tensor_mapping.py 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. ),
  32. # Token type embeddings
  33. MODEL_TENSOR.TOKEN_TYPES: (
  34. "embeddings.token_type_embeddings", # bert nomic-bert
  35. ),
  36. # Normalization of token embeddings
  37. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  38. "word_embeddings_layernorm", # bloom
  39. "embeddings.LayerNorm", # bert
  40. "emb_ln", # nomic-bert
  41. "transformer.norm", # openelm
  42. "rwkv.blocks.0.pre_ln", # rwkv
  43. "rwkv.blocks.0.pre_ln", # rwkv6
  44. "model.pre_ln", # rwkv7
  45. "model.layers.0.pre_norm", # rwkv7
  46. "backbone.norm", # wavtokenizer
  47. ),
  48. # Position embeddings
  49. MODEL_TENSOR.POS_EMBD: (
  50. "transformer.wpe", # gpt2
  51. "embeddings.position_embeddings", # bert
  52. "wpe", # gpt2
  53. ),
  54. # Output
  55. MODEL_TENSOR.OUTPUT: (
  56. "embed_out", # gptneox
  57. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  58. "output", # llama-pth bloom internlm2
  59. "word_embeddings_for_head", # persimmon
  60. "lm_head.linear", # phi2
  61. "output_layer", # chatglm
  62. "head", # rwkv
  63. "head.out", # wavtokenizer
  64. "lm_head", # llama4
  65. ),
  66. # Output norm
  67. MODEL_TENSOR.OUTPUT_NORM: (
  68. "gpt_neox.final_layer_norm", # gptneox
  69. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  70. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  71. "norm", # llama-pth
  72. "transformer.norm_f", # mpt dbrx
  73. "ln_f", # refact bloom qwen gpt2
  74. "language_model.encoder.final_layernorm", # persimmon
  75. "model.final_layernorm", # persimmon
  76. "lm_head.ln", # phi2
  77. "model.norm_f", # mamba-qbert
  78. "backbone.norm_f", # mamba
  79. "transformer.rms_norm", # Grok
  80. "encoder.final_layernorm", # chatglm
  81. "transformer.norm", # openelm
  82. "model.norm", # nemotron
  83. "rwkv.ln_out", # rwkv6
  84. "model.ln_out", # rwkv7
  85. "backbone.final_layer_norm", # wavtokenizer
  86. "model.norm", # llama4
  87. ),
  88. # Rope frequencies
  89. MODEL_TENSOR.ROPE_FREQS: (
  90. "rope.freqs", # llama-pth
  91. "rotary_pos_emb.inv_freq", # chatglm
  92. ),
  93. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  94. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  95. MODEL_TENSOR.CONV1D: (
  96. "backbone.embed", # roberta
  97. ),
  98. }
  99. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  100. # Attention norm
  101. MODEL_TENSOR.ATTN_NORM: (
  102. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  103. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  104. "transformer.blocks.{bid}.norm_1", # mpt
  105. "transformer.h.{bid}.input_layernorm", # falcon7b
  106. "h.{bid}.input_layernorm", # bloom
  107. "transformer.h.{bid}.ln_mlp", # falcon40b
  108. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  109. "layers.{bid}.attention_norm", # llama-pth
  110. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  111. "model.layers.{bid}.ln1", # yi
  112. "h.{bid}.ln_1", # gpt2
  113. "transformer.h.{bid}.ln", # phi2
  114. "model.layers.layers.{bid}.norm", # plamo
  115. "model.layers.{bid}.attention_norm", # internlm2
  116. "model.layers.{bid}.norm", # mamba-qbert
  117. "backbone.layers.{bid}.norm", # mamba
  118. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  119. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  120. "encoder.layers.{bid}.input_layernorm", # chatglm
  121. "transformer.layers.{bid}.attn_norm", # openelm
  122. "rwkv.blocks.{bid}.ln1", # rwkv6
  123. "model.layers.{bid}.ln1", # rwkv7
  124. "model.layers.{bid}.input_layernorm", # llama4
  125. "transformer_encoder.{bid}.attention_norm", # neobert
  126. ),
  127. # Attention norm 2
  128. MODEL_TENSOR.ATTN_NORM_2: (
  129. "transformer.h.{bid}.ln_attn", # falcon40b
  130. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  131. "rwkv.blocks.{bid}.ln2", # rwkv6
  132. "model.layers.{bid}.ln2", # rwkv7
  133. ),
  134. # Attention query-key-value
  135. MODEL_TENSOR.ATTN_QKV: (
  136. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  137. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  138. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  139. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  140. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  141. "h.{bid}.self_attention.query_key_value", # bloom
  142. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  143. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  144. "h.{bid}.attn.c_attn", # gpt2
  145. "transformer.h.{bid}.mixer.Wqkv", # phi2
  146. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  147. "encoder.layers.{bid}.mixer.Wqkv", # jina
  148. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  149. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  150. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  151. "transformer_encoder.{bid}.qkv", # neobert
  152. ),
  153. # Attention query
  154. MODEL_TENSOR.ATTN_Q: (
  155. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  156. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  157. "layers.{bid}.attention.wq", # llama-pth
  158. "encoder.layer.{bid}.attention.self.query", # bert
  159. "transformer.layer.{bid}.attention.q_lin", # distillbert
  160. "transformer.h.{bid}.attn.q_proj", # gpt-j
  161. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  162. "model.layers.{bid}.attention.wq", # internlm2
  163. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  164. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  165. "model.layers.{bid}.self_attn.q_proj", # llama4
  166. ),
  167. # Attention key
  168. MODEL_TENSOR.ATTN_K: (
  169. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  170. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  171. "layers.{bid}.attention.wk", # llama-pth
  172. "encoder.layer.{bid}.attention.self.key", # bert
  173. "transformer.layer.{bid}.attention.k_lin", # distillbert
  174. "transformer.h.{bid}.attn.k_proj", # gpt-j
  175. "transformer.h.{bid}.attn.k", # refact
  176. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  177. "model.layers.{bid}.attention.wk", # internlm2
  178. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  179. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  180. "model.layers.{bid}.self_attn.k_proj", # llama4
  181. ),
  182. # Attention value
  183. MODEL_TENSOR.ATTN_V: (
  184. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  185. "layers.{bid}.attention.wv", # llama-pth
  186. "encoder.layer.{bid}.attention.self.value", # bert
  187. "transformer.layer.{bid}.attention.v_lin", # distillbert
  188. "transformer.h.{bid}.attn.v_proj", # gpt-j
  189. "transformer.h.{bid}.attn.v", # refact
  190. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  191. "model.layers.{bid}.attention.wv", # internlm2
  192. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  193. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  194. "model.layers.{bid}.self_attn.v_proj", # llama4
  195. ),
  196. # Attention output
  197. MODEL_TENSOR.ATTN_OUT: (
  198. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  199. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  200. "transformer.blocks.{bid}.attn.out_proj", # mpt
  201. "transformer.h.{bid}.self_attention.dense", # falcon
  202. "h.{bid}.self_attention.dense", # bloom
  203. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  204. "model.layers.{bid}.self_attn.linear_attn", # deci
  205. "layers.{bid}.attention.wo", # llama-pth
  206. "encoder.layer.{bid}.attention.output.dense", # bert
  207. "transformer.layer.{bid}.attention.out_lin", # distillbert
  208. "transformer.h.{bid}.attn.out_proj", # gpt-j
  209. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  210. "model.layers.{bid}.self_attn.dense", # persimmon
  211. "h.{bid}.attn.c_proj", # gpt2
  212. "transformer.h.{bid}.mixer.out_proj", # phi2
  213. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  214. "model.layers.{bid}.attention.wo", # internlm2
  215. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  216. "encoder.layers.{bid}.mixer.out_proj", # jina
  217. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  218. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  219. "encoder.layers.{bid}.self_attention.dense", # chatglm
  220. "transformer.layers.{bid}.attn.out_proj", # openelm
  221. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  222. "model.layers.{bid}.self_attn.o_proj", # llama4
  223. "transformer_encoder.{bid}.wo", # neobert
  224. ),
  225. # Attention output norm
  226. MODEL_TENSOR.ATTN_OUT_NORM: (
  227. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  228. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  229. "encoder.layers.{bid}.norm1", # nomic-bert
  230. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  231. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  232. ),
  233. MODEL_TENSOR.ATTN_POST_NORM: (
  234. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  235. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  236. ),
  237. # Rotary embeddings
  238. MODEL_TENSOR.ATTN_ROT_EMBD: (
  239. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  240. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  241. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  242. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  243. ),
  244. # Feed-forward norm
  245. MODEL_TENSOR.FFN_NORM: (
  246. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  247. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  248. "h.{bid}.post_attention_layernorm", # bloom
  249. "transformer.blocks.{bid}.norm_2", # mpt
  250. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  251. "layers.{bid}.ffn_norm", # llama-pth
  252. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  253. "model.layers.{bid}.ln2", # yi
  254. "h.{bid}.ln_2", # gpt2
  255. "model.layers.{bid}.ffn_norm", # internlm2
  256. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  257. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  258. "transformer.layers.{bid}.ffn_norm", # openelm
  259. "model.layers.{bid}.post_attention_layernorm", # llama4
  260. "transformer_encoder.{bid}.ffn_norm", # neobert
  261. ),
  262. # Post feed-forward norm
  263. MODEL_TENSOR.FFN_PRE_NORM: (
  264. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  265. ),
  266. # Post feed-forward norm
  267. MODEL_TENSOR.FFN_POST_NORM: (
  268. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  269. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  270. ),
  271. MODEL_TENSOR.FFN_GATE_INP: (
  272. "layers.{bid}.feed_forward.gate", # mixtral
  273. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  274. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  275. "transformer.decoder_layer.{bid}.router", # Grok
  276. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  277. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  278. "model.layers.{bid}.feed_forward.router", # llama4
  279. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  280. ),
  281. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  282. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  283. ),
  284. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  285. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  286. ),
  287. # Feed-forward up
  288. MODEL_TENSOR.FFN_UP: (
  289. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  290. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  291. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  292. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  293. "h.{bid}.mlp.dense_h_to_4h", # bloom
  294. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  295. "layers.{bid}.feed_forward.w3", # llama-pth
  296. "encoder.layer.{bid}.intermediate.dense", # bert
  297. "transformer.layer.{bid}.ffn.lin1", # distillbert
  298. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  299. "transformer.h.{bid}.mlp.linear_3", # refact
  300. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  301. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  302. "transformer.h.{bid}.mlp.w1", # qwen
  303. "h.{bid}.mlp.c_fc", # gpt2
  304. "transformer.h.{bid}.mlp.fc1", # phi2
  305. "model.layers.{bid}.mlp.fc1", # phi2
  306. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  307. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  308. "model.layers.{bid}.feed_forward.w3", # internlm2
  309. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  310. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  311. "model.layers.{bid}.mlp.c_fc", # starcoder2
  312. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  313. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  314. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  315. "model.layers.{bid}.residual_mlp.w3", # arctic
  316. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  317. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  318. "model.layers.{bid}.feed_forward.up_proj", # llama4
  319. "transformer_encoder.{bid}.ffn.w12", # neobert
  320. ),
  321. MODEL_TENSOR.FFN_UP_EXP: (
  322. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  323. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  324. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  325. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  326. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  327. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  328. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  329. ),
  330. MODEL_TENSOR.FFN_UP_SHEXP: (
  331. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  332. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  333. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  334. ),
  335. # AWQ-activation gate
  336. MODEL_TENSOR.FFN_ACT: (
  337. "transformer.blocks.{bid}.ffn.act", # mpt
  338. ),
  339. # Feed-forward gate
  340. MODEL_TENSOR.FFN_GATE: (
  341. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  342. "layers.{bid}.feed_forward.w1", # llama-pth
  343. "transformer.h.{bid}.mlp.w2", # qwen
  344. "transformer.h.{bid}.mlp.c_fc2", # jais
  345. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  346. "model.layers.{bid}.feed_forward.w1", # internlm2
  347. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  348. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  349. "transformer.h.{bid}.mlp.linear_1", # refact
  350. "model.layers.{bid}.residual_mlp.w1", # arctic
  351. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  352. "model.layers.{bid}.feed_forward.gate_proj", # llama4
  353. ),
  354. MODEL_TENSOR.FFN_GATE_EXP: (
  355. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  356. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  357. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  358. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  359. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  360. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  361. ),
  362. MODEL_TENSOR.FFN_GATE_SHEXP: (
  363. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  364. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  365. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  366. ),
  367. # Feed-forward down
  368. MODEL_TENSOR.FFN_DOWN: (
  369. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  370. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  371. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  372. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  373. "h.{bid}.mlp.dense_4h_to_h", # bloom
  374. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  375. "layers.{bid}.feed_forward.w2", # llama-pth
  376. "encoder.layer.{bid}.output.dense", # bert
  377. "transformer.layer.{bid}.ffn.lin2", # distillbert
  378. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  379. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  380. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  381. "h.{bid}.mlp.c_proj", # gpt2
  382. "transformer.h.{bid}.mlp.fc2", # phi2
  383. "model.layers.{bid}.mlp.fc2", # phi2
  384. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  385. "model.layers.{bid}.feed_forward.w2", # internlm2
  386. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  387. "model.layers.{bid}.mlp.c_proj", # starcoder2
  388. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  389. "transformer.layers.{bid}.ffn.proj_2", # openelm
  390. "model.layers.{bid}.residual_mlp.w2", # arctic
  391. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  392. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  393. "model.layers.h.{bid}.mlp.c_proj", # exaone
  394. "model.layers.{bid}.feed_forward.down_proj", # llama4
  395. "transformer_encoder.{bid}.ffn.w3", # neobert
  396. ),
  397. MODEL_TENSOR.FFN_DOWN_EXP: (
  398. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  399. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  400. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  401. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  402. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  403. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  404. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  405. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  406. ),
  407. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  408. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  409. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  410. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  411. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  412. ),
  413. MODEL_TENSOR.ATTN_Q_NORM: (
  414. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  415. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  416. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  417. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  418. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  419. "transformer.layers.{bid}.attn.q_norm", # openelm
  420. ),
  421. MODEL_TENSOR.ATTN_K_NORM: (
  422. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  423. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  424. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  425. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  426. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  427. "transformer.layers.{bid}.attn.k_norm", # openelm
  428. ),
  429. MODEL_TENSOR.ROPE_FREQS: (
  430. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  431. ),
  432. MODEL_TENSOR.LAYER_OUT_NORM: (
  433. "encoder.layer.{bid}.output.LayerNorm", # bert
  434. "transformer.layer.{bid}.output_layer_norm", # distillbert
  435. "encoder.layers.{bid}.norm2", # nomic-bert
  436. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  437. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  438. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  439. ),
  440. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  441. "model.embed_tokens_per_layer", # gemma3n
  442. ),
  443. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  444. "model.per_layer_model_projection", # gemma3n
  445. ),
  446. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  447. "model.per_layer_projection_norm", # gemma3n
  448. ),
  449. MODEL_TENSOR.ALTUP_PROJ: (
  450. "model.altup_projections", # gemma3n
  451. ),
  452. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  453. "model.altup_unembed_projections", # gemma3n
  454. ),
  455. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  456. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  457. ),
  458. MODEL_TENSOR.PER_LAYER_PROJ: (
  459. "model.layers.{bid}.per_layer_projection", # gemma3n
  460. ),
  461. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  462. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  463. ),
  464. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  465. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  466. ),
  467. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  468. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  469. ),
  470. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  471. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  472. ),
  473. MODEL_TENSOR.ALTUP_ROUTER: (
  474. "model.layers.{bid}.altup.modality_router", # gemma3n
  475. ),
  476. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  477. "model.layers.{bid}.altup.router_norm", # gemma3n
  478. ),
  479. MODEL_TENSOR.LAUREL_L: (
  480. "model.layers.{bid}.laurel.linear_left", # gemma3n
  481. ),
  482. MODEL_TENSOR.LAUREL_R: (
  483. "model.layers.{bid}.laurel.linear_right", # gemma3n
  484. ),
  485. MODEL_TENSOR.LAUREL_POST_NORM: (
  486. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  487. ),
  488. MODEL_TENSOR.SSM_IN: (
  489. "model.layers.{bid}.in_proj",
  490. "backbone.layers.{bid}.mixer.in_proj",
  491. ),
  492. MODEL_TENSOR.SSM_CONV1D: (
  493. "model.layers.{bid}.conv1d",
  494. "backbone.layers.{bid}.mixer.conv1d",
  495. ),
  496. MODEL_TENSOR.SSM_X: (
  497. "model.layers.{bid}.x_proj",
  498. "backbone.layers.{bid}.mixer.x_proj",
  499. ),
  500. MODEL_TENSOR.SSM_DT: (
  501. "model.layers.{bid}.dt_proj",
  502. "backbone.layers.{bid}.mixer.dt_proj",
  503. ),
  504. MODEL_TENSOR.SSM_A: (
  505. "model.layers.{bid}.A_log",
  506. "backbone.layers.{bid}.mixer.A_log",
  507. ),
  508. MODEL_TENSOR.SSM_D: (
  509. "model.layers.{bid}.D",
  510. "backbone.layers.{bid}.mixer.D",
  511. ),
  512. MODEL_TENSOR.SSM_OUT: (
  513. "model.layers.{bid}.out_proj",
  514. "backbone.layers.{bid}.mixer.out_proj",
  515. ),
  516. MODEL_TENSOR.TIME_MIX_W0: (
  517. "model.layers.{bid}.attention.w0", # rwkv7
  518. ),
  519. MODEL_TENSOR.TIME_MIX_W1: (
  520. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  521. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  522. "model.layers.{bid}.attention.w1", # rwkv7
  523. ),
  524. MODEL_TENSOR.TIME_MIX_W2: (
  525. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  526. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  527. "model.layers.{bid}.attention.w2", # rwkv7
  528. ),
  529. MODEL_TENSOR.TIME_MIX_A0: (
  530. "model.layers.{bid}.attention.a0", # rwkv7
  531. ),
  532. MODEL_TENSOR.TIME_MIX_A1: (
  533. "model.layers.{bid}.attention.a1", # rwkv7
  534. ),
  535. MODEL_TENSOR.TIME_MIX_A2: (
  536. "model.layers.{bid}.attention.a2", # rwkv7
  537. ),
  538. MODEL_TENSOR.TIME_MIX_V0: (
  539. "model.layers.{bid}.attention.v0", # rwkv7
  540. ),
  541. MODEL_TENSOR.TIME_MIX_V1: (
  542. "model.layers.{bid}.attention.v1", # rwkv7
  543. ),
  544. MODEL_TENSOR.TIME_MIX_V2: (
  545. "model.layers.{bid}.attention.v2", # rwkv7
  546. ),
  547. MODEL_TENSOR.TIME_MIX_G1: (
  548. "model.layers.{bid}.attention.g1", # rwkv7
  549. ),
  550. MODEL_TENSOR.TIME_MIX_G2: (
  551. "model.layers.{bid}.attention.g2", # rwkv7
  552. ),
  553. MODEL_TENSOR.TIME_MIX_K_K: (
  554. "model.layers.{bid}.attention.k_k", # rwkv7
  555. ),
  556. MODEL_TENSOR.TIME_MIX_K_A: (
  557. "model.layers.{bid}.attention.k_a", # rwkv7
  558. ),
  559. MODEL_TENSOR.TIME_MIX_R_K: (
  560. "model.layers.{bid}.attention.r_k", # rwkv7
  561. ),
  562. MODEL_TENSOR.TIME_MIX_LERP_X: (
  563. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  564. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  565. ),
  566. MODEL_TENSOR.TIME_MIX_LERP_K: (
  567. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  568. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  569. ),
  570. MODEL_TENSOR.TIME_MIX_LERP_V: (
  571. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  572. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  573. ),
  574. MODEL_TENSOR.TIME_MIX_LERP_R: (
  575. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  576. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  577. ),
  578. MODEL_TENSOR.TIME_MIX_LERP_G: (
  579. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  580. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  581. ),
  582. MODEL_TENSOR.TIME_MIX_LERP_W: (
  583. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  584. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  585. ),
  586. MODEL_TENSOR.TIME_MIX_FIRST: (
  587. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  588. ),
  589. MODEL_TENSOR.TIME_MIX_DECAY: (
  590. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  591. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  592. ),
  593. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  594. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  595. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  596. ),
  597. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  598. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  599. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  600. ),
  601. MODEL_TENSOR.TIME_MIX_KEY: (
  602. "rwkv.blocks.{bid}.attention.key", # rwkv6
  603. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  604. "model.layers.{bid}.attention.key", # rwkv7
  605. "model.layers.{bid}.attention.k_proj", # rwkv7
  606. ),
  607. MODEL_TENSOR.TIME_MIX_VALUE: (
  608. "rwkv.blocks.{bid}.attention.value", # rwkv6
  609. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  610. "model.layers.{bid}.attention.value", # rwkv7
  611. "model.layers.{bid}.attention.v_proj", # rwkv7
  612. ),
  613. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  614. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  615. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  616. "model.layers.{bid}.attention.receptance", # rwkv7
  617. "model.layers.{bid}.attention.r_proj", # rwkv7
  618. ),
  619. MODEL_TENSOR.TIME_MIX_GATE: (
  620. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  621. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  622. ),
  623. MODEL_TENSOR.TIME_MIX_LN: (
  624. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  625. "model.layers.{bid}.attention.ln_x" # rwkv7
  626. ),
  627. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  628. "rwkv.blocks.{bid}.attention.output", # rwkv6
  629. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  630. "model.layers.{bid}.attention.output", # rwkv7
  631. "model.layers.{bid}.attention.o_proj", # rwkv7
  632. ),
  633. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  634. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  635. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  636. ),
  637. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  638. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  639. ),
  640. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  641. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  642. "model.layers.{bid}.feed_forward.key", # rwkv7
  643. ),
  644. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  645. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  646. ),
  647. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  648. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  649. "model.layers.{bid}.feed_forward.value", # rwkv7
  650. ),
  651. MODEL_TENSOR.ATTN_Q_A: (
  652. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  653. ),
  654. MODEL_TENSOR.ATTN_Q_B: (
  655. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  656. ),
  657. MODEL_TENSOR.ATTN_KV_A_MQA: (
  658. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  659. ),
  660. MODEL_TENSOR.ATTN_KV_B: (
  661. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  662. ),
  663. MODEL_TENSOR.ATTN_K_B: (
  664. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  665. ),
  666. MODEL_TENSOR.ATTN_V_B: (
  667. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  668. ),
  669. MODEL_TENSOR.ATTN_Q_A_NORM: (
  670. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  671. ),
  672. MODEL_TENSOR.ATTN_KV_A_NORM: (
  673. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  674. ),
  675. MODEL_TENSOR.ATTN_SUB_NORM: (
  676. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  677. ),
  678. MODEL_TENSOR.FFN_SUB_NORM: (
  679. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  680. ),
  681. MODEL_TENSOR.DEC_ATTN_NORM: (
  682. "decoder.block.{bid}.layer.0.layer_norm", # t5
  683. ),
  684. MODEL_TENSOR.DEC_ATTN_Q: (
  685. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  686. ),
  687. MODEL_TENSOR.DEC_ATTN_K: (
  688. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  689. ),
  690. MODEL_TENSOR.DEC_ATTN_V: (
  691. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  692. ),
  693. MODEL_TENSOR.DEC_ATTN_OUT: (
  694. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  695. ),
  696. MODEL_TENSOR.DEC_ATTN_REL_B: (
  697. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  698. ),
  699. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  700. "decoder.block.{bid}.layer.1.layer_norm", # t5
  701. ),
  702. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  703. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  704. ),
  705. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  706. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  707. ),
  708. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  709. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  710. ),
  711. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  712. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  713. ),
  714. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  715. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  716. ),
  717. MODEL_TENSOR.DEC_FFN_NORM: (
  718. "decoder.block.{bid}.layer.2.layer_norm", # t5
  719. ),
  720. MODEL_TENSOR.DEC_FFN_GATE: (
  721. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  722. ),
  723. MODEL_TENSOR.DEC_FFN_UP: (
  724. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  725. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  726. ),
  727. MODEL_TENSOR.DEC_FFN_DOWN: (
  728. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  729. ),
  730. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  731. "decoder.final_layer_norm", # t5
  732. ),
  733. MODEL_TENSOR.ENC_ATTN_NORM: (
  734. "encoder.block.{bid}.layer.0.layer_norm", # t5
  735. ),
  736. MODEL_TENSOR.ENC_ATTN_Q: (
  737. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  738. ),
  739. MODEL_TENSOR.ENC_ATTN_K: (
  740. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  741. ),
  742. MODEL_TENSOR.ENC_ATTN_V: (
  743. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  744. ),
  745. MODEL_TENSOR.ENC_ATTN_OUT: (
  746. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  747. ),
  748. MODEL_TENSOR.ENC_ATTN_REL_B: (
  749. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  750. ),
  751. MODEL_TENSOR.ENC_FFN_NORM: (
  752. "encoder.block.{bid}.layer.1.layer_norm", # t5
  753. ),
  754. MODEL_TENSOR.ENC_FFN_GATE: (
  755. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  756. ),
  757. MODEL_TENSOR.ENC_FFN_UP: (
  758. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  759. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  760. ),
  761. MODEL_TENSOR.ENC_FFN_DOWN: (
  762. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  763. ),
  764. ############################################################################
  765. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  766. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  767. "encoder.final_layer_norm", # t5
  768. "layer_norm", # neobert
  769. ),
  770. MODEL_TENSOR.CLS: (
  771. "classifier", # jina
  772. "classifier.dense", # roberta
  773. "pre_classifier", # distillbert
  774. "dense", # neobert
  775. ),
  776. MODEL_TENSOR.CLS_OUT: (
  777. "classifier.out_proj", # roberta
  778. ),
  779. #############################################################################
  780. MODEL_TENSOR.CONVNEXT_DW: (
  781. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  782. ),
  783. MODEL_TENSOR.CONVNEXT_NORM: (
  784. "backbone.convnext.{bid}.norm", # wavtokenizer
  785. ),
  786. MODEL_TENSOR.CONVNEXT_PW1: (
  787. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  788. ),
  789. MODEL_TENSOR.CONVNEXT_PW2: (
  790. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  791. ),
  792. MODEL_TENSOR.CONVNEXT_GAMMA: (
  793. "backbone.convnext.{bid}.gamma", # wavtokenizer
  794. ),
  795. MODEL_TENSOR.POSNET_CONV1: (
  796. "backbone.posnet.{bid}.conv1", # wavtokenizer
  797. ),
  798. MODEL_TENSOR.POSNET_CONV2: (
  799. "backbone.posnet.{bid}.conv2", # wavtokenizer
  800. ),
  801. MODEL_TENSOR.POSNET_NORM: (
  802. "backbone.posnet.{bid}.norm", # wavtokenizer
  803. ),
  804. MODEL_TENSOR.POSNET_NORM1: (
  805. "backbone.posnet.{bid}.norm1", # wavtokenizer
  806. ),
  807. MODEL_TENSOR.POSNET_NORM2: (
  808. "backbone.posnet.{bid}.norm2", # wavtokenizer
  809. ),
  810. MODEL_TENSOR.POSNET_ATTN_NORM: (
  811. "backbone.posnet.{bid}.norm", # wavtokenizer
  812. ),
  813. MODEL_TENSOR.POSNET_ATTN_Q: (
  814. "backbone.posnet.{bid}.q", # wavtokenizer
  815. ),
  816. MODEL_TENSOR.POSNET_ATTN_K: (
  817. "backbone.posnet.{bid}.k", # wavtokenizer
  818. ),
  819. MODEL_TENSOR.POSNET_ATTN_V: (
  820. "backbone.posnet.{bid}.v", # wavtokenizer
  821. ),
  822. MODEL_TENSOR.POSNET_ATTN_OUT: (
  823. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  824. ),
  825. #############################################################################
  826. ## Vision encoder
  827. MODEL_TENSOR.V_MMPROJ: (
  828. "multi_modal_projector.linear_{bid}",
  829. "visual.merger.mlp.{bid}", # qwen2vl
  830. ),
  831. MODEL_TENSOR.V_MMPROJ_FC: (
  832. "model.connector.modality_projection.proj", # SmolVLM
  833. ),
  834. MODEL_TENSOR.V_MMPROJ_MLP: (
  835. "model.mm_projector.mlp.mlp.{bid}",
  836. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  837. "mlp1.{bid}", # InternVL
  838. ),
  839. MODEL_TENSOR.V_MMPROJ_PEG: (
  840. "model.mm_projector.peg.peg.{bid}",
  841. ),
  842. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  843. "vision_tower.vision_model.embeddings.class_embedding",
  844. "vision_model.class_embedding", # llama 4
  845. ),
  846. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  847. "vision_tower.vision_model.embeddings.patch_embedding",
  848. "vpm.embeddings.patch_embedding",
  849. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  850. "vision_tower.patch_conv", # pixtral
  851. "vision_model.patch_embedding.linear", # llama 4
  852. "visual.patch_embed.proj", # qwen2vl
  853. ),
  854. MODEL_TENSOR.V_ENC_EMBD_POS: (
  855. "vision_tower.vision_model.embeddings.position_embedding",
  856. "vpm.embeddings.position_embedding",
  857. "model.vision_model.embeddings.position_embedding", # SmolVLM
  858. "vision_model.positional_embedding_vlm", # llama 4
  859. ),
  860. MODEL_TENSOR.V_ENC_ATTN_Q: (
  861. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  862. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  863. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  864. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  865. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  866. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  867. ),
  868. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  869. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  870. ),
  871. MODEL_TENSOR.V_ENC_ATTN_K: (
  872. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  873. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  874. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  875. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  876. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  877. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  878. ),
  879. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  880. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  881. ),
  882. MODEL_TENSOR.V_ENC_ATTN_V: (
  883. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  884. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  885. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  886. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  887. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  888. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  889. ),
  890. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  891. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  892. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  893. "vpm.encoder.layers.{bid}.layer_norm1",
  894. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  895. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  896. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  897. "visual.blocks.{bid}.norm1", # qwen2vl
  898. ),
  899. MODEL_TENSOR.V_ENC_ATTN_O: (
  900. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  901. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  902. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  903. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  904. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  905. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  906. "visual.blocks.{bid}.attn.proj", # qwen2vl
  907. ),
  908. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  909. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  910. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  911. "vpm.encoder.layers.{bid}.layer_norm2",
  912. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  913. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  914. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  915. "visual.blocks.{bid}.norm2", # qwen2vl
  916. ),
  917. MODEL_TENSOR.V_ENC_FFN_UP: (
  918. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  919. "vpm.encoder.layers.{bid}.mlp.fc1",
  920. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  921. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  922. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  923. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  924. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  925. ),
  926. MODEL_TENSOR.V_ENC_FFN_GATE: (
  927. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  928. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  929. ),
  930. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  931. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  932. "vpm.encoder.layers.{bid}.mlp.fc2",
  933. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  934. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  935. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  936. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  937. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  938. ),
  939. MODEL_TENSOR.V_LAYER_SCALE_1: (
  940. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  941. ),
  942. MODEL_TENSOR.V_LAYER_SCALE_2: (
  943. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  944. ),
  945. MODEL_TENSOR.V_PRE_NORM: (
  946. "vision_tower.vision_model.pre_layrnorm",
  947. "vision_tower.ln_pre", # pixtral
  948. "vision_model.layernorm_pre", # llama4
  949. ),
  950. MODEL_TENSOR.V_POST_NORM: (
  951. "vision_tower.vision_model.post_layernorm",
  952. "model.vision_model.post_layernorm", # SmolVLM
  953. "vision_model.layernorm_post", # llama4
  954. "visual.merger.ln_q", # qwen2vl
  955. ),
  956. MODEL_TENSOR.V_MM_INP_PROJ: (
  957. "multi_modal_projector.mm_input_projection",
  958. ),
  959. MODEL_TENSOR.V_MM_INP_NORM: (
  960. "multi_modal_projector.norm",
  961. ),
  962. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  963. "multi_modal_projector.mm_soft_emb_norm",
  964. ),
  965. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  966. "resampler.pos_embed_k",
  967. ),
  968. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  969. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  970. ),
  971. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  972. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  973. ),
  974. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  975. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  976. ),
  977. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  978. "resampler.attn.out_proj",
  979. ),
  980. MODEL_TENSOR.V_RESMPL_KV: (
  981. "resampler.kv_proj",
  982. ),
  983. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  984. "resampler.ln_post",
  985. ),
  986. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  987. "resampler.ln_kv",
  988. ),
  989. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  990. "resampler.ln_q",
  991. ),
  992. MODEL_TENSOR.V_RESMPL_PROJ: (
  993. "resampler.proj",
  994. ),
  995. MODEL_TENSOR.V_RESMPL_QUERY: (
  996. "resampler.query",
  997. ),
  998. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  999. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1000. ),
  1001. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1002. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1003. ),
  1004. # audio (mtmd)
  1005. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1006. "audio_tower.embed_positions", # ultravox
  1007. ),
  1008. MODEL_TENSOR.A_ENC_CONV1D: (
  1009. "audio_tower.conv{bid}", # ultravox
  1010. ),
  1011. MODEL_TENSOR.A_PRE_NORM: (),
  1012. MODEL_TENSOR.A_POST_NORM: (
  1013. "audio_tower.layer_norm", # ultravox
  1014. "audio_tower.ln_post", # qwen2omni
  1015. ),
  1016. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1017. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1018. ),
  1019. MODEL_TENSOR.A_ENC_ATTN_K: (
  1020. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1021. ),
  1022. MODEL_TENSOR.A_ENC_ATTN_V: (
  1023. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1024. ),
  1025. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1026. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1027. ),
  1028. MODEL_TENSOR.A_ENC_OUTPUT: (
  1029. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1030. ),
  1031. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1032. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1033. ),
  1034. MODEL_TENSOR.A_ENC_FFN_UP: (
  1035. "audio_tower.layers.{bid}.fc1", # ultravox
  1036. ),
  1037. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1038. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1039. "audio_tower.layers.{bid}.fc2", # ultravox
  1040. ),
  1041. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1042. # this prefix is added in the conversion code in modify_tensors()
  1043. MODEL_TENSOR.A_MMPROJ: (
  1044. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1045. ),
  1046. MODEL_TENSOR.A_MMPROJ_FC: (
  1047. "audio.multi_modal_projector.linear", # qwen2audio
  1048. "audio_tower.proj", # qwen2omni
  1049. ),
  1050. MODEL_TENSOR.A_MM_NORM_PRE: (
  1051. "audio.multi_modal_projector.ln_pre", # ultravox
  1052. ),
  1053. MODEL_TENSOR.A_MM_NORM_MID: (
  1054. "audio.multi_modal_projector.ln_mid", # ultravox
  1055. ),
  1056. }
  1057. # architecture-specific block mappings
  1058. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1059. MODEL_ARCH.ARCTIC: {
  1060. MODEL_TENSOR.FFN_NORM: (
  1061. "model.layers.{bid}.residual_layernorm",
  1062. ),
  1063. MODEL_TENSOR.FFN_NORM_EXP: (
  1064. "model.layers.{bid}.post_attention_layernorm",
  1065. ),
  1066. },
  1067. }
  1068. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1069. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1070. self.mapping = {}
  1071. for tensor, keys in self.mappings_cfg.items():
  1072. if tensor not in MODEL_TENSORS[arch]:
  1073. continue
  1074. tensor_name = TENSOR_NAMES[tensor]
  1075. self.mapping[tensor_name] = (tensor, tensor_name)
  1076. for key in keys:
  1077. self.mapping[key] = (tensor, tensor_name)
  1078. if arch in self.arch_block_mappings_cfg:
  1079. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1080. for bid in range(n_blocks):
  1081. for tensor, keys in self.block_mappings_cfg.items():
  1082. if tensor not in MODEL_TENSORS[arch]:
  1083. continue
  1084. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1085. self.mapping[tensor_name] = (tensor, tensor_name)
  1086. for key in keys:
  1087. key = key.format(bid = bid)
  1088. self.mapping[key] = (tensor, tensor_name)
  1089. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1090. result = self.mapping.get(key)
  1091. if result is not None:
  1092. return result
  1093. for suffix in try_suffixes:
  1094. if key.endswith(suffix):
  1095. result = self.mapping.get(key[:-len(suffix)])
  1096. if result is not None:
  1097. return result[0], result[1] + suffix
  1098. return None
  1099. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1100. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1101. if result is None:
  1102. return None
  1103. return result[1]
  1104. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1105. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1106. if result is None:
  1107. return None
  1108. return result[0]
  1109. def __getitem__(self, key: str) -> str:
  1110. try:
  1111. return self.mapping[key][1]
  1112. except KeyError:
  1113. raise KeyError(key)
  1114. def __contains__(self, key: str) -> bool:
  1115. return key in self.mapping
  1116. def __repr__(self) -> str:
  1117. return repr(self.mapping)
  1118. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1119. return TensorNameMap(arch, n_blocks)