llama-bench.cpp 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<typename T, typename F>
  41. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  42. std::vector<std::string> str_values;
  43. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  44. return str_values;
  45. }
  46. template<typename T>
  47. static T avg(const std::vector<T> & v) {
  48. if (v.empty()) {
  49. return 0;
  50. }
  51. T sum = std::accumulate(v.begin(), v.end(), T(0));
  52. return sum / (T)v.size();
  53. }
  54. template<typename T>
  55. static T stdev(const std::vector<T> & v) {
  56. if (v.size() <= 1) {
  57. return 0;
  58. }
  59. T mean = avg(v);
  60. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  61. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  62. return stdev;
  63. }
  64. static std::string get_cpu_info() {
  65. std::string id;
  66. #ifdef __linux__
  67. FILE * f = fopen("/proc/cpuinfo", "r");
  68. if (f) {
  69. char buf[1024];
  70. while (fgets(buf, sizeof(buf), f)) {
  71. if (strncmp(buf, "model name", 10) == 0) {
  72. char * p = strchr(buf, ':');
  73. if (p) {
  74. p++;
  75. while (std::isspace(*p)) {
  76. p++;
  77. }
  78. while (std::isspace(p[strlen(p) - 1])) {
  79. p[strlen(p) - 1] = '\0';
  80. }
  81. id = p;
  82. break;
  83. }
  84. }
  85. }
  86. fclose(f);
  87. }
  88. #endif
  89. // TODO: other platforms
  90. return id;
  91. }
  92. static std::string get_gpu_info() {
  93. std::string id;
  94. #ifdef GGML_USE_CUDA
  95. int count = ggml_backend_cuda_get_device_count();
  96. for (int i = 0; i < count; i++) {
  97. char buf[128];
  98. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  99. id += buf;
  100. if (i < count - 1) {
  101. id += "/";
  102. }
  103. }
  104. #endif
  105. #ifdef GGML_USE_SYCL
  106. int count = ggml_backend_sycl_get_device_count();
  107. for (int i = 0; i < count; i++) {
  108. char buf[128];
  109. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  110. id += buf;
  111. if (i < count - 1) {
  112. id += "/";
  113. }
  114. }
  115. #endif
  116. // TODO: other backends
  117. return id;
  118. }
  119. // command line params
  120. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  121. static const char * output_format_str(output_formats format) {
  122. switch (format) {
  123. case NONE: return "none";
  124. case CSV: return "csv";
  125. case JSON: return "json";
  126. case MARKDOWN: return "md";
  127. case SQL: return "sql";
  128. default: GGML_ASSERT(!"invalid output format");
  129. }
  130. }
  131. static bool output_format_from_str(const std::string & s, output_formats & format) {
  132. if (s == "none") {
  133. format = NONE;
  134. } else if (s == "csv") {
  135. format = CSV;
  136. } else if (s == "json") {
  137. format = JSON;
  138. } else if (s == "md") {
  139. format = MARKDOWN;
  140. } else if (s == "sql") {
  141. format = SQL;
  142. } else {
  143. return false;
  144. }
  145. return true;
  146. }
  147. static const char * split_mode_str(llama_split_mode mode) {
  148. switch (mode) {
  149. case LLAMA_SPLIT_MODE_NONE: return "none";
  150. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  151. case LLAMA_SPLIT_MODE_ROW: return "row";
  152. default: GGML_ASSERT(!"invalid split mode");
  153. }
  154. }
  155. static std::string pair_str(const std::pair<int, int> & p) {
  156. static char buf[32];
  157. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  158. return buf;
  159. }
  160. struct cmd_params {
  161. std::vector<std::string> model;
  162. std::vector<int> n_prompt;
  163. std::vector<int> n_gen;
  164. std::vector<std::pair<int, int>> n_pg;
  165. std::vector<int> n_batch;
  166. std::vector<int> n_ubatch;
  167. std::vector<ggml_type> type_k;
  168. std::vector<ggml_type> type_v;
  169. std::vector<int> n_threads;
  170. std::vector<int> n_gpu_layers;
  171. std::vector<std::string> rpc_servers;
  172. std::vector<llama_split_mode> split_mode;
  173. std::vector<int> main_gpu;
  174. std::vector<bool> no_kv_offload;
  175. std::vector<bool> flash_attn;
  176. std::vector<std::vector<float>> tensor_split;
  177. std::vector<bool> use_mmap;
  178. std::vector<bool> embeddings;
  179. ggml_numa_strategy numa;
  180. int reps;
  181. bool verbose;
  182. output_formats output_format;
  183. output_formats output_format_stderr;
  184. };
  185. static const cmd_params cmd_params_defaults = {
  186. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  187. /* n_prompt */ {512},
  188. /* n_gen */ {128},
  189. /* n_pg */ {},
  190. /* n_batch */ {2048},
  191. /* n_ubatch */ {512},
  192. /* type_k */ {GGML_TYPE_F16},
  193. /* type_v */ {GGML_TYPE_F16},
  194. /* n_threads */ {cpu_get_num_math()},
  195. /* n_gpu_layers */ {99},
  196. /* rpc_servers */ {""},
  197. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  198. /* main_gpu */ {0},
  199. /* no_kv_offload */ {false},
  200. /* flash_attn */ {false},
  201. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  202. /* use_mmap */ {true},
  203. /* embeddings */ {false},
  204. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  205. /* reps */ 5,
  206. /* verbose */ false,
  207. /* output_format */ MARKDOWN,
  208. /* output_format_stderr */ NONE,
  209. };
  210. static void print_usage(int /* argc */, char ** argv) {
  211. printf("usage: %s [options]\n", argv[0]);
  212. printf("\n");
  213. printf("options:\n");
  214. printf(" -h, --help\n");
  215. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  216. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  217. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  218. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  219. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  220. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  221. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  222. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  223. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  224. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  225. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  226. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  227. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  228. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  229. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  230. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  231. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  232. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  233. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  234. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  235. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  236. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  237. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  238. printf("\n");
  239. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  240. }
  241. static ggml_type ggml_type_from_name(const std::string & s) {
  242. if (s == "f16") {
  243. return GGML_TYPE_F16;
  244. }
  245. if (s == "q8_0") {
  246. return GGML_TYPE_Q8_0;
  247. }
  248. if (s == "q4_0") {
  249. return GGML_TYPE_Q4_0;
  250. }
  251. if (s == "q4_1") {
  252. return GGML_TYPE_Q4_1;
  253. }
  254. if (s == "q5_0") {
  255. return GGML_TYPE_Q5_0;
  256. }
  257. if (s == "q5_1") {
  258. return GGML_TYPE_Q5_1;
  259. }
  260. if (s == "iq4_nl") {
  261. return GGML_TYPE_IQ4_NL;
  262. }
  263. return GGML_TYPE_COUNT;
  264. }
  265. static cmd_params parse_cmd_params(int argc, char ** argv) {
  266. cmd_params params;
  267. std::string arg;
  268. bool invalid_param = false;
  269. const std::string arg_prefix = "--";
  270. const char split_delim = ',';
  271. params.verbose = cmd_params_defaults.verbose;
  272. params.output_format = cmd_params_defaults.output_format;
  273. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  274. params.reps = cmd_params_defaults.reps;
  275. params.numa = cmd_params_defaults.numa;
  276. for (int i = 1; i < argc; i++) {
  277. arg = argv[i];
  278. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  279. std::replace(arg.begin(), arg.end(), '_', '-');
  280. }
  281. if (arg == "-h" || arg == "--help") {
  282. print_usage(argc, argv);
  283. exit(0);
  284. } else if (arg == "-m" || arg == "--model") {
  285. if (++i >= argc) {
  286. invalid_param = true;
  287. break;
  288. }
  289. auto p = string_split<std::string>(argv[i], split_delim);
  290. params.model.insert(params.model.end(), p.begin(), p.end());
  291. } else if (arg == "-p" || arg == "--n-prompt") {
  292. if (++i >= argc) {
  293. invalid_param = true;
  294. break;
  295. }
  296. auto p = string_split<int>(argv[i], split_delim);
  297. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  298. } else if (arg == "-n" || arg == "--n-gen") {
  299. if (++i >= argc) {
  300. invalid_param = true;
  301. break;
  302. }
  303. auto p = string_split<int>(argv[i], split_delim);
  304. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  305. } else if (arg == "-pg") {
  306. if (++i >= argc) {
  307. invalid_param = true;
  308. break;
  309. }
  310. auto p = string_split<std::string>(argv[i], ',');
  311. if (p.size() != 2) {
  312. invalid_param = true;
  313. break;
  314. }
  315. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  316. } else if (arg == "-b" || arg == "--batch-size") {
  317. if (++i >= argc) {
  318. invalid_param = true;
  319. break;
  320. }
  321. auto p = string_split<int>(argv[i], split_delim);
  322. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  323. } else if (arg == "-ub" || arg == "--ubatch-size") {
  324. if (++i >= argc) {
  325. invalid_param = true;
  326. break;
  327. }
  328. auto p = string_split<int>(argv[i], split_delim);
  329. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  330. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  331. if (++i >= argc) {
  332. invalid_param = true;
  333. break;
  334. }
  335. auto p = string_split<std::string>(argv[i], split_delim);
  336. std::vector<ggml_type> types;
  337. for (const auto & t : p) {
  338. ggml_type gt = ggml_type_from_name(t);
  339. if (gt == GGML_TYPE_COUNT) {
  340. invalid_param = true;
  341. break;
  342. }
  343. types.push_back(gt);
  344. }
  345. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  346. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  347. if (++i >= argc) {
  348. invalid_param = true;
  349. break;
  350. }
  351. auto p = string_split<std::string>(argv[i], split_delim);
  352. std::vector<ggml_type> types;
  353. for (const auto & t : p) {
  354. ggml_type gt = ggml_type_from_name(t);
  355. if (gt == GGML_TYPE_COUNT) {
  356. invalid_param = true;
  357. break;
  358. }
  359. types.push_back(gt);
  360. }
  361. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  362. } else if (arg == "-t" || arg == "--threads") {
  363. if (++i >= argc) {
  364. invalid_param = true;
  365. break;
  366. }
  367. auto p = string_split<int>(argv[i], split_delim);
  368. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  369. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  370. if (++i >= argc) {
  371. invalid_param = true;
  372. break;
  373. }
  374. auto p = string_split<int>(argv[i], split_delim);
  375. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  376. } else if (arg == "-rpc" || arg == "--rpc") {
  377. if (++i >= argc) {
  378. invalid_param = true;
  379. break;
  380. }
  381. params.rpc_servers.push_back(argv[i]);
  382. } else if (arg == "-sm" || arg == "--split-mode") {
  383. if (++i >= argc) {
  384. invalid_param = true;
  385. break;
  386. }
  387. auto p = string_split<std::string>(argv[i], split_delim);
  388. std::vector<llama_split_mode> modes;
  389. for (const auto & m : p) {
  390. llama_split_mode mode;
  391. if (m == "none") {
  392. mode = LLAMA_SPLIT_MODE_NONE;
  393. } else if (m == "layer") {
  394. mode = LLAMA_SPLIT_MODE_LAYER;
  395. } else if (m == "row") {
  396. mode = LLAMA_SPLIT_MODE_ROW;
  397. } else {
  398. invalid_param = true;
  399. break;
  400. }
  401. modes.push_back(mode);
  402. }
  403. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  404. } else if (arg == "-mg" || arg == "--main-gpu") {
  405. if (++i >= argc) {
  406. invalid_param = true;
  407. break;
  408. }
  409. params.main_gpu = string_split<int>(argv[i], split_delim);
  410. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  411. if (++i >= argc) {
  412. invalid_param = true;
  413. break;
  414. }
  415. auto p = string_split<bool>(argv[i], split_delim);
  416. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  417. } else if (arg == "--numa") {
  418. if (++i >= argc) {
  419. invalid_param = true;
  420. break;
  421. } else {
  422. std::string value(argv[i]);
  423. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  424. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  425. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  426. else { invalid_param = true; break; }
  427. }
  428. } else if (arg == "-fa" || arg == "--flash-attn") {
  429. if (++i >= argc) {
  430. invalid_param = true;
  431. break;
  432. }
  433. auto p = string_split<bool>(argv[i], split_delim);
  434. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  435. } else if (arg == "-mmp" || arg == "--mmap") {
  436. if (++i >= argc) {
  437. invalid_param = true;
  438. break;
  439. }
  440. auto p = string_split<bool>(argv[i], split_delim);
  441. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  442. } else if (arg == "-embd" || arg == "--embeddings") {
  443. if (++i >= argc) {
  444. invalid_param = true;
  445. break;
  446. }
  447. auto p = string_split<bool>(argv[i], split_delim);
  448. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  449. } else if (arg == "-ts" || arg == "--tensor-split") {
  450. if (++i >= argc) {
  451. invalid_param = true;
  452. break;
  453. }
  454. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  455. // split string by ; and /
  456. const std::regex regex{R"([;/]+)"};
  457. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  458. std::vector<std::string> split_arg{it, {}};
  459. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  460. std::vector<float> tensor_split(llama_max_devices());
  461. for (size_t i = 0; i < llama_max_devices(); ++i) {
  462. if (i < split_arg.size()) {
  463. tensor_split[i] = std::stof(split_arg[i]);
  464. } else {
  465. tensor_split[i] = 0.0f;
  466. }
  467. }
  468. params.tensor_split.push_back(tensor_split);
  469. }
  470. } else if (arg == "-r" || arg == "--repetitions") {
  471. if (++i >= argc) {
  472. invalid_param = true;
  473. break;
  474. }
  475. params.reps = std::stoi(argv[i]);
  476. } else if (arg == "-o" || arg == "--output") {
  477. if (++i >= argc) {
  478. invalid_param = true;
  479. break;
  480. }
  481. invalid_param = !output_format_from_str(argv[i], params.output_format);
  482. } else if (arg == "-oe" || arg == "--output-err") {
  483. if (++i >= argc) {
  484. invalid_param = true;
  485. break;
  486. }
  487. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  488. } else if (arg == "-v" || arg == "--verbose") {
  489. params.verbose = true;
  490. } else {
  491. invalid_param = true;
  492. break;
  493. }
  494. }
  495. if (invalid_param) {
  496. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  497. print_usage(argc, argv);
  498. exit(1);
  499. }
  500. // set defaults
  501. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  502. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  503. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  504. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  505. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  506. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  507. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  508. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  509. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  510. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  511. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  512. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  513. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  514. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  515. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  516. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  517. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  518. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  519. return params;
  520. }
  521. struct cmd_params_instance {
  522. std::string model;
  523. int n_prompt;
  524. int n_gen;
  525. int n_batch;
  526. int n_ubatch;
  527. ggml_type type_k;
  528. ggml_type type_v;
  529. int n_threads;
  530. int n_gpu_layers;
  531. std::string rpc_servers;
  532. llama_split_mode split_mode;
  533. int main_gpu;
  534. bool no_kv_offload;
  535. bool flash_attn;
  536. std::vector<float> tensor_split;
  537. bool use_mmap;
  538. bool embeddings;
  539. llama_model_params to_llama_mparams() const {
  540. llama_model_params mparams = llama_model_default_params();
  541. mparams.n_gpu_layers = n_gpu_layers;
  542. if (!rpc_servers.empty()) {
  543. mparams.rpc_servers = rpc_servers.c_str();
  544. }
  545. mparams.split_mode = split_mode;
  546. mparams.main_gpu = main_gpu;
  547. mparams.tensor_split = tensor_split.data();
  548. mparams.use_mmap = use_mmap;
  549. return mparams;
  550. }
  551. bool equal_mparams(const cmd_params_instance & other) const {
  552. return model == other.model &&
  553. n_gpu_layers == other.n_gpu_layers &&
  554. rpc_servers == other.rpc_servers &&
  555. split_mode == other.split_mode &&
  556. main_gpu == other.main_gpu &&
  557. use_mmap == other.use_mmap &&
  558. tensor_split == other.tensor_split;
  559. }
  560. llama_context_params to_llama_cparams() const {
  561. llama_context_params cparams = llama_context_default_params();
  562. cparams.n_ctx = n_prompt + n_gen;
  563. cparams.n_batch = n_batch;
  564. cparams.n_ubatch = n_ubatch;
  565. cparams.type_k = type_k;
  566. cparams.type_v = type_v;
  567. cparams.offload_kqv = !no_kv_offload;
  568. cparams.flash_attn = flash_attn;
  569. cparams.embeddings = embeddings;
  570. return cparams;
  571. }
  572. };
  573. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  574. std::vector<cmd_params_instance> instances;
  575. // this ordering minimizes the number of times that each model needs to be reloaded
  576. for (const auto & m : params.model)
  577. for (const auto & nl : params.n_gpu_layers)
  578. for (const auto & rpc : params.rpc_servers)
  579. for (const auto & sm : params.split_mode)
  580. for (const auto & mg : params.main_gpu)
  581. for (const auto & ts : params.tensor_split)
  582. for (const auto & mmp : params.use_mmap)
  583. for (const auto & embd : params.embeddings)
  584. for (const auto & nb : params.n_batch)
  585. for (const auto & nub : params.n_ubatch)
  586. for (const auto & tk : params.type_k)
  587. for (const auto & tv : params.type_v)
  588. for (const auto & nkvo : params.no_kv_offload)
  589. for (const auto & fa : params.flash_attn)
  590. for (const auto & nt : params.n_threads) {
  591. for (const auto & n_prompt : params.n_prompt) {
  592. if (n_prompt == 0) {
  593. continue;
  594. }
  595. cmd_params_instance instance = {
  596. /* .model = */ m,
  597. /* .n_prompt = */ n_prompt,
  598. /* .n_gen = */ 0,
  599. /* .n_batch = */ nb,
  600. /* .n_ubatch = */ nub,
  601. /* .type_k = */ tk,
  602. /* .type_v = */ tv,
  603. /* .n_threads = */ nt,
  604. /* .n_gpu_layers = */ nl,
  605. /* .rpc_servers = */ rpc,
  606. /* .split_mode = */ sm,
  607. /* .main_gpu = */ mg,
  608. /* .no_kv_offload= */ nkvo,
  609. /* .flash_attn = */ fa,
  610. /* .tensor_split = */ ts,
  611. /* .use_mmap = */ mmp,
  612. /* .embeddings = */ embd,
  613. };
  614. instances.push_back(instance);
  615. }
  616. for (const auto & n_gen : params.n_gen) {
  617. if (n_gen == 0) {
  618. continue;
  619. }
  620. cmd_params_instance instance = {
  621. /* .model = */ m,
  622. /* .n_prompt = */ 0,
  623. /* .n_gen = */ n_gen,
  624. /* .n_batch = */ nb,
  625. /* .n_ubatch = */ nub,
  626. /* .type_k = */ tk,
  627. /* .type_v = */ tv,
  628. /* .n_threads = */ nt,
  629. /* .n_gpu_layers = */ nl,
  630. /* .rpc_servers = */ rpc,
  631. /* .split_mode = */ sm,
  632. /* .main_gpu = */ mg,
  633. /* .no_kv_offload= */ nkvo,
  634. /* .flash_attn = */ fa,
  635. /* .tensor_split = */ ts,
  636. /* .use_mmap = */ mmp,
  637. /* .embeddings = */ embd,
  638. };
  639. instances.push_back(instance);
  640. }
  641. for (const auto & n_pg : params.n_pg) {
  642. if (n_pg.first == 0 && n_pg.second == 0) {
  643. continue;
  644. }
  645. cmd_params_instance instance = {
  646. /* .model = */ m,
  647. /* .n_prompt = */ n_pg.first,
  648. /* .n_gen = */ n_pg.second,
  649. /* .n_batch = */ nb,
  650. /* .n_ubatch = */ nub,
  651. /* .type_k = */ tk,
  652. /* .type_v = */ tv,
  653. /* .n_threads = */ nt,
  654. /* .n_gpu_layers = */ nl,
  655. /* .rpc_servers = */ rpc,
  656. /* .split_mode = */ sm,
  657. /* .main_gpu = */ mg,
  658. /* .no_kv_offload= */ nkvo,
  659. /* .flash_attn = */ fa,
  660. /* .tensor_split = */ ts,
  661. /* .use_mmap = */ mmp,
  662. /* .embeddings = */ embd,
  663. };
  664. instances.push_back(instance);
  665. }
  666. }
  667. return instances;
  668. }
  669. struct test {
  670. static const std::string build_commit;
  671. static const int build_number;
  672. static const bool cuda;
  673. static const bool vulkan;
  674. static const bool kompute;
  675. static const bool metal;
  676. static const bool sycl;
  677. static const bool gpu_blas;
  678. static const bool blas;
  679. static const std::string cpu_info;
  680. static const std::string gpu_info;
  681. std::string model_filename;
  682. std::string model_type;
  683. uint64_t model_size;
  684. uint64_t model_n_params;
  685. int n_batch;
  686. int n_ubatch;
  687. int n_threads;
  688. bool has_rpc;
  689. ggml_type type_k;
  690. ggml_type type_v;
  691. int n_gpu_layers;
  692. llama_split_mode split_mode;
  693. int main_gpu;
  694. bool no_kv_offload;
  695. bool flash_attn;
  696. std::vector<float> tensor_split;
  697. bool use_mmap;
  698. bool embeddings;
  699. int n_prompt;
  700. int n_gen;
  701. std::string test_time;
  702. std::vector<uint64_t> samples_ns;
  703. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  704. model_filename = inst.model;
  705. char buf[128];
  706. llama_model_desc(lmodel, buf, sizeof(buf));
  707. model_type = buf;
  708. model_size = llama_model_size(lmodel);
  709. model_n_params = llama_model_n_params(lmodel);
  710. n_batch = inst.n_batch;
  711. n_ubatch = inst.n_ubatch;
  712. n_threads = inst.n_threads;
  713. has_rpc = !inst.rpc_servers.empty();
  714. type_k = inst.type_k;
  715. type_v = inst.type_v;
  716. n_gpu_layers = inst.n_gpu_layers;
  717. split_mode = inst.split_mode;
  718. main_gpu = inst.main_gpu;
  719. no_kv_offload = inst.no_kv_offload;
  720. flash_attn = inst.flash_attn;
  721. tensor_split = inst.tensor_split;
  722. use_mmap = inst.use_mmap;
  723. embeddings = inst.embeddings;
  724. n_prompt = inst.n_prompt;
  725. n_gen = inst.n_gen;
  726. // RFC 3339 date-time format
  727. time_t t = time(NULL);
  728. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  729. test_time = buf;
  730. (void) ctx;
  731. }
  732. uint64_t avg_ns() const {
  733. return ::avg(samples_ns);
  734. }
  735. uint64_t stdev_ns() const {
  736. return ::stdev(samples_ns);
  737. }
  738. std::vector<double> get_ts() const {
  739. int n_tokens = n_prompt + n_gen;
  740. std::vector<double> ts;
  741. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  742. return ts;
  743. }
  744. double avg_ts() const {
  745. return ::avg(get_ts());
  746. }
  747. double stdev_ts() const {
  748. return ::stdev(get_ts());
  749. }
  750. static std::string get_backend() {
  751. if (cuda) {
  752. return GGML_CUDA_NAME;
  753. }
  754. if (vulkan) {
  755. return "Vulkan";
  756. }
  757. if (kompute) {
  758. return "Kompute";
  759. }
  760. if (metal) {
  761. return "Metal";
  762. }
  763. if (sycl) {
  764. return GGML_SYCL_NAME;
  765. }
  766. if (gpu_blas) {
  767. return "GPU BLAS";
  768. }
  769. if (blas) {
  770. return "BLAS";
  771. }
  772. return "CPU";
  773. }
  774. static const std::vector<std::string> & get_fields() {
  775. static const std::vector<std::string> fields = {
  776. "build_commit", "build_number",
  777. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  778. "cpu_info", "gpu_info",
  779. "model_filename", "model_type", "model_size", "model_n_params",
  780. "n_batch", "n_ubatch",
  781. "n_threads", "type_k", "type_v",
  782. "n_gpu_layers", "split_mode",
  783. "main_gpu", "no_kv_offload", "flash_attn",
  784. "tensor_split", "use_mmap", "embeddings",
  785. "n_prompt", "n_gen", "test_time",
  786. "avg_ns", "stddev_ns",
  787. "avg_ts", "stddev_ts"
  788. };
  789. return fields;
  790. }
  791. enum field_type {STRING, BOOL, INT, FLOAT};
  792. static field_type get_field_type(const std::string & field) {
  793. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  794. field == "n_threads" ||
  795. field == "model_size" || field == "model_n_params" ||
  796. field == "n_gpu_layers" || field == "main_gpu" ||
  797. field == "n_prompt" || field == "n_gen" ||
  798. field == "avg_ns" || field == "stddev_ns") {
  799. return INT;
  800. }
  801. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  802. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  803. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  804. return BOOL;
  805. }
  806. if (field == "avg_ts" || field == "stddev_ts") {
  807. return FLOAT;
  808. }
  809. return STRING;
  810. }
  811. std::vector<std::string> get_values() const {
  812. std::string tensor_split_str;
  813. int max_nonzero = 0;
  814. for (size_t i = 0; i < llama_max_devices(); i++) {
  815. if (tensor_split[i] > 0) {
  816. max_nonzero = i;
  817. }
  818. }
  819. for (int i = 0; i <= max_nonzero; i++) {
  820. char buf[32];
  821. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  822. tensor_split_str += buf;
  823. if (i < max_nonzero) {
  824. tensor_split_str += "/";
  825. }
  826. }
  827. std::vector<std::string> values = {
  828. build_commit, std::to_string(build_number),
  829. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  830. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  831. cpu_info, gpu_info,
  832. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  833. std::to_string(n_batch), std::to_string(n_ubatch),
  834. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  835. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  836. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  837. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  838. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  839. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  840. std::to_string(avg_ts()), std::to_string(stdev_ts())
  841. };
  842. return values;
  843. }
  844. std::map<std::string, std::string> get_map() const {
  845. std::map<std::string, std::string> map;
  846. auto fields = get_fields();
  847. auto values = get_values();
  848. std::transform(fields.begin(), fields.end(), values.begin(),
  849. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  850. return map;
  851. }
  852. };
  853. const std::string test::build_commit = LLAMA_COMMIT;
  854. const int test::build_number = LLAMA_BUILD_NUMBER;
  855. const bool test::cuda = !!ggml_cpu_has_cuda();
  856. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  857. const bool test::kompute = !!ggml_cpu_has_kompute();
  858. const bool test::metal = !!ggml_cpu_has_metal();
  859. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  860. const bool test::blas = !!ggml_cpu_has_blas();
  861. const bool test::sycl = !!ggml_cpu_has_sycl();
  862. const std::string test::cpu_info = get_cpu_info();
  863. const std::string test::gpu_info = get_gpu_info();
  864. struct printer {
  865. virtual ~printer() {}
  866. FILE * fout;
  867. virtual void print_header(const cmd_params & params) { (void) params; }
  868. virtual void print_test(const test & t) = 0;
  869. virtual void print_footer() { }
  870. };
  871. struct csv_printer : public printer {
  872. static std::string escape_csv(const std::string & field) {
  873. std::string escaped = "\"";
  874. for (auto c : field) {
  875. if (c == '"') {
  876. escaped += "\"";
  877. }
  878. escaped += c;
  879. }
  880. escaped += "\"";
  881. return escaped;
  882. }
  883. void print_header(const cmd_params & params) override {
  884. std::vector<std::string> fields = test::get_fields();
  885. fprintf(fout, "%s\n", join(fields, ",").c_str());
  886. (void) params;
  887. }
  888. void print_test(const test & t) override {
  889. std::vector<std::string> values = t.get_values();
  890. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  891. fprintf(fout, "%s\n", join(values, ",").c_str());
  892. }
  893. };
  894. struct json_printer : public printer {
  895. bool first = true;
  896. static std::string escape_json(const std::string & value) {
  897. std::string escaped;
  898. for (auto c : value) {
  899. if (c == '"') {
  900. escaped += "\\\"";
  901. } else if (c == '\\') {
  902. escaped += "\\\\";
  903. } else if (c <= 0x1f) {
  904. char buf[8];
  905. snprintf(buf, sizeof(buf), "\\u%04x", c);
  906. escaped += buf;
  907. } else {
  908. escaped += c;
  909. }
  910. }
  911. return escaped;
  912. }
  913. static std::string format_value(const std::string & field, const std::string & value) {
  914. switch (test::get_field_type(field)) {
  915. case test::STRING:
  916. return "\"" + escape_json(value) + "\"";
  917. case test::BOOL:
  918. return value == "0" ? "false" : "true";
  919. default:
  920. return value;
  921. }
  922. }
  923. void print_header(const cmd_params & params) override {
  924. fprintf(fout, "[\n");
  925. (void) params;
  926. }
  927. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  928. assert(fields.size() == values.size());
  929. for (size_t i = 0; i < fields.size(); i++) {
  930. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  931. }
  932. }
  933. void print_test(const test & t) override {
  934. if (first) {
  935. first = false;
  936. } else {
  937. fprintf(fout, ",\n");
  938. }
  939. fprintf(fout, " {\n");
  940. print_fields(test::get_fields(), t.get_values());
  941. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  942. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  943. fprintf(fout, " }");
  944. fflush(fout);
  945. }
  946. void print_footer() override {
  947. fprintf(fout, "\n]\n");
  948. }
  949. };
  950. struct markdown_printer : public printer {
  951. std::vector<std::string> fields;
  952. static int get_field_width(const std::string & field) {
  953. if (field == "model") {
  954. return -30;
  955. }
  956. if (field == "t/s") {
  957. return 16;
  958. }
  959. if (field == "size" || field == "params") {
  960. return 10;
  961. }
  962. if (field == "n_gpu_layers") {
  963. return 3;
  964. }
  965. if (field == "n_threads") {
  966. return 7;
  967. }
  968. if (field == "n_batch") {
  969. return 7;
  970. }
  971. if (field == "n_ubatch") {
  972. return 8;
  973. }
  974. if (field == "type_k" || field == "type_v") {
  975. return 6;
  976. }
  977. if (field == "split_mode") {
  978. return 5;
  979. }
  980. if (field == "flash_attn") {
  981. return 2;
  982. }
  983. if (field == "use_mmap") {
  984. return 4;
  985. }
  986. if (field == "test") {
  987. return 13;
  988. }
  989. int width = std::max((int)field.length(), 10);
  990. if (test::get_field_type(field) == test::STRING) {
  991. return -width;
  992. }
  993. return width;
  994. }
  995. static std::string get_field_display_name(const std::string & field) {
  996. if (field == "n_gpu_layers") {
  997. return "ngl";
  998. }
  999. if (field == "split_mode") {
  1000. return "sm";
  1001. }
  1002. if (field == "n_threads") {
  1003. return "threads";
  1004. }
  1005. if (field == "no_kv_offload") {
  1006. return "nkvo";
  1007. }
  1008. if (field == "flash_attn") {
  1009. return "fa";
  1010. }
  1011. if (field == "use_mmap") {
  1012. return "mmap";
  1013. }
  1014. if (field == "embeddings") {
  1015. return "embd";
  1016. }
  1017. if (field == "tensor_split") {
  1018. return "ts";
  1019. }
  1020. return field;
  1021. }
  1022. void print_header(const cmd_params & params) override {
  1023. // select fields to print
  1024. fields.emplace_back("model");
  1025. fields.emplace_back("size");
  1026. fields.emplace_back("params");
  1027. fields.emplace_back("backend");
  1028. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1029. if (!is_cpu_backend) {
  1030. fields.emplace_back("n_gpu_layers");
  1031. }
  1032. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1033. fields.emplace_back("n_threads");
  1034. }
  1035. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1036. fields.emplace_back("n_batch");
  1037. }
  1038. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1039. fields.emplace_back("n_ubatch");
  1040. }
  1041. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1042. fields.emplace_back("type_k");
  1043. }
  1044. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1045. fields.emplace_back("type_v");
  1046. }
  1047. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1048. fields.emplace_back("main_gpu");
  1049. }
  1050. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1051. fields.emplace_back("split_mode");
  1052. }
  1053. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1054. fields.emplace_back("no_kv_offload");
  1055. }
  1056. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1057. fields.emplace_back("flash_attn");
  1058. }
  1059. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1060. fields.emplace_back("tensor_split");
  1061. }
  1062. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1063. fields.emplace_back("use_mmap");
  1064. }
  1065. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1066. fields.emplace_back("embeddings");
  1067. }
  1068. fields.emplace_back("test");
  1069. fields.emplace_back("t/s");
  1070. fprintf(fout, "|");
  1071. for (const auto & field : fields) {
  1072. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1073. }
  1074. fprintf(fout, "\n");
  1075. fprintf(fout, "|");
  1076. for (const auto & field : fields) {
  1077. int width = get_field_width(field);
  1078. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1079. }
  1080. fprintf(fout, "\n");
  1081. }
  1082. void print_test(const test & t) override {
  1083. std::map<std::string, std::string> vmap = t.get_map();
  1084. fprintf(fout, "|");
  1085. for (const auto & field : fields) {
  1086. std::string value;
  1087. char buf[128];
  1088. if (field == "model") {
  1089. value = t.model_type;
  1090. } else if (field == "size") {
  1091. if (t.model_size < 1024*1024*1024) {
  1092. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1093. } else {
  1094. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1095. }
  1096. value = buf;
  1097. } else if (field == "params") {
  1098. if (t.model_n_params < 1000*1000*1000) {
  1099. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1100. } else {
  1101. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1102. }
  1103. value = buf;
  1104. } else if (field == "backend") {
  1105. value = test::get_backend();
  1106. if (t.has_rpc) {
  1107. value += "+RPC";
  1108. }
  1109. } else if (field == "test") {
  1110. if (t.n_prompt > 0 && t.n_gen == 0) {
  1111. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1112. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1113. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1114. } else {
  1115. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1116. }
  1117. value = buf;
  1118. } else if (field == "t/s") {
  1119. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1120. value = buf;
  1121. } else if (vmap.find(field) != vmap.end()) {
  1122. value = vmap.at(field);
  1123. } else {
  1124. assert(false);
  1125. exit(1);
  1126. }
  1127. int width = get_field_width(field);
  1128. if (field == "t/s") {
  1129. // HACK: the utf-8 character is 2 bytes
  1130. width += 1;
  1131. }
  1132. fprintf(fout, " %*s |", width, value.c_str());
  1133. }
  1134. fprintf(fout, "\n");
  1135. }
  1136. void print_footer() override {
  1137. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1138. }
  1139. };
  1140. struct sql_printer : public printer {
  1141. static std::string get_sql_field_type(const std::string & field) {
  1142. switch (test::get_field_type(field)) {
  1143. case test::STRING:
  1144. return "TEXT";
  1145. case test::BOOL:
  1146. case test::INT:
  1147. return "INTEGER";
  1148. case test::FLOAT:
  1149. return "REAL";
  1150. default:
  1151. assert(false);
  1152. exit(1);
  1153. }
  1154. }
  1155. void print_header(const cmd_params & params) override {
  1156. std::vector<std::string> fields = test::get_fields();
  1157. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1158. for (size_t i = 0; i < fields.size(); i++) {
  1159. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1160. }
  1161. fprintf(fout, ");\n");
  1162. fprintf(fout, "\n");
  1163. (void) params;
  1164. }
  1165. void print_test(const test & t) override {
  1166. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1167. fprintf(fout, "VALUES (");
  1168. std::vector<std::string> values = t.get_values();
  1169. for (size_t i = 0; i < values.size(); i++) {
  1170. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1171. }
  1172. fprintf(fout, ");\n");
  1173. }
  1174. };
  1175. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1176. llama_set_n_threads(ctx, n_threads, n_threads);
  1177. const llama_model * model = llama_get_model(ctx);
  1178. const int32_t n_vocab = llama_n_vocab(model);
  1179. std::vector<llama_token> tokens(n_batch);
  1180. int n_processed = 0;
  1181. while (n_processed < n_prompt) {
  1182. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1183. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1184. for (int i = 1; i < n_tokens; i++) {
  1185. tokens[i] = std::rand() % n_vocab;
  1186. }
  1187. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1188. n_processed += n_tokens;
  1189. }
  1190. llama_synchronize(ctx);
  1191. }
  1192. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1193. llama_set_n_threads(ctx, n_threads, n_threads);
  1194. const llama_model * model = llama_get_model(ctx);
  1195. const int32_t n_vocab = llama_n_vocab(model);
  1196. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1197. for (int i = 0; i < n_gen; i++) {
  1198. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1199. llama_synchronize(ctx);
  1200. token = std::rand() % n_vocab;
  1201. }
  1202. }
  1203. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1204. (void) level;
  1205. (void) text;
  1206. (void) user_data;
  1207. }
  1208. static std::unique_ptr<printer> create_printer(output_formats format) {
  1209. switch (format) {
  1210. case NONE:
  1211. return nullptr;
  1212. case CSV:
  1213. return std::unique_ptr<printer>(new csv_printer());
  1214. case JSON:
  1215. return std::unique_ptr<printer>(new json_printer());
  1216. case MARKDOWN:
  1217. return std::unique_ptr<printer>(new markdown_printer());
  1218. case SQL:
  1219. return std::unique_ptr<printer>(new sql_printer());
  1220. }
  1221. GGML_ASSERT(false);
  1222. }
  1223. int main(int argc, char ** argv) {
  1224. // try to set locale for unicode characters in markdown
  1225. setlocale(LC_CTYPE, ".UTF-8");
  1226. #if !defined(NDEBUG)
  1227. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1228. #endif
  1229. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1230. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1231. #endif
  1232. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1233. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1234. #endif
  1235. cmd_params params = parse_cmd_params(argc, argv);
  1236. // initialize llama.cpp
  1237. if (!params.verbose) {
  1238. llama_log_set(llama_null_log_callback, NULL);
  1239. }
  1240. llama_backend_init();
  1241. llama_numa_init(params.numa);
  1242. // initialize printer
  1243. std::unique_ptr<printer> p = create_printer(params.output_format);
  1244. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1245. if (p) {
  1246. p->fout = stdout;
  1247. p->print_header(params);
  1248. }
  1249. if (p_err) {
  1250. p_err->fout = stderr;
  1251. p_err->print_header(params);
  1252. }
  1253. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1254. llama_model * lmodel = nullptr;
  1255. const cmd_params_instance * prev_inst = nullptr;
  1256. for (const auto & inst : params_instances) {
  1257. // keep the same model between tests when possible
  1258. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1259. if (lmodel) {
  1260. llama_free_model(lmodel);
  1261. }
  1262. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1263. if (lmodel == NULL) {
  1264. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1265. return 1;
  1266. }
  1267. prev_inst = &inst;
  1268. }
  1269. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1270. if (ctx == NULL) {
  1271. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1272. llama_free_model(lmodel);
  1273. return 1;
  1274. }
  1275. test t(inst, lmodel, ctx);
  1276. llama_kv_cache_clear(ctx);
  1277. // warmup run
  1278. if (t.n_prompt > 0) {
  1279. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1280. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1281. }
  1282. if (t.n_gen > 0) {
  1283. test_gen(ctx, 1, 0, t.n_threads);
  1284. }
  1285. for (int i = 0; i < params.reps; i++) {
  1286. llama_kv_cache_clear(ctx);
  1287. uint64_t t_start = get_time_ns();
  1288. if (t.n_prompt > 0) {
  1289. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1290. }
  1291. if (t.n_gen > 0) {
  1292. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1293. }
  1294. uint64_t t_ns = get_time_ns() - t_start;
  1295. t.samples_ns.push_back(t_ns);
  1296. }
  1297. if (p) {
  1298. p->print_test(t);
  1299. fflush(p->fout);
  1300. }
  1301. if (p_err) {
  1302. p_err->print_test(t);
  1303. fflush(p_err->fout);
  1304. }
  1305. llama_print_timings(ctx);
  1306. llama_free(ctx);
  1307. }
  1308. llama_free_model(lmodel);
  1309. if (p) {
  1310. p->print_footer();
  1311. }
  1312. if (p_err) {
  1313. p_err->print_footer();
  1314. }
  1315. llama_backend_free();
  1316. return 0;
  1317. }