common.cpp 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955
  1. #if defined(_MSC_VER)
  2. #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
  3. #endif
  4. #include "common.h"
  5. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  6. #define JSON_ASSERT GGML_ASSERT
  7. #include "json.hpp"
  8. #include "json-schema-to-grammar.h"
  9. #include "llama.h"
  10. #include <algorithm>
  11. #include <cinttypes>
  12. #include <cmath>
  13. #include <codecvt>
  14. #include <cstdarg>
  15. #include <cstring>
  16. #include <ctime>
  17. #include <fstream>
  18. #include <iostream>
  19. #include <iterator>
  20. #include <regex>
  21. #include <sstream>
  22. #include <string>
  23. #include <unordered_map>
  24. #include <unordered_set>
  25. #include <vector>
  26. #if defined(__APPLE__) && defined(__MACH__)
  27. #include <sys/types.h>
  28. #include <sys/sysctl.h>
  29. #endif
  30. #if defined(_WIN32)
  31. #define WIN32_LEAN_AND_MEAN
  32. #ifndef NOMINMAX
  33. # define NOMINMAX
  34. #endif
  35. #include <locale>
  36. #include <windows.h>
  37. #include <fcntl.h>
  38. #include <io.h>
  39. #else
  40. #include <sys/ioctl.h>
  41. #include <sys/stat.h>
  42. #include <unistd.h>
  43. #endif
  44. #if defined(LLAMA_USE_CURL)
  45. #include <curl/curl.h>
  46. #include <curl/easy.h>
  47. #include <thread>
  48. #include <future>
  49. #endif
  50. #if defined(_MSC_VER)
  51. #pragma warning(disable: 4244 4267) // possible loss of data
  52. #endif
  53. #if defined(LLAMA_USE_CURL)
  54. #ifdef __linux__
  55. #include <linux/limits.h>
  56. #elif defined(_WIN32)
  57. #define PATH_MAX MAX_PATH
  58. #else
  59. #include <sys/syslimits.h>
  60. #endif
  61. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  62. #endif // LLAMA_USE_CURL
  63. using json = nlohmann::ordered_json;
  64. //
  65. // CPU utils
  66. //
  67. int32_t cpu_get_num_physical_cores() {
  68. #ifdef __linux__
  69. // enumerate the set of thread siblings, num entries is num cores
  70. std::unordered_set<std::string> siblings;
  71. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  72. std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
  73. + std::to_string(cpu) + "/topology/thread_siblings");
  74. if (!thread_siblings.is_open()) {
  75. break; // no more cpus
  76. }
  77. std::string line;
  78. if (std::getline(thread_siblings, line)) {
  79. siblings.insert(line);
  80. }
  81. }
  82. if (!siblings.empty()) {
  83. return static_cast<int32_t>(siblings.size());
  84. }
  85. #elif defined(__APPLE__) && defined(__MACH__)
  86. int32_t num_physical_cores;
  87. size_t len = sizeof(num_physical_cores);
  88. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  89. if (result == 0) {
  90. return num_physical_cores;
  91. }
  92. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  93. if (result == 0) {
  94. return num_physical_cores;
  95. }
  96. #elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
  97. // TODO: windows + arm64 + mingw64
  98. unsigned int n_threads_win = std::thread::hardware_concurrency();
  99. unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;
  100. DWORD buffer_size = 0;
  101. if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
  102. if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
  103. return default_threads;
  104. }
  105. }
  106. std::vector<char> buffer(buffer_size);
  107. if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
  108. return default_threads;
  109. }
  110. int32_t num_physical_cores = 0;
  111. PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
  112. while (buffer_size > 0) {
  113. if (info->Relationship == RelationProcessorCore) {
  114. num_physical_cores += info->Processor.GroupCount;
  115. }
  116. buffer_size -= info->Size;
  117. info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
  118. }
  119. return num_physical_cores > 0 ? num_physical_cores : default_threads;
  120. #endif
  121. unsigned int n_threads = std::thread::hardware_concurrency();
  122. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  123. }
  124. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  125. #include <pthread.h>
  126. static void cpuid(unsigned leaf, unsigned subleaf,
  127. unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
  128. __asm__("movq\t%%rbx,%%rsi\n\t"
  129. "cpuid\n\t"
  130. "xchgq\t%%rbx,%%rsi"
  131. : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
  132. : "0"(leaf), "2"(subleaf));
  133. }
  134. static int pin_cpu(int cpu) {
  135. cpu_set_t mask;
  136. CPU_ZERO(&mask);
  137. CPU_SET(cpu, &mask);
  138. return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
  139. }
  140. static bool is_hybrid_cpu(void) {
  141. unsigned eax, ebx, ecx, edx;
  142. cpuid(7, 0, &eax, &ebx, &ecx, &edx);
  143. return !!(edx & (1u << 15));
  144. }
  145. static bool is_running_on_efficiency_core(void) {
  146. unsigned eax, ebx, ecx, edx;
  147. cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
  148. int intel_atom = 0x20;
  149. int core_type = (eax & 0xff000000u) >> 24;
  150. return core_type == intel_atom;
  151. }
  152. static int cpu_count_math_cpus(int n_cpu) {
  153. int result = 0;
  154. for (int cpu = 0; cpu < n_cpu; ++cpu) {
  155. if (pin_cpu(cpu)) {
  156. return -1;
  157. }
  158. if (is_running_on_efficiency_core()) {
  159. continue; // efficiency cores harm lockstep threading
  160. }
  161. ++cpu; // hyperthreading isn't useful for linear algebra
  162. ++result;
  163. }
  164. return result;
  165. }
  166. #endif // __x86_64__ && __linux__
  167. /**
  168. * Returns number of CPUs on system that are useful for math.
  169. */
  170. int32_t cpu_get_num_math() {
  171. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  172. int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
  173. if (n_cpu < 1) {
  174. return cpu_get_num_physical_cores();
  175. }
  176. if (is_hybrid_cpu()) {
  177. cpu_set_t affinity;
  178. if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
  179. int result = cpu_count_math_cpus(n_cpu);
  180. pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
  181. if (result > 0) {
  182. return result;
  183. }
  184. }
  185. }
  186. #endif
  187. return cpu_get_num_physical_cores();
  188. }
  189. // Helper for setting process priority
  190. #if defined(_WIN32)
  191. bool set_process_priority(enum ggml_sched_priority prio) {
  192. if (prio == GGML_SCHED_PRIO_NORMAL) {
  193. return true;
  194. }
  195. DWORD p = NORMAL_PRIORITY_CLASS;
  196. switch (prio) {
  197. case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
  198. case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
  199. case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
  200. case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break;
  201. }
  202. if (!SetPriorityClass(GetCurrentProcess(), p)) {
  203. fprintf(stderr, "warn: failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
  204. return false;
  205. }
  206. return true;
  207. }
  208. #else // MacOS and POSIX
  209. #include <sys/types.h>
  210. #include <sys/resource.h>
  211. bool set_process_priority(enum ggml_sched_priority prio) {
  212. if (prio == GGML_SCHED_PRIO_NORMAL) {
  213. return true;
  214. }
  215. int p = 0;
  216. switch (prio) {
  217. case GGML_SCHED_PRIO_NORMAL: p = 0; break;
  218. case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
  219. case GGML_SCHED_PRIO_HIGH: p = -10; break;
  220. case GGML_SCHED_PRIO_REALTIME: p = -20; break;
  221. }
  222. if (!setpriority(PRIO_PROCESS, 0, p)) {
  223. fprintf(stderr, "warn: failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
  224. return false;
  225. }
  226. return true;
  227. }
  228. #endif
  229. //
  230. // CLI argument parsing
  231. //
  232. void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
  233. int32_t n_set = 0;
  234. if (cpuparams.n_threads < 0) {
  235. // Assuming everything about cpuparams is invalid
  236. if (role_model != nullptr) {
  237. cpuparams = *role_model;
  238. } else {
  239. cpuparams.n_threads = cpu_get_num_math();
  240. }
  241. }
  242. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  243. if (cpuparams.cpumask[i]) {
  244. n_set++;
  245. }
  246. }
  247. if (n_set && n_set < cpuparams.n_threads) {
  248. // Not enough set bits, may experience performance issues.
  249. fprintf(stderr, "warn: Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
  250. }
  251. }
  252. bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
  253. size_t dash_loc = range.find('-');
  254. if (dash_loc == std::string::npos) {
  255. fprintf(stderr, "Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
  256. return false;
  257. }
  258. size_t start_i;
  259. size_t end_i;
  260. if (dash_loc == 0) {
  261. start_i = 0;
  262. } else {
  263. start_i = std::stoull(range.substr(0, dash_loc));
  264. if (start_i >= GGML_MAX_N_THREADS) {
  265. fprintf(stderr, "Start index out of bounds!\n");
  266. return false;
  267. }
  268. }
  269. if (dash_loc == range.length() - 1) {
  270. end_i = GGML_MAX_N_THREADS - 1;
  271. } else {
  272. end_i = std::stoull(range.substr(dash_loc + 1));
  273. if (end_i >= GGML_MAX_N_THREADS) {
  274. fprintf(stderr, "End index out of bounds!\n");
  275. return false;
  276. }
  277. }
  278. for (size_t i = start_i; i <= end_i; i++) {
  279. boolmask[i] = true;
  280. }
  281. return true;
  282. }
  283. bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
  284. // Discard potential 0x prefix
  285. size_t start_i = 0;
  286. if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
  287. start_i = 2;
  288. }
  289. size_t num_digits = mask.length() - start_i;
  290. if (num_digits > 128) num_digits = 128;
  291. size_t end_i = num_digits + start_i;
  292. for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
  293. char c = mask.at(i);
  294. int8_t id = c;
  295. if ((c >= '0' && c <= '9')) {
  296. id -= '0';
  297. } else if (c >= 'a' && c <= 'f') {
  298. id -= 'a' - 10;
  299. } else if (c >= 'A' && c <= 'F') {
  300. id -= 'A' - 10;
  301. } else {
  302. fprintf(stderr, "Invalid hex character '%c' at position %d\n", c, int32_t(i));
  303. return false;
  304. }
  305. boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
  306. boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
  307. boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
  308. boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
  309. }
  310. return true;
  311. }
  312. std::string gpt_params_get_system_info(const gpt_params & params) {
  313. std::ostringstream os;
  314. os << "system_info: n_threads = " << params.cpuparams.n_threads;
  315. if (params.cpuparams_batch.n_threads != -1) {
  316. os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
  317. }
  318. #if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
  319. // TODO: windows + arm64 + mingw64
  320. DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
  321. os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
  322. #else
  323. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  324. #endif
  325. return os.str();
  326. }
  327. //
  328. // String utils
  329. //
  330. std::vector<std::string> string_split(std::string input, char separator) {
  331. std::vector<std::string> parts;
  332. size_t separator_pos = input.find(separator);
  333. while (separator_pos != std::string::npos) {
  334. std::string part = input.substr(0, separator_pos);
  335. parts.emplace_back(part);
  336. input = input.substr(separator_pos + 1);
  337. separator_pos = input.find(separator);
  338. }
  339. parts.emplace_back(input);
  340. return parts;
  341. }
  342. std::string string_strip(const std::string & str) {
  343. size_t start = 0;
  344. size_t end = str.size();
  345. while (start < end && std::isspace(str[start])) {
  346. start++;
  347. }
  348. while (end > start && std::isspace(str[end - 1])) {
  349. end--;
  350. }
  351. return str.substr(start, end - start);
  352. }
  353. std::string string_get_sortable_timestamp() {
  354. using clock = std::chrono::system_clock;
  355. const clock::time_point current_time = clock::now();
  356. const time_t as_time_t = clock::to_time_t(current_time);
  357. char timestamp_no_ns[100];
  358. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  359. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  360. current_time.time_since_epoch() % 1000000000).count();
  361. char timestamp_ns[11];
  362. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  363. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  364. }
  365. void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
  366. if (search.empty()) {
  367. return;
  368. }
  369. std::string builder;
  370. builder.reserve(s.length());
  371. size_t pos = 0;
  372. size_t last_pos = 0;
  373. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  374. builder.append(s, last_pos, pos - last_pos);
  375. builder.append(replace);
  376. last_pos = pos + search.length();
  377. }
  378. builder.append(s, last_pos, std::string::npos);
  379. s = std::move(builder);
  380. }
  381. void string_process_escapes(std::string & input) {
  382. std::size_t input_len = input.length();
  383. std::size_t output_idx = 0;
  384. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  385. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  386. switch (input[++input_idx]) {
  387. case 'n': input[output_idx++] = '\n'; break;
  388. case 'r': input[output_idx++] = '\r'; break;
  389. case 't': input[output_idx++] = '\t'; break;
  390. case '\'': input[output_idx++] = '\''; break;
  391. case '\"': input[output_idx++] = '\"'; break;
  392. case '\\': input[output_idx++] = '\\'; break;
  393. case 'x':
  394. // Handle \x12, etc
  395. if (input_idx + 2 < input_len) {
  396. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  397. char *err_p = nullptr;
  398. const long val = std::strtol(x, &err_p, 16);
  399. if (err_p == x + 2) {
  400. input_idx += 2;
  401. input[output_idx++] = char(val);
  402. break;
  403. }
  404. }
  405. // fall through
  406. default: input[output_idx++] = '\\';
  407. input[output_idx++] = input[input_idx]; break;
  408. }
  409. } else {
  410. input[output_idx++] = input[input_idx];
  411. }
  412. }
  413. input.resize(output_idx);
  414. }
  415. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
  416. const char * sep = strchr(data, '=');
  417. if (sep == nullptr || sep - data >= 128) {
  418. fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
  419. return false;
  420. }
  421. llama_model_kv_override kvo;
  422. std::strncpy(kvo.key, data, sep - data);
  423. kvo.key[sep - data] = 0;
  424. sep++;
  425. if (strncmp(sep, "int:", 4) == 0) {
  426. sep += 4;
  427. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  428. kvo.val_i64 = std::atol(sep);
  429. } else if (strncmp(sep, "float:", 6) == 0) {
  430. sep += 6;
  431. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  432. kvo.val_f64 = std::atof(sep);
  433. } else if (strncmp(sep, "bool:", 5) == 0) {
  434. sep += 5;
  435. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  436. if (std::strcmp(sep, "true") == 0) {
  437. kvo.val_bool = true;
  438. } else if (std::strcmp(sep, "false") == 0) {
  439. kvo.val_bool = false;
  440. } else {
  441. fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
  442. return false;
  443. }
  444. } else if (strncmp(sep, "str:", 4) == 0) {
  445. sep += 4;
  446. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  447. if (strlen(sep) > 127) {
  448. fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
  449. return false;
  450. }
  451. strncpy(kvo.val_str, sep, 127);
  452. kvo.val_str[127] = '\0';
  453. } else {
  454. fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
  455. return false;
  456. }
  457. overrides.emplace_back(std::move(kvo));
  458. return true;
  459. }
  460. //
  461. // Filesystem utils
  462. //
  463. // Validate if a filename is safe to use
  464. // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
  465. bool fs_validate_filename(const std::string & filename) {
  466. if (!filename.length()) {
  467. // Empty filename invalid
  468. return false;
  469. }
  470. if (filename.length() > 255) {
  471. // Limit at common largest possible filename on Linux filesystems
  472. // to avoid unnecessary further validation
  473. // (On systems with smaller limits it will be caught by the OS)
  474. return false;
  475. }
  476. std::u32string filename_utf32;
  477. try {
  478. std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
  479. filename_utf32 = converter.from_bytes(filename);
  480. // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
  481. // or invalid encodings were encountered. Reject such attempts
  482. std::string filename_reencoded = converter.to_bytes(filename_utf32);
  483. if (filename_reencoded != filename) {
  484. return false;
  485. }
  486. } catch (const std::exception &) {
  487. return false;
  488. }
  489. // Check for forbidden codepoints:
  490. // - Control characters
  491. // - Unicode equivalents of illegal characters
  492. // - UTF-16 surrogate pairs
  493. // - UTF-8 replacement character
  494. // - Byte order mark (BOM)
  495. // - Illegal characters: / \ : * ? " < > |
  496. for (char32_t c : filename_utf32) {
  497. if (c <= 0x1F // Control characters (C0)
  498. || c == 0x7F // Control characters (DEL)
  499. || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
  500. || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
  501. || c == 0x2215 // Division Slash (forward slash equivalent)
  502. || c == 0x2216 // Set Minus (backslash equivalent)
  503. || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
  504. || c == 0xFFFD // Replacement Character (UTF-8)
  505. || c == 0xFEFF // Byte Order Mark (BOM)
  506. || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
  507. || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
  508. return false;
  509. }
  510. }
  511. // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
  512. // Unicode and other whitespace is not affected, only 0x20 space
  513. if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
  514. return false;
  515. }
  516. // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
  517. if (filename.find("..") != std::string::npos) {
  518. return false;
  519. }
  520. // Reject "."
  521. if (filename == ".") {
  522. return false;
  523. }
  524. return true;
  525. }
  526. // returns true if successful, false otherwise
  527. bool fs_create_directory_with_parents(const std::string & path) {
  528. #ifdef _WIN32
  529. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  530. std::wstring wpath = converter.from_bytes(path);
  531. // if the path already exists, check whether it's a directory
  532. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  533. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  534. return true;
  535. }
  536. size_t pos_slash = 0;
  537. // process path from front to back, procedurally creating directories
  538. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  539. const std::wstring subpath = wpath.substr(0, pos_slash);
  540. const wchar_t * test = subpath.c_str();
  541. const bool success = CreateDirectoryW(test, NULL);
  542. if (!success) {
  543. const DWORD error = GetLastError();
  544. // if the path already exists, ensure that it's a directory
  545. if (error == ERROR_ALREADY_EXISTS) {
  546. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  547. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  548. return false;
  549. }
  550. } else {
  551. return false;
  552. }
  553. }
  554. pos_slash += 1;
  555. }
  556. return true;
  557. #else
  558. // if the path already exists, check whether it's a directory
  559. struct stat info;
  560. if (stat(path.c_str(), &info) == 0) {
  561. return S_ISDIR(info.st_mode);
  562. }
  563. size_t pos_slash = 1; // skip leading slashes for directory creation
  564. // process path from front to back, procedurally creating directories
  565. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  566. const std::string subpath = path.substr(0, pos_slash);
  567. struct stat info;
  568. // if the path already exists, ensure that it's a directory
  569. if (stat(subpath.c_str(), &info) == 0) {
  570. if (!S_ISDIR(info.st_mode)) {
  571. return false;
  572. }
  573. } else {
  574. // create parent directories
  575. const int ret = mkdir(subpath.c_str(), 0755);
  576. if (ret != 0) {
  577. return false;
  578. }
  579. }
  580. pos_slash += 1;
  581. }
  582. return true;
  583. #endif // _WIN32
  584. }
  585. std::string fs_get_cache_directory() {
  586. std::string cache_directory = "";
  587. auto ensure_trailing_slash = [](std::string p) {
  588. // Make sure to add trailing slash
  589. if (p.back() != DIRECTORY_SEPARATOR) {
  590. p += DIRECTORY_SEPARATOR;
  591. }
  592. return p;
  593. };
  594. if (getenv("LLAMA_CACHE")) {
  595. cache_directory = std::getenv("LLAMA_CACHE");
  596. } else {
  597. #ifdef __linux__
  598. if (std::getenv("XDG_CACHE_HOME")) {
  599. cache_directory = std::getenv("XDG_CACHE_HOME");
  600. } else {
  601. cache_directory = std::getenv("HOME") + std::string("/.cache/");
  602. }
  603. #elif defined(__APPLE__)
  604. cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
  605. #elif defined(_WIN32)
  606. cache_directory = std::getenv("LOCALAPPDATA");
  607. #endif // __linux__
  608. cache_directory = ensure_trailing_slash(cache_directory);
  609. cache_directory += "llama.cpp";
  610. }
  611. return ensure_trailing_slash(cache_directory);
  612. }
  613. std::string fs_get_cache_file(const std::string & filename) {
  614. GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
  615. std::string cache_directory = fs_get_cache_directory();
  616. const bool success = fs_create_directory_with_parents(cache_directory);
  617. if (!success) {
  618. throw std::runtime_error("failed to create cache directory: " + cache_directory);
  619. }
  620. return cache_directory + filename;
  621. }
  622. //
  623. // Model utils
  624. //
  625. struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
  626. llama_init_result iparams;
  627. auto mparams = llama_model_params_from_gpt_params(params);
  628. llama_model * model = nullptr;
  629. if (!params.hf_repo.empty() && !params.hf_file.empty()) {
  630. model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
  631. } else if (!params.model_url.empty()) {
  632. model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
  633. } else {
  634. model = llama_load_model_from_file(params.model.c_str(), mparams);
  635. }
  636. if (model == NULL) {
  637. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  638. return iparams;
  639. }
  640. auto cparams = llama_context_params_from_gpt_params(params);
  641. llama_context * lctx = llama_new_context_with_model(model, cparams);
  642. if (lctx == NULL) {
  643. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  644. llama_free_model(model);
  645. return iparams;
  646. }
  647. if (!params.control_vectors.empty()) {
  648. if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
  649. if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
  650. const auto cvec = llama_control_vector_load(params.control_vectors);
  651. if (cvec.n_embd == -1) {
  652. llama_free(lctx);
  653. llama_free_model(model);
  654. return iparams;
  655. }
  656. int err = llama_control_vector_apply(lctx,
  657. cvec.data.data(),
  658. cvec.data.size(),
  659. cvec.n_embd,
  660. params.control_vector_layer_start,
  661. params.control_vector_layer_end);
  662. if (err) {
  663. llama_free(lctx);
  664. llama_free_model(model);
  665. return iparams;
  666. }
  667. }
  668. // load and optionally apply lora adapters
  669. for (auto & la : params.lora_adapters) {
  670. llama_lora_adapter_container loaded_la;
  671. loaded_la.path = la.path;
  672. loaded_la.scale = la.scale;
  673. loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
  674. if (loaded_la.adapter == nullptr) {
  675. fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
  676. llama_free(lctx);
  677. llama_free_model(model);
  678. return iparams;
  679. }
  680. iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
  681. }
  682. if (!params.lora_init_without_apply) {
  683. llama_lora_adapters_apply(lctx, iparams.lora_adapters);
  684. }
  685. if (params.sparams.ignore_eos && llama_token_eos(model) == -1) {
  686. fprintf(stderr, "%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
  687. params.sparams.ignore_eos = false;
  688. }
  689. if (params.warmup) {
  690. LOG("warming up the model with an empty run\n");
  691. std::vector<llama_token> tmp;
  692. llama_token bos = llama_token_bos(model);
  693. llama_token eos = llama_token_eos(model);
  694. // some models (e.g. T5) don't have a BOS token
  695. if (bos != LLAMA_TOKEN_NULL) {
  696. tmp.push_back(bos);
  697. }
  698. if (eos != LLAMA_TOKEN_NULL) {
  699. tmp.push_back(eos);
  700. }
  701. if (tmp.empty()) {
  702. tmp.push_back(0);
  703. }
  704. if (llama_model_has_encoder(model)) {
  705. llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
  706. llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
  707. if (decoder_start_token_id == -1) {
  708. decoder_start_token_id = bos;
  709. }
  710. tmp.clear();
  711. tmp.push_back(decoder_start_token_id);
  712. }
  713. if (llama_model_has_decoder(model)) {
  714. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  715. }
  716. llama_kv_cache_clear(lctx);
  717. llama_synchronize(lctx);
  718. llama_perf_context_reset(lctx);
  719. }
  720. iparams.model = model;
  721. iparams.context = lctx;
  722. return iparams;
  723. }
  724. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
  725. llama_lora_adapter_clear(ctx);
  726. for (auto & la : lora_adapters) {
  727. if (la.scale != 0.0f) {
  728. llama_lora_adapter_set(ctx, la.adapter, la.scale);
  729. }
  730. }
  731. }
  732. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  733. auto mparams = llama_model_default_params();
  734. if (params.n_gpu_layers != -1) {
  735. mparams.n_gpu_layers = params.n_gpu_layers;
  736. }
  737. mparams.rpc_servers = params.rpc_servers.c_str();
  738. mparams.main_gpu = params.main_gpu;
  739. mparams.split_mode = params.split_mode;
  740. mparams.tensor_split = params.tensor_split;
  741. mparams.use_mmap = params.use_mmap;
  742. mparams.use_mlock = params.use_mlock;
  743. mparams.check_tensors = params.check_tensors;
  744. if (params.kv_overrides.empty()) {
  745. mparams.kv_overrides = NULL;
  746. } else {
  747. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  748. mparams.kv_overrides = params.kv_overrides.data();
  749. }
  750. return mparams;
  751. }
  752. static ggml_type kv_cache_type_from_str(const std::string & s) {
  753. if (s == "f32") {
  754. return GGML_TYPE_F32;
  755. }
  756. if (s == "f16") {
  757. return GGML_TYPE_F16;
  758. }
  759. if (s == "q8_0") {
  760. return GGML_TYPE_Q8_0;
  761. }
  762. if (s == "q4_0") {
  763. return GGML_TYPE_Q4_0;
  764. }
  765. if (s == "q4_1") {
  766. return GGML_TYPE_Q4_1;
  767. }
  768. if (s == "iq4_nl") {
  769. return GGML_TYPE_IQ4_NL;
  770. }
  771. if (s == "q5_0") {
  772. return GGML_TYPE_Q5_0;
  773. }
  774. if (s == "q5_1") {
  775. return GGML_TYPE_Q5_1;
  776. }
  777. throw std::runtime_error("Invalid cache type: " + s);
  778. }
  779. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  780. auto cparams = llama_context_default_params();
  781. cparams.n_ctx = params.n_ctx;
  782. cparams.n_seq_max = params.n_parallel;
  783. cparams.n_batch = params.n_batch;
  784. cparams.n_ubatch = params.n_ubatch;
  785. cparams.n_threads = params.cpuparams.n_threads;
  786. cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
  787. params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
  788. cparams.logits_all = params.logits_all;
  789. cparams.embeddings = params.embedding;
  790. cparams.rope_scaling_type = params.rope_scaling_type;
  791. cparams.rope_freq_base = params.rope_freq_base;
  792. cparams.rope_freq_scale = params.rope_freq_scale;
  793. cparams.yarn_ext_factor = params.yarn_ext_factor;
  794. cparams.yarn_attn_factor = params.yarn_attn_factor;
  795. cparams.yarn_beta_fast = params.yarn_beta_fast;
  796. cparams.yarn_beta_slow = params.yarn_beta_slow;
  797. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  798. cparams.pooling_type = params.pooling_type;
  799. cparams.attention_type = params.attention_type;
  800. cparams.defrag_thold = params.defrag_thold;
  801. cparams.cb_eval = params.cb_eval;
  802. cparams.cb_eval_user_data = params.cb_eval_user_data;
  803. cparams.offload_kqv = !params.no_kv_offload;
  804. cparams.flash_attn = params.flash_attn;
  805. cparams.no_perf = params.no_perf;
  806. cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
  807. cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
  808. return cparams;
  809. }
  810. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
  811. struct ggml_threadpool_params tpp;
  812. ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
  813. if (params.mask_valid) {
  814. std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
  815. }
  816. tpp.prio = params.priority;
  817. tpp.poll = params.poll;
  818. tpp.strict_cpu = params.strict_cpu;
  819. return tpp;
  820. }
  821. #ifdef LLAMA_USE_CURL
  822. #define CURL_MAX_RETRY 3
  823. #define CURL_RETRY_DELAY_SECONDS 2
  824. static bool starts_with(const std::string & str, const std::string & prefix) {
  825. // While we wait for C++20's std::string::starts_with...
  826. return str.rfind(prefix, 0) == 0;
  827. }
  828. static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
  829. int remaining_attempts = max_attempts;
  830. while (remaining_attempts > 0) {
  831. fprintf(stderr, "%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  832. CURLcode res = curl_easy_perform(curl);
  833. if (res == CURLE_OK) {
  834. return true;
  835. }
  836. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  837. fprintf(stderr, "%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  838. remaining_attempts--;
  839. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  840. }
  841. fprintf(stderr, "%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  842. return false;
  843. }
  844. static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
  845. // Initialize libcurl
  846. std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
  847. if (!curl) {
  848. fprintf(stderr, "%s: error initializing libcurl\n", __func__);
  849. return false;
  850. }
  851. bool force_download = false;
  852. // Set the URL, allow to follow http redirection
  853. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  854. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  855. // Check if hf-token or bearer-token was specified
  856. if (!hf_token.empty()) {
  857. std::string auth_header = "Authorization: Bearer ";
  858. auth_header += hf_token.c_str();
  859. struct curl_slist *http_headers = NULL;
  860. http_headers = curl_slist_append(http_headers, auth_header.c_str());
  861. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
  862. }
  863. #if defined(_WIN32)
  864. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  865. // operating system. Currently implemented under MS-Windows.
  866. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  867. #endif
  868. // Check if the file already exists locally
  869. struct stat model_file_info;
  870. auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
  871. // If the file exists, check its JSON metadata companion file.
  872. std::string metadata_path = path + ".json";
  873. nlohmann::json metadata;
  874. std::string etag;
  875. std::string last_modified;
  876. if (file_exists) {
  877. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  878. std::ifstream metadata_in(metadata_path);
  879. if (metadata_in.good()) {
  880. try {
  881. metadata_in >> metadata;
  882. fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  883. if (metadata.contains("url") && metadata.at("url").is_string()) {
  884. auto previous_url = metadata.at("url").get<std::string>();
  885. if (previous_url != url) {
  886. fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  887. return false;
  888. }
  889. }
  890. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  891. etag = metadata.at("etag");
  892. }
  893. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  894. last_modified = metadata.at("lastModified");
  895. }
  896. } catch (const nlohmann::json::exception & e) {
  897. fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  898. return false;
  899. }
  900. }
  901. } else {
  902. fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
  903. }
  904. // Send a HEAD request to retrieve the etag and last-modified headers
  905. struct llama_load_model_from_url_headers {
  906. std::string etag;
  907. std::string last_modified;
  908. };
  909. llama_load_model_from_url_headers headers;
  910. {
  911. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  912. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  913. llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
  914. static std::regex header_regex("([^:]+): (.*)\r\n");
  915. static std::regex etag_regex("ETag", std::regex_constants::icase);
  916. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  917. std::string header(buffer, n_items);
  918. std::smatch match;
  919. if (std::regex_match(header, match, header_regex)) {
  920. const std::string & key = match[1];
  921. const std::string & value = match[2];
  922. if (std::regex_match(key, match, etag_regex)) {
  923. headers->etag = value;
  924. } else if (std::regex_match(key, match, last_modified_regex)) {
  925. headers->last_modified = value;
  926. }
  927. }
  928. return n_items;
  929. };
  930. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  931. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  932. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  933. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  934. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  935. if (!was_perform_successful) {
  936. return false;
  937. }
  938. long http_code = 0;
  939. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  940. if (http_code != 200) {
  941. // HEAD not supported, we don't know if the file has changed
  942. // force trigger downloading
  943. force_download = true;
  944. fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  945. }
  946. }
  947. bool should_download = !file_exists || force_download;
  948. if (!should_download) {
  949. if (!etag.empty() && etag != headers.etag) {
  950. fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  951. should_download = true;
  952. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  953. fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  954. should_download = true;
  955. }
  956. }
  957. if (should_download) {
  958. std::string path_temporary = path + ".downloadInProgress";
  959. if (file_exists) {
  960. fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  961. if (remove(path.c_str()) != 0) {
  962. fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
  963. return false;
  964. }
  965. }
  966. // Set the output file
  967. struct FILE_deleter {
  968. void operator()(FILE * f) const {
  969. fclose(f);
  970. }
  971. };
  972. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  973. if (!outfile) {
  974. fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
  975. return false;
  976. }
  977. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  978. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  979. return fwrite(data, size, nmemb, (FILE *)fd);
  980. };
  981. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  982. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  983. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  984. // display download progress
  985. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  986. // helper function to hide password in URL
  987. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  988. std::size_t protocol_pos = url.find("://");
  989. if (protocol_pos == std::string::npos) {
  990. return url; // Malformed URL
  991. }
  992. std::size_t at_pos = url.find('@', protocol_pos + 3);
  993. if (at_pos == std::string::npos) {
  994. return url; // No password in URL
  995. }
  996. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  997. };
  998. // start the download
  999. fprintf(stderr, "%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  1000. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  1001. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  1002. if (!was_perform_successful) {
  1003. return false;
  1004. }
  1005. long http_code = 0;
  1006. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  1007. if (http_code < 200 || http_code >= 400) {
  1008. fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
  1009. return false;
  1010. }
  1011. // Causes file to be closed explicitly here before we rename it.
  1012. outfile.reset();
  1013. // Write the updated JSON metadata file.
  1014. metadata.update({
  1015. {"url", url},
  1016. {"etag", headers.etag},
  1017. {"lastModified", headers.last_modified}
  1018. });
  1019. std::ofstream(metadata_path) << metadata.dump(4);
  1020. fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  1021. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  1022. fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  1023. return false;
  1024. }
  1025. }
  1026. return true;
  1027. }
  1028. struct llama_model * llama_load_model_from_url(
  1029. const char * model_url,
  1030. const char * path_model,
  1031. const char * hf_token,
  1032. const struct llama_model_params & params) {
  1033. // Basic validation of the model_url
  1034. if (!model_url || strlen(model_url) == 0) {
  1035. fprintf(stderr, "%s: invalid model_url\n", __func__);
  1036. return NULL;
  1037. }
  1038. if (!llama_download_file(model_url, path_model, hf_token)) {
  1039. return NULL;
  1040. }
  1041. // check for additional GGUFs split to download
  1042. int n_split = 0;
  1043. {
  1044. struct gguf_init_params gguf_params = {
  1045. /*.no_alloc = */ true,
  1046. /*.ctx = */ NULL,
  1047. };
  1048. auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
  1049. if (!ctx_gguf) {
  1050. fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
  1051. return NULL;
  1052. }
  1053. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  1054. if (key_n_split >= 0) {
  1055. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  1056. }
  1057. gguf_free(ctx_gguf);
  1058. }
  1059. if (n_split > 1) {
  1060. char split_prefix[PATH_MAX] = {0};
  1061. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  1062. // Verify the first split file format
  1063. // and extract split URL and PATH prefixes
  1064. {
  1065. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
  1066. fprintf(stderr, "\n%s: unexpected model file name: %s"
  1067. " n_split=%d\n", __func__, path_model, n_split);
  1068. return NULL;
  1069. }
  1070. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
  1071. fprintf(stderr, "\n%s: unexpected model url: %s"
  1072. " n_split=%d\n", __func__, model_url, n_split);
  1073. return NULL;
  1074. }
  1075. }
  1076. // Prepare download in parallel
  1077. std::vector<std::future<bool>> futures_download;
  1078. for (int idx = 1; idx < n_split; idx++) {
  1079. futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
  1080. char split_path[PATH_MAX] = {0};
  1081. llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
  1082. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  1083. llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
  1084. return llama_download_file(split_url, split_path, hf_token);
  1085. }, idx));
  1086. }
  1087. // Wait for all downloads to complete
  1088. for (auto & f : futures_download) {
  1089. if (!f.get()) {
  1090. return NULL;
  1091. }
  1092. }
  1093. }
  1094. return llama_load_model_from_file(path_model, params);
  1095. }
  1096. struct llama_model * llama_load_model_from_hf(
  1097. const char * repo,
  1098. const char * model,
  1099. const char * path_model,
  1100. const char * hf_token,
  1101. const struct llama_model_params & params) {
  1102. // construct hugging face model url:
  1103. //
  1104. // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
  1105. // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
  1106. //
  1107. // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
  1108. // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
  1109. //
  1110. std::string model_url = "https://huggingface.co/";
  1111. model_url += repo;
  1112. model_url += "/resolve/main/";
  1113. model_url += model;
  1114. return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
  1115. }
  1116. #else
  1117. struct llama_model * llama_load_model_from_url(
  1118. const char * /*model_url*/,
  1119. const char * /*path_model*/,
  1120. const char * /*hf_token*/,
  1121. const struct llama_model_params & /*params*/) {
  1122. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
  1123. return nullptr;
  1124. }
  1125. struct llama_model * llama_load_model_from_hf(
  1126. const char * /*repo*/,
  1127. const char * /*model*/,
  1128. const char * /*path_model*/,
  1129. const char * /*hf_token*/,
  1130. const struct llama_model_params & /*params*/) {
  1131. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
  1132. return nullptr;
  1133. }
  1134. #endif // LLAMA_USE_CURL
  1135. //
  1136. // Batch utils
  1137. //
  1138. void llama_batch_clear(struct llama_batch & batch) {
  1139. batch.n_tokens = 0;
  1140. }
  1141. void llama_batch_add(
  1142. struct llama_batch & batch,
  1143. llama_token id,
  1144. llama_pos pos,
  1145. const std::vector<llama_seq_id> & seq_ids,
  1146. bool logits) {
  1147. batch.token [batch.n_tokens] = id;
  1148. batch.pos [batch.n_tokens] = pos;
  1149. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  1150. for (size_t i = 0; i < seq_ids.size(); ++i) {
  1151. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  1152. }
  1153. batch.logits [batch.n_tokens] = logits;
  1154. batch.n_tokens++;
  1155. }
  1156. //
  1157. // Vocab utils
  1158. //
  1159. std::vector<llama_token> llama_tokenize(
  1160. const struct llama_context * ctx,
  1161. const std::string & text,
  1162. bool add_special,
  1163. bool parse_special) {
  1164. return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
  1165. }
  1166. std::vector<llama_token> llama_tokenize(
  1167. const struct llama_model * model,
  1168. const std::string & text,
  1169. bool add_special,
  1170. bool parse_special) {
  1171. // upper limit for the number of tokens
  1172. int n_tokens = text.length() + 2 * add_special;
  1173. std::vector<llama_token> result(n_tokens);
  1174. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  1175. if (n_tokens < 0) {
  1176. result.resize(-n_tokens);
  1177. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  1178. GGML_ASSERT(check == -n_tokens);
  1179. } else {
  1180. result.resize(n_tokens);
  1181. }
  1182. return result;
  1183. }
  1184. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1185. std::string piece;
  1186. piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
  1187. const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
  1188. if (n_chars < 0) {
  1189. piece.resize(-n_chars);
  1190. int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
  1191. GGML_ASSERT(check == -n_chars);
  1192. }
  1193. else {
  1194. piece.resize(n_chars);
  1195. }
  1196. return piece;
  1197. }
  1198. std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
  1199. std::string text;
  1200. text.resize(std::max(text.capacity(), tokens.size()));
  1201. int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  1202. if (n_chars < 0) {
  1203. text.resize(-n_chars);
  1204. n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  1205. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  1206. }
  1207. text.resize(n_chars);
  1208. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  1209. return text;
  1210. }
  1211. //
  1212. // Chat template utils
  1213. //
  1214. bool llama_chat_verify_template(const std::string & tmpl) {
  1215. llama_chat_message chat[] = {{"user", "test"}};
  1216. int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1217. return res >= 0;
  1218. }
  1219. std::string llama_chat_apply_template(const struct llama_model * model,
  1220. const std::string & tmpl,
  1221. const std::vector<llama_chat_msg> & msgs,
  1222. bool add_ass) {
  1223. int alloc_size = 0;
  1224. bool fallback = false; // indicate if we must fallback to default chatml
  1225. std::vector<llama_chat_message> chat;
  1226. for (auto & msg : msgs) {
  1227. chat.push_back({msg.role.c_str(), msg.content.c_str()});
  1228. alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
  1229. }
  1230. const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
  1231. std::vector<char> buf(alloc_size);
  1232. // run the first time to get the total output length
  1233. int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
  1234. // error: chat template is not supported
  1235. if (res < 0) {
  1236. if (ptr_tmpl != nullptr) {
  1237. // if the custom "tmpl" is not supported, we throw an error
  1238. // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
  1239. throw std::runtime_error("this custom template is not supported");
  1240. } else {
  1241. // If the built-in template is not supported, we default to chatml
  1242. res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
  1243. fallback = true;
  1244. }
  1245. }
  1246. // if it turns out that our buffer is too small, we resize it
  1247. if ((size_t) res > buf.size()) {
  1248. buf.resize(res);
  1249. res = llama_chat_apply_template(
  1250. fallback ? nullptr : model,
  1251. fallback ? "chatml" : ptr_tmpl,
  1252. chat.data(), chat.size(), add_ass, buf.data(), buf.size());
  1253. }
  1254. std::string formatted_chat(buf.data(), res);
  1255. return formatted_chat;
  1256. }
  1257. std::string llama_chat_format_single(const struct llama_model * model,
  1258. const std::string & tmpl,
  1259. const std::vector<llama_chat_msg> & past_msg,
  1260. const llama_chat_msg & new_msg,
  1261. bool add_ass) {
  1262. std::ostringstream ss;
  1263. auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
  1264. std::vector<llama_chat_msg> chat_new(past_msg);
  1265. // if the past_msg ends with a newline, we must preserve it in the formatted version
  1266. if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
  1267. ss << "\n";
  1268. };
  1269. // format chat with new_msg
  1270. chat_new.push_back(new_msg);
  1271. auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
  1272. // get the diff part
  1273. ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
  1274. return ss.str();
  1275. }
  1276. std::string llama_chat_format_example(const struct llama_model * model,
  1277. const std::string & tmpl) {
  1278. std::vector<llama_chat_msg> msgs = {
  1279. {"system", "You are a helpful assistant"},
  1280. {"user", "Hello"},
  1281. {"assistant", "Hi there"},
  1282. {"user", "How are you?"},
  1283. };
  1284. return llama_chat_apply_template(model, tmpl, msgs, true);
  1285. }
  1286. //
  1287. // KV cache utils
  1288. //
  1289. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
  1290. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  1291. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  1292. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1293. llama_kv_cache_view_cell * c_curr = view.cells;
  1294. llama_seq_id * cs_curr = view.cells_sequences;
  1295. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  1296. if (i % row_size == 0) {
  1297. printf("\n%5d: ", i);
  1298. }
  1299. int seq_count = 0;
  1300. for (int j = 0; j < view.n_seq_max; j++) {
  1301. if (cs_curr[j] >= 0) { seq_count++; }
  1302. }
  1303. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  1304. }
  1305. printf("\n=== Done dumping\n");
  1306. }
  1307. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
  1308. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  1309. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  1310. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1311. std::unordered_map<llama_seq_id, size_t> seqs;
  1312. llama_kv_cache_view_cell * c_curr = view.cells;
  1313. llama_seq_id * cs_curr = view.cells_sequences;
  1314. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  1315. for (int j = 0; j < view.n_seq_max; j++) {
  1316. if (cs_curr[j] < 0) { continue; }
  1317. if (seqs.find(cs_curr[j]) == seqs.end()) {
  1318. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1319. const size_t sz = seqs.size();
  1320. seqs[cs_curr[j]] = sz;
  1321. }
  1322. }
  1323. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1324. }
  1325. printf("=== Sequence legend: ");
  1326. for (const auto & it : seqs) {
  1327. printf("%zu=%d, ", it.second, it.first);
  1328. }
  1329. printf("'+'=other sequence ids");
  1330. c_curr = view.cells;
  1331. cs_curr = view.cells_sequences;
  1332. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  1333. if (i % row_size == 0) {
  1334. printf("\n%5d: ", i);
  1335. }
  1336. for (int j = 0; j < view.n_seq_max; j++) {
  1337. if (cs_curr[j] >= 0) {
  1338. const auto & it = seqs.find(cs_curr[j]);
  1339. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  1340. } else {
  1341. putchar('.');
  1342. }
  1343. }
  1344. putchar(' ');
  1345. }
  1346. printf("\n=== Done dumping\n");
  1347. }
  1348. //
  1349. // Embedding utils
  1350. //
  1351. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
  1352. double sum = 0.0;
  1353. switch (embd_norm) {
  1354. case -1: // no normalisation
  1355. sum = 1.0;
  1356. break;
  1357. case 0: // max absolute
  1358. for (int i = 0; i < n; i++) {
  1359. if (sum < std::abs(inp[i])) sum = std::abs(inp[i]);
  1360. }
  1361. sum /= 32760.0; // make an int16 range
  1362. break;
  1363. case 2: // euclidean
  1364. for (int i = 0; i < n; i++) {
  1365. sum += inp[i] * inp[i];
  1366. }
  1367. sum = std::sqrt(sum);
  1368. break;
  1369. default: // p-norm (euclidean is p-norm p=2)
  1370. for (int i = 0; i < n; i++) {
  1371. sum += std::pow(std::abs(inp[i]), embd_norm);
  1372. }
  1373. sum = std::pow(sum, 1.0 / embd_norm);
  1374. break;
  1375. }
  1376. const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
  1377. for (int i = 0; i < n; i++) {
  1378. out[i] = inp[i] * norm;
  1379. }
  1380. }
  1381. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
  1382. double sum = 0.0;
  1383. double sum1 = 0.0;
  1384. double sum2 = 0.0;
  1385. for (int i = 0; i < n; i++) {
  1386. sum += embd1[i] * embd2[i];
  1387. sum1 += embd1[i] * embd1[i];
  1388. sum2 += embd2[i] * embd2[i];
  1389. }
  1390. // Handle the case where one or both vectors are zero vectors
  1391. if (sum1 == 0.0 || sum2 == 0.0) {
  1392. if (sum1 == 0.0 && sum2 == 0.0) {
  1393. return 1.0f; // two zero vectors are similar
  1394. }
  1395. return 0.0f;
  1396. }
  1397. return sum / (sqrt(sum1) * sqrt(sum2));
  1398. }
  1399. //
  1400. // Control vector utils
  1401. //
  1402. static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
  1403. llama_control_vector_data result = { -1, {} };
  1404. ggml_context * ctx = nullptr;
  1405. struct gguf_init_params meta_gguf_params = {
  1406. /* .no_alloc = */ false,
  1407. /* .ctx = */ &ctx,
  1408. };
  1409. struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
  1410. if (!ctx_gguf) {
  1411. fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
  1412. return result;
  1413. }
  1414. int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
  1415. if (n_tensors == 0) {
  1416. fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
  1417. }
  1418. for (int i = 0; i < n_tensors; i++) {
  1419. std::string name = gguf_get_tensor_name(ctx_gguf, i);
  1420. int layer_idx = -1;
  1421. // split on '.'
  1422. size_t dotpos = name.find('.');
  1423. if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
  1424. try {
  1425. layer_idx = std::stoi(name.substr(dotpos + 1));
  1426. } catch (...) {
  1427. layer_idx = -1;
  1428. }
  1429. }
  1430. if (layer_idx < 0) {
  1431. fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
  1432. result.n_embd = -1;
  1433. break;
  1434. } else if (layer_idx == 0) {
  1435. fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
  1436. result.n_embd = -1;
  1437. break;
  1438. }
  1439. struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
  1440. if (tensor->type != GGML_TYPE_F32) {
  1441. fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
  1442. result.n_embd = -1;
  1443. break;
  1444. }
  1445. if (ggml_n_dims(tensor) != 1) {
  1446. fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
  1447. result.n_embd = -1;
  1448. break;
  1449. }
  1450. if (result.n_embd == -1) {
  1451. result.n_embd = ggml_nelements(tensor);
  1452. } else if (ggml_nelements(tensor) != result.n_embd) {
  1453. fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
  1454. result.n_embd = -1;
  1455. break;
  1456. }
  1457. // extend if necessary - do not store data for layer 0 (it's not used)
  1458. result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
  1459. const float * src = (const float *) tensor->data;
  1460. float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0]
  1461. for (int j = 0; j < result.n_embd; j++) {
  1462. dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file
  1463. }
  1464. }
  1465. if (result.n_embd == -1) {
  1466. fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
  1467. result.data.clear();
  1468. }
  1469. gguf_free(ctx_gguf);
  1470. ggml_free(ctx);
  1471. return result;
  1472. }
  1473. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
  1474. llama_control_vector_data result = { -1, {} };
  1475. for (const auto & info : load_infos) {
  1476. auto cur = llama_control_vector_load_one(info);
  1477. if (cur.n_embd == -1) {
  1478. result.n_embd = -1;
  1479. break;
  1480. }
  1481. if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
  1482. fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
  1483. result.n_embd = -1;
  1484. break;
  1485. }
  1486. if (result.n_embd == -1) {
  1487. result = std::move(cur);
  1488. } else {
  1489. result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary
  1490. for (size_t i = 0; i < cur.data.size(); i++) {
  1491. result.data[i] += cur.data[i];
  1492. }
  1493. }
  1494. }
  1495. if (result.n_embd == -1) {
  1496. fprintf(stderr, "%s: no valid control vector files passed\n", __func__);
  1497. result.data.clear();
  1498. }
  1499. return result;
  1500. }
  1501. //
  1502. // YAML utils
  1503. //
  1504. void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  1505. if (data.empty()) {
  1506. fprintf(stream, "%s:\n", prop_name);
  1507. return;
  1508. }
  1509. fprintf(stream, "%s: [", prop_name);
  1510. for (size_t i = 0; i < data.size() - 1; ++i) {
  1511. fprintf(stream, "%e, ", data[i]);
  1512. }
  1513. fprintf(stream, "%e]\n", data.back());
  1514. }
  1515. void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  1516. if (data.empty()) {
  1517. fprintf(stream, "%s:\n", prop_name);
  1518. return;
  1519. }
  1520. fprintf(stream, "%s: [", prop_name);
  1521. for (size_t i = 0; i < data.size() - 1; ++i) {
  1522. fprintf(stream, "%d, ", data[i]);
  1523. }
  1524. fprintf(stream, "%d]\n", data.back());
  1525. }
  1526. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
  1527. std::string data_str(data == NULL ? "" : data);
  1528. if (data_str.empty()) {
  1529. fprintf(stream, "%s:\n", prop_name);
  1530. return;
  1531. }
  1532. size_t pos_start = 0;
  1533. size_t pos_found = 0;
  1534. if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
  1535. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  1536. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  1537. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  1538. data_str = "\"" + data_str + "\"";
  1539. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1540. return;
  1541. }
  1542. if (data_str.find('\n') == std::string::npos) {
  1543. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1544. return;
  1545. }
  1546. fprintf(stream, "%s: |\n", prop_name);
  1547. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  1548. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  1549. pos_start = pos_found + 1;
  1550. }
  1551. }
  1552. void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
  1553. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  1554. const auto & sparams = params.sparams;
  1555. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  1556. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  1557. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  1558. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  1559. fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
  1560. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  1561. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  1562. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  1563. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  1564. fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
  1565. fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
  1566. fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
  1567. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  1568. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  1569. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  1570. fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
  1571. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  1572. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  1573. fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false");
  1574. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  1575. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1576. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  1577. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  1578. fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
  1579. #ifdef NDEBUG
  1580. fprintf(stream, "debug: false\n");
  1581. #else
  1582. fprintf(stream, "debug: true\n");
  1583. #endif // NDEBUG
  1584. fprintf(stream, "model_desc: %s\n", model_desc);
  1585. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  1586. #ifdef __OPTIMIZE__
  1587. fprintf(stream, "optimize: true\n");
  1588. #else
  1589. fprintf(stream, "optimize: false\n");
  1590. #endif // __OPTIMIZE__
  1591. fprintf(stream, "time: %s\n", timestamp.c_str());
  1592. fprintf(stream, "\n");
  1593. fprintf(stream, "###############\n");
  1594. fprintf(stream, "# User Inputs #\n");
  1595. fprintf(stream, "###############\n");
  1596. fprintf(stream, "\n");
  1597. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  1598. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  1599. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  1600. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  1601. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  1602. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  1603. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  1604. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  1605. yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
  1606. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  1607. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  1608. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  1609. fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
  1610. yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
  1611. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  1612. yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
  1613. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  1614. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  1615. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  1616. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  1617. fprintf(stream, "logit_bias:\n");
  1618. for (const auto & logit_bias : sparams.logit_bias) {
  1619. fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
  1620. }
  1621. fprintf(stream, "lora:\n");
  1622. for (auto & la : params.lora_adapters) {
  1623. if (la.scale == 1.0f) {
  1624. fprintf(stream, " - %s\n", la.path.c_str());
  1625. }
  1626. }
  1627. fprintf(stream, "lora_scaled:\n");
  1628. for (auto & la : params.lora_adapters) {
  1629. if (la.scale != 1.0f) {
  1630. fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
  1631. }
  1632. }
  1633. fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
  1634. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  1635. fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
  1636. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  1637. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  1638. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  1639. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  1640. fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
  1641. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  1642. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  1643. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  1644. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  1645. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  1646. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  1647. fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
  1648. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  1649. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  1650. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  1651. yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
  1652. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  1653. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  1654. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  1655. yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
  1656. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  1657. fprintf(stream, "reverse_prompt:\n");
  1658. for (std::string ap : params.antiprompt) {
  1659. size_t pos = 0;
  1660. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  1661. ap.replace(pos, 1, "\\n");
  1662. pos += 1;
  1663. }
  1664. fprintf(stream, " - %s\n", ap.c_str());
  1665. }
  1666. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  1667. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  1668. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  1669. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  1670. fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
  1671. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  1672. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
  1673. yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
  1674. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  1675. fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
  1676. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  1677. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  1678. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  1679. fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
  1680. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  1681. fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
  1682. }