7343. kernel = backend_ctx->kernel_cpy_f32_f32;
  7344. break;
  7345. default:
  7346. GGML_ASSERT(false && "not implemented");
  7347. }
  7348. break;
  7349. case GGML_TYPE_F16:
  7350. switch (src1t) {
  7351. case GGML_TYPE_F16:
  7352. kernel = backend_ctx->kernel_cpy_f16_f16;
  7353. break;
  7354. case GGML_TYPE_F32:
  7355. kernel = backend_ctx->kernel_cpy_f16_f32;
  7356. break;
  7357. default:
  7358. GGML_ASSERT(false && "not implemented");
  7359. }
  7360. break;
  7361. default:
  7362. GGML_ASSERT(false && "not implemented");
  7363. }
  7364. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7365. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7366. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7367. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7368. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7369. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7370. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7371. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7372. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  7373. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7374. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7375. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7376. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  7377. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  7378. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  7379. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  7380. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  7381. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  7382. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  7383. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  7384. const int nth = MIN(64, ne00);
  7385. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7386. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7387. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  7388. }
  7389. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7390. ggml_cl_cpy(backend, src0, dst, nullptr);
  7391. UNUSED(src1);
  7392. }
  7393. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7394. GGML_ASSERT(src0);
  7395. GGML_ASSERT(src0->extra);
  7396. GGML_ASSERT(dst);
  7397. GGML_ASSERT(dst->extra);
  7398. UNUSED(src1);
  7399. int n_past = ((int32_t *)(dst->op_params))[0];
  7400. const int ne00 = src0 ? src0->ne[0] : 0;
  7401. const int ne01 = src0 ? src0->ne[1] : 0;
  7402. const int ne02 = src0 ? src0->ne[2] : 0;
  7403. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7404. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7405. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7406. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7407. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7408. cl_kernel kernel;
  7409. if (ne00%8 == 0) {
  7410. kernel = backend_ctx->kernel_diag_mask_inf_8;
  7411. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7412. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7413. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7414. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7415. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7416. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7417. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  7418. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  7419. size_t local_work_size[] = {64, 1, 1};
  7420. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7421. } else {
  7422. kernel = backend_ctx->kernel_diag_mask_inf;
  7423. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7424. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7425. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7426. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7427. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7428. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7429. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  7430. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  7431. size_t local_work_size[] = {64, 1, 1};
  7432. size_t * local_work_size_ptr = local_work_size;
  7433. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  7434. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  7435. }
  7436. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7437. }
  7438. }
  7439. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7440. GGML_ASSERT(src0);
  7441. GGML_ASSERT(src0->extra);
  7442. GGML_ASSERT(dst);
  7443. GGML_ASSERT(dst->extra);
  7444. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  7445. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  7446. // alibi is not used; however, for some other models, it is used.
  7447. // KQ_mask
  7448. if (src1) {
  7449. GGML_ASSERT(src1);
  7450. GGML_ASSERT(src1->extra);
  7451. }
  7452. const ggml_tensor * src2 = dst->src[2];
  7453. if (src2) {
  7454. GGML_ASSERT(src2->extra);
  7455. }
  7456. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7457. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7458. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7459. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7460. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7461. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7462. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7463. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7464. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7465. const int ne00 = src0->ne[0];
  7466. const int ne01 = src0->ne[1];
  7467. const int ne02 = src0->ne[2];
  7468. const int ne03 = src0->ne[3];
  7469. const cl_long nb01 = src0->nb[1];
  7470. const cl_long nb02 = src0->nb[2];
  7471. const cl_long nb03 = src0->nb[3];
  7472. const int ne12 = src1 ? src1->ne[2] : 0;
  7473. const int ne13 = src1 ? src1->ne[3] : 0;
  7474. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  7475. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  7476. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  7477. const cl_long nb1 = dst->nb[1];
  7478. const cl_long nb2 = dst->nb[2];
  7479. const cl_long nb3 = dst->nb[3];
  7480. float scale, max_bias;
  7481. memcpy(&scale, dst->op_params + 0, sizeof(float));
  7482. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  7483. const int n_head = src0->ne[2];
  7484. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  7485. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7486. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7487. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7488. // Local size must be wave size. Each workgroup is a wave, working on a row,
  7489. // where a row corresponds to leading dimension.
  7490. int nth = MIN(32, ne00);
  7491. if (backend_ctx->gpu_family == INTEL) {
  7492. // This is the same as the initial value.
  7493. nth = MIN(32, ne00);
  7494. }
  7495. else if (backend_ctx->gpu_family == ADRENO) {
  7496. nth = 64;
  7497. } else {
  7498. GGML_ASSERT(false && "TODO: Unknown GPU");
  7499. }
  7500. cl_kernel kernel;
  7501. if (ne00%4 == 0) {
  7502. if (use_f16) {
  7503. kernel = backend_ctx->kernel_soft_max_4_f16;
  7504. } else {
  7505. kernel = backend_ctx->kernel_soft_max_4;
  7506. }
  7507. } else {
  7508. if (use_f16) {
  7509. kernel = backend_ctx->kernel_soft_max_f16;
  7510. } else {
  7511. kernel = backend_ctx->kernel_soft_max;
  7512. }
  7513. }
  7514. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7515. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7516. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  7517. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7518. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7519. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7520. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7521. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7522. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7523. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7524. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7525. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7526. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  7527. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  7528. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7529. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7530. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7531. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
  7532. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
  7533. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
  7534. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
  7535. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
  7536. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
  7537. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
  7538. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
  7539. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7540. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7541. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7542. }
  7543. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7544. GGML_ASSERT(src0);
  7545. GGML_ASSERT(src0->extra);
  7546. GGML_ASSERT(src1);
  7547. GGML_ASSERT(src1->extra);
  7548. GGML_ASSERT(dst);
  7549. GGML_ASSERT(dst->extra);
  7550. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7551. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7552. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7553. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7554. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7555. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7556. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7557. ggml_tensor * src2 = dst->src[2];
  7558. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7559. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7560. const int ne00 = src0 ? src0->ne[0] : 0;
  7561. const int ne01 = src0 ? src0->ne[1] : 0;
  7562. const int ne02 = src0 ? src0->ne[2] : 0;
  7563. const int ne03 = src0 ? src0->ne[3] : 0;
  7564. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7565. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7566. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7567. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7568. const int ne10 = src1 ? src1->ne[0] : 0;
  7569. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  7570. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  7571. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  7572. const int ne0 = dst ? dst->ne[0] : 0;
  7573. const int ne1 = dst ? dst->ne[1] : 0;
  7574. const int ne2 = dst ? dst->ne[2] : 0;
  7575. const int ne3 = dst ? dst->ne[3] : 0;
  7576. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  7577. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  7578. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  7579. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  7580. GGML_ASSERT(ne10 % ne02 == 0);
  7581. GGML_ASSERT(ne10 >= ne02);
  7582. int nth = MIN(64, ne00);
  7583. const int n_past = ((int *) dst->op_params)[0];
  7584. const int n_dims = ((int *) dst->op_params)[1];
  7585. const int mode = ((int *) dst->op_params)[2];
  7586. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7587. float freq_base;
  7588. float freq_scale;
  7589. float ext_factor;
  7590. float attn_factor;
  7591. float beta_fast;
  7592. float beta_slow;
  7593. int32_t sections[4];
  7594. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7595. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7596. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7597. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7598. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7599. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7600. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  7601. const bool is_neox = mode & 2;
  7602. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  7603. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  7604. const int is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
  7605. if (is_mrope) {
  7606. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  7607. }
  7608. if (is_vision) {
  7609. GGML_ASSERT(n_dims == ne00/2);
  7610. }
  7611. cl_kernel kernel;
  7612. if (is_neox) {
  7613. switch (src0->type) {
  7614. case GGML_TYPE_F32:
  7615. kernel = backend_ctx->kernel_rope_neox_f32;
  7616. break;
  7617. case GGML_TYPE_F16:
  7618. kernel = backend_ctx->kernel_rope_neox_f16;
  7619. break;
  7620. default:
  7621. GGML_ASSERT(false);
  7622. };
  7623. } else if (is_mrope && !is_vision) {
  7624. switch (src0->type) {
  7625. case GGML_TYPE_F32:
  7626. kernel = backend_ctx->kernel_rope_multi_f32;
  7627. break;
  7628. case GGML_TYPE_F16:
  7629. kernel = backend_ctx->kernel_rope_multi_f16;
  7630. break;
  7631. default:
  7632. GGML_ASSERT(false);
  7633. };
  7634. } else if (is_vision) {
  7635. switch (src0->type) {
  7636. case GGML_TYPE_F32:
  7637. kernel = backend_ctx->kernel_rope_vision_f32;
  7638. break;
  7639. case GGML_TYPE_F16:
  7640. kernel = backend_ctx->kernel_rope_vision_f16;
  7641. break;
  7642. default:
  7643. GGML_ASSERT(false);
  7644. }
  7645. } else {
  7646. switch (src0->type) {
  7647. case GGML_TYPE_F32:
  7648. kernel = backend_ctx->kernel_rope_norm_f32;
  7649. break;
  7650. case GGML_TYPE_F16:
  7651. kernel = backend_ctx->kernel_rope_norm_f16;
  7652. break;
  7653. default:
  7654. GGML_ASSERT(false);
  7655. };
  7656. }
  7657. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7658. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7659. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7660. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7661. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7662. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7663. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7664. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7665. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7666. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7667. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7668. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  7669. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  7670. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  7671. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  7672. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  7673. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  7674. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  7675. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  7676. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  7677. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  7678. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  7679. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  7680. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  7681. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  7682. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  7683. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  7684. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  7685. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  7686. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  7687. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  7688. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  7689. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  7690. // both mrope and vision kernels have sections
  7691. if (is_mrope || is_vision) {
  7692. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  7693. }
  7694. // only mrope has is_imrope
  7695. if (is_mrope && !is_vision) {
  7696. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(int), &is_imrope));
  7697. }
  7698. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7699. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7700. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7701. }
  7702. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7703. GGML_ASSERT(src0);
  7704. GGML_ASSERT(src1);
  7705. GGML_ASSERT(src1->extra);
  7706. GGML_ASSERT(dst);
  7707. GGML_ASSERT(dst->extra);
  7708. // src0 - filter, src1 - input
  7709. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7710. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  7711. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7712. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7713. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7714. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7715. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7716. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7717. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  7718. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  7719. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  7720. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  7721. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  7722. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  7723. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  7724. const cl_long IH = is_2D ? src1->ne[1] : 1;
  7725. const cl_long IW = src1->ne[0];
  7726. const cl_long KH = is_2D ? src0->ne[1] : 1;
  7727. const cl_long KW = src0->ne[0];
  7728. const cl_long OH = is_2D ? dst->ne[2] : 1;
  7729. const cl_long OW = dst->ne[1];
  7730. // nb is byte offset, src is type float32
  7731. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  7732. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  7733. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  7734. const cl_long pelements = OW*KW*KH;
  7735. const cl_long CHW = IC*KH*KW;
  7736. cl_kernel kernel;
  7737. if(dst->type == GGML_TYPE_F16) {
  7738. kernel = backend_ctx->kernel_im2col_f16;
  7739. } else {
  7740. kernel = backend_ctx->kernel_im2col_f32;
  7741. }
  7742. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  7743. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  7744. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7745. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7746. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  7747. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  7748. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  7749. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  7750. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  7751. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  7752. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  7753. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  7754. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  7755. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  7756. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  7757. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  7758. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  7759. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  7760. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  7761. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  7762. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  7763. const int num_blocks = (pelements + 256 - 1) / 256;
  7764. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  7765. size_t local_work_size[] = {256, 1, 1};
  7766. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7767. }
  7768. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7769. GGML_ASSERT(src0);
  7770. GGML_ASSERT(src0->extra);
  7771. GGML_ASSERT(dst);
  7772. GGML_ASSERT(dst->extra);
  7773. GGML_UNUSED(src1);
  7774. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7775. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  7776. GGML_ASSERT(ggml_is_contiguous(src0));
  7777. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7778. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7779. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7780. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7781. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7782. const int ne00 = src0->ne[0];
  7783. const int nrows = ggml_nrows(src0);
  7784. int ne00_padded = 1;
  7785. while (ne00_padded < ne00) {
  7786. ne00_padded *= 2;
  7787. }
  7788. int order = (enum ggml_sort_order) dst->op_params[0];
  7789. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  7790. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7791. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7792. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7793. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7794. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7795. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  7796. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  7797. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  7798. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  7799. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  7800. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7801. }
  7802. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7803. GGML_ASSERT(src0);
  7804. GGML_ASSERT(src0->extra);
  7805. GGML_ASSERT(dst);
  7806. GGML_ASSERT(dst->extra);
  7807. GGML_UNUSED(src1);
  7808. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  7809. GGML_ASSERT(ggml_is_contiguous(src0));
  7810. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7811. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7812. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7813. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7814. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7815. const int ne00 = src0->ne[0];
  7816. const int ne01 = src0->ne[1];
  7817. const int ne02 = src0->ne[2];
  7818. const int ne03 = src0->ne[3];
  7819. const cl_ulong nb01 = src0->nb[1];
  7820. const cl_ulong nb02 = src0->nb[2];
  7821. const cl_ulong nb03 = src0->nb[3];
  7822. const cl_ulong nb1 = dst->nb[1];
  7823. const cl_ulong nb2 = dst->nb[2];
  7824. const cl_ulong nb3 = dst->nb[3];
  7825. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  7826. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7827. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7828. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7829. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7830. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7831. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7832. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7833. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7834. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  7835. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  7836. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  7837. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  7838. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  7839. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  7840. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  7841. size_t local_work_size[] = {(size_t)64, 1, 1};
  7842. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7843. }
  7844. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7845. GGML_ASSERT(src0);
  7846. GGML_ASSERT(src0->extra);
  7847. GGML_ASSERT(dst);
  7848. GGML_ASSERT(dst->extra);
  7849. GGML_ASSERT(ggml_is_contiguous_1(src0));
  7850. if (src1) {
  7851. GGML_ASSERT(src1);
  7852. GGML_ASSERT(src1->extra);
  7853. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  7854. }
  7855. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7856. cl_kernel kernel;
  7857. switch (ggml_get_glu_op(dst)) {
  7858. case GGML_GLU_OP_GEGLU:
  7859. if (dst->type == GGML_TYPE_F32) {
  7860. kernel = backend_ctx->kernel_geglu;
  7861. } else {
  7862. kernel = backend_ctx->kernel_geglu_f16;
  7863. }
  7864. break;
  7865. case GGML_GLU_OP_REGLU:
  7866. if (dst->type == GGML_TYPE_F32) {
  7867. kernel = backend_ctx->kernel_reglu;
  7868. } else {
  7869. kernel = backend_ctx->kernel_reglu_f16;
  7870. }
  7871. break;
  7872. case GGML_GLU_OP_SWIGLU:
  7873. if (dst->type == GGML_TYPE_F32) {
  7874. kernel = backend_ctx->kernel_swiglu;
  7875. } else {
  7876. kernel = backend_ctx->kernel_swiglu_f16;
  7877. }
  7878. break;
  7879. case GGML_GLU_OP_SWIGLU_OAI:
  7880. kernel = backend_ctx->kernel_swiglu_oai;
  7881. break;
  7882. case GGML_GLU_OP_GEGLU_ERF:
  7883. if (dst->type == GGML_TYPE_F32) {
  7884. kernel = backend_ctx->kernel_geglu_erf;
  7885. } else {
  7886. kernel = backend_ctx->kernel_geglu_erf_f16;
  7887. }
  7888. break;
  7889. case GGML_GLU_OP_GEGLU_QUICK:
  7890. if (dst->type == GGML_TYPE_F32) {
  7891. kernel = backend_ctx->kernel_geglu_quick;
  7892. } else {
  7893. kernel = backend_ctx->kernel_geglu_quick_f16;
  7894. }
  7895. break;
  7896. default:
  7897. GGML_ABORT("Unsupported glu op");
  7898. }
  7899. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7900. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7901. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7902. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7903. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7904. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7905. const int ne0 = dst->ne[0];
  7906. const cl_ulong nb01 = src0->nb[1];
  7907. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  7908. const cl_ulong nb1 = dst->nb[1];
  7909. const int swp = ggml_get_op_params_i32(dst, 1);
  7910. const float alpha = ggml_get_op_params_f32(dst, 2);
  7911. const float limit = ggml_get_op_params_f32(dst, 3);
  7912. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  7913. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  7914. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7915. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7916. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  7917. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7918. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  7919. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  7920. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  7921. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  7922. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  7923. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  7924. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  7925. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  7926. if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
  7927. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
  7928. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
  7929. }
  7930. const size_t nrows = ggml_nrows(src0);
  7931. size_t nth = 512;
  7932. size_t global_work_size[] = {nrows*nth, 1, 1};
  7933. size_t local_work_size[] = {nth, 1, 1};
  7934. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7935. }
  7936. //------------------------------------------------------------------------------
  7937. // Op offloading
  7938. //------------------------------------------------------------------------------
  7939. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  7940. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  7941. ggml_cl_func_t func = nullptr;
  7942. ggml_tensor * src0 = tensor->src[0];
  7943. ggml_tensor * src1 = tensor->src[1];
  7944. const bool any_on_device = tensor->extra
  7945. || (src0 != nullptr && src0->extra)
  7946. || (src1 != nullptr && src1->extra);
  7947. switch (tensor->op) {
  7948. case GGML_OP_GET_ROWS:
  7949. if (!any_on_device) {
  7950. return false;
  7951. }
  7952. func = ggml_cl_get_rows;
  7953. break;
  7954. case GGML_OP_SET_ROWS:
  7955. if (!any_on_device) {
  7956. return false;
  7957. }
  7958. func = ggml_cl_set_rows;
  7959. break;
  7960. case GGML_OP_CPY:
  7961. if (!any_on_device) {
  7962. return false;
  7963. }
  7964. func = ggml_cl_cpy;
  7965. break;
  7966. case GGML_OP_DUP:
  7967. case GGML_OP_CONT:
  7968. if (!any_on_device) {
  7969. return false;
  7970. }
  7971. func = ggml_cl_dup;
  7972. break;
  7973. case GGML_OP_ADD:
  7974. if (!any_on_device) {
  7975. return false;
  7976. }
  7977. func = ggml_cl_add;
  7978. break;
  7979. case GGML_OP_ADD_ID:
  7980. if (!any_on_device) {
  7981. return false;
  7982. }
  7983. func = ggml_cl_add_id;
  7984. break;
  7985. case GGML_OP_MUL:
  7986. if (!any_on_device) {
  7987. return false;
  7988. }
  7989. func = ggml_cl_mul;
  7990. break;
  7991. case GGML_OP_DIV:
  7992. if (!any_on_device) {
  7993. return false;
  7994. }
  7995. func = ggml_cl_div;
  7996. break;
  7997. case GGML_OP_SUB:
  7998. if (!any_on_device) {
  7999. return false;
  8000. }
  8001. func = ggml_cl_sub;
  8002. break;
  8003. case GGML_OP_SQR:
  8004. if (!any_on_device) {
  8005. return false;
  8006. }
  8007. func = ggml_cl_sqr;
  8008. break;
  8009. case GGML_OP_SQRT:
  8010. if (!any_on_device) {
  8011. return false;
  8012. }
  8013. func = ggml_cl_sqrt;
  8014. break;
  8015. case GGML_OP_MEAN:
  8016. if (!any_on_device) {
  8017. return false;
  8018. }
  8019. func = ggml_cl_mean;
  8020. break;
  8021. case GGML_OP_UNARY:
  8022. switch (ggml_get_unary_op(tensor)) {
  8023. case GGML_UNARY_OP_GELU:
  8024. if (!any_on_device) {
  8025. return false;
  8026. }
  8027. func = ggml_cl_gelu;
  8028. break;
  8029. case GGML_UNARY_OP_GELU_ERF:
  8030. if (!any_on_device) {
  8031. return false;
  8032. }
  8033. func = ggml_cl_gelu_erf;
  8034. break;
  8035. case GGML_UNARY_OP_GELU_QUICK:
  8036. if (!any_on_device) {
  8037. return false;
  8038. }
  8039. func = ggml_cl_gelu_quick;
  8040. break;
  8041. case GGML_UNARY_OP_SILU:
  8042. if (!any_on_device) {
  8043. return false;
  8044. }
  8045. func = ggml_cl_silu;
  8046. break;
  8047. case GGML_UNARY_OP_RELU:
  8048. if (!any_on_device) {
  8049. return false;
  8050. }
  8051. func = ggml_cl_relu;
  8052. break;
  8053. case GGML_UNARY_OP_SIGMOID:
  8054. if (!any_on_device) {
  8055. return false;
  8056. }
  8057. func = ggml_cl_sigmoid;
  8058. break;
  8059. case GGML_UNARY_OP_TANH:
  8060. if (!any_on_device) {
  8061. return false;
  8062. }
  8063. func = ggml_cl_tanh;
  8064. break;
  8065. default:
  8066. return false;
  8067. } break;
  8068. case GGML_OP_GLU:
  8069. if (!any_on_device) {
  8070. return false;
  8071. }
  8072. func = ggml_cl_glu;
  8073. break;
  8074. case GGML_OP_CLAMP:
  8075. if (!any_on_device) {
  8076. return false;
  8077. }
  8078. func = ggml_cl_clamp;
  8079. break;
  8080. case GGML_OP_NORM:
  8081. if (!any_on_device) {
  8082. return false;
  8083. }
  8084. func = ggml_cl_norm;
  8085. break;
  8086. case GGML_OP_RMS_NORM:
  8087. if (!any_on_device) {
  8088. return false;
  8089. }
  8090. func = ggml_cl_rms_norm;
  8091. break;
  8092. case GGML_OP_GROUP_NORM:
  8093. if (!any_on_device) {
  8094. return false;
  8095. }
  8096. func = ggml_cl_group_norm;
  8097. break;
  8098. case GGML_OP_REPEAT:
  8099. if (!any_on_device) {
  8100. return false;
  8101. }
  8102. func = ggml_cl_repeat;
  8103. break;
  8104. case GGML_OP_PAD:
  8105. if (!any_on_device) {
  8106. return false;
  8107. }
  8108. ggml_cl_pad(backend, tensor->src[0], tensor);
  8109. return true;
  8110. case GGML_OP_UPSCALE:
  8111. if (!any_on_device) {
  8112. return false;
  8113. }
  8114. ggml_cl_upscale(backend, tensor->src[0], tensor);
  8115. return true;
  8116. case GGML_OP_CONV_2D:
  8117. if (!any_on_device) {
  8118. return false;
  8119. }
  8120. func = ggml_cl_conv_2d;
  8121. break;
  8122. case GGML_OP_SSM_CONV:
  8123. if (!any_on_device) {
  8124. return false;
  8125. }
  8126. func = ggml_cl_ssm_conv;
  8127. break;
  8128. case GGML_OP_CONCAT:
  8129. if (!any_on_device) {
  8130. return false;
  8131. }
  8132. func = ggml_cl_concat;
  8133. break;
  8134. case GGML_OP_TIMESTEP_EMBEDDING:
  8135. if (!any_on_device) {
  8136. return false;
  8137. }
  8138. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  8139. return true;
  8140. case GGML_OP_MUL_MAT:
  8141. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  8142. return false;
  8143. }
  8144. func = ggml_cl_mul_mat;
  8145. break;
  8146. case GGML_OP_MUL_MAT_ID:
  8147. if (!any_on_device) {
  8148. return false;
  8149. }
  8150. func = ggml_cl_mul_mat_id;
  8151. break;
  8152. case GGML_OP_SCALE:
  8153. if (!any_on_device) {
  8154. return false;
  8155. }
  8156. func = ggml_cl_scale;
  8157. break;
  8158. case GGML_OP_RESHAPE:
  8159. case GGML_OP_VIEW:
  8160. case GGML_OP_PERMUTE:
  8161. case GGML_OP_TRANSPOSE:
  8162. if (!any_on_device) {
  8163. return false;
  8164. }
  8165. func = ggml_cl_nop;
  8166. break;
  8167. case GGML_OP_DIAG_MASK_INF:
  8168. if (!any_on_device) {
  8169. return false;
  8170. }
  8171. func = ggml_cl_diag_mask_inf;
  8172. break;
  8173. case GGML_OP_SOFT_MAX:
  8174. if (!any_on_device) {
  8175. return false;
  8176. }
  8177. func = ggml_cl_soft_max;
  8178. break;
  8179. case GGML_OP_ROPE:
  8180. if (!any_on_device) {
  8181. return false;
  8182. }
  8183. func = ggml_cl_rope;
  8184. break;
  8185. case GGML_OP_IM2COL:
  8186. if (!any_on_device) {
  8187. return false;
  8188. }
  8189. func = ggml_cl_im2col;
  8190. break;
  8191. case GGML_OP_ARGSORT:
  8192. if (!any_on_device) {
  8193. return false;
  8194. }
  8195. func = ggml_cl_argsort;
  8196. break;
  8197. case GGML_OP_SUM_ROWS:
  8198. if (!any_on_device) {
  8199. return false;
  8200. }
  8201. func = ggml_cl_sum_rows;
  8202. break;
  8203. case GGML_OP_FLASH_ATTN_EXT:
  8204. if (!any_on_device) {
  8205. return false;
  8206. }
  8207. ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
  8208. return true;
  8209. default:
  8210. return false;
  8211. }
  8212. func(backend, tensor->src[0], tensor->src[1], tensor);
  8213. return true;
  8214. }