steps.py 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. import asyncio
  4. import json
  5. import os
  6. import re
  7. import socket
  8. import subprocess
  9. import sys
  10. import threading
  11. import time
  12. import requests
  13. from collections.abc import Sequence
  14. from contextlib import closing
  15. from re import RegexFlag
  16. from typing import Any, Literal, cast
  17. import aiohttp
  18. import numpy as np
  19. import openai
  20. from openai.types.chat import ChatCompletionChunk
  21. from behave import step # pyright: ignore[reportAttributeAccessIssue]
  22. from behave.api.async_step import async_run_until_complete
  23. from prometheus_client import parser
  24. # pyright: reportRedeclaration=false
  25. DEFAULT_TIMEOUT_SECONDS = aiohttp.ClientTimeout(total=600)
  26. @step("a server listening on {server_fqdn}:{server_port}")
  27. def step_server_config(context, server_fqdn: str, server_port: str):
  28. context.server_fqdn = server_fqdn
  29. context.server_port = int(server_port)
  30. context.n_threads = None
  31. context.n_gpu_layer = None
  32. if 'PORT' in os.environ:
  33. context.server_port = int(os.environ['PORT'])
  34. print(f"$PORT set, overriding server port with to {context.server_port}")
  35. if 'FQDN' in os.environ:
  36. context.server_fqdn = os.environ['FQDN']
  37. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  38. if 'N_GPU_LAYERS' in os.environ:
  39. context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
  40. print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
  41. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  42. context.model_alias = None
  43. context.model_file = None
  44. context.model_hf_repo = None
  45. context.model_hf_file = None
  46. context.model_url = None
  47. context.n_batch = None
  48. context.n_ubatch = None
  49. context.n_ctx = None
  50. context.n_ga = None
  51. context.n_ga_w = None
  52. context.n_predict = None
  53. context.n_prompts = 0
  54. context.n_server_predict = None
  55. context.slot_save_path = None
  56. context.id_slot = None
  57. context.cache_prompt = None
  58. context.n_slots = None
  59. context.prompt_prefix = None
  60. context.prompt_suffix = None
  61. context.server_api_key = None
  62. context.server_continuous_batching = False
  63. context.server_embeddings = False
  64. context.server_metrics = False
  65. context.server_process = None
  66. context.seed = None
  67. context.draft = None
  68. context.server_seed = None
  69. context.user_api_key = None
  70. context.response_format = None
  71. context.temperature = None
  72. context.lora_file = None
  73. context.tasks_result = []
  74. context.concurrent_tasks = []
  75. context.prompts = []
  76. @step('a model file {hf_file} from HF repo {hf_repo}')
  77. def step_download_hf_model(context, hf_file: str, hf_repo: str):
  78. context.model_hf_repo = hf_repo
  79. context.model_hf_file = hf_file
  80. context.model_file = os.path.basename(hf_file)
  81. @step('a lora adapter file from {lora_file_url}')
  82. def step_download_lora_file(context, lora_file_url: str):
  83. file_name = lora_file_url.split('/').pop()
  84. context.lora_file = f'../../../{file_name}'
  85. with open(context.lora_file, 'wb') as f:
  86. f.write(requests.get(lora_file_url).content)
  87. @step('a model file {model_file}')
  88. def step_model_file(context, model_file: str):
  89. context.model_file = model_file
  90. @step('a model url {model_url}')
  91. def step_model_url(context, model_url: str):
  92. context.model_url = model_url
  93. @step('a model alias {model_alias}')
  94. def step_model_alias(context, model_alias: str):
  95. context.model_alias = model_alias
  96. @step('{seed:d} as server seed')
  97. def step_seed(context, seed: int):
  98. context.server_seed = seed
  99. @step('{ngl:d} GPU offloaded layers')
  100. def step_n_gpu_layer(context, ngl: int):
  101. if 'N_GPU_LAYERS' in os.environ:
  102. new_ngl = int(os.environ['N_GPU_LAYERS'])
  103. if context.debug:
  104. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  105. ngl = new_ngl
  106. context.n_gpu_layer = ngl
  107. @step('{n_threads:d} threads')
  108. def step_n_threads(context, n_threads: int):
  109. context.n_thread = n_threads
  110. @step('{draft:d} as draft')
  111. def step_draft(context, draft: int):
  112. context.draft = draft
  113. @step('{n_ctx:d} KV cache size')
  114. def step_n_ctx(context, n_ctx: int):
  115. context.n_ctx = n_ctx
  116. @step('{n_slots:d} slots')
  117. def step_n_slots(context, n_slots: int):
  118. context.n_slots = n_slots
  119. @step('{n_predict:d} server max tokens to predict')
  120. def step_server_n_predict(context, n_predict: int):
  121. context.n_server_predict = n_predict
  122. @step('{slot_save_path} as slot save path')
  123. def step_slot_save_path(context, slot_save_path: str):
  124. context.slot_save_path = slot_save_path
  125. @step('using slot id {id_slot:d}')
  126. def step_id_slot(context, id_slot: int):
  127. context.id_slot = id_slot
  128. @step('prompt caching is enabled')
  129. def step_enable_prompt_cache(context):
  130. context.cache_prompt = True
  131. @step('continuous batching')
  132. def step_server_continuous_batching(context):
  133. context.server_continuous_batching = True
  134. @step('embeddings extraction')
  135. def step_server_embeddings(context):
  136. context.server_embeddings = True
  137. @step('prometheus compatible metrics exposed')
  138. def step_server_metrics(context):
  139. context.server_metrics = True
  140. @step("the server is starting")
  141. def step_start_server(context):
  142. start_server_background(context)
  143. attempts = 0
  144. max_attempts = 20
  145. if 'GITHUB_ACTIONS' in os.environ:
  146. max_attempts *= 2
  147. addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
  148. family, typ, proto, _, sockaddr = addrs[0]
  149. while True:
  150. with closing(socket.socket(family, typ, proto)) as sock:
  151. result = sock.connect_ex(sockaddr)
  152. if result == 0:
  153. print("\x1b[33;46mserver started!\x1b[0m")
  154. return
  155. attempts += 1
  156. if attempts > max_attempts:
  157. assert False, "server not started"
  158. print(f"waiting for server to start, connect error code = {result}...")
  159. time.sleep(0.1)
  160. async def wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
  161. match expecting_status:
  162. case 'healthy':
  163. await wait_for_slots_status(context, context.base_url, 200,
  164. timeout=timeout)
  165. case 'ready' | 'idle':
  166. await wait_for_slots_status(context, context.base_url, 200,
  167. timeout=timeout,
  168. params={'fail_on_no_slot': 1},
  169. slots_idle=context.n_slots,
  170. slots_processing=0)
  171. case 'busy':
  172. await wait_for_slots_status(context, context.base_url, 503,
  173. params={'fail_on_no_slot': 1},
  174. slots_idle=0,
  175. slots_processing=context.n_slots)
  176. case _:
  177. assert False, "unknown status"
  178. @step("the server is {expecting_status} with timeout {timeout:d} seconds")
  179. @async_run_until_complete
  180. async def step_wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
  181. await wait_for_server_status_with_timeout(context, expecting_status, timeout)
  182. @step("the server is {expecting_status}")
  183. @async_run_until_complete
  184. async def step_wait_for_server_status(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
  185. await wait_for_server_status_with_timeout(context, expecting_status, 30)
  186. @step('all slots are {expected_slot_status_string}')
  187. @async_run_until_complete
  188. async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
  189. match expected_slot_status_string:
  190. case 'idle':
  191. expected_slot_status = 0
  192. case 'busy':
  193. expected_slot_status = 1
  194. case _:
  195. assert False, "unknown status"
  196. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  197. for slot_id in range(context.n_slots)]
  198. await request_slots_status(context, expected_slots)
  199. @step('a completion request with {api_error} api error')
  200. @async_run_until_complete
  201. async def step_request_completion(context, api_error: Literal['raised'] | str):
  202. expect_api_error = api_error == 'raised'
  203. seeds = await completions_seed(context, num_seeds=1)
  204. completion = await request_completion(context.prompts.pop(),
  205. seeds[0] if seeds is not None else seeds,
  206. context.base_url,
  207. debug=context.debug,
  208. n_predict=context.n_predict,
  209. cache_prompt=context.cache_prompt,
  210. id_slot=context.id_slot,
  211. expect_api_error=expect_api_error,
  212. user_api_key=context.user_api_key,
  213. temperature=context.temperature)
  214. context.tasks_result.append(completion)
  215. if context.debug:
  216. print(f"Completion response: {completion}")
  217. if expect_api_error:
  218. assert completion == 401, f"completion must be an 401 status code: {completion}"
  219. @step('{predicted_n:d} tokens are predicted matching {re_content}')
  220. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  221. context.completion = context.tasks_result.pop()
  222. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  223. @step('{predicted_n:d} tokens are predicted')
  224. def step_n_tokens_predicted(context, predicted_n):
  225. context.completion = context.tasks_result.pop()
  226. assert_n_tokens_predicted(context.completion, predicted_n)
  227. @step('all predictions are equal')
  228. @async_run_until_complete
  229. async def step_predictions_equal(context):
  230. n_completions = await gather_tasks_results(context)
  231. assert n_completions >= 2, "need at least 2 completions"
  232. assert_all_predictions_equal(context.tasks_result)
  233. context.tasks_result = []
  234. @step('all predictions are different')
  235. @async_run_until_complete
  236. async def step_predictions_different(context):
  237. n_completions = await gather_tasks_results(context)
  238. assert n_completions >= 2, "need at least 2 completions"
  239. assert_all_predictions_different(context.tasks_result)
  240. context.tasks_result = []
  241. @step('all token probabilities are equal')
  242. @async_run_until_complete
  243. async def step_token_probabilities_equal(context):
  244. n_completions = await gather_tasks_results(context)
  245. assert n_completions >= 2, "need at least 2 completions"
  246. assert_all_token_probabilities_equal(context.tasks_result)
  247. context.tasks_result = []
  248. @step('the completion is truncated')
  249. def step_assert_completion_truncated(context):
  250. step_assert_completion_truncated(context, '')
  251. @step('the completion is {truncated} truncated')
  252. def step_assert_completion_truncated(context, truncated):
  253. truncated = truncated != "not"
  254. assert context.completion['truncated'] == truncated, f'{context.completion}'
  255. @step('{n_prompt:d} prompt tokens are processed')
  256. def step_impl(context, n_prompt):
  257. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  258. @step('a user prompt {user_prompt}')
  259. def step_user_prompt(context, user_prompt):
  260. context.prompts.append(user_prompt)
  261. context.n_prompts = len(context.prompts)
  262. @step('a system prompt {system_prompt}')
  263. def step_system_prompt(context, system_prompt):
  264. context.system_prompt = system_prompt
  265. @step('a model {model}')
  266. def step_model(context, model):
  267. context.model = model
  268. @step('{max_tokens:d} max tokens to predict')
  269. def step_max_tokens(context, max_tokens):
  270. context.n_predict = max_tokens
  271. @step('a response format {response_format}')
  272. def step_response_format(context, response_format):
  273. context.response_format = json.loads(response_format)
  274. @step('{temperature:f} temperature')
  275. def step_temperature(context, temperature):
  276. context.temperature = temperature
  277. @step('streaming is {enable_streaming}')
  278. def step_streaming(context, enable_streaming):
  279. context.enable_streaming = enable_streaming == 'enabled'
  280. @step('a user api key {user_api_key}')
  281. def step_user_api_key(context, user_api_key):
  282. context.user_api_key = user_api_key
  283. @step('no user api key')
  284. def step_no_user_api_key(context):
  285. context.user_api_key = None
  286. @step('a user api key ')
  287. def step_no_user_api_key_space(context):
  288. context.user_api_key = None
  289. @step('a server api key {server_api_key}')
  290. def step_server_api_key(context, server_api_key):
  291. context.server_api_key = server_api_key
  292. @step('{n_junk:d} as number of junk')
  293. def step_n_junk(context, n_junk):
  294. context.n_junk = n_junk
  295. @step('{n_batch:d} as batch size')
  296. def step_n_batch(context, n_batch):
  297. context.n_batch = n_batch
  298. @step('{n_ubatch:d} as ubatch size')
  299. def step_n_ubatch(context, n_ubatch):
  300. context.n_ubatch = n_ubatch
  301. @step('{seed:d} as seed')
  302. def step_seed(context, seed):
  303. if context.seed is None:
  304. context.seed = [seed]
  305. else:
  306. context.seed.append(seed)
  307. @step('BOS token is {bos:d}')
  308. def step_bos_token(context, bos):
  309. context.bos = bos
  310. @step('a prefix prompt')
  311. def step_prompt_prefix(context):
  312. context.prompt_prefix = context_text(context)
  313. @step('a junk suffix prompt')
  314. def step_prompt_junk_suffix(context):
  315. context.prompt_junk_suffix = context_text(context)
  316. @step('a suffix prompt')
  317. def step_prompt_suffix(context):
  318. context.prompt_suffix = context_text(context)
  319. @step('{n_ga:d} group attention factor'
  320. ' to extend context size through self-extend')
  321. def step_impl(context, n_ga):
  322. context.n_ga = n_ga
  323. @step('{n_ga_w:d} group attention width to extend context size through self-extend')
  324. def step_impl(context, n_ga_w):
  325. context.n_ga_w = n_ga_w
  326. @step('a passkey prompt template')
  327. def step_prompt_passkey(context):
  328. context.prompt_passkey = context_text(context)
  329. @step('{n_prompts:d} fixed prompts')
  330. def step_fixed_prompts(context, n_prompts):
  331. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  332. context.n_prompts = n_prompts
  333. @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  334. def step_prompt_passkey(context, passkey, i_pos):
  335. prompt = ""
  336. for i in range(context.n_junk):
  337. if i % context.n_junk == i_pos:
  338. prompt += context.prompt_passkey # the passkey is already substituted
  339. prompt += context.prompt_junk_suffix
  340. if context.debug:
  341. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  342. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
  343. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  344. context.n_prompts = len(context.prompts)
  345. @step('an OAI compatible chat completions request with {api_error} api error')
  346. @async_run_until_complete
  347. async def step_oai_chat_completions(context, api_error):
  348. if context.debug:
  349. print(f"Submitting OAI compatible completions request...")
  350. expect_api_error = api_error == 'raised'
  351. seeds = await completions_seed(context, num_seeds=1),
  352. completion = await oai_chat_completions(context.prompts.pop(),
  353. seeds[0] if seeds is not None else seeds,
  354. context.system_prompt,
  355. context.base_url,
  356. '/v1/chat',
  357. False,
  358. model=context.model if hasattr(context, 'model') else None,
  359. n_predict=context.n_predict
  360. if hasattr(context, 'n_predict') else None,
  361. enable_streaming=context.enable_streaming
  362. if hasattr(context, 'enable_streaming') else None,
  363. response_format=context.response_format
  364. if hasattr(context, 'response_format') else None,
  365. user_api_key=context.user_api_key
  366. if hasattr(context, 'user_api_key') else None,
  367. expect_api_error=expect_api_error)
  368. context.tasks_result.append(completion)
  369. if context.debug:
  370. print(f"Completion response: {completion}")
  371. if expect_api_error:
  372. assert completion == 401, f"completion must be an 401 status code: {completion}"
  373. if context.debug:
  374. print(f"Completion response: {completion}")
  375. @step('a prompt')
  376. def step_a_prompt(context):
  377. context.prompts.append(context_text(context))
  378. context.n_prompts = len(context.prompts)
  379. @step('a prompt {prompt}')
  380. def step_a_prompt_prompt(context, prompt):
  381. context.prompts.append(prompt)
  382. context.n_prompts = len(context.prompts)
  383. @step('{num_prompts:d} prompts {prompt} with seed {seed:d}')
  384. def step_many_prompts(context, num_prompts, prompt, seed):
  385. if context.seed is None:
  386. context.seed = []
  387. for _ in range(num_prompts):
  388. context.seed.append(seed)
  389. context.prompts.append(prompt)
  390. context.n_prompts = len(context.prompts)
  391. @step('concurrent completion requests')
  392. @async_run_until_complete()
  393. async def step_concurrent_completion_requests(context):
  394. await concurrent_requests(
  395. context,
  396. request_completion,
  397. # prompt is inserted automatically
  398. context.base_url,
  399. debug=context.debug,
  400. prompt_prefix=context.prompt_prefix,
  401. prompt_suffix=context.prompt_suffix,
  402. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  403. user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None,
  404. temperature=context.temperature,
  405. )
  406. @step('concurrent OAI completions requests')
  407. @async_run_until_complete
  408. async def step_oai_chat_completions(context):
  409. await concurrent_requests(context, oai_chat_completions,
  410. # user_prompt is inserted automatically
  411. context.system_prompt,
  412. context.base_url,
  413. '/v1/chat/completions',
  414. True, # async_client
  415. model=context.model
  416. if hasattr(context, 'model') else None,
  417. n_predict=context.n_predict
  418. if hasattr(context, 'n_predict') else None,
  419. enable_streaming=context.enable_streaming
  420. if hasattr(context, 'enable_streaming') else None,
  421. response_format=context.response_format
  422. if hasattr(context, 'response_format') else None,
  423. user_api_key=context.user_api_key
  424. if hasattr(context, 'user_api_key') else None)
  425. @step('concurrent OAI completions requests no v1')
  426. @async_run_until_complete
  427. async def step_oai_chat_completions(context):
  428. await concurrent_requests(context, oai_chat_completions,
  429. # user_prompt is inserted automatically
  430. context.system_prompt,
  431. context.base_url,
  432. '/chat/completions',
  433. True, # async_client
  434. model=context.model
  435. if hasattr(context, 'model') else None,
  436. n_predict=context.n_predict
  437. if hasattr(context, 'n_predict') else None,
  438. enable_streaming=context.enable_streaming
  439. if hasattr(context, 'enable_streaming') else None,
  440. response_format=context.response_format
  441. if hasattr(context, 'response_format') else None,
  442. user_api_key=context.user_api_key
  443. if hasattr(context, 'user_api_key') else None)
  444. @step('all prompts are predicted')
  445. @async_run_until_complete
  446. async def step_all_prompts_are_predicted(context):
  447. await all_prompts_are_predicted(context)
  448. @step('all prompts are predicted with {n_expected_predicted:d} tokens')
  449. @async_run_until_complete
  450. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  451. await all_prompts_are_predicted(context, n_expected_predicted)
  452. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  453. n_completions = await gather_tasks_results(context)
  454. assert n_completions > 0
  455. for i in range(n_completions):
  456. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  457. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  458. @step('embeddings are computed for')
  459. @async_run_until_complete
  460. async def step_compute_embedding(context):
  461. context.n_prompts = 1
  462. context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url)
  463. @step('all embeddings are the same')
  464. @async_run_until_complete
  465. async def step_all_embeddings_are_the_same(context):
  466. n_embedding_requests = await gather_tasks_results(context)
  467. assert n_embedding_requests > 0
  468. embeddings = []
  469. for i in range(n_embedding_requests):
  470. embedding = context.tasks_result.pop().pop()
  471. embeddings.append(embedding)
  472. assert_embeddings(embedding)
  473. n = len(embeddings)
  474. for i in range(n-1):
  475. for j in range(i+1, n):
  476. embedding1 = np.array(embeddings[i])
  477. embedding2 = np.array(embeddings[j])
  478. if context.debug:
  479. print(f"embedding1: {embedding1[-8:]}")
  480. print(f"embedding2: {embedding2[-8:]}")
  481. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  482. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  483. if context.debug:
  484. print(f"{msg}")
  485. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  486. @step('embeddings are generated')
  487. def step_assert_embeddings(context):
  488. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  489. f"context.n_prompts={context.n_prompts}\n"
  490. f"context.embeddings={context.embeddings}")
  491. for embedding in context.embeddings:
  492. assert_embeddings(embedding)
  493. @step('an OAI compatible embeddings computation request for')
  494. @async_run_until_complete
  495. async def step_oai_compute_embeddings(context):
  496. context.n_prompts = 1
  497. context.embeddings = await request_oai_embeddings(context_text(context), None,
  498. base_url=context.base_url,
  499. user_api_key=context.user_api_key,
  500. model=context.model)
  501. @step('an OAI compatible embeddings computation request for multiple inputs')
  502. @async_run_until_complete
  503. async def step_oai_compute_embeddings_multiple_inputs(context):
  504. context.embeddings = await request_oai_embeddings(context.prompts, None,
  505. base_url=context.base_url,
  506. user_api_key=context.user_api_key,
  507. model=context.model)
  508. context.prompts.clear()
  509. @step('concurrent embedding requests')
  510. @async_run_until_complete()
  511. async def step_concurrent_embedding_requests(context):
  512. await concurrent_requests(context,
  513. request_embedding,
  514. # prompt is inserted automatically
  515. base_url=context.base_url)
  516. @step('concurrent OAI embedding requests')
  517. @async_run_until_complete()
  518. async def step_concurrent_oai_embedding_requests(context):
  519. await concurrent_requests(context,
  520. request_oai_embeddings,
  521. # prompt is inserted automatically
  522. base_url=context.base_url,
  523. async_client=True,
  524. model=context.model)
  525. @step('all embeddings are generated')
  526. @async_run_until_complete()
  527. async def all_embeddings_are_generated(context):
  528. n_embedding_requests = await gather_tasks_results(context)
  529. assert n_embedding_requests == context.n_prompts
  530. for i in range(n_embedding_requests):
  531. assert_embeddings(context.tasks_result.pop().pop())
  532. @step('adding special tokens')
  533. def step_tokenize_set_add_special(context):
  534. context.tokenize_add_special = True
  535. @step("tokenizing with pieces")
  536. @async_run_until_complete
  537. async def step_tokenize_with_pieces(context):
  538. context.tokenized_text = context_text(context)
  539. async with aiohttp.ClientSession() as session:
  540. tokenize_args = {"content": context.tokenized_text, "with_pieces": True}
  541. if getattr(context, "tokenize_add_special", None) is not None:
  542. tokenize_args["add_special"] = context.tokenize_add_special
  543. async with session.post(
  544. f"{context.base_url}/tokenize", json=tokenize_args
  545. ) as response:
  546. assert response.status == 200
  547. tokenize_json = await response.json()
  548. context.tokens_with_pieces = tokenize_json["tokens"]
  549. @step("tokens are given with pieces")
  550. @async_run_until_complete
  551. async def step_tokenize_with_pieces(context):
  552. # Verify that the response contains both token IDs and pieces
  553. assert all(
  554. "id" in token and "piece" in token for token in context.tokens_with_pieces
  555. )
  556. @step('tokenizing')
  557. @async_run_until_complete
  558. async def step_tokenize(context):
  559. context.tokenized_text = context_text(context)
  560. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  561. tokenize_args = {
  562. "content": context.tokenized_text,
  563. }
  564. if getattr(context, 'tokenize_add_special', None) is not None:
  565. tokenize_args['add_special'] = context.tokenize_add_special
  566. async with session.post(f'{context.base_url}/tokenize',
  567. json=tokenize_args) as response:
  568. assert response.status == 200
  569. tokenize_json = await response.json()
  570. context.tokens = tokenize_json['tokens']
  571. @step('tokens can be detokenized')
  572. @async_run_until_complete
  573. async def step_detokenize(context):
  574. assert len(context.tokens) > 0
  575. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  576. async with session.post(f'{context.base_url}/detokenize',
  577. json={
  578. "tokens": context.tokens,
  579. }) as response:
  580. assert response.status == 200
  581. detokenize_json = await response.json()
  582. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  583. assert context.tokenized_text == detokenize_json['content'].strip()
  584. @step('tokens begin with BOS')
  585. def step_strings_for_tokenization(context):
  586. assert context.tokens[0] == context.bos
  587. @step('tokens do not begin with BOS')
  588. def step_strings_for_tokenization(context):
  589. assert context.tokens[0] != context.bos
  590. @step('first token is removed')
  591. def step_strings_for_tokenization(context):
  592. context.tokens = context.tokens[1:]
  593. @step('an OPTIONS request is sent from {origin}')
  594. @async_run_until_complete
  595. async def step_options_request(context, origin):
  596. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  597. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  598. async with session.options(f'{context.base_url}/v1/chat/completions',
  599. headers=headers) as response:
  600. assert response.status == 200
  601. context.options_response = response
  602. @step('CORS header {cors_header} is set to {cors_header_value}')
  603. def step_check_options_header_value(context, cors_header, cors_header_value):
  604. assert context.options_response.headers[cors_header] == cors_header_value
  605. @step('prometheus metrics are exposed')
  606. @async_run_until_complete
  607. async def step_prometheus_metrics_exported(context):
  608. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  609. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  610. assert metrics_response.status == 200
  611. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  612. metrics_raw = await metrics_response.text()
  613. metric_exported = False
  614. if context.debug:
  615. print(f"/metrics answer:\n{metrics_raw}")
  616. context.metrics = {}
  617. for metric in parser.text_string_to_metric_families(metrics_raw):
  618. match metric.name:
  619. case "llamacpp:kv_cache_usage_ratio":
  620. assert len(metric.samples) > 0
  621. metric_exported = True
  622. context.metrics[metric.name] = metric
  623. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  624. assert metric_exported, "No metrics exported"
  625. @step('metric {metric_name} is {metric_value:d}')
  626. def step_assert_metric_value(context, metric_name, metric_value):
  627. if metric_name not in context.metrics:
  628. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  629. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  630. @step('available models')
  631. def step_available_models(context):
  632. # openai client always expects an api_key
  633. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  634. openai.base_url = f'{context.base_url}/v1/'
  635. context.models = openai.models.list().data
  636. @step('{n_model:d} models are supported')
  637. def step_supported_models(context, n_model):
  638. if context.debug:
  639. print("server models available:", context.models)
  640. assert len(context.models) == n_model
  641. @step('model {i_model:d} is {param} {preposition} {param_value}')
  642. def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
  643. assert i_model < len(context.models)
  644. model = context.models[i_model]
  645. param_value = param_value.split(' ', 1)[0]
  646. match param:
  647. case 'identified':
  648. value = model.id
  649. case 'trained':
  650. value = str(model.meta["n_ctx_train"])
  651. case _:
  652. assert False, "param {param} not supported"
  653. assert param_value == value, f"model param {param} {value} != {param_value}"
  654. async def concurrent_requests(context, f_completion, *args, **kwargs):
  655. context.n_prompts = len(context.prompts)
  656. if context.debug:
  657. print(f"starting {context.n_prompts} concurrent completion requests...")
  658. assert context.n_prompts > 0
  659. seeds = await completions_seed(context)
  660. assert seeds is not None
  661. for prompt_no in range(context.n_prompts):
  662. shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
  663. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  664. await asyncio.sleep(0.01)
  665. @step('the slot {slot_id:d} is saved with filename "{filename}"')
  666. @async_run_until_complete
  667. async def step_save_slot(context, slot_id, filename):
  668. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  669. async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
  670. json={"filename": filename},
  671. headers={"Content-Type": "application/json"}) as response:
  672. context.response = response
  673. @step('the slot {slot_id:d} is restored with filename "{filename}"')
  674. @async_run_until_complete
  675. async def step_restore_slot(context, slot_id, filename):
  676. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  677. async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
  678. json={"filename": filename},
  679. headers={"Content-Type": "application/json"}) as response:
  680. context.response = response
  681. @step('the slot {slot_id:d} is erased')
  682. @async_run_until_complete
  683. async def step_erase_slot(context, slot_id):
  684. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  685. async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
  686. headers={"Content-Type": "application/json"}) as response:
  687. context.response = response
  688. @step('switch {on_or_off} lora adapter {lora_id:d}')
  689. @async_run_until_complete
  690. async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
  691. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  692. async with session.post(f'{context.base_url}/lora-adapters',
  693. json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
  694. headers={"Content-Type": "application/json"}) as response:
  695. context.response = response
  696. print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}])
  697. @step('the server responds with status code {status_code:d}')
  698. def step_server_responds_with_status_code(context, status_code):
  699. assert context.response.status == status_code
  700. async def request_completion(prompt,
  701. seed,
  702. base_url,
  703. debug=False,
  704. prompt_prefix=None,
  705. prompt_suffix=None,
  706. n_predict=None,
  707. cache_prompt=False,
  708. id_slot=None,
  709. expect_api_error=None,
  710. user_api_key=None,
  711. temperature=None) -> int | dict[str, Any]:
  712. if debug:
  713. print(f"Sending completion request: {prompt}")
  714. origin = "my.super.domain"
  715. headers = {
  716. 'Origin': origin
  717. }
  718. if user_api_key is not None:
  719. if debug:
  720. print(f"Set user_api_key: {user_api_key}")
  721. headers['Authorization'] = f'Bearer {user_api_key}'
  722. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  723. async with session.post(f'{base_url}/completion',
  724. json={
  725. "input_prefix": prompt_prefix,
  726. "prompt": prompt,
  727. "input_suffix": prompt_suffix,
  728. "n_predict": n_predict if n_predict is not None else -1,
  729. "cache_prompt": cache_prompt,
  730. "id_slot": id_slot,
  731. "seed": seed if seed is not None else 42,
  732. "temperature": temperature if temperature is not None else 0.8,
  733. "n_probs": 2,
  734. },
  735. headers=headers) as response:
  736. if expect_api_error is None or not expect_api_error:
  737. assert response.status == 200
  738. assert response.headers['Access-Control-Allow-Origin'] == origin
  739. return await response.json()
  740. else:
  741. return response.status
  742. async def oai_chat_completions(user_prompt,
  743. seed,
  744. system_prompt,
  745. base_url: str,
  746. base_path: str,
  747. async_client,
  748. debug=False,
  749. temperature=None,
  750. model=None,
  751. n_predict=None,
  752. enable_streaming=None,
  753. response_format=None,
  754. user_api_key=None,
  755. expect_api_error=None) -> int | dict[str, Any]:
  756. if debug:
  757. print(f"Sending OAI Chat completions request: {user_prompt}")
  758. # openai client always expects an api key
  759. user_api_key = user_api_key if user_api_key is not None else 'nope'
  760. seed = seed if seed is not None else 42
  761. enable_streaming = enable_streaming if enable_streaming is not None else False
  762. payload = {
  763. "messages": [
  764. {
  765. "role": "system",
  766. "content": system_prompt,
  767. },
  768. {
  769. "role": "user",
  770. "content": user_prompt,
  771. }
  772. ],
  773. "model": model,
  774. "max_tokens": n_predict,
  775. "stream": enable_streaming,
  776. "temperature": temperature if temperature is not None else 0.0,
  777. "seed": seed,
  778. }
  779. if response_format is not None:
  780. payload['response_format'] = response_format
  781. completion_response = {
  782. 'content': '',
  783. 'timings': {
  784. 'predicted_n': 0,
  785. 'prompt_n': 0
  786. }
  787. }
  788. if async_client:
  789. origin = 'llama.cpp'
  790. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  791. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  792. async with session.post(f'{base_url}{base_path}',
  793. json=payload,
  794. headers=headers) as response:
  795. if enable_streaming:
  796. assert response.status == 200
  797. assert response.headers['Access-Control-Allow-Origin'] == origin
  798. assert response.headers['Content-Type'] == "text/event-stream"
  799. event_received = True
  800. while event_received:
  801. event_received = False
  802. async for line_in_bytes in response.content:
  803. line = line_in_bytes.decode('utf-8')
  804. line = line.rstrip('\n').rstrip('\r')
  805. if line == '':
  806. continue
  807. event_data = line.split(': ', 1)
  808. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  809. chunk_raw = event_data[1]
  810. chunk = json.loads(chunk_raw)
  811. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  812. delta = chunk['choices'][0]['delta']
  813. if 'content' in delta:
  814. completion_response['content'] += delta['content']
  815. completion_response['timings']['predicted_n'] += 1
  816. else:
  817. if expect_api_error is None or not expect_api_error:
  818. assert response.status == 200
  819. assert response.headers['Access-Control-Allow-Origin'] == origin
  820. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  821. chat_completion_raw = await response.json()
  822. completion_response = {
  823. 'content': chat_completion_raw['choices'][0]['message'],
  824. 'timings': {
  825. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  826. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  827. }
  828. }
  829. else:
  830. return response.status
  831. else:
  832. try:
  833. openai.api_key = user_api_key
  834. openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
  835. assert model is not None
  836. chat_completion = openai.chat.completions.create(
  837. messages=payload['messages'],
  838. model=model,
  839. max_tokens=n_predict,
  840. stream=enable_streaming,
  841. response_format=payload.get('response_format') or openai.NOT_GIVEN,
  842. seed=seed,
  843. temperature=payload['temperature']
  844. )
  845. except openai.AuthenticationError as e:
  846. if expect_api_error is not None and expect_api_error:
  847. return 401
  848. else:
  849. assert False, f'error raised: {e}'
  850. if enable_streaming:
  851. chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
  852. for chunk in chat_completion:
  853. assert len(chunk.choices) == 1
  854. delta = chunk.choices[0].delta
  855. if delta.content is not None:
  856. completion_response['content'] += delta.content
  857. completion_response['timings']['predicted_n'] += 1
  858. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  859. else:
  860. assert len(chat_completion.choices) == 1
  861. assert chat_completion.usage is not None
  862. completion_response = {
  863. 'content': chat_completion.choices[0].message.content,
  864. 'timings': {
  865. 'predicted_n': chat_completion.usage.completion_tokens,
  866. 'prompt_n': chat_completion.usage.prompt_tokens
  867. },
  868. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  869. }
  870. if debug:
  871. print("OAI response formatted to llama.cpp:", completion_response)
  872. return completion_response
  873. async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
  874. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  875. async with session.post(f'{base_url}/embedding',
  876. json={
  877. "content": content,
  878. }) as response:
  879. assert response.status == 200
  880. response_json = await response.json()
  881. return [response_json['embedding']]
  882. async def request_oai_embeddings(input, seed,
  883. base_url=None, user_api_key=None,
  884. model=None, async_client=False) -> list[list[float]]:
  885. # openai client always expects an api_key
  886. user_api_key = user_api_key if user_api_key is not None else 'nope'
  887. if async_client:
  888. origin = 'llama.cpp'
  889. headers=[]
  890. if user_api_key is not None:
  891. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  892. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  893. async with session.post(f'{base_url}/v1/embeddings',
  894. json={
  895. "input": input,
  896. "model": model,
  897. },
  898. headers=headers) as response:
  899. assert response.status == 200, f"received status code not expected: {response.status}"
  900. assert response.headers['Access-Control-Allow-Origin'] == origin
  901. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  902. response_json = await response.json()
  903. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  904. assert response_json['object'] == 'list'
  905. if isinstance(input, Sequence):
  906. embeddings = []
  907. for an_oai_embeddings in response_json['data']:
  908. embeddings.append(an_oai_embeddings['embedding'])
  909. else:
  910. embeddings = [response_json['data']['embedding']]
  911. return embeddings
  912. else:
  913. openai.api_key = user_api_key
  914. openai.base_url = f'{base_url}/v1/'
  915. assert model is not None
  916. oai_embeddings = openai.embeddings.create(
  917. model=model,
  918. input=input,
  919. )
  920. return [e.embedding for e in oai_embeddings.data]
  921. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  922. content = completion_response['content']
  923. n_predicted = completion_response['timings']['predicted_n']
  924. assert len(content) > 0, "no token predicted"
  925. if re_content is not None:
  926. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  927. matches = p.finditer(content)
  928. last_match = 0
  929. highlighted = ''
  930. for match in matches:
  931. start, end = match.span()
  932. highlighted += content[last_match: start]
  933. highlighted += '\x1b[33m'
  934. highlighted += content[start: end]
  935. highlighted += '\x1b[0m'
  936. last_match = end
  937. highlighted += content[last_match:]
  938. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  939. print(f"Checking completion response: {highlighted}")
  940. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  941. if expected_predicted_n and expected_predicted_n > 0:
  942. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  943. f' {n_predicted} <> {expected_predicted_n}')
  944. def assert_all_predictions_equal(completion_responses):
  945. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  946. for i, response_i in enumerate(completion_responses):
  947. content_i = response_i['content']
  948. print(f"content {i}: {content_i}")
  949. for i, response_i in enumerate(completion_responses):
  950. content_i = response_i['content']
  951. for j, response_j in enumerate(completion_responses):
  952. if i == j:
  953. continue
  954. content_j = response_j['content']
  955. assert content_i == content_j, "contents not equal"
  956. def assert_all_predictions_different(completion_responses):
  957. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  958. for i, response_i in enumerate(completion_responses):
  959. content_i = response_i['content']
  960. print(f"content {i}: {content_i}")
  961. for i, response_i in enumerate(completion_responses):
  962. content_i = response_i['content']
  963. for j, response_j in enumerate(completion_responses):
  964. if i == j:
  965. continue
  966. content_j = response_j['content']
  967. assert content_i != content_j, "contents not different"
  968. def assert_all_token_probabilities_equal(completion_responses):
  969. n_predict = len(completion_responses[0]['completion_probabilities'])
  970. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  971. for pos in range(n_predict):
  972. for i, response_i in enumerate(completion_responses):
  973. probs_i = response_i['completion_probabilities'][pos]['probs']
  974. print(f"pos {pos}, probs {i}: {probs_i}")
  975. for pos in range(n_predict):
  976. for i, response_i in enumerate(completion_responses):
  977. probs_i = response_i['completion_probabilities'][pos]['probs']
  978. for j, response_j in enumerate(completion_responses):
  979. if i == j:
  980. continue
  981. probs_j = response_j['completion_probabilities'][pos]['probs']
  982. assert probs_i == probs_j, "contents not equal"
  983. async def gather_tasks_results(context):
  984. n_tasks = len(context.concurrent_tasks)
  985. if context.debug:
  986. print(f"Waiting for all {n_tasks} tasks results...")
  987. for task_no in range(n_tasks):
  988. context.tasks_result.append(await context.concurrent_tasks.pop())
  989. n_completions = len(context.tasks_result)
  990. return n_completions
  991. async def wait_for_slots_status(context,
  992. base_url,
  993. expected_http_status_code,
  994. timeout=3,
  995. params=None,
  996. slots_idle=None,
  997. slots_processing=None):
  998. if context.debug:
  999. print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}")
  1000. interval = 0.5
  1001. counter = 0
  1002. if 'GITHUB_ACTIONS' in os.environ:
  1003. timeout *= 2
  1004. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  1005. while True:
  1006. async with await session.get(f'{base_url}/slots', params=params) as slots_response:
  1007. status_code = slots_response.status
  1008. slots = await slots_response.json()
  1009. if context.debug:
  1010. print(f"slots responses {slots}\n")
  1011. if status_code == 503 and status_code == expected_http_status_code:
  1012. return
  1013. if status_code == 200 and status_code == expected_http_status_code:
  1014. n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots)
  1015. n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots)
  1016. if ((slots_idle is None or slots_idle == n_slots_idle)
  1017. and (slots_processing is None or slots_processing == n_slots_processing)):
  1018. return
  1019. await asyncio.sleep(interval)
  1020. counter += interval
  1021. if counter >= timeout:
  1022. # Sometimes health requests are triggered after completions are predicted
  1023. if expected_http_status_code == 503:
  1024. if len(context.tasks_result) == 0:
  1025. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  1026. " busy health check missed, probably too fast inference\x1b[0m\n")
  1027. n_completions = await gather_tasks_results(context)
  1028. if n_completions > 0:
  1029. return
  1030. assert False, f'slots check timeout exceeded {counter}s>={timeout}'
  1031. def assert_embeddings(embeddings):
  1032. assert len(embeddings) > 0
  1033. embeddings_computed = False
  1034. for emb in embeddings:
  1035. if not isinstance(emb, float):
  1036. assert False, f"Bad embeddings: {embeddings}"
  1037. if emb != 0:
  1038. embeddings_computed = True
  1039. assert embeddings_computed, f"Embeddings: {embeddings}"
  1040. async def request_slots_status(context, expected_slots):
  1041. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  1042. async with await session.get(f'{context.base_url}/slots') as slots_response:
  1043. assert slots_response.status == 200
  1044. slots = await slots_response.json()
  1045. assert_slots_status(slots, expected_slots)
  1046. def assert_slots_status(slots, expected_slots):
  1047. assert len(slots) == len(expected_slots)
  1048. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  1049. for key in expected:
  1050. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  1051. f" expected[{key}] != slot[{key}]"
  1052. f" = {expected[key]} != {slot[key]}")
  1053. async def completions_seed(context, num_seeds=None):
  1054. if hasattr(context, "seed") and context.seed is not None:
  1055. assert len(context.seed) == context.n_prompts
  1056. if num_seeds is None:
  1057. num_seeds = context.n_prompts
  1058. assert num_seeds <= context.n_prompts
  1059. seeds = context.seed[:num_seeds]
  1060. context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None
  1061. return seeds
  1062. if hasattr(context, "server_seed") and context.server_seed is not None:
  1063. if num_seeds is None:
  1064. return [context.server_seed] * context.n_prompts
  1065. else:
  1066. return [context.server_seed] * num_seeds
  1067. return None
  1068. def context_text(context):
  1069. return context.text.replace('\r', '')
  1070. def start_server_background(context):
  1071. if os.name == 'nt':
  1072. context.server_path = '../../../build/bin/Release/llama-server.exe'
  1073. else:
  1074. context.server_path = '../../../build/bin/llama-server'
  1075. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  1076. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  1077. server_listen_addr = context.server_fqdn
  1078. server_args = [
  1079. '--host', server_listen_addr,
  1080. '--port', context.server_port,
  1081. ]
  1082. if context.model_file:
  1083. server_args.extend(['--model', context.model_file])
  1084. if context.model_url:
  1085. server_args.extend(['--model-url', context.model_url])
  1086. if context.model_hf_repo:
  1087. server_args.extend(['--hf-repo', context.model_hf_repo])
  1088. if context.model_hf_file:
  1089. server_args.extend(['--hf-file', context.model_hf_file])
  1090. if context.n_batch:
  1091. server_args.extend(['--batch-size', context.n_batch])
  1092. if context.n_ubatch:
  1093. server_args.extend(['--ubatch-size', context.n_ubatch])
  1094. if context.n_threads:
  1095. server_args.extend(['--threads', context.threads])
  1096. if context.n_gpu_layer:
  1097. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  1098. if context.draft is not None:
  1099. server_args.extend(['--draft', context.draft])
  1100. if context.server_continuous_batching:
  1101. server_args.append('--cont-batching')
  1102. if context.server_embeddings:
  1103. server_args.append('--embedding')
  1104. if context.server_metrics:
  1105. server_args.append('--metrics')
  1106. if context.model_alias:
  1107. server_args.extend(['--alias', context.model_alias])
  1108. if context.n_ctx:
  1109. server_args.extend(['--ctx-size', context.n_ctx])
  1110. if context.n_slots:
  1111. server_args.extend(['--parallel', context.n_slots])
  1112. if context.n_server_predict:
  1113. server_args.extend(['--n-predict', context.n_server_predict])
  1114. if context.slot_save_path:
  1115. server_args.extend(['--slot-save-path', context.slot_save_path])
  1116. if context.server_api_key:
  1117. server_args.extend(['--api-key', context.server_api_key])
  1118. if context.n_ga:
  1119. server_args.extend(['--grp-attn-n', context.n_ga])
  1120. if context.n_ga_w:
  1121. server_args.extend(['--grp-attn-w', context.n_ga_w])
  1122. if context.debug:
  1123. server_args.append('--verbose')
  1124. if context.lora_file:
  1125. server_args.extend(['--lora', context.lora_file])
  1126. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  1127. server_args.extend(['--log-format', "text"])
  1128. args = [str(arg) for arg in [context.server_path, *server_args]]
  1129. print(f"bench: starting server with: {' '.join(args)}")
  1130. flags = 0
  1131. if 'nt' == os.name:
  1132. flags |= subprocess.DETACHED_PROCESS
  1133. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  1134. flags |= subprocess.CREATE_NO_WINDOW
  1135. pkwargs = {
  1136. 'creationflags': flags,
  1137. 'stdout': subprocess.PIPE,
  1138. 'stderr': subprocess.PIPE
  1139. }
  1140. context.server_process = subprocess.Popen(
  1141. [str(arg) for arg in [context.server_path, *server_args]],
  1142. **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
  1143. def server_log(in_stream, out_stream):
  1144. for line in iter(in_stream.readline, b''):
  1145. print(line.decode('utf-8'), end='', file=out_stream)
  1146. thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
  1147. thread_stdout.start()
  1148. thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
  1149. thread_stderr.start()
  1150. print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")