minicpmv-cli.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. #include "arg.h"
  2. #include "log.h"
  3. #include "common.h"
  4. #include "sampling.h"
  5. #include "clip.h"
  6. #include "llava.h"
  7. #include "llama.h"
  8. #include "ggml.h"
  9. #include <cstdio>
  10. #include <cstdlib>
  11. #include <vector>
  12. struct llava_context {
  13. struct clip_ctx * ctx_clip = NULL;
  14. struct llama_context * ctx_llama = NULL;
  15. struct llama_model * model = NULL;
  16. };
  17. static void show_additional_info(int /*argc*/, char ** argv) {
  18. LOG_TEE("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
  19. LOG_TEE("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
  20. }
  21. static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
  22. (void) level;
  23. (void) user_data;
  24. LOG_TEE("%s", text);
  25. }
  26. static struct llama_model * llava_init(gpt_params * params) {
  27. llama_backend_init();
  28. llama_numa_init(params->numa);
  29. llama_model_params model_params = llama_model_params_from_gpt_params(*params);
  30. llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
  31. if (model == NULL) {
  32. LOG_TEE("%s: error: unable to load model\n" , __func__);
  33. return NULL;
  34. }
  35. return model;
  36. }
  37. static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
  38. auto prompt = params->prompt;
  39. if (prompt.empty()) {
  40. prompt = "describe the image in detail.";
  41. }
  42. llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
  43. if (params->n_ctx < 2048) {
  44. // warn user here, "Image processing requires at least 2048 context, setting context to 2048"
  45. LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
  46. ctx_params.n_ctx = 2048;
  47. } else {
  48. ctx_params.n_ctx = params->n_ctx;
  49. }
  50. llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
  51. if (ctx_llama == NULL) {
  52. LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
  53. return NULL;
  54. }
  55. auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
  56. ctx_llava->ctx_llama = ctx_llama;
  57. ctx_llava->model = model;
  58. return ctx_llava;
  59. }
  60. static void llava_free(struct llava_context * ctx_llava) {
  61. if (ctx_llava->ctx_clip) {
  62. clip_free(ctx_llava->ctx_clip);
  63. ctx_llava->ctx_clip = NULL;
  64. }
  65. llama_free(ctx_llava->ctx_llama);
  66. llama_free_model(ctx_llava->model);
  67. llama_backend_free();
  68. }
  69. static struct clip_ctx * clip_init_context(gpt_params * params) {
  70. const char * clip_path = params->mmproj.c_str();
  71. auto prompt = params->prompt;
  72. if (prompt.empty()) {
  73. prompt = "describe the image in detail.";
  74. }
  75. auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
  76. return ctx_clip;
  77. }
  78. static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
  79. int N = (int) tokens.size();
  80. for (int i = 0; i < N; i += n_batch) {
  81. int n_eval = (int) tokens.size() - i;
  82. if (n_eval > n_batch) {
  83. n_eval = n_batch;
  84. }
  85. if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
  86. LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
  87. return false;
  88. }
  89. *n_past += n_eval;
  90. }
  91. return true;
  92. }
  93. static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
  94. std::vector<llama_token> tokens;
  95. tokens.push_back(id);
  96. return eval_tokens(ctx_llama, tokens, 1, n_past);
  97. }
  98. static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
  99. std::string str2 = str;
  100. std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
  101. return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
  102. }
  103. static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
  104. float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
  105. std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
  106. auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
  107. slice_embed->embed = image_embed;
  108. slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
  109. llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
  110. llava_image_embed_free(slice_embed);
  111. }
  112. static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
  113. std::string system_prompt;
  114. int idx = 0;
  115. int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
  116. int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
  117. if (has_minicpmv_projector == 2) {
  118. system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
  119. }
  120. else if (has_minicpmv_projector == 3) {
  121. system_prompt = "<|im_start|>user\n";
  122. }
  123. LOG_TEE("%s: image token past: %d\n", __func__, n_past);
  124. eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
  125. process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
  126. eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
  127. if (num_image_embeds > 1) {
  128. size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
  129. eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
  130. for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
  131. for (size_t j = 0; j < num_image_embeds_col; ++j) {
  132. eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
  133. process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
  134. eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
  135. if (j == num_image_embeds_col - 1) {
  136. eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
  137. }
  138. }
  139. }
  140. eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
  141. }
  142. LOG_TEE("%s: image token past: %d\n", __func__, n_past);
  143. }
  144. static const char * sample(struct gpt_sampler * smpl,
  145. struct llama_context * ctx_llama,
  146. int * n_past) {
  147. const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
  148. gpt_sampler_accept(smpl, id, true);
  149. static std::string ret;
  150. if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
  151. ret = "</s>";
  152. } else {
  153. ret = llama_token_to_piece(ctx_llama, id);
  154. }
  155. eval_id(ctx_llama, id, n_past);
  156. return ret.c_str();
  157. }
  158. static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
  159. auto ctx_clip = clip_init_context(params);
  160. auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
  161. if (!embeds) {
  162. std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
  163. return NULL;
  164. }
  165. // process the prompt
  166. if (params->prompt.empty() && params->interactive == false) {
  167. LOG_TEE("prompt should be given or interactive mode should be on");
  168. return NULL;
  169. }
  170. auto model = llava_init(params);
  171. if (model == NULL) {
  172. fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
  173. return NULL;
  174. }
  175. const int64_t t_llava_init_start_us = ggml_time_us();
  176. auto ctx_llava = llava_init_context(params, model);
  177. ctx_llava->ctx_clip = ctx_clip;
  178. const int64_t t_llava_init_end_us = ggml_time_us();
  179. float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
  180. LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
  181. const int64_t t_process_image_start_us = ggml_time_us();
  182. process_image(ctx_llava, embeds, params, n_past);
  183. const int64_t t_process_image_end_us = ggml_time_us();
  184. float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
  185. LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
  186. llava_image_embed_free(embeds);
  187. return ctx_llava;
  188. }
  189. static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
  190. std::string user_prompt = prompt;
  191. int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
  192. if (!is_first) {
  193. if (has_minicpmv_projector == 2) {
  194. user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
  195. }
  196. else if (has_minicpmv_projector == 3) {
  197. user_prompt = "<|im_start|>user\n" + prompt;
  198. }
  199. }
  200. eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
  201. if (has_minicpmv_projector == 2) {
  202. eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
  203. }
  204. else if (has_minicpmv_projector == 3) {
  205. eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
  206. }
  207. // generate the response
  208. LOG_TEE("\n");
  209. struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
  210. return smpl;
  211. }
  212. static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
  213. const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
  214. return tmp;
  215. }
  216. int main(int argc, char ** argv) {
  217. ggml_time_init();
  218. gpt_params params;
  219. if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
  220. return 1;
  221. }
  222. #ifndef LOG_DISABLE_LOGS
  223. log_set_target(log_filename_generator("llava", "log"));
  224. LOG_TEE("Log start\n");
  225. log_dump_cmdline(argc, argv);
  226. llama_log_set(llama_log_callback_logTee, nullptr);
  227. #endif // LOG_DISABLE_LOGS
  228. if (params.mmproj.empty() || (params.image.empty())) {
  229. show_additional_info(argc, argv);
  230. return 1;
  231. }
  232. for (auto & image : params.image) {
  233. int n_past = 0;
  234. auto ctx_llava = minicpmv_init(&params, image, n_past);
  235. if (!params.prompt.empty()) {
  236. LOG_TEE("<user>%s\n", params.prompt.c_str());
  237. LOG_TEE("<assistant>");
  238. auto smpl = llama_init(ctx_llava, &params, params.prompt.c_str(), n_past, true);
  239. const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
  240. std::string response = "";
  241. bool have_tmp = false;
  242. for (int i = 0; i < max_tgt_len; i++) {
  243. auto tmp = llama_loop(ctx_llava, smpl, n_past);
  244. response += tmp;
  245. if (strcmp(tmp, "</s>") == 0){
  246. if(!have_tmp)continue;
  247. else break;
  248. }
  249. if (strstr(tmp, "###")) break; // Yi-VL behavior
  250. have_tmp = true;
  251. printf("%s", tmp);
  252. if (strstr(response.c_str(), "<user>")) break; // minicpm-v
  253. fflush(stdout);
  254. }
  255. gpt_sampler_free(smpl);
  256. }else {
  257. while (true) {
  258. LOG_TEE("<user>");
  259. std::string prompt;
  260. std::getline(std::cin, prompt);
  261. LOG_TEE("<assistant>");
  262. auto smpl = llama_init(ctx_llava, &params, prompt, n_past, true);
  263. const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
  264. std::string response = "";
  265. for (int i = 0; i < max_tgt_len; i++) {
  266. auto tmp = llama_loop(ctx_llava, smpl, n_past);
  267. response += tmp;
  268. if (strcmp(tmp, "</s>") == 0) break;
  269. if (strstr(tmp, "###")) break; // Yi-VL behavior
  270. printf("%s", tmp);// mistral llava-1.6
  271. if (strstr(response.c_str(), "<user>")) break; // minicpm-v
  272. fflush(stdout);
  273. }
  274. gpt_sampler_free(smpl);
  275. }
  276. }
  277. printf("\n");
  278. llama_perf_context_print(ctx_llava->ctx_llama);
  279. ctx_llava->model = NULL;
  280. llava_free(ctx_llava);
  281. }
  282. return 0;
  283. }