llama-vocab.cpp 147 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792
  1. #include "llama-vocab.h"
  2. #include "ggml.h"
  3. #include "gguf.h"
  4. #include "llama-impl.h"
  5. #include "llama-model-loader.h"
  6. #include "unicode.h"
  7. #include <algorithm>
  8. #include <cassert>
  9. #include <cctype>
  10. #include <cfloat>
  11. #include <cmath>
  12. #include <cstdarg>
  13. #include <cstring>
  14. #include <forward_list>
  15. #include <limits>
  16. #include <map>
  17. #include <queue>
  18. #include <set>
  19. #include <unordered_map>
  20. //
  21. // helpers
  22. //
  23. struct naive_trie {
  24. naive_trie() : has_value(false), value(0) {
  25. }
  26. void insert(const char * key, size_t len, int32_t value = 0) {
  27. if (len == 0) {
  28. this->has_value = true;
  29. this->value = value;
  30. return;
  31. }
  32. char c = key[0];
  33. auto res = children.find(c);
  34. if (res != children.end()) {
  35. res->second.insert(key + 1, len - 1, value);
  36. } else {
  37. auto res = children.insert(std::make_pair(c, naive_trie()));
  38. res.first->second.insert(key + 1, len - 1, value);
  39. }
  40. }
  41. std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
  42. if (len == 0 || offset == len) {
  43. return std::make_pair(key, offset);
  44. }
  45. char c = key[offset];
  46. auto res = children.find(c);
  47. if (res != children.end()) {
  48. return res->second.get_longest_prefix(key, len, offset + 1);
  49. }
  50. return std::make_pair(key, offset);
  51. }
  52. const struct naive_trie * traverse(const char c) const {
  53. auto res = children.find(c);
  54. if (res != children.end()) {
  55. return &res->second;
  56. }
  57. return NULL;
  58. }
  59. std::map<char, struct naive_trie> children;
  60. bool has_value;
  61. llama_token value;
  62. };
  63. //
  64. // tokenizers
  65. //
  66. struct llm_tokenizer {
  67. llm_tokenizer() {}
  68. virtual ~llm_tokenizer() = default;
  69. };
  70. struct llm_symbol {
  71. using index = int;
  72. index prev;
  73. index next;
  74. const char * text;
  75. size_t n;
  76. };
  77. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  78. //
  79. // SPM tokenizer
  80. // original implementation:
  81. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  82. //
  83. struct llm_bigram_spm {
  84. struct comparator {
  85. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  86. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  87. }
  88. };
  89. using queue_storage = std::vector<llm_bigram_spm>;
  90. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  91. llm_symbol::index left;
  92. llm_symbol::index right;
  93. float score;
  94. size_t size;
  95. };
  96. struct llm_tokenizer_spm : llm_tokenizer {
  97. llm_tokenizer_spm(const llama_vocab & /*vocab*/) {}
  98. };
  99. struct llm_tokenizer_spm_session {
  100. llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
  101. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  102. // split string into utf8 chars
  103. int index = 0;
  104. size_t offs = 0;
  105. while (offs < text.size()) {
  106. llm_symbol sym;
  107. size_t len = unicode_len_utf8(text[offs]);
  108. sym.text = text.c_str() + offs;
  109. sym.n = std::min(len, text.size() - offs);
  110. offs += sym.n;
  111. sym.prev = index - 1;
  112. sym.next = offs == text.size() ? -1 : index + 1;
  113. index++;
  114. symbols.emplace_back(sym);
  115. }
  116. // seed the work queue with all possible 2-character tokens.
  117. for (int i = 1; i < (int) symbols.size(); ++i) {
  118. try_add_bigram(i - 1, i);
  119. }
  120. // keep substituting the highest frequency pairs for as long as we can.
  121. while (!work_queue.empty()) {
  122. auto bigram = work_queue.top();
  123. work_queue.pop();
  124. auto & left_sym = symbols[bigram.left];
  125. auto & right_sym = symbols[bigram.right];
  126. // if one of the symbols already got merged, skip it.
  127. if (left_sym.n == 0 || right_sym.n == 0 ||
  128. left_sym.n + right_sym.n != bigram.size) {
  129. continue;
  130. }
  131. // merge the right sym into the left one
  132. left_sym.n += right_sym.n;
  133. right_sym.n = 0;
  134. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  135. // remove the right sym from the chain
  136. left_sym.next = right_sym.next;
  137. if (right_sym.next >= 0) {
  138. symbols[right_sym.next].prev = bigram.left;
  139. }
  140. // find more substitutions
  141. try_add_bigram(left_sym.prev, bigram.left);
  142. try_add_bigram(bigram.left, left_sym.next);
  143. }
  144. for (int i = 0; i != -1; i = symbols[i].next) {
  145. auto & symbol = symbols[i];
  146. resegment(symbol, output);
  147. }
  148. }
  149. private:
  150. void resegment(llm_symbol & symbol, std::vector<llama_token> & output) {
  151. auto text = std::string(symbol.text, symbol.n);
  152. auto token = vocab.text_to_token(text);
  153. // Do we need to support is_unused?
  154. if (token != LLAMA_TOKEN_NULL) {
  155. output.push_back(token);
  156. return;
  157. }
  158. const auto p = rev_merge.find(text);
  159. if (p == rev_merge.end()) {
  160. // output any symbols that did not form tokens as bytes.
  161. output.reserve(output.size() + symbol.n);
  162. for (int j = 0; j < (int)symbol.n; ++j) {
  163. llama_token id = vocab.byte_to_token(symbol.text[j]);
  164. output.push_back(id);
  165. }
  166. return;
  167. }
  168. resegment(symbols[p->second.first], output);
  169. resegment(symbols[p->second.second], output);
  170. }
  171. void try_add_bigram(int left, int right) {
  172. if (left == -1 || right == -1) {
  173. return;
  174. }
  175. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  176. auto token = vocab.text_to_token(text);
  177. if (token == LLAMA_TOKEN_NULL) {
  178. return;
  179. }
  180. if (static_cast<uint32_t>(token) >= vocab.n_tokens()) {
  181. return;
  182. }
  183. const auto & tok_data = vocab.get_token_data(token);
  184. llm_bigram_spm bigram;
  185. bigram.left = left;
  186. bigram.right = right;
  187. bigram.score = tok_data.score;
  188. bigram.size = text.size();
  189. work_queue.push(bigram);
  190. // Do we need to support is_unused?
  191. rev_merge[text] = std::make_pair(left, right);
  192. }
  193. const llama_vocab & vocab;
  194. // currently unused
  195. // const llm_tokenizer_spm * spm_tokenizer;
  196. std::vector<llm_symbol> symbols;
  197. llm_bigram_spm::queue work_queue;
  198. std::map<std::string, std::pair<int, int>> rev_merge;
  199. };
  200. //
  201. // BPE tokenizer
  202. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  203. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  204. //
  205. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  206. template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
  207. class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
  208. public:
  209. using std::priority_queue<T, Container, Compare>::priority_queue;
  210. T pop_move() {
  211. T item = std::move(this->c.front());
  212. std::pop_heap(this->c.begin(), this->c.end(), this->comp);
  213. this->c.pop_back();
  214. return item;
  215. }
  216. void pop() = delete;
  217. };
  218. struct llm_bigram_bpe {
  219. struct comparator {
  220. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  221. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  222. }
  223. };
  224. using queue_storage = std::vector<llm_bigram_bpe>;
  225. using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  226. llm_symbol::index left;
  227. llm_symbol::index right;
  228. std::string text;
  229. int rank;
  230. size_t size;
  231. };
  232. struct llm_tokenizer_bpe : llm_tokenizer {
  233. llm_tokenizer_bpe(const llama_vocab & vocab) {
  234. GGML_ASSERT(vocab.get_type() == LLAMA_VOCAB_TYPE_BPE);
  235. switch (vocab.get_pre_type()) {
  236. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  237. regex_exprs = {
  238. // original regex from tokenizer.json
  239. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  240. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  241. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  242. };
  243. break;
  244. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  245. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  246. regex_exprs = {
  247. // same as llama3
  248. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  249. };
  250. break;
  251. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  252. regex_exprs = {
  253. "[\r\n]",
  254. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  255. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  256. "\\s+$",
  257. "[一-龥ࠀ-一가-퟿]+",
  258. "\\p{N}+",
  259. };
  260. break;
  261. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
  262. case LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE:
  263. regex_exprs = {
  264. "\\p{N}{1,3}",
  265. "[一-龥぀-ゟ゠-ヿ]+",
  266. "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
  267. };
  268. break;
  269. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  270. regex_exprs = {
  271. "[\r\n]",
  272. "\\s?\\p{L}+",
  273. "\\s?\\p{P}+",
  274. "[一-龥ࠀ-一가-퟿]+",
  275. "\\p{N}",
  276. };
  277. break;
  278. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  279. regex_exprs = {
  280. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  281. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  282. "[0-9][0-9][0-9]",
  283. };
  284. break;
  285. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  286. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  287. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  288. case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
  289. case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
  290. case LLAMA_VOCAB_PRE_TYPE_EXAONE:
  291. case LLAMA_VOCAB_PRE_TYPE_MINERVA:
  292. regex_exprs = {
  293. "\\p{N}",
  294. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  295. };
  296. break;
  297. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  298. case LLAMA_VOCAB_PRE_TYPE_MPT:
  299. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  300. case LLAMA_VOCAB_PRE_TYPE_JAIS:
  301. case LLAMA_VOCAB_PRE_TYPE_TRILLION:
  302. regex_exprs = {
  303. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  304. };
  305. break;
  306. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  307. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  308. case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
  309. regex_exprs = {
  310. // original regex from tokenizer.json
  311. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  312. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  313. };
  314. break;
  315. case LLAMA_VOCAB_PRE_TYPE_PORO:
  316. case LLAMA_VOCAB_PRE_TYPE_BLOOM:
  317. case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
  318. regex_exprs = {
  319. " ?[^(\\s|.,!?…。,、।۔،)]+",
  320. };
  321. break;
  322. case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
  323. regex_exprs = {
  324. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  325. };
  326. break;
  327. case LLAMA_VOCAB_PRE_TYPE_VIKING:
  328. regex_exprs = {
  329. " ?[^(\\s|.,!?…。,、।۔،)]+",
  330. "\\p{N}",
  331. };
  332. break;
  333. case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
  334. // original regex from tokenizer.json
  335. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  336. regex_exprs = {
  337. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  338. };
  339. break;
  340. case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
  341. // Note: in theory, the special token (sentinel and image token) regex_exprs below
  342. // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
  343. // However, since the upstream pre-tokenizer uses them, they are also
  344. // included here (see https://huggingface.co/facebook/chameleon-7b).
  345. regex_exprs = {
  346. "<sentinel:[0-9]+>", // Sentinel tokens
  347. "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", // Image tokens
  348. "([\\t\\n]| | )", // directly from tokenizer.json
  349. "\\p{N}", // Individual digits
  350. "[\\p{P}!-/:-@\\[-`{-~]", // Punctuation, Isolated
  351. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  352. };
  353. break;
  354. case LLAMA_VOCAB_PRE_TYPE_GPT4O:
  355. regex_exprs = {
  356. // original regex from tokenizer.json
  357. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  358. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  359. };
  360. break;
  361. case LLAMA_VOCAB_PRE_TYPE_KIMI_K2:
  362. regex_exprs = {
  363. // K2 trigger pattern - this will activate the custom K2 handler in unicode.cpp
  364. // The custom handler implements all K2 patterns with proper Han character exclusion
  365. "\\p{Han}+",
  366. };
  367. break;
  368. case LLAMA_VOCAB_PRE_TYPE_SUPERBPE:
  369. regex_exprs = {
  370. "\\p{N}+",
  371. "(?=(\\d{3})+(?!\\d))",
  372. };
  373. break;
  374. case LLAMA_VOCAB_PRE_TYPE_BAILINGMOE:
  375. regex_exprs = {
  376. // original regex from tokenizer.json
  377. // "'(?i:[sdmt]|ll|ve|re)|[^\\r\\n\\p{L}\\p{N}]?+\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]++[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+"
  378. // FIXME? Changed possessive quantifiers (?+ and ++) to greedy to avoid errors and imatrix hanging (tried atomic grouping but it's not supported?)
  379. "'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
  380. };
  381. break;
  382. case LLAMA_VOCAB_PRE_TYPE_SEED_CODER:
  383. regex_exprs = {
  384. // original regex from tokenizer.json
  385. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\r\n]+|\\s*[\r\n]+|\\s+(?!\\S)|\\s+"
  386. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  387. };
  388. break;
  389. default:
  390. // default regex for BPE tokenization pre-processing
  391. regex_exprs = {
  392. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  393. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  394. "\\p{N}+",
  395. "[0-9][0-9][0-9]",
  396. };
  397. break;
  398. }
  399. }
  400. std::vector<std::string> regex_exprs;
  401. };
  402. struct llm_tokenizer_bpe_session {
  403. llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  404. static void append(const llama_token token_id, std::vector<llama_token> & output) {
  405. output.push_back(token_id);
  406. }
  407. bool append_bos(std::vector<llama_token> & output) const {
  408. if (vocab.get_add_bos()) {
  409. GGML_ASSERT(vocab.token_bos() != LLAMA_TOKEN_NULL);
  410. output.push_back(vocab.token_bos());
  411. return true;
  412. }
  413. return false;
  414. }
  415. bool append_eos(std::vector<llama_token> & output) const {
  416. if (vocab.get_add_eos()) {
  417. GGML_ASSERT(vocab.token_eos() != LLAMA_TOKEN_NULL);
  418. output.push_back(vocab.token_eos());
  419. return true;
  420. }
  421. return false;
  422. }
  423. void check_double_bos_eos(const std::vector<llama_token> & output) const {
  424. if (vocab.get_add_bos() && output.size() >= 2 && output[1] == vocab.token_bos()) {
  425. LLAMA_LOG_WARN(
  426. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  427. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  428. "Are you sure this is what you want?\n", __FUNCTION__);
  429. }
  430. if (vocab.get_add_eos() && output.size() >= 2 && *(output.end()-2) == vocab.token_eos()) {
  431. LLAMA_LOG_WARN(
  432. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  433. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  434. "Are you sure this is what you want?\n", __FUNCTION__);
  435. }
  436. }
  437. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  438. int final_prev_index = -1;
  439. const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs);
  440. symbols_final.clear();
  441. for (const auto & word : word_collection) {
  442. work_queue = llm_bigram_bpe::queue();
  443. symbols.clear();
  444. int index = 0;
  445. size_t offset = 0;
  446. //if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  447. if (vocab.get_ignore_merges() && vocab.text_to_token(word) != LLAMA_TOKEN_NULL) {
  448. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  449. offset = word.size();
  450. }
  451. while (offset < word.size()) {
  452. llm_symbol sym;
  453. size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
  454. sym.text = word.c_str() + offset;
  455. sym.n = char_len;
  456. offset += sym.n;
  457. sym.prev = index - 1;
  458. sym.next = offset == word.size() ? -1 : index + 1;
  459. index++;
  460. symbols.emplace_back(sym);
  461. }
  462. for (int i = 1; i < (int) symbols.size(); ++i) {
  463. add_new_bigram(i - 1, i);
  464. }
  465. // build token(s)
  466. while (!work_queue.empty()) {
  467. auto bigram = work_queue.pop_move();
  468. auto & left_symbol = symbols[bigram.left];
  469. auto & right_symbol = symbols[bigram.right];
  470. if (left_symbol.n == 0 || right_symbol.n == 0) {
  471. continue;
  472. }
  473. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  474. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  475. if (left_token + right_token != bigram.text) {
  476. continue; // Skip this bigram if it's outdated
  477. }
  478. // merge the right sym into the left one
  479. left_symbol.n += right_symbol.n;
  480. right_symbol.n = 0;
  481. // remove the right sym from the chain
  482. left_symbol.next = right_symbol.next;
  483. if (right_symbol.next >= 0) {
  484. symbols[right_symbol.next].prev = bigram.left;
  485. }
  486. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  487. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  488. }
  489. // add the finished tokens to the final list keeping correct order for next and prev
  490. for (auto & sym : symbols) {
  491. if (sym.n > 0) {
  492. sym.prev = final_prev_index;
  493. sym.next = -1;
  494. if (final_prev_index != -1) {
  495. symbols_final[final_prev_index].next = symbols_final.size();
  496. }
  497. symbols_final.emplace_back(sym);
  498. final_prev_index = symbols_final.size() - 1;
  499. }
  500. }
  501. }
  502. symbols = symbols_final;
  503. if (!symbols.empty()) {
  504. for (int i = 0; i != -1; i = symbols[i].next) {
  505. auto & symbol = symbols[i];
  506. if (symbol.n == 0) {
  507. continue;
  508. }
  509. const std::string str = std::string(symbol.text, symbol.n);
  510. const auto token = vocab.text_to_token(str);
  511. if (token == LLAMA_TOKEN_NULL) {
  512. for (auto j = str.begin(); j != str.end(); ++j) {
  513. std::string byte_str(1, *j);
  514. auto token_multibyte = vocab.text_to_token(byte_str);
  515. if (token_multibyte != LLAMA_TOKEN_NULL) {
  516. output.push_back(token_multibyte);
  517. }
  518. }
  519. } else {
  520. output.push_back(token);
  521. }
  522. }
  523. }
  524. }
  525. private:
  526. void add_new_bigram(int left, int right) {
  527. if (left == -1 || right == -1) {
  528. return;
  529. }
  530. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  531. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  532. int rank_found = -1;
  533. rank_found = vocab.find_bpe_rank(left_token, right_token);
  534. if (rank_found < 0) {
  535. return;
  536. }
  537. llm_bigram_bpe bigram;
  538. bigram.left = left;
  539. bigram.right = right;
  540. bigram.text = left_token + right_token;
  541. bigram.size = left_token.size() + right_token.size();
  542. bigram.rank = rank_found;
  543. work_queue.push(bigram);
  544. }
  545. const llama_vocab & vocab;
  546. const llm_tokenizer_bpe & tokenizer;
  547. std::vector<llm_symbol> symbols;
  548. std::vector<llm_symbol> symbols_final;
  549. llm_bigram_bpe::queue work_queue;
  550. };
  551. //
  552. // WPM tokenizer
  553. //
  554. struct llm_tokenizer_wpm : llm_tokenizer {
  555. llm_tokenizer_wpm(const llama_vocab & /*vocab*/) {}
  556. };
  557. struct llm_tokenizer_wpm_session {
  558. llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
  559. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  560. // normalize and split by whitespace
  561. std::vector<std::string> words = preprocess(text);
  562. // bos token prepended already
  563. // find the longest tokens that form the words
  564. for (const std::string & word : words) {
  565. // skip empty words
  566. if (word.size() == 0) {
  567. continue;
  568. }
  569. // prepend phantom space
  570. const std::string word1 = "\xe2\x96\x81" + word;
  571. const int n = word1.size();
  572. const size_t current_tokens = output.size();
  573. // we're at the start of a new word
  574. // move through character position in word
  575. for (int i = 0; i < n; ++i) {
  576. // loop through possible match length
  577. bool match = false;
  578. for (int j = std::min(n, i + vocab.max_token_len() + 1); j > i; j--) {
  579. auto id = vocab.text_to_token(word1.substr(i, j - i));
  580. if (id != LLAMA_TOKEN_NULL) {
  581. output.push_back(id);
  582. match = true;
  583. i = j - 1;
  584. break;
  585. }
  586. }
  587. if (!match) { // discard all
  588. output.resize(current_tokens);
  589. break; // and discard next tokens
  590. }
  591. }
  592. // we didn't find any matches for this word
  593. if (current_tokens == output.size()) {
  594. output.push_back(vocab.token_unk());
  595. }
  596. }
  597. }
  598. // TODO: reduce string copies by using cpts_offs array
  599. static std::vector<std::string> preprocess(const std::string & text) {
  600. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  601. std::vector<std::string> words(1, "");
  602. for (const uint32_t cpt : cpts_nfd) {
  603. const auto flags = unicode_cpt_flags_from_cpt(cpt);
  604. if (flags.is_whitespace) {
  605. if (words.back().size()) { // finish previous word if any
  606. words.emplace_back();
  607. }
  608. continue;
  609. }
  610. assert (!flags.is_separator);
  611. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  612. continue;
  613. }
  614. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  615. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  616. if (words.back().size()) { // finish previous word if any
  617. words.emplace_back();
  618. }
  619. words.back() = s; // single char word
  620. words.emplace_back(); // start a new word
  621. } else {
  622. words.back() += s; // append char to word
  623. }
  624. }
  625. if (!words.back().size()) {
  626. words.pop_back();
  627. }
  628. return words;
  629. }
  630. static bool is_chinese_char(uint32_t cpt) {
  631. return
  632. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  633. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  634. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  635. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  636. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  637. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  638. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  639. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  640. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  641. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  642. }
  643. private:
  644. const llama_vocab & vocab;
  645. // currently unused
  646. // const llm_tokenizer_wpm * wpm_tokenizer;
  647. };
  648. //
  649. // UGM tokenizer
  650. //
  651. struct llm_tokenizer_ugm : llm_tokenizer {
  652. llm_tokenizer_ugm(const llama_vocab & vocab, const std::vector<char> & precompiled_charsmap) {
  653. if (precompiled_charsmap.size() > 0) {
  654. size_t charsmap_offset = 0;
  655. // First four bytes of precompiled_charsmap contains length of binary
  656. // blob containing XOR-compressed compact double array (XCDA) entries
  657. uint32_t xcda_blob_size = *(const uint32_t *) &precompiled_charsmap[0];
  658. charsmap_offset += sizeof(xcda_blob_size);
  659. if (xcda_blob_size + charsmap_offset >= precompiled_charsmap.size()) {
  660. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  661. }
  662. // Next xcda_blob_size bytes contain entries of XOR-compressed compact
  663. // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
  664. xcda_array = (const uint32_t *) &precompiled_charsmap[charsmap_offset];
  665. xcda_array_size = xcda_blob_size / sizeof(uint32_t);
  666. charsmap_offset += xcda_blob_size;
  667. // Remaining bytes of precompiled charsmap contain null-terminated
  668. // replacement strings for prefixes matched by the XCDA.
  669. prefix_replacements = &precompiled_charsmap[charsmap_offset];
  670. prefix_replacements_size = precompiled_charsmap.size() - charsmap_offset;
  671. }
  672. for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
  673. const auto & token_data = vocab.get_token_data(id);
  674. if (vocab.is_normal(id)) {
  675. min_score = std::min<float>(min_score, token_data.score);
  676. max_score = std::max<float>(max_score, token_data.score);
  677. }
  678. if (vocab.is_normal(id) ||
  679. vocab.is_user_defined(id) ||
  680. vocab.is_unused(id)) {
  681. token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
  682. }
  683. if (vocab.is_user_defined(id)) {
  684. user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
  685. }
  686. }
  687. unknown_token_score = min_score - unknown_token_score_penalty;
  688. }
  689. // escaped space symbol - U+2581 (Lower One Eighth Block)
  690. const std::string escaped_space = "\xE2\x96\x81";
  691. const char * prefix_replacements = NULL;
  692. size_t prefix_replacements_size = 0;
  693. const uint32_t * xcda_array = NULL;
  694. size_t xcda_array_size = 0;
  695. struct naive_trie user_defined_token_matcher;
  696. float min_score = FLT_MAX;
  697. float max_score = -FLT_MAX;
  698. float unknown_token_score_penalty = 10.0;
  699. float unknown_token_score;
  700. struct naive_trie token_matcher;
  701. };
  702. struct llm_tokenizer_ugm_session {
  703. llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  704. /* This implementation is based on SentencePiece optimized Viterbi algorithm for
  705. * unigram language models. The general idea is to:
  706. * - move along the input sequence in steps of one UTF code point,
  707. * - at each step find all possible tokenizations of the prefix by
  708. * traversing the tokens trie,
  709. * - for each tokenization store the best one so far (by higher score)
  710. * - use the position in sequence after given token as an index to store
  711. * results
  712. * - if there was no valid tokenization of the current UTF code point
  713. * then use unknown token with additional score penalty
  714. * After processing the whole sequence we backtrack from the end to get
  715. * the best tokenization.
  716. */
  717. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  718. // get current size of output (for reversal later)
  719. size_t output_size = output.size();
  720. // normalize the input first
  721. std::string normalized;
  722. normalize(text, &normalized);
  723. size_t input_len = normalized.size();
  724. if (input_len == 0) {
  725. return;
  726. }
  727. // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
  728. std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -DBL_MAX});
  729. // at the beginning tokenization score is zero
  730. tokenization_results[0] = { vocab.token_unk(), 0, 0 };
  731. for (size_t input_offset = 0; input_offset < input_len;) {
  732. size_t prefix_offset = input_offset;
  733. // calculate how many code units are in the currently processed UTF code point
  734. size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
  735. // traverse the token matcher trie to find a matching token
  736. bool single_codepoint_token_found = false;
  737. const struct best_tokenization & current_best = tokenization_results[input_offset];
  738. const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]);
  739. while (prefix_offset <= input_len && node != NULL) {
  740. // check if we found valid token in prefix
  741. if (node->has_value) {
  742. // check if it corresponds to the whole UTF code point
  743. if (prefix_offset - input_offset == n_utf8_code_units) {
  744. single_codepoint_token_found = true;
  745. }
  746. llama_token token_id = node->value;
  747. const auto & token_data = vocab.get_token_data(token_id);
  748. // we set the user-defined token scores to 0 to make them more likely to be selected
  749. // (normal token scores are log probabilities, so they are negative)
  750. // score type is double here to make tokenization results exactly
  751. // the same as in the HF tokenizer using SentencePiece
  752. const double token_score = vocab.is_user_defined(token_id) ? 0.0 : token_data.score;
  753. const double challenger_score = current_best.score_sum + token_score;
  754. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  755. if (challenger_score > current_champ.score_sum) {
  756. struct best_tokenization challenger = { token_id, input_offset, challenger_score };
  757. current_champ = challenger;
  758. }
  759. }
  760. node = node->traverse(normalized[prefix_offset++]);
  761. }
  762. // if we didn't find a valid token corresponding to the whole UTF code point
  763. // then use unknown token as the tokenization of this UTF code point
  764. if (!single_codepoint_token_found) {
  765. const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score;
  766. prefix_offset = input_offset + n_utf8_code_units;
  767. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  768. if (challenger_score > current_champ.score_sum) {
  769. struct best_tokenization challenger = { vocab.token_unk(), input_offset, challenger_score };
  770. current_champ = challenger;
  771. }
  772. }
  773. // move to the next UTF code point
  774. input_offset += n_utf8_code_units;
  775. }
  776. // now backtrack from the end to gather token ids of the best tokenization
  777. // merge sequences of consecutive unknown tokens into single unknown tokens
  778. bool is_prev_unknown = false;
  779. for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
  780. bool is_unknown = tokenization.token_id == vocab.token_unk();
  781. if (!(is_prev_unknown && is_unknown)) {
  782. output.push_back(tokenization.token_id);
  783. }
  784. if (tokenization.input_offset == 0) {
  785. break;
  786. }
  787. is_prev_unknown = is_unknown;
  788. }
  789. // reverse the output since we added tokens starting from the end of the input
  790. std::reverse(output.begin() + output_size, output.end());
  791. }
  792. private:
  793. // helper structure for returning normalization results
  794. struct normalization_result {
  795. const char * normalized;
  796. size_t normalized_len;
  797. size_t consumed_input;
  798. };
  799. void normalize(const std::string& input, std::string * normalized) {
  800. normalized->clear();
  801. normalized->reserve(input.size() * 3);
  802. const std::string space = vocab.get_escape_whitespaces() ? tokenizer.escaped_space : " ";
  803. const bool shall_prepend_space = !vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
  804. const bool shall_append_space = vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
  805. const bool shall_merge_spaces = vocab.get_remove_extra_whitespaces();
  806. bool is_space_prepended = false;
  807. bool processing_non_ws = false;
  808. size_t input_len = input.size();
  809. for (size_t input_offset = 0; input_offset < input_len; ) {
  810. auto norm_res = normalize_prefix(input, input_offset);
  811. for (size_t i = 0; i < norm_res.normalized_len; i++) {
  812. char c = norm_res.normalized[i];
  813. if (c != ' ') {
  814. if (!processing_non_ws) {
  815. processing_non_ws = true;
  816. if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
  817. normalized->append(space);
  818. is_space_prepended = true;
  819. }
  820. }
  821. normalized->push_back(c);
  822. } else {
  823. if (processing_non_ws) {
  824. processing_non_ws = false;
  825. }
  826. if (!shall_merge_spaces) {
  827. normalized->append(space);
  828. }
  829. }
  830. }
  831. input_offset += norm_res.consumed_input;
  832. }
  833. if (shall_append_space) {
  834. normalized->append(space);
  835. }
  836. }
  837. /*
  838. * This structure is a view wrapper for XOR-compressed double array (XCDA)
  839. * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
  840. * Each bit-packed entry contains:
  841. * - BASE array value in bits 10-30
  842. * - LCHECK array value in bits 0-7
  843. * - LEAF array value in bit 9
  844. * Entries containing indexes of replacement sequences have set bit 31
  845. */
  846. struct xcda_array_view {
  847. public:
  848. xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
  849. }
  850. uint32_t get_base(size_t index) {
  851. uint32_t packed_node = get_node(index);
  852. return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
  853. }
  854. uint32_t get_lcheck(size_t index) {
  855. uint32_t packed_node = get_node(index);
  856. return packed_node & ((1U << 31) | 0xff);
  857. }
  858. bool get_leaf(size_t index) {
  859. uint32_t packed_node = get_node(index);
  860. return (packed_node >> 8) & 1;
  861. }
  862. uint32_t get_value(size_t index) {
  863. uint32_t packed_node = get_node(index);
  864. return packed_node & ((1U << 31) - 1);
  865. }
  866. private:
  867. uint32_t get_node(size_t index) {
  868. if (index > xcda_array_size) {
  869. throw std::runtime_error("Index out of array bounds in XCDA array!");
  870. }
  871. return xcda_array[index];
  872. }
  873. const uint32_t * xcda_array;
  874. size_t xcda_array_size;
  875. };
  876. // this structure stores the best tokenization so far at input_offset
  877. struct best_tokenization {
  878. llama_token token_id;
  879. size_t input_offset;
  880. double score_sum;
  881. };
  882. struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
  883. if (input_offset == input.size()) {
  884. return { &input[input_offset], 0, 0 };
  885. }
  886. // if input prefix matches some user-defined token return this token as normalization result
  887. auto user_defined_token_match =
  888. tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
  889. if (user_defined_token_match.second > 0) {
  890. return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
  891. }
  892. size_t longest_prefix_length = 0;
  893. size_t longest_prefix_offset = 0;
  894. if (tokenizer.xcda_array_size > 0) {
  895. struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size);
  896. // Find the longest normalized sequence matching the input prefix by walking
  897. // the XOR-compressed compact double array (XCDA) starting from the root node
  898. // We find the index of the next node by calculating BASE[s] ^ c where s is
  899. // the index of the previous node and c is a numerical character value
  900. uint32_t node_index = 0;
  901. // get BASE of the root node
  902. node_index = xcda_view.get_base(node_index);
  903. for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
  904. unsigned char c = input[prefix_offset];
  905. if (c == 0) {
  906. break;
  907. }
  908. node_index ^= c;
  909. // if value of LCHECK is not c it means that this is not a child of
  910. // the previous node, so we stop matching
  911. if (xcda_view.get_lcheck(node_index) != c) {
  912. break;
  913. }
  914. bool is_leaf = xcda_view.get_leaf(node_index);
  915. // get BASE of the current node
  916. node_index ^= xcda_view.get_base(node_index);
  917. // if LEAF of the current node is true, it means that its BASE points to the node
  918. // containing index of replacement sequence for currently matched input prefix
  919. if (is_leaf)
  920. {
  921. longest_prefix_length = prefix_offset - input_offset + 1;
  922. // get index of replacement sequence for currently matched input prefix
  923. longest_prefix_offset = xcda_view.get_value(node_index);
  924. }
  925. }
  926. }
  927. if (longest_prefix_length > 0) {
  928. // we have a match, so return the replacement sequence
  929. if (longest_prefix_offset >= tokenizer.prefix_replacements_size) {
  930. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  931. }
  932. const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset];
  933. return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
  934. }
  935. // check if the input prefix contains a valid sequence of UTF-8 code units
  936. try {
  937. // if yes, return this sequence unmodified
  938. size_t prefix_offset = input_offset;
  939. unicode_cpt_from_utf8(input, prefix_offset);
  940. return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
  941. } catch (std::invalid_argument & /*ex*/) {
  942. // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
  943. return { "\xEF\xBF\xBD", 3, 1 };
  944. }
  945. }
  946. const llama_vocab & vocab;
  947. const llm_tokenizer_ugm & tokenizer;
  948. };
  949. //
  950. // RWKV tokenizer
  951. //
  952. static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
  953. std::vector<uint8_t> output;
  954. output.reserve(escaped.size());
  955. // Parser state
  956. bool escaping = false;
  957. uint8_t hex_remaining = 0;
  958. uint8_t hex_acc = 0;
  959. // Step through characters, performing parsing
  960. for (const char & c : escaped) {
  961. // If we're parsing a hex code, interpret the next character
  962. if (hex_remaining != 0) {
  963. uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
  964. hex_acc = (hex_acc << 4) + value;
  965. hex_remaining -= 1;
  966. if (hex_remaining == 0) {
  967. output.push_back(hex_acc);
  968. hex_acc = 0;
  969. }
  970. continue;
  971. }
  972. // If we got an escape character, interpret it
  973. if (escaping) {
  974. if (c == 't') {
  975. output.push_back('\t');
  976. } else if (c == 'n') {
  977. output.push_back('\n');
  978. } else if (c == 'r') {
  979. output.push_back('\r');
  980. } else if (c == 'x') {
  981. hex_remaining = 2;
  982. } else {
  983. output.push_back(c);
  984. }
  985. escaping = false;
  986. continue;
  987. }
  988. if (c == '\\') {
  989. escaping = true;
  990. continue;
  991. }
  992. output.push_back(c);
  993. }
  994. return output;
  995. }
  996. struct llm_tokenizer_rwkv : llm_tokenizer {
  997. llm_tokenizer_rwkv(const llama_vocab & vocab) {
  998. // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
  999. // For now, we decode the vocab here into the lookup we'll use for tokenization.
  1000. // build trie
  1001. for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
  1002. const auto & data = vocab.get_token_data(id);
  1003. const auto text = llama_unescape_rwkv_token(data.text);
  1004. token_matcher.insert((const char *) text.data(), text.size(), id);
  1005. }
  1006. }
  1007. struct naive_trie token_matcher;
  1008. };
  1009. struct llm_tokenizer_rwkv_session {
  1010. llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  1011. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  1012. uint32_t position = 0;
  1013. while (position < text.size()) {
  1014. const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]);
  1015. if (node == NULL) {
  1016. // no matching token found, add unknown token
  1017. output.push_back(vocab.token_unk());
  1018. position += 1;
  1019. continue;
  1020. }
  1021. // traverse the trie to find the longest matching token
  1022. uint32_t token_id = 0;
  1023. uint32_t token_length = 0;
  1024. while (node != NULL) {
  1025. if (node->has_value) {
  1026. token_id = node->value;
  1027. token_length = position + 1;
  1028. }
  1029. node = node->traverse(text[++position]);
  1030. }
  1031. // add the longest matching token
  1032. output.push_back(token_id);
  1033. position = token_length;
  1034. }
  1035. }
  1036. private:
  1037. const llama_vocab & vocab;
  1038. const llm_tokenizer_rwkv & tokenizer;
  1039. };
  1040. struct llm_tokenizer_plamo2 : llm_tokenizer {
  1041. llm_tokenizer_plamo2(const llama_vocab & vocab) {
  1042. build(vocab);
  1043. }
  1044. void build(const llama_vocab & vocab) {
  1045. // Reset internal structures
  1046. tokens_.clear();
  1047. bytes_.assign(256, 0);
  1048. to_suffix_id_.clear();
  1049. table_.clear();
  1050. // Build token list and byte mapping
  1051. std::unordered_map<std::string, float> suffix_to_score;
  1052. std::unordered_map<std::string, llama_token> token_to_id;
  1053. for (size_t token_id = 0; token_id < vocab.n_tokens(); ++token_id) {
  1054. const auto & entry = vocab.get_token_data(token_id);
  1055. tokens_.push_back(entry.text);
  1056. token_to_id[entry.text] = static_cast<llama_token>(token_id);
  1057. // Handle byte tokens
  1058. if (vocab.is_byte(token_id)) {
  1059. if (entry.text.length() == 6 && entry.text.substr(0, 3) == "<0x" && entry.text.back() == '>') {
  1060. std::string hex_str = entry.text.substr(3, 2);
  1061. int byte_val = std::stoi(hex_str, nullptr, 16);
  1062. bytes_[byte_val] = static_cast<llama_token>(token_id);
  1063. }
  1064. continue;
  1065. }
  1066. // Add token and all its suffixes to suffix_to_score
  1067. suffix_to_score[entry.text] = entry.score;
  1068. // Extract suffixes character by character (UTF-8 aware)
  1069. std::vector<uint32_t> cpts = unicode_cpts_from_utf8(entry.text);
  1070. for (size_t i = 1; i < cpts.size(); ++i) {
  1071. std::string suffix;
  1072. for (size_t j = i; j < cpts.size(); ++j) {
  1073. suffix += unicode_cpt_to_utf8(cpts[j]);
  1074. }
  1075. if (suffix_to_score.find(suffix) == suffix_to_score.end()) {
  1076. suffix_to_score[suffix] = std::numeric_limits<float>::quiet_NaN();
  1077. }
  1078. }
  1079. }
  1080. // Check that all byte tokens are set
  1081. for (int i = 0; i < 256; ++i) {
  1082. if (bytes_[i] == 0) {
  1083. throw std::runtime_error("Byte token for <0x" + std::to_string(i) + "> is not set");
  1084. }
  1085. }
  1086. // Build suffix list in lexicographical order of reversed strings
  1087. std::vector<std::string> suffixes;
  1088. for (const auto & pair : suffix_to_score) {
  1089. suffixes.push_back(pair.first);
  1090. }
  1091. suffixes.push_back(""); // Empty suffix
  1092. std::sort(suffixes.begin(), suffixes.end(), [](const std::string & a, const std::string & b) {
  1093. std::string rev_a(a.rbegin(), a.rend());
  1094. std::string rev_b(b.rbegin(), b.rend());
  1095. return rev_a < rev_b;
  1096. });
  1097. // Build suffix_to_id and to_suffix_id_
  1098. std::unordered_map<std::string, int32_t> suffix_to_id;
  1099. int32_t num_pieces = 0;
  1100. for (const auto & suffix : suffixes) {
  1101. suffix_to_id[suffix] = num_pieces;
  1102. if (!suffix.empty()) {
  1103. std::vector<uint32_t> cpts = unicode_cpts_from_utf8(suffix);
  1104. std::string remaining;
  1105. for (size_t i = 1; i < cpts.size(); ++i) {
  1106. remaining += unicode_cpt_to_utf8(cpts[i]);
  1107. }
  1108. int64_t piece_code = (static_cast<int64_t>(cpts[0]) << 32) | suffix_to_id[remaining];
  1109. to_suffix_id_[piece_code] = num_pieces;
  1110. // Count number of pieces for this suffix
  1111. int32_t pieces_for_suffix = 1; // sentinel row
  1112. for (int32_t piece_length = static_cast<int32_t>(cpts.size()); piece_length > 0; --piece_length) {
  1113. std::string piece;
  1114. for (int32_t i = 0; i < piece_length; ++i) {
  1115. piece += unicode_cpt_to_utf8(cpts[i]);
  1116. }
  1117. if (suffix_to_score.find(piece) != suffix_to_score.end()) {
  1118. pieces_for_suffix++;
  1119. }
  1120. }
  1121. num_pieces += pieces_for_suffix;
  1122. } else {
  1123. num_pieces++; // Empty suffix contributes one piece (sentinel row)
  1124. }
  1125. }
  1126. // Build flattened table
  1127. table_.resize(num_pieces, std::vector<int32_t>(4, 0));
  1128. int32_t table_idx = 0;
  1129. for (const auto & suffix : suffixes) {
  1130. // Add all prefixes of the suffix to the table (in decreasing order of length)
  1131. std::vector<uint32_t> cpts = unicode_cpts_from_utf8(suffix);
  1132. for (int32_t piece_length = static_cast<int32_t>(cpts.size()); piece_length > 0; --piece_length) {
  1133. std::string piece;
  1134. for (int32_t i = 0; i < piece_length; ++i) {
  1135. piece += unicode_cpt_to_utf8(cpts[i]);
  1136. }
  1137. auto score_it = suffix_to_score.find(piece);
  1138. if (score_it == suffix_to_score.end()) {
  1139. continue;
  1140. }
  1141. table_[table_idx][TABLE_PIECE_LENGTH] = piece_length;
  1142. auto token_it = token_to_id.find(piece);
  1143. table_[table_idx][TABLE_TOKEN_ID] = (token_it != token_to_id.end()) ? token_it->second : -1;
  1144. float score = score_it->second;
  1145. table_[table_idx][TABLE_SCORE] = std::isfinite(score) ?
  1146. static_cast<int32_t>(std::round(score * 1e4)) : INVALID_SCORE;
  1147. table_[table_idx][TABLE_PIECE_ID] = suffix_to_id[piece];
  1148. table_idx++;
  1149. }
  1150. // Add sentinel row
  1151. table_[table_idx][TABLE_PIECE_LENGTH] = 1;
  1152. table_[table_idx][TABLE_TOKEN_ID] = -1;
  1153. table_[table_idx][TABLE_SCORE] = UNKNOWN_SCORE;
  1154. table_idx++;
  1155. }
  1156. }
  1157. std::vector<llama_token> encode(const std::string & text) const {
  1158. std::vector<uint32_t> unicode_data = unicode_cpts_from_utf8(text);
  1159. // Skip the first code point if it is a BOM (Byte Order Mark)
  1160. if (!unicode_data.empty() && unicode_data[0] == 0xFEFF) {
  1161. unicode_data.erase(unicode_data.begin());
  1162. }
  1163. if (unicode_data.empty()) {
  1164. return {};
  1165. }
  1166. const size_t data_len = unicode_data.size();
  1167. // Initialize scores array (dynamic programming)
  1168. std::vector<int64_t> scores(data_len + 1, static_cast<int64_t>(1) << 60);
  1169. scores[data_len] = 0;
  1170. // Path array to track best tokenization
  1171. std::vector<std::vector<int32_t>> path(data_len + 1, std::vector<int32_t>(3, 0));
  1172. int32_t suffix_id = 0;
  1173. // Process from end to beginning
  1174. for (int i = static_cast<int>(data_len) - 1; i >= 0; --i) {
  1175. uint32_t c = unicode_data[i];
  1176. // Find next suffix ID
  1177. for (size_t p = suffix_id; p < table_.size(); ++p) {
  1178. int64_t piece_code = (static_cast<int64_t>(c) << 32) | table_[p][TABLE_PIECE_ID];
  1179. auto it = to_suffix_id_.find(piece_code);
  1180. suffix_id = (it != to_suffix_id_.end()) ? it->second : 0;
  1181. if (suffix_id > 0 || table_[p][TABLE_SCORE] == UNKNOWN_SCORE) {
  1182. break;
  1183. }
  1184. }
  1185. // Update best path
  1186. for (size_t p = suffix_id; p < table_.size(); ++p) {
  1187. int32_t score = table_[p][TABLE_SCORE];
  1188. if (score > INVALID_SCORE) {
  1189. int32_t piece_length = table_[p][TABLE_PIECE_LENGTH];
  1190. int64_t s = scores[i + piece_length] - score;
  1191. if (s < scores[i]) {
  1192. scores[i] = s;
  1193. path[i][PATH_TOKEN_LENGTH] = piece_length;
  1194. path[i][PATH_TOKEN_ID] = table_[p][TABLE_TOKEN_ID];
  1195. path[i][PATH_NUM_TOKENS] = path[i + piece_length][PATH_NUM_TOKENS] + 1;
  1196. if (score == UNKNOWN_SCORE) {
  1197. // Add UTF-8 byte count
  1198. path[i][PATH_NUM_TOKENS] += (c >= 0x80) + (c >= 0x800) + (c >= 0x10000);
  1199. }
  1200. }
  1201. }
  1202. if (score == UNKNOWN_SCORE) {
  1203. break;
  1204. }
  1205. }
  1206. }
  1207. // Decode the best path
  1208. std::vector<llama_token> token_ids;
  1209. token_ids.reserve(path[0][PATH_NUM_TOKENS]);
  1210. int pos = 0;
  1211. while (pos < static_cast<int>(data_len)) {
  1212. if (path[pos][PATH_TOKEN_ID] >= 0) {
  1213. token_ids.push_back(path[pos][PATH_TOKEN_ID]);
  1214. } else {
  1215. // Fall back to byte tokens
  1216. uint32_t c = unicode_data[pos];
  1217. int s = 1 + (c >= 0x80) + (c >= 0x800) + (c >= 0x10000);
  1218. for (int i = 0; i < s; ++i) {
  1219. uint8_t b;
  1220. if (s == 1) {
  1221. b = c;
  1222. } else {
  1223. if (i == 0) {
  1224. b = (0xF00 >> s) & 0xFF;
  1225. } else {
  1226. b = 0x80;
  1227. }
  1228. }
  1229. token_ids.push_back(bytes_[b | ((c >> ((s - i - 1) * 6)) & 0x3F)]);
  1230. }
  1231. }
  1232. assert(path[pos][PATH_TOKEN_LENGTH] > 0);
  1233. pos += path[pos][PATH_TOKEN_LENGTH];
  1234. }
  1235. return token_ids;
  1236. }
  1237. private:
  1238. // Constants for table structure
  1239. static constexpr int32_t TABLE_PIECE_LENGTH = 0;
  1240. static constexpr int32_t TABLE_TOKEN_ID = 1;
  1241. static constexpr int32_t TABLE_SCORE = 2;
  1242. static constexpr int32_t TABLE_PIECE_ID = 3;
  1243. // Constants for path array
  1244. static constexpr int32_t PATH_TOKEN_LENGTH = 0;
  1245. static constexpr int32_t PATH_TOKEN_ID = 1;
  1246. static constexpr int32_t PATH_NUM_TOKENS = 2;
  1247. // Score constants
  1248. static constexpr int32_t INVALID_SCORE = -20000000;
  1249. static constexpr int32_t UNKNOWN_SCORE = -10000000;
  1250. // List of tokens in the vocabulary
  1251. std::vector<std::string> tokens_;
  1252. // Mapping from byte code point to token ID (for byte fallback)
  1253. std::vector<llama_token> bytes_;
  1254. // Mapping from piece code to suffix ID
  1255. std::unordered_map<int64_t, int32_t> to_suffix_id_;
  1256. // Flattened table representing the Trie structure
  1257. // Each row contains: [piece_length, token_id, score, piece_id]
  1258. std::vector<std::vector<int32_t>> table_;
  1259. };
  1260. struct llm_tokenizer_plamo2_session {
  1261. llm_tokenizer_plamo2_session(const llm_tokenizer_plamo2 & tokenizer) : tokenizer(tokenizer) {}
  1262. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  1263. std::vector<llama_token> tokens = tokenizer.encode(text);
  1264. output.insert(output.end(), tokens.begin(), tokens.end());
  1265. }
  1266. private:
  1267. const llm_tokenizer_plamo2 & tokenizer;
  1268. };
  1269. //
  1270. // impl
  1271. //
  1272. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  1273. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  1274. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  1275. } FRAGMENT_BUFFER_VARIANT_TYPE;
  1276. struct fragment_buffer_variant {
  1277. fragment_buffer_variant(llama_token _token)
  1278. :
  1279. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  1280. token(_token),
  1281. raw_text(_dummy),
  1282. offset(0),
  1283. length(0) {}
  1284. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  1285. :
  1286. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  1287. token((llama_token) - 1),
  1288. raw_text(_raw_text),
  1289. offset(_offset),
  1290. length(_length){
  1291. GGML_ASSERT(_offset >= 0);
  1292. GGML_ASSERT(_length >= 1);
  1293. GGML_ASSERT(offset + length <= raw_text.length());
  1294. }
  1295. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  1296. const llama_token token;
  1297. const std::string _dummy;
  1298. const std::string & raw_text;
  1299. const uint64_t offset;
  1300. const uint64_t length;
  1301. };
  1302. struct llama_vocab::impl {
  1303. uint32_t n_token_types = 0; // for BERT-style token types
  1304. std::string tokenizer_model;
  1305. std::string tokenizer_pre;
  1306. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1307. enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1308. int max_token_len = 0; // used for optimizing longest token search
  1309. // default LLaMA special tokens
  1310. // TODO: should we set all of these to LLAMA_TOKEN_NULL?
  1311. llama_token special_bos_id = 1;
  1312. llama_token special_eos_id = 2;
  1313. llama_token special_eot_id = LLAMA_TOKEN_NULL;
  1314. llama_token special_eom_id = LLAMA_TOKEN_NULL;
  1315. llama_token special_unk_id = 0;
  1316. llama_token special_sep_id = LLAMA_TOKEN_NULL;
  1317. llama_token special_pad_id = LLAMA_TOKEN_NULL;
  1318. llama_token special_mask_id = LLAMA_TOKEN_NULL;
  1319. llama_token linefeed_id = 13;
  1320. // fim tokens
  1321. llama_token special_fim_pre_id = LLAMA_TOKEN_NULL;
  1322. llama_token special_fim_suf_id = LLAMA_TOKEN_NULL;
  1323. llama_token special_fim_mid_id = LLAMA_TOKEN_NULL;
  1324. llama_token special_fim_pad_id = LLAMA_TOKEN_NULL;
  1325. llama_token special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
  1326. llama_token special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
  1327. // tokenizer flags
  1328. bool add_space_prefix = false;
  1329. bool add_bos = false;
  1330. bool add_eos = false;
  1331. bool add_sep = false;
  1332. bool ignore_merges = false;
  1333. bool clean_spaces = false; // clean_up_tokenization_spaces
  1334. bool remove_extra_whitespaces = false;
  1335. bool escape_whitespaces = true;
  1336. bool treat_whitespace_as_suffix = false;
  1337. std::unordered_map<std::string, llama_token> token_to_id;
  1338. std::vector<token_data> id_to_token;
  1339. std::vector<llama_token> cache_special_tokens;
  1340. std::vector<std::string> cache_token_to_piece; // llama_token_to_piece(special = true);
  1341. struct pair_hash {
  1342. size_t operator()(const std::pair<std::string, std::string> & p) const {
  1343. return std::hash<std::string>{}(p.first) ^ //create some hash for pair
  1344. (std::hash<std::string>{}(p.second) << 1);
  1345. }
  1346. };
  1347. std::unordered_map<std::pair<std::string, std::string>, int, pair_hash> bpe_ranks;
  1348. // set of all tokens that cause "end of generation"
  1349. std::set<llama_token> special_eog_ids;
  1350. std::unique_ptr<llm_tokenizer> tokenizer;
  1351. std::vector<char> precompiled_charsmap;
  1352. impl(const llama_vocab & vocab) : vocab(vocab) {
  1353. }
  1354. ~impl() = default;
  1355. void load(llama_model_loader & ml, const LLM_KV & kv);
  1356. enum llama_vocab_type get_type() const;
  1357. std::string type_name() const;
  1358. bool is_normal (llama_token id) const;
  1359. bool is_unknown (llama_token id) const;
  1360. bool is_control (llama_token id) const;
  1361. bool is_byte (llama_token id) const;
  1362. bool is_user_defined(llama_token id) const;
  1363. bool is_unused (llama_token id) const;
  1364. bool is_eog (llama_token id) const;
  1365. uint8_t token_to_byte(llama_token id) const;
  1366. llama_token_attr token_get_attr(llama_token id) const;
  1367. void init_tokenizer(enum llama_vocab_type type);
  1368. void tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const;
  1369. std::string token_to_piece_for_cache(
  1370. llama_token token,
  1371. bool special) const;
  1372. std::vector<llama_token> tokenize(
  1373. const std::string & raw_text,
  1374. bool add_special,
  1375. bool parse_special = false) const;
  1376. int32_t tokenize(
  1377. const char * text,
  1378. int32_t text_len,
  1379. llama_token * tokens,
  1380. int32_t n_tokens_max,
  1381. bool add_special,
  1382. bool parse_special) const;
  1383. // does not write null-terminator to buf
  1384. int32_t token_to_piece(
  1385. llama_token token,
  1386. char * buf,
  1387. int32_t length,
  1388. int32_t lstrip,
  1389. bool special) const;
  1390. // use cached data
  1391. const std::string & token_to_piece(llama_token token) const;
  1392. int32_t detokenize(
  1393. const llama_token * tokens,
  1394. int32_t n_tokens,
  1395. char * text,
  1396. int32_t text_len_max,
  1397. bool remove_special,
  1398. bool unparse_special) const;
  1399. std::string detokenize(
  1400. const std::vector<llama_token> & tokens,
  1401. bool special) const;
  1402. void print_info() const;
  1403. private:
  1404. const llama_vocab & vocab;
  1405. };
  1406. void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
  1407. struct gguf_context * ctx = ml.meta.get();
  1408. // determine vocab type
  1409. {
  1410. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  1411. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  1412. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, n_token_types, false);
  1413. if (tokenizer_model == "no_vocab" || tokenizer_model == "none") {
  1414. type = LLAMA_VOCAB_TYPE_NONE;
  1415. // default special tokens
  1416. special_bos_id = LLAMA_TOKEN_NULL;
  1417. special_eos_id = LLAMA_TOKEN_NULL;
  1418. special_unk_id = LLAMA_TOKEN_NULL;
  1419. special_sep_id = LLAMA_TOKEN_NULL;
  1420. special_pad_id = LLAMA_TOKEN_NULL;
  1421. special_mask_id = LLAMA_TOKEN_NULL;
  1422. linefeed_id = LLAMA_TOKEN_NULL;
  1423. // read vocab size from metadata
  1424. uint32_t n_tokens = 0;
  1425. if (ml.get_key(LLM_KV_VOCAB_SIZE, n_tokens, false)) {
  1426. LLAMA_LOG_WARN("%s: adding %u dummy tokens\n", __func__, n_tokens);
  1427. id_to_token.resize(n_tokens);
  1428. }
  1429. return;
  1430. }
  1431. if (tokenizer_model == "llama") {
  1432. type = LLAMA_VOCAB_TYPE_SPM;
  1433. // default special tokens
  1434. special_bos_id = 1;
  1435. special_eos_id = 2;
  1436. special_unk_id = 0;
  1437. special_sep_id = LLAMA_TOKEN_NULL;
  1438. special_pad_id = LLAMA_TOKEN_NULL;
  1439. special_mask_id = LLAMA_TOKEN_NULL;
  1440. } else if (tokenizer_model == "bert") {
  1441. type = LLAMA_VOCAB_TYPE_WPM;
  1442. // default special tokens
  1443. special_bos_id = 101;
  1444. special_eos_id = LLAMA_TOKEN_NULL;
  1445. special_unk_id = 100;
  1446. special_sep_id = 102;
  1447. special_pad_id = 0;
  1448. special_mask_id = 103;
  1449. add_sep = true;
  1450. } else if (tokenizer_model == "gpt2") {
  1451. type = LLAMA_VOCAB_TYPE_BPE;
  1452. // read bpe merges and populate bpe ranks
  1453. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1454. if (merges_keyidx == -1) {
  1455. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1456. }
  1457. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1458. for (int i = 0; i < n_merges; i++) {
  1459. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1460. //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  1461. std::string first;
  1462. std::string second;
  1463. const size_t pos = word.find(' ', 1);
  1464. if (pos != std::string::npos) {
  1465. first = word.substr(0, pos);
  1466. second = word.substr(pos + 1);
  1467. }
  1468. bpe_ranks.emplace(std::make_pair(first, second), i);
  1469. }
  1470. // default special tokens
  1471. special_bos_id = 11;
  1472. special_eos_id = 11;
  1473. special_unk_id = LLAMA_TOKEN_NULL;
  1474. special_sep_id = LLAMA_TOKEN_NULL;
  1475. special_pad_id = LLAMA_TOKEN_NULL;
  1476. special_mask_id = LLAMA_TOKEN_NULL;
  1477. } else if (tokenizer_model == "t5") {
  1478. type = LLAMA_VOCAB_TYPE_UGM;
  1479. // default special tokens
  1480. special_bos_id = LLAMA_TOKEN_NULL;
  1481. special_eos_id = 1;
  1482. special_unk_id = 2;
  1483. special_sep_id = LLAMA_TOKEN_NULL;
  1484. special_pad_id = 0;
  1485. special_mask_id = LLAMA_TOKEN_NULL;
  1486. const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
  1487. if (precompiled_charsmap_keyidx != -1) {
  1488. const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
  1489. GGML_ASSERT(pc_type == GGUF_TYPE_INT8 || pc_type == GGUF_TYPE_UINT8);
  1490. const size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
  1491. const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
  1492. precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
  1493. #ifdef IS_BIG_ENDIAN
  1494. // correct endiannes of data in precompiled_charsmap binary blob
  1495. uint32_t * xcda_blob_size = (uint32_t *) &precompiled_charsmap[0];
  1496. *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
  1497. assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
  1498. size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
  1499. uint32_t * xcda_array = (uint32_t *) &precompiled_charsmap[sizeof(uint32_t)];
  1500. for (size_t i = 0; i < xcda_array_size; ++i) {
  1501. xcda_array[i] = __builtin_bswap32(xcda_array[i]);
  1502. }
  1503. #endif
  1504. }
  1505. } else if (tokenizer_model == "rwkv") {
  1506. type = LLAMA_VOCAB_TYPE_RWKV;
  1507. // default special tokens
  1508. special_bos_id = LLAMA_TOKEN_NULL;
  1509. special_eos_id = LLAMA_TOKEN_NULL;
  1510. special_unk_id = LLAMA_TOKEN_NULL;
  1511. special_sep_id = LLAMA_TOKEN_NULL;
  1512. special_pad_id = LLAMA_TOKEN_NULL;
  1513. } else if (tokenizer_model == "plamo2") {
  1514. type = LLAMA_VOCAB_TYPE_PLAMO2;
  1515. // PLaMo-2 default special tokens (these will be overridden by model config)
  1516. special_bos_id = 1; // <|plamo:bos|>
  1517. special_eos_id = 2; // <|plamo:eos|>
  1518. special_unk_id = 0; // <|plamo:unk|>
  1519. special_sep_id = LLAMA_TOKEN_NULL;
  1520. special_pad_id = 3; // <|plamo:pad|>
  1521. special_mask_id = LLAMA_TOKEN_NULL;
  1522. } else {
  1523. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  1524. }
  1525. // for now, only BPE models have pre-tokenizers
  1526. if (type == LLAMA_VOCAB_TYPE_BPE) {
  1527. add_space_prefix = false;
  1528. clean_spaces = true;
  1529. if (tokenizer_pre.empty()) {
  1530. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  1531. LLAMA_LOG_WARN("%s: \n", __func__);
  1532. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  1533. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  1534. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  1535. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  1536. LLAMA_LOG_WARN("%s: \n", __func__);
  1537. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1538. } else if (tokenizer_pre == "default") {
  1539. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1540. } else if (
  1541. tokenizer_pre == "llama3" ||
  1542. tokenizer_pre == "llama-v3" ||
  1543. tokenizer_pre == "llama-bpe"||
  1544. tokenizer_pre == "falcon3" ||
  1545. tokenizer_pre == "falcon-h1" ||
  1546. tokenizer_pre == "pixtral" ||
  1547. tokenizer_pre == "midm-2.0" ||
  1548. tokenizer_pre == "lfm2") {
  1549. pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  1550. ignore_merges = true;
  1551. add_bos = true;
  1552. } else if (
  1553. tokenizer_pre == "deepseek-llm") {
  1554. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  1555. clean_spaces = false;
  1556. } else if (
  1557. tokenizer_pre == "deepseek-coder") {
  1558. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  1559. clean_spaces = false;
  1560. } else if (
  1561. tokenizer_pre == "deepseek-v3") {
  1562. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
  1563. clean_spaces = false;
  1564. } else if (
  1565. tokenizer_pre == "falcon") {
  1566. pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
  1567. } else if (
  1568. tokenizer_pre == "mpt") {
  1569. pre_type = LLAMA_VOCAB_PRE_TYPE_MPT;
  1570. } else if (
  1571. tokenizer_pre == "starcoder") {
  1572. pre_type = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  1573. } else if (
  1574. tokenizer_pre == "gpt-2" ||
  1575. tokenizer_pre == "phi-2" ||
  1576. tokenizer_pre == "jina-es" ||
  1577. tokenizer_pre == "jina-de" ||
  1578. tokenizer_pre == "gigachat" ||
  1579. tokenizer_pre == "jina-v2-es" ||
  1580. tokenizer_pre == "jina-v2-de" ||
  1581. tokenizer_pre == "a.x-4.0" ||
  1582. tokenizer_pre == "mellum") {
  1583. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1584. } else if (
  1585. tokenizer_pre == "jina-v1-en" ||
  1586. tokenizer_pre == "jina-v2-code" ||
  1587. tokenizer_pre == "roberta-bpe") {
  1588. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1589. add_sep = true;
  1590. } else if (
  1591. tokenizer_pre == "refact") {
  1592. pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
  1593. } else if (
  1594. tokenizer_pre == "command-r") {
  1595. pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  1596. clean_spaces = false;
  1597. } else if (
  1598. tokenizer_pre == "qwen2" ||
  1599. tokenizer_pre == "deepseek-r1-qwen") {
  1600. pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  1601. clean_spaces = false;
  1602. } else if (
  1603. tokenizer_pre == "stablelm2") {
  1604. pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  1605. } else if (
  1606. tokenizer_pre == "olmo") {
  1607. pre_type = LLAMA_VOCAB_PRE_TYPE_OLMO;
  1608. } else if (
  1609. tokenizer_pre == "dbrx") {
  1610. pre_type = LLAMA_VOCAB_PRE_TYPE_DBRX;
  1611. } else if (
  1612. tokenizer_pre == "smaug-bpe") {
  1613. pre_type = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  1614. } else if (
  1615. tokenizer_pre == "poro-chat") {
  1616. pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
  1617. clean_spaces = false;
  1618. } else if (
  1619. tokenizer_pre == "glm4" ||
  1620. tokenizer_pre == "chatglm-bpe") {
  1621. pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
  1622. special_bos_id = LLAMA_TOKEN_NULL;
  1623. } else if (
  1624. tokenizer_pre == "viking") {
  1625. pre_type = LLAMA_VOCAB_PRE_TYPE_VIKING;
  1626. clean_spaces = false;
  1627. } else if (
  1628. tokenizer_pre == "jais") {
  1629. pre_type = LLAMA_VOCAB_PRE_TYPE_JAIS;
  1630. } else if (
  1631. tokenizer_pre == "tekken") {
  1632. pre_type = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
  1633. clean_spaces = false;
  1634. ignore_merges = true;
  1635. add_bos = true;
  1636. } else if (
  1637. tokenizer_pre == "smollm") {
  1638. pre_type = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
  1639. clean_spaces = false;
  1640. } else if (
  1641. tokenizer_pre == "codeshell") {
  1642. pre_type = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
  1643. } else if (
  1644. tokenizer_pre == "bloom") {
  1645. pre_type = LLAMA_VOCAB_PRE_TYPE_BLOOM;
  1646. } else if (
  1647. tokenizer_pre == "gpt3-finnish") {
  1648. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
  1649. } else if (
  1650. tokenizer_pre == "exaone") {
  1651. pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
  1652. } else if (
  1653. tokenizer_pre == "exaone4") {
  1654. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1655. } else if (
  1656. tokenizer_pre == "chameleon") {
  1657. pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
  1658. add_bos = true;
  1659. clean_spaces = false;
  1660. } else if (
  1661. tokenizer_pre == "minerva-7b") {
  1662. pre_type = LLAMA_VOCAB_PRE_TYPE_MINERVA;
  1663. } else if (
  1664. tokenizer_pre == "megrez") {
  1665. pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  1666. } else if (
  1667. tokenizer_pre == "gpt-4o" ||
  1668. tokenizer_pre == "llama4") {
  1669. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
  1670. clean_spaces = false;
  1671. } else if (
  1672. tokenizer_pre == "superbpe") {
  1673. pre_type = LLAMA_VOCAB_PRE_TYPE_SUPERBPE;
  1674. clean_spaces = false;
  1675. } else if (
  1676. tokenizer_pre == "trillion") {
  1677. pre_type = LLAMA_VOCAB_PRE_TYPE_TRILLION;
  1678. clean_spaces = false;
  1679. } else if (
  1680. tokenizer_pre == "bailingmoe") {
  1681. pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
  1682. clean_spaces = false;
  1683. } else if (
  1684. tokenizer_pre == "seed-coder") {
  1685. pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
  1686. clean_spaces = false;
  1687. } else if (
  1688. tokenizer_pre == "hunyuan") {
  1689. pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
  1690. clean_spaces = false;
  1691. } else if (
  1692. tokenizer_pre == "hunyuan-dense") {
  1693. pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE;
  1694. clean_spaces = false;
  1695. } else if (
  1696. tokenizer_pre == "kimi-k2") {
  1697. pre_type = LLAMA_VOCAB_PRE_TYPE_KIMI_K2;
  1698. clean_spaces = false;
  1699. } else {
  1700. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  1701. }
  1702. } else if (type == LLAMA_VOCAB_TYPE_SPM) {
  1703. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1704. add_space_prefix = true;
  1705. clean_spaces = false;
  1706. add_bos = true;
  1707. add_eos = false;
  1708. } else if (type == LLAMA_VOCAB_TYPE_WPM) {
  1709. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1710. add_space_prefix = false;
  1711. clean_spaces = true;
  1712. add_bos = true;
  1713. add_eos = false;
  1714. add_sep = true;
  1715. } else if (type == LLAMA_VOCAB_TYPE_UGM) {
  1716. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1717. add_bos = false;
  1718. add_eos = true;
  1719. } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
  1720. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1721. add_space_prefix = false;
  1722. clean_spaces = false;
  1723. add_bos = false;
  1724. add_eos = false;
  1725. } else {
  1726. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1727. }
  1728. ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, add_space_prefix, false);
  1729. ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, remove_extra_whitespaces, false);
  1730. }
  1731. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1732. if (token_idx == -1) {
  1733. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1734. }
  1735. const float * scores = nullptr;
  1736. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1737. if (score_idx != -1) {
  1738. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1739. }
  1740. const int * toktypes = nullptr;
  1741. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1742. if (toktype_idx != -1) {
  1743. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1744. }
  1745. uint32_t n_tokens = gguf_get_arr_n(ctx, token_idx);
  1746. id_to_token.resize(n_tokens);
  1747. for (uint32_t i = 0; i < n_tokens; i++) {
  1748. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1749. if (word.empty()) {
  1750. LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
  1751. word = "[EMPTY_" + std::to_string(i) + "]";
  1752. }
  1753. token_to_id[word] = i;
  1754. max_token_len = std::max(max_token_len, (int) word.size());
  1755. auto & token_data = id_to_token[i];
  1756. token_data.text = std::move(word);
  1757. token_data.score = scores ? scores[i] : 0.0f;
  1758. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  1759. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  1760. switch(toktypes[i]) {
  1761. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  1762. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  1763. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  1764. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  1765. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  1766. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  1767. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  1768. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  1769. }
  1770. }
  1771. }
  1772. GGML_ASSERT(id_to_token.size() == token_to_id.size());
  1773. init_tokenizer(type);
  1774. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1775. if (type == LLAMA_VOCAB_TYPE_SPM) {
  1776. try {
  1777. linefeed_id = vocab.byte_to_token('\n');
  1778. } catch (const std::exception & e) {
  1779. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  1780. linefeed_id = special_pad_id;
  1781. }
  1782. } else if (type == LLAMA_VOCAB_TYPE_WPM) {
  1783. linefeed_id = special_pad_id;
  1784. } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
  1785. const std::vector<int> ids = tokenize("\n", false);
  1786. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1787. linefeed_id = ids[0];
  1788. } else {
  1789. const std::vector<int> ids = tokenize("\n", false);
  1790. //GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1791. if (ids.empty()) {
  1792. LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
  1793. linefeed_id = special_pad_id;
  1794. } else {
  1795. linefeed_id = ids[0];
  1796. }
  1797. }
  1798. // special tokens
  1799. {
  1800. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  1801. { LLM_KV_TOKENIZER_BOS_ID, special_bos_id },
  1802. { LLM_KV_TOKENIZER_EOS_ID, special_eos_id },
  1803. { LLM_KV_TOKENIZER_EOT_ID, special_eot_id },
  1804. { LLM_KV_TOKENIZER_EOM_ID, special_eom_id },
  1805. { LLM_KV_TOKENIZER_UNK_ID, special_unk_id },
  1806. { LLM_KV_TOKENIZER_SEP_ID, special_sep_id },
  1807. { LLM_KV_TOKENIZER_PAD_ID, special_pad_id },
  1808. { LLM_KV_TOKENIZER_MASK_ID, special_mask_id },
  1809. { LLM_KV_TOKENIZER_FIM_PRE_ID, special_fim_pre_id },
  1810. { LLM_KV_TOKENIZER_FIM_SUF_ID, special_fim_suf_id },
  1811. { LLM_KV_TOKENIZER_FIM_MID_ID, special_fim_mid_id },
  1812. { LLM_KV_TOKENIZER_FIM_PAD_ID, special_fim_pad_id },
  1813. { LLM_KV_TOKENIZER_FIM_REP_ID, special_fim_rep_id },
  1814. { LLM_KV_TOKENIZER_FIM_SEP_ID, special_fim_sep_id },
  1815. // deprecated
  1816. { LLM_KV_TOKENIZER_PREFIX_ID, special_fim_pre_id },
  1817. { LLM_KV_TOKENIZER_SUFFIX_ID, special_fim_suf_id },
  1818. { LLM_KV_TOKENIZER_MIDDLE_ID, special_fim_mid_id },
  1819. };
  1820. for (const auto & it : special_token_types) {
  1821. const std::string & key = kv(std::get<0>(it));
  1822. int32_t & id = std::get<1>(it);
  1823. uint32_t new_id;
  1824. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  1825. continue;
  1826. }
  1827. if (new_id >= id_to_token.size()) {
  1828. LLAMA_LOG_WARN("%s: bad special token: '%s' = %u, using default id %d\n",
  1829. __func__, key.c_str(), new_id, id);
  1830. } else {
  1831. id = new_id;
  1832. }
  1833. }
  1834. // Handle add_bos, add_eos and add_sep
  1835. {
  1836. bool temp = true;
  1837. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  1838. add_bos = temp;
  1839. }
  1840. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  1841. add_eos = temp;
  1842. }
  1843. if (ml.get_key(LLM_KV_TOKENIZER_ADD_SEP, temp, false)) {
  1844. add_sep = temp;
  1845. }
  1846. }
  1847. // auto-detect special tokens by text
  1848. // TODO: convert scripts should provide these tokens through the KV metadata LLM_KV_TOKENIZER_...
  1849. // for now, we apply this workaround to find the tokens based on their text
  1850. for (const auto & t : token_to_id) {
  1851. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  1852. if (special_eot_id == LLAMA_TOKEN_NULL) {
  1853. if (false
  1854. || t.first == "<|eot_id|>"
  1855. || t.first == "<|im_end|>"
  1856. || t.first == "<|end|>"
  1857. || t.first == "<end_of_turn>"
  1858. || t.first == "<|endoftext|>"
  1859. || t.first == "<EOT>"
  1860. || t.first == "_<EOT>"
  1861. || t.first == "<|end▁of▁sentence|>" // DeepSeek
  1862. || t.first == "<end_of_utterance>" // smoldocling
  1863. ) {
  1864. special_eot_id = t.second;
  1865. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1866. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1867. __func__, t.second, t.first.c_str());
  1868. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1869. }
  1870. }
  1871. }
  1872. // find EOM token: "<|eom_id|>"
  1873. if (special_eom_id == LLAMA_TOKEN_NULL) {
  1874. if (false
  1875. || t.first == "<|eom_id|>"
  1876. ) {
  1877. special_eom_id = t.second;
  1878. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1879. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1880. __func__, t.second, t.first.c_str());
  1881. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1882. }
  1883. }
  1884. }
  1885. // find FIM_PRE token: "<|fim_prefix|>", "<fim-prefix>", "<PRE>", etc.
  1886. if (special_fim_pre_id == LLAMA_TOKEN_NULL) {
  1887. if (false
  1888. || t.first == "<|fim_prefix|>" // Qwen
  1889. || t.first == "<fim-prefix>"
  1890. || t.first == "<fim_prefix>" // Granite
  1891. || t.first == "<|fim▁begin|>" // DeepSeek
  1892. || t.first == "<PRE>"
  1893. || t.first == "▁<PRE>" // CodeLlama
  1894. || t.first == "<|code_prefix|>" // GLM-4.5
  1895. ) {
  1896. special_fim_pre_id = t.second;
  1897. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1898. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1899. __func__, t.second, t.first.c_str());
  1900. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1901. }
  1902. }
  1903. }
  1904. // find FIM_SUF token: "<|fim_suffix|>", "<fim-suffix>", "<SUF>", etc.
  1905. if (special_fim_suf_id == LLAMA_TOKEN_NULL) {
  1906. if (false
  1907. || t.first == "<|fim_suffix|>" // Qwen
  1908. || t.first == "<fim-suffix>"
  1909. || t.first == "<fim_suffix>" // Granite
  1910. || t.first == "<|fim▁hole|>" // DeepSeek
  1911. || t.first == "<SUF>"
  1912. || t.first == "▁<SUF>" // CodeLlama
  1913. || t.first == "<|code_suffix|>" // GLM-4.5
  1914. ) {
  1915. special_fim_suf_id = t.second;
  1916. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1917. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1918. __func__, t.second, t.first.c_str());
  1919. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1920. }
  1921. }
  1922. }
  1923. // find FIM_MID token: "<|fim_middle|>", "<fim-middle>", "<MID>", etc.
  1924. if (special_fim_mid_id == LLAMA_TOKEN_NULL) {
  1925. if (false
  1926. || t.first == "<|fim_middle|>" // Qwen
  1927. || t.first == "<fim-middle>"
  1928. || t.first == "<fim_middle>" // Granite
  1929. || t.first == "<|fim▁end|>" // DeepSeek
  1930. || t.first == "<MID>"
  1931. || t.first == "▁<MID>" // CodeLlama
  1932. || t.first == "<|code_middle|>" // GLM-4.5
  1933. ) {
  1934. special_fim_mid_id = t.second;
  1935. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1936. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1937. __func__, t.second, t.first.c_str());
  1938. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1939. }
  1940. }
  1941. }
  1942. // find FIM_PAD token: "<|fim_pad|>", "<fim-pad>", "<PAD>", etc.
  1943. if (special_fim_pad_id == LLAMA_TOKEN_NULL) {
  1944. if (false
  1945. || t.first == "<|fim_pad|>" // Qwen
  1946. || t.first == "<fim-pad>"
  1947. || t.first == "<fim_pad>" // Granite
  1948. || t.first == "<PAD>"
  1949. ) {
  1950. special_fim_pad_id = t.second;
  1951. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1952. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1953. __func__, t.second, t.first.c_str());
  1954. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1955. }
  1956. }
  1957. }
  1958. // find FIM_REP token: "<|fim_repo|>", "<fim-repo>", "<REP>", etc.
  1959. if (special_fim_rep_id == LLAMA_TOKEN_NULL) {
  1960. if (false
  1961. || t.first == "<|fim_repo|>" // Qwen
  1962. || t.first == "<|repo_name|>"
  1963. || t.first == "<fim-repo>"
  1964. || t.first == "<REPO>"
  1965. || t.first == "<reponame>" // Granite
  1966. ) {
  1967. special_fim_rep_id = t.second;
  1968. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1969. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1970. __func__, t.second, t.first.c_str());
  1971. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1972. }
  1973. }
  1974. }
  1975. // find FIM_SEP token: "<|file_sep|>"
  1976. if (special_fim_sep_id == LLAMA_TOKEN_NULL) {
  1977. if (false
  1978. || t.first == "<|file_sep|>" // Qwen
  1979. ) {
  1980. special_fim_sep_id = t.second;
  1981. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1982. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1983. __func__, t.second, t.first.c_str());
  1984. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1985. }
  1986. }
  1987. }
  1988. }
  1989. // maintain a list of tokens that cause end-of-generation
  1990. // this is currently determined based on the token text, which is obviously not ideal
  1991. // ref: https://github.com/ggerganov/llama.cpp/issues/9606
  1992. special_eog_ids.clear();
  1993. if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) {
  1994. special_eog_ids.insert(special_fim_pad_id);
  1995. }
  1996. if (special_fim_rep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_rep_id) == 0) {
  1997. special_eog_ids.insert(special_fim_rep_id);
  1998. }
  1999. if (special_fim_sep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_sep_id) == 0) {
  2000. special_eog_ids.insert(special_fim_sep_id);
  2001. }
  2002. for (const auto & t : token_to_id) {
  2003. if (false
  2004. || t.first == "<|eot_id|>"
  2005. || t.first == "<|im_end|>"
  2006. || t.first == "<|end|>"
  2007. || t.first == "<|return|>" // o200k_harmony
  2008. || t.first == "<|call|>" // o200k_harmony
  2009. || t.first == "<end_of_turn>"
  2010. || t.first == "<|endoftext|>"
  2011. || t.first == "<|eom_id|>"
  2012. || t.first == "<EOT>"
  2013. || t.first == "_<EOT>"
  2014. || t.first == "<|end_of_text|>"
  2015. || t.first == "<end_of_utterance>" // smoldocling
  2016. ) {
  2017. special_eog_ids.insert(t.second);
  2018. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  2019. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  2020. __func__, t.second, t.first.c_str());
  2021. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  2022. }
  2023. } else {
  2024. // token is control, but not marked as EOG -> print a debug log
  2025. if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
  2026. LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
  2027. __func__, t.second, t.first.c_str());
  2028. }
  2029. }
  2030. }
  2031. // @ngxson : quick hack for gpt-oss, always render these tokens
  2032. for (const auto & t : token_to_id) {
  2033. if (t.first == "<|channel|>" || t.first == "<|message|>" || t.first == "<|start|>" || t.first == "<|constrain|>") {
  2034. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
  2035. }
  2036. }
  2037. // sanity checks
  2038. if (special_eos_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eos_id) == 0) {
  2039. special_eog_ids.insert(special_eos_id);
  2040. LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  2041. }
  2042. if (special_eot_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eot_id) == 0) {
  2043. special_eog_ids.insert(special_eot_id);
  2044. LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  2045. }
  2046. if (special_eom_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eom_id) == 0) {
  2047. special_eog_ids.insert(special_eom_id);
  2048. LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  2049. }
  2050. // TODO: workaround for o200k_harmony tokenizer: the "<|end|>" token should not be EOG
  2051. // we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens,
  2052. // we remove the "<|end|>" token from the EOG list
  2053. {
  2054. bool has_return = false;
  2055. bool has_call = false;
  2056. bool has_end = false;
  2057. llama_token end_id = LLAMA_TOKEN_NULL;
  2058. LLAMA_LOG_INFO("%s: printing all EOG tokens:\n", __func__);
  2059. for (auto tid : special_eog_ids) {
  2060. LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, id_to_token[tid].text.c_str());
  2061. if (id_to_token[tid].text == "<|return|>") {
  2062. has_return = true;
  2063. } else if (id_to_token[tid].text == "<|call|>") {
  2064. has_call = true;
  2065. } else if (id_to_token[tid].text == "<|end|>") {
  2066. has_end = true;
  2067. end_id = tid;
  2068. }
  2069. }
  2070. if (has_return && has_call && has_end) {
  2071. special_eog_ids.erase(end_id);
  2072. id_to_token[end_id].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
  2073. LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
  2074. }
  2075. }
  2076. }
  2077. // build special tokens cache
  2078. {
  2079. for (llama_token id = 0; id < (llama_token) n_tokens; ++id) {
  2080. if (id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
  2081. cache_special_tokens.push_back(id);
  2082. }
  2083. }
  2084. std::sort(cache_special_tokens.begin(), cache_special_tokens.end(),
  2085. [&] (const llama_token a, const llama_token b) {
  2086. return id_to_token[a].text.size() > id_to_token[b].text.size();
  2087. }
  2088. );
  2089. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t) cache_special_tokens.size());
  2090. }
  2091. // build token to piece cache
  2092. {
  2093. size_t size_cache = 0;
  2094. std::vector<std::string> cache(n_tokens);
  2095. for (uint32_t id = 0; id < n_tokens; ++id) {
  2096. cache[id] = token_to_piece_for_cache(id, true);
  2097. size_cache += cache[id].size();
  2098. }
  2099. std::swap(cache_token_to_piece, cache);
  2100. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  2101. }
  2102. // Handle per token attributes
  2103. //NOTE: Each model customizes per token attributes.
  2104. //NOTE: Per token attributes are missing from the GGUF file.
  2105. //TODO: Extract attributes from GGUF file.
  2106. {
  2107. auto _contains_any = [] (const std::string & str, const std::vector<std::string_view> & substrs) -> bool {
  2108. for (const auto & substr : substrs) {
  2109. if (str.find(substr) != std::string::npos) {
  2110. return true;
  2111. }
  2112. }
  2113. return false;
  2114. };
  2115. auto _set_tokenid_attr = [&] (const llama_token id, llama_token_attr attr, bool value) {
  2116. uint32_t current = id_to_token.at(id).attr;
  2117. current = value ? (current | attr) : (current & ~attr);
  2118. id_to_token[id].attr = (llama_token_attr) current;
  2119. };
  2120. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  2121. _set_tokenid_attr(token_to_id.at(token), attr, value);
  2122. };
  2123. std::string model_name;
  2124. std::string tokenizer_pre;
  2125. std::string general_arch;
  2126. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  2127. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  2128. ml.get_key(LLM_KV_GENERAL_ARCHITECTURE, general_arch, false);
  2129. // model name to lowercase
  2130. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  2131. [] (const std::string::value_type x) {
  2132. return std::tolower(x);
  2133. }
  2134. );
  2135. // set attributes by model/tokenizer/architecture name
  2136. if (false
  2137. || _contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})
  2138. || _contains_any(general_arch, {"nomic-bert-moe", "jina-bert-v3"})
  2139. ) {
  2140. if (token_to_id.count("<mask>") == 0) {
  2141. LLAMA_LOG_WARN("%s: Mask token is missing in vocab, please reconvert model!\n", __func__);
  2142. } else {
  2143. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  2144. }
  2145. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  2146. for (auto id : cache_special_tokens) {
  2147. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  2148. }
  2149. for (const auto * token : {"</s>"}) {
  2150. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  2151. }
  2152. for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) {
  2153. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  2154. }
  2155. }
  2156. }
  2157. }
  2158. enum llama_vocab_type llama_vocab::impl::get_type() const {
  2159. return type;
  2160. }
  2161. std::string llama_vocab::impl::type_name() const{
  2162. switch (type) {
  2163. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  2164. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  2165. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  2166. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  2167. case LLAMA_VOCAB_TYPE_UGM: return "UGM";
  2168. case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
  2169. case LLAMA_VOCAB_TYPE_PLAMO2: return "PLaMo2";
  2170. default: return "unknown";
  2171. }
  2172. }
  2173. bool llama_vocab::impl::is_normal(llama_token id) const {
  2174. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2175. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  2176. }
  2177. bool llama_vocab::impl::is_unknown(llama_token id) const {
  2178. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2179. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  2180. }
  2181. bool llama_vocab::impl::is_control(llama_token id) const {
  2182. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2183. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  2184. }
  2185. bool llama_vocab::impl::is_byte(llama_token id) const {
  2186. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2187. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  2188. }
  2189. bool llama_vocab::impl::is_user_defined(llama_token id) const {
  2190. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2191. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  2192. }
  2193. bool llama_vocab::impl::is_unused(llama_token id) const {
  2194. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2195. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
  2196. }
  2197. bool llama_vocab::impl::is_eog(llama_token id) const {
  2198. return id != LLAMA_TOKEN_NULL && special_eog_ids.count(id) > 0;
  2199. }
  2200. uint8_t llama_vocab::impl::token_to_byte(llama_token id) const {
  2201. GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
  2202. GGML_ASSERT(is_byte(id));
  2203. const auto & token_data = id_to_token.at(id);
  2204. switch (get_type()) {
  2205. case LLAMA_VOCAB_TYPE_SPM:
  2206. case LLAMA_VOCAB_TYPE_UGM: {
  2207. auto buf = token_data.text.substr(3, 2);
  2208. return strtol(buf.c_str(), NULL, 16);
  2209. }
  2210. case LLAMA_VOCAB_TYPE_BPE: {
  2211. GGML_ABORT("fatal error");
  2212. }
  2213. case LLAMA_VOCAB_TYPE_WPM: {
  2214. GGML_ABORT("fatal error");
  2215. }
  2216. default:
  2217. GGML_ABORT("fatal error");
  2218. }
  2219. }
  2220. llama_token_attr llama_vocab::impl::token_get_attr(llama_token id) const {
  2221. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2222. return id_to_token.at(id).attr;
  2223. }
  2224. void llama_vocab::impl::init_tokenizer(enum llama_vocab_type type) {
  2225. LLAMA_LOG_DEBUG("%s: initializing tokenizer for type %d\n", __func__, type);
  2226. switch (type) {
  2227. case LLAMA_VOCAB_TYPE_SPM:
  2228. tokenizer = std::make_unique<llm_tokenizer_spm>(vocab);
  2229. break;
  2230. case LLAMA_VOCAB_TYPE_BPE:
  2231. tokenizer = std::make_unique<llm_tokenizer_bpe>(vocab);
  2232. break;
  2233. case LLAMA_VOCAB_TYPE_WPM:
  2234. tokenizer = std::make_unique<llm_tokenizer_wpm>(vocab);
  2235. break;
  2236. case LLAMA_VOCAB_TYPE_UGM:
  2237. tokenizer = std::make_unique<llm_tokenizer_ugm>(vocab, precompiled_charsmap);
  2238. break;
  2239. case LLAMA_VOCAB_TYPE_RWKV:
  2240. tokenizer = std::make_unique<llm_tokenizer_rwkv>(vocab);
  2241. break;
  2242. case LLAMA_VOCAB_TYPE_PLAMO2:
  2243. tokenizer = std::make_unique<llm_tokenizer_plamo2>(vocab);
  2244. break;
  2245. default:
  2246. GGML_ABORT("unsupported vocab type");
  2247. }
  2248. }
  2249. //
  2250. // (de-) tokenize
  2251. //
  2252. // #define PRETOKENIZERDEBUG
  2253. void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const {
  2254. // for each special token
  2255. for (const llama_token special_id : cache_special_tokens) {
  2256. const auto & data = vocab.get_token_data(special_id);
  2257. const auto & text = data.text;
  2258. if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
  2259. // Ignore control and unknown tokens when parse_special == false
  2260. continue;
  2261. // User-defined tokens are still pre-tokenized before everything else
  2262. // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
  2263. // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
  2264. }
  2265. // for each text fragment
  2266. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  2267. while (it != buffer.end()) {
  2268. auto & fragment = (*it);
  2269. // if a fragment is text ( not yet processed )
  2270. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2271. const auto & raw_text = fragment.raw_text;
  2272. auto raw_text_base_offset = fragment.offset;
  2273. auto raw_text_base_length = fragment.length;
  2274. // loop over the text
  2275. while (true) {
  2276. // find the first occurrence of a given special token in this fragment
  2277. // passing offset argument only limit the "search area" but match coordinates
  2278. // are still relative to the source full raw_text
  2279. // string_view begins at pos 0 for the same reason
  2280. auto match = std::string_view(raw_text.data(), raw_text_base_offset + raw_text_base_length).find(text, raw_text_base_offset);
  2281. // no occurrences found, stop processing this fragment for a given special token
  2282. if (match == std::string::npos) break;
  2283. #ifdef PRETOKENIZERDEBUG
  2284. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  2285. #endif
  2286. auto source = std::distance(buffer.begin(), it);
  2287. // if match is further than base offset
  2288. // then we have some text to the left of it
  2289. if (match > raw_text_base_offset) {
  2290. // left
  2291. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  2292. int64_t left_reminder_length = match - raw_text_base_offset;
  2293. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  2294. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  2295. left_reminder_length--;
  2296. }
  2297. }
  2298. if (left_reminder_length > 0) {
  2299. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  2300. it++;
  2301. }
  2302. #ifdef PRETOKENIZERDEBUG
  2303. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  2304. #endif
  2305. }
  2306. // special token
  2307. buffer.emplace_after(it, special_id);
  2308. it++;
  2309. // right
  2310. if (match + text.length() < raw_text_base_offset + raw_text_base_length) {
  2311. int64_t right_reminder_offset = match + text.length();
  2312. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + text.length());
  2313. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  2314. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  2315. right_reminder_offset++;
  2316. right_reminder_length--;
  2317. }
  2318. }
  2319. if (right_reminder_length > 0) {
  2320. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  2321. it++;
  2322. }
  2323. #ifdef PRETOKENIZERDEBUG
  2324. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  2325. #endif
  2326. if (source == 0) {
  2327. buffer.erase_after(buffer.before_begin());
  2328. } else {
  2329. buffer.erase_after(std::next(buffer.begin(), (source - 1)));
  2330. }
  2331. // repeat for the right side
  2332. raw_text_base_offset = right_reminder_offset;
  2333. raw_text_base_length = right_reminder_length;
  2334. #ifdef PRETOKENIZERDEBUG
  2335. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  2336. #endif
  2337. } else {
  2338. if (source == 0) {
  2339. buffer.erase_after(buffer.before_begin());
  2340. } else {
  2341. buffer.erase_after(std::next(buffer.begin(), (source - 1)));
  2342. }
  2343. break;
  2344. }
  2345. }
  2346. }
  2347. it++;
  2348. }
  2349. }
  2350. }
  2351. // NOTE: avoid ever using this except for building the token_to_piece caches
  2352. std::string llama_vocab::impl::token_to_piece_for_cache(llama_token token, bool special) const {
  2353. std::string piece;
  2354. piece.resize(piece.capacity()); // using string internal cache
  2355. const int n_chars = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
  2356. if (n_chars < 0) {
  2357. piece.resize(-n_chars);
  2358. int check = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
  2359. GGML_ASSERT(check == -n_chars);
  2360. }
  2361. else {
  2362. piece.resize(n_chars);
  2363. }
  2364. return piece;
  2365. }
  2366. static void llama_escape_whitespace(std::string & text) {
  2367. replace_all(text, " ", "\xe2\x96\x81");
  2368. }
  2369. static void llama_unescape_whitespace(std::string & word) {
  2370. replace_all(word, "\xe2\x96\x81", " ");
  2371. }
  2372. static std::string llama_decode_text(const std::string & text) {
  2373. std::string decoded_text;
  2374. const auto cpts = unicode_cpts_from_utf8(text);
  2375. for (const auto cpt : cpts) {
  2376. const auto utf8 = unicode_cpt_to_utf8(cpt);
  2377. try {
  2378. decoded_text += unicode_utf8_to_byte(utf8);
  2379. } catch (const std::out_of_range & /*e*/) {
  2380. decoded_text += "[UNK_BYTE_0x";
  2381. for (const auto c : utf8) {
  2382. decoded_text += format("%02x", (uint8_t) c);
  2383. }
  2384. decoded_text += text + "]";
  2385. }
  2386. }
  2387. return decoded_text;
  2388. }
  2389. std::vector<llama_token> llama_vocab::impl::tokenize(
  2390. const std::string & raw_text,
  2391. bool add_special,
  2392. bool parse_special) const {
  2393. GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  2394. std::vector<llama_token> output;
  2395. std::forward_list<fragment_buffer_variant> fragment_buffer;
  2396. if (!raw_text.empty()) {
  2397. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  2398. tokenizer_st_partition(fragment_buffer, parse_special);
  2399. }
  2400. switch (get_type()) {
  2401. case LLAMA_VOCAB_TYPE_SPM:
  2402. {
  2403. // OG tokenizer behavior:
  2404. //
  2405. // tokenizer.encode('', add_special_tokens=True) returns [1]
  2406. // tokenizer.encode('', add_special_tokens=False) returns []
  2407. bool is_prev_special = true; // prefix with space if first token
  2408. if (add_special && add_bos) {
  2409. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2410. output.push_back(special_bos_id);
  2411. is_prev_special = true;
  2412. }
  2413. for (const auto & fragment : fragment_buffer) {
  2414. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2415. std::string text;
  2416. // prefix with space if previous is special
  2417. if (add_space_prefix && is_prev_special) {
  2418. text = ' ';
  2419. }
  2420. text += fragment.raw_text.substr(fragment.offset, fragment.length);
  2421. #ifdef PRETOKENIZERDEBUG
  2422. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2423. #endif
  2424. llama_escape_whitespace(text);
  2425. llm_tokenizer_spm_session session(vocab);
  2426. session.tokenize(text, output);
  2427. is_prev_special = false;
  2428. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2429. output.push_back(fragment.token);
  2430. is_prev_special = true;
  2431. }
  2432. }
  2433. if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
  2434. LLAMA_LOG_WARN(
  2435. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  2436. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  2437. "Are you sure this is what you want?\n", __FUNCTION__);
  2438. }
  2439. if (add_special && add_eos) {
  2440. GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
  2441. output.push_back(special_eos_id);
  2442. }
  2443. } break;
  2444. case LLAMA_VOCAB_TYPE_BPE:
  2445. {
  2446. llm_tokenizer_bpe_session session(vocab, *static_cast<const llm_tokenizer_bpe *>(tokenizer.get()));
  2447. // it calls some other methods that are not exist in llm_tokenizer,
  2448. // here just cast it to bpe tokenizer object
  2449. if (add_special) {
  2450. session.append_bos(output);
  2451. }
  2452. for (const auto & fragment : fragment_buffer) {
  2453. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2454. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2455. #ifdef PRETOKENIZERDEBUG
  2456. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2457. #endif
  2458. session.tokenize(text, output);
  2459. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2460. session.append(fragment.token, output);
  2461. }
  2462. }
  2463. if (add_special) {
  2464. session.append_eos(output);
  2465. session.check_double_bos_eos(output);
  2466. }
  2467. } break;
  2468. case LLAMA_VOCAB_TYPE_WPM:
  2469. {
  2470. if (add_special) {
  2471. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2472. output.push_back(special_bos_id);
  2473. }
  2474. llm_tokenizer_wpm_session session(vocab);
  2475. for (const auto & fragment : fragment_buffer) {
  2476. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2477. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2478. #ifdef PRETOKENIZERDEBUG
  2479. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2480. #endif
  2481. session.tokenize(text, output);
  2482. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2483. output.push_back(fragment.token);
  2484. }
  2485. }
  2486. if (add_special) {
  2487. GGML_ASSERT(special_sep_id != LLAMA_TOKEN_NULL);
  2488. output.push_back(special_sep_id);
  2489. }
  2490. } break;
  2491. case LLAMA_VOCAB_TYPE_UGM:
  2492. {
  2493. if (add_special && add_bos) {
  2494. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2495. output.push_back(special_bos_id);
  2496. }
  2497. llm_tokenizer_ugm_session session(vocab, *static_cast<const llm_tokenizer_ugm *>(tokenizer.get()));
  2498. for (const auto & fragment : fragment_buffer) {
  2499. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2500. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2501. #ifdef PRETOKENIZERDEBUG
  2502. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2503. #endif
  2504. session.tokenize(text, output);
  2505. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2506. output.push_back(fragment.token);
  2507. }
  2508. }
  2509. if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
  2510. LLAMA_LOG_WARN(
  2511. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  2512. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  2513. "Are you sure this is what you want?\n", __FUNCTION__);
  2514. }
  2515. if (add_special && add_eos) {
  2516. GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
  2517. output.push_back(special_eos_id);
  2518. }
  2519. } break;
  2520. case LLAMA_VOCAB_TYPE_RWKV:
  2521. {
  2522. llm_tokenizer_rwkv_session session(vocab, *static_cast<const llm_tokenizer_rwkv *>(tokenizer.get()));
  2523. for (const auto & fragment : fragment_buffer) {
  2524. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2525. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2526. #ifdef PRETOKENIZERDEBUG
  2527. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2528. #endif
  2529. session.tokenize(text, output);
  2530. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2531. output.push_back(fragment.token);
  2532. }
  2533. }
  2534. } break;
  2535. case LLAMA_VOCAB_TYPE_PLAMO2:
  2536. {
  2537. llm_tokenizer_plamo2_session session(*static_cast<const llm_tokenizer_plamo2 *>(tokenizer.get()));
  2538. for (const auto & fragment : fragment_buffer) {
  2539. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2540. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2541. #ifdef PRETOKENIZERDEBUG
  2542. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2543. #endif
  2544. session.tokenize(text, output);
  2545. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2546. output.push_back(fragment.token);
  2547. }
  2548. }
  2549. } break;
  2550. case LLAMA_VOCAB_TYPE_NONE:
  2551. GGML_ABORT("fatal error");
  2552. }
  2553. return output;
  2554. }
  2555. int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
  2556. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  2557. static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
  2558. const llama_token_attr attr = token_get_attr(token);
  2559. if (!special && (attr & attr_special)) {
  2560. return 0;
  2561. }
  2562. // copy piece chars to output text buffer
  2563. // skip up to 'lstrip' leading spaces before copying
  2564. auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
  2565. if (size >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
  2566. GGML_ABORT("invalid token size: %zu exceeds int32_t limit", size);
  2567. }
  2568. for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
  2569. token++;
  2570. size--;
  2571. }
  2572. if (length < (int32_t)size) {
  2573. return -(int32_t) size;
  2574. }
  2575. memcpy(buf, token, size);
  2576. return (int32_t) size;
  2577. };
  2578. // if we have a cache - use it
  2579. {
  2580. const auto & cache = cache_token_to_piece;
  2581. if (!cache.empty()) {
  2582. const auto & result = cache.at(token);
  2583. return _try_copy(result.data(), result.size());
  2584. }
  2585. }
  2586. if (0 <= token && token < (int32_t) id_to_token.size()) {
  2587. const std::string & token_text = id_to_token[token].text;
  2588. switch (get_type()) {
  2589. case LLAMA_VOCAB_TYPE_WPM:
  2590. case LLAMA_VOCAB_TYPE_SPM:
  2591. case LLAMA_VOCAB_TYPE_UGM: {
  2592. // NOTE: we accept all unsupported token types,
  2593. // suppressing them like CONTROL tokens.
  2594. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  2595. return _try_copy(token_text.data(), token_text.size());
  2596. }
  2597. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  2598. std::string result = token_text;
  2599. llama_unescape_whitespace(result);
  2600. return _try_copy(result.data(), result.size());
  2601. }
  2602. if (attr & LLAMA_TOKEN_ATTR_BYTE) {
  2603. char byte = (char) token_to_byte(token);
  2604. return _try_copy((char*) &byte, 1);
  2605. }
  2606. break;
  2607. }
  2608. case LLAMA_VOCAB_TYPE_BPE: {
  2609. // NOTE: we accept all unsupported token types,
  2610. // suppressing them like CONTROL tokens.
  2611. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  2612. return _try_copy(token_text.data(), token_text.size());
  2613. }
  2614. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  2615. std::string result = llama_decode_text(token_text);
  2616. return _try_copy(result.data(), result.size());
  2617. }
  2618. break;
  2619. }
  2620. case LLAMA_VOCAB_TYPE_RWKV: {
  2621. std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
  2622. // If we don't have enough space, return an error
  2623. if (result.size() > (size_t)length) {
  2624. return -(int)result.size();
  2625. }
  2626. memcpy(buf, result.data(), result.size());
  2627. return (int)result.size();
  2628. }
  2629. case LLAMA_VOCAB_TYPE_PLAMO2: {
  2630. // PLaMo-2 uses similar token handling as BPE/SPM
  2631. if (vocab.is_byte(token)) {
  2632. // Handle byte tokens like <0xXX>
  2633. if (token_text.length() == 6 && token_text.substr(0, 3) == "<0x" && token_text.back() == '>') {
  2634. int hex_val = std::stoi(token_text.substr(3, 2), nullptr, 16);
  2635. if (length < 1) {
  2636. return -1;
  2637. }
  2638. buf[0] = static_cast<char>(hex_val);
  2639. return 1;
  2640. }
  2641. }
  2642. // Normal token - just copy the text
  2643. std::string result = token_text;
  2644. return _try_copy(result.data(), result.size());
  2645. }
  2646. default:
  2647. GGML_ABORT("fatal error");
  2648. }
  2649. }
  2650. return 0;
  2651. }
  2652. const std::string & llama_vocab::impl::token_to_piece(llama_token token) const {
  2653. return cache_token_to_piece.at(token);
  2654. }
  2655. int32_t llama_vocab::impl::detokenize(
  2656. const llama_token * tokens,
  2657. int32_t n_tokens,
  2658. char * text,
  2659. int32_t text_len_max,
  2660. bool remove_special,
  2661. bool unparse_special) const {
  2662. if (type == LLAMA_VOCAB_TYPE_NONE) {
  2663. return 0;
  2664. }
  2665. GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  2666. int32_t avail = text_len_max;
  2667. int32_t total = 0;
  2668. // remove the leading space
  2669. bool remove_space = add_space_prefix;
  2670. if (remove_special && add_bos) {
  2671. if (n_tokens > 0 && tokens[0] == special_bos_id) {
  2672. remove_space = false;
  2673. n_tokens--;
  2674. tokens++;
  2675. }
  2676. }
  2677. if (remove_special && add_eos) {
  2678. if (n_tokens > 0 && tokens[n_tokens - 1] == special_eos_id) {
  2679. n_tokens--;
  2680. }
  2681. }
  2682. for (int32_t i = 0; i < n_tokens; ++i) {
  2683. GGML_ASSERT(avail >= 0);
  2684. int32_t n_chars = token_to_piece(tokens[i], text, avail, remove_space, unparse_special);
  2685. remove_space = false;
  2686. if (n_chars < 0) {
  2687. avail = 0;
  2688. total -= n_chars;
  2689. } else if (n_chars > 0) {
  2690. avail -= n_chars;
  2691. text += n_chars;
  2692. total += n_chars;
  2693. }
  2694. }
  2695. if (total > text_len_max) {
  2696. return -total;
  2697. }
  2698. if (clean_spaces) {
  2699. text -= total; // restart text
  2700. // first pass: characters ?!., //TODO: where do these characters come from?
  2701. const int32_t total1 = total;
  2702. total = total ? 1 : 0;
  2703. for (int32_t i = 1; i < total1; ++i) {
  2704. const char x = text[i];
  2705. if (text[i - 1] == ' ') {
  2706. if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
  2707. total--; // remove space
  2708. }
  2709. }
  2710. text[total++] = x;
  2711. }
  2712. // second pass: strip single apostrophe between spaces
  2713. const int32_t total2 = total;
  2714. total = total ? 1 : 0;
  2715. for (int32_t i = 1; i < total2; ++i) {
  2716. const char x = text[i];
  2717. if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
  2718. total--; // remove prev space
  2719. text[++i] = '\0'; // remove next space
  2720. }
  2721. text[total++] = x;
  2722. }
  2723. // third pass: apostrophe contractions //NOTE: this makes sense?
  2724. const int32_t total3 = total;
  2725. total = total ? 1 : 0;
  2726. for (int32_t i = 1; i < total3; ++i) {
  2727. const char x = text[i];
  2728. if (text[i - 1] == ' ') {
  2729. if (x == '\'' && i + 1 < total3) {
  2730. const char x1 = text[i + 1];
  2731. if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
  2732. //total--; // remove space
  2733. } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
  2734. total--; // remove space
  2735. } else if (i + 2 < total3) {
  2736. const char x2 = text[i + 2];
  2737. if ((x1 == 'l' && x2 == 'l')) { // " 'll"
  2738. //total--; // remove space
  2739. } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
  2740. total--; // remove space
  2741. } else {
  2742. //total--; // remove space
  2743. }
  2744. } else {
  2745. //total--; // remove space
  2746. }
  2747. }
  2748. }
  2749. text[total++] = x;
  2750. }
  2751. }
  2752. return total <= text_len_max ? total : -total;
  2753. }
  2754. void llama_vocab::impl::print_info() const {
  2755. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str());
  2756. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens());
  2757. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
  2758. // special tokens
  2759. if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token.at(special_bos_id).text.c_str() ); }
  2760. if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token.at(special_eos_id).text.c_str() ); }
  2761. if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token.at(special_eot_id).text.c_str() ); }
  2762. if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token.at(special_eom_id).text.c_str() ); }
  2763. if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token.at(special_unk_id).text.c_str() ); }
  2764. if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token.at(special_sep_id).text.c_str() ); }
  2765. if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token.at(special_pad_id).text.c_str() ); }
  2766. if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token.at(special_mask_id).text.c_str() ); }
  2767. if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token.at(linefeed_id).text.c_str() ); }
  2768. if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token.at(special_fim_pre_id).text.c_str() ); }
  2769. if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token.at(special_fim_suf_id).text.c_str() ); }
  2770. if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token.at(special_fim_mid_id).text.c_str() ); }
  2771. if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token.at(special_fim_pad_id).text.c_str() ); }
  2772. if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token.at(special_fim_rep_id).text.c_str() ); }
  2773. if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token.at(special_fim_sep_id).text.c_str() ); }
  2774. for (const auto & id : special_eog_ids) {
  2775. LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token.at(id).text.c_str() );
  2776. }
  2777. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
  2778. }
  2779. llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
  2780. }
  2781. llama_vocab::~llama_vocab() {
  2782. }
  2783. void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
  2784. pimpl->load(ml, kv);
  2785. }
  2786. std::string llama_vocab::get_tokenizer_model() const {
  2787. return pimpl->tokenizer_model;
  2788. }
  2789. std::string llama_vocab::get_tokenizer_pre() const {
  2790. return pimpl->tokenizer_pre;
  2791. }
  2792. enum llama_vocab_type llama_vocab::get_type() const {
  2793. return pimpl->type;
  2794. }
  2795. enum llama_vocab_pre_type llama_vocab::get_pre_type() const {
  2796. return pimpl->pre_type;
  2797. }
  2798. uint32_t llama_vocab::n_tokens() const {
  2799. return (uint32_t) pimpl->id_to_token.size();
  2800. }
  2801. uint32_t llama_vocab::n_token_types() const {
  2802. return (uint32_t) pimpl->n_token_types;
  2803. }
  2804. std::string llama_vocab::type_name() const{
  2805. return pimpl->type_name();
  2806. }
  2807. bool llama_vocab::is_normal(llama_token id) const {
  2808. return pimpl->is_normal(id);
  2809. }
  2810. bool llama_vocab::is_unknown(llama_token id) const {
  2811. return pimpl->is_unknown(id);
  2812. }
  2813. bool llama_vocab::is_control(llama_token id) const {
  2814. return pimpl->is_control(id);
  2815. }
  2816. bool llama_vocab::is_byte(llama_token id) const {
  2817. return pimpl->is_byte(id);
  2818. }
  2819. bool llama_vocab::is_user_defined(llama_token id) const {
  2820. return pimpl->is_user_defined(id);
  2821. }
  2822. bool llama_vocab::is_unused(llama_token id) const {
  2823. return pimpl->is_unused(id);
  2824. }
  2825. bool llama_vocab::is_eog(llama_token id) const {
  2826. return pimpl->is_eog(id);
  2827. }
  2828. uint8_t llama_vocab::token_to_byte(llama_token id) const {
  2829. return pimpl->token_to_byte(id);
  2830. }
  2831. llama_token llama_vocab::byte_to_token(uint8_t ch) const {
  2832. GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
  2833. static const char * hex = "0123456789ABCDEF";
  2834. switch (get_type()) {
  2835. case LLAMA_VOCAB_TYPE_SPM:
  2836. case LLAMA_VOCAB_TYPE_UGM: {
  2837. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  2838. auto token = pimpl->token_to_id.find(buf);
  2839. if (token != pimpl->token_to_id.end()) {
  2840. return (*token).second;
  2841. }
  2842. // Try to fall back to just the byte as a string
  2843. const char buf2[2] = { (char)ch, 0 };
  2844. return pimpl->token_to_id.at(buf2);
  2845. }
  2846. case LLAMA_VOCAB_TYPE_WPM:
  2847. case LLAMA_VOCAB_TYPE_BPE: {
  2848. return pimpl->token_to_id.at(unicode_byte_to_utf8(ch));
  2849. }
  2850. case LLAMA_VOCAB_TYPE_PLAMO2: {
  2851. // PLaMo-2 uses byte tokens in format <0xXX>
  2852. char hex_str[8];
  2853. snprintf(hex_str, sizeof(hex_str), "<0x%02X>", ch);
  2854. return pimpl->token_to_id.at(hex_str);
  2855. }
  2856. default:
  2857. GGML_ABORT("fatal error");
  2858. }
  2859. }
  2860. llama_token llama_vocab::text_to_token(const std::string & text) const {
  2861. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2862. auto it = pimpl->token_to_id.find(text);
  2863. if (it != pimpl->token_to_id.end()) {
  2864. return (*it).second;
  2865. }
  2866. return LLAMA_TOKEN_NULL;
  2867. }
  2868. const llama_vocab::token_data & llama_vocab::get_token_data(llama_token id) const {
  2869. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2870. return pimpl->id_to_token.at(id);
  2871. }
  2872. const char * llama_vocab::token_get_text(llama_token id) const {
  2873. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2874. return pimpl->id_to_token.at(id).text.c_str();
  2875. }
  2876. float llama_vocab::token_get_score(llama_token id) const {
  2877. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2878. return pimpl->id_to_token.at(id).score;
  2879. }
  2880. llama_token_attr llama_vocab::token_get_attr(llama_token id) const {
  2881. return pimpl->token_get_attr(id);
  2882. }
  2883. llama_token llama_vocab::token_bos() const {
  2884. return pimpl->special_bos_id;
  2885. }
  2886. llama_token llama_vocab::token_eos() const {
  2887. return pimpl->special_eos_id;
  2888. }
  2889. llama_token llama_vocab::token_eot() const {
  2890. return pimpl->special_eot_id;
  2891. }
  2892. llama_token llama_vocab::token_eom() const {
  2893. return pimpl->special_eom_id;
  2894. }
  2895. llama_token llama_vocab::token_unk() const {
  2896. return pimpl->special_unk_id;
  2897. }
  2898. llama_token llama_vocab::token_sep() const {
  2899. return pimpl->special_sep_id;
  2900. }
  2901. llama_token llama_vocab::token_nl() const {
  2902. return pimpl->linefeed_id;
  2903. }
  2904. llama_token llama_vocab::token_pad() const {
  2905. return pimpl->special_pad_id;
  2906. }
  2907. llama_token llama_vocab::token_prefix() const {
  2908. return pimpl->special_fim_pre_id;
  2909. }
  2910. llama_token llama_vocab::token_middle() const {
  2911. return pimpl->special_fim_mid_id;
  2912. }
  2913. llama_token llama_vocab::token_suffix() const {
  2914. return pimpl->special_fim_suf_id;
  2915. }
  2916. llama_token llama_vocab::token_fim_pre() const {
  2917. return pimpl->special_fim_pre_id;
  2918. }
  2919. llama_token llama_vocab::token_fim_suf() const {
  2920. return pimpl->special_fim_suf_id;
  2921. }
  2922. llama_token llama_vocab::token_fim_mid() const {
  2923. return pimpl->special_fim_mid_id;
  2924. }
  2925. llama_token llama_vocab::token_fim_pad() const {
  2926. return pimpl->special_fim_pad_id;
  2927. }
  2928. llama_token llama_vocab::token_fim_rep() const {
  2929. return pimpl->special_fim_rep_id;
  2930. }
  2931. llama_token llama_vocab::token_fim_sep() const {
  2932. return pimpl->special_fim_sep_id;
  2933. }
  2934. llama_token llama_vocab::token_mask() const {
  2935. return pimpl->special_mask_id;
  2936. }
  2937. bool llama_vocab::get_add_space_prefix() const {
  2938. return pimpl->add_space_prefix;
  2939. }
  2940. bool llama_vocab::get_add_bos() const {
  2941. return pimpl->add_bos;
  2942. }
  2943. bool llama_vocab::get_add_eos() const {
  2944. return pimpl->add_eos;
  2945. }
  2946. bool llama_vocab::get_add_sep() const {
  2947. return pimpl->add_sep;
  2948. }
  2949. bool llama_vocab::get_ignore_merges() const {
  2950. return pimpl->ignore_merges;
  2951. }
  2952. bool llama_vocab::get_clean_spaces() const {
  2953. return pimpl->clean_spaces;
  2954. }
  2955. bool llama_vocab::get_remove_extra_whitespaces() const {
  2956. return pimpl->remove_extra_whitespaces;
  2957. }
  2958. bool llama_vocab::get_escape_whitespaces() const {
  2959. return pimpl->escape_whitespaces;
  2960. }
  2961. bool llama_vocab::get_treat_whitespace_as_suffix() const {
  2962. return pimpl->treat_whitespace_as_suffix;
  2963. }
  2964. int llama_vocab::max_token_len() const {
  2965. return pimpl->max_token_len;
  2966. }
  2967. int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2968. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2969. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2970. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2971. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2972. auto it = pimpl->bpe_ranks.find(std::make_pair(token_left, token_right));
  2973. if (it == pimpl->bpe_ranks.end()) {
  2974. return -1;
  2975. }
  2976. return it->second;
  2977. }
  2978. std::vector<std::string> llama_vocab::get_bpe_merges() const {
  2979. std::vector<std::string> result(pimpl->bpe_ranks.size());
  2980. for (const auto & pair : pimpl->bpe_ranks) {
  2981. result[pair.second] = pair.first.first + " " + pair.first.second;
  2982. }
  2983. return result;
  2984. }
  2985. std::vector<char> llama_vocab::get_precompiled_charsmap() const {
  2986. return pimpl->precompiled_charsmap;
  2987. }
  2988. int32_t llama_vocab::tokenize(
  2989. const char * text,
  2990. int32_t text_len,
  2991. llama_token * tokens,
  2992. int32_t n_tokens_max,
  2993. bool add_special,
  2994. bool parse_special) const {
  2995. auto res = tokenize(std::string(text, text_len), add_special, parse_special);
  2996. if (res.size() >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
  2997. LLAMA_LOG_ERROR("%s: tokenization result size %zu exceeds int32_t limit\n", __func__, res.size());
  2998. return std::numeric_limits<int32_t>::min();
  2999. }
  3000. if (n_tokens_max < (int) res.size()) {
  3001. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  3002. return -((int) res.size());
  3003. }
  3004. for (size_t i = 0; i < res.size(); i++) {
  3005. tokens[i] = res[i];
  3006. }
  3007. return res.size();
  3008. }
  3009. std::vector<llama_token> llama_vocab::tokenize(
  3010. const std::string & raw_text,
  3011. bool add_special,
  3012. bool parse_special) const {
  3013. return pimpl->tokenize(raw_text, add_special, parse_special);
  3014. }
  3015. const std::string & llama_vocab::token_to_piece(llama_token token) const {
  3016. return pimpl->token_to_piece(token);
  3017. }
  3018. int32_t llama_vocab::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
  3019. return pimpl->token_to_piece(token, buf, length, lstrip, special);
  3020. }
  3021. int32_t llama_vocab::detokenize(
  3022. const llama_token * tokens,
  3023. int32_t n_tokens,
  3024. char * text,
  3025. int32_t text_len_max,
  3026. bool remove_special,
  3027. bool unparse_special) const {
  3028. return pimpl->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  3029. }
  3030. std::string llama_vocab::detokenize(const std::vector<llama_token> & tokens, bool special) const {
  3031. std::string text;
  3032. text.resize(std::max(text.capacity(), tokens.size()));
  3033. int32_t n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  3034. if (n_chars < 0) {
  3035. text.resize(-n_chars);
  3036. n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  3037. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  3038. }
  3039. text.resize(n_chars);
  3040. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  3041. return text;
  3042. }
  3043. void llama_vocab::print_info() const {
  3044. pimpl->print_info();
  3045. }
  3046. //
  3047. // interface implementation
  3048. //
  3049. int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab) {
  3050. return vocab->n_tokens();
  3051. }
  3052. // deprecated
  3053. int32_t llama_n_vocab(const struct llama_vocab * vocab) {
  3054. return llama_vocab_n_tokens(vocab);
  3055. }
  3056. enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab) {
  3057. return vocab->get_type();
  3058. }
  3059. const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token) {
  3060. return vocab->token_get_text(token);
  3061. }
  3062. float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token) {
  3063. return vocab->token_get_score(token);
  3064. }
  3065. enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token) {
  3066. return vocab->token_get_attr(token);
  3067. }
  3068. bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token) {
  3069. return vocab->is_eog(token);
  3070. }
  3071. bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token) {
  3072. return vocab->is_control(token);
  3073. }
  3074. llama_token llama_vocab_bos(const struct llama_vocab * vocab) {
  3075. return vocab->token_bos();
  3076. }
  3077. llama_token llama_vocab_eos(const struct llama_vocab * vocab) {
  3078. return vocab->token_eos();
  3079. }
  3080. llama_token llama_vocab_eot(const struct llama_vocab * vocab) {
  3081. return vocab->token_eot();
  3082. }
  3083. // deprecated
  3084. llama_token llama_vocab_cls(const struct llama_vocab * vocab) {
  3085. return vocab->token_bos();
  3086. }
  3087. llama_token llama_vocab_sep(const struct llama_vocab * vocab) {
  3088. return vocab->token_sep();
  3089. }
  3090. llama_token llama_vocab_nl (const struct llama_vocab * vocab) {
  3091. return vocab->token_nl();
  3092. }
  3093. llama_token llama_vocab_pad(const struct llama_vocab * vocab) {
  3094. return vocab->token_pad();
  3095. }
  3096. bool llama_vocab_get_add_bos(const struct llama_vocab * vocab) {
  3097. return vocab->get_add_bos();
  3098. }
  3099. bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
  3100. return vocab->get_add_eos();
  3101. }
  3102. bool llama_vocab_get_add_sep(const struct llama_vocab * vocab) {
  3103. return vocab->get_add_sep();
  3104. }
  3105. llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
  3106. return vocab->token_fim_pre();
  3107. }
  3108. llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab) {
  3109. return vocab->token_fim_suf();
  3110. }
  3111. llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab) {
  3112. return vocab->token_fim_mid();
  3113. }
  3114. llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab) {
  3115. return vocab->token_fim_pad();
  3116. }
  3117. llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab) {
  3118. return vocab->token_fim_rep();
  3119. }
  3120. llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab) {
  3121. return vocab->token_fim_sep();
  3122. }
  3123. llama_token llama_vocab_mask(const struct llama_vocab* vocab) {
  3124. return vocab->token_mask();
  3125. }
  3126. // deprecated
  3127. const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token) {
  3128. return llama_vocab_get_text(vocab, token);
  3129. }
  3130. // deprecated
  3131. float llama_token_get_score(const struct llama_vocab * vocab, llama_token token) {
  3132. return llama_vocab_get_score(vocab, token);
  3133. }
  3134. // deprecated
  3135. enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token) {
  3136. return llama_vocab_get_attr(vocab, token);
  3137. }
  3138. // deprecated
  3139. bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token) {
  3140. return llama_vocab_is_eog(vocab, token);
  3141. }
  3142. // deprecated
  3143. bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token) {
  3144. return llama_vocab_is_control(vocab, token);
  3145. }
  3146. // deprecated
  3147. llama_token llama_token_bos(const struct llama_vocab * vocab) {
  3148. return llama_vocab_bos(vocab);
  3149. }
  3150. // deprecated
  3151. llama_token llama_token_eos(const struct llama_vocab * vocab) {
  3152. return llama_vocab_eos(vocab);
  3153. }
  3154. // deprecated
  3155. llama_token llama_token_eot(const struct llama_vocab * vocab) {
  3156. return llama_vocab_eot(vocab);
  3157. }
  3158. // deprecated
  3159. llama_token llama_token_cls(const struct llama_vocab * vocab) {
  3160. //return llama_vocab_cls(vocab);
  3161. return llama_vocab_bos(vocab); // avoid deprecation warning
  3162. }
  3163. // deprecated
  3164. llama_token llama_token_sep(const struct llama_vocab * vocab) {
  3165. return llama_vocab_sep(vocab);
  3166. }
  3167. // deprecated
  3168. llama_token llama_token_nl (const struct llama_vocab * vocab) {
  3169. return llama_vocab_nl(vocab);
  3170. }
  3171. // deprecated
  3172. llama_token llama_token_pad(const struct llama_vocab * vocab) {
  3173. return llama_vocab_pad(vocab);
  3174. }
  3175. // deprecated
  3176. bool llama_add_bos_token(const struct llama_vocab * vocab) {
  3177. return llama_vocab_get_add_bos(vocab);
  3178. }
  3179. // deprecated
  3180. bool llama_add_eos_token(const struct llama_vocab * vocab) {
  3181. return llama_vocab_get_add_eos(vocab);
  3182. }
  3183. // deprecated
  3184. llama_token llama_token_fim_pre(const struct llama_vocab * vocab) {
  3185. return llama_vocab_fim_pre(vocab);
  3186. }
  3187. // deprecated
  3188. llama_token llama_token_fim_suf(const struct llama_vocab * vocab) {
  3189. return llama_vocab_fim_suf(vocab);
  3190. }
  3191. // deprecated
  3192. llama_token llama_token_fim_mid(const struct llama_vocab * vocab) {
  3193. return llama_vocab_fim_mid(vocab);
  3194. }
  3195. // deprecated
  3196. llama_token llama_token_fim_pad(const struct llama_vocab * vocab) {
  3197. return llama_vocab_fim_pad(vocab);
  3198. }
  3199. // deprecated
  3200. llama_token llama_token_fim_rep(const struct llama_vocab * vocab) {
  3201. return llama_vocab_fim_rep(vocab);
  3202. }
  3203. // deprecated
  3204. llama_token llama_token_fim_sep(const struct llama_vocab * vocab) {
  3205. return llama_vocab_fim_sep(vocab);
  3206. }
  3207. //
  3208. // tokenization
  3209. //
  3210. int32_t llama_tokenize(
  3211. const struct llama_vocab * vocab,
  3212. const char * text,
  3213. int32_t text_len,
  3214. llama_token * tokens,
  3215. int32_t n_tokens_max,
  3216. bool add_special,
  3217. bool parse_special) {
  3218. return vocab->tokenize(text, text_len, tokens, n_tokens_max, add_special, parse_special);
  3219. }
  3220. int32_t llama_token_to_piece(
  3221. const struct llama_vocab * vocab,
  3222. llama_token token,
  3223. char * buf,
  3224. int32_t length,
  3225. int32_t lstrip,
  3226. bool special) {
  3227. return vocab->token_to_piece(token, buf, length, lstrip, special);
  3228. }
  3229. int32_t llama_detokenize(
  3230. const struct llama_vocab * vocab,
  3231. const llama_token * tokens,
  3232. int32_t n_tokens,
  3233. char * text,
  3234. int32_t text_len_max,
  3235. bool remove_special,
  3236. bool unparse_special) {
  3237. return vocab->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  3238. }