llama-bench.cpp 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <thread>
  20. #include "ggml.h"
  21. #include "llama.h"
  22. #include "common.h"
  23. #include "ggml-cuda.h"
  24. #include "ggml-sycl.h"
  25. #ifdef GGML_USE_CANN
  26. #include "ggml-cann.h"
  27. #endif
  28. #ifdef _WIN32
  29. #define WIN32_LEAN_AND_MEAN
  30. #ifndef NOMINMAX
  31. # define NOMINMAX
  32. #endif
  33. #include <windows.h>
  34. #endif
  35. // utils
  36. static uint64_t get_time_ns() {
  37. using clock = std::chrono::high_resolution_clock;
  38. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  39. }
  40. template<class T>
  41. static std::string join(const std::vector<T> & values, const std::string & delim) {
  42. std::ostringstream str;
  43. for (size_t i = 0; i < values.size(); i++) {
  44. str << values[i];
  45. if (i < values.size() - 1) {
  46. str << delim;
  47. }
  48. }
  49. return str.str();
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. fclose(f);
  98. }
  99. #elif defined(_WIN32)
  100. HKEY hKey;
  101. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  102. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  103. 0,
  104. KEY_READ,
  105. &hKey) != ERROR_SUCCESS) {
  106. // fail to open registry key
  107. return "";
  108. }
  109. char cpu_brand[256];
  110. DWORD cpu_brand_size = sizeof(cpu_brand);
  111. if (RegQueryValueExA(hKey,
  112. TEXT("ProcessorNameString"),
  113. NULL,
  114. NULL,
  115. (LPBYTE)cpu_brand,
  116. &cpu_brand_size) == ERROR_SUCCESS) {
  117. id.assign(cpu_brand, cpu_brand_size);
  118. if (id.find('\0') != std::string::npos) {
  119. id.resize(id.find('\0'));
  120. }
  121. }
  122. RegCloseKey(hKey);
  123. #endif
  124. // TODO: other platforms
  125. return id;
  126. }
  127. static std::string get_gpu_info() {
  128. std::string id;
  129. #ifdef GGML_USE_CUDA
  130. int count = ggml_backend_cuda_get_device_count();
  131. for (int i = 0; i < count; i++) {
  132. char buf[128];
  133. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  134. id += buf;
  135. if (i < count - 1) {
  136. id += "/";
  137. }
  138. }
  139. #endif
  140. #ifdef GGML_USE_SYCL
  141. int count = ggml_backend_sycl_get_device_count();
  142. for (int i = 0; i < count; i++) {
  143. char buf[128];
  144. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  145. id += buf;
  146. if (i < count - 1) {
  147. id += "/";
  148. }
  149. }
  150. #endif
  151. #ifdef GGML_USE_CANN
  152. uint32_t count = ggml_backend_cann_get_device_count();
  153. for (uint32_t i = 0; i < count; i++) {
  154. char buf[128];
  155. ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
  156. id += buf;
  157. if (i < count - 1) {
  158. id += "/";
  159. }
  160. }
  161. #endif
  162. // TODO: other backends
  163. return id;
  164. }
  165. // command line params
  166. enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
  167. static const char * output_format_str(output_formats format) {
  168. switch (format) {
  169. case NONE: return "none";
  170. case CSV: return "csv";
  171. case JSON: return "json";
  172. case JSONL: return "jsonl";
  173. case MARKDOWN: return "md";
  174. case SQL: return "sql";
  175. default: GGML_ABORT("invalid output format");
  176. }
  177. }
  178. static bool output_format_from_str(const std::string & s, output_formats & format) {
  179. if (s == "none") {
  180. format = NONE;
  181. } else if (s == "csv") {
  182. format = CSV;
  183. } else if (s == "json") {
  184. format = JSON;
  185. } else if (s == "jsonl") {
  186. format = JSONL;
  187. } else if (s == "md") {
  188. format = MARKDOWN;
  189. } else if (s == "sql") {
  190. format = SQL;
  191. } else {
  192. return false;
  193. }
  194. return true;
  195. }
  196. static const char * split_mode_str(llama_split_mode mode) {
  197. switch (mode) {
  198. case LLAMA_SPLIT_MODE_NONE: return "none";
  199. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  200. case LLAMA_SPLIT_MODE_ROW: return "row";
  201. default: GGML_ABORT("invalid split mode");
  202. }
  203. }
  204. static std::string pair_str(const std::pair<int, int> & p) {
  205. static char buf[32];
  206. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  207. return buf;
  208. }
  209. struct cmd_params {
  210. std::vector<std::string> model;
  211. std::vector<int> n_prompt;
  212. std::vector<int> n_gen;
  213. std::vector<std::pair<int, int>> n_pg;
  214. std::vector<int> n_batch;
  215. std::vector<int> n_ubatch;
  216. std::vector<ggml_type> type_k;
  217. std::vector<ggml_type> type_v;
  218. std::vector<int> n_threads;
  219. std::vector<std::string> cpu_mask;
  220. std::vector<bool> cpu_strict;
  221. std::vector<int> poll;
  222. std::vector<int> n_gpu_layers;
  223. std::vector<std::string> rpc_servers;
  224. std::vector<llama_split_mode> split_mode;
  225. std::vector<int> main_gpu;
  226. std::vector<bool> no_kv_offload;
  227. std::vector<bool> flash_attn;
  228. std::vector<std::vector<float>> tensor_split;
  229. std::vector<bool> use_mmap;
  230. std::vector<bool> embeddings;
  231. ggml_numa_strategy numa;
  232. int reps;
  233. ggml_sched_priority prio;
  234. int delay;
  235. bool verbose;
  236. bool progress;
  237. output_formats output_format;
  238. output_formats output_format_stderr;
  239. };
  240. static const cmd_params cmd_params_defaults = {
  241. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  242. /* n_prompt */ {512},
  243. /* n_gen */ {128},
  244. /* n_pg */ {},
  245. /* n_batch */ {2048},
  246. /* n_ubatch */ {512},
  247. /* type_k */ {GGML_TYPE_F16},
  248. /* type_v */ {GGML_TYPE_F16},
  249. /* n_threads */ {cpu_get_num_math()},
  250. /* cpu_mask */ {"0x0"},
  251. /* cpu_strict */ {false},
  252. /* poll */ {50},
  253. /* n_gpu_layers */ {99},
  254. /* rpc_servers */ {""},
  255. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  256. /* main_gpu */ {0},
  257. /* no_kv_offload */ {false},
  258. /* flash_attn */ {false},
  259. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  260. /* use_mmap */ {true},
  261. /* embeddings */ {false},
  262. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  263. /* reps */ 5,
  264. /* prio */ GGML_SCHED_PRIO_NORMAL,
  265. /* delay */ 0,
  266. /* verbose */ false,
  267. /* progress */ false,
  268. /* output_format */ MARKDOWN,
  269. /* output_format_stderr */ NONE,
  270. };
  271. static void print_usage(int /* argc */, char ** argv) {
  272. printf("usage: %s [options]\n", argv[0]);
  273. printf("\n");
  274. printf("options:\n");
  275. printf(" -h, --help\n");
  276. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  277. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  278. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  279. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  280. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  281. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  282. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  283. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  284. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  285. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
  286. printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
  287. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  288. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  289. #ifdef GGML_USE_RPC
  290. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  291. #endif
  292. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  293. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  294. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  295. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  296. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  297. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  298. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  299. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  300. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  301. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  302. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  303. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  304. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  305. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  306. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  307. printf("\n");
  308. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  309. }
  310. static ggml_type ggml_type_from_name(const std::string & s) {
  311. if (s == "f16") {
  312. return GGML_TYPE_F16;
  313. }
  314. if (s == "q8_0") {
  315. return GGML_TYPE_Q8_0;
  316. }
  317. if (s == "q4_0") {
  318. return GGML_TYPE_Q4_0;
  319. }
  320. if (s == "q4_1") {
  321. return GGML_TYPE_Q4_1;
  322. }
  323. if (s == "q5_0") {
  324. return GGML_TYPE_Q5_0;
  325. }
  326. if (s == "q5_1") {
  327. return GGML_TYPE_Q5_1;
  328. }
  329. if (s == "iq4_nl") {
  330. return GGML_TYPE_IQ4_NL;
  331. }
  332. return GGML_TYPE_COUNT;
  333. }
  334. static cmd_params parse_cmd_params(int argc, char ** argv) {
  335. cmd_params params;
  336. std::string arg;
  337. bool invalid_param = false;
  338. const std::string arg_prefix = "--";
  339. const char split_delim = ',';
  340. params.verbose = cmd_params_defaults.verbose;
  341. params.output_format = cmd_params_defaults.output_format;
  342. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  343. params.reps = cmd_params_defaults.reps;
  344. params.numa = cmd_params_defaults.numa;
  345. params.prio = cmd_params_defaults.prio;
  346. params.delay = cmd_params_defaults.delay;
  347. params.progress = cmd_params_defaults.progress;
  348. for (int i = 1; i < argc; i++) {
  349. arg = argv[i];
  350. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  351. std::replace(arg.begin(), arg.end(), '_', '-');
  352. }
  353. if (arg == "-h" || arg == "--help") {
  354. print_usage(argc, argv);
  355. exit(0);
  356. } else if (arg == "-m" || arg == "--model") {
  357. if (++i >= argc) {
  358. invalid_param = true;
  359. break;
  360. }
  361. auto p = string_split<std::string>(argv[i], split_delim);
  362. params.model.insert(params.model.end(), p.begin(), p.end());
  363. } else if (arg == "-p" || arg == "--n-prompt") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. auto p = string_split<int>(argv[i], split_delim);
  369. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  370. } else if (arg == "-n" || arg == "--n-gen") {
  371. if (++i >= argc) {
  372. invalid_param = true;
  373. break;
  374. }
  375. auto p = string_split<int>(argv[i], split_delim);
  376. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  377. } else if (arg == "-pg") {
  378. if (++i >= argc) {
  379. invalid_param = true;
  380. break;
  381. }
  382. auto p = string_split<std::string>(argv[i], ',');
  383. if (p.size() != 2) {
  384. invalid_param = true;
  385. break;
  386. }
  387. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  388. } else if (arg == "-b" || arg == "--batch-size") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. auto p = string_split<int>(argv[i], split_delim);
  394. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  395. } else if (arg == "-ub" || arg == "--ubatch-size") {
  396. if (++i >= argc) {
  397. invalid_param = true;
  398. break;
  399. }
  400. auto p = string_split<int>(argv[i], split_delim);
  401. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  402. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  403. if (++i >= argc) {
  404. invalid_param = true;
  405. break;
  406. }
  407. auto p = string_split<std::string>(argv[i], split_delim);
  408. std::vector<ggml_type> types;
  409. for (const auto & t : p) {
  410. ggml_type gt = ggml_type_from_name(t);
  411. if (gt == GGML_TYPE_COUNT) {
  412. invalid_param = true;
  413. break;
  414. }
  415. types.push_back(gt);
  416. }
  417. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  418. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  419. if (++i >= argc) {
  420. invalid_param = true;
  421. break;
  422. }
  423. auto p = string_split<std::string>(argv[i], split_delim);
  424. std::vector<ggml_type> types;
  425. for (const auto & t : p) {
  426. ggml_type gt = ggml_type_from_name(t);
  427. if (gt == GGML_TYPE_COUNT) {
  428. invalid_param = true;
  429. break;
  430. }
  431. types.push_back(gt);
  432. }
  433. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  434. } else if (arg == "-t" || arg == "--threads") {
  435. if (++i >= argc) {
  436. invalid_param = true;
  437. break;
  438. }
  439. auto p = string_split<int>(argv[i], split_delim);
  440. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  441. } else if (arg == "-C" || arg == "--cpu-mask") {
  442. if (++i >= argc) {
  443. invalid_param = true;
  444. break;
  445. }
  446. auto p = string_split<std::string>(argv[i], split_delim);
  447. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  448. } else if (arg == "--cpu-strict") {
  449. if (++i >= argc) {
  450. invalid_param = true;
  451. break;
  452. }
  453. auto p = string_split<bool>(argv[i], split_delim);
  454. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  455. } else if (arg == "--poll") {
  456. if (++i >= argc) {
  457. invalid_param = true;
  458. break;
  459. }
  460. auto p = string_split<int>(argv[i], split_delim);
  461. params.poll.insert(params.poll.end(), p.begin(), p.end());
  462. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  463. if (++i >= argc) {
  464. invalid_param = true;
  465. break;
  466. }
  467. auto p = string_split<int>(argv[i], split_delim);
  468. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  469. #ifdef GGML_USE_RPC
  470. } else if (arg == "-rpc" || arg == "--rpc") {
  471. if (++i >= argc) {
  472. invalid_param = true;
  473. break;
  474. }
  475. params.rpc_servers.push_back(argv[i]);
  476. #endif
  477. } else if (arg == "-sm" || arg == "--split-mode") {
  478. if (++i >= argc) {
  479. invalid_param = true;
  480. break;
  481. }
  482. auto p = string_split<std::string>(argv[i], split_delim);
  483. std::vector<llama_split_mode> modes;
  484. for (const auto & m : p) {
  485. llama_split_mode mode;
  486. if (m == "none") {
  487. mode = LLAMA_SPLIT_MODE_NONE;
  488. } else if (m == "layer") {
  489. mode = LLAMA_SPLIT_MODE_LAYER;
  490. } else if (m == "row") {
  491. mode = LLAMA_SPLIT_MODE_ROW;
  492. } else {
  493. invalid_param = true;
  494. break;
  495. }
  496. modes.push_back(mode);
  497. }
  498. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  499. } else if (arg == "-mg" || arg == "--main-gpu") {
  500. if (++i >= argc) {
  501. invalid_param = true;
  502. break;
  503. }
  504. params.main_gpu = string_split<int>(argv[i], split_delim);
  505. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  506. if (++i >= argc) {
  507. invalid_param = true;
  508. break;
  509. }
  510. auto p = string_split<bool>(argv[i], split_delim);
  511. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  512. } else if (arg == "--numa") {
  513. if (++i >= argc) {
  514. invalid_param = true;
  515. break;
  516. } else {
  517. std::string value(argv[i]);
  518. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  519. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  520. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  521. else { invalid_param = true; break; }
  522. }
  523. } else if (arg == "-fa" || arg == "--flash-attn") {
  524. if (++i >= argc) {
  525. invalid_param = true;
  526. break;
  527. }
  528. auto p = string_split<bool>(argv[i], split_delim);
  529. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  530. } else if (arg == "-mmp" || arg == "--mmap") {
  531. if (++i >= argc) {
  532. invalid_param = true;
  533. break;
  534. }
  535. auto p = string_split<bool>(argv[i], split_delim);
  536. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  537. } else if (arg == "-embd" || arg == "--embeddings") {
  538. if (++i >= argc) {
  539. invalid_param = true;
  540. break;
  541. }
  542. auto p = string_split<bool>(argv[i], split_delim);
  543. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  544. } else if (arg == "-ts" || arg == "--tensor-split") {
  545. if (++i >= argc) {
  546. invalid_param = true;
  547. break;
  548. }
  549. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  550. // split string by ; and /
  551. const std::regex regex{R"([;/]+)"};
  552. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  553. std::vector<std::string> split_arg{it, {}};
  554. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  555. std::vector<float> tensor_split(llama_max_devices());
  556. for (size_t i = 0; i < llama_max_devices(); ++i) {
  557. if (i < split_arg.size()) {
  558. tensor_split[i] = std::stof(split_arg[i]);
  559. } else {
  560. tensor_split[i] = 0.0f;
  561. }
  562. }
  563. params.tensor_split.push_back(tensor_split);
  564. }
  565. } else if (arg == "-r" || arg == "--repetitions") {
  566. if (++i >= argc) {
  567. invalid_param = true;
  568. break;
  569. }
  570. params.reps = std::stoi(argv[i]);
  571. } else if (arg == "--prio") {
  572. if (++i >= argc) {
  573. invalid_param = true;
  574. break;
  575. }
  576. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  577. } else if (arg == "--delay") {
  578. if (++i >= argc) {
  579. invalid_param = true;
  580. break;
  581. }
  582. params.delay = std::stoi(argv[i]);
  583. } else if (arg == "-o" || arg == "--output") {
  584. if (++i >= argc) {
  585. invalid_param = true;
  586. break;
  587. }
  588. invalid_param = !output_format_from_str(argv[i], params.output_format);
  589. } else if (arg == "-oe" || arg == "--output-err") {
  590. if (++i >= argc) {
  591. invalid_param = true;
  592. break;
  593. }
  594. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  595. } else if (arg == "-v" || arg == "--verbose") {
  596. params.verbose = true;
  597. } else if (arg == "--progress") {
  598. params.progress = true;
  599. } else {
  600. invalid_param = true;
  601. break;
  602. }
  603. }
  604. if (invalid_param) {
  605. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  606. print_usage(argc, argv);
  607. exit(1);
  608. }
  609. // set defaults
  610. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  611. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  612. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  613. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  614. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  615. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  616. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  617. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  618. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  619. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  620. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  621. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  622. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  623. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  624. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  625. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  626. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  627. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  628. if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
  629. if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
  630. if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
  631. return params;
  632. }
  633. struct cmd_params_instance {
  634. std::string model;
  635. int n_prompt;
  636. int n_gen;
  637. int n_batch;
  638. int n_ubatch;
  639. ggml_type type_k;
  640. ggml_type type_v;
  641. int n_threads;
  642. std::string cpu_mask;
  643. bool cpu_strict;
  644. int poll;
  645. int n_gpu_layers;
  646. std::string rpc_servers;
  647. llama_split_mode split_mode;
  648. int main_gpu;
  649. bool no_kv_offload;
  650. bool flash_attn;
  651. std::vector<float> tensor_split;
  652. bool use_mmap;
  653. bool embeddings;
  654. llama_model_params to_llama_mparams() const {
  655. llama_model_params mparams = llama_model_default_params();
  656. mparams.n_gpu_layers = n_gpu_layers;
  657. if (!rpc_servers.empty()) {
  658. mparams.rpc_servers = rpc_servers.c_str();
  659. }
  660. mparams.split_mode = split_mode;
  661. mparams.main_gpu = main_gpu;
  662. mparams.tensor_split = tensor_split.data();
  663. mparams.use_mmap = use_mmap;
  664. return mparams;
  665. }
  666. bool equal_mparams(const cmd_params_instance & other) const {
  667. return model == other.model &&
  668. n_gpu_layers == other.n_gpu_layers &&
  669. rpc_servers == other.rpc_servers &&
  670. split_mode == other.split_mode &&
  671. main_gpu == other.main_gpu &&
  672. use_mmap == other.use_mmap &&
  673. tensor_split == other.tensor_split;
  674. }
  675. llama_context_params to_llama_cparams() const {
  676. llama_context_params cparams = llama_context_default_params();
  677. cparams.n_ctx = n_prompt + n_gen;
  678. cparams.n_batch = n_batch;
  679. cparams.n_ubatch = n_ubatch;
  680. cparams.type_k = type_k;
  681. cparams.type_v = type_v;
  682. cparams.offload_kqv = !no_kv_offload;
  683. cparams.flash_attn = flash_attn;
  684. cparams.embeddings = embeddings;
  685. return cparams;
  686. }
  687. };
  688. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  689. std::vector<cmd_params_instance> instances;
  690. // this ordering minimizes the number of times that each model needs to be reloaded
  691. for (const auto & m : params.model)
  692. for (const auto & nl : params.n_gpu_layers)
  693. for (const auto & rpc : params.rpc_servers)
  694. for (const auto & sm : params.split_mode)
  695. for (const auto & mg : params.main_gpu)
  696. for (const auto & ts : params.tensor_split)
  697. for (const auto & mmp : params.use_mmap)
  698. for (const auto & embd : params.embeddings)
  699. for (const auto & nb : params.n_batch)
  700. for (const auto & nub : params.n_ubatch)
  701. for (const auto & tk : params.type_k)
  702. for (const auto & tv : params.type_v)
  703. for (const auto & nkvo : params.no_kv_offload)
  704. for (const auto & fa : params.flash_attn)
  705. for (const auto & nt : params.n_threads)
  706. for (const auto & cm : params.cpu_mask)
  707. for (const auto & cs : params.cpu_strict)
  708. for (const auto & pl : params.poll) {
  709. for (const auto & n_prompt : params.n_prompt) {
  710. if (n_prompt == 0) {
  711. continue;
  712. }
  713. cmd_params_instance instance = {
  714. /* .model = */ m,
  715. /* .n_prompt = */ n_prompt,
  716. /* .n_gen = */ 0,
  717. /* .n_batch = */ nb,
  718. /* .n_ubatch = */ nub,
  719. /* .type_k = */ tk,
  720. /* .type_v = */ tv,
  721. /* .n_threads = */ nt,
  722. /* .cpu_mask = */ cm,
  723. /* .cpu_strict = */ cs,
  724. /* .poll = */ pl,
  725. /* .n_gpu_layers = */ nl,
  726. /* .rpc_servers = */ rpc,
  727. /* .split_mode = */ sm,
  728. /* .main_gpu = */ mg,
  729. /* .no_kv_offload= */ nkvo,
  730. /* .flash_attn = */ fa,
  731. /* .tensor_split = */ ts,
  732. /* .use_mmap = */ mmp,
  733. /* .embeddings = */ embd,
  734. };
  735. instances.push_back(instance);
  736. }
  737. for (const auto & n_gen : params.n_gen) {
  738. if (n_gen == 0) {
  739. continue;
  740. }
  741. cmd_params_instance instance = {
  742. /* .model = */ m,
  743. /* .n_prompt = */ 0,
  744. /* .n_gen = */ n_gen,
  745. /* .n_batch = */ nb,
  746. /* .n_ubatch = */ nub,
  747. /* .type_k = */ tk,
  748. /* .type_v = */ tv,
  749. /* .n_threads = */ nt,
  750. /* .cpu_mask = */ cm,
  751. /* .cpu_strict = */ cs,
  752. /* .poll = */ pl,
  753. /* .n_gpu_layers = */ nl,
  754. /* .rpc_servers = */ rpc,
  755. /* .split_mode = */ sm,
  756. /* .main_gpu = */ mg,
  757. /* .no_kv_offload= */ nkvo,
  758. /* .flash_attn = */ fa,
  759. /* .tensor_split = */ ts,
  760. /* .use_mmap = */ mmp,
  761. /* .embeddings = */ embd,
  762. };
  763. instances.push_back(instance);
  764. }
  765. for (const auto & n_pg : params.n_pg) {
  766. if (n_pg.first == 0 && n_pg.second == 0) {
  767. continue;
  768. }
  769. cmd_params_instance instance = {
  770. /* .model = */ m,
  771. /* .n_prompt = */ n_pg.first,
  772. /* .n_gen = */ n_pg.second,
  773. /* .n_batch = */ nb,
  774. /* .n_ubatch = */ nub,
  775. /* .type_k = */ tk,
  776. /* .type_v = */ tv,
  777. /* .n_threads = */ nt,
  778. /* .cpu_mask = */ cm,
  779. /* .cpu_strict = */ cs,
  780. /* .poll = */ pl,
  781. /* .n_gpu_layers = */ nl,
  782. /* .rpc_servers = */ rpc,
  783. /* .split_mode = */ sm,
  784. /* .main_gpu = */ mg,
  785. /* .no_kv_offload= */ nkvo,
  786. /* .flash_attn = */ fa,
  787. /* .tensor_split = */ ts,
  788. /* .use_mmap = */ mmp,
  789. /* .embeddings = */ embd,
  790. };
  791. instances.push_back(instance);
  792. }
  793. }
  794. return instances;
  795. }
  796. struct test {
  797. static const std::string build_commit;
  798. static const int build_number;
  799. static const bool cuda;
  800. static const bool vulkan;
  801. static const bool kompute;
  802. static const bool metal;
  803. static const bool sycl;
  804. static const bool gpu_blas;
  805. static const bool blas;
  806. static const std::string cpu_info;
  807. static const std::string gpu_info;
  808. std::string model_filename;
  809. std::string model_type;
  810. uint64_t model_size;
  811. uint64_t model_n_params;
  812. int n_batch;
  813. int n_ubatch;
  814. int n_threads;
  815. std::string cpu_mask;
  816. bool cpu_strict;
  817. int poll;
  818. bool has_rpc;
  819. ggml_type type_k;
  820. ggml_type type_v;
  821. int n_gpu_layers;
  822. llama_split_mode split_mode;
  823. int main_gpu;
  824. bool no_kv_offload;
  825. bool flash_attn;
  826. std::vector<float> tensor_split;
  827. bool use_mmap;
  828. bool embeddings;
  829. int n_prompt;
  830. int n_gen;
  831. std::string test_time;
  832. std::vector<uint64_t> samples_ns;
  833. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  834. model_filename = inst.model;
  835. char buf[128];
  836. llama_model_desc(lmodel, buf, sizeof(buf));
  837. model_type = buf;
  838. model_size = llama_model_size(lmodel);
  839. model_n_params = llama_model_n_params(lmodel);
  840. n_batch = inst.n_batch;
  841. n_ubatch = inst.n_ubatch;
  842. n_threads = inst.n_threads;
  843. cpu_mask = inst.cpu_mask;
  844. cpu_strict = inst.cpu_strict;
  845. poll = inst.poll;
  846. has_rpc = !inst.rpc_servers.empty();
  847. type_k = inst.type_k;
  848. type_v = inst.type_v;
  849. n_gpu_layers = inst.n_gpu_layers;
  850. split_mode = inst.split_mode;
  851. main_gpu = inst.main_gpu;
  852. no_kv_offload = inst.no_kv_offload;
  853. flash_attn = inst.flash_attn;
  854. tensor_split = inst.tensor_split;
  855. use_mmap = inst.use_mmap;
  856. embeddings = inst.embeddings;
  857. n_prompt = inst.n_prompt;
  858. n_gen = inst.n_gen;
  859. // RFC 3339 date-time format
  860. time_t t = time(NULL);
  861. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  862. test_time = buf;
  863. (void) ctx;
  864. }
  865. uint64_t avg_ns() const {
  866. return ::avg(samples_ns);
  867. }
  868. uint64_t stdev_ns() const {
  869. return ::stdev(samples_ns);
  870. }
  871. std::vector<double> get_ts() const {
  872. int n_tokens = n_prompt + n_gen;
  873. std::vector<double> ts;
  874. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  875. return ts;
  876. }
  877. double avg_ts() const {
  878. return ::avg(get_ts());
  879. }
  880. double stdev_ts() const {
  881. return ::stdev(get_ts());
  882. }
  883. static std::string get_backend() {
  884. if (cuda) {
  885. return GGML_CUDA_NAME;
  886. }
  887. if (vulkan) {
  888. return "Vulkan";
  889. }
  890. if (kompute) {
  891. return "Kompute";
  892. }
  893. if (metal) {
  894. return "Metal";
  895. }
  896. if (sycl) {
  897. return GGML_SYCL_NAME;
  898. }
  899. if (gpu_blas) {
  900. return "GPU BLAS";
  901. }
  902. if (blas) {
  903. return "BLAS";
  904. }
  905. return "CPU";
  906. }
  907. static const std::vector<std::string> & get_fields() {
  908. static const std::vector<std::string> fields = {
  909. "build_commit", "build_number",
  910. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  911. "cpu_info", "gpu_info",
  912. "model_filename", "model_type", "model_size", "model_n_params",
  913. "n_batch", "n_ubatch",
  914. "n_threads", "cpu_mask", "cpu_strict", "poll",
  915. "type_k", "type_v",
  916. "n_gpu_layers", "split_mode",
  917. "main_gpu", "no_kv_offload", "flash_attn",
  918. "tensor_split", "use_mmap", "embeddings",
  919. "n_prompt", "n_gen", "test_time",
  920. "avg_ns", "stddev_ns",
  921. "avg_ts", "stddev_ts",
  922. };
  923. return fields;
  924. }
  925. enum field_type {STRING, BOOL, INT, FLOAT};
  926. static field_type get_field_type(const std::string & field) {
  927. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  928. field == "n_threads" || field == "poll" ||
  929. field == "model_size" || field == "model_n_params" ||
  930. field == "n_gpu_layers" || field == "main_gpu" ||
  931. field == "n_prompt" || field == "n_gen" ||
  932. field == "avg_ns" || field == "stddev_ns") {
  933. return INT;
  934. }
  935. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  936. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  937. field == "cpu_strict" ||
  938. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  939. return BOOL;
  940. }
  941. if (field == "avg_ts" || field == "stddev_ts") {
  942. return FLOAT;
  943. }
  944. return STRING;
  945. }
  946. std::vector<std::string> get_values() const {
  947. std::string tensor_split_str;
  948. int max_nonzero = 0;
  949. for (size_t i = 0; i < llama_max_devices(); i++) {
  950. if (tensor_split[i] > 0) {
  951. max_nonzero = i;
  952. }
  953. }
  954. for (int i = 0; i <= max_nonzero; i++) {
  955. char buf[32];
  956. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  957. tensor_split_str += buf;
  958. if (i < max_nonzero) {
  959. tensor_split_str += "/";
  960. }
  961. }
  962. std::vector<std::string> values = {
  963. build_commit, std::to_string(build_number),
  964. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  965. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  966. cpu_info, gpu_info,
  967. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  968. std::to_string(n_batch), std::to_string(n_ubatch),
  969. std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
  970. ggml_type_name(type_k), ggml_type_name(type_v),
  971. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  972. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  973. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  974. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  975. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  976. std::to_string(avg_ts()), std::to_string(stdev_ts())
  977. };
  978. return values;
  979. }
  980. std::map<std::string, std::string> get_map() const {
  981. std::map<std::string, std::string> map;
  982. auto fields = get_fields();
  983. auto values = get_values();
  984. std::transform(fields.begin(), fields.end(), values.begin(),
  985. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  986. return map;
  987. }
  988. };
  989. const std::string test::build_commit = LLAMA_COMMIT;
  990. const int test::build_number = LLAMA_BUILD_NUMBER;
  991. const bool test::cuda = !!ggml_cpu_has_cuda();
  992. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  993. const bool test::kompute = !!ggml_cpu_has_kompute();
  994. const bool test::metal = !!ggml_cpu_has_metal();
  995. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  996. const bool test::blas = !!ggml_cpu_has_blas();
  997. const bool test::sycl = !!ggml_cpu_has_sycl();
  998. const std::string test::cpu_info = get_cpu_info();
  999. const std::string test::gpu_info = get_gpu_info();
  1000. struct printer {
  1001. virtual ~printer() {}
  1002. FILE * fout;
  1003. virtual void print_header(const cmd_params & params) { (void) params; }
  1004. virtual void print_test(const test & t) = 0;
  1005. virtual void print_footer() { }
  1006. };
  1007. struct csv_printer : public printer {
  1008. static std::string escape_csv(const std::string & field) {
  1009. std::string escaped = "\"";
  1010. for (auto c : field) {
  1011. if (c == '"') {
  1012. escaped += "\"";
  1013. }
  1014. escaped += c;
  1015. }
  1016. escaped += "\"";
  1017. return escaped;
  1018. }
  1019. void print_header(const cmd_params & params) override {
  1020. std::vector<std::string> fields = test::get_fields();
  1021. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1022. (void) params;
  1023. }
  1024. void print_test(const test & t) override {
  1025. std::vector<std::string> values = t.get_values();
  1026. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1027. fprintf(fout, "%s\n", join(values, ",").c_str());
  1028. }
  1029. };
  1030. static std::string escape_json(const std::string & value) {
  1031. std::string escaped;
  1032. for (auto c : value) {
  1033. if (c == '"') {
  1034. escaped += "\\\"";
  1035. } else if (c == '\\') {
  1036. escaped += "\\\\";
  1037. } else if (c <= 0x1f) {
  1038. char buf[8];
  1039. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1040. escaped += buf;
  1041. } else {
  1042. escaped += c;
  1043. }
  1044. }
  1045. return escaped;
  1046. }
  1047. static std::string format_json_value(const std::string & field, const std::string & value) {
  1048. switch (test::get_field_type(field)) {
  1049. case test::STRING:
  1050. return "\"" + escape_json(value) + "\"";
  1051. case test::BOOL:
  1052. return value == "0" ? "false" : "true";
  1053. default:
  1054. return value;
  1055. }
  1056. }
  1057. struct json_printer : public printer {
  1058. bool first = true;
  1059. void print_header(const cmd_params & params) override {
  1060. fprintf(fout, "[\n");
  1061. (void) params;
  1062. }
  1063. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1064. assert(fields.size() == values.size());
  1065. for (size_t i = 0; i < fields.size(); i++) {
  1066. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1067. }
  1068. }
  1069. void print_test(const test & t) override {
  1070. if (first) {
  1071. first = false;
  1072. } else {
  1073. fprintf(fout, ",\n");
  1074. }
  1075. fprintf(fout, " {\n");
  1076. print_fields(test::get_fields(), t.get_values());
  1077. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1078. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1079. fprintf(fout, " }");
  1080. fflush(fout);
  1081. }
  1082. void print_footer() override {
  1083. fprintf(fout, "\n]\n");
  1084. }
  1085. };
  1086. struct jsonl_printer : public printer {
  1087. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1088. assert(fields.size() == values.size());
  1089. for (size_t i = 0; i < fields.size(); i++) {
  1090. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1091. }
  1092. }
  1093. void print_test(const test & t) override {
  1094. fprintf(fout, "{");
  1095. print_fields(test::get_fields(), t.get_values());
  1096. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1097. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1098. fprintf(fout, "}\n");
  1099. fflush(fout);
  1100. }
  1101. };
  1102. struct markdown_printer : public printer {
  1103. std::vector<std::string> fields;
  1104. static int get_field_width(const std::string & field) {
  1105. if (field == "model") {
  1106. return -30;
  1107. }
  1108. if (field == "t/s") {
  1109. return 20;
  1110. }
  1111. if (field == "size" || field == "params") {
  1112. return 10;
  1113. }
  1114. if (field == "n_gpu_layers") {
  1115. return 3;
  1116. }
  1117. if (field == "n_threads") {
  1118. return 7;
  1119. }
  1120. if (field == "n_batch") {
  1121. return 7;
  1122. }
  1123. if (field == "n_ubatch") {
  1124. return 8;
  1125. }
  1126. if (field == "type_k" || field == "type_v") {
  1127. return 6;
  1128. }
  1129. if (field == "split_mode") {
  1130. return 5;
  1131. }
  1132. if (field == "flash_attn") {
  1133. return 2;
  1134. }
  1135. if (field == "use_mmap") {
  1136. return 4;
  1137. }
  1138. if (field == "test") {
  1139. return 13;
  1140. }
  1141. int width = std::max((int)field.length(), 10);
  1142. if (test::get_field_type(field) == test::STRING) {
  1143. return -width;
  1144. }
  1145. return width;
  1146. }
  1147. static std::string get_field_display_name(const std::string & field) {
  1148. if (field == "n_gpu_layers") {
  1149. return "ngl";
  1150. }
  1151. if (field == "split_mode") {
  1152. return "sm";
  1153. }
  1154. if (field == "n_threads") {
  1155. return "threads";
  1156. }
  1157. if (field == "no_kv_offload") {
  1158. return "nkvo";
  1159. }
  1160. if (field == "flash_attn") {
  1161. return "fa";
  1162. }
  1163. if (field == "use_mmap") {
  1164. return "mmap";
  1165. }
  1166. if (field == "embeddings") {
  1167. return "embd";
  1168. }
  1169. if (field == "tensor_split") {
  1170. return "ts";
  1171. }
  1172. return field;
  1173. }
  1174. void print_header(const cmd_params & params) override {
  1175. // select fields to print
  1176. fields.emplace_back("model");
  1177. fields.emplace_back("size");
  1178. fields.emplace_back("params");
  1179. fields.emplace_back("backend");
  1180. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1181. if (!is_cpu_backend) {
  1182. fields.emplace_back("n_gpu_layers");
  1183. }
  1184. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1185. fields.emplace_back("n_threads");
  1186. }
  1187. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1188. fields.emplace_back("cpu_mask");
  1189. }
  1190. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1191. fields.emplace_back("cpu_strict");
  1192. }
  1193. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1194. fields.emplace_back("poll");
  1195. }
  1196. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1197. fields.emplace_back("n_batch");
  1198. }
  1199. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1200. fields.emplace_back("n_ubatch");
  1201. }
  1202. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1203. fields.emplace_back("type_k");
  1204. }
  1205. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1206. fields.emplace_back("type_v");
  1207. }
  1208. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1209. fields.emplace_back("main_gpu");
  1210. }
  1211. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1212. fields.emplace_back("split_mode");
  1213. }
  1214. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1215. fields.emplace_back("no_kv_offload");
  1216. }
  1217. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1218. fields.emplace_back("flash_attn");
  1219. }
  1220. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1221. fields.emplace_back("tensor_split");
  1222. }
  1223. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1224. fields.emplace_back("use_mmap");
  1225. }
  1226. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1227. fields.emplace_back("embeddings");
  1228. }
  1229. fields.emplace_back("test");
  1230. fields.emplace_back("t/s");
  1231. fprintf(fout, "|");
  1232. for (const auto & field : fields) {
  1233. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1234. }
  1235. fprintf(fout, "\n");
  1236. fprintf(fout, "|");
  1237. for (const auto & field : fields) {
  1238. int width = get_field_width(field);
  1239. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1240. }
  1241. fprintf(fout, "\n");
  1242. }
  1243. void print_test(const test & t) override {
  1244. std::map<std::string, std::string> vmap = t.get_map();
  1245. fprintf(fout, "|");
  1246. for (const auto & field : fields) {
  1247. std::string value;
  1248. char buf[128];
  1249. if (field == "model") {
  1250. value = t.model_type;
  1251. } else if (field == "size") {
  1252. if (t.model_size < 1024*1024*1024) {
  1253. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1254. } else {
  1255. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1256. }
  1257. value = buf;
  1258. } else if (field == "params") {
  1259. if (t.model_n_params < 1000*1000*1000) {
  1260. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1261. } else {
  1262. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1263. }
  1264. value = buf;
  1265. } else if (field == "backend") {
  1266. value = test::get_backend();
  1267. if (t.has_rpc) {
  1268. value += "+RPC";
  1269. }
  1270. } else if (field == "test") {
  1271. if (t.n_prompt > 0 && t.n_gen == 0) {
  1272. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1273. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1274. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1275. } else {
  1276. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1277. }
  1278. value = buf;
  1279. } else if (field == "t/s") {
  1280. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1281. value = buf;
  1282. } else if (vmap.find(field) != vmap.end()) {
  1283. value = vmap.at(field);
  1284. } else {
  1285. assert(false);
  1286. exit(1);
  1287. }
  1288. int width = get_field_width(field);
  1289. if (field == "t/s") {
  1290. // HACK: the utf-8 character is 2 bytes
  1291. width += 1;
  1292. }
  1293. fprintf(fout, " %*s |", width, value.c_str());
  1294. }
  1295. fprintf(fout, "\n");
  1296. }
  1297. void print_footer() override {
  1298. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1299. }
  1300. };
  1301. struct sql_printer : public printer {
  1302. static std::string get_sql_field_type(const std::string & field) {
  1303. switch (test::get_field_type(field)) {
  1304. case test::STRING:
  1305. return "TEXT";
  1306. case test::BOOL:
  1307. case test::INT:
  1308. return "INTEGER";
  1309. case test::FLOAT:
  1310. return "REAL";
  1311. default:
  1312. assert(false);
  1313. exit(1);
  1314. }
  1315. }
  1316. void print_header(const cmd_params & params) override {
  1317. std::vector<std::string> fields = test::get_fields();
  1318. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1319. for (size_t i = 0; i < fields.size(); i++) {
  1320. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1321. }
  1322. fprintf(fout, ");\n");
  1323. fprintf(fout, "\n");
  1324. (void) params;
  1325. }
  1326. void print_test(const test & t) override {
  1327. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1328. fprintf(fout, "VALUES (");
  1329. std::vector<std::string> values = t.get_values();
  1330. for (size_t i = 0; i < values.size(); i++) {
  1331. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1332. }
  1333. fprintf(fout, ");\n");
  1334. }
  1335. };
  1336. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1337. llama_set_n_threads(ctx, n_threads, n_threads);
  1338. const llama_model * model = llama_get_model(ctx);
  1339. const int32_t n_vocab = llama_n_vocab(model);
  1340. std::vector<llama_token> tokens(n_batch);
  1341. int n_processed = 0;
  1342. while (n_processed < n_prompt) {
  1343. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1344. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1345. for (int i = 1; i < n_tokens; i++) {
  1346. tokens[i] = std::rand() % n_vocab;
  1347. }
  1348. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1349. n_processed += n_tokens;
  1350. }
  1351. llama_synchronize(ctx);
  1352. }
  1353. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1354. llama_set_n_threads(ctx, n_threads, n_threads);
  1355. const llama_model * model = llama_get_model(ctx);
  1356. const int32_t n_vocab = llama_n_vocab(model);
  1357. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1358. for (int i = 0; i < n_gen; i++) {
  1359. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1360. llama_synchronize(ctx);
  1361. token = std::rand() % n_vocab;
  1362. }
  1363. }
  1364. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1365. (void) level;
  1366. (void) text;
  1367. (void) user_data;
  1368. }
  1369. static std::unique_ptr<printer> create_printer(output_formats format) {
  1370. switch (format) {
  1371. case NONE:
  1372. return nullptr;
  1373. case CSV:
  1374. return std::unique_ptr<printer>(new csv_printer());
  1375. case JSON:
  1376. return std::unique_ptr<printer>(new json_printer());
  1377. case JSONL:
  1378. return std::unique_ptr<printer>(new jsonl_printer());
  1379. case MARKDOWN:
  1380. return std::unique_ptr<printer>(new markdown_printer());
  1381. case SQL:
  1382. return std::unique_ptr<printer>(new sql_printer());
  1383. }
  1384. GGML_ABORT("fatal error");
  1385. }
  1386. int main(int argc, char ** argv) {
  1387. // try to set locale for unicode characters in markdown
  1388. setlocale(LC_CTYPE, ".UTF-8");
  1389. #if !defined(NDEBUG)
  1390. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1391. #endif
  1392. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1393. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1394. #endif
  1395. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1396. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1397. #endif
  1398. cmd_params params = parse_cmd_params(argc, argv);
  1399. // initialize llama.cpp
  1400. if (!params.verbose) {
  1401. llama_log_set(llama_null_log_callback, NULL);
  1402. }
  1403. llama_backend_init();
  1404. llama_numa_init(params.numa);
  1405. set_process_priority(params.prio);
  1406. // initialize printer
  1407. std::unique_ptr<printer> p = create_printer(params.output_format);
  1408. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1409. if (p) {
  1410. p->fout = stdout;
  1411. p->print_header(params);
  1412. }
  1413. if (p_err) {
  1414. p_err->fout = stderr;
  1415. p_err->print_header(params);
  1416. }
  1417. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1418. llama_model * lmodel = nullptr;
  1419. const cmd_params_instance * prev_inst = nullptr;
  1420. int params_idx = 0;
  1421. auto params_count = params_instances.size();
  1422. for (const auto & inst : params_instances) {
  1423. params_idx ++;
  1424. if (params.progress) {
  1425. fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
  1426. }
  1427. // keep the same model between tests when possible
  1428. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1429. if (lmodel) {
  1430. llama_free_model(lmodel);
  1431. }
  1432. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1433. if (lmodel == NULL) {
  1434. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1435. return 1;
  1436. }
  1437. prev_inst = &inst;
  1438. }
  1439. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1440. if (ctx == NULL) {
  1441. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1442. llama_free_model(lmodel);
  1443. return 1;
  1444. }
  1445. test t(inst, lmodel, ctx);
  1446. llama_kv_cache_clear(ctx);
  1447. // cool off before the test
  1448. if (params.delay) {
  1449. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1450. }
  1451. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1452. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1453. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1454. exit(1);
  1455. }
  1456. tpp.strict_cpu = t.cpu_strict;
  1457. tpp.poll = t.poll;
  1458. tpp.prio = params.prio;
  1459. struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
  1460. if (!threadpool) {
  1461. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1462. exit(1);
  1463. }
  1464. llama_attach_threadpool(ctx, threadpool, NULL);
  1465. // warmup run
  1466. if (t.n_prompt > 0) {
  1467. if (params.progress) {
  1468. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
  1469. }
  1470. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1471. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1472. }
  1473. if (t.n_gen > 0) {
  1474. if (params.progress) {
  1475. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
  1476. }
  1477. test_gen(ctx, 1, 0, t.n_threads);
  1478. }
  1479. for (int i = 0; i < params.reps; i++) {
  1480. llama_kv_cache_clear(ctx);
  1481. uint64_t t_start = get_time_ns();
  1482. if (t.n_prompt > 0) {
  1483. if (params.progress) {
  1484. fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1485. }
  1486. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1487. }
  1488. if (t.n_gen > 0) {
  1489. if (params.progress) {
  1490. fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1491. }
  1492. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1493. }
  1494. uint64_t t_ns = get_time_ns() - t_start;
  1495. t.samples_ns.push_back(t_ns);
  1496. }
  1497. if (p) {
  1498. p->print_test(t);
  1499. fflush(p->fout);
  1500. }
  1501. if (p_err) {
  1502. p_err->print_test(t);
  1503. fflush(p_err->fout);
  1504. }
  1505. llama_perf_context_print(ctx);
  1506. llama_free(ctx);
  1507. ggml_threadpool_free(threadpool);
  1508. }
  1509. llama_free_model(lmodel);
  1510. if (p) {
  1511. p->print_footer();
  1512. }
  1513. if (p_err) {
  1514. p_err->print_footer();
  1515. }
  1516. llama_backend_free();
  1517. return 0;
  1518. }