common.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #define LOG_NO_FILE_LINE_FUNCTION
  5. #include "log.h"
  6. #include <string>
  7. #include <vector>
  8. #ifdef _WIN32
  9. #define DIRECTORY_SEPARATOR '\\'
  10. #else
  11. #define DIRECTORY_SEPARATOR '/'
  12. #endif // _WIN32
  13. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  14. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  15. #define print_build_info() do { \
  16. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  17. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  18. } while(0)
  19. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  20. struct llama_lora_adapter_info {
  21. std::string path;
  22. float scale;
  23. };
  24. struct llama_lora_adapter_container : llama_lora_adapter_info {
  25. struct llama_lora_adapter * adapter;
  26. };
  27. // build info
  28. extern int LLAMA_BUILD_NUMBER;
  29. extern char const * LLAMA_COMMIT;
  30. extern char const * LLAMA_COMPILER;
  31. extern char const * LLAMA_BUILD_TARGET;
  32. struct llama_control_vector_load_info;
  33. //
  34. // CPU utils
  35. //
  36. struct cpu_params {
  37. int n_threads = -1;
  38. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  39. bool mask_valid = false; // Default: any CPU
  40. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  41. bool strict_cpu = false; // Use strict CPU placement
  42. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  43. };
  44. int32_t cpu_get_num_physical_cores();
  45. int32_t cpu_get_num_math();
  46. //
  47. // Common params
  48. //
  49. enum llama_example {
  50. LLAMA_EXAMPLE_COMMON,
  51. LLAMA_EXAMPLE_SPECULATIVE,
  52. LLAMA_EXAMPLE_MAIN,
  53. LLAMA_EXAMPLE_INFILL,
  54. LLAMA_EXAMPLE_EMBEDDING,
  55. LLAMA_EXAMPLE_PERPLEXITY,
  56. LLAMA_EXAMPLE_RETRIEVAL,
  57. LLAMA_EXAMPLE_PASSKEY,
  58. LLAMA_EXAMPLE_IMATRIX,
  59. LLAMA_EXAMPLE_BENCH,
  60. LLAMA_EXAMPLE_SERVER,
  61. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  62. LLAMA_EXAMPLE_EXPORT_LORA,
  63. LLAMA_EXAMPLE_LLAVA,
  64. LLAMA_EXAMPLE_LOOKUP,
  65. LLAMA_EXAMPLE_PARALLEL,
  66. LLAMA_EXAMPLE_COUNT,
  67. };
  68. enum gpt_sampler_type {
  69. GPT_SAMPLER_TYPE_NONE = 0,
  70. GPT_SAMPLER_TYPE_TOP_K = 1,
  71. GPT_SAMPLER_TYPE_TOP_P = 2,
  72. GPT_SAMPLER_TYPE_MIN_P = 3,
  73. GPT_SAMPLER_TYPE_TFS_Z = 4,
  74. GPT_SAMPLER_TYPE_TYPICAL_P = 5,
  75. GPT_SAMPLER_TYPE_TEMPERATURE = 6,
  76. };
  77. // dimensionality reduction methods, used by cvector-generator
  78. enum dimre_method {
  79. DIMRE_METHOD_PCA,
  80. DIMRE_METHOD_MEAN,
  81. };
  82. // sampler parameters
  83. struct gpt_sampler_params {
  84. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  85. int32_t n_prev = 64; // number of previous tokens to remember
  86. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  87. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  88. int32_t top_k = 40; // <= 0 to use vocab size
  89. float top_p = 0.95f; // 1.0 = disabled
  90. float min_p = 0.05f; // 0.0 = disabled
  91. float tfs_z = 1.00f; // 1.0 = disabled
  92. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  93. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  94. float dynatemp_range = 0.00f; // 0.0 = disabled
  95. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  96. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  97. float penalty_repeat = 1.00f; // 1.0 = disabled
  98. float penalty_freq = 0.00f; // 0.0 = disabled
  99. float penalty_present = 0.00f; // 0.0 = disabled
  100. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  101. float mirostat_tau = 5.00f; // target entropy
  102. float mirostat_eta = 0.10f; // learning rate
  103. bool penalize_nl = false; // consider newlines as a repeatable token
  104. bool ignore_eos = false;
  105. bool no_perf = false; // disable performance metrics
  106. std::vector<enum gpt_sampler_type> samplers = {
  107. GPT_SAMPLER_TYPE_TOP_K,
  108. GPT_SAMPLER_TYPE_TFS_Z,
  109. GPT_SAMPLER_TYPE_TYPICAL_P,
  110. GPT_SAMPLER_TYPE_TOP_P,
  111. GPT_SAMPLER_TYPE_MIN_P,
  112. GPT_SAMPLER_TYPE_TEMPERATURE
  113. };
  114. std::string grammar; // optional BNF-like grammar to constrain sampling
  115. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  116. // print the parameters into a string
  117. std::string print() const;
  118. };
  119. struct gpt_params {
  120. int32_t n_predict = -1; // new tokens to predict
  121. int32_t n_ctx = 0; // context size
  122. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  123. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  124. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  125. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  126. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  127. int32_t n_parallel = 1; // number of parallel sequences to decode
  128. int32_t n_sequences = 1; // number of sequences to decode
  129. float p_split = 0.1f; // speculative decoding split probability
  130. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  131. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  132. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  133. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  134. int32_t grp_attn_n = 1; // group-attention factor
  135. int32_t grp_attn_w = 512; // group-attention width
  136. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  137. float rope_freq_base = 0.0f; // RoPE base frequency
  138. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  139. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  140. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  141. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  142. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  143. int32_t yarn_orig_ctx = 0; // YaRN original context length
  144. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  145. struct cpu_params cpuparams;
  146. struct cpu_params cpuparams_batch;
  147. struct cpu_params draft_cpuparams;
  148. struct cpu_params draft_cpuparams_batch;
  149. ggml_backend_sched_eval_callback cb_eval = nullptr;
  150. void * cb_eval_user_data = nullptr;
  151. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  152. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  153. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  154. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  155. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  156. struct gpt_sampler_params sparams;
  157. std::string model = ""; // model path // NOLINT
  158. std::string model_draft = ""; // draft model for speculative decoding // NOLINT
  159. std::string model_alias = "unknown"; // model alias // NOLINT
  160. std::string model_url = ""; // model url to download // NOLINT
  161. std::string hf_token = ""; // HF token // NOLINT
  162. std::string hf_repo = ""; // HF repo // NOLINT
  163. std::string hf_file = ""; // HF file // NOLINT
  164. std::string prompt = ""; // NOLINT
  165. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  166. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  167. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  168. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  169. std::string logdir = ""; // directory in which to save YAML log files // NOLINT
  170. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  171. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  172. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  173. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  174. std::vector<std::string> in_files; // all input files
  175. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  176. std::vector<llama_model_kv_override> kv_overrides;
  177. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  178. std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  179. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  180. int32_t verbosity = 0;
  181. int32_t control_vector_layer_start = -1; // layer range for control vector
  182. int32_t control_vector_layer_end = -1; // layer range for control vector
  183. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  184. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  185. // (which is more convenient to use for plotting)
  186. //
  187. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  188. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  189. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  190. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  191. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  192. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  193. bool kl_divergence = false; // compute KL divergence
  194. bool usage = false; // print usage
  195. bool use_color = false; // use color to distinguish generations and inputs
  196. bool special = false; // enable special token output
  197. bool interactive = false; // interactive mode
  198. bool interactive_first = false; // wait for user input immediately
  199. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  200. bool prompt_cache_all = false; // save user input and generations to prompt cache
  201. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  202. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  203. bool multiline_input = false; // reverse the usage of `\`
  204. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  205. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  206. bool flash_attn = false; // flash attention
  207. bool no_perf = false; // disable performance metrics
  208. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  209. bool logits_all = false; // return logits for all tokens in the batch
  210. bool use_mmap = true; // use mmap for faster loads
  211. bool use_mlock = false; // use mlock to keep model in memory
  212. bool verbose_prompt = false; // print prompt tokens before generation
  213. bool display_prompt = true; // print prompt before generation
  214. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  215. bool no_kv_offload = false; // disable KV offloading
  216. bool warmup = true; // warmup run
  217. bool check_tensors = false; // validate tensor data
  218. std::string cache_type_k = "f16"; // KV cache data type for the K
  219. std::string cache_type_v = "f16"; // KV cache data type for the V
  220. // multimodal models (see examples/llava)
  221. std::string mmproj = ""; // path to multimodal projector // NOLINT
  222. std::vector<std::string> image; // path to image file(s)
  223. // embedding
  224. bool embedding = false; // get only sentence embedding
  225. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  226. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  227. std::string embd_sep = "\n"; // separator of embendings
  228. // server params
  229. int32_t port = 8080; // server listens on this network port
  230. int32_t timeout_read = 600; // http read timeout in seconds
  231. int32_t timeout_write = timeout_read; // http write timeout in seconds
  232. int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  233. std::string hostname = "127.0.0.1";
  234. std::string public_path = ""; // NOLINT
  235. std::string chat_template = ""; // NOLINT
  236. std::string system_prompt = ""; // NOLINT
  237. bool enable_chat_template = true;
  238. std::vector<std::string> api_keys;
  239. std::string ssl_file_key = ""; // NOLINT
  240. std::string ssl_file_cert = ""; // NOLINT
  241. bool endpoint_slots = true;
  242. bool endpoint_metrics = false;
  243. bool log_json = false;
  244. std::string slot_save_path;
  245. float slot_prompt_similarity = 0.5f;
  246. // batched-bench params
  247. bool is_pp_shared = false;
  248. std::vector<int32_t> n_pp;
  249. std::vector<int32_t> n_tg;
  250. std::vector<int32_t> n_pl;
  251. // retrieval params
  252. std::vector<std::string> context_files; // context files to embed
  253. int32_t chunk_size = 64; // chunk size for context embedding
  254. std::string chunk_separator = "\n"; // chunk separator for context embedding
  255. // passkey params
  256. int32_t n_junk = 250; // number of times to repeat the junk text
  257. int32_t i_pos = -1; // position of the passkey in the junk text
  258. // imatrix params
  259. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  260. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  261. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  262. int32_t i_chunk = 0; // start processing from this chunk
  263. bool process_output = false; // collect data for the output tensor
  264. bool compute_ppl = true; // whether to compute perplexity
  265. // cvector-generator params
  266. int n_pca_batch = 100;
  267. int n_pca_iterations = 1000;
  268. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  269. std::string cvector_outfile = "control_vector.gguf";
  270. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  271. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  272. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  273. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  274. // batched-bench params
  275. bool batched_bench_output_jsonl = false;
  276. };
  277. std::string gpt_params_get_system_info(const gpt_params & params);
  278. bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  279. bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  280. void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
  281. bool set_process_priority(enum ggml_sched_priority prio);
  282. //
  283. // String utils
  284. //
  285. std::vector<std::string> string_split(std::string input, char separator);
  286. std::string string_strip(const std::string & str);
  287. std::string string_get_sortable_timestamp();
  288. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  289. template<class T>
  290. static std::vector<T> string_split(const std::string & str, char delim) {
  291. std::vector<T> values;
  292. std::istringstream str_stream(str);
  293. std::string token;
  294. while (std::getline(str_stream, token, delim)) {
  295. T value;
  296. std::istringstream token_stream(token);
  297. token_stream >> value;
  298. values.push_back(value);
  299. }
  300. return values;
  301. }
  302. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  303. void string_process_escapes(std::string & input);
  304. //
  305. // Filesystem utils
  306. //
  307. bool fs_validate_filename(const std::string & filename);
  308. bool fs_create_directory_with_parents(const std::string & path);
  309. std::string fs_get_cache_directory();
  310. std::string fs_get_cache_file(const std::string & filename);
  311. //
  312. // Model utils
  313. //
  314. struct llama_init_result {
  315. struct llama_model * model = nullptr;
  316. struct llama_context * context = nullptr;
  317. std::vector<llama_lora_adapter_container> lora_adapters;
  318. };
  319. struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
  320. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  321. struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
  322. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  323. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  324. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  325. // clear LoRA adapters from context, then apply new list of adapters
  326. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
  327. // Batch utils
  328. void llama_batch_clear(struct llama_batch & batch);
  329. void llama_batch_add(
  330. struct llama_batch & batch,
  331. llama_token id,
  332. llama_pos pos,
  333. const std::vector<llama_seq_id> & seq_ids,
  334. bool logits);
  335. //
  336. // Vocab utils
  337. //
  338. // tokenizes a string into a vector of tokens
  339. // should work similar to Python's `tokenizer.encode`
  340. std::vector<llama_token> llama_tokenize(
  341. const struct llama_context * ctx,
  342. const std::string & text,
  343. bool add_special,
  344. bool parse_special = false);
  345. std::vector<llama_token> llama_tokenize(
  346. const struct llama_model * model,
  347. const std::string & text,
  348. bool add_special,
  349. bool parse_special = false);
  350. // tokenizes a token into a piece, optionally renders special/control tokens
  351. // should work similar to Python's `tokenizer.id_to_piece`
  352. std::string llama_token_to_piece(
  353. const struct llama_context * ctx,
  354. llama_token token,
  355. bool special = true);
  356. // detokenizes a vector of tokens into a string
  357. // should work similar to Python's `tokenizer.decode`
  358. // optionally renders special/control tokens
  359. std::string llama_detokenize(
  360. llama_context * ctx,
  361. const std::vector<llama_token> & tokens,
  362. bool special = true);
  363. //
  364. // Chat template utils
  365. //
  366. // same with llama_chat_message, but uses std::string
  367. struct llama_chat_msg {
  368. std::string role;
  369. std::string content;
  370. };
  371. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  372. bool llama_chat_verify_template(const std::string & tmpl);
  373. // CPP wrapper for llama_chat_apply_template
  374. // If the built-in template is not supported, we default to chatml
  375. // If the custom "tmpl" is not supported, we throw an error
  376. std::string llama_chat_apply_template(const struct llama_model * model,
  377. const std::string & tmpl,
  378. const std::vector<llama_chat_msg> & chat,
  379. bool add_ass);
  380. // Format single message, while taking into account the position of that message in chat history
  381. std::string llama_chat_format_single(const struct llama_model * model,
  382. const std::string & tmpl,
  383. const std::vector<llama_chat_msg> & past_msg,
  384. const llama_chat_msg & new_msg,
  385. bool add_ass);
  386. // Returns an example of formatted chat
  387. std::string llama_chat_format_example(const struct llama_model * model,
  388. const std::string & tmpl);
  389. //
  390. // KV cache utils
  391. //
  392. // Dump the KV cache view with the number of sequences per cell.
  393. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  394. // Dump the KV cache view showing individual sequences in each cell (long output).
  395. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  396. //
  397. // Embedding utils
  398. //
  399. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  400. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  401. //
  402. // Control vector utils
  403. //
  404. struct llama_control_vector_data {
  405. int n_embd;
  406. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  407. std::vector<float> data;
  408. };
  409. struct llama_control_vector_load_info {
  410. float strength;
  411. std::string fname;
  412. };
  413. // Load control vectors, scale each by strength, and add them together.
  414. // On error, returns {-1, empty}
  415. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  416. //
  417. // Split utils
  418. //
  419. static const char * const LLM_KV_SPLIT_NO = "split.no";
  420. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  421. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  422. //
  423. // YAML utils
  424. //
  425. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  426. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  427. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  428. void yaml_dump_non_result_info(
  429. FILE * stream, const gpt_params & params, const llama_context * lctx,
  430. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);