| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511 |
- // This file defines tests for various GGML ops and backends.
- // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
- // For the backward pass it asserts that the gradients from backpropagation are consistent
- // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
- // It is also possible to check the performance ("perf" mode).
- //
- // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
- // and section 3 defines which tests to run.
- // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
- // then go to section 3 and add an instantiation of your struct.
- // ##############################
- // ## Section 1: General Setup ##
- // ##############################
- #include <ggml.h>
- #include <ggml-alloc.h>
- #include <ggml-backend.h>
- #include <ggml-cpp.h>
- #include <algorithm>
- #include <array>
- #include <cfloat>
- #include <cinttypes>
- #include <cstdarg>
- #include <cstdint>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <ctime>
- #include <future>
- #include <memory>
- #include <random>
- #include <regex>
- #include <set>
- #include <string>
- #include <string_view>
- #include <thread>
- #include <vector>
- #include <unordered_map>
- #ifdef __EMSCRIPTEN__
- # define N_THREADS 1
- #else
- # define N_THREADS std::thread::hardware_concurrency()
- #endif
- static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
- size_t nels = ggml_nelements(tensor);
- std::vector<float> data(nels);
- {
- // parallel initialization
- static const size_t n_threads = N_THREADS;
- // static RNG initialization (revisit if n_threads stops being constant)
- static std::vector<std::default_random_engine> generators = []() {
- std::random_device rd;
- std::vector<std::default_random_engine> vec;
- vec.reserve(n_threads);
- //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
- for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
- return vec;
- }();
- auto init_thread = [&](size_t ith, size_t start, size_t end) {
- std::uniform_real_distribution<float> distribution(min, max);
- auto & gen = generators[ith];
- for (size_t i = start; i < end; i++) {
- data[i] = distribution(gen);
- }
- };
- if (n_threads == 1) {
- init_thread(0, 0, nels);
- } else {
- std::vector<std::future<void>> tasks;
- tasks.reserve(n_threads);
- for (size_t i = 0; i < n_threads; i++) {
- size_t start = i*nels/n_threads;
- size_t end = (i+1)*nels/n_threads;
- tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
- }
- for (auto & t : tasks) {
- t.get();
- }
- }
- }
- if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
- ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
- } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
- GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
- // dummy importance matrix
- std::vector<float> imatrix(tensor->ne[0], 1.0f);
- const float * im = imatrix.data();
- if (!ggml_quantize_requires_imatrix(tensor->type)) {
- // when the imatrix is optional, we want to test both quantization with and without imatrix
- // use one of the random numbers to decide
- if (data[0] > 0.5f*(min + max)) {
- im = nullptr;
- }
- }
- std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
- {
- // parallel quantization by block
- size_t blck_size = ggml_blck_size(tensor->type);
- size_t n_blocks = nels / blck_size;
- auto quantize_thread = [&](size_t start, size_t end) {
- ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
- start * blck_size, end - start, blck_size, im);
- };
- const size_t min_blocks_per_thread = 1;
- const size_t n_quant_threads = std::min<size_t>(std::max<size_t>(N_THREADS/2, 1),
- std::max<size_t>(1, n_blocks / min_blocks_per_thread));
- if (n_quant_threads == 1) {
- // single-threaded quantization: do all blocks in the current thread
- quantize_thread(0, n_blocks);
- } else {
- std::vector<std::future<void>> tasks;
- tasks.reserve(n_quant_threads);
- for (size_t i = 0; i < n_quant_threads; i++) {
- size_t start = i*n_blocks/n_quant_threads;
- size_t end = (i+1)*n_blocks/n_quant_threads;
- tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
- }
- for (auto & t : tasks) {
- t.get();
- }
- }
- }
- ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
- } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
- // This is going to create some weird integers though.
- ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
- } else if (tensor->type == GGML_TYPE_I64) {
- // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
- const size_t nbytes_half = ggml_nbytes(tensor)/2;
- ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
- ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
- } else {
- GGML_ABORT("fatal error");
- }
- }
- // generate an F16 mask where certain blocks are randomly masked with -INF value
- static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
- GGML_ASSERT(tensor->type == GGML_TYPE_F16);
- GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
- std::vector<float> data_f32(ne0*ne1*ne2*ne3);
- std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
- std::random_device rd;
- std::mt19937 gen(rd());
- std::uniform_real_distribution<float> dis(min, max);
- for (size_t i = 0; i < data_f32.size(); i++) {
- data_f32[i] = dis(gen);
- }
- // block size
- const int blck0 = 128;
- const int blck1 = 64;
- // number of INF blocks
- const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
- for (int b = 0; b < n_inf_blocks; b++) {
- const int p3 = (rd() % ne3);
- const int p2 = (rd() % ne2);
- const int p1 = (rd() % ne1);
- const int p0 = (rd() % ne0);
- for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
- const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
- for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
- data_f32[idx + i0] = -INFINITY;
- }
- }
- }
- ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
- ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
- }
- // generate a lower triangular matrix
- static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
- GGML_ASSERT(tensor->type == GGML_TYPE_F32);
- GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
- GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
- GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
- std::vector<float> data_f32(ne0*ne1*ne2*ne3);
- std::random_device rd;
- std::mt19937 gen(rd());
- std::uniform_real_distribution<float> dis(min, max);
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
- if (i0 <= i1) {
- data_f32[idx] = dis(gen);
- } else {
- data_f32[idx] = 0.0f;
- }
- }
- }
- }
- }
- ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
- }
- static std::vector<float> tensor_to_float(const ggml_tensor * t) {
- std::vector<float> tv;
- tv.reserve(ggml_nelements(t));
- std::vector<uint8_t> buf(ggml_nbytes(t));
- ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
- const auto * tt = ggml_get_type_traits(t->type);
- size_t bs = ggml_blck_size(t->type);
- std::vector<float> vq(ggml_blck_size(t->type));
- bool quantized = ggml_is_quantized(t->type);
- // access elements by index to avoid gaps in views
- for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
- size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
- if (t->type == GGML_TYPE_F16) {
- tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_BF16) {
- tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_F32) {
- tv.push_back(*(float *) &buf[i]);
- } else if (t->type == GGML_TYPE_I64) {
- tv.push_back((float)*(int64_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I32) {
- tv.push_back((float)*(int32_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I16) {
- tv.push_back((float)*(int16_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I8) {
- tv.push_back((float)*(int8_t *) &buf[i]);
- } else if (quantized) {
- tt->to_float(&buf[i], vq.data(), bs);
- tv.insert(tv.end(), vq.begin(), vq.end());
- } else {
- GGML_ABORT("fatal error");
- }
- }
- }
- }
- }
- return tv;
- }
- // normalized mean squared error = mse(a, b) / mse(a, 0)
- static double nmse(const float * a, const float * b, size_t n) {
- double mse_a_b = 0.0;
- double mse_a_0 = 0.0;
- for (size_t i = 0; i < n; i++) {
- float a_i = a[i];
- float b_i = b[i];
- mse_a_b += (a_i - b_i) * (a_i - b_i);
- mse_a_0 += a_i * a_i;
- }
- return mse_a_b / mse_a_0;
- }
- // difference between 2 sets (Jaccard distance, 0 - no difference, 1 - no overlap)
- template <typename T>
- static double jdst(const T * a, const T * b, size_t n) {
- std::unordered_map<T, size_t> set_a;
- std::unordered_map<T, size_t> set_b;
- for (size_t i = 0; i < n; ++i) {
- set_a[a[i]]++;
- set_b[b[i]]++;
- }
- size_t diff = 0;
- for (const auto & p : set_a) {
- const int64_t na = p.second;
- const int64_t nb = set_b.find(p.first) != set_b.end() ? set_b.at(p.first) : 0;
- diff += std::abs(na - nb);
- }
- for (const auto & p : set_b) {
- if (set_a.find(p.first) == set_a.end()) {
- diff += p.second;
- }
- }
- return (double) diff / (2*n);
- }
- // maximum absolute asymmetry between a and b
- // asymmetry: (a - b) / (a + b)
- // This is more stable than relative error if one of the values fluctuates towards zero.
- // n: number of values to compare.
- // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
- // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
- static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
- double sum = 0.0f;
- size_t nvalid = 0;
- for (size_t i = 0; i < n; i++) {
- if (!expected_vals.empty()) {
- bool matches_any = false;
- for (const float & ev : expected_vals) {
- if (fabsf(a[i] - ev) < 1e-3f) {
- matches_any = true;
- break;
- }
- }
- if (!matches_any) {
- continue;
- }
- }
- const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
- sum += fabsf(asymm);
- nvalid++;
- }
- return sum/nvalid;
- }
- // utils for printing the variables of the test cases
- static std::string var_to_str(const std::string & x) {
- return x;
- }
- template<typename T>
- static std::string var_to_str(const T & x) {
- return std::to_string(x);
- }
- template<typename T, size_t N>
- static std::string var_to_str(const T (&x)[N]) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- template<typename T, size_t N>
- static std::string var_to_str(const std::array<T, N> & x) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- static std::string var_to_str(ggml_type type) {
- return ggml_type_name(type);
- }
- static std::string var_to_str(ggml_prec prec) {
- return prec == GGML_PREC_F32 ? "f32" : "def";
- }
- static std::string var_to_str(ggml_op_pool pool) {
- switch (pool) {
- case GGML_OP_POOL_AVG: return "avg";
- case GGML_OP_POOL_MAX: return "max";
- default: return std::to_string(pool);
- }
- }
- static std::string var_to_str(ggml_scale_mode mode) {
- switch (mode) {
- case GGML_SCALE_MODE_NEAREST: return "nearest";
- case GGML_SCALE_MODE_BILINEAR: return "bilinear";
- case GGML_SCALE_MODE_BICUBIC: return "bicubic";
- default: return std::to_string(mode);
- }
- }
- #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
- #define VARS_TO_STR1(a) VAR_TO_STR(a)
- #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
- #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
- #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
- #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
- #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
- #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
- #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
- #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
- #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
- #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
- #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
- #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
- #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
- #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
- #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
- #ifdef GGML_USE_SYCL
- static bool inline _isinf(float f) {
- return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
- }
- #else
- static bool inline _isinf(float f) { return std::isinf(f); }
- #endif
- // accept FLT_MAX as infinity
- static bool isinf_or_max(float f) {
- return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
- }
- static bool ggml_is_view_op(enum ggml_op op) {
- return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
- }
- enum test_mode {
- MODE_TEST,
- MODE_PERF,
- MODE_GRAD,
- MODE_SUPPORT,
- };
- // Output format support similar to llama-bench
- enum output_formats { CONSOLE, SQL, CSV };
- static const char * output_format_str(output_formats format) {
- switch (format) {
- case CONSOLE:
- return "console";
- case SQL:
- return "sql";
- case CSV:
- return "csv";
- default:
- GGML_ABORT("invalid output format");
- }
- }
- static bool output_format_from_str(const std::string & s, output_formats & format) {
- if (s == "console") {
- format = CONSOLE;
- } else if (s == "sql") {
- format = SQL;
- } else if (s == "csv") {
- format = CSV;
- } else {
- return false;
- }
- return true;
- }
- // Test result structure for SQL output
- struct test_result {
- std::string test_time;
- std::string build_commit;
- std::string backend_name;
- std::string op_name;
- std::string op_params;
- std::string test_mode;
- bool supported;
- bool passed;
- std::string error_message;
- double time_us;
- double flops;
- double bandwidth_gb_s;
- size_t memory_kb;
- int n_runs;
- std::string device_description;
- std::string backend_reg_name;
- test_result() {
- // Initialize with default values
- time_us = 0.0;
- flops = 0.0;
- bandwidth_gb_s = 0.0;
- memory_kb = 0;
- n_runs = 0;
- supported = false;
- passed = false;
- // Set test time
- time_t t = time(NULL);
- char buf[32];
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- // Set build info
- build_commit = ggml_commit();
- }
- test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
- const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
- double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
- int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
- backend_name(backend_name),
- op_name(op_name),
- op_params(op_params),
- test_mode(test_mode),
- supported(supported),
- passed(passed),
- error_message(error_message),
- time_us(time_us),
- flops(flops),
- bandwidth_gb_s(bandwidth_gb_s),
- memory_kb(memory_kb),
- n_runs(n_runs),
- device_description(device_description),
- backend_reg_name(backend_reg_name) {
- // Set test time
- time_t t = time(NULL);
- char buf[32];
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- // Set build info
- build_commit = ggml_commit();
- }
- static const std::vector<std::string> & get_fields() {
- static const std::vector<std::string> fields = {
- "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
- "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
- "device_description", "backend_reg_name"
- };
- return fields;
- }
- enum field_type { STRING, BOOL, INT, FLOAT };
- static field_type get_field_type(const std::string & field) {
- if (field == "supported" || field == "passed") {
- return BOOL;
- }
- if (field == "memory_kb" || field == "n_runs") {
- return INT;
- }
- if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
- return FLOAT;
- }
- return STRING;
- }
- std::vector<std::string> get_values() const {
- return { test_time,
- build_commit,
- backend_name,
- op_name,
- op_params,
- test_mode,
- std::to_string(supported),
- std::to_string(passed),
- error_message,
- std::to_string(time_us),
- std::to_string(flops),
- std::to_string(bandwidth_gb_s),
- std::to_string(memory_kb),
- std::to_string(n_runs),
- device_description,
- backend_reg_name };
- }
- };
- // Printer classes for different output formats
- enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
- struct test_operation_info {
- std::string op_name;
- std::string op_params;
- std::string backend_name;
- test_status_t status = test_status_t::OK;
- std::string failure_reason;
- // Additional information fields that were previously in separate structs
- std::string error_component;
- std::string error_details;
- // Gradient info
- int64_t gradient_index = -1;
- std::string gradient_param_name;
- float gradient_value = 0.0f;
- // MAA error info
- double maa_error = 0.0;
- double maa_threshold = 0.0;
- // Flags for different types of information
- bool has_error = false;
- bool has_gradient_info = false;
- bool has_maa_error = false;
- bool is_compare_failure = false;
- bool is_large_tensor_skip = false;
- test_operation_info() = default;
- test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
- test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
- op_name(op_name),
- op_params(op_params),
- backend_name(backend_name),
- status(status),
- failure_reason(failure_reason) {}
- // Set error information
- void set_error(const std::string & component, const std::string & details) {
- has_error = true;
- error_component = component;
- error_details = details;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set gradient information
- void set_gradient_info(int64_t index, const std::string & param_name, float value) {
- has_gradient_info = true;
- gradient_index = index;
- gradient_param_name = param_name;
- gradient_value = value;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set MAA error information
- void set_maa_error(double error, double threshold) {
- has_maa_error = true;
- maa_error = error;
- maa_threshold = threshold;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set compare failure
- void set_compare_failure() {
- is_compare_failure = true;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set large tensor skip
- void set_large_tensor_skip() { is_large_tensor_skip = true; }
- };
- struct test_summary_info {
- size_t tests_passed;
- size_t tests_total;
- bool is_backend_summary = false; // true for backend summary, false for test summary
- test_summary_info() = default;
- test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
- tests_passed(tests_passed),
- tests_total(tests_total),
- is_backend_summary(is_backend_summary) {}
- };
- struct testing_start_info {
- size_t device_count;
- testing_start_info() = default;
- testing_start_info(size_t device_count) : device_count(device_count) {}
- };
- struct backend_init_info {
- size_t device_index;
- size_t total_devices;
- std::string device_name;
- bool skipped = false;
- std::string skip_reason;
- std::string description;
- size_t memory_total_mb = 0;
- size_t memory_free_mb = 0;
- bool has_memory_info = false;
- backend_init_info() = default;
- backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
- const std::string & skip_reason = "", const std::string & description = "",
- size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
- device_index(device_index),
- total_devices(total_devices),
- device_name(device_name),
- skipped(skipped),
- skip_reason(skip_reason),
- description(description),
- memory_total_mb(memory_total_mb),
- memory_free_mb(memory_free_mb),
- has_memory_info(has_memory_info) {}
- };
- struct backend_status_info {
- std::string backend_name;
- test_status_t status;
- backend_status_info() = default;
- backend_status_info(const std::string & backend_name, test_status_t status) :
- backend_name(backend_name),
- status(status) {}
- };
- struct overall_summary_info {
- size_t backends_passed;
- size_t backends_total;
- bool all_passed;
- overall_summary_info() = default;
- overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
- backends_passed(backends_passed),
- backends_total(backends_total),
- all_passed(all_passed) {}
- };
- struct printer {
- virtual ~printer() {}
- FILE * fout = stdout;
- virtual void print_header() {}
- virtual void print_test_result(const test_result & result) = 0;
- virtual void print_footer() {}
- virtual void print_operation(const test_operation_info & info) { (void) info; }
- virtual void print_summary(const test_summary_info & info) { (void) info; }
- virtual void print_testing_start(const testing_start_info & info) { (void) info; }
- virtual void print_backend_init(const backend_init_info & info) { (void) info; }
- virtual void print_backend_status(const backend_status_info & info) { (void) info; }
- virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
- virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
- };
- struct console_printer : public printer {
- void print_test_result(const test_result & result) override {
- if (result.test_mode == "test") {
- print_test_console(result);
- } else if (result.test_mode == "perf") {
- print_perf_console(result);
- } else if (result.test_mode == "support") {
- print_support_console(result);
- }
- }
- void print_operation(const test_operation_info & info) override {
- printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
- fflush(stdout);
- // Handle large tensor skip first
- if (info.is_large_tensor_skip) {
- printf("skipping large tensors for speed \n");
- return;
- }
- // Handle not supported status
- if (info.status == test_status_t::NOT_SUPPORTED) {
- if (!info.failure_reason.empty()) {
- printf("not supported [%s]\n", info.failure_reason.c_str());
- } else {
- printf("not supported [%s]\n", info.backend_name.c_str());
- }
- return;
- }
- // Handle errors and additional information
- if (info.has_error) {
- if (info.error_component == "allocation") {
- fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
- } else if (info.error_component == "backend") {
- fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
- } else {
- fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
- }
- }
- // Handle gradient info
- if (info.has_gradient_info) {
- printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
- info.gradient_param_name.c_str(), info.gradient_value);
- }
- // Handle MAA error
- if (info.has_maa_error) {
- printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
- }
- // Handle compare failure
- if (info.is_compare_failure) {
- printf("compare failed ");
- }
- // Print final status
- if (info.status == test_status_t::OK) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_summary(const test_summary_info & info) override {
- if (info.is_backend_summary) {
- printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
- } else {
- printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
- }
- }
- void print_backend_status(const backend_status_info & info) override {
- printf(" Backend %s: ", info.backend_name.c_str());
- if (info.status == test_status_t::OK) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_testing_start(const testing_start_info & info) override {
- printf("Testing %zu devices\n\n", info.device_count);
- }
- void print_backend_init(const backend_init_info & info) override {
- printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
- if (info.skipped) {
- printf(" %s\n", info.skip_reason.c_str());
- return;
- }
- if (!info.description.empty()) {
- printf(" Device description: %s\n", info.description.c_str());
- }
- if (info.has_memory_info) {
- printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
- }
- printf("\n");
- }
- void print_overall_summary(const overall_summary_info & info) override {
- printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
- if (info.all_passed) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_failed_tests(const std::vector<std::string> & failed_tests) override {
- if (failed_tests.empty()) {
- return;
- }
- printf("\nFailing tests:\n");
- for (const auto & test_name : failed_tests) {
- printf(" %s\n", test_name.c_str());
- }
- }
- private:
- void print_test_console(const test_result & result) {
- printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
- fflush(stdout);
- if (!result.supported) {
- printf("not supported [%s] ", result.backend_name.c_str());
- printf("\n");
- return;
- }
- if (result.passed) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_perf_console(const test_result & result) {
- int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
- fflush(stdout);
- if (!result.supported) {
- printf("not supported\n");
- return;
- }
- // align while also leaving some margin for variations in parameters
- int align = 8;
- int last = (len + align - 1) / align * align;
- if (last - len < 5) {
- last += align;
- }
- printf("%*s", last - len, "");
- printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
- if (result.flops > 0) {
- auto format_flops = [](double flops) -> std::string {
- char buf[256];
- if (flops >= 1e12) {
- snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
- } else if (flops >= 1e9) {
- snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
- } else if (flops >= 1e6) {
- snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
- } else {
- snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
- }
- return buf;
- };
- uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
- printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
- format_flops(result.flops).c_str());
- } else {
- printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
- }
- printf("\n");
- }
- void print_support_console(const test_result & result) {
- printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
- fflush(stdout);
- if (result.supported) {
- printf("\033[1;32mSUPPORTED\033[0m\n");
- } else {
- printf("\033[1;31mNOT SUPPORTED\033[0m\n");
- }
- }
- };
- struct sql_printer : public printer {
- static std::string get_sql_field_type(const std::string & field) {
- switch (test_result::get_field_type(field)) {
- case test_result::STRING:
- return "TEXT";
- case test_result::BOOL:
- case test_result::INT:
- return "INTEGER";
- case test_result::FLOAT:
- return "REAL";
- default:
- GGML_ABORT("invalid field type");
- }
- }
- void print_header() override {
- std::vector<std::string> fields = test_result::get_fields();
- fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
- i < fields.size() - 1 ? "," : "");
- }
- fprintf(fout, ");\n\n");
- }
- void print_test_result(const test_result & result) override {
- fprintf(fout, "INSERT INTO test_backend_ops (");
- std::vector<std::string> fields = test_result::get_fields();
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
- }
- fprintf(fout, ") VALUES (");
- std::vector<std::string> values = result.get_values();
- for (size_t i = 0; i < values.size(); i++) {
- fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
- }
- fprintf(fout, ");\n");
- }
- };
- struct csv_printer : public printer {
- void print_header() override {
- std::vector<std::string> fields = test_result::get_fields();
- std::vector<std::string> fields_csv = get_fields_csv();
- for (size_t i = 0; i < fields.size(); i++) {
- if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
- continue;
- }
- printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
- }
- printf("\n");
- }
- void print_test_result(const test_result & result) override {
- std::vector<std::string> values = result.get_values();
- std::vector<std::string> fields = test_result::get_fields();
- std::vector<std::string> fields_csv = get_fields_csv();
- for (size_t i = 0; i < values.size(); i++) {
- if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
- continue;
- }
- // Escape quotes and wrap in quotes for CSV
- std::string escaped_value = values[i];
- size_t pos = 0;
- while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
- escaped_value.replace(pos, 1, "\"\"");
- pos += 2;
- }
- printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
- }
- printf("\n");
- }
- static std::vector<std::string> get_fields_csv() {
- return {
- "op_name",
- "op_params",
- "supported",
- "error_message",
- "test_mode",
- "backend_reg_name",
- "backend_name",
- };
- }
- };
- static std::unique_ptr<printer> create_printer(output_formats format) {
- switch (format) {
- case CONSOLE:
- return std::make_unique<console_printer>();
- case SQL:
- return std::make_unique<sql_printer>();
- case CSV:
- return std::make_unique<csv_printer>();
- }
- GGML_ABORT("invalid output format");
- }
- struct test_case {
- virtual ~test_case() {}
- virtual std::string op_desc(ggml_tensor * t) {
- return ggml_op_desc(t);
- }
- virtual std::string vars() {
- return "";
- }
- virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
- virtual double max_nmse_err() {
- return 1e-7;
- }
- virtual double max_maa_err() {
- return 1e-4;
- }
- virtual double max_err() {
- return max_nmse_err();
- }
- virtual double err(const float * a, const float * b, size_t n) {
- return nmse(a, b, n);
- }
- virtual float grad_eps() {
- return 1e-1f;
- }
- // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
- // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
- virtual bool grad_precise() {
- return false;
- }
- // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
- virtual int64_t grad_nmax() {
- return 10000;
- }
- // No effect if empty.
- // If not empty, skip all gradient checks where the numerical result does not match any of the values.
- // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
- virtual std::vector<float> grad_expect() {
- return {};
- }
- virtual void initialize_tensors(ggml_context * ctx) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t);
- }
- }
- virtual size_t op_size(ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- }
- virtual uint64_t op_flops(ggml_tensor * t) {
- GGML_UNUSED(t);
- return 0;
- }
- virtual bool run_whole_graph() { return false; }
- ggml_cgraph * gf = nullptr;
- ggml_cgraph * gb = nullptr;
- static const int sentinel_size = 1024;
- test_mode mode;
- std::vector<ggml_tensor *> sentinels;
- std::string current_op_name;
- void add_sentinel(ggml_context * ctx) {
- if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
- return;
- }
- ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
- ggml_format_name(sentinel, "sent_%zu", sentinels.size());
- sentinels.push_back(sentinel);
- }
- // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
- ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
- ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
- ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
- ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
- ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
- add_sentinel(ctx);
- return t;
- }
- // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
- bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
- if (op_names_filter) {
- const auto op_name = op_desc(op);
- const auto op_full_name = op_name + "(" + vars() + ")";
- std::string_view filter(op_names_filter);
- while (!filter.empty()) {
- auto comma_pos = filter.find_first_of(',');
- const auto lparen_pos = filter.find_first_of('(');
- if (lparen_pos < comma_pos) {
- auto rparen_pos = filter.find_first_of(')');
- comma_pos = filter.find_first_of(',', rparen_pos);
- const auto op_filter = filter.substr(0, comma_pos);
- if (op_filter == op_full_name) {
- return true;
- }
- } else {
- const auto op_filter = filter.substr(0, comma_pos);
- if (op_filter == op_name) {
- return true;
- }
- }
- filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
- }
- return false;
- } else {
- return true;
- }
- }
- test_status_t eval(ggml_backend_t backend1,
- ggml_backend_t backend2,
- const char * op_names_filter,
- printer * output_printer) {
- mode = MODE_TEST;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context * ctx = ggml_init(params);
- GGML_ASSERT(ctx);
- gf = ggml_new_graph(ctx);
- // pre-graph sentinel
- add_sentinel(ctx);
- ggml_tensor * out = build_graph(ctx);
- current_op_name = op_desc(out);
- if (!matches_filter(out, op_names_filter)) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- ggml_free(ctx);
- return test_status_t::SKIPPED;
- }
- // check if the backends support the ops
- bool supported = true;
- for (ggml_backend_t backend : {backend1, backend2}) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- supported = false;
- break;
- }
- }
- }
- if (!supported) {
- // Create test result for unsupported operation
- test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
- false, false, "not supported");
- if (output_printer) {
- output_printer->print_test_result(result);
- }
- ggml_free(ctx);
- return test_status_t::NOT_SUPPORTED;
- }
- // post-graph sentinel
- add_sentinel(ctx);
- // allocate
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
- if (buf == NULL) {
- printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
- ggml_free(ctx);
- return test_status_t::FAIL;
- }
- // build graph
- ggml_build_forward_expand(gf, out);
- // add sentinels as graph nodes so that they are checked in the callback
- for (ggml_tensor * sentinel : sentinels) {
- ggml_graph_add_node(gf, sentinel);
- }
- // randomize tensors
- initialize_tensors(ctx);
- // compare
- struct callback_userdata {
- bool ok;
- test_case * tc;
- ggml_backend_t backend1;
- ggml_backend_t backend2;
- };
- callback_userdata ud {
- true,
- this,
- backend1,
- backend2,
- };
- auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
- callback_userdata * ud = (callback_userdata *) user_data;
- const char * bn1 = ggml_backend_name(ud->backend1);
- const char * bn2 = ggml_backend_name(ud->backend2);
- if (t1->op == GGML_OP_NONE) {
- // sentinels must be unchanged
- std::vector<uint8_t> t1_data(ggml_nbytes(t1));
- std::vector<uint8_t> t2_data(ggml_nbytes(t2));
- ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
- ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
- if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
- printf("sentinel mismatch: %s ", t1->name);
- ud->ok = false;
- return true;
- }
- }
- std::vector<float> f1 = tensor_to_float(t1);
- std::vector<float> f2 = tensor_to_float(t2);
- for (size_t i = 0; i < f1.size(); i++) {
- // check for nans
- if (std::isnan(f1[i]) || std::isnan(f2[i])) {
- printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- // check for infs: both must be inf of the same sign, or both must be finite
- if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
- if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
- if (std::signbit(f1[i]) != std::signbit(f2[i])) {
- printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- } else {
- printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- }
- }
- double err = ud->tc->err(f1.data(), f2.data(), f1.size());
- if (err > ud->tc->max_err()) {
- printf("[%s] ERR = %.9f > %.9f ", ggml_op_desc(t1), err, ud->tc->max_err());
- //for (int i = 0; i < (int) f1.size(); i++) {
- // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
- //}
- //printf("\n");
- //exit(1);
- ud->ok = false;
- }
- return true;
- GGML_UNUSED(index);
- };
- const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
- ggml_backend_buffer_free(buf);
- ggml_free(ctx);
- // Create test result
- bool test_passed = ud.ok && cmp_ok;
- std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
- test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
- error_msg);
- if (output_printer) {
- output_printer->print_test_result(result);
- }
- return test_passed ? test_status_t::OK : test_status_t::FAIL;
- }
- bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
- mode = MODE_PERF;
- static const size_t graph_nodes = 8192;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- ggml_tensor * out = build_graph(ctx.get());
- current_op_name = op_desc(out);
- if (!matches_filter(out, op_names_filter)) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- return true;
- }
- if (!ggml_backend_supports_op(backend, out)) {
- // Create test result for unsupported performance test
- test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
- "not supported");
- output_printer->print_test_result(result);
- return true;
- }
- // allocate
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
- if (buf == NULL) {
- printf("failed to allocate tensors\n");
- return false;
- }
- // randomize tensors
- initialize_tensors(ctx.get());
- // build graph
- ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
- ggml_build_forward_expand(gf, out);
- // warmup run
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- // determine number of runs
- int n_runs;
- bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
- if (op_flops(out) > 0) {
- // based on flops
- const uint64_t GFLOP = 1000 * 1000 * 1000;
- const uint64_t target_flops_cpu = 8ULL * GFLOP;
- const uint64_t target_flops_gpu = 100ULL * GFLOP;
- uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
- n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
- } else {
- // based on memory size
- const size_t GB = 1ULL << 30;
- const size_t target_size_cpu = 8 * GB;
- const size_t target_size_gpu = 32 * GB;
- size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
- n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
- }
- // duplicate the op
- for (int i = 1; i < n_runs; i++) {
- ggml_graph_add_node(gf, out);
- }
- // calculate memory
- size_t mem = n_runs * op_size(out);
- auto tensor_op_size = [](ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- };
- for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
- if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
- continue;
- }
- mem += tensor_op_size(ggml_graph_node(gf, i));
- }
- // run
- int64_t total_time_us = 0;
- int64_t total_mem = 0;
- int total_runs = 0;
- do {
- int64_t start_time = ggml_time_us();
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- int64_t end_time = ggml_time_us();
- total_time_us += end_time - start_time;
- total_mem += mem;
- total_runs += n_runs;
- } while (total_time_us < 1000*1000); // run for at least 1 second
- // Create test result
- double avg_time_us = (double) total_time_us / total_runs;
- double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
- double calculated_bandwidth =
- (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
- size_t calculated_memory_kb = op_size(out) / 1024;
- test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
- calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
- if (output_printer) {
- output_printer->print_test_result(result);
- }
- return true;
- }
- bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
- mode = MODE_SUPPORT;
- static const size_t graph_nodes = 8192;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
- ggml_tensor * out = build_graph(ctx.get());
- current_op_name = op_desc(out);
- if (!matches_filter(out, op_names_filter)) {
- return true;
- }
- bool supported = ggml_backend_supports_op(backend, out);
- std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
- std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
- test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
- supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
- output_printer->print_test_result(result);
- return true;
- }
- bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
- mode = MODE_GRAD;
- const std::vector<float> expect = grad_expect();
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
- gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
- ggml_tensor * out = build_graph(ctx.get());
- if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
- return true;
- }
- if (out->type != GGML_TYPE_F32) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED,
- out->name + std::string("->type != FP32")));
- return true;
- }
- // Print operation info first
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
- // check if the backend supports the ops
- bool supported = true;
- bool any_params = false;
- std::string failure_reason;
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- supported = false;
- failure_reason = ggml_backend_name(backend);
- break;
- }
- if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
- any_params = true;
- if (t->type != GGML_TYPE_F32) {
- supported = false;
- failure_reason = std::string(t->name) + "->type != FP32";
- break;
- }
- }
- }
- if (!any_params) {
- supported = false;
- failure_reason = op_desc(out);
- }
- if (!supported) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED, failure_reason));
- return true;
- }
- int64_t ngrads = 0;
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (t->flags & GGML_TENSOR_FLAG_PARAM) {
- ngrads += ggml_nelements(t);
- }
- }
- if (ngrads > grad_nmax()) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_large_tensor_skip();
- output_printer->print_operation(info);
- return true;
- }
- if (!ggml_is_scalar(out)) {
- out = ggml_sum(ctx.get(), out);
- ggml_set_name(out, "sum_of_out");
- }
- ggml_set_loss(out);
- ggml_build_forward_expand(gf, out);
- ggml_graph_cpy(gf, gb);
- ggml_build_backward_expand(ctx.get(), gb, nullptr);
- if (expect.size() != 1 || expect[0] != 0.0f) {
- GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
- }
- }
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED,
- ggml_backend_name(backend)));
- supported = false;
- break;
- }
- if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED,
- std::string(t->name) + "->type != FP32"));
- supported = false;
- break;
- }
- }
- if (!supported) {
- return true;
- }
- // allocate
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
- if (buf == NULL) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_error("allocation", "");
- output_printer->print_operation(info);
- return false;
- }
- initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
- ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- status = ggml_backend_graph_compute(backend, gb);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- bool ok = true;
- for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
- continue;
- }
- const char * bn = ggml_backend_name(backend);
- const int64_t ne = ggml_nelements(t);
- std::vector<float> ga;
- struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
- if (grad) {
- ga = tensor_to_float(grad);
- } else {
- ga.resize(ne); // default value is 0.0f
- }
- for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
- // check for nans
- if (!std::isfinite(ga[i])) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_gradient_info(i, bn, ga[i]);
- output_printer->print_operation(info);
- ok = false;
- break;
- }
- }
- if (!ok) {
- break;
- }
- std::vector<float> gn(ne); // gradient numeric
- GGML_ASSERT(ga.size() == gn.size());
- std::vector<float> x0 = tensor_to_float(t); // original t data
- GGML_ASSERT(ggml_is_scalar(out));
- GGML_ASSERT(out->type == GGML_TYPE_F32);
- const float eps = grad_eps();
- for (int64_t i = 0; i < ne; ++i) {
- const float xiu = x0[i] + 1.0f*eps; // x, index i, up
- const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
- const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
- const float xid = x0[i] - 1.0f*eps; // x, index i, down
- float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
- ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
- ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
- if (grad_precise()) {
- ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
- ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
- gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
- } else {
- gn[i] = (fu - fd) / (2.0f*eps);
- }
- ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
- }
- const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
- if (err > max_maa_err()) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_maa_error(err, max_maa_err());
- output_printer->print_operation(info);
- ok = false;
- break;
- }
- if (!ok) {
- break;
- }
- }
- // Create final test result
- test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
- if (!ok) {
- final_info.set_compare_failure();
- }
- final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
- output_printer->print_operation(final_info);
- if (ok) {
- return true;
- }
- return false;
- }
- };
- // ###################################
- // ## Section 2: GGML Op Defintions ##
- // ###################################
- // The following is an example showing the bare minimum for creating a test for a GGML op.
- // GGML_OP_EXAMPLE
- struct test_example : public test_case {
- // Always define these 2 or variants thereof:
- const ggml_type type; // The type of the input tensors.
- const std::array<int64_t, 4> ne; // The shape of the input tensors.
- // For some ops it's necessary to define multiple types or shapes for the inputs.
- // Or they may need additional parameters.
- // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
- // In most cases these are just the properties of the struct that you defined above.
- // This is needed for info prints.
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- // Define a constructor for the struct.
- // In most cases it will be sufficient to have the same arguments as the struct has properties
- // and just use initializer lists.
- test_example(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- // Define how a simple GGML compute graph can be constructed for the new GGML op.
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // Step 1: create input tensors that don't depend on any other tensors:
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- // Step 2: use the op that you want to test in the GGML compute graph.
- ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
- ggml_set_name(out, "out");
- // Step 3: return the output tensor.
- return out;
- }
- // In order to also check the gradients for your op, add calls like ggml_set_param(a)
- // immediately after you create the tensors.
- // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
- };
- // GGML_OP_UNARY
- struct test_unary : public test_case {
- const ggml_unary_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, v);
- }
- test_unary(ggml_unary_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0)
- : op(op), type(type), ne_a(ne_a), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
- op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
- op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- if (grad_supported) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- if (grad_supported) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- }
- ggml_tensor * out = ggml_unary(ctx, a, op);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- float grad_eps() override {
- return 15.0f;
- }
- std::vector<float> grad_expect() override {
- if (op == GGML_UNARY_OP_ABS) {
- return {-1.0f, 1.0f};
- }
- if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
- return {0.0f};
- }
- if (op == GGML_UNARY_OP_RELU) {
- return {0.0f, 1.0f};
- }
- return {};
- }
- };
- // GGML_OP_GLU
- struct test_glu : public test_case {
- const ggml_glu_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- bool swapped;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, v, swapped);
- }
- test_glu(ggml_glu_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0,
- bool swapped = false)
- : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- }
- ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- };
- struct test_glu_split : public test_case {
- const ggml_glu_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, v) + ",split";
- }
- test_glu_split(ggml_glu_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0)
- : op(op), type(type), ne_a(ne_a), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- ggml_tensor * b;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
- ggml_set_name(a, "view_of_b");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- b = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- };
- struct test_swiglu_oai : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- float alpha;
- float limit;
- std::string vars() override {
- return VARS_TO_STR5(type, ne_a, v, alpha, limit);
- }
- test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0,
- float alpha = 1.702f,
- float limit = 7.0f)
- : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- ggml_tensor * b;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
- ggml_set_name(a, "view_of_b");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- b = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- };
- // GGML_OP_GET_ROWS
- struct test_get_rows : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int be1; // batch size
- const int be2; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR7(type, n, m, r, be1, be2, v);
- }
- test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
- : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
- ggml_set_name(in, "in");
- ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
- ggml_set_name(rows, "rows");
- if (v) {
- rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
- ggml_set_name(rows, "view_of_rows");
- }
- const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
- if (grad_supported) {
- ggml_set_param(in);
- // rows is a constant input -> no gradients
- }
- ggml_tensor * out = ggml_get_rows(ctx, in, rows);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*be1*be2);
- for (int i = 0; i < r*be1*be2; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_GET_ROWS_BACK
- struct test_get_rows_back : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int b; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, n, m, r, b, v);
- }
- test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
- ggml_set_name(in_forward, "in_forward");
- ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
- ggml_set_name(rows, "rows");
- if (v) {
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
- ggml_set_name(rows, "view_of_rows");
- }
- ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
- ggml_set_name(grad, "grad");
- ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*b);
- for (int i = 0; i < r*b; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (int i2 = 0; i2 < t->ne[2]; i2++) {
- for (int i1 = 0; i1 < t->ne[1]; i1++) {
- // generate a shuffled subset of row indices
- std::vector<int64_t> data(num_rows);
- for (int i = 0; i < num_rows; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- data.resize(t->ne[0]);
- const size_t offs = i1*t->nb[1] + i2*t->nb[2];
- if (t->type == GGML_TYPE_I32) {
- // TODO: Make a template or something
- std::vector<int32_t> data_i32(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data_i32[i] = static_cast<int32_t>(data[i]);
- }
- ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
- } else {
- ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
- }
- }
- }
- }
- // GGML_OP_SET_ROWS
- struct test_set_rows : public test_case {
- const ggml_type type;
- const ggml_type type_idx;
- const std::array<int64_t, 4> ne;
- const std::array<int, 2> nr23; // broadcast only dims 2 and 3
- const int r; // rows to set
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
- }
- test_set_rows(ggml_type type,
- ggml_type type_idx,
- std::array<int64_t, 4> ne,
- std::array<int, 2> nr23,
- int r, bool v = false)
- : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
- ggml_set_name(dst, "dst");
- ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
- ggml_set_name(src, "src");
- ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
- ggml_set_name(row_idxs, "row_idxs");
- if (v) {
- src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
- row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
- ggml_set_name(row_idxs, "view_of_rows");
- }
- ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) {
- continue;
- }
- init_set_rows_row_ids(t, ne[1]);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- double max_nmse_err() override {
- if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
- type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
- // estimate what the max nmse error would be if one quantized value is
- // off by one. The test values are distributed in [-1,1], so it'll be
- // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
- // which is roughly 0.25 times the number of elements.
- double err_estimate = 1.0f/8.0f;
- if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
- err_estimate /= 2.0f;
- }
- if (type == GGML_TYPE_Q8_0) {
- err_estimate /= 8.0f;
- }
- err_estimate *= err_estimate;
- err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
- return err_estimate;
- }
- return 1e-7;
- }
- };
- // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
- struct test_rope_set_rows : public test_case {
- const ggml_type type;
- const ggml_type type_idx;
- const std::array<int64_t, 4> ne;
- int mode;
- std::string vars() override {
- return VARS_TO_STR4(type, type_idx, ne, mode);
- }
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "ROPE_SET_ROWS";
- }
- bool run_whole_graph() override { return true; }
- test_rope_set_rows(ggml_type type,
- ggml_type type_idx,
- std::array<int64_t, 4> ne,
- int mode)
- : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
- ggml_set_name(src, "src");
- ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
- ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
- ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
- ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
- ggml_set_name(dst, "dst");
- ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
- ggml_set_name(row_idxs, "row_idxs");
- ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) {
- continue;
- }
- init_set_rows_row_ids(t, ne[2]);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
- struct test_rms_norm_mul_rope : public test_case {
- const std::array<int64_t, 4> ne;
- const float eps;
- const bool multi_add; // test a sequence of adds feeding into rms_norm
- const bool set_rows;
- int mode;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "RMS_NORM_MUL_ROPE";
- }
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
- }
- test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
- bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
- : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
- ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
- if (multi_add) {
- a = ggml_add(ctx, ggml_add(ctx, a, b), c);
- }
- a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
- ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
- ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
- ggml_tensor * out;
- if (set_rows) {
- ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
- ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
- ggml_set_name(dst, "dst");
- ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
- ggml_set_name(row_idxs, "row_idxs");
- out = ggml_set_rows(ctx, dst, view, row_idxs);
- ggml_set_name(out, "out");
- } else {
- out = rope;
- }
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) {
- continue;
- }
- init_set_rows_row_ids(t, ne[2]);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_ARGMAX
- struct test_argmax : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_argmax(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 100, 1, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_argmax(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- double max_nmse_err() override {
- return 0.0;
- }
- };
- // GGML_OP_COUNT_EQUAL
- struct test_count_equal : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_count_equal(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {4, 500, 1, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * a_argmax = ggml_argmax(ctx, a);
- ggml_set_name(a_argmax, "a_argmax");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- ggml_tensor * b_argmax = ggml_argmax(ctx, b);
- ggml_set_name(b_argmax, "b_argmax");
- ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
- ggml_set_name(out, "out");
- return out;
- }
- double max_nmse_err() override {
- return 0.0;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_REPEAT
- struct test_repeat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, nr);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- std::array<int, 4> nr = {2, 2, 2, 2})
- : type(type), ne(ne), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(target, "target");
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- ggml_tensor * out = ggml_repeat(ctx, src, target);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_REPEAT_BACK
- struct test_repeat_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- const bool v; // whether src is a noncontiguous view
- std::string vars() override {
- return VARS_TO_STR4(type, ne, nr, v);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {8, 6, 4, 2},
- std::array<int, 4> nr = {2, 2, 2, 2},
- bool v = false)
- : type(type), ne(ne), nr(nr), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(src, "src");
- if (v) {
- GGML_ASSERT(ne[0] % 2 == 0);
- GGML_ASSERT(ne[1] % 2 == 0);
- GGML_ASSERT(ne[2] % 2 == 0);
- GGML_ASSERT(ne[3] % 2 == 0);
- GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
- GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
- GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
- GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
- const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
- const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
- const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
- const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
- src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
- }
- ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(target, "target");
- ggml_tensor * out = ggml_repeat_back(ctx, src, target);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_DUP
- struct test_dup : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute;
- bool _use_permute;
- std::string vars() override {
- std::string v = VARS_TO_STR2(type, ne);
- if (_use_permute) v += "," + VAR_TO_STR(permute);
- return v;
- }
- test_dup(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 20, 1},
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
- : type(type), ne(ne), permute(permute),
- _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- if (_use_permute) {
- src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
- ggml_set_name(src, "src_permuted");
- }
- ggml_tensor * out = ggml_dup(ctx, src);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SET
- struct test_set : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- const int dim;
- std::string vars() override {
- return VARS_TO_STR4(type_src, type_dst, ne, dim);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
- : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- auto ne_dst = ne;
- for (int i = 0; i < dim; ++i) {
- ne_dst[i] *= 2;
- }
- ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
- ggml_set_param(dst);
- ggml_set_name(dst, "dst");
- size_t offset = 0;
- for (int i = 0; i < dim; ++i) {
- offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
- }
- ggml_tensor * out = ggml_set(ctx, dst, src,
- // The backward pass requires setting a contiguous region:
- src->nb[1], src->nb[2], src->nb[3], offset);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CPY
- struct test_cpy : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute_src;
- const std::array<int64_t, 4> permute_dst;
- bool _src_use_permute;
- bool _dst_use_permute;
- bool _src_transpose;
- std::string vars() override {
- return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
- }
- double max_nmse_err() override {
- if (type_src == type_dst) {
- return 0.0;
- }
- if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
- type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
- // estimate what the max nmse error would be if one quantized value is
- // off by one. The test values are distributed in [-150,150], so it'll be
- // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
- // which is roughly 0.25*150^2 times the number of elements.
- double err_estimate = 1.0f/8.0f * 150.0f;
- if (type_dst == GGML_TYPE_IQ4_NL) {
- // iq4_nl values are a bit more spread out
- err_estimate *= 2.0f;
- }
- if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
- err_estimate /= 2.0f;
- }
- if (type_dst == GGML_TYPE_Q8_0) {
- err_estimate /= 8.0f;
- }
- err_estimate *= err_estimate;
- err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
- return err_estimate;
- }
- return 1e-6;
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
- std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
- std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
- bool transpose_src = false)
- : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
- _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
- _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
- _src_transpose(transpose_src){}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- if (_src_use_permute) {
- src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
- ggml_set_name(src, "src_permuted");
- }
- if (_src_transpose) {
- src = ggml_transpose(ctx, src);
- ggml_set_name(src, "src_transposed");
- }
- ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
- ggml_set_name(dst, "dst");
- if (_dst_use_permute) {
- dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
- ggml_set_name(dst, "dst_permuted");
- }
- ggml_tensor * out = ggml_cpy(ctx, src, dst);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check if casting between f32 and i32 is consistent
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- };
- // GGML_OP_CONT
- struct test_cont : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- bool use_view_slice;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, use_view_slice);
- }
- test_cont(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
- bool use_view_slice = false)
- : type(type), ne(ne), use_view_slice(use_view_slice) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- ggml_tensor * dst;
- if (use_view_slice) {
- dst = ggml_view_4d(ctx, src, src->ne[0], 1, src->ne[2], src->ne[3],
- src->nb[1], src->nb[2], src->nb[3], src->nb[0] * (src->ne[1] - 1));
- ggml_set_name(dst, "src_view_slice");
- } else {
- dst = ggml_transpose(ctx, src);
- ggml_set_name(dst, "src_transposed");
- }
- ggml_tensor * out = ggml_cont(ctx, dst);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ADD
- // GGML_OP_SUB
- // GGML_OP_MUL
- // GGML_OP_DIV
- struct test_bin_bcast : public test_case {
- using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
- op_t op;
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- int nf; // number of fused ops, nf == 1 -> single op (no fusion)
- bool run_whole_graph() override { return nf > 1; }
- std::string vars() override {
- return VARS_TO_STR4(type, ne, nr, nf);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 3;
- }
- test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 1, 1},
- std::array<int, 4> nr = {1, 2, 1, 1},
- int nf = 1)
- : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- GGML_ASSERT(nf <= 16);
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(a, "a");
- ggml_tensor * b[16];
- for (int i = 0; i < nf; ++i) {
- b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
- }
- // The backward pass supports broadcasting only for GGML_ADD:
- const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
- if (grad_supported) {
- ggml_set_param(a);
- ggml_set_param(b[0]);
- }
- ggml_tensor * out = a;
- for (int i = 0; i < nf; ++i) {
- out = op(ctx, out, b[i]);
- }
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (op == ggml_mul || op == ggml_div) {
- // MUL and DIV have numerical issues around zero:
- init_tensor_uniform(t, 0.9f, 1.1f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- float grad_eps() override {
- return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
- }
- bool grad_precise() override {
- return op == ggml_div;
- }
- double max_maa_err() override {
- return op == ggml_add ? 1e-4 : 1e-3;
- }
- };
- // GGML_OP_ADD_ID
- struct test_add_id : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t n_embd;
- const int64_t n_experts;
- const int64_t n_experts_used;
- const int64_t n_token;
- std::string vars() override {
- return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
- }
- test_add_id(ggml_type type_a = GGML_TYPE_F32,
- ggml_type type_b = GGML_TYPE_F32,
- int64_t n_embd = 128,
- int64_t n_experts = 16,
- int64_t n_experts_used = 8,
- int64_t n_token = 10)
- : type_a(type_a), type_b(type_b), n_embd(n_embd),
- n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
- ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
- if (n_experts_used != n_experts) {
- ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
- ggml_set_name(ids, "view_of_ids");
- }
- ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- std::random_device rd;
- std::default_random_engine rng(rd());
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i % n_experts;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_ADD1
- struct test_add1 : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_add1(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
- // ggml_set_param(b); // TODO: implement
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_add1(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
- }
- };
- // GGML_OP_SCALE
- struct test_scale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float scale;
- float bias;
- bool inplace;
- std::string vars() override {
- return VARS_TO_STR5(type, ne, scale, bias, inplace);
- }
- test_scale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- float scale = 2.0f,
- float bias = 0.0f,
- bool inplace = false)
- : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out;
- if (inplace) {
- out = ggml_scale_bias_inplace(ctx, a, scale, bias);
- } else {
- out = ggml_scale_bias(ctx, a, scale, bias);
- }
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
- struct test_softcap : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float softcap;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "SOFTCAP";
- }
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR3(type, ne, softcap);
- }
- test_softcap(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- float softcap = 30.0f)
- : type(type), ne(ne), softcap(softcap) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SILU_BACK
- struct test_silu_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_silu_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(grad, "grad");
- ggml_tensor * out = ggml_silu_back(ctx, a, grad);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_NORM
- struct test_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool v; // whether a is a non-contiguous view
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, v, eps);
- }
- test_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- bool v = false,
- float eps = 1e-6f)
- : type(type), ne(ne), v(v), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out = ggml_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
- struct test_norm_mul_add : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float eps;
- const bool broadcast;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "NORM_MUL_ADD";
- }
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR4(type, ne, eps, broadcast);
- }
- test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {128, 2, 1, 1},
- float eps = 1e-5f,
- bool broadcast = false)
- : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
- ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
- ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
- // Use a, w and b early to avoid OP_NONE in graph
- a = ggml_add(ctx, ggml_add(ctx, a, w), b);
- ggml_tensor * n = ggml_norm(ctx, a, eps);
- ggml_tensor * m = ggml_mul(ctx, n, w);
- ggml_tensor * out = ggml_add(ctx, m, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_RMS_NORM
- struct test_rms_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool v; // whether a is a non-contiguous view
- const float eps;
- const bool inplace; // whether to do the operation inplace
- std::string vars() override {
- return VARS_TO_STR5(type, ne, v, eps, inplace);
- }
- test_rms_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- bool v = false,
- float eps = 1e-6f,
- bool inplace = false)
- : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out;
- if (inplace) {
- out = ggml_rms_norm_inplace(ctx, a, eps);
- } else {
- out = ggml_rms_norm(ctx, a, eps);
- }
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_RMS_NORM_BACK
- struct test_rms_norm_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- };
- // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
- struct test_rms_norm_mul_add : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- const bool broadcast;
- const bool multi_add; // test a sequence of adds feeding into rms_norm
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "RMS_NORM_MUL_ADD";
- }
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
- }
- test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
- : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_set_param(b);
- ggml_set_name(b, "b");
- ggml_set_param(c);
- ggml_set_name(c, "c");
- // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
- a = ggml_add(ctx, ggml_add(ctx, a, b), c);
- if (multi_add) {
- a = ggml_add(ctx, ggml_add(ctx, a, b), c);
- }
- ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SSM_CONV
- struct test_ssm_conv : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_ssm_conv(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
- std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
- return out;
- }
- };
- // GGML_OP_SSM_SCAN
- struct test_ssm_scan : public test_case {
- const ggml_type type;
- const int64_t d_state;
- const int64_t head_dim;
- const int64_t n_head;
- const int64_t n_group;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
- }
- test_ssm_scan(ggml_type type = GGML_TYPE_F32,
- int64_t d_state = 32,
- int64_t head_dim = 1, // non-zero for Mamba-2
- int64_t n_head = 32,
- int64_t n_group = 1,
- int64_t n_seq_tokens = 32,
- int64_t n_seqs = 32)
- : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
- ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
- ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
- ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
- return out;
- }
- // similar to test_mul_mat_id
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_RWKV_WKV6
- struct test_rwkv_wkv6 : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
- ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
- return out;
- }
- };
- // GGML_OP_GATED_LINEAR_ATTN
- struct test_gla : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_gla(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
- return out;
- }
- };
- // GGML_OP_RWKV_WKV7
- struct test_rwkv_wkv7 : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- // Outputs may become NaN with long seqlen without these normalization
- a = ggml_l2_norm(ctx, a, 1e-7F);
- b = ggml_l2_norm(ctx, b, 1e-7F);
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
- return out;
- }
- };
- // GGML_OP_MUL_MAT
- struct test_mul_mat : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- const std::array<int64_t, 4> per; // permutation of dimensions
- const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
- const uint32_t o; // number of outputs
- std::string vars() override {
- return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- int64_t grad_nmax() override {
- return 20000;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
- }
- test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2},
- std::array<int64_t, 4> per = {0, 1, 2, 3},
- int64_t k_v = 0, uint32_t o = 1)
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * a;
- ggml_tensor * b;
- const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
- if (npermuted > 0) {
- GGML_ASSERT(npermuted == 2);
- GGML_ASSERT(k_v == 0); // not handled
- GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
- GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
- // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
- const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
- const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
- a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
- b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(a);
- }
- ggml_set_param(b);
- }
- ggml_set_name(a, "a");
- ggml_set_name(b, "b");
- a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
- b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
- ggml_set_name(a, "a_permuted");
- ggml_set_name(b, "b_permuted");
- } else {
- const int64_t k_physical = k_v == 0 ? k : k_v;
- a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
- b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(a);
- }
- ggml_set_param(b);
- }
- if (k_v != 0) {
- GGML_ASSERT(k_v > k);
- a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
- b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
- }
- ggml_set_name(a, "a");
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_mul_mat(ctx, a, b);
- ggml_set_name(out, "out");
- for (uint32_t i = 1; i < o; ++i) {
- ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
- ggml_set_name(out2, "out2");
- out = ggml_add(ctx, out, out2);
- }
- return out;
- }
- bool run_whole_graph() override { return o > 1; }
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return ggml_op_name(GGML_OP_MUL_MAT);
- }
- };
- static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i % n_mats;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- // GGML_OP_MUL_MAT_ID
- struct test_mul_mat_id : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int n_mats;
- const int n_used;
- const bool b; // broadcast b matrix
- const int64_t m;
- const int64_t n;
- const int64_t k;
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * k * n * n_used;
- }
- test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int n_mats = 8, int n_used = 2, bool b = false,
- int64_t m = 32, int64_t n = 32, int64_t k = 32)
- : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
- m(m), n(n), k(k) {
- GGML_ASSERT(n_used <= n_mats);
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
- ggml_set_name(as, "as");
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
- ggml_set_name(ids, "ids");
- if (n_used != n_mats) {
- ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
- ggml_set_name(ids, "view_of_ids");
- }
- ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- init_mul_mat_id_tensors(ctx, n_mats);
- }
- };
- // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
- struct test_mul_mat_id_fusion : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int n_mats;
- const int n_used;
- const bool b; // broadcast b matrix
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const uint32_t o; // number of outputs
- const bool mul;
- std::string vars() override {
- return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * k * n * n_used;
- }
- test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int n_mats = 8, int n_used = 2, bool b = false,
- int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
- : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
- m(m), n(n), k(k), o(o), mul(mul) {
- GGML_ASSERT(n_used <= n_mats);
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
- ggml_set_name(as, "as");
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
- ggml_set_name(ids, "ids");
- if (n_used != n_mats) {
- ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
- ggml_set_name(ids, "view_of_ids");
- }
- ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
- ggml_set_name(out, "out");
- for (uint32_t i = 1; i < o; ++i) {
- ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
- ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
- ggml_set_name(out2, "out2");
- out = ggml_add(ctx, out, out2);
- }
- if (mul) {
- std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
- ne[0] = 1;
- ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
- out = ggml_mul(ctx, out, m);
- }
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- init_mul_mat_id_tensors(ctx, n_mats);
- }
- bool run_whole_graph() override { return true; }
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "MUL_MAT_ID_FUSION";
- }
- };
- // GGML_OP_OUT_PROD
- struct test_out_prod : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- const bool trans_b;
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2},
- bool trans_b = false)
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
- ggml_set_name(a, "a");
- ggml_tensor * b;
- if (trans_b) {
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
- b = ggml_transpose(ctx, b);
- } else {
- b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
- }
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_out_prod(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SQR
- struct test_sqr : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqr(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sqr(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
- }
- };
- // GGML_OP_SQRT
- struct test_sqrt : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqrt(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 3, 3, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sqrt(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- // fill with positive values
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 50.0f, 100.0f);
- }
- }
- float grad_eps() override {
- return 20.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_LOG
- struct test_log : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_log(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_log(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
- init_tensor_uniform(t, 0.9f, 1.1f);
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SIN
- struct test_sin : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sin(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sin(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- float grad_eps() override {
- return 0.2f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_COS
- struct test_cos : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cos(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_cos(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- float grad_eps() override {
- return 0.2f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CLAMP
- struct test_clamp : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float min;
- float max;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, min, max);
- }
- test_clamp(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- float min = -0.5f, float max = 0.5f)
- : type(type), ne(ne), min(min), max(max) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_clamp(ctx, a, min, max);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 1e-2f;
- }
- std::vector<float> grad_expect() override {
- return {0.0f, 1.0f};
- }
- };
- // GGML_OP_FLOOR
- struct test_floor : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_floor(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_floor(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.0f, 10.0f);
- }
- }
- };
- // GGML_OP_CEIL
- struct test_ceil : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_ceil(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_ceil(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.0f, 10.0f);
- }
- }
- };
- // GGML_OP_ROUND
- struct test_round : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_round(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_round(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.0f, 10.0f);
- }
- }
- };
- // GGML_OP_TRUNC
- struct test_trunc : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_trunc(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_trunc(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.0f, 10.0f);
- }
- }
- };
- // GGML_OP_DIAG_MASK_INF
- struct test_diag_mask_inf : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int n_past;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, n_past);
- }
- test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 3, 2},
- int n_past = 5)
- : type(type), ne(ne), n_past(n_past) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SOFT_MAX
- struct test_soft_max : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool mask;
- const bool sinks;
- const ggml_type m_prec;
- const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
- const float scale;
- const float max_bias;
- const bool inplace;
- std::string vars() override {
- return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
- }
- // the 1024 test with bias occasionally fails:
- // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
- virtual double max_nmse_err() override {
- return 1e-6;
- }
- test_soft_max(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- bool mask = false,
- bool sinks = false,
- ggml_type m_prec = GGML_TYPE_F32,
- std::array<int64_t, 2> nr23 = {1, 1},
- float scale = 1.0f,
- float max_bias = 0.0f,
- bool inplace = false)
- : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * mask = nullptr;
- if (this->mask) {
- mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(mask, "mask");
- }
- ggml_tensor * sinks = nullptr;
- if (this->sinks) {
- sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
- ggml_set_name(sinks, "sinks");
- }
- ggml_tensor * out;
- if (inplace) {
- out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
- } else {
- out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
- }
- ggml_soft_max_add_sinks(out, sinks);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SOFT_MAX_BACK
- struct test_soft_max_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float scale;
- const float max_bias;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, scale, max_bias);
- }
- test_soft_max_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- float scale = 1.0f,
- float max_bias = 0.0f)
- : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ROPE + GGML_OP_ROPE_BACK
- struct test_rope : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int n_dims;
- int mode;
- int n_ctx; // used to generate positions
- float fs; // freq_scale
- float ef; // ext_factor
- float af; // attn_factor
- bool ff;
- int v; // view (1 : non-contiguous a)
- bool forward;
- bool inplace;
- std::string vars() override {
- // forward can be inferred from the op, does not need to be printed
- return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
- }
- test_rope(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
- int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
- float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
- : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- if (forward) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- if (forward) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- }
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- ggml_tensor * pos;
- if (is_mrope || is_vision) {
- pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
- } else {
- pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
- }
- ggml_set_name(pos, "pos");
- ggml_tensor * freq = nullptr;
- if (ff) {
- freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
- ggml_set_name(freq, "freq");
- }
- ggml_tensor * out;
- if (is_mrope) {
- if (is_vision) {
- GGML_ASSERT(n_dims/4 > 0);
- int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
- if (forward) {
- if (inplace) {
- out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- } else {
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- } else {
- GGML_ASSERT(n_dims/3 > 0);
- int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
- if (forward) {
- if (inplace) {
- out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- } else {
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- }
- } else {
- if (forward) {
- if (inplace) {
- out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- } else {
- out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
- }
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
- std::vector<int> data(num_pos_ids);
- for (int i = 0; i < num_pos_ids; i++) {
- data[i] = rand() % n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
- } else {
- if (t->ne[0] == n_dims/2) {
- // frequency factors in the range [0.9f, 1.1f]
- init_tensor_uniform(t, 0.9f, 1.1f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_POOL2D
- struct test_pool2d : public test_case {
- enum ggml_op_pool pool_type;
- const ggml_type type_input;
- const std::array<int64_t, 4> ne_input;
- // kernel size
- const int k0;
- const int k1;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- std::string vars() override {
- return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
- }
- test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
- ggml_type type_input = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- int k0 = 3, int k1 = 3,
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1)
- : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(input);
- ggml_set_name(input, "input");
- ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_TRANSPOSE_1D
- struct test_conv_transpose_1d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int s0; // stride
- const int p0; // padding
- const int d0; // dilation
- std::string vars() override {
- return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
- }
- test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
- std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
- int s0 = 1, int p0 = 0, int d0 = 1)
- : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_TRANSPOSE_2D
- struct test_conv_transpose_2d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int stride;
- std::string vars() override {
- return VARS_TO_STR3(ne_input, ne_kernel, stride);
- }
- double max_nmse_err() override {
- return 5e-4; // The default 1e-7 is too small for Vulkan.
- }
- test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int stride = 1)
- : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_IM2COL
- struct test_im2col : public test_case {
- const ggml_type type_input;
- const ggml_type type_kernel;
- const ggml_type dst_type;
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- // dilation
- const int d0;
- const int d1;
- // mode
- const bool is_2D;
- std::string vars() override {
- return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
- }
- test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1,
- int d0 = 1, int d1 = 1,
- bool is_2D = true)
- : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(input);
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_IM2COL_3D
- struct test_im2col_3d : public test_case {
- const ggml_type type_input;
- const ggml_type type_kernel;
- const ggml_type dst_type;
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- // stride
- const int s0;
- const int s1;
- const int s2;
- // padding
- const int p0;
- const int p1;
- const int p2;
- // dilation
- const int d0;
- const int d1;
- const int d2;
- const int64_t IC;
- const bool v;
- std::string vars() override {
- return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
- }
- test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
- int64_t IC = 3,
- int s0 = 1, int s1 = 1, int s2 = 1,
- int p0 = 1, int p1 = 1, int p2 = 1,
- int d0 = 1, int d1 = 1, int d2 = 1,
- bool v = false)
- : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(input);
- ggml_set_name(input, "input");
- if (v) {
- input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
- ggml_set_name(input, "view_of_input");
- }
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // CONV_2D
- struct test_conv_2d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const ggml_type type_kernel;
- const int stride0;
- const int stride1;
- const int padding0;
- const int padding1;
- const int dilation0;
- const int dilation1;
- // Whether the inputs are contiguous in the channel dim or the width dim
- const bool cwhn;
- // If true, the direct CONV_2D will be used in the graph, otherwise it
- // uses ggml_conv_2d:
- // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
- // CONV_2D graph will be built, while
- // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
- // IM2COL -> MUL_MM graph will be built.
- std::string vars() override {
- return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- // Just counting matmul costs:
- // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
- // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- int64_t W = ne_input[0];
- int64_t H = ne_input[1];
- int64_t KW = ne_kernel[0];
- int64_t KH = ne_kernel[1];
- int64_t Cin = ne_kernel[2];
- int64_t Cout = ne_kernel[3];
- int64_t N = ne_input[3];
- int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
- int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
- int64_t K = Cout;
- int64_t CRS = Cin * KH * KW;
- int64_t NPQ = N * OH * OW;
- return K * NPQ * (2 * CRS - 1);
- }
- test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
- std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
- int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
- ne_input(ne_input),
- ne_kernel(ne_kernel),
- type_kernel(type_kernel),
- stride0(stride0),
- stride1(stride1),
- padding0(padding0),
- padding1(padding1),
- dilation0(dilation0),
- dilation1(dilation1),
- cwhn(cwhn) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- if (cwhn) {
- // change memory layout to channel-most-contiguous (CWHN),
- // then permute it back so NE matches the original input
- input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
- input = ggml_permute(ctx, input, 2, 0, 1, 3);
- kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
- kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
- }
- ggml_tensor * out =
- ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_2D_DW
- struct test_conv_2d_dw : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int stride;
- const int padding;
- const int dilation;
- const bool cwhn;
- std::string vars() override {
- return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
- }
- test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
- std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
- int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
- : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- if (cwhn) {
- // change memory layout to channel-most-contiguous (CWHN),
- // then permute it back so NE matches the original input
- input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
- input = ggml_permute(ctx, input, 2, 0, 1, 3);
- kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
- kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
- }
- ggml_tensor * out = ggml_conv_2d_dw_direct(
- ctx, kernel, input,
- stride, stride, padding, padding, dilation, dilation);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_3D
- struct test_conv_3d : public test_case {
- // Logical 5D dimensions
- const int64_t N, IC, ID, IH, IW;
- const int64_t OC, KD, KH, KW;
- // Conv params
- const int s0, s1, s2;
- const int p0, p1, p2;
- const int d0, d1, d2;
- // Types
- const ggml_type type_kernel;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "CONV_3D";
- }
- std::string vars() override {
- return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
- VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
- const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
- const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
- return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
- }
- test_conv_3d(
- int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
- int64_t OC, int64_t KD, int64_t KH, int64_t KW,
- int s0, int s1, int s2,
- int p0, int p1, int p2,
- int d0, int d1, int d2,
- ggml_type type_kernel
- ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
- OC(OC), KD(KD), KH(KH), KW(KW),
- s0(s0), s1(s1), s2(s2),
- p0(p0), p1(p1), p2(p2),
- d0(d0), d1(d1), d2(d2),
- type_kernel(type_kernel) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // GGML input tensor is packed as [W, H, D, C*N]
- const int64_t ne_input[] = {IW, IH, ID, IC * N};
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
- ggml_set_name(input, "input");
- // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
- const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONCAT
- struct test_concat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int64_t ne_b_d;
- const int dim;
- const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
- std::string vars() override {
- return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
- }
- test_concat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
- int64_t ne_b_d = 5,
- int dim = 2, int v = 0)
- : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- auto ne_b = ne_a;
- ne_b[dim] = ne_b_d;
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- }
- ggml_tensor * b;
- if (v & 2) {
- auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
- b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
- ggml_set_name(b, "view_of_b");
- } else {
- b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_concat(ctx, a, b, dim);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ARGSORT
- struct test_argsort : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- ggml_sort_order order;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, order);
- }
- test_argsort(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {16, 10, 10, 10},
- ggml_sort_order order = GGML_SORT_ORDER_ASC)
- : type(type), ne(ne), order(order) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_argsort(ctx, a, order);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // indices
- std::vector<int> data(ggml_nelements(t));
- for (int i = 0; i < ggml_nelements(t); i++) {
- data[i] = rand();
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
- } else if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- GGML_ABORT("fatal error");
- }
- }
- }
- };
- // GGML_OP_TOP_K
- struct test_top_k : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int k;
- const bool ties;
- ggml_tensor * input {};
- std::string vars() override {
- return VARS_TO_STR4(type, ne, k, ties);
- }
- test_top_k(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {16, 10, 10, 10},
- int k = 4, bool ties = false)
- : type(type), ne(ne), k(k), ties(ties) {}
- double max_err() override {
- return 0.0;
- }
- // When there are ties, only validate the final result.
- // The logic in err can't handle the sentinel tensors.
- bool run_whole_graph() override { return ties; }
- double err(const float * a, const float * b, size_t n) override {
- // When there are no ties, we expect the exact same set of indices,
- // but possibly in a different order. When there are ties, the indices
- // can be different but the input values they correspond to should be
- // the same. The logic for ties could work for non-ties, but only for
- // the output tensor, not for the sentinel tensors.
- if (ties) {
- std::vector<float> src(ggml_nelements(input));
- ggml_backend_tensor_get(input, src.data(), 0, ggml_nelements(input) * ggml_type_size(type));
- double diff = 0.0f;
- GGML_ASSERT(n == (size_t)(ggml_nrows(input) * k));
- int64_t cols = input->ne[0];
- std::vector<int32_t> ia(k);
- std::vector<int32_t> ib(k);
- std::vector<float> asrc(k);
- std::vector<float> bsrc(k);
- for (int64_t r = 0; r < ggml_nrows(input); r++) {
- // Convert indices for the row back to integer
- for (int64_t c = 0; c < k; c++) {
- ia[c] = (int32_t)a[r * k + c];
- ib[c] = (int32_t)b[r * k + c];
- }
- // The src values for each row should match.
- for (int64_t c = 0; c < k; c++) {
- asrc[c] = src[r * cols + ia[c]];
- bsrc[c] = src[r * cols + ib[c]];
- }
- diff += jdst(asrc.data(), bsrc.data(), k);
- // There should be no duplicate indices
- std::sort(ia.begin(), ia.end());
- std::sort(ib.begin(), ib.end());
- if (std::adjacent_find(ia.begin(), ia.end()) != ia.end()) {
- diff += 1;
- }
- if (std::adjacent_find(ib.begin(), ib.end()) != ib.end()) {
- diff += 1;
- }
- }
- return diff;
- } else {
- std::vector<int32_t> ia(n);
- std::vector<int32_t> ib(n);
- double diff = 0.0f;
- for (size_t i = 0; i < n; i++) {
- ia[i] = (int32_t) a[i];
- ib[i] = (int32_t) b[i];
- // penalize the result if the data is not integer valued
- diff += std::fabs(a[i] - ia[i]);
- diff += std::fabs(b[i] - ib[i]);
- }
- return diff + jdst(ia.data(), ib.data(), n);
- }
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- // Save 'a' for err()
- input = a;
- ggml_tensor * out = ggml_top_k(ctx, a, k);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- int tie_denom = std::max(1, std::min(10, k / 2));
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- if (ties) {
- // integer division to introduce duplicates
- data[i] = i / tie_denom;
- } else {
- data[i] = i;
- }
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- }
- }
- };
- struct test_topk_moe : public test_case {
- const std::array<int64_t, 4> ne;
- const int n_expert_used;
- const bool with_norm;
- const bool delayed_softmax;
- test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
- int n_expert_used = 1,
- bool with_norm = false,
- bool delayed_softmax = false) :
- ne(ne),
- n_expert_used(n_expert_used),
- with_norm(with_norm),
- delayed_softmax(delayed_softmax) {
- GGML_ASSERT(n_expert_used <= ne[0]);
- GGML_ASSERT(!(with_norm && delayed_softmax));
- }
- std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "TOPK_MOE";
- }
- bool run_whole_graph() override { return true; }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int n_expert = ne[0];
- const int n_tokens = ne[1];
- ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
- ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
- ggml_tensor * selected_experts = ggml_argsort_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
- ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
- if (delayed_softmax) {
- out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
- out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
- out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
- }
- if (with_norm) {
- out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
- ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
- weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
- out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
- out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
- }
- ggml_set_name(out, "out");
- return out;
- }
- };
- struct test_mul_mat_vec_fusion : public test_case {
- const ggml_type type;
- const ggml_glu_op glu_op;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const bool use_id;
- const int n_mats;
- const int n_used;
- const bool b; // broadcast b matrix (only for use_id)
- const bool with_bias;
- const bool with_gate;
- std::array<int64_t, 2> batch_dims;
- test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
- bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
- std::array<int64_t, 2> batch_dims = {4, 2})
- : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
- if (use_id) {
- GGML_ASSERT(n_used <= n_mats);
- }
- }
- std::string vars() override {
- return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
- }
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "MUL_MAT_VEC_FUSION";
- }
- bool run_whole_graph() override { return true; }
- ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
- ggml_tensor * out = nullptr;
- if (with_gate) {
- if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
- constexpr float alpha = 1.702f;
- constexpr float limit = 7.0f;
- out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
- } else {
- out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
- }
- }
- return out;
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- if (!use_id) {
- const int channels = batch_dims[0];
- const int samples = batch_dims[1];
- std::array<int64_t, 4> ne = { k, m, channels, samples };
- std::array<int64_t, 4> ne0 = { k, n, channels, samples };
- ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
- ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
- ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
- ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
- if (with_bias) {
- std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
- ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
- ffn_up = ggml_add(ctx, ffn_up, up_bias);
- }
- ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
- if (with_bias && with_gate) {
- std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
- ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
- ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
- }
- ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
- std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
- ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
- out = ggml_add(ctx, out, bias2);
- ggml_set_name(out, "out");
- return out;
- } else {
- ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
- ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
- if (n_used != n_mats) {
- ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
- }
- ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
- ggml_set_name(cur, "cur");
- ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
- if (with_bias) {
- ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
- ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
- }
- ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
- if (with_bias && with_gate) {
- ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
- ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
- }
- ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
- std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
- ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
- out = ggml_mul(ctx, out, scale);
- ggml_set_name(out, "out");
- return out;
- }
- }
- void initialize_tensors(ggml_context * ctx) override {
- if (!use_id) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t);
- }
- } else {
- init_mul_mat_id_tensors(ctx, n_mats);
- }
- }
- double max_nmse_err() override {
- return 5e-3;
- }
- };
- // GGML_OP_SUM
- struct test_sum : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute;
- bool _use_permute;
- std::string vars() override {
- std::string v = VARS_TO_STR2(type, ne);
- if (_use_permute) v += "," + VAR_TO_STR(permute);
- return v;
- }
- test_sum(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
- : type(type), ne(ne), permute(permute),
- _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- if (_use_permute) {
- a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
- ggml_set_name(a, "a_permuted");
- }
- ggml_tensor * out = ggml_sum(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
- }
- };
- // GGML_OP_SUM_ROWS
- struct test_sum_rows : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool permute;
- const bool slice;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, permute, slice);
- }
- test_sum_rows(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- bool permute = false, bool slice = false)
- : type(type), ne(ne), permute(permute), slice(slice) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- if (slice) {
- a = ggml_view_4d(ctx, a,
- ne[0], ne[1], ne[2] / 2, ne[3] - 1,
- a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
- }
- if (permute) {
- a = ggml_permute(ctx, a, 0, 2, 3, 1);
- }
- ggml_tensor * out = ggml_sum_rows(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_MEAN
- struct test_mean : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_mean(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_mean(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
- }
- };
- // GGML_OP_UPSCALE
- struct test_upscale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t scale_factor;
- const bool transpose;
- const ggml_scale_mode mode;
- std::string vars() override {
- return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
- }
- test_upscale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {512, 512, 3, 1},
- int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
- : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- if (transpose) {
- a = ggml_transpose(ctx, a);
- ggml_set_name(a, "a_transposed");
- }
- ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_UPSCALE (via ggml_interpolate)
- struct test_interpolate : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> ne_tgt;
- const uint32_t mode = GGML_SCALE_MODE_NEAREST;
- std::string vars() override {
- ggml_scale_mode mode = (ggml_scale_mode)(this->mode & 0xFF);
- std::string flags = (this->mode & GGML_SCALE_FLAG_ALIGN_CORNERS) ? "align_corners" : "none";
- return VARS_TO_STR5(type, ne, ne_tgt, mode, flags);
- }
- test_interpolate(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {2, 5, 7, 11},
- std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
- uint32_t mode = GGML_SCALE_MODE_NEAREST)
- : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_GROUP_NORM
- struct test_group_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t num_groups;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, num_groups, eps);
- }
- test_group_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
- int32_t num_groups = 32,
- float eps = 1e-6f)
- : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
- struct test_group_norm_mul_add : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- int num_groups;
- float eps;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "GROUP_NORM_MUL_ADD";
- }
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR4(type, ne, num_groups, eps);
- }
- test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {128, 1, 1, 1},
- int num_groups = 4,
- float eps = 1e-5f)
- : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
- ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
- ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
- ggml_tensor * m = ggml_mul(ctx, n, w);
- ggml_tensor * out = ggml_add(ctx, m, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_L2_NORM
- struct test_l2_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_l2_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
- float eps = 1e-12f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ACC
- struct test_acc : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_acc(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
- std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD
- struct test_pad : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- const bool circular;
- std::string vars() override {
- return VARS_TO_STR5(type, ne_a, pad_0, pad_1, circular);
- }
- test_pad(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
- int pad_0 = 1, int pad_1 = 1, bool circular = false)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1), circular(circular) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = circular
- ? ggml_pad_circular(ctx, a, pad_0, pad_1, 0, 0)
- : ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD (with extension)
- struct test_pad_ext : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int lp0;
- const int rp0;
- const int lp1;
- const int rp1;
- const int lp2;
- const int rp2;
- const int lp3;
- const int rp3;
- const bool v;
- const bool circular;
- std::string vars() override {
- return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v, circular);
- }
- test_pad_ext(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
- int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
- int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
- bool v = false, bool circular = false)
- : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3),
- v(v), circular(circular) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out = circular
- ? ggml_pad_ext_circular(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
- : ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD_REFLECT_1D
- struct test_pad_reflect_1d : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
- }
- test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
- int pad_0 = 10, int pad_1 = 9)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ROLL
- struct test_roll : public test_case {
- const int shift0;
- const int shift1;
- const int shift3;
- const int shift4;
- std::string vars() override {
- return VARS_TO_STR4(shift0, shift1, shift3, shift4);
- }
- test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
- : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- int64_t ne[4] = {10, 5, 4, 3};
- ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ARANGE
- struct test_arange : public test_case {
- const ggml_type type;
- const float start;
- const float stop;
- const float step;
- std::string vars() override {
- return VARS_TO_STR4(type, start, stop, step);
- }
- test_arange(ggml_type type = GGML_TYPE_F32,
- float start = 0.f, float stop = 10.f, float step = 1.f)
- : type(type), start(start), stop(stop), step(step) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * out = ggml_arange(ctx, start, stop, step);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_TIMESTEP_EMBEDDING
- struct test_timestep_embedding : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int dim;
- const int max_period;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, dim, max_period);
- }
- test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
- int dim = 320, int max_period=10000)
- : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_LEAKY_RELU
- struct test_leaky_relu : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const float negative_slope;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, negative_slope);
- }
- test_leaky_relu(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
- float negative_slope = 0.1f)
- : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_FLASH_ATTN_EXT
- struct test_flash_attn_ext : public test_case {
- const int64_t hsk; // K head size
- const int64_t hsv; // V head size
- const int64_t nh; // num heads
- const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
- const int64_t kv; // kv size
- const int64_t nb; // batch size
- const bool mask; // use mask
- const bool sinks; // use sinks
- const float max_bias; // ALiBi
- const float logit_softcap; // Gemma 2
- const ggml_prec prec;
- const ggml_type type_KV;
- std::array<int32_t, 4> permute;
- std::string vars() override {
- return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- // Just counting matmul costs:
- // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
- return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
- }
- test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
- bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
- ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
- : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
- const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
- auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
- int64_t ne[4] = {ne0, ne1, ne2, ne3};
- int64_t ne_perm[4];
- for (int i = 0; i < 4; ++i) {
- ne_perm[permute[i]] = ne[i];
- }
- ggml_tensor * t;
- if (is_view) {
- ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
- t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
- } else {
- t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
- }
- if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
- t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
- }
- return t;
- };
- ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
- ggml_set_name(q, "q");
- ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
- ggml_set_name(k, "k");
- ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
- ggml_set_name(v, "v");
- ggml_tensor * m = nullptr;
- if (mask) {
- m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
- ggml_set_name(m, "m");
- }
- ggml_tensor * s = nullptr;
- if (sinks) {
- s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
- ggml_set_name(s, "s");
- }
- ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
- ggml_flash_attn_ext_add_sinks(out, s);
- ggml_flash_attn_ext_set_prec (out, prec);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (strcmp(t->name, "s") == 0) {
- // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
- init_tensor_uniform(t, -10.0f, 10.0f);
- } else if (strcmp(t->name, "m") == 0) {
- init_tensor_kq_mask(t);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CROSS_ENTROPY_LOSS
- struct test_cross_entropy_loss : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(logits);
- ggml_set_name(logits, "logits");
- ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
- // The labels are assumed to be constant -> no gradients.
- ggml_set_name(labels, "labels");
- // Ensure labels add up to 1:
- labels = ggml_soft_max(ctx, labels);
- ggml_set_name(labels, "labels_normalized");
- ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -100.0f, 100.0f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CROSS_ENTROPY_LOSS_BACK
- struct test_cross_entropy_loss_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_set_name(grad, "grad");
- ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(logits, "logits");
- ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(labels, "labels");
- // Ensure labels add up to 1:
- labels = ggml_soft_max(ctx, labels);
- ggml_set_name(labels, "labels_normalized");
- ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_OPT_STEP_ADAMW
- struct test_opt_step_adamw : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad, "grad");
- ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad_m, "grad_m");
- ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad_v, "grad_v");
- ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
- ggml_set_name(adamw_params, "adamw_params");
- ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_OPT_STEP_SGD
- struct test_opt_step_sgd : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override { return VARS_TO_STR2(type, ne); }
- test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad, "grad");
- ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
- ggml_set_name(sgd_params, "sgd_params");
- ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CUMSUM
- struct test_cumsum : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override { return VARS_TO_STR2(type, ne); }
- test_cumsum(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_cumsum(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -1.0f, 1.0f);
- }
- }
- };
- // GGML_OP_XIELU
- struct test_xielu : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override { return VARS_TO_STR2(type, ne); }
- test_xielu(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- float alpha_n = 4.0f;
- float alpha_p = 20.0f;
- float beta = 0.5f;
- float eps = 0.0000001f;
- ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -1.0f, 1.0f);
- }
- }
- };
- // GGML_OP_TRI
- struct test_tri : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const ggml_tri_type tri_type;
- std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
- test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
- : type(type), ne(ne), tri_type(tri_type) {
- GGML_ASSERT(ne[0] == ne[1]);
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_tri(ctx, a, tri_type);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -1.0f, 1.0f);
- }
- }
- };
- // GGML_OP_FILL
- struct test_fill : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float c;
- std::string vars() override { return VARS_TO_STR3(type, ne, c); }
- test_fill(float c, ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
- : type(type), ne(ne), c(c) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_fill(ctx, a, c);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SOLVE_TRI
- struct test_solve_tri : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_lhs;
- const std::array<int64_t, 4> ne_rhs;
- std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- int64_t n = ne_lhs[0];
- int64_t k = ne_rhs[0];
- int64_t batch = ne_lhs[2] * ne_lhs[3];
- // n * (n + 1) / 2 non-zero elements of lhs, 2 flops each, for each col of rhs
- return n * (n + 1) * k * batch;
- }
- test_solve_tri(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
- std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
- )
- : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
- ggml_set_param(b);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (strcmp(t->name, "a") == 0) {
- // note: avoid zeros in the diagonal
- init_tensor_tril(t, 0.1, 1.0f);
- } else {
- init_tensor_uniform(t, -1.0f, 1.0f);
- }
- }
- }
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- };
- struct llama_hparams {
- uint32_t n_vocab;
- uint32_t n_embd;
- uint32_t n_head;
- uint32_t n_head_kv;
- static constexpr uint32_t n_layer = 1;
- uint32_t n_rot;
- uint32_t n_embd_head; // dimension of values (d_v)
- uint32_t n_ff;
- float f_norm_eps;
- float f_norm_rms_eps;
- // cparams
- static constexpr uint32_t n_ctx = 512; // user-specified context size
- static constexpr uint32_t n_ctx_orig = n_ctx;
- // batch
- int32_t n_tokens;
- // llm_build_context
- static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
- static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
- uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
- return n_embd_head * n_head_kv;
- }
- };
- // LLM base class
- struct test_llm : public test_case {
- llama_hparams hp;
- protected:
- test_llm(llama_hparams hp)
- : hp(std::move(hp)) {
- }
- public:
- struct ggml_tensor * llm_build_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * mw,
- struct ggml_tensor * mb,
- llm_norm_type type) {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
- }
- cur = ggml_mul(ctx, cur, mw);
- if (mb) {
- cur = ggml_add(ctx, cur, mb);
- }
- return cur;
- }
- void llm_build_kv_store(
- struct ggml_context * ctx,
- struct ggml_tensor * k_l,
- struct ggml_tensor * v_l,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur) {
- // compute the transposed [n_tokens, n_embd] V matrix
- struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
- (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
- struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
- ( hp.n_ctx)*ggml_element_size(v_l),
- (hp.kv_head)*ggml_element_size(v_l));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_cpy(ctx, k_cur, k_cache_view);
- ggml_cpy(ctx, v_cur_t, v_cache_view);
- }
- struct ggml_tensor * llm_build_kqv(
- struct ggml_context * ctx,
- struct ggml_tensor * k_l,
- struct ggml_tensor * v_l,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- float kq_scale) {
- struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
- struct ggml_tensor * k =
- ggml_view_3d(ctx, k_l,
- hp.n_embd_head, hp.n_kv, hp.n_head_kv,
- ggml_row_size(k_l->type, hp.n_embd_gqa()),
- ggml_row_size(k_l->type, hp.n_embd_head),
- 0);
- struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
- kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx, v_l,
- hp.n_kv, hp.n_embd_head, hp.n_head_kv,
- ggml_element_size(v_l)*hp.n_ctx,
- ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
- 0);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
- struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
- struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
- cur = ggml_mul_mat(ctx, wo, cur);
- return cur;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- std::vector<int> data(hp.n_tokens);
- for (int i = 0; i < hp.n_tokens; i++) {
- data[i] = rand() % hp.n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // Llama
- struct test_llama : public test_llm {
- static constexpr float freq_base = 10000.0f;
- static constexpr float freq_scale = 1.0f;
- static constexpr float ext_factor = 0.0f;
- static constexpr float attn_factor = 1.0f;
- static constexpr float beta_fast = 32.0f;
- static constexpr float beta_slow = 1.0f;
- bool fused;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "LLAMA";
- }
- std::string vars() override {
- auto n_tokens = hp.n_tokens;
- return VARS_TO_STR1(n_tokens);
- }
- double max_nmse_err() override {
- return 2e-3;
- }
- bool run_whole_graph() override { return fused; }
- test_llama(int n_tokens = 1, bool fused = false)
- : test_llm({
- /*n_vocab =*/ 32000,
- /*n_embd =*/ 3200,
- /*n_head =*/ 32,
- /*n_head_kv =*/ 32,
- /*n_rot =*/ 100,
- /*n_embd_head =*/ 100,
- /*n_ff =*/ 8640,
- /*f_norm_eps =*/ 0.f,
- /*f_norm_rms_eps =*/ 1e-5f,
- /*n_tokens =*/ n_tokens,
- })
- , fused(fused)
- {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
- ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- for (uint32_t il = 0; il < hp.n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
- // self-attention
- {
- ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
- ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
- ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
- Qcur = ggml_rope_ext(
- ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
- // feed-forward network
- ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
- ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
- cur = ggml_mul_mat(ctx, ffn_gate, cur);
- cur = ggml_silu(ctx, cur);
- cur = ggml_mul(ctx, cur, tmp);
- cur = ggml_mul_mat(ctx, ffn_down, cur);
- cur = ggml_add(ctx, cur, ffn_inp);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
- // lm_head
- ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
- cur = ggml_mul_mat(ctx, output, cur);
- return cur;
- }
- };
- // Falcon
- struct test_falcon : public test_llm {
- static constexpr float freq_base = 10000.0f;
- static constexpr float freq_scale = 1.0f;
- static constexpr float ext_factor = 0.0f;
- static constexpr float attn_factor = 1.0f;
- static constexpr float beta_fast = 32.0f;
- static constexpr float beta_slow = 1.0f;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "FALCON";
- }
- std::string vars() override {
- auto n_tokens = hp.n_tokens;
- return VARS_TO_STR1(n_tokens);
- }
- double max_nmse_err() override {
- return 2e-3;
- }
- test_falcon(int n_tokens = 1)
- : test_llm({
- /*n_vocab =*/ 32000,
- /*n_embd =*/ 3200,
- /*n_head =*/ 50,
- /*n_head_kv =*/ 1,
- /*n_rot =*/ 64,
- /*n_embd_head =*/ 64,
- /*n_ff =*/ 8640,
- /*f_norm_eps =*/ 1e-5f,
- /*f_norm_rms_eps =*/ 0.f,
- /*n_tokens =*/ n_tokens,
- }) {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
- ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- for (uint32_t il = 0; il < hp.n_layer; ++il) {
- // norm
- ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
- // self-attention
- {
- cur = attn_norm;
- ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
- cur = ggml_mul_mat(ctx, wqkv, cur);
- struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
- Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
- Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_ext(
- ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
- }
- struct ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
- cur = attn_norm;
- cur = ggml_mul_mat(ctx, ffn_up, cur);
- cur = ggml_gelu(ctx, cur);
- cur = ggml_mul_mat(ctx, ffn_down, cur);
- }
- cur = ggml_add(ctx, cur, ffn_inp);
- cur = ggml_add(ctx, cur, inpL);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
- // lm_head
- ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
- cur = ggml_mul_mat(ctx, output, cur);
- return cur;
- }
- };
- // ###########################################
- // ## Section 3: GGML Op Test Instantiation ##
- // ###########################################
- static const ggml_type all_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
- GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_MXFP4,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
- GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
- };
- static const ggml_type base_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16,
- GGML_TYPE_Q8_0, // for I8MM tests
- GGML_TYPE_Q4_0,
- GGML_TYPE_Q4_1, // for I8MM tests
- GGML_TYPE_Q4_K,
- GGML_TYPE_MXFP4, // TODO: or "other"
- GGML_TYPE_IQ2_XXS
- };
- static const ggml_type other_types[] = {
- GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
- GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
- GGML_TYPE_BF16,
- };
- // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
- static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
- std::vector<std::unique_ptr<test_case>> test_cases;
- std::default_random_engine rng(0);
- // unary ops
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (int v : {0, 1}) {
- for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
- if (op == GGML_UNARY_OP_XIELU) {
- continue; // need extra params, separate test
- }
- test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
- test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
- }
- }
- }
- // glu ops
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (int v : {0, 1}) {
- for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
- if (op == GGML_GLU_OP_SWIGLU_OAI) {
- // SWIGLU_OAI is handled separately
- continue;
- }
- for (bool swapped : {false, true}) {
- test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
- test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
- }
- test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
- test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
- }
- }
- }
- for (int v : {0, 1}) {
- for (float alpha : {.5f, 1.702f}) {
- for (float limit : {2.0f, 7.0f}) {
- test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
- }
- }
- }
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
- test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
- test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
- test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
- }
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
- for (ggml_type type : all_types) {
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
- }
- }
- }
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
- }
- }
- test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
- for (ggml_type type : all_types) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
- }
- }
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
- }
- test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
- test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
- test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
- for (ggml_type type : all_types) {
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
- test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
- test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
- if (ggml_blck_size(type) == 1) {
- test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
- test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
- }
- }
- }
- }
- for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
- test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
- }
- }
- for (ggml_type type_input : {GGML_TYPE_F32}) {
- for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
- for (int k0 : {1, 3}) {
- for (int k1 : {1, 3}) {
- for (int s0 : {1, 2}) {
- for (int s1 : {1, 2}) {
- for (int p0 : {0, 1}) {
- for (int p1 : {0, 1}) {
- test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
- }
- }
- }
- }
- }
- }
- }
- }
- #if 0
- // >4GB im2col destination. Too slow to run by default.
- // Test cases taken from Wan2.1 T2V 1.3B.
- test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
- #endif
- // im2col 1D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- for (int s0 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int d0 : {1, 3}) {
- test_cases.emplace_back(new test_im2col(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
- s0, 0, p0, 0, d0, 0, false));
- }
- }
- }
- // im2col 2D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
- for (int s0 : {1, 3}) {
- for (int s1 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int p1 : {0, 3}) {
- for (int d0 : {1, 3}) {
- for (int d1 : {1, 3}) {
- test_cases.emplace_back(new test_im2col(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
- s0, s1, p0, p1, d0, d1, true));
- }
- }
- }
- }
- }
- }
- // extra tests for im2col 2D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
- // im2col 3D
- test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
- for (int s0 : {1, 3}) {
- for (int s1 : {1, 3}) {
- for (int s2 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int p1 : {0, 3}) {
- for (int p2 : {0, 3}) {
- for (int d0 : {1, 3}) {
- for (int d1 : {1, 3}) {
- for (int d2 : {1, 3}) {
- for (int IC : {1, 3}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_im2col_3d(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
- IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- // Conv_2D test cases
- #ifdef DETAILED_TESTS
- // Probably we do not have enough time to execute these in the pipeline.
- uint32_t iwh_idx = 0;
- uint32_t kwh_idx = 1;
- uint32_t Cout_idx = 2;
- uint32_t Cin_idx = 3;
- uint32_t B_idx = 4;
- std::vector<std::array<int, 5>> cases = {
- //{IWH, KWH, Cout, Cin, B}
- // K=CRS=NPQ=4096 conv_2d matmul performance
- {19, 4, 4096, 256, 16},
- // K=128, CRS=128, NPQ=4096
- { 19, 4, 128, 8, 16},
- // K=130, CRS=128, NPQ=4096
- { 19, 4, 130, 8, 16},
- // Edge case: K x CRS is small
- { 19, 2, 4, 4, 16},
- // A ConvNet's first layer
- { 224, 3, 8, 3, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel
- { 224, 2, 8, 1, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
- { 224, 2, 8, 1, 8 },
- // A middle layer of a ConvNet
- { 58, 3, 64, 32, 1 },
- // A middle layer of a ConvNet, several images in the batch
- { 58, 3, 64, 32, 8 },
- // A deep layer of a ConvNet, several images in the batch
- { 16, 3, 256, 128, 8 }
- };
- for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (auto act_case : cases) {
- test_cases.emplace_back(new test_conv_2d(
- { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
- { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
- kernel_type, 1, 1, 0, 0, 1, 1, false));
- }
- }
- #endif
- // CONV_2D:
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- //uint32_t s0 = 3;
- uint32_t s1 = 5;
- uint32_t p0 = 5;
- //uint32_t p1 = 2;
- uint32_t d0 = 2;
- uint32_t d1 = 4;
- for (uint32_t s0 : { 1, 3 }) {
- for (uint32_t p1 : { 2, 5 }) {
- for (uint32_t Cin : { 1, 25 }) {
- for (uint32_t Cout : { 1, 12 }) {
- for (uint32_t KH : { 1, 2, 3, 11 }) {
- for (uint32_t KW : { 1, 2, 3, 11 }) {
- for (uint32_t H : { 1, 133 }) {
- for (uint32_t W : { 1, 141 }) {
- if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
- calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
- for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- test_cases.emplace_back(new test_conv_2d(
- { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- // sycl backend will limit task global_range < MAX_INT
- // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
- // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
- // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
- // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
- // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
- test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
- test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
- test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
- // CONV_3D
- auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (int N : {1, 2}) {
- for (int IC : {1, 3}) {
- for (int OC : {1, 4}) {
- for (int s0 : {1, 2}) {
- for (int p1 : {0, 1}) {
- for (int d2 : {1, 2}) {
- int64_t IW = 20, IH = 22, ID = 18;
- int64_t KW = 3, KH = 3, KD = 3;
- int s1 = s0, s2 = s0;
- int p0 = p1, p2 = p1;
- int d0 = d2, d1 = d2;
- if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
- calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
- calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
- continue;
- }
- test_cases.emplace_back(new test_conv_3d(
- N, IC, ID, IH, IW,
- OC, KD, KH, KW,
- s0, s1, s2, p0, p1, p2, d0, d1, d2,
- kernel_type));
- // Asymmetric kernel and params
- int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
- int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
- int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
- int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
- if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
- calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
- calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
- continue;
- }
- test_cases.emplace_back(new test_conv_3d(
- N, IC, ID, IH, IW,
- OC, asym_KD, asym_KH, asym_KW,
- asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
- kernel_type));
- }
- }
- }
- }
- }
- }
- // Case with kernel size 1
- test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
- }
- for(uint32_t Cout : {1, 9}){
- for(uint32_t Cin : {1, 7}){
- for(uint32_t K : {1, 3, 1337}){
- for(uint32_t L : {1, 2, 13}){
- for(uint32_t s0: {1, 2, 3}){
- test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_conv_transpose_1d());
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
- test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
- test_cases.emplace_back(new test_conv_transpose_2d({129, 63, 35, 1}, {3, 3, 48, 35}, 1));
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
- for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
- }
- for (bool view : {false, true}) {
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
- }
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
- for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
- test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
- }
- for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
- test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
- }
- // same-type copy
- for (ggml_type type : all_types) {
- const auto nk = ggml_blck_size(type);
- for (int k = 1; k < 4; ++k) {
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
- }
- }
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
- for (ggml_type type_dst : all_types) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
- }
- }
- for (ggml_type type_src : all_types) {
- for (ggml_type type_dst : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
- }
- }
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
- }
- }
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
- for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
- for (bool use_view_slice : { true, false }) {
- for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
- {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
- if (use_view_slice && (type_dst == GGML_TYPE_F16 || type_dst == GGML_TYPE_BF16)) {
- continue; // TODO: add after WebGPU is fixed
- }
- test_cases.emplace_back(new test_cont(type_dst, ne, use_view_slice));
- }
- }
- }
- auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
- for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
- test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
- }
- };
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
- // test case for k_bin_bcast_unravel in CUDA backend
- add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
- // stable diffusion
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
- add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
- //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
- //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
- }
- // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
- test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
- test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
- test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
- test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
- // fusion
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
- test_cases.emplace_back(new test_add1());
- test_cases.emplace_back(new test_add1(GGML_TYPE_F32, {1024, 1024, 1, 1}));
- test_cases.emplace_back(new test_scale());
- test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
- test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
- test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
- test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
- test_cases.emplace_back(new test_silu_back());
- for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
- test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
- }
- test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
- test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
- }
- // in-place tests
- test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
- for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
- test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
- test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
- test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
- test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
- }
- for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
- for (bool multi_add : {false, true}) {
- test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
- }
- }
- for (auto multi_add : {false, true}) {
- for (auto set_rows : {false, true}) {
- for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
- test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
- test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
- }
- }
- }
- test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
- for (int64_t d_conv : {3, 4}) {
- for (int64_t d_inner: {1024, 1536, 2048}) {
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
- }
- }
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
- #if 0
- // > 4GB A matrix. Too slow to be enabled by default.
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
- #endif
- for (ggml_type type_a : all_types) {
- for (int i = 1; i < 10; ++i) {
- test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
- }
- }
- #if 0
- {
- // Test paths in OpenCL
- std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
- std::vector<int> ks = {896, 1536, 4096};
- for (auto n : ns) {
- for (auto k : ks) {
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
- }
- }
- }
- #endif
- #if 1
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- std::vector<int> ks = { 256 };
- if (ggml_blck_size(type_a) == 1) {
- ks.push_back(4);
- }
- for (auto k : ks) {
- // test cases without permutation
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
- // test cases with permutation
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- }
- // test cases with large ne00/ne10 to cover stream-k fixup
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
- // test cases with large batch size
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
- }
- }
- for (ggml_type type_a : other_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- if (ggml_blck_size(type_a) != 256) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
- }
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
- }
- }
- #else
- // m = a rows
- // n = b rows
- // k = cols
- std::uniform_int_distribution<> dist_m(1, 128);
- std::uniform_int_distribution<> dist_n(16, 128);
- std::uniform_int_distribution<> dist_k(1, 16);
- for (int i = 0; i < 1000; i++) {
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- int m = dist_m(rng);
- int n = dist_n(rng);
- int k = dist_k(rng) * ggml_blck_size(type_a);
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
- }
- }
- }
- #endif
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
- #if 0
- // test the mat-mat path for Metal
- for (int k = 1; k < 512; ++k) {
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
- }
- #endif
- for (auto bs2 : {1,3}) {
- for (auto bs : {1,2,4,8}) {
- for (auto nr : {1,4}) {
- for (uint32_t m = 0; m < 2; ++m) {
- for (uint32_t k = 0; k < 2; ++k) {
- for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
- }
- }
- }
- }
- }
- }
- // sycl backend will limit task global_range < MAX_INT
- // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
- // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
- // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
- // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
- // test large experts*tokens
- for (bool b : {false, true}) {
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
- }
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
- test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
- // gpt-oss issue with Vulkan mmq_id
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {4, 8}) {
- for (int n_used : {1, 2, 4}) {
- for (bool b : {false, true}) {
- for (int n : {1, 4, 5, 17, 32, 129}) {
- int m = 512;
- int k = 256;
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
- }
- }
- }
- }
- }
- }
- for (ggml_type type_a : other_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {4}) {
- for (int n_used : {2}) {
- for (bool b : {false}) {
- for (int n : {1, 32}) {
- int m = 512;
- int k = 256;
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
- }
- }
- }
- }
- }
- }
- for (int bs : {1, 4, 512}) {
- for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- // test with mul after (ffn_moe_weighted)
- test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
- }
- }
- }
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (int n : {1, 16}) {
- for (int k : {1, 16}) {
- for (int bs2 : {1, 3}) {
- for (int bs3 : {1, 3}) {
- for (int nr2 : {1, 2}) {
- for (int nr3 : {1, 2}) {
- test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
- }
- }
- }
- }
- }
- }
- }
- }
- // add_id
- for (ggml_type type_a : {GGML_TYPE_F32}) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- for (int n_mats : {4, 8}) {
- for (int n_used : {1, 2, 4}) {
- for (int n_embd : {32, 129}) {
- for (int n_token : {1, 32, 129}) {
- test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
- }
- }
- }
- }
- }
- }
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_sqr (type));
- test_cases.emplace_back(new test_sqrt (type));
- test_cases.emplace_back(new test_log (type));
- test_cases.emplace_back(new test_sin (type));
- test_cases.emplace_back(new test_cos (type));
- test_cases.emplace_back(new test_clamp (type));
- test_cases.emplace_back(new test_leaky_relu(type));
- test_cases.emplace_back(new test_floor (type));
- test_cases.emplace_back(new test_ceil (type));
- test_cases.emplace_back(new test_round (type));
- test_cases.emplace_back(new test_trunc (type));
- test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_floor (type, { 1024, 1024, 1, 1 }));
- test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_ceil (type, { 1024, 1024, 1, 1 }));
- test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_round (type, { 1024, 1024, 1, 1 }));
- test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
- test_cases.emplace_back(new test_trunc (type, { 1024, 1024, 1, 1 }));
- }
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
- #if 0
- std::uniform_int_distribution<> dist_ne1(1, 50);
- int exponent = 1;
- while (exponent < (1 << 17)) {
- std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
- for (int n = 0; n < 10; ++n) {
- int64_t ne0 = dist_ne0(rng);
- int64_t ne1 = dist_ne1(rng);
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
- }
- exponent <<= 1;
- }
- #endif
- for (bool mask : {false, true}) {
- for (bool sinks : {false, true}) {
- for (float max_bias : {0.0f, 8.0f}) {
- if (!mask && max_bias > 0.0f) continue;
- for (float scale : {1.0f, 0.1f}) {
- for (int64_t ne0 : {16, 1024}) {
- for (int64_t ne1 : {16, 1024}) {
- if (mask) {
- for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
- if (ne0 <= 32 && ne1 <= 32) {
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
- }
- }
- } else {
- /* The precision of mask here doesn't matter as boolean mask is false */
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
- }
- }
- }
- }
- }
- // inplace tests
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
- }
- }
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
- for (float max_bias : {0.0f, 8.0f}) {
- for (float scale : {1.0f, 0.1f}) {
- for (int64_t ne0 : {16, 1024}) {
- for (int64_t ne1 : {16, 1024}) {
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
- }
- }
- }
- }
- for (bool fw : {true, false}) { // fw == forward
- bool all = true;
- for (float fs : { 1.0f, 1.4245f }) {
- for (float ef : { 0.0f, 0.7465f }) {
- for (float af : { 1.0f, 1.4245f }) {
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (bool ff : {false, true}) { // freq_factors
- for (float v : { 0, 1 }) {
- test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
- if (all) {
- test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
- test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
- test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
- }
- if (all) {
- test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
- }
- if (all) {
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
- test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
- }
- test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
- }
- }
- all = false;
- }
- }
- }
- }
- }
- // single inplace test per type/mode/ff
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
- for (bool ff : {false, true}) {
- test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
- }
- }
- }
- for (int v : { 0, 1, 2, 3 }) {
- for (int dim : { 0, 1, 2, 3, }) {
- test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
- test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
- }
- }
- for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
- for (uint32_t i = 4; i <= 1024*1024; i *= 2) {
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i-1, 1, 1, 1}));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i, 1, 1, 1}));
- }
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
- }
- for (int i = 0; i < 20; ++i) {
- for (int k : {1, 2, 3, 7, 15, 100, 500, 1023, 9999}) {
- if (k <= 1<<i) {
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i), 1, 1, 1}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k, true));
- }
- }
- }
- for (int k : {1, 2, 3, 7, 15}) {
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16, 10, 10, 10}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {60, 10, 10, 10}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1023, 2, 1, 3}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1024, 2, 1, 3}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1025, 2, 1, 3}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16384, 1, 1, 1}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2047, 2, 1, 3}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2048, 2, 1, 3}, k));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2049, 2, 1, 3}, k));
- }
- // exhaustive top_k tests
- //for (int i = 1; i < 9999; ++i) {
- // test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {i, 2, 1, 3}, rand() % i + 1));
- //}
- for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC, ggml_scale_mode(GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS)}) {
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
- }
- for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
- }
- test_cases.emplace_back(new test_sum());
- test_cases.emplace_back(new test_sum_rows());
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
- test_cases.emplace_back(new test_mean());
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
- test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
- test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
- test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
- test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
- test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
- test_cases.emplace_back(new test_acc());
- test_cases.emplace_back(new test_pad());
- test_cases.emplace_back(new test_pad(GGML_TYPE_F32, {33, 17, 2, 1}, 4, 3, true)); // circular
- test_cases.emplace_back(new test_pad_ext());
- test_cases.emplace_back(new test_pad_reflect_1d());
- test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
- test_cases.emplace_back(new test_roll());
- test_cases.emplace_back(new test_arange());
- test_cases.emplace_back(new test_arange(GGML_TYPE_F32, 0.0f, 1048576.0f, 1.0f));
- test_cases.emplace_back(new test_timestep_embedding());
- test_cases.emplace_back(new test_leaky_relu());
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
- test_cases.emplace_back(new test_xielu());
- test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
- test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
- test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
- test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
- test_cases.emplace_back(new test_fill(0.0f));
- test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
- test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
- test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
- test_cases.emplace_back(new test_solve_tri());
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 4 }, { 31, 128, 4, 4 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 300, 64, 4, 4 }));
- for (bool v : {false, true}) {
- for (bool circular : {false, true}) {
- test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v, circular));
- test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v, circular));
- }
- }
- for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
- for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
- if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
- if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
- if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
- for (bool mask : { true, false } ) {
- for (bool sinks : { true, false } ) {
- for (float max_bias : { 0.0f, 8.0f }) {
- if (!mask && max_bias > 0.0f) continue;
- for (float logit_softcap : {0.0f, 10.0f}) {
- if (hsk != 128 && logit_softcap != 0.0f) continue;
- for (int nh : { 4, }) {
- for (int nr3 : { 1, 3, }) {
- if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
- for (int nr2 : { 1, 4, 16 }) {
- if (nr2 == 16 && hsk != 128) continue;
- //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
- for (int kv : { 113, 512, 1024, }) {
- if (nr2 != 1 && kv != 512) continue;
- for (int nb : { 1, 3, 32, 35, }) {
- for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
- if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
- for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
- test_cases.emplace_back(new test_flash_attn_ext(
- hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
- // run fewer test cases permuted
- if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
- test_cases.emplace_back(new test_flash_attn_ext(
- hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
- test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
- test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
- for (ggml_type type : base_types) {
- for (bool with_gate : {false, true}) {
- for (bool use_id : {false, true}) {
- for (bool b : {false, true}) {
- if (!use_id && b) {
- continue;
- }
- for (bool with_bias : {false, true}) {
- if (!with_gate && !with_bias) {
- continue;
- }
- for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
- if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
- continue;
- }
- if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
- continue;
- }
- test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
- use_id, 16, 8, b, with_bias, with_gate));
- test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
- use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
- }
- }
- }
- }
- }
- }
- for (bool with_norm : {false, true}) {
- test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
- test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
- test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
- }
- test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
- test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
- #if 0
- // these tests are disabled to save execution time, sbut they can be handy for debugging
- test_cases.emplace_back(new test_llama(2, true));
- test_cases.emplace_back(new test_llama(1));
- test_cases.emplace_back(new test_llama(2));
- test_cases.emplace_back(new test_falcon(1));
- test_cases.emplace_back(new test_falcon(2));
- #endif
- return test_cases;
- }
- // Test cases for performance evaluation: should be representative of real-world use cases
- static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
- std::vector<std::unique_ptr<test_case>> test_cases;
- // Conv2d: K=CRS=NPQ=4096 matmul performance
- uint32_t iwh_idx = 0;
- uint32_t kwh_idx = 1;
- uint32_t Cout_idx = 2;
- uint32_t Cin_idx = 3;
- uint32_t B_idx = 4;
- std::vector<std::array<int, 5>> cases = {
- //{IWH, KWH, Cout, Cin, B}
- // K=CRS=NPQ=4096 conv2d matmul performance
- {19, 4, 4096, 256, 16},
- // K=128, CRS=128, NPQ=4096
- { 19, 4, 128, 8, 16},
- // K=130, CRS=128, NPQ=4096
- { 19, 4, 130, 8, 16},
- // Edge case: K x CRS is small
- { 19, 2, 4, 4, 16},
- // A ConvNet's first layer
- { 224, 3, 8, 3, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel
- { 224, 2, 8, 1, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
- { 224, 2, 8, 1, 8 },
- // A middle layer of a ConvNet
- { 58, 3, 64, 32, 1 },
- // A middle layer of a ConvNet, several images in the batch
- { 58, 3, 64, 32, 8 },
- // A deep layer of a ConvNet, several images in the batch
- { 16, 3, 512, 128, 8 },
- // High resolution output (large NPQ)
- {1536, 3, 64, 32, 1 },
- };
- for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (auto act_case : cases) {
- // Direct CONV_2D
- test_cases.emplace_back(new test_conv_2d(
- { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
- { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
- kernel_type, 1, 1, 0, 0, 1, 1, false));
- }
- }
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
- test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
- test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
- test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
- test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
- test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 2 }, { 6, 64, 4, 2 }));
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 1 }, { 8, 128, 4, 1 }));
- // qwen3next with CHUNK_SIZE 64
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 8, 32 }, { 64, 64, 8, 32 }));
- // qwen3next with CHUNK_SIZE 128
- test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 32 }, { 128, 128, 4, 32 }));
- test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER, GGML_TYPE_F32, { 256, 256, 4, 4 }));
- test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG, GGML_TYPE_F32, { 1024, 1024, 8, 4 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 16, 5, 4 }));
- test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20000, 10, 4, 1 }));
- for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
- }
- }
- }
- // qwen3-30b-a3b
- for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
- for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
- test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
- }
- }
- }
- for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
- for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
- test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
- }
- }
- }
- // gpt-oss-20b
- for (int bs : {1, 4, 8, 512}) {
- for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
- test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
- }
- }
- }
- for (int K : {3, 5}) {
- for (int IC : {256, 2560}) {
- for (int IW_IH : {32, 64, 256}) {
- if (IC == 2560 && IW_IH == 256) {
- // too big
- continue;
- }
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
- }
- }
- }
- // Qwen3-VL-8B https://github.com/ggml-org/llama.cpp/issues/17012
- test_cases.emplace_back(new test_flash_attn_ext(72, 72, 16, {1, 1}, 5776, 5776, false, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
- for (int kv : { 4096, 8192, 16384, }) {
- for (int hs : { 64, 128, }) {
- for (int nr : { 1, 4, }) {
- test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
- }
- }
- }
- test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
- test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
- test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
- test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
- test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
- test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
- for (int n_token : {1, 512}) {
- test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
- test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
- }
- for (bool fw : {true, false}) { // fw == forward
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (bool ff : {false, true}) { // freq_factors
- for (float v : { 0, 1 }) {
- test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
- test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
- test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
- test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
- test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
- test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
- }
- }
- }
- }
- std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
- { 8192, 1, 1, 1 },
- { 8192, 8192, 1, 1 },
- { 128, 8192, 1, 1 },
- };
- for (auto it: reduce_rows_cases){
- test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
- test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
- test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
- }
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2, 1, 1, 1}, 1));
- for (auto k : {1, 10, 40, 400}) {
- for (auto nrows : {1, 16}) {
- for (auto cols : {k, 1000, 65000, 200000}) {
- test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {cols, nrows, 1, 1}, k));
- }
- }
- }
- return test_cases;
- }
- static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
- printer * output_printer) {
- auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
- if (params_filter == nullptr) {
- return;
- }
- std::regex params_filter_regex(params_filter);
- for (auto it = test_cases.begin(); it != test_cases.end();) {
- if (!std::regex_search((*it)->vars(), params_filter_regex)) {
- it = test_cases.erase(it);
- continue;
- }
- it++;
- }
- };
- if (mode == MODE_TEST) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
- if (backend_cpu == NULL) {
- test_operation_info info("", "", "CPU");
- info.set_error("backend", "Failed to initialize CPU backend");
- output_printer->print_operation(info);
- return false;
- }
- size_t n_ok = 0;
- size_t tests_run = 0;
- std::vector<std::string> failed_tests;
- for (auto & test : test_cases) {
- test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
- if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
- continue;
- }
- tests_run++;
- if (status == test_status_t::OK) {
- n_ok++;
- } else if (status == test_status_t::FAIL) {
- failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
- }
- }
- output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
- output_printer->print_failed_tests(failed_tests);
- ggml_backend_free(backend_cpu);
- return n_ok == tests_run;
- }
- if (mode == MODE_GRAD) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- size_t n_ok = 0;
- for (auto & test : test_cases) {
- if (test->eval_grad(backend, op_names_filter, output_printer)) {
- n_ok++;
- }
- }
- output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
- return n_ok == test_cases.size();
- }
- if (mode == MODE_PERF) {
- auto test_cases = make_test_cases_perf();
- filter_test_cases(test_cases, params_filter);
- for (auto & test : test_cases) {
- test->eval_perf(backend, op_names_filter, output_printer);
- }
- return true;
- }
- if (mode == MODE_SUPPORT) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- // Filter out fusion cases
- test_cases.erase(
- std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
- return tc->run_whole_graph();
- }),
- test_cases.end()
- );
- for (auto & test : test_cases) {
- test->eval_support(backend, op_names_filter, output_printer);
- }
- return true;
- }
- GGML_ABORT("fatal error");
- }
- static void list_all_ops() {
- printf("GGML operations:\n");
- std::set<std::string> all_ops;
- for (int i = 1; i < GGML_OP_COUNT; i++) {
- all_ops.insert(ggml_op_name((enum ggml_op)i));
- }
- for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
- all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
- }
- for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
- all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
- }
- for (const auto & op : all_ops) {
- printf(" %s\n", op.c_str());
- }
- printf("\nTotal: %zu operations\n", all_ops.size());
- }
- static void show_test_coverage() {
- std::set<std::string> all_ops;
- for (int i = 1; i < GGML_OP_COUNT; i++) {
- auto op = (enum ggml_op)i;
- if (op == GGML_OP_VIEW ||
- op == GGML_OP_RESHAPE ||
- op == GGML_OP_PERMUTE ||
- op == GGML_OP_TRANSPOSE ||
- op == GGML_OP_CONT ||
- op == GGML_OP_GLU ||
- op == GGML_OP_UNARY) {
- continue;
- }
- all_ops.insert(ggml_op_name(op));
- }
- for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
- all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
- }
- for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
- all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
- }
- auto test_cases = make_test_cases_eval();
- // Filter out fusion cases
- test_cases.erase(
- std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
- return tc->run_whole_graph();
- }),
- test_cases.end()
- );
- std::set<std::string> tested_ops;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- for (auto & test_case : test_cases) {
- ggml_context * ctx = ggml_init(params);
- if (ctx) {
- test_case->mode = MODE_TEST;
- ggml_tensor * out = test_case->build_graph(ctx);
- if (out && out->op != GGML_OP_NONE) {
- if (out->op == GGML_OP_UNARY) {
- tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
- } else if (out->op == GGML_OP_GLU) {
- tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
- } else {
- tested_ops.insert(ggml_op_name(out->op));
- }
- }
- ggml_free(ctx);
- }
- }
- std::set<std::string> covered_ops;
- std::set<std::string> uncovered_ops;
- for (const auto & op : all_ops) {
- if (tested_ops.count(op) > 0) {
- covered_ops.insert(op);
- } else {
- uncovered_ops.insert(op);
- }
- }
- printf("Operations covered by tests (%zu):\n", covered_ops.size());
- for (const auto & op : covered_ops) {
- printf(" ✓ %s\n", op.c_str());
- }
- printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
- for (const auto & op : uncovered_ops) {
- printf(" ✗ %s\n", op.c_str());
- }
- printf("\nCoverage Summary:\n");
- printf(" Total operations: %zu\n", all_ops.size());
- printf(" Tested operations: %zu\n", covered_ops.size());
- printf(" Untested operations: %zu\n", uncovered_ops.size());
- printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
- }
- static void usage(char ** argv) {
- printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
- printf(" valid modes:\n");
- printf(" - test (default, compare with CPU backend for correctness)\n");
- printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
- printf(" - perf (performance evaluation)\n");
- printf(" - support (probe backend operation support)\n");
- printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
- printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
- printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
- printf(" --list-ops lists all available GGML operations\n");
- printf(" --show-coverage shows test coverage\n");
- }
- int main(int argc, char ** argv) {
- test_mode mode = MODE_TEST;
- output_formats output_format = CONSOLE;
- const char * op_names_filter = nullptr;
- const char * backend_filter = nullptr;
- const char * params_filter = nullptr;
- for (int i = 1; i < argc; i++) {
- if (strcmp(argv[i], "test") == 0) {
- mode = MODE_TEST;
- } else if (strcmp(argv[i], "perf") == 0) {
- mode = MODE_PERF;
- } else if (strcmp(argv[i], "grad") == 0) {
- mode = MODE_GRAD;
- } else if (strcmp(argv[i], "support") == 0) {
- mode = MODE_SUPPORT;
- } else if (strcmp(argv[i], "-o") == 0) {
- if (i + 1 < argc) {
- op_names_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-b") == 0) {
- if (i + 1 < argc) {
- backend_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-p") == 0) {
- if (i + 1 < argc) {
- params_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "--output") == 0) {
- if (i + 1 < argc) {
- if (!output_format_from_str(argv[++i], output_format)) {
- usage(argv);
- return 1;
- }
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "--list-ops") == 0) {
- list_all_ops();
- return 0;
- } else if (strcmp(argv[i], "--show-coverage") == 0) {
- show_test_coverage();
- return 0;
- } else {
- usage(argv);
- return 1;
- }
- }
- // load and enumerate backends
- ggml_backend_load_all();
- // Create printer for output format
- std::unique_ptr<printer> output_printer = create_printer(output_format);
- if (output_printer) {
- output_printer->print_header();
- }
- output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
- size_t n_ok = 0;
- for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
- output_printer->print_backend_init(
- backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
- n_ok++;
- continue;
- }
- if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
- output_printer->print_backend_init(backend_init_info(
- i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
- n_ok++;
- continue;
- }
- ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
- GGML_ASSERT(backend != NULL);
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- // TODO: better value for n_threads
- ggml_backend_set_n_threads_fn(backend, N_THREADS);
- }
- size_t free, total; // NOLINT
- ggml_backend_dev_memory(dev, &free, &total);
- output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
- false, "", ggml_backend_dev_description(dev),
- total / 1024 / 1024, free / 1024 / 1024, true));
- bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
- if (ok) {
- n_ok++;
- }
- output_printer->print_backend_status(
- backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
- ggml_backend_free(backend);
- }
- ggml_quantize_free();
- if (output_printer) {
- output_printer->print_footer();
- }
- output_printer->print_overall_summary(
- overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
- if (n_ok != ggml_backend_dev_count()) {
- return 1;
- }
- return 0;
- }
|