ggml.c 409 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. #if defined(__ARM_NEON)
  274. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  275. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  276. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  277. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  278. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  279. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  280. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  281. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  282. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  283. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  284. #endif
  285. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  286. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  287. // This is also true for POWER9.
  288. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  289. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  290. uint16_t s;
  291. memcpy(&s, &f, sizeof(uint16_t));
  292. return table_f32_f16[s];
  293. }
  294. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  295. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  296. #endif
  297. // note: do not use these inside ggml.c
  298. // these are meant to be used via the ggml.h API
  299. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  300. return (float) GGML_FP16_TO_FP32(x);
  301. }
  302. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  303. return GGML_FP32_TO_FP16(x);
  304. }
  305. //
  306. // timing
  307. //
  308. #if defined(_MSC_VER) || defined(__MINGW32__)
  309. static int64_t timer_freq;
  310. void ggml_time_init(void) {
  311. LARGE_INTEGER frequency;
  312. QueryPerformanceFrequency(&frequency);
  313. timer_freq = frequency.QuadPart;
  314. }
  315. int64_t ggml_time_ms(void) {
  316. LARGE_INTEGER t;
  317. QueryPerformanceCounter(&t);
  318. return (t.QuadPart * 1000) / timer_freq;
  319. }
  320. int64_t ggml_time_us(void) {
  321. LARGE_INTEGER t;
  322. QueryPerformanceCounter(&t);
  323. return (t.QuadPart * 1000000) / timer_freq;
  324. }
  325. #else
  326. void ggml_time_init(void) {}
  327. int64_t ggml_time_ms(void) {
  328. struct timespec ts;
  329. clock_gettime(CLOCK_MONOTONIC, &ts);
  330. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  331. }
  332. int64_t ggml_time_us(void) {
  333. struct timespec ts;
  334. clock_gettime(CLOCK_MONOTONIC, &ts);
  335. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  336. }
  337. #endif
  338. int64_t ggml_cycles(void) {
  339. return clock();
  340. }
  341. int64_t ggml_cycles_per_ms(void) {
  342. return CLOCKS_PER_SEC/1000;
  343. }
  344. #ifdef GGML_PERF
  345. #define ggml_perf_time_ms() ggml_time_ms()
  346. #define ggml_perf_time_us() ggml_time_us()
  347. #define ggml_perf_cycles() ggml_cycles()
  348. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  349. #else
  350. #define ggml_perf_time_ms() 0
  351. #define ggml_perf_time_us() 0
  352. #define ggml_perf_cycles() 0
  353. #define ggml_perf_cycles_per_ms() 0
  354. #endif
  355. //
  356. // cache line
  357. //
  358. #if defined(__cpp_lib_hardware_interference_size)
  359. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  360. #else
  361. #if defined(__POWER9_VECTOR__)
  362. #define CACHE_LINE_SIZE 128
  363. #else
  364. #define CACHE_LINE_SIZE 64
  365. #endif
  366. #endif
  367. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  368. //
  369. // quantization
  370. //
  371. #if __AVX__ || __AVX2__ || __AVX512F__
  372. // Unpack 16 4-bit fields into 16 bytes
  373. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  374. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  375. {
  376. // Load 8 bytes from memory
  377. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  378. // Expand bytes into uint16_t values
  379. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  380. // Unpack values into individual bytes
  381. const __m128i lowMask = _mm_set1_epi8( 0xF );
  382. __m128i high = _mm_andnot_si128( lowMask, bytes );
  383. __m128i low = _mm_and_si128( lowMask, bytes );
  384. high = _mm_slli_epi16( high, 4 );
  385. bytes = _mm_or_si128( low, high );
  386. return bytes;
  387. }
  388. // horizontally add 8 floats
  389. static inline float hsum_float_8(const __m256 x) {
  390. __m128 res = _mm256_extractf128_ps(x, 1);
  391. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  392. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  393. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  394. return _mm_cvtss_f32(res);
  395. }
  396. // horizontally add 8 int32_t
  397. static inline int hsum_i32_8(const __m256i a) {
  398. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  399. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  400. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  401. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  402. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  403. }
  404. // horizontally add 4 int32_t
  405. static inline int hsum_i32_4(const __m128i a) {
  406. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  407. const __m128i sum64 = _mm_add_epi32(hi64, a);
  408. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  409. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  410. }
  411. #if __AVX2__ || __AVX512F__
  412. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  413. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  414. uint32_t x32;
  415. memcpy(&x32, x, sizeof(uint32_t));
  416. const __m256i shuf_mask = _mm256_set_epi64x(
  417. 0x0303030303030303, 0x0202020202020202,
  418. 0x0101010101010101, 0x0000000000000000);
  419. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  420. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  421. bytes = _mm256_or_si256(bytes, bit_mask);
  422. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  423. }
  424. // Unpack 32 4-bit fields into 32 bytes
  425. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  426. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  427. {
  428. // Load 16 bytes from memory
  429. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  430. // Expand bytes into uint16_t values
  431. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  432. // Unpack values into individual bytes
  433. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  434. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  435. __m256i low = _mm256_and_si256( lowMask, bytes );
  436. high = _mm256_slli_epi16( high, 4 );
  437. bytes = _mm256_or_si256( low, high );
  438. return bytes;
  439. }
  440. // add int16_t pairwise and return as float vector
  441. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  442. const __m256i ones = _mm256_set1_epi16(1);
  443. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  444. return _mm256_cvtepi32_ps(summed_pairs);
  445. }
  446. // multiply int8_t, add results pairwise twice and return as float vector
  447. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  448. // Get absolute values of x vectors
  449. const __m256i ax = _mm256_sign_epi8(x, x);
  450. // Sign the values of the y vectors
  451. const __m256i sy = _mm256_sign_epi8(y, x);
  452. #if __AVXVNNI__
  453. const __m256i zero = _mm256_setzero_si256();
  454. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  455. return _mm256_cvtepi32_ps(summed_pairs);
  456. #else
  457. // Perform multiplication and create 16-bit values
  458. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  459. return sum_i16_pairs_float(dot);
  460. #endif
  461. }
  462. static inline __m128i packNibbles( __m256i bytes )
  463. {
  464. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  465. #if __AVX512F__
  466. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  467. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  468. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  469. #else
  470. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  471. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  472. __m256i low = _mm256_and_si256( lowByte, bytes );
  473. high = _mm256_srli_epi16( high, 4 );
  474. bytes = _mm256_or_si256( low, high );
  475. // Compress uint16_t lanes into bytes
  476. __m128i r0 = _mm256_castsi256_si128( bytes );
  477. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  478. return _mm_packus_epi16( r0, r1 );
  479. #endif
  480. }
  481. #else
  482. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  483. {
  484. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  485. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  486. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  487. __m128i low = _mm_and_si128( lowByte, bytes1 );
  488. high = _mm_srli_epi16( high, 4 );
  489. bytes1 = _mm_or_si128( low, high );
  490. high = _mm_andnot_si128( lowByte, bytes2 );
  491. low = _mm_and_si128( lowByte, bytes2 );
  492. high = _mm_srli_epi16( high, 4 );
  493. bytes2 = _mm_or_si128( low, high );
  494. return _mm_packus_epi16( bytes1, bytes2);
  495. }
  496. #endif
  497. #endif // __AVX__ || __AVX2__ || __AVX512F__
  498. #if __ARM_NEON
  499. #if !defined(__aarch64__)
  500. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  501. return
  502. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  503. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  504. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  505. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  506. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  507. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  508. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  509. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  510. }
  511. inline static int16_t vaddvq_s8(int8x16_t v) {
  512. return
  513. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  514. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  515. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  516. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  517. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  518. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  519. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  520. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  521. }
  522. inline static int32_t vaddvq_s16(int16x8_t v) {
  523. return
  524. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  525. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  526. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  527. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  528. }
  529. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  530. return
  531. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  532. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  533. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  534. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  535. }
  536. inline static int32_t vaddvq_s32(int32x4_t v) {
  537. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  538. }
  539. inline static float vaddvq_f32(float32x4_t v) {
  540. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  541. }
  542. float vminvq_f32(float32x4_t v) {
  543. return
  544. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  545. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  546. }
  547. float vmaxvq_f32(float32x4_t v) {
  548. return
  549. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  550. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  551. }
  552. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  553. return vget_low_s8(vcombine_s8(a, b));
  554. }
  555. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  556. return vget_high_s8(vcombine_s8(a, b));
  557. }
  558. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  559. return vget_low_u8(vcombine_u8(a, b));
  560. }
  561. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  562. return vget_high_u8(vcombine_u8(a, b));
  563. }
  564. #endif
  565. #endif
  566. #define QK4_0 32
  567. typedef struct {
  568. float d; // delta
  569. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  570. } block_q4_0;
  571. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  572. #define QK4_1 32
  573. typedef struct {
  574. float d; // delta
  575. float m; // min
  576. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  577. } block_q4_1;
  578. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  579. #define QK4_2 16
  580. typedef struct {
  581. ggml_fp16_t d; // delta
  582. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  583. } block_q4_2;
  584. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  585. #define QK4_3 16
  586. typedef struct {
  587. ggml_fp16_t d; // delta
  588. ggml_fp16_t m; // min
  589. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  590. } block_q4_3;
  591. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  592. #define QK5_0 32
  593. typedef struct {
  594. ggml_fp16_t d; // delta
  595. uint8_t qh[4]; // 5-th bit of quants
  596. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  597. } block_q5_0;
  598. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  599. #define QK5_1 32
  600. typedef struct {
  601. ggml_fp16_t d; // delta
  602. ggml_fp16_t m; // min
  603. uint8_t qh[4]; // 5-th bit of quants
  604. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  605. } block_q5_1;
  606. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  607. #define QK8_0 32
  608. typedef struct {
  609. float d; // delta
  610. int8_t qs[QK8_0]; // quants
  611. } block_q8_0;
  612. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  613. #define QK8_1 32
  614. typedef struct {
  615. float d; // delta
  616. float s0; // d * sum(qs[i]) low
  617. float s1; // d * sum(qs[i]) high
  618. int8_t qs[QK8_1]; // quants
  619. } block_q8_1;
  620. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  621. // reference implementation for deterministic creation of model files
  622. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  623. assert(k % QK4_0 == 0);
  624. const int nb = k / QK4_0;
  625. uint8_t pp[QK4_0/2];
  626. for (int i = 0; i < nb; i++) {
  627. float amax = 0.0f; // absolute max
  628. float max = 0.0f;
  629. for (int l = 0; l < QK4_0; l++) {
  630. const float v = x[i*QK4_0 + l];
  631. if (amax < fabsf(v)) {
  632. amax = fabsf(v);
  633. max = v;
  634. }
  635. }
  636. const float d = max / -8;
  637. const float id = d ? 1.0f/d : 0.0f;
  638. y[i].d = d;
  639. for (int l = 0; l < QK4_0; l += 2) {
  640. const float v0 = x[i*QK4_0 + l + 0]*id;
  641. const float v1 = x[i*QK4_0 + l + 1]*id;
  642. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  643. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  644. assert(vi0 < 16);
  645. assert(vi1 < 16);
  646. pp[l/2] = vi0 | (vi1 << 4);
  647. }
  648. memcpy(y[i].qs, pp, sizeof(pp));
  649. }
  650. }
  651. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  652. assert(k % QK4_0 == 0);
  653. const int nb = k / QK4_0;
  654. block_q4_0 * restrict y = vy;
  655. #if defined(__POWER9_VECTOR__)
  656. const vector float v85 = vec_splats(8.5f);
  657. const vector signed int v15 = vec_splats(15);
  658. for (int i = 0; i < nb; i++) {
  659. float max = 0.0f;
  660. float min = 0.0f;
  661. vector float srcv [8];
  662. vector float maxv[8];
  663. vector float minv[8];
  664. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  665. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  666. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  667. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  668. maxv[0] = vec_max(maxv[0], maxv[2]);
  669. maxv[4] = vec_max(maxv[4], maxv[6]);
  670. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  671. maxv[0] = vec_max(maxv[0], maxv[4]);
  672. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  673. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  674. minv[0] = vec_min(minv[0], minv[2]);
  675. minv[4] = vec_min(minv[4], minv[6]);
  676. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  677. minv[0] = vec_min(minv[0], minv[4]);
  678. max = MAX(
  679. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  680. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  681. min = MIN(
  682. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  683. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  684. const float magnitude = max >= fabsf(min) ? max : min;
  685. const float d = magnitude / -8;
  686. const float id = d ? 1.0/d : 0.0;
  687. y[i].d = d;
  688. const vector float vid = vec_splats(id);
  689. uint8_t * restrict pb = y[i].qs;
  690. for (int l = 0; l < 8; l++) {
  691. const vector float vf = vec_madd(srcv[l], vid, v85);
  692. const vector signed int vi = vec_signed(vf);
  693. const vector signed int vc = vec_min(vi, v15);
  694. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  695. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  696. }
  697. }
  698. #elif __ARM_NEON
  699. for (int i = 0; i < nb; i++) {
  700. float32x4_t srcv [8];
  701. float32x4_t maxv[8];
  702. float32x4_t minv[8];
  703. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  704. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  705. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  706. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  707. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  708. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  709. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  710. const float max = vmaxvq_f32(maxv[0]);
  711. const float min = vminvq_f32(minv[0]);
  712. const float magnitude = max >= fabsf(min) ? max : min;
  713. const float d = magnitude / -8;
  714. const float id = d ? 1.0f/d : 0.0f;
  715. y[i].d = d;
  716. for (int l = 0; l < 8; l++) {
  717. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  718. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  719. const int32x4_t vi = vcvtq_s32_f32(vf);
  720. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  721. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  722. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  723. }
  724. }
  725. #elif defined(__AVX2__)
  726. for (int i = 0; i < nb; i++) {
  727. // Load elements into 4 AVX vectors
  728. __m256 v0 = _mm256_loadu_ps( x );
  729. __m256 v1 = _mm256_loadu_ps( x + 8 );
  730. __m256 v2 = _mm256_loadu_ps( x + 16 );
  731. __m256 v3 = _mm256_loadu_ps( x + 24 );
  732. x += 32;
  733. // Compute max for the block
  734. __m256 max = _mm256_max_ps( v0, v1 );
  735. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  736. max = _mm256_max_ps( max, maxTmp );
  737. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  738. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  739. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  740. const float maxScalar = _mm_cvtss_f32( max4 );
  741. // Compute min for the block
  742. __m256 min = _mm256_min_ps( v0, v1 );
  743. __m256 minTmp = _mm256_min_ps( v2, v3 );
  744. min = _mm256_min_ps( min, minTmp );
  745. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  746. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  747. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  748. const float minScalar = _mm_cvtss_f32( min4 );
  749. // Quantize these floats
  750. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  751. const float d = magnitude / -8.0f;
  752. y[i].d = d;
  753. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  754. const __m256 mul = _mm256_set1_ps( id );
  755. // Apply the multiplier
  756. v0 = _mm256_mul_ps( v0, mul );
  757. v1 = _mm256_mul_ps( v1, mul );
  758. v2 = _mm256_mul_ps( v2, mul );
  759. v3 = _mm256_mul_ps( v3, mul );
  760. // Round to nearest integer
  761. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  762. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  763. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  764. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  765. // Convert floats to integers
  766. __m256i i0 = _mm256_cvtps_epi32( v0 );
  767. __m256i i1 = _mm256_cvtps_epi32( v1 );
  768. __m256i i2 = _mm256_cvtps_epi32( v2 );
  769. __m256i i3 = _mm256_cvtps_epi32( v3 );
  770. // Convert int32 to int16
  771. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  772. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  773. // Convert int16 to int8
  774. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  775. // We got our precious signed bytes, but the order is now wrong
  776. // These AVX2 pack instructions process 16-byte pieces independently
  777. // The following instruction is fixing the order
  778. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  779. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  780. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  781. const __m256i off = _mm256_set1_epi8( 8 );
  782. i0 = _mm256_add_epi8( i0, off );
  783. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  784. i0 = _mm256_min_epi8( i0, maxNibble );
  785. // Compress the vector into 4 bit/value, and store
  786. __m128i res = packNibbles( i0 );
  787. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  788. }
  789. #elif defined(__AVX__)
  790. for (int i = 0; i < nb; i++) {
  791. // Load elements into 4 AVX vectors
  792. __m256 v0 = _mm256_loadu_ps( x );
  793. __m256 v1 = _mm256_loadu_ps( x + 8 );
  794. __m256 v2 = _mm256_loadu_ps( x + 16 );
  795. __m256 v3 = _mm256_loadu_ps( x + 24 );
  796. x += 32;
  797. // Compute max for the block
  798. __m256 max = _mm256_max_ps( v0, v1 );
  799. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  800. max = _mm256_max_ps( max, maxTmp );
  801. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  802. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  803. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  804. const float maxScalar = _mm_cvtss_f32( max4 );
  805. // Compute min for the block
  806. __m256 min = _mm256_min_ps( v0, v1 );
  807. __m256 minTmp = _mm256_min_ps( v2, v3 );
  808. min = _mm256_min_ps( min, minTmp );
  809. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  810. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  811. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  812. const float minScalar = _mm_cvtss_f32( min4 );
  813. // Quantize these floats
  814. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  815. const float d = magnitude / -8.0f;
  816. y[i].d = d;
  817. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  818. const __m256 mul = _mm256_set1_ps( id );
  819. // Apply the multiplier
  820. v0 = _mm256_mul_ps( v0, mul );
  821. v1 = _mm256_mul_ps( v1, mul );
  822. v2 = _mm256_mul_ps( v2, mul );
  823. v3 = _mm256_mul_ps( v3, mul );
  824. // Round to nearest integer
  825. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  826. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  827. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  828. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  829. // Convert floats to integers
  830. __m256i i0 = _mm256_cvtps_epi32( v0 );
  831. __m256i i1 = _mm256_cvtps_epi32( v1 );
  832. __m256i i2 = _mm256_cvtps_epi32( v2 );
  833. __m256i i3 = _mm256_cvtps_epi32( v3 );
  834. // Since we don't have in AVX some necessary functions,
  835. // we split the registers in half and call AVX2 analogs from SSE
  836. __m128i ni0 = _mm256_castsi256_si128( i0 );
  837. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  838. __m128i ni2 = _mm256_castsi256_si128( i1 );
  839. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  840. __m128i ni4 = _mm256_castsi256_si128( i2 );
  841. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  842. __m128i ni6 = _mm256_castsi256_si128( i3 );
  843. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  844. // Convert int32 to int16
  845. ni0 = _mm_packs_epi32( ni0, ni1 );
  846. ni2 = _mm_packs_epi32( ni2, ni3 );
  847. ni4 = _mm_packs_epi32( ni4, ni5 );
  848. ni6 = _mm_packs_epi32( ni6, ni7 );
  849. // Convert int16 to int8
  850. ni0 = _mm_packs_epi16( ni0, ni2 );
  851. ni4 = _mm_packs_epi16( ni4, ni6 );
  852. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  853. const __m128i off = _mm_set1_epi8( 8 );
  854. ni0 = _mm_add_epi8( ni0, off );
  855. ni4 = _mm_add_epi8( ni4, off );
  856. const __m128i maxNibble = _mm_set1_epi8( 15 );
  857. ni0 = _mm_min_epi8( ni0, maxNibble );
  858. ni4 = _mm_min_epi8( ni4, maxNibble );
  859. // Compress the vector into 4 bit/value, and store
  860. __m128i res = packNibbles( ni0, ni4 );
  861. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  862. }
  863. #elif defined(__wasm_simd128__)
  864. for (int i = 0; i < nb; i++) {
  865. float max = 0.0f;
  866. float min = 0.0f;
  867. v128_t srcv [8];
  868. v128_t maxv[8];
  869. v128_t minv[8];
  870. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  871. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  872. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  873. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  874. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  875. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  876. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  877. max = MAX(
  878. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  879. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  880. min = MIN(
  881. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  882. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  883. const float magnitude = max >= fabsf(min) ? max : min;
  884. const float d = magnitude / -8;
  885. const float id = d ? 1.0/d : 0.0;
  886. y[i].d = d;
  887. for (int l = 0; l < 8; l++) {
  888. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  889. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  890. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  891. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  892. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  893. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  894. }
  895. }
  896. #else
  897. // scalar
  898. quantize_row_q4_0_reference(x, y, k);
  899. #endif
  900. }
  901. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  902. assert(k % QK4_1 == 0);
  903. const int nb = k / QK4_1;
  904. block_q4_1 * restrict y = vy;
  905. uint8_t pp[QK4_1/2];
  906. for (int i = 0; i < nb; i++) {
  907. float min = FLT_MAX;
  908. float max = -FLT_MAX;
  909. for (int l = 0; l < QK4_1; l++) {
  910. const float v = x[i*QK4_1 + l];
  911. if (v < min) min = v;
  912. if (v > max) max = v;
  913. }
  914. const float d = (max - min) / ((1 << 4) - 1);
  915. const float id = d ? 1.0f/d : 0.0f;
  916. y[i].d = d;
  917. y[i].m = min;
  918. for (int l = 0; l < QK4_1; l += 2) {
  919. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  920. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  921. const uint8_t vi0 = roundf(v0);
  922. const uint8_t vi1 = roundf(v1);
  923. assert(vi0 < 16);
  924. assert(vi1 < 16);
  925. pp[l/2] = vi0 | (vi1 << 4);
  926. }
  927. memcpy(y[i].qs, pp, sizeof(pp));
  928. }
  929. }
  930. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  931. assert(k % QK4_1 == 0);
  932. const int nb = k / QK4_1;
  933. block_q4_1 * restrict y = vy;
  934. #if defined(__AVX2__)
  935. for (int i = 0; i < nb; i++) {
  936. // Load elements into 4 AVX vectors
  937. __m256 v0 = _mm256_loadu_ps( x );
  938. __m256 v1 = _mm256_loadu_ps( x + 8 );
  939. __m256 v2 = _mm256_loadu_ps( x + 16 );
  940. __m256 v3 = _mm256_loadu_ps( x + 24 );
  941. x += 32;
  942. // Compute max for the block
  943. __m256 vmax;
  944. vmax = _mm256_max_ps( v0, v1 );
  945. vmax = _mm256_max_ps( vmax, v2 );
  946. vmax = _mm256_max_ps( vmax, v3 );
  947. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  948. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  949. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  950. const float maxScalar = _mm_cvtss_f32( max4 );
  951. // Compute min for the block
  952. __m256 vmin;
  953. vmin = _mm256_min_ps( v0, v1 );
  954. vmin = _mm256_min_ps( vmin, v2 );
  955. vmin = _mm256_min_ps( vmin, v3 );
  956. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  957. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  958. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  959. const float minScalar = _mm_cvtss_f32( min4 );
  960. // Quantize these floats
  961. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  962. const float id = d ? 1.0f/d : 0.0f;
  963. y[i].m = minScalar;
  964. y[i].d = d;
  965. // x = (x-min)*id
  966. const __m256 mul = _mm256_set1_ps( id );
  967. const __m256 off = _mm256_set1_ps( minScalar );
  968. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  969. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  970. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  971. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  972. // Round to nearest integer
  973. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  974. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  975. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  976. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  977. // Convert floats to integers
  978. __m256i i0 = _mm256_cvtps_epi32( v0 );
  979. __m256i i1 = _mm256_cvtps_epi32( v1 );
  980. __m256i i2 = _mm256_cvtps_epi32( v2 );
  981. __m256i i3 = _mm256_cvtps_epi32( v3 );
  982. // Convert int32 to int16
  983. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  984. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  985. // Convert int16 to int8
  986. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  987. // We got our precious signed bytes, but the order is now wrong
  988. // These AVX2 pack instructions process 16-byte pieces independently
  989. // The following instruction is fixing the order
  990. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  991. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  992. // Compress the vector into 4 bit/value, and store
  993. __m128i res = packNibbles( i0 );
  994. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  995. }
  996. #elif __ARM_NEON
  997. for (int i = 0; i < nb; i++) {
  998. float32x4_t srcv[8];
  999. float32x4_t minv[8];
  1000. float32x4_t maxv[8];
  1001. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1002. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1003. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1004. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1005. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1006. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1007. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1008. const float min = vminvq_f32(minv[0]);
  1009. const float max = vmaxvq_f32(maxv[0]);
  1010. const float d = (max - min) / ((1 << 4) - 1);
  1011. const float id = d ? 1.0f/d : 0.0f;
  1012. y[i].d = d;
  1013. y[i].m = min;
  1014. const float32x4_t minv0 = vdupq_n_f32(min);
  1015. for (int l = 0; l < 8; l++) {
  1016. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1017. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1018. const int32x4_t vi = vcvtq_s32_f32(vf);
  1019. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1020. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1021. }
  1022. }
  1023. #else
  1024. // scalar
  1025. quantize_row_q4_1_reference(x, vy, k);
  1026. #endif
  1027. }
  1028. // reference implementation for deterministic creation of model files
  1029. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1030. assert(k % QK4_2 == 0);
  1031. const int nb = k / QK4_2;
  1032. for (int i = 0; i < nb; i++) {
  1033. float amax = 0.0f; // absolute max
  1034. float max = 0.0f;
  1035. for (int l = 0; l < QK4_2; l++) {
  1036. const float v = x[i*QK4_2 + l];
  1037. if (amax < fabsf(v)) {
  1038. amax = fabsf(v);
  1039. max = v;
  1040. }
  1041. }
  1042. const float d = max / -8;
  1043. const float id = d ? 1.0f/d : 0.0f;
  1044. y[i].d = GGML_FP32_TO_FP16(d);
  1045. for (int l = 0; l < QK4_2; l += 2) {
  1046. const float v0 = x[i*QK4_2 + l + 0]*id;
  1047. const float v1 = x[i*QK4_2 + l + 1]*id;
  1048. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1049. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1050. assert(vi0 < 16);
  1051. assert(vi1 < 16);
  1052. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1053. }
  1054. }
  1055. }
  1056. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1057. assert(k % QK4_2 == 0);
  1058. block_q4_2 * restrict y = vy;
  1059. quantize_row_q4_2_reference(x, y, k);
  1060. }
  1061. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1062. assert(k % QK4_3 == 0);
  1063. const int nb = k / QK4_3;
  1064. for (int i = 0; i < nb; i++) {
  1065. float min = FLT_MAX;
  1066. float max = -FLT_MAX;
  1067. for (int l = 0; l < QK4_3; l++) {
  1068. const float v = x[i*QK4_3 + l];
  1069. if (v < min) min = v;
  1070. if (v > max) max = v;
  1071. }
  1072. const float d = (max - min) / ((1 << 4) - 1);
  1073. const float id = d ? 1.0f/d : 0.0f;
  1074. y[i].d = GGML_FP32_TO_FP16(d);
  1075. y[i].m = GGML_FP32_TO_FP16(min);
  1076. for (int l = 0; l < QK4_3; l += 2) {
  1077. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1078. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1079. const uint8_t vi0 = (int) (v0 + 0.5f);
  1080. const uint8_t vi1 = (int) (v1 + 0.5f);
  1081. assert(vi0 < 16);
  1082. assert(vi1 < 16);
  1083. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1084. }
  1085. }
  1086. }
  1087. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1088. assert(k % QK4_3 == 0);
  1089. block_q4_3 * restrict y = vy;
  1090. quantize_row_q4_3_reference(x, y, k);
  1091. }
  1092. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1093. assert(k % QK5_0 == 0);
  1094. const int nb = k / QK5_0;
  1095. for (int i = 0; i < nb; i++) {
  1096. float amax = 0.0f; // absolute max
  1097. float max = 0.0f;
  1098. for (int l = 0; l < QK5_0; l++) {
  1099. const float v = x[i*QK5_0 + l];
  1100. if (amax < fabsf(v)) {
  1101. amax = fabsf(v);
  1102. max = v;
  1103. }
  1104. }
  1105. const float d = max / -16;
  1106. const float id = d ? 1.0f/d : 0.0f;
  1107. y[i].d = GGML_FP32_TO_FP16(d);
  1108. uint32_t qh = 0;
  1109. for (int l = 0; l < QK5_0; l += 2) {
  1110. const float v0 = x[i*QK5_0 + l + 0]*id;
  1111. const float v1 = x[i*QK5_0 + l + 1]*id;
  1112. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1113. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1114. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1115. // get the 5-th bit and store it in qh at the right position
  1116. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1117. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1118. }
  1119. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1120. }
  1121. }
  1122. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1123. assert(k % QK5_0 == 0);
  1124. block_q5_0 * restrict y = vy;
  1125. quantize_row_q5_0_reference(x, y, k);
  1126. }
  1127. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1128. assert(k % QK5_1 == 0);
  1129. const int nb = k / QK5_1;
  1130. for (int i = 0; i < nb; i++) {
  1131. float min = FLT_MAX;
  1132. float max = -FLT_MAX;
  1133. for (int l = 0; l < QK5_1; l++) {
  1134. const float v = x[i*QK5_1 + l];
  1135. if (v < min) min = v;
  1136. if (v > max) max = v;
  1137. }
  1138. const float d = (max - min) / ((1 << 5) - 1);
  1139. const float id = d ? 1.0f/d : 0.0f;
  1140. y[i].d = GGML_FP32_TO_FP16(d);
  1141. y[i].m = GGML_FP32_TO_FP16(min);
  1142. uint32_t qh = 0;
  1143. for (int l = 0; l < QK5_1; l += 2) {
  1144. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1145. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1146. const uint32_t vi0 = (int) (v0 + 0.5f);
  1147. const uint32_t vi1 = (int) (v1 + 0.5f);
  1148. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1149. // get the 5-th bit and store it in qh at the right position
  1150. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1151. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1152. }
  1153. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1154. }
  1155. }
  1156. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1157. assert(k % QK5_1 == 0);
  1158. block_q5_1 * restrict y = vy;
  1159. quantize_row_q5_1_reference(x, y, k);
  1160. }
  1161. // reference implementation for deterministic creation of model files
  1162. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1163. assert(k % QK8_0 == 0);
  1164. const int nb = k / QK8_0;
  1165. for (int i = 0; i < nb; i++) {
  1166. float amax = 0.0f; // absolute max
  1167. for (int l = 0; l < QK8_0; l++) {
  1168. const float v = x[i*QK8_0 + l];
  1169. amax = MAX(amax, fabsf(v));
  1170. }
  1171. const float d = amax / ((1 << 7) - 1);
  1172. const float id = d ? 1.0f/d : 0.0f;
  1173. y[i].d = d;
  1174. for (int l = 0; l < QK8_0; ++l) {
  1175. const float v0 = x[i*QK8_0 + l]*id;
  1176. y[i].qs[l] = roundf(v0);
  1177. }
  1178. }
  1179. }
  1180. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1181. assert(k % QK8_0 == 0);
  1182. block_q8_0 * restrict y = vy;
  1183. quantize_row_q8_0_reference(x, y, k);
  1184. }
  1185. // reference implementation for deterministic creation of model files
  1186. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1187. assert(k % QK8_1 == 0);
  1188. const int nb = k / QK8_1;
  1189. for (int i = 0; i < nb; i++) {
  1190. float amax = 0.0f; // absolute max
  1191. for (int l = 0; l < QK8_1; l++) {
  1192. const float v = x[i*QK8_1 + l];
  1193. amax = MAX(amax, fabsf(v));
  1194. }
  1195. const float d = amax / ((1 << 7) - 1);
  1196. const float id = d ? 1.0f/d : 0.0f;
  1197. y[i].d = d;
  1198. int sum0 = 0;
  1199. int sum1 = 0;
  1200. for (int l = 0; l < QK8_1/2; ++l) {
  1201. const float v0 = x[i*QK8_1 + l]*id;
  1202. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1203. y[i].qs[ l] = roundf(v0);
  1204. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1205. sum0 += y[i].qs[ l];
  1206. sum1 += y[i].qs[QK8_1/2 + l];
  1207. }
  1208. y[i].s0 = d * sum0;
  1209. y[i].s1 = d * sum1;
  1210. }
  1211. }
  1212. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1213. assert(k % QK8_1 == 0);
  1214. const int nb = k / QK8_1;
  1215. block_q8_1 * restrict y = vy;
  1216. #if defined(__ARM_NEON)
  1217. for (int i = 0; i < nb; i++) {
  1218. float32x4_t srcv [8];
  1219. float32x4_t asrcv[8];
  1220. float32x4_t amaxv[8];
  1221. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1222. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1223. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1224. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1225. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1226. const float amax = vmaxvq_f32(amaxv[0]);
  1227. const float d = amax / ((1 << 7) - 1);
  1228. const float id = d ? 1.0f/d : 0.0f;
  1229. y[i].d = d;
  1230. int32x4_t accv0 = vdupq_n_s32(0);
  1231. int32x4_t accv1 = vdupq_n_s32(0);
  1232. // low half
  1233. for (int l = 0; l < 4; l++) {
  1234. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1235. const int32x4_t vi = vcvtnq_s32_f32(v);
  1236. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1237. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1238. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1239. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1240. accv0 = vaddq_s32(accv0, vi);
  1241. }
  1242. // high half
  1243. for (int l = 4; l < 8; l++) {
  1244. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1245. const int32x4_t vi = vcvtnq_s32_f32(v);
  1246. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1247. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1248. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1249. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1250. accv1 = vaddq_s32(accv1, vi);
  1251. }
  1252. const int32_t sum0 = vaddvq_s32(accv0);
  1253. const int32_t sum1 = vaddvq_s32(accv1);
  1254. y[i].s0 = d * sum0;
  1255. y[i].s1 = d * sum1;
  1256. }
  1257. #elif defined(__AVX2__) || defined(__AVX__)
  1258. for (int i = 0; i < nb; i++) {
  1259. // Load elements into 4 AVX vectors
  1260. __m256 v0 = _mm256_loadu_ps( x );
  1261. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1262. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1263. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1264. x += 32;
  1265. // Compute max(abs(e)) for the block
  1266. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1267. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1268. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1269. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1271. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1272. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1273. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1274. const float maxScalar = _mm_cvtss_f32( max4 );
  1275. // Quantize these floats
  1276. const float d = maxScalar / 127.f;
  1277. y[i].d = d;
  1278. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1279. const __m256 mul = _mm256_set1_ps( id );
  1280. // Apply the multiplier
  1281. v0 = _mm256_mul_ps( v0, mul );
  1282. v1 = _mm256_mul_ps( v1, mul );
  1283. v2 = _mm256_mul_ps( v2, mul );
  1284. v3 = _mm256_mul_ps( v3, mul );
  1285. // Round to nearest integer
  1286. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1287. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1288. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1289. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1290. // Convert floats to integers
  1291. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1292. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1293. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1294. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1295. #if defined(__AVX2__)
  1296. // Compute the sum of the quants and set y[i].s
  1297. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1298. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1299. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1300. // Convert int32 to int16
  1301. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1302. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1303. // Convert int16 to int8
  1304. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1305. // We got our precious signed bytes, but the order is now wrong
  1306. // These AVX2 pack instructions process 16-byte pieces independently
  1307. // The following instruction is fixing the order
  1308. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1309. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1310. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1311. #else
  1312. // Since we don't have in AVX some necessary functions,
  1313. // we split the registers in half and call AVX2 analogs from SSE
  1314. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1315. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1316. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1317. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1318. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1319. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1320. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1321. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1322. // Compute the sum of the quants and set y[i].s
  1323. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1324. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1325. y[i].s0 = d * hsum_i32_4(s0);
  1326. y[i].s1 = d * hsum_i32_4(s1);
  1327. // Convert int32 to int16
  1328. ni0 = _mm_packs_epi32( ni0, ni1 );
  1329. ni2 = _mm_packs_epi32( ni2, ni3 );
  1330. ni4 = _mm_packs_epi32( ni4, ni5 );
  1331. ni6 = _mm_packs_epi32( ni6, ni7 );
  1332. // Convert int16 to int8
  1333. ni0 = _mm_packs_epi16( ni0, ni2 );
  1334. ni4 = _mm_packs_epi16( ni4, ni6 );
  1335. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1336. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1337. #endif
  1338. }
  1339. #else
  1340. // scalar
  1341. quantize_row_q8_1_reference(x, y, k);
  1342. #endif
  1343. }
  1344. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1345. assert(k % QK4_0 == 0);
  1346. const int nb = k / QK4_0;
  1347. const block_q4_0 * restrict x = vx;
  1348. #if defined(__AVX2__)
  1349. for (int i = 0; i < nb; i++) {
  1350. // scale factor
  1351. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1352. const uint8_t * restrict pp = x[i].qs;
  1353. for (int l = 0; l < QK4_0; l += 32) {
  1354. // Load 32x4-bit integers into 32x8-bit integers
  1355. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1356. // Subtract 8 from the integers
  1357. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1358. // Convert to 16-bit int
  1359. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1360. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1361. // Convert to 32-bit int -> float 32
  1362. const __m256 vf[4] = {
  1363. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1364. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1367. };
  1368. // Scale and store
  1369. for (int j = 0; j < 4; j++) {
  1370. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1371. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1372. }
  1373. }
  1374. }
  1375. #elif defined(__ARM_NEON)
  1376. for (int i = 0; i < nb; i++) {
  1377. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1378. const uint8_t * restrict pp = x[i].qs;
  1379. for (int l = 0; l < QK4_0; l += 16) {
  1380. // Load 16x4-bit integers into 8x8-bit integers
  1381. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1382. // Expand 4-bit qs to 8-bit bytes
  1383. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1384. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1385. // Convert to signed 8-bit integers
  1386. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1387. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1388. // Subtract 8 from each byte
  1389. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1390. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1391. // Interleave and combine
  1392. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1393. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1394. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1395. // convert to 2x int16x8_t
  1396. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1397. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1398. // convert to 4x float32x4_t
  1399. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1400. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1401. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1402. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1403. // Multiply by d
  1404. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1405. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1406. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1407. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1408. // Store
  1409. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1410. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1411. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1412. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1413. }
  1414. }
  1415. #else
  1416. // scalar
  1417. for (int i = 0; i < nb; i++) {
  1418. const float d = x[i].d;
  1419. const uint8_t * restrict pp = x[i].qs;
  1420. for (int l = 0; l < QK4_0; l += 2) {
  1421. const uint8_t vi = pp[l/2];
  1422. const int8_t vi0 = vi & 0x0F;
  1423. const int8_t vi1 = vi >> 4;
  1424. const float v0 = (vi0 - 8)*d;
  1425. const float v1 = (vi1 - 8)*d;
  1426. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1427. y[i*QK4_0 + l + 0] = v0;
  1428. y[i*QK4_0 + l + 1] = v1;
  1429. assert(!isnan(y[i*QK4_0 + l + 0]));
  1430. assert(!isnan(y[i*QK4_0 + l + 1]));
  1431. }
  1432. }
  1433. #endif
  1434. }
  1435. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1436. assert(k % QK4_1 == 0);
  1437. const int nb = k / QK4_1;
  1438. const block_q4_1 * restrict x = vx;
  1439. #if defined(__AVX2__)
  1440. for (int i = 0; i < nb; i++) {
  1441. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1442. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1443. const uint8_t * restrict pp = x[i].qs;
  1444. for (int l = 0; l < QK4_1; l += 32) {
  1445. // Load 32x4-bit integers into 32x8-bit integers
  1446. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1447. // Convert to 16-bit int
  1448. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1449. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1450. // Convert to 32-bit int -> float 32
  1451. const __m256 vf[4] = {
  1452. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1453. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1456. };
  1457. // Scale, add m and store
  1458. for (int j = 0; j < 4; j++) {
  1459. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1460. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1461. }
  1462. }
  1463. }
  1464. #elif defined(__ARM_NEON)
  1465. for (int i = 0; i < nb; i++) {
  1466. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1467. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1468. const uint8_t * restrict pp = x[i].qs;
  1469. for (int l = 0; l < QK4_1; l += 16) {
  1470. // Load 16x4-bit integers into 8x8-bit integers
  1471. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1472. // Expand 4-bit qs to 8-bit bytes
  1473. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1474. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1475. // Interleave and combine
  1476. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1477. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1478. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1479. // convert to 2x uint16x8_t
  1480. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1481. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1482. // convert to 4x float32x4_t
  1483. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1484. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1485. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1486. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1487. // multiply by d and add m
  1488. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1489. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1490. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1491. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1492. // Store
  1493. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1494. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1495. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1496. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1497. }
  1498. }
  1499. #else
  1500. for (int i = 0; i < nb; i++) {
  1501. const float d = x[i].d;
  1502. const float m = x[i].m;
  1503. const uint8_t * restrict pp = x[i].qs;
  1504. for (int l = 0; l < QK4_1; l += 2) {
  1505. const uint8_t vi = pp[l/2];
  1506. const int8_t vi0 = vi & 0x0F;
  1507. const int8_t vi1 = vi >> 4;
  1508. const float v0 = vi0*d + m;
  1509. const float v1 = vi1*d + m;
  1510. y[i*QK4_1 + l + 0] = v0;
  1511. y[i*QK4_1 + l + 1] = v1;
  1512. assert(!isnan(y[i*QK4_1 + l + 0]));
  1513. assert(!isnan(y[i*QK4_1 + l + 1]));
  1514. }
  1515. }
  1516. #endif
  1517. }
  1518. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1519. assert(k % QK4_2 == 0);
  1520. const int nb = k / QK4_2;
  1521. const block_q4_2 * restrict x = vx;
  1522. for (int i = 0; i < nb; i++) {
  1523. const float d = GGML_FP16_TO_FP32(x[i].d);
  1524. const uint8_t * restrict pp = x[i].qs;
  1525. for (int l = 0; l < QK4_2; l += 2) {
  1526. const uint8_t vi = pp[l/2];
  1527. const int8_t vi0 = vi & 0x0F;
  1528. const int8_t vi1 = vi >> 4;
  1529. const float v0 = (vi0 - 8)*d;
  1530. const float v1 = (vi1 - 8)*d;
  1531. y[i*QK4_2 + l + 0] = v0;
  1532. y[i*QK4_2 + l + 1] = v1;
  1533. assert(!isnan(y[i*QK4_2 + l + 0]));
  1534. assert(!isnan(y[i*QK4_2 + l + 1]));
  1535. }
  1536. }
  1537. }
  1538. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1539. assert(k % QK4_3 == 0);
  1540. const int nb = k / QK4_3;
  1541. const block_q4_3 * restrict x = vx;
  1542. for (int i = 0; i < nb; i++) {
  1543. const float d = GGML_FP16_TO_FP32(x[i].d);
  1544. const float m = GGML_FP16_TO_FP32(x[i].m);
  1545. const uint8_t * restrict pp = x[i].qs;
  1546. for (int l = 0; l < QK4_3; l += 2) {
  1547. const uint8_t vi = pp[l/2];
  1548. const int8_t vi0 = vi & 0x0F;
  1549. const int8_t vi1 = vi >> 4;
  1550. const float v0 = vi0*d + m;
  1551. const float v1 = vi1*d + m;
  1552. y[i*QK4_3 + l + 0] = v0;
  1553. y[i*QK4_3 + l + 1] = v1;
  1554. assert(!isnan(y[i*QK4_3 + l + 0]));
  1555. assert(!isnan(y[i*QK4_3 + l + 1]));
  1556. }
  1557. }
  1558. }
  1559. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1560. assert(k % QK5_0 == 0);
  1561. const int nb = k / QK5_0;
  1562. const block_q5_0 * restrict x = vx;
  1563. for (int i = 0; i < nb; i++) {
  1564. const float d = GGML_FP16_TO_FP32(x[i].d);
  1565. const uint8_t * restrict pp = x[i].qs;
  1566. uint32_t qh;
  1567. memcpy(&qh, x[i].qh, sizeof(qh));
  1568. for (int l = 0; l < QK5_0; l += 2) {
  1569. const uint8_t vi = pp[l/2];
  1570. // extract the 5-th bit from qh
  1571. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1572. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1573. const int8_t vi0 = (vi & 0x0F) | vh0;
  1574. const int8_t vi1 = (vi >> 4) | vh1;
  1575. const float v0 = (vi0 - 16)*d;
  1576. const float v1 = (vi1 - 16)*d;
  1577. y[i*QK5_0 + l + 0] = v0;
  1578. y[i*QK5_0 + l + 1] = v1;
  1579. assert(!isnan(y[i*QK5_0 + l + 0]));
  1580. assert(!isnan(y[i*QK5_0 + l + 1]));
  1581. }
  1582. }
  1583. }
  1584. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1585. assert(k % QK5_1 == 0);
  1586. const int nb = k / QK5_1;
  1587. const block_q5_1 * restrict x = vx;
  1588. for (int i = 0; i < nb; i++) {
  1589. const float d = GGML_FP16_TO_FP32(x[i].d);
  1590. const float m = GGML_FP16_TO_FP32(x[i].m);
  1591. const uint8_t * restrict pp = x[i].qs;
  1592. uint32_t qh;
  1593. memcpy(&qh, x[i].qh, sizeof(qh));
  1594. for (int l = 0; l < QK5_1; l += 2) {
  1595. const uint8_t vi = pp[l/2];
  1596. // extract the 5-th bit from qh
  1597. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1598. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1599. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1600. const uint8_t vi1 = (vi >> 4) | vh1;
  1601. const float v0 = vi0*d + m;
  1602. const float v1 = vi1*d + m;
  1603. y[i*QK5_1 + l + 0] = v0;
  1604. y[i*QK5_1 + l + 1] = v1;
  1605. assert(!isnan(y[i*QK5_1 + l + 0]));
  1606. assert(!isnan(y[i*QK5_1 + l + 1]));
  1607. }
  1608. }
  1609. }
  1610. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1611. assert(k % QK8_0 == 0);
  1612. const int nb = k / QK8_0;
  1613. const block_q8_0 * restrict x = vx;
  1614. for (int i = 0; i < nb; i++) {
  1615. const float d = x[i].d;
  1616. const int8_t * restrict pp = x[i].qs;
  1617. for (int l = 0; l < QK8_0; ++l) {
  1618. y[i*QK8_0 + l] = pp[l]*d;
  1619. }
  1620. }
  1621. }
  1622. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1623. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1624. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1625. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1626. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1627. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1628. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1629. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1630. [GGML_TYPE_Q4_0] = {
  1631. .dequantize_row_q = dequantize_row_q4_0,
  1632. .quantize_row_q = quantize_row_q4_0,
  1633. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1634. .quantize_row_q_dot = quantize_row_q8_0,
  1635. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1636. .vec_dot_type = GGML_TYPE_Q8_0,
  1637. },
  1638. [GGML_TYPE_Q4_1] = {
  1639. .dequantize_row_q = dequantize_row_q4_1,
  1640. .quantize_row_q = quantize_row_q4_1,
  1641. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1642. .quantize_row_q_dot = quantize_row_q8_1,
  1643. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1644. .vec_dot_type = GGML_TYPE_Q8_1,
  1645. },
  1646. [GGML_TYPE_Q4_2] = {
  1647. .dequantize_row_q = dequantize_row_q4_2,
  1648. .quantize_row_q = quantize_row_q4_2,
  1649. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1650. .quantize_row_q_dot = quantize_row_q8_0,
  1651. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1652. .vec_dot_type = GGML_TYPE_Q8_0,
  1653. },
  1654. [GGML_TYPE_Q4_3] = {
  1655. .dequantize_row_q = dequantize_row_q4_3,
  1656. .quantize_row_q = quantize_row_q4_3,
  1657. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
  1658. .quantize_row_q_dot = quantize_row_q8_1,
  1659. .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
  1660. .vec_dot_type = GGML_TYPE_Q8_1,
  1661. },
  1662. [GGML_TYPE_Q5_0] = {
  1663. .dequantize_row_q = dequantize_row_q5_0,
  1664. .quantize_row_q = quantize_row_q5_0,
  1665. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1666. .quantize_row_q_dot = quantize_row_q8_0,
  1667. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1668. .vec_dot_type = GGML_TYPE_Q8_0,
  1669. },
  1670. [GGML_TYPE_Q5_1] = {
  1671. .dequantize_row_q = dequantize_row_q5_1,
  1672. .quantize_row_q = quantize_row_q5_1,
  1673. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1674. .quantize_row_q_dot = quantize_row_q8_1,
  1675. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1676. .vec_dot_type = GGML_TYPE_Q8_1,
  1677. },
  1678. [GGML_TYPE_Q8_0] = {
  1679. .dequantize_row_q = dequantize_row_q8_0,
  1680. .quantize_row_q = quantize_row_q8_0,
  1681. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1682. .quantize_row_q_dot = quantize_row_q8_0,
  1683. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1684. .vec_dot_type = GGML_TYPE_Q8_0,
  1685. },
  1686. [GGML_TYPE_Q8_1] = {
  1687. .dequantize_row_q = NULL, // TODO
  1688. .quantize_row_q = quantize_row_q8_1,
  1689. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1690. .quantize_row_q_dot = quantize_row_q8_1,
  1691. .vec_dot_q = NULL, // TODO
  1692. .vec_dot_type = GGML_TYPE_Q8_1,
  1693. },
  1694. };
  1695. // For internal test use
  1696. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1697. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1698. return quantize_fns[i];
  1699. }
  1700. //
  1701. // simd mappings
  1702. //
  1703. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1704. // we then implement the fundamental computation operations below using only these macros
  1705. // adding support for new architectures requires to define the corresponding SIMD macros
  1706. //
  1707. // GGML_F32_STEP / GGML_F16_STEP
  1708. // number of elements to process in a single step
  1709. //
  1710. // GGML_F32_EPR / GGML_F16_EPR
  1711. // number of elements to fit in a single register
  1712. //
  1713. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1714. #define GGML_SIMD
  1715. // F32 NEON
  1716. #define GGML_F32_STEP 16
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 float32x4_t
  1719. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1720. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1721. #define GGML_F32x4_LOAD vld1q_f32
  1722. #define GGML_F32x4_STORE vst1q_f32
  1723. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1724. #define GGML_F32x4_ADD vaddq_f32
  1725. #define GGML_F32x4_MUL vmulq_f32
  1726. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1727. #define GGML_F32x4_REDUCE(res, x) \
  1728. { \
  1729. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1730. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1731. } \
  1732. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1733. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1734. } \
  1735. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1736. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1737. } \
  1738. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1739. }
  1740. #define GGML_F32_VEC GGML_F32x4
  1741. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1742. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1743. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1744. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1745. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1746. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1747. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1748. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1749. // F16 NEON
  1750. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1751. #define GGML_F16_STEP 32
  1752. #define GGML_F16_EPR 8
  1753. #define GGML_F16x8 float16x8_t
  1754. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1755. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1756. #define GGML_F16x8_LOAD vld1q_f16
  1757. #define GGML_F16x8_STORE vst1q_f16
  1758. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1759. #define GGML_F16x8_ADD vaddq_f16
  1760. #define GGML_F16x8_MUL vmulq_f16
  1761. #define GGML_F16x8_REDUCE(res, x) \
  1762. { \
  1763. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1764. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1765. } \
  1766. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1767. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1768. } \
  1769. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1770. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1771. } \
  1772. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1773. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1774. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1775. }
  1776. #define GGML_F16_VEC GGML_F16x8
  1777. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1778. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1779. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1780. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1781. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1782. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1783. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1784. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1785. #else
  1786. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1787. // and take advantage of the vcvt_ functions to convert to/from FP16
  1788. #define GGML_F16_STEP 16
  1789. #define GGML_F16_EPR 4
  1790. #define GGML_F32Cx4 float32x4_t
  1791. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1792. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1793. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1794. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1795. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1796. #define GGML_F32Cx4_ADD vaddq_f32
  1797. #define GGML_F32Cx4_MUL vmulq_f32
  1798. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1799. #define GGML_F16_VEC GGML_F32Cx4
  1800. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1801. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1802. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1803. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1804. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1805. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1806. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1807. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1808. #endif
  1809. #elif defined(__AVX__)
  1810. #define GGML_SIMD
  1811. // F32 AVX
  1812. #define GGML_F32_STEP 32
  1813. #define GGML_F32_EPR 8
  1814. #define GGML_F32x8 __m256
  1815. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1816. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1817. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1818. #define GGML_F32x8_STORE _mm256_storeu_ps
  1819. #if defined(__FMA__)
  1820. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1821. #else
  1822. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1823. #endif
  1824. #define GGML_F32x8_ADD _mm256_add_ps
  1825. #define GGML_F32x8_MUL _mm256_mul_ps
  1826. #define GGML_F32x8_REDUCE(res, x) \
  1827. { \
  1828. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1829. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1830. } \
  1831. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1832. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1833. } \
  1834. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1835. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1836. } \
  1837. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1838. _mm256_extractf128_ps(x[0], 1)); \
  1839. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1840. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1841. }
  1842. // TODO: is this optimal ?
  1843. #define GGML_F32_VEC GGML_F32x8
  1844. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1845. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1846. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1847. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1848. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1849. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1850. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1851. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1852. // F16 AVX
  1853. #define GGML_F16_STEP 32
  1854. #define GGML_F16_EPR 8
  1855. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1856. #define GGML_F32Cx8 __m256
  1857. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1858. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1859. #if defined(__F16C__)
  1860. // the _mm256_cvt intrinsics require F16C
  1861. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1862. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1863. #else
  1864. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1865. float tmp[8];
  1866. for (int i = 0; i < 8; i++)
  1867. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1868. return _mm256_loadu_ps(tmp);
  1869. }
  1870. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1871. float arr[8];
  1872. _mm256_storeu_ps(arr, y);
  1873. for (int i = 0; i < 8; i++)
  1874. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1875. }
  1876. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1877. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1878. #endif
  1879. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1880. #define GGML_F32Cx8_ADD _mm256_add_ps
  1881. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1882. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1883. #define GGML_F16_VEC GGML_F32Cx8
  1884. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1885. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1886. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1887. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1888. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1889. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1890. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1891. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1892. #elif defined(__POWER9_VECTOR__)
  1893. #define GGML_SIMD
  1894. // F32 POWER9
  1895. #define GGML_F32_STEP 32
  1896. #define GGML_F32_EPR 4
  1897. #define GGML_F32x4 vector float
  1898. #define GGML_F32x4_ZERO 0.0f
  1899. #define GGML_F32x4_SET1 vec_splats
  1900. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1901. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1902. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1903. #define GGML_F32x4_ADD vec_add
  1904. #define GGML_F32x4_MUL vec_mul
  1905. #define GGML_F32x4_REDUCE(res, x) \
  1906. { \
  1907. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1908. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1909. } \
  1910. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1911. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1912. } \
  1913. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1914. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1915. } \
  1916. res = vec_extract(x[0], 0) + \
  1917. vec_extract(x[0], 1) + \
  1918. vec_extract(x[0], 2) + \
  1919. vec_extract(x[0], 3); \
  1920. }
  1921. #define GGML_F32_VEC GGML_F32x4
  1922. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1923. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1924. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1925. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1926. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1927. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1928. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1929. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1930. // F16 POWER9
  1931. #define GGML_F16_STEP GGML_F32_STEP
  1932. #define GGML_F16_EPR GGML_F32_EPR
  1933. #define GGML_F16_VEC GGML_F32x4
  1934. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1935. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1936. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1937. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1938. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1939. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1940. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1941. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1942. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1943. #define GGML_F16_VEC_STORE(p, r, i) \
  1944. if (i & 0x1) \
  1945. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1946. r[i - GGML_ENDIAN_BYTE(0)]), \
  1947. 0, p - GGML_F16_EPR)
  1948. #elif defined(__wasm_simd128__)
  1949. #define GGML_SIMD
  1950. // F32 WASM
  1951. #define GGML_F32_STEP 16
  1952. #define GGML_F32_EPR 4
  1953. #define GGML_F32x4 v128_t
  1954. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1955. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1956. #define GGML_F32x4_LOAD wasm_v128_load
  1957. #define GGML_F32x4_STORE wasm_v128_store
  1958. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1959. #define GGML_F32x4_ADD wasm_f32x4_add
  1960. #define GGML_F32x4_MUL wasm_f32x4_mul
  1961. #define GGML_F32x4_REDUCE(res, x) \
  1962. { \
  1963. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1964. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1965. } \
  1966. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1967. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1968. } \
  1969. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1970. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1971. } \
  1972. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1973. wasm_f32x4_extract_lane(x[0], 1) + \
  1974. wasm_f32x4_extract_lane(x[0], 2) + \
  1975. wasm_f32x4_extract_lane(x[0], 3); \
  1976. }
  1977. #define GGML_F32_VEC GGML_F32x4
  1978. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1979. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1980. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1981. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1982. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1983. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1984. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1985. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1986. // F16 WASM
  1987. #define GGML_F16_STEP 16
  1988. #define GGML_F16_EPR 4
  1989. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1990. float tmp[4];
  1991. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1992. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1993. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1994. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1995. return wasm_v128_load(tmp);
  1996. }
  1997. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1998. float tmp[4];
  1999. wasm_v128_store(tmp, x);
  2000. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2001. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2002. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2003. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2004. }
  2005. #define GGML_F16x4 v128_t
  2006. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2007. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2008. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2009. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2010. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2011. #define GGML_F16x4_ADD wasm_f32x4_add
  2012. #define GGML_F16x4_MUL wasm_f32x4_mul
  2013. #define GGML_F16x4_REDUCE(res, x) \
  2014. { \
  2015. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2016. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2017. } \
  2018. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2019. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2020. } \
  2021. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2022. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2023. } \
  2024. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2025. wasm_f32x4_extract_lane(x[0], 1) + \
  2026. wasm_f32x4_extract_lane(x[0], 2) + \
  2027. wasm_f32x4_extract_lane(x[0], 3); \
  2028. }
  2029. #define GGML_F16_VEC GGML_F16x4
  2030. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2031. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2032. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2033. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2034. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2035. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2036. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2037. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2038. #elif defined(__SSE3__)
  2039. #define GGML_SIMD
  2040. // F32 SSE
  2041. #define GGML_F32_STEP 32
  2042. #define GGML_F32_EPR 4
  2043. #define GGML_F32x4 __m128
  2044. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2045. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2046. #define GGML_F32x4_LOAD _mm_loadu_ps
  2047. #define GGML_F32x4_STORE _mm_storeu_ps
  2048. #if defined(__FMA__)
  2049. // TODO: Does this work?
  2050. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2051. #else
  2052. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2053. #endif
  2054. #define GGML_F32x4_ADD _mm_add_ps
  2055. #define GGML_F32x4_MUL _mm_mul_ps
  2056. #define GGML_F32x4_REDUCE(res, x) \
  2057. { \
  2058. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2059. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2060. } \
  2061. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2062. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2063. } \
  2064. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2065. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2066. } \
  2067. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2068. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2069. }
  2070. // TODO: is this optimal ?
  2071. #define GGML_F32_VEC GGML_F32x4
  2072. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2073. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2074. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2075. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2076. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2077. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2078. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2079. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2080. // F16 SSE
  2081. #define GGML_F16_STEP 32
  2082. #define GGML_F16_EPR 4
  2083. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2084. float tmp[4];
  2085. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2086. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2087. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2088. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2089. return _mm_loadu_ps(tmp);
  2090. }
  2091. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2092. float arr[4];
  2093. _mm_storeu_ps(arr, y);
  2094. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2095. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2096. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2097. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2098. }
  2099. #define GGML_F32Cx4 __m128
  2100. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2101. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2102. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2103. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2104. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2105. #define GGML_F32Cx4_ADD _mm_add_ps
  2106. #define GGML_F32Cx4_MUL _mm_mul_ps
  2107. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2108. #define GGML_F16_VEC GGML_F32Cx4
  2109. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2110. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2111. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2112. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2113. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2114. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2115. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2116. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2117. #endif
  2118. // GGML_F32_ARR / GGML_F16_ARR
  2119. // number of registers to use per step
  2120. #ifdef GGML_SIMD
  2121. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2122. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2123. #endif
  2124. //
  2125. // fundamental operations
  2126. //
  2127. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2128. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2129. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2130. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2131. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2132. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2133. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2134. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2135. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2136. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2137. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2138. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2139. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2140. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2141. #ifdef GGML_SIMD
  2142. float sumf = 0.0f;
  2143. const int np = (n & ~(GGML_F32_STEP - 1));
  2144. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2145. GGML_F32_VEC ax[GGML_F32_ARR];
  2146. GGML_F32_VEC ay[GGML_F32_ARR];
  2147. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2148. for (int j = 0; j < GGML_F32_ARR; j++) {
  2149. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2150. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2151. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2152. }
  2153. }
  2154. // reduce sum0..sum3 to sum0
  2155. GGML_F32_VEC_REDUCE(sumf, sum);
  2156. // leftovers
  2157. for (int i = np; i < n; ++i) {
  2158. sumf += x[i]*y[i];
  2159. }
  2160. #else
  2161. // scalar
  2162. ggml_float sumf = 0.0;
  2163. for (int i = 0; i < n; ++i) {
  2164. sumf += (ggml_float)(x[i]*y[i]);
  2165. }
  2166. #endif
  2167. *s = sumf;
  2168. }
  2169. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2170. ggml_float sumf = 0.0;
  2171. #if defined(GGML_SIMD)
  2172. const int np = (n & ~(GGML_F16_STEP - 1));
  2173. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2174. GGML_F16_VEC ax[GGML_F16_ARR];
  2175. GGML_F16_VEC ay[GGML_F16_ARR];
  2176. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2177. for (int j = 0; j < GGML_F16_ARR; j++) {
  2178. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2179. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2180. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2181. }
  2182. }
  2183. // reduce sum0..sum3 to sum0
  2184. GGML_F16_VEC_REDUCE(sumf, sum);
  2185. // leftovers
  2186. for (int i = np; i < n; ++i) {
  2187. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2188. }
  2189. #else
  2190. for (int i = 0; i < n; ++i) {
  2191. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2192. }
  2193. #endif
  2194. *s = sumf;
  2195. }
  2196. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2197. const int nb = n / QK8_0;
  2198. assert(n % QK8_0 == 0);
  2199. assert(nb % 2 == 0);
  2200. const block_q4_0 * restrict x = vx;
  2201. const block_q8_0 * restrict y = vy;
  2202. #if defined(__ARM_NEON)
  2203. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2204. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2205. for (int i = 0; i < nb; i += 2) {
  2206. const block_q4_0 * restrict x0 = &x[i + 0];
  2207. const block_q4_0 * restrict x1 = &x[i + 1];
  2208. const block_q8_0 * restrict y0 = &y[i + 0];
  2209. const block_q8_0 * restrict y1 = &y[i + 1];
  2210. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2211. const int8x16_t s8b = vdupq_n_s8(0x8);
  2212. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2213. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2214. // 4-bit -> 8-bit
  2215. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2216. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2217. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2218. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2219. // sub 8
  2220. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2221. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2222. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2223. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2224. // load y
  2225. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2226. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2227. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2228. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2229. // interleave
  2230. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2231. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2232. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2233. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2234. #if defined(__ARM_FEATURE_DOTPROD)
  2235. // dot product into int32x4_t
  2236. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2237. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2238. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2239. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2240. #else
  2241. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2242. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2243. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2244. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2245. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2246. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2247. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2248. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2249. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2250. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2251. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2252. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2253. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2254. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2255. #endif
  2256. }
  2257. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2258. #elif defined(__AVX2__)
  2259. // Initialize accumulator with zeros
  2260. __m256 acc = _mm256_setzero_ps();
  2261. // Main loop
  2262. for (int i = 0; i < nb; ++i) {
  2263. /* Compute combined scale for the block */
  2264. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2265. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2266. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2267. const __m256i off = _mm256_set1_epi8( 8 );
  2268. bx = _mm256_sub_epi8( bx, off );
  2269. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2270. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2271. /* Multiply q with scale and accumulate */
  2272. acc = _mm256_fmadd_ps( d, q, acc );
  2273. }
  2274. *s = hsum_float_8(acc);
  2275. #elif defined(__AVX__)
  2276. // Initialize accumulator with zeros
  2277. __m256 acc = _mm256_setzero_ps();
  2278. // Main loop
  2279. for (int i = 0; i < nb; ++i) {
  2280. // Compute combined scale for the block
  2281. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2282. __m128i i32[2];
  2283. for (int j = 0; j < 2; ++j) {
  2284. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2285. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2286. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2287. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2288. const __m128i off = _mm_set1_epi8( 8 );
  2289. bx = _mm_sub_epi8( bx, off );
  2290. // Get absolute values of x vectors
  2291. const __m128i ax = _mm_sign_epi8(bx, bx);
  2292. // Sign the values of the y vectors
  2293. const __m128i sy = _mm_sign_epi8(by, bx);
  2294. // Perform multiplication and create 16-bit values
  2295. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2296. const __m128i ones = _mm_set1_epi16(1);
  2297. i32[j] = _mm_madd_epi16(ones, dot);
  2298. }
  2299. // Convert int32_t to float
  2300. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2301. // Apply the scale, and accumulate
  2302. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2303. }
  2304. *s = hsum_float_8(acc);
  2305. #else
  2306. // scalar
  2307. float sumf = 0.0;
  2308. for (int i = 0; i < nb; i++) {
  2309. const float d0 = x[i].d;
  2310. const float d1 = y[i].d;
  2311. const uint8_t * restrict p0 = x[i].qs;
  2312. const int8_t * restrict p1 = y[i].qs;
  2313. int sumi = 0;
  2314. for (int j = 0; j < QK8_0/2; j++) {
  2315. const uint8_t v0 = p0[j];
  2316. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2317. const int i1 = (int8_t) (v0 >> 4) - 8;
  2318. const int i2 = p1[2*j + 0];
  2319. const int i3 = p1[2*j + 1];
  2320. sumi += i0*i2 + i1*i3;
  2321. }
  2322. sumf += d0*d1*sumi;
  2323. }
  2324. *s = sumf;
  2325. #endif
  2326. }
  2327. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2328. const int nb = n / QK8_1;
  2329. assert(n % QK8_1 == 0);
  2330. assert(nb % 2 == 0);
  2331. const block_q4_1 * restrict x = vx;
  2332. const block_q8_1 * restrict y = vy;
  2333. // TODO: add AVX / WASM SIMD / etc
  2334. #if defined(__ARM_NEON)
  2335. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2336. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2337. float summs = 0;
  2338. for (int i = 0; i < nb; i += 2) {
  2339. const block_q4_1 * restrict x0 = &x[i + 0];
  2340. const block_q4_1 * restrict x1 = &x[i + 1];
  2341. const block_q8_1 * restrict y0 = &y[i + 0];
  2342. const block_q8_1 * restrict y1 = &y[i + 1];
  2343. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2344. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2345. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2346. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2347. // 4-bit -> 8-bit
  2348. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2349. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2350. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2351. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2352. // interleave
  2353. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2354. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2355. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2356. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2357. // load y
  2358. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2359. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2360. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2361. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2362. #if defined(__ARM_FEATURE_DOTPROD)
  2363. // dot product into int32x4_t
  2364. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2365. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2366. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2367. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2368. #else
  2369. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2370. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2371. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2372. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2373. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2374. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2375. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2376. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2377. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2378. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2379. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2380. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2381. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2382. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2383. #endif
  2384. }
  2385. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2386. #elif defined(__AVX2__)
  2387. // Initialize accumulator with zeros
  2388. __m256 acc = _mm256_setzero_ps();
  2389. float summs = 0;
  2390. // Main loop
  2391. for (int i = 0; i < nb; ++i) {
  2392. const float * d0 = &x[i].d;
  2393. const float * d1 = &y[i].d;
  2394. summs += x[i].m * (y[i].s0 + y[i].s1);
  2395. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2396. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2397. // Compute combined scales
  2398. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2399. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2400. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2401. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2402. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2403. // Accumulate d0*d1*x*y
  2404. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2405. }
  2406. *s = hsum_float_8(acc) + summs;
  2407. #else
  2408. // scalar
  2409. float sumf = 0.0;
  2410. for (int i = 0; i < nb; i++) {
  2411. const float d0 = x[i].d;
  2412. const float m0 = x[i].m;
  2413. const float d1 = y[i].d;
  2414. const uint8_t * restrict p0 = x[i].qs;
  2415. const int8_t * restrict p1 = y[i].qs;
  2416. // TODO: this is very slow ..
  2417. for (int j = 0; j < QK8_1/2; j++) {
  2418. const uint8_t v0 = p0[j];
  2419. const float f0 = d0*(v0 & 0x0F) + m0;
  2420. const float f1 = d0*(v0 >> 4) + m0;
  2421. const float f2 = d1*p1[2*j + 0];
  2422. const float f3 = d1*p1[2*j + 1];
  2423. sumf += f0*f2 + f1*f3;
  2424. }
  2425. }
  2426. *s = sumf;
  2427. #endif
  2428. }
  2429. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2430. const int nb = n / QK8_0;
  2431. assert(n % QK8_0 == 0);
  2432. assert(nb % 2 == 0);
  2433. assert(QK8_0 == 2*QK4_2);
  2434. const block_q4_2 * restrict x = vx;
  2435. const block_q8_0 * restrict y = vy;
  2436. #if defined(__ARM_NEON)
  2437. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2438. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2439. for (int i = 0; i < nb; i += 2) {
  2440. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2441. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2442. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2443. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2444. const block_q8_0 * restrict y0 = &y[i + 0];
  2445. const block_q8_0 * restrict y1 = &y[i + 1];
  2446. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2447. const int8x16_t s8b = vdupq_n_s8(0x8);
  2448. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2449. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2450. // 4-bit -> 8-bit
  2451. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2452. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2453. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2454. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2455. // sub 8
  2456. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2457. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2458. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2459. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2460. // interleave
  2461. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2462. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2463. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2464. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2465. // load y
  2466. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2467. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2468. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2469. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2470. #if defined(__ARM_FEATURE_DOTPROD)
  2471. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2472. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2473. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2474. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2475. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2476. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2477. #else
  2478. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2479. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2480. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2481. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2482. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2483. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2484. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2485. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2486. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2487. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2488. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2489. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2490. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2491. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2492. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2493. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2494. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2495. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2496. #endif
  2497. }
  2498. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2499. #elif defined(__AVX2__)
  2500. // Initialize accumulator with zeros
  2501. __m256 acc = _mm256_setzero_ps();
  2502. // Main loop
  2503. for (int i = 0; i < nb; i++) {
  2504. /* Compute combined scale for the block */
  2505. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2506. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2507. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2508. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2509. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2510. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2511. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2512. const __m256i off = _mm256_set1_epi8(8);
  2513. bx = _mm256_sub_epi8(bx, off);
  2514. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2515. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2516. /* Multiply q with scale and accumulate */
  2517. acc = _mm256_fmadd_ps(d, q, acc);
  2518. }
  2519. *s = hsum_float_8(acc);
  2520. #else
  2521. // scalar
  2522. float sumf = 0.0;
  2523. for (int i = 0; i < nb; i++) {
  2524. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2525. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2526. const int8_t * restrict y0 = y[i].qs;
  2527. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2528. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2529. int sumi_0 = 0;
  2530. int sumi_1 = 0;
  2531. for (int j = 0; j < QK8_0/4; j++) {
  2532. const uint8_t v0 = x0[j];
  2533. const uint8_t v1 = x1[j];
  2534. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2535. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2536. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2537. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2538. const int i2_0 = y0[2*j + 0];
  2539. const int i3_0 = y0[2*j + 1];
  2540. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2541. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2542. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2543. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2544. }
  2545. sumf += (d0 * y[i].d) * sumi_0;
  2546. sumf += (d1 * y[i].d) * sumi_1;
  2547. }
  2548. *s = sumf;
  2549. #endif
  2550. }
  2551. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2552. const int nb = n / QK8_1;
  2553. assert(n % QK8_1 == 0);
  2554. assert(nb % 2 == 0);
  2555. assert(QK8_1 == 2*QK4_3);
  2556. const block_q4_3 * restrict x = vx;
  2557. const block_q8_1 * restrict y = vy;
  2558. #if defined(__ARM_NEON)
  2559. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2560. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2561. float summs0 = 0.0f;
  2562. float summs1 = 0.0f;
  2563. for (int i = 0; i < nb; ++i) {
  2564. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2565. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2566. const block_q8_1 * restrict y0 = &y[i + 0];
  2567. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2568. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2569. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2570. // 4-bit -> 8-bit
  2571. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
  2572. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2573. // interleave
  2574. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2575. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2576. // load y
  2577. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2578. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2579. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2580. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2581. #if defined(__ARM_FEATURE_DOTPROD)
  2582. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2583. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2584. #else
  2585. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2586. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2587. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2588. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2589. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2590. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2591. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2592. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2593. #endif
  2594. }
  2595. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2596. #elif defined(__AVX2__)
  2597. // Initialize accumulator with zeros
  2598. __m256 acc = _mm256_setzero_ps();
  2599. float summs = 0.0f;
  2600. // Main loop
  2601. for (int i = 0; i < nb; i++) {
  2602. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2603. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2604. const __m256 dx = _mm256_set_m128(d1, d0);
  2605. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2606. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2607. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2608. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2609. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2610. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2611. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2612. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2613. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2614. }
  2615. *s = hsum_float_8(acc) + summs;
  2616. #else
  2617. // scalar
  2618. float sumf = 0.0;
  2619. for (int i = 0; i < nb; i++) {
  2620. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2621. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2622. const int8_t * restrict y0 = y[i].qs;
  2623. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2624. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2625. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2626. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2627. int sxy_0 = 0;
  2628. int sxy_1 = 0;
  2629. for (int j = 0; j < QK8_1/4; j++) {
  2630. const uint8_t v0 = x0[j];
  2631. const uint8_t v1 = x1[j];
  2632. const int x0_0 = v0 & 0x0F;
  2633. const int x1_0 = v0 >> 4;
  2634. const int x0_1 = v1 & 0x0F;
  2635. const int x1_1 = v1 >> 4;
  2636. const int y0_0 = y0[2*j + 0];
  2637. const int y1_0 = y0[2*j + 1];
  2638. const int y0_1 = y0[2*(j + QK8_1/4) + 0];
  2639. const int y1_1 = y0[2*(j + QK8_1/4) + 1];
  2640. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2641. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2642. }
  2643. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2644. }
  2645. *s = sumf;
  2646. #endif
  2647. }
  2648. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2649. const int nb = n / QK8_0;
  2650. assert(n % QK8_0 == 0);
  2651. assert(nb % 2 == 0);
  2652. assert(QK8_0 == QK5_0);
  2653. const block_q5_0 * restrict x = vx;
  2654. const block_q8_0 * restrict y = vy;
  2655. #if defined(__ARM_NEON)
  2656. float32x4_t sumv = vdupq_n_f32(0.0f);
  2657. uint64_t tmp[4];
  2658. for (int i = 0; i < nb; ++i) {
  2659. const block_q5_0 * restrict x0 = &x[i];
  2660. const block_q8_0 * restrict y0 = &y[i];
  2661. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2662. const int8x16_t s16b = vdupq_n_s8(0x10);
  2663. // extract the 5th bit
  2664. uint32_t qh;
  2665. memcpy(&qh, x0->qh, sizeof(qh));
  2666. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2667. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2668. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2669. tmp[3] = table_b2b_u[(qh >> 24) ];
  2670. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2671. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2672. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2673. // 4-bit -> 8-bit
  2674. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2675. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2676. // interleave
  2677. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2678. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2679. // add high bit and sub 16
  2680. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2681. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2682. // load y
  2683. const int8x16_t v1l = vld1q_s8(y0->qs);
  2684. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2685. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2686. #if defined(__ARM_FEATURE_DOTPROD)
  2687. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2688. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2689. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2690. #else
  2691. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2692. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2693. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2694. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2695. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2696. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2697. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2698. #endif
  2699. }
  2700. *s = vaddvq_f32(sumv);
  2701. #elif defined(__AVX2__)
  2702. // Initialize accumulator with zeros
  2703. __m256 acc = _mm256_setzero_ps();
  2704. // Main loop
  2705. for (int i = 0; i < nb; i++) {
  2706. /* Compute combined scale for the block */
  2707. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2708. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2709. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2710. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2711. bx = _mm256_or_si256(bx, bxhi);
  2712. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2713. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2714. /* Multiply q with scale and accumulate */
  2715. acc = _mm256_fmadd_ps(d, q, acc);
  2716. }
  2717. *s = hsum_float_8(acc);
  2718. #else
  2719. // scalar
  2720. float sumf = 0.0;
  2721. for (int i = 0; i < nb; i++) {
  2722. const uint8_t * restrict x0 = x[i].qs;
  2723. const int8_t * restrict y0 = y[i].qs;
  2724. uint32_t qh;
  2725. memcpy(&qh, x[i].qh, sizeof(qh));
  2726. const float d = GGML_FP16_TO_FP32(x[i].d);
  2727. int sxy = 0;
  2728. for (int j = 0; j < QK8_0/2; j++) {
  2729. const uint8_t v0 = x0[j];
  2730. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2731. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2732. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2733. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2734. const int y0_0 = y0[2*j + 0];
  2735. const int y1_0 = y0[2*j + 1];
  2736. sxy += x0_0*y0_0 + x1_0*y1_0;
  2737. }
  2738. sumf += (d*sxy)*y[i].d;
  2739. }
  2740. *s = sumf;
  2741. #endif
  2742. }
  2743. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2744. const int nb = n / QK8_1;
  2745. assert(n % QK8_1 == 0);
  2746. assert(nb % 2 == 0);
  2747. assert(QK8_1 == QK5_1);
  2748. const block_q5_1 * restrict x = vx;
  2749. const block_q8_1 * restrict y = vy;
  2750. #if defined(__ARM_NEON)
  2751. float32x4_t sumv = vdupq_n_f32(0.0f);
  2752. float summs = 0.0f;
  2753. uint64_t tmp[4];
  2754. for (int i = 0; i < nb; ++i) {
  2755. const block_q5_1 * restrict x0 = &x[i];
  2756. const block_q8_1 * restrict y0 = &y[i];
  2757. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2758. // extract the 5th bit
  2759. uint32_t qh;
  2760. memcpy(&qh, x0->qh, sizeof(qh));
  2761. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2762. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2763. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2764. tmp[3] = table_b2b_u[(qh >> 24) ];
  2765. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2766. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2767. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2768. // 4-bit -> 8-bit
  2769. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2770. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2771. // interleave
  2772. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2773. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2774. // add
  2775. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2776. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2777. // load y
  2778. const int8x16_t v1l = vld1q_s8(y0->qs);
  2779. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2780. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2781. #if defined(__ARM_FEATURE_DOTPROD)
  2782. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2783. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2784. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2785. #else
  2786. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2787. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2788. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2789. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2790. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2791. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2792. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2793. #endif
  2794. }
  2795. *s = vaddvq_f32(sumv) + summs;
  2796. #elif defined(__AVX2__)
  2797. // Initialize accumulator with zeros
  2798. __m256 acc = _mm256_setzero_ps();
  2799. float summs = 0.0f;
  2800. // Main loop
  2801. for (int i = 0; i < nb; i++) {
  2802. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2803. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2804. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2805. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2806. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2807. bx = _mm256_or_si256(bx, bxhi);
  2808. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2809. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2810. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2811. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2812. }
  2813. *s = hsum_float_8(acc) + summs;
  2814. #else
  2815. float sumf = 0.0;
  2816. for (int i = 0; i < nb; i++) {
  2817. const uint8_t * restrict x0 = x[i].qs;
  2818. const int8_t * restrict y0 = y[i].qs;
  2819. uint32_t qh;
  2820. memcpy(&qh, x[i].qh, sizeof(qh));
  2821. const float d = GGML_FP16_TO_FP32(x[i].d);
  2822. const float m = GGML_FP16_TO_FP32(x[i].m);
  2823. int sxy = 0;
  2824. for (int j = 0; j < QK8_1/2; j++) {
  2825. const uint8_t v0 = x0[j];
  2826. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2827. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2828. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2829. const int x1_0 = (v0 >> 4) | x1_0h;
  2830. const int y0_0 = y0[2*j + 0];
  2831. const int y1_0 = y0[2*j + 1];
  2832. sxy += x0_0*y0_0 + x1_0*y1_0;
  2833. }
  2834. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2835. }
  2836. *s = sumf;
  2837. #endif
  2838. }
  2839. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2840. const int nb = n / QK8_0;
  2841. assert(n % QK8_0 == 0);
  2842. assert(nb % 2 == 0);
  2843. assert(QK8_0 == QK8_0);
  2844. const block_q8_0 * restrict x = vx;
  2845. const block_q8_0 * restrict y = vy;
  2846. #if defined(__ARM_NEON)
  2847. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2848. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2849. for (int i = 0; i < nb; i += 2) {
  2850. const block_q8_0 * restrict x0 = &x[i + 0];
  2851. const block_q8_0 * restrict x1 = &x[i + 1];
  2852. const block_q8_0 * restrict y0 = &y[i + 0];
  2853. const block_q8_0 * restrict y1 = &y[i + 1];
  2854. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2855. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2856. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2857. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2858. // load y
  2859. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2860. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2861. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2862. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2863. #if defined(__ARM_FEATURE_DOTPROD)
  2864. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2865. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2866. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2867. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2868. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2869. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2870. #else
  2871. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2872. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2873. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2874. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2875. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2876. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2877. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2878. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2879. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2880. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2881. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2882. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2883. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2884. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2885. #endif
  2886. }
  2887. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2888. #else
  2889. // scalar
  2890. float sumf = 0.0;
  2891. for (int i = 0; i < nb; i++) {
  2892. const int8_t * restrict x0 = x[i].qs;
  2893. const int8_t * restrict y0 = y[i].qs;
  2894. int sumi = 0;
  2895. for (int j = 0; j < QK8_0; j++) {
  2896. const int v0 = x0[j];
  2897. const int v1 = y0[j];
  2898. sumi += v0*v1;
  2899. }
  2900. sumf += (x[i].d*y[i].d)*sumi;
  2901. }
  2902. *s = sumf;
  2903. #endif
  2904. }
  2905. // compute GGML_VEC_DOT_UNROLL dot products at once
  2906. // xs - x row stride in bytes
  2907. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2908. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2909. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2910. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2911. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2912. }
  2913. #if defined(GGML_SIMD)
  2914. const int np = (n & ~(GGML_F16_STEP - 1));
  2915. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2916. GGML_F16_VEC ax[GGML_F16_ARR];
  2917. GGML_F16_VEC ay[GGML_F16_ARR];
  2918. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2919. for (int j = 0; j < GGML_F16_ARR; j++) {
  2920. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2921. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2922. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2923. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2924. }
  2925. }
  2926. }
  2927. // reduce sum0..sum3 to sum0
  2928. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2929. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2930. }
  2931. // leftovers
  2932. for (int i = np; i < n; ++i) {
  2933. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2934. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2935. }
  2936. }
  2937. #else
  2938. for (int i = 0; i < n; ++i) {
  2939. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2940. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2941. }
  2942. }
  2943. #endif
  2944. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2945. s[i] = sumf[i];
  2946. }
  2947. }
  2948. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2949. #if defined(GGML_SIMD)
  2950. const int np = (n & ~(GGML_F32_STEP - 1));
  2951. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2952. GGML_F32_VEC ax[GGML_F32_ARR];
  2953. GGML_F32_VEC ay[GGML_F32_ARR];
  2954. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2955. for (int j = 0; j < GGML_F32_ARR; j++) {
  2956. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2957. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2958. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2959. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2960. }
  2961. }
  2962. // leftovers
  2963. for (int i = np; i < n; ++i) {
  2964. y[i] += x[i]*v;
  2965. }
  2966. #else
  2967. // scalar
  2968. for (int i = 0; i < n; ++i) {
  2969. y[i] += x[i]*v;
  2970. }
  2971. #endif
  2972. }
  2973. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2974. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2975. #if defined(GGML_SIMD)
  2976. const int np = (n & ~(GGML_F32_STEP - 1));
  2977. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2978. GGML_F32_VEC ay[GGML_F32_ARR];
  2979. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2980. for (int j = 0; j < GGML_F32_ARR; j++) {
  2981. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2982. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2983. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2984. }
  2985. }
  2986. // leftovers
  2987. for (int i = np; i < n; ++i) {
  2988. y[i] *= v;
  2989. }
  2990. #else
  2991. // scalar
  2992. for (int i = 0; i < n; ++i) {
  2993. y[i] *= v;
  2994. }
  2995. #endif
  2996. }
  2997. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2998. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2999. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3000. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3001. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3002. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3003. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3004. static const float GELU_COEF_A = 0.044715f;
  3005. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3006. inline static float ggml_gelu_f32(float x) {
  3007. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3008. }
  3009. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3010. const uint16_t * i16 = (const uint16_t *) x;
  3011. for (int i = 0; i < n; ++i) {
  3012. y[i] = table_gelu_f16[i16[i]];
  3013. }
  3014. }
  3015. #ifdef GGML_GELU_FP16
  3016. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3017. uint16_t t;
  3018. for (int i = 0; i < n; ++i) {
  3019. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3020. memcpy(&t, &fp16, sizeof(uint16_t));
  3021. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3022. }
  3023. }
  3024. #else
  3025. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3026. for (int i = 0; i < n; ++i) {
  3027. y[i] = ggml_gelu_f32(x[i]);
  3028. }
  3029. }
  3030. #endif
  3031. // Sigmoid Linear Unit (SiLU) function
  3032. inline static float ggml_silu_f32(float x) {
  3033. return x/(1.0f + expf(-x));
  3034. }
  3035. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3036. const uint16_t * i16 = (const uint16_t *) x;
  3037. for (int i = 0; i < n; ++i) {
  3038. y[i] = table_silu_f16[i16[i]];
  3039. }
  3040. }
  3041. #ifdef GGML_SILU_FP16
  3042. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3043. uint16_t t;
  3044. for (int i = 0; i < n; ++i) {
  3045. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3046. memcpy(&t, &fp16, sizeof(uint16_t));
  3047. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3048. }
  3049. }
  3050. #else
  3051. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3052. for (int i = 0; i < n; ++i) {
  3053. y[i] = ggml_silu_f32(x[i]);
  3054. }
  3055. }
  3056. #endif
  3057. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3058. #ifndef GGML_USE_ACCELERATE
  3059. ggml_float sum = 0.0;
  3060. for (int i = 0; i < n; ++i) {
  3061. sum += (ggml_float)x[i];
  3062. }
  3063. *s = sum;
  3064. #else
  3065. vDSP_sve(x, 1, s, n);
  3066. #endif
  3067. }
  3068. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3069. ggml_float sum = 0.0;
  3070. for (int i = 0; i < n; ++i) {
  3071. sum += (ggml_float)x[i];
  3072. }
  3073. *s = sum;
  3074. }
  3075. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3076. #ifndef GGML_USE_ACCELERATE
  3077. float max = -INFINITY;
  3078. for (int i = 0; i < n; ++i) {
  3079. max = MAX(max, x[i]);
  3080. }
  3081. *s = max;
  3082. #else
  3083. vDSP_maxv(x, 1, s, n);
  3084. #endif
  3085. }
  3086. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3087. ggml_vec_norm_f32(n, s, x);
  3088. *s = 1.f/(*s);
  3089. }
  3090. //
  3091. // logging
  3092. //
  3093. #if (GGML_DEBUG >= 1)
  3094. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3095. #else
  3096. #define GGML_PRINT_DEBUG(...)
  3097. #endif
  3098. #if (GGML_DEBUG >= 5)
  3099. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3100. #else
  3101. #define GGML_PRINT_DEBUG_5(...)
  3102. #endif
  3103. #if (GGML_DEBUG >= 10)
  3104. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3105. #else
  3106. #define GGML_PRINT_DEBUG_10(...)
  3107. #endif
  3108. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3109. //
  3110. // data types
  3111. //
  3112. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3113. [GGML_TYPE_F32] = 1,
  3114. [GGML_TYPE_F16] = 1,
  3115. [GGML_TYPE_Q4_0] = QK4_0,
  3116. [GGML_TYPE_Q4_1] = QK4_1,
  3117. [GGML_TYPE_Q4_2] = QK4_2,
  3118. [GGML_TYPE_Q4_3] = QK4_3,
  3119. [GGML_TYPE_Q5_0] = QK5_0,
  3120. [GGML_TYPE_Q5_1] = QK5_1,
  3121. [GGML_TYPE_Q8_0] = QK8_0,
  3122. [GGML_TYPE_Q8_1] = QK8_1,
  3123. [GGML_TYPE_I8] = 1,
  3124. [GGML_TYPE_I16] = 1,
  3125. [GGML_TYPE_I32] = 1,
  3126. };
  3127. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3128. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3129. [GGML_TYPE_F32] = sizeof(float),
  3130. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3131. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3132. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3133. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3134. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  3135. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3136. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3137. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3138. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3139. [GGML_TYPE_I8] = sizeof(int8_t),
  3140. [GGML_TYPE_I16] = sizeof(int16_t),
  3141. [GGML_TYPE_I32] = sizeof(int32_t),
  3142. };
  3143. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3144. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3145. [GGML_TYPE_F32] = "f32",
  3146. [GGML_TYPE_F16] = "f16",
  3147. [GGML_TYPE_Q4_0] = "q4_0",
  3148. [GGML_TYPE_Q4_1] = "q4_1",
  3149. [GGML_TYPE_Q4_2] = "q4_2",
  3150. [GGML_TYPE_Q4_3] = "q4_3",
  3151. [GGML_TYPE_Q5_0] = "q5_0",
  3152. [GGML_TYPE_Q5_1] = "q5_1",
  3153. [GGML_TYPE_Q8_0] = "q8_0",
  3154. [GGML_TYPE_Q8_1] = "q8_1",
  3155. [GGML_TYPE_I8] = "i8",
  3156. [GGML_TYPE_I16] = "i16",
  3157. [GGML_TYPE_I32] = "i32",
  3158. };
  3159. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3160. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3161. [GGML_TYPE_F32] = false,
  3162. [GGML_TYPE_F16] = false,
  3163. [GGML_TYPE_Q4_0] = true,
  3164. [GGML_TYPE_Q4_1] = true,
  3165. [GGML_TYPE_Q4_2] = true,
  3166. [GGML_TYPE_Q4_3] = true,
  3167. [GGML_TYPE_Q5_0] = true,
  3168. [GGML_TYPE_Q5_1] = true,
  3169. [GGML_TYPE_Q8_0] = true,
  3170. [GGML_TYPE_Q8_1] = true,
  3171. [GGML_TYPE_I8] = false,
  3172. [GGML_TYPE_I16] = false,
  3173. [GGML_TYPE_I32] = false,
  3174. };
  3175. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3176. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3177. "NONE",
  3178. "DUP",
  3179. "ADD",
  3180. "SUB",
  3181. "MUL",
  3182. "DIV",
  3183. "SQR",
  3184. "SQRT",
  3185. "SUM",
  3186. "MEAN",
  3187. "REPEAT",
  3188. "ABS",
  3189. "SGN",
  3190. "NEG",
  3191. "STEP",
  3192. "RELU",
  3193. "GELU",
  3194. "SILU",
  3195. "NORM",
  3196. "RMS_NORM",
  3197. "MUL_MAT",
  3198. "SCALE",
  3199. "CPY",
  3200. "CONT",
  3201. "RESHAPE",
  3202. "VIEW",
  3203. "PERMUTE",
  3204. "TRANSPOSE",
  3205. "GET_ROWS",
  3206. "DIAG_MASK_INF",
  3207. "SOFT_MAX",
  3208. "ROPE",
  3209. "CONV_1D_1S",
  3210. "CONV_1D_2S",
  3211. "FLASH_ATTN",
  3212. "FLASH_FF",
  3213. "MAP_UNARY",
  3214. "MAP_BINARY",
  3215. };
  3216. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3217. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3218. "none",
  3219. "x",
  3220. "x+y",
  3221. "x-y",
  3222. "x*y",
  3223. "x/y",
  3224. "x^2",
  3225. "√x",
  3226. "Σx",
  3227. "Σx/n",
  3228. "repeat(x)",
  3229. "abs(x)",
  3230. "sgn(x)",
  3231. "-x",
  3232. "step(x)",
  3233. "relu(x)",
  3234. "gelu(x)",
  3235. "silu(x)",
  3236. "norm(x)",
  3237. "rms_norm(x)",
  3238. "X*Y",
  3239. "x*v",
  3240. "x-\\>y",
  3241. "cont(x)",
  3242. "reshape(x)",
  3243. "view(x)",
  3244. "permute(x)",
  3245. "transpose(x)",
  3246. "get_rows(x)",
  3247. "diag_mask_inf(x)",
  3248. "soft_max(x)",
  3249. "rope(x)",
  3250. "conv_1d_1s(x)",
  3251. "conv_1d_2s(x)",
  3252. "flash_attn(x)",
  3253. "flash_ff(x)",
  3254. "f(x)",
  3255. "f(x,y)",
  3256. };
  3257. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3258. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3259. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3260. //
  3261. // ggml context
  3262. //
  3263. struct ggml_context {
  3264. size_t mem_size;
  3265. void * mem_buffer;
  3266. bool mem_buffer_owned;
  3267. bool no_alloc;
  3268. int n_objects;
  3269. struct ggml_object * objects_begin;
  3270. struct ggml_object * objects_end;
  3271. struct ggml_scratch scratch;
  3272. struct ggml_scratch scratch_save;
  3273. };
  3274. struct ggml_context_container {
  3275. bool used;
  3276. struct ggml_context context;
  3277. };
  3278. //
  3279. // compute types
  3280. //
  3281. enum ggml_task_type {
  3282. GGML_TASK_INIT = 0,
  3283. GGML_TASK_COMPUTE,
  3284. GGML_TASK_FINALIZE,
  3285. };
  3286. struct ggml_compute_params {
  3287. enum ggml_task_type type;
  3288. int ith, nth;
  3289. // work buffer for all threads
  3290. size_t wsize;
  3291. void * wdata;
  3292. };
  3293. //
  3294. // ggml state
  3295. //
  3296. struct ggml_state {
  3297. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3298. };
  3299. // global state
  3300. static struct ggml_state g_state;
  3301. static atomic_int g_state_barrier = 0;
  3302. // barrier via spin lock
  3303. inline static void ggml_critical_section_start(void) {
  3304. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3305. while (processing > 0) {
  3306. // wait for other threads to finish
  3307. atomic_fetch_sub(&g_state_barrier, 1);
  3308. sched_yield(); // TODO: reconsider this
  3309. processing = atomic_fetch_add(&g_state_barrier, 1);
  3310. }
  3311. }
  3312. // TODO: make this somehow automatically executed
  3313. // some sort of "sentry" mechanism
  3314. inline static void ggml_critical_section_end(void) {
  3315. atomic_fetch_sub(&g_state_barrier, 1);
  3316. }
  3317. ////////////////////////////////////////////////////////////////////////////////
  3318. void ggml_print_object(const struct ggml_object * obj) {
  3319. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3320. obj->offs, obj->size, (const void *) obj->next);
  3321. }
  3322. void ggml_print_objects(const struct ggml_context * ctx) {
  3323. struct ggml_object * obj = ctx->objects_begin;
  3324. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3325. while (obj != NULL) {
  3326. ggml_print_object(obj);
  3327. obj = obj->next;
  3328. }
  3329. GGML_PRINT("%s: --- end ---\n", __func__);
  3330. }
  3331. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3332. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3333. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3334. }
  3335. int ggml_nrows(const struct ggml_tensor * tensor) {
  3336. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3337. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3338. }
  3339. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3340. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3341. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3342. }
  3343. int ggml_blck_size(enum ggml_type type) {
  3344. return GGML_BLCK_SIZE[type];
  3345. }
  3346. size_t ggml_type_size(enum ggml_type type) {
  3347. return GGML_TYPE_SIZE[type];
  3348. }
  3349. float ggml_type_sizef(enum ggml_type type) {
  3350. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3351. }
  3352. const char * ggml_type_name(enum ggml_type type) {
  3353. return GGML_TYPE_NAME[type];
  3354. }
  3355. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3356. return GGML_TYPE_SIZE[tensor->type];
  3357. }
  3358. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3359. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3360. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3361. }
  3362. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3363. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3364. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3365. }
  3366. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3367. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3368. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3369. }
  3370. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3371. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3372. return
  3373. (t0->ne[0] == t1->ne[0]) &&
  3374. (t0->ne[2] == t1->ne[2]) &&
  3375. (t0->ne[3] == t1->ne[3]);
  3376. }
  3377. bool ggml_is_quantized(enum ggml_type type) {
  3378. return GGML_IS_QUANTIZED[type];
  3379. }
  3380. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3381. return tensor->nb[0] > tensor->nb[1];
  3382. }
  3383. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3384. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3385. return
  3386. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3387. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3388. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3389. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3390. }
  3391. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3392. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3393. return
  3394. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3395. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3396. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3397. }
  3398. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3399. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3400. return
  3401. (t0->ne[0] == t1->ne[0] ) &&
  3402. (t0->ne[1] == t1->ne[1] ) &&
  3403. (t0->ne[2] == t1->ne[2] ) &&
  3404. (t0->ne[3] == t1->ne[3] );
  3405. }
  3406. // check if t1 can be represented as a repeatition of t0
  3407. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return
  3410. (t1->ne[0]%t0->ne[0] == 0) &&
  3411. (t1->ne[1]%t0->ne[1] == 0) &&
  3412. (t1->ne[2]%t0->ne[2] == 0) &&
  3413. (t1->ne[3]%t0->ne[3] == 0);
  3414. }
  3415. static inline int ggml_up32(int n) {
  3416. return (n + 31) & ~31;
  3417. }
  3418. static inline int ggml_up64(int n) {
  3419. return (n + 63) & ~63;
  3420. }
  3421. static inline int ggml_up(int n, int m) {
  3422. // assert m is a power of 2
  3423. GGML_ASSERT((m & (m - 1)) == 0);
  3424. return (n + m - 1) & ~(m - 1);
  3425. }
  3426. // assert that pointer is aligned to GGML_MEM_ALIGN
  3427. #define ggml_assert_aligned(ptr) \
  3428. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3429. ////////////////////////////////////////////////////////////////////////////////
  3430. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3431. // make this function thread safe
  3432. ggml_critical_section_start();
  3433. static bool is_first_call = true;
  3434. if (is_first_call) {
  3435. // initialize time system (required on Windows)
  3436. ggml_time_init();
  3437. // initialize GELU, SILU and EXP F32 tables
  3438. {
  3439. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3440. ggml_fp16_t ii;
  3441. for (int i = 0; i < (1 << 16); ++i) {
  3442. uint16_t ui = i;
  3443. memcpy(&ii, &ui, sizeof(ii));
  3444. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3445. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3446. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3447. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3448. }
  3449. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3450. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3451. }
  3452. // initialize g_state
  3453. {
  3454. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3455. g_state = (struct ggml_state) {
  3456. /*.contexts =*/ { { 0 } },
  3457. };
  3458. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3459. g_state.contexts[i].used = false;
  3460. }
  3461. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3462. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3463. }
  3464. // initialize cuBLAS
  3465. #if defined(GGML_USE_CUBLAS)
  3466. ggml_init_cublas();
  3467. #endif
  3468. is_first_call = false;
  3469. }
  3470. // find non-used context in g_state
  3471. struct ggml_context * ctx = NULL;
  3472. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3473. if (!g_state.contexts[i].used) {
  3474. g_state.contexts[i].used = true;
  3475. ctx = &g_state.contexts[i].context;
  3476. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3477. break;
  3478. }
  3479. }
  3480. if (ctx == NULL) {
  3481. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3482. ggml_critical_section_end();
  3483. return NULL;
  3484. }
  3485. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3486. *ctx = (struct ggml_context) {
  3487. /*.mem_size =*/ mem_size,
  3488. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3489. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3490. /*.no_alloc =*/ params.no_alloc,
  3491. /*.n_objects =*/ 0,
  3492. /*.objects_begin =*/ NULL,
  3493. /*.objects_end =*/ NULL,
  3494. /*.scratch =*/ { 0, 0, NULL, },
  3495. /*.scratch_save =*/ { 0, 0, NULL, },
  3496. };
  3497. GGML_ASSERT(ctx->mem_buffer != NULL);
  3498. ggml_assert_aligned(ctx->mem_buffer);
  3499. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3500. ggml_critical_section_end();
  3501. return ctx;
  3502. }
  3503. void ggml_free(struct ggml_context * ctx) {
  3504. // make this function thread safe
  3505. ggml_critical_section_start();
  3506. bool found = false;
  3507. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3508. if (&g_state.contexts[i].context == ctx) {
  3509. g_state.contexts[i].used = false;
  3510. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3511. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3512. if (ctx->mem_buffer_owned) {
  3513. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3514. }
  3515. found = true;
  3516. break;
  3517. }
  3518. }
  3519. if (!found) {
  3520. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3521. }
  3522. ggml_critical_section_end();
  3523. }
  3524. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3525. return ctx->objects_end->offs + ctx->objects_end->size;
  3526. }
  3527. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3528. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3529. ctx->scratch = scratch;
  3530. return result;
  3531. }
  3532. ////////////////////////////////////////////////////////////////////////////////
  3533. struct ggml_tensor * ggml_new_tensor_impl(
  3534. struct ggml_context * ctx,
  3535. enum ggml_type type,
  3536. int n_dims,
  3537. const int64_t* ne,
  3538. void* data) {
  3539. // always insert objects at the end of the context's memory pool
  3540. struct ggml_object * obj_cur = ctx->objects_end;
  3541. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3542. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3543. const size_t cur_end = cur_offs + cur_size;
  3544. size_t size_needed = 0;
  3545. if (data == NULL && !ctx->no_alloc) {
  3546. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3547. for (int i = 1; i < n_dims; i++) {
  3548. size_needed *= ne[i];
  3549. }
  3550. // align to GGML_MEM_ALIGN
  3551. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3552. }
  3553. char * const mem_buffer = ctx->mem_buffer;
  3554. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3555. if (ctx->scratch.data == NULL || data != NULL) {
  3556. size_needed += sizeof(struct ggml_tensor);
  3557. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3558. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3559. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3560. assert(false);
  3561. return NULL;
  3562. }
  3563. *obj_new = (struct ggml_object) {
  3564. .offs = cur_end + GGML_OBJECT_SIZE,
  3565. .size = size_needed,
  3566. .next = NULL,
  3567. };
  3568. } else {
  3569. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3570. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3571. assert(false);
  3572. return NULL;
  3573. }
  3574. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3575. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3576. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3577. assert(false);
  3578. return NULL;
  3579. }
  3580. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3581. *obj_new = (struct ggml_object) {
  3582. .offs = cur_end + GGML_OBJECT_SIZE,
  3583. .size = sizeof(struct ggml_tensor),
  3584. .next = NULL,
  3585. };
  3586. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3587. ctx->scratch.offs += size_needed;
  3588. }
  3589. if (obj_cur != NULL) {
  3590. obj_cur->next = obj_new;
  3591. } else {
  3592. // this is the first object in this context
  3593. ctx->objects_begin = obj_new;
  3594. }
  3595. ctx->objects_end = obj_new;
  3596. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3597. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3598. ggml_assert_aligned(result);
  3599. *result = (struct ggml_tensor) {
  3600. /*.type =*/ type,
  3601. /*.n_dims =*/ n_dims,
  3602. /*.ne =*/ { 1, 1, 1, 1 },
  3603. /*.nb =*/ { 0, 0, 0, 0 },
  3604. /*.op =*/ GGML_OP_NONE,
  3605. /*.is_param =*/ false,
  3606. /*.grad =*/ NULL,
  3607. /*.src0 =*/ NULL,
  3608. /*.src1 =*/ NULL,
  3609. /*.opt =*/ { NULL },
  3610. /*.n_tasks =*/ 0,
  3611. /*.perf_runs =*/ 0,
  3612. /*.perf_cycles =*/ 0,
  3613. /*.perf_time_us =*/ 0,
  3614. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3615. /*.pad =*/ { 0 },
  3616. };
  3617. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3618. //ggml_assert_aligned(result->data);
  3619. for (int i = 0; i < n_dims; i++) {
  3620. result->ne[i] = ne[i];
  3621. }
  3622. result->nb[0] = GGML_TYPE_SIZE[type];
  3623. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3624. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3625. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3626. }
  3627. ctx->n_objects++;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_new_tensor(
  3631. struct ggml_context * ctx,
  3632. enum ggml_type type,
  3633. int n_dims,
  3634. const int64_t * ne) {
  3635. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3636. }
  3637. struct ggml_tensor * ggml_new_tensor_1d(
  3638. struct ggml_context * ctx,
  3639. enum ggml_type type,
  3640. int64_t ne0) {
  3641. return ggml_new_tensor(ctx, type, 1, &ne0);
  3642. }
  3643. struct ggml_tensor * ggml_new_tensor_2d(
  3644. struct ggml_context * ctx,
  3645. enum ggml_type type,
  3646. int64_t ne0,
  3647. int64_t ne1) {
  3648. const int64_t ne[2] = { ne0, ne1 };
  3649. return ggml_new_tensor(ctx, type, 2, ne);
  3650. }
  3651. struct ggml_tensor * ggml_new_tensor_3d(
  3652. struct ggml_context * ctx,
  3653. enum ggml_type type,
  3654. int64_t ne0,
  3655. int64_t ne1,
  3656. int64_t ne2) {
  3657. const int64_t ne[3] = { ne0, ne1, ne2 };
  3658. return ggml_new_tensor(ctx, type, 3, ne);
  3659. }
  3660. struct ggml_tensor * ggml_new_tensor_4d(
  3661. struct ggml_context * ctx,
  3662. enum ggml_type type,
  3663. int64_t ne0,
  3664. int64_t ne1,
  3665. int64_t ne2,
  3666. int64_t ne3) {
  3667. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3668. return ggml_new_tensor(ctx, type, 4, ne);
  3669. }
  3670. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3671. ctx->scratch_save = ctx->scratch;
  3672. ctx->scratch.data = NULL;
  3673. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3674. ctx->scratch = ctx->scratch_save;
  3675. ggml_set_i32(result, value);
  3676. return result;
  3677. }
  3678. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3679. ctx->scratch_save = ctx->scratch;
  3680. ctx->scratch.data = NULL;
  3681. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3682. ctx->scratch = ctx->scratch_save;
  3683. ggml_set_f32(result, value);
  3684. return result;
  3685. }
  3686. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3687. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3688. }
  3689. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3690. memset(tensor->data, 0, ggml_nbytes(tensor));
  3691. return tensor;
  3692. }
  3693. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3694. const int n = ggml_nrows(tensor);
  3695. const int nc = tensor->ne[0];
  3696. const size_t n1 = tensor->nb[1];
  3697. char * const data = tensor->data;
  3698. switch (tensor->type) {
  3699. case GGML_TYPE_I8:
  3700. {
  3701. assert(tensor->nb[0] == sizeof(int8_t));
  3702. for (int i = 0; i < n; i++) {
  3703. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3704. }
  3705. } break;
  3706. case GGML_TYPE_I16:
  3707. {
  3708. assert(tensor->nb[0] == sizeof(int16_t));
  3709. for (int i = 0; i < n; i++) {
  3710. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3711. }
  3712. } break;
  3713. case GGML_TYPE_I32:
  3714. {
  3715. assert(tensor->nb[0] == sizeof(int32_t));
  3716. for (int i = 0; i < n; i++) {
  3717. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3718. }
  3719. } break;
  3720. case GGML_TYPE_F16:
  3721. {
  3722. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3723. for (int i = 0; i < n; i++) {
  3724. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3725. }
  3726. } break;
  3727. case GGML_TYPE_F32:
  3728. {
  3729. assert(tensor->nb[0] == sizeof(float));
  3730. for (int i = 0; i < n; i++) {
  3731. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3732. }
  3733. } break;
  3734. default:
  3735. {
  3736. GGML_ASSERT(false);
  3737. } break;
  3738. }
  3739. return tensor;
  3740. }
  3741. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3742. const int n = ggml_nrows(tensor);
  3743. const int nc = tensor->ne[0];
  3744. const size_t n1 = tensor->nb[1];
  3745. char * const data = tensor->data;
  3746. switch (tensor->type) {
  3747. case GGML_TYPE_I8:
  3748. {
  3749. assert(tensor->nb[0] == sizeof(int8_t));
  3750. for (int i = 0; i < n; i++) {
  3751. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3752. }
  3753. } break;
  3754. case GGML_TYPE_I16:
  3755. {
  3756. assert(tensor->nb[0] == sizeof(int16_t));
  3757. for (int i = 0; i < n; i++) {
  3758. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3759. }
  3760. } break;
  3761. case GGML_TYPE_I32:
  3762. {
  3763. assert(tensor->nb[0] == sizeof(int32_t));
  3764. for (int i = 0; i < n; i++) {
  3765. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3766. }
  3767. } break;
  3768. case GGML_TYPE_F16:
  3769. {
  3770. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3771. for (int i = 0; i < n; i++) {
  3772. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3773. }
  3774. } break;
  3775. case GGML_TYPE_F32:
  3776. {
  3777. assert(tensor->nb[0] == sizeof(float));
  3778. for (int i = 0; i < n; i++) {
  3779. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3780. }
  3781. } break;
  3782. default:
  3783. {
  3784. GGML_ASSERT(false);
  3785. } break;
  3786. }
  3787. return tensor;
  3788. }
  3789. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3790. switch (tensor->type) {
  3791. case GGML_TYPE_I8:
  3792. {
  3793. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3794. return ((int8_t *)(tensor->data))[i];
  3795. } break;
  3796. case GGML_TYPE_I16:
  3797. {
  3798. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3799. return ((int16_t *)(tensor->data))[i];
  3800. } break;
  3801. case GGML_TYPE_I32:
  3802. {
  3803. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3804. return ((int32_t *)(tensor->data))[i];
  3805. } break;
  3806. case GGML_TYPE_F16:
  3807. {
  3808. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3809. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3810. } break;
  3811. case GGML_TYPE_F32:
  3812. {
  3813. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3814. return ((float *)(tensor->data))[i];
  3815. } break;
  3816. default:
  3817. {
  3818. GGML_ASSERT(false);
  3819. } break;
  3820. }
  3821. return 0.0f;
  3822. }
  3823. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3824. switch (tensor->type) {
  3825. case GGML_TYPE_I8:
  3826. {
  3827. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3828. ((int8_t *)(tensor->data))[i] = value;
  3829. } break;
  3830. case GGML_TYPE_I16:
  3831. {
  3832. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3833. ((int16_t *)(tensor->data))[i] = value;
  3834. } break;
  3835. case GGML_TYPE_I32:
  3836. {
  3837. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3838. ((int32_t *)(tensor->data))[i] = value;
  3839. } break;
  3840. case GGML_TYPE_F16:
  3841. {
  3842. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3843. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3844. } break;
  3845. case GGML_TYPE_F32:
  3846. {
  3847. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3848. ((float *)(tensor->data))[i] = value;
  3849. } break;
  3850. default:
  3851. {
  3852. GGML_ASSERT(false);
  3853. } break;
  3854. }
  3855. }
  3856. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3857. switch (tensor->type) {
  3858. case GGML_TYPE_I8:
  3859. {
  3860. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3861. return ((int8_t *)(tensor->data))[i];
  3862. } break;
  3863. case GGML_TYPE_I16:
  3864. {
  3865. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3866. return ((int16_t *)(tensor->data))[i];
  3867. } break;
  3868. case GGML_TYPE_I32:
  3869. {
  3870. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3871. return ((int32_t *)(tensor->data))[i];
  3872. } break;
  3873. case GGML_TYPE_F16:
  3874. {
  3875. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3876. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3877. } break;
  3878. case GGML_TYPE_F32:
  3879. {
  3880. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3881. return ((float *)(tensor->data))[i];
  3882. } break;
  3883. default:
  3884. {
  3885. GGML_ASSERT(false);
  3886. } break;
  3887. }
  3888. return 0.0f;
  3889. }
  3890. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3891. switch (tensor->type) {
  3892. case GGML_TYPE_I8:
  3893. {
  3894. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3895. ((int8_t *)(tensor->data))[i] = value;
  3896. } break;
  3897. case GGML_TYPE_I16:
  3898. {
  3899. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3900. ((int16_t *)(tensor->data))[i] = value;
  3901. } break;
  3902. case GGML_TYPE_I32:
  3903. {
  3904. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3905. ((int32_t *)(tensor->data))[i] = value;
  3906. } break;
  3907. case GGML_TYPE_F16:
  3908. {
  3909. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3910. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3911. } break;
  3912. case GGML_TYPE_F32:
  3913. {
  3914. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3915. ((float *)(tensor->data))[i] = value;
  3916. } break;
  3917. default:
  3918. {
  3919. GGML_ASSERT(false);
  3920. } break;
  3921. }
  3922. }
  3923. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3924. return tensor->data;
  3925. }
  3926. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3927. assert(tensor->type == GGML_TYPE_F32);
  3928. return (float *)(tensor->data);
  3929. }
  3930. struct ggml_tensor * ggml_view_tensor(
  3931. struct ggml_context * ctx,
  3932. const struct ggml_tensor * src) {
  3933. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3934. result->nb[0] = src->nb[0];
  3935. result->nb[1] = src->nb[1];
  3936. result->nb[2] = src->nb[2];
  3937. result->nb[3] = src->nb[3];
  3938. return result;
  3939. }
  3940. ////////////////////////////////////////////////////////////////////////////////
  3941. // ggml_dup
  3942. struct ggml_tensor * ggml_dup_impl(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. bool inplace) {
  3946. bool is_node = false;
  3947. if (!inplace && (a->grad)) {
  3948. is_node = true;
  3949. }
  3950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3951. result->op = GGML_OP_DUP;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src0 = a;
  3954. result->src1 = NULL;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_dup(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. return ggml_dup_impl(ctx, a, false);
  3961. }
  3962. struct ggml_tensor * ggml_dup_inplace(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a) {
  3965. return ggml_dup_impl(ctx, a, true);
  3966. }
  3967. // ggml_add
  3968. struct ggml_tensor * ggml_add_impl(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. struct ggml_tensor * b,
  3972. bool inplace) {
  3973. GGML_ASSERT(ggml_are_same_shape(a, b));
  3974. bool is_node = false;
  3975. if (!inplace && (a->grad || b->grad)) {
  3976. is_node = true;
  3977. }
  3978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3979. result->op = GGML_OP_ADD;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src0 = a;
  3982. result->src1 = b;
  3983. return result;
  3984. }
  3985. struct ggml_tensor * ggml_add(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. struct ggml_tensor * b) {
  3989. return ggml_add_impl(ctx, a, b, false);
  3990. }
  3991. struct ggml_tensor * ggml_add_inplace(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. struct ggml_tensor * b) {
  3995. return ggml_add_impl(ctx, a, b, true);
  3996. }
  3997. // ggml_sub
  3998. struct ggml_tensor * ggml_sub_impl(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a,
  4001. struct ggml_tensor * b,
  4002. bool inplace) {
  4003. GGML_ASSERT(ggml_are_same_shape(a, b));
  4004. bool is_node = false;
  4005. if (!inplace && (a->grad || b->grad)) {
  4006. is_node = true;
  4007. }
  4008. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4009. result->op = GGML_OP_SUB;
  4010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4011. result->src0 = a;
  4012. result->src1 = b;
  4013. return result;
  4014. }
  4015. struct ggml_tensor * ggml_sub(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * b) {
  4019. return ggml_sub_impl(ctx, a, b, false);
  4020. }
  4021. struct ggml_tensor * ggml_sub_inplace(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. struct ggml_tensor * b) {
  4025. return ggml_sub_impl(ctx, a, b, true);
  4026. }
  4027. // ggml_mul
  4028. struct ggml_tensor * ggml_mul_impl(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. struct ggml_tensor * b,
  4032. bool inplace) {
  4033. GGML_ASSERT(ggml_are_same_shape(a, b));
  4034. bool is_node = false;
  4035. if (!inplace && (a->grad || b->grad)) {
  4036. is_node = true;
  4037. }
  4038. if (inplace) {
  4039. GGML_ASSERT(is_node == false);
  4040. }
  4041. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4042. result->op = GGML_OP_MUL;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src0 = a;
  4045. result->src1 = b;
  4046. return result;
  4047. }
  4048. struct ggml_tensor * ggml_mul(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. struct ggml_tensor * b) {
  4052. return ggml_mul_impl(ctx, a, b, false);
  4053. }
  4054. struct ggml_tensor * ggml_mul_inplace(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a,
  4057. struct ggml_tensor * b) {
  4058. return ggml_mul_impl(ctx, a, b, true);
  4059. }
  4060. // ggml_div
  4061. struct ggml_tensor * ggml_div_impl(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. struct ggml_tensor * b,
  4065. bool inplace) {
  4066. GGML_ASSERT(ggml_are_same_shape(a, b));
  4067. bool is_node = false;
  4068. if (!inplace && (a->grad || b->grad)) {
  4069. is_node = true;
  4070. }
  4071. if (inplace) {
  4072. GGML_ASSERT(is_node == false);
  4073. }
  4074. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4075. result->op = GGML_OP_DIV;
  4076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4077. result->src0 = a;
  4078. result->src1 = b;
  4079. return result;
  4080. }
  4081. struct ggml_tensor * ggml_div(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. struct ggml_tensor * b) {
  4085. return ggml_div_impl(ctx, a, b, false);
  4086. }
  4087. struct ggml_tensor * ggml_div_inplace(
  4088. struct ggml_context * ctx,
  4089. struct ggml_tensor * a,
  4090. struct ggml_tensor * b) {
  4091. return ggml_div_impl(ctx, a, b, true);
  4092. }
  4093. // ggml_sqr
  4094. struct ggml_tensor * ggml_sqr_impl(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a,
  4097. bool inplace) {
  4098. bool is_node = false;
  4099. if (!inplace && (a->grad)) {
  4100. is_node = true;
  4101. }
  4102. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4103. result->op = GGML_OP_SQR;
  4104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4105. result->src0 = a;
  4106. result->src1 = NULL;
  4107. return result;
  4108. }
  4109. struct ggml_tensor * ggml_sqr(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a) {
  4112. return ggml_sqr_impl(ctx, a, false);
  4113. }
  4114. struct ggml_tensor * ggml_sqr_inplace(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a) {
  4117. return ggml_sqr_impl(ctx, a, true);
  4118. }
  4119. // ggml_sqrt
  4120. struct ggml_tensor * ggml_sqrt_impl(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a,
  4123. bool inplace) {
  4124. bool is_node = false;
  4125. if (!inplace && (a->grad)) {
  4126. is_node = true;
  4127. }
  4128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4129. result->op = GGML_OP_SQRT;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src0 = a;
  4132. result->src1 = NULL;
  4133. return result;
  4134. }
  4135. struct ggml_tensor * ggml_sqrt(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a) {
  4138. return ggml_sqrt_impl(ctx, a, false);
  4139. }
  4140. struct ggml_tensor * ggml_sqrt_inplace(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a) {
  4143. return ggml_sqrt_impl(ctx, a, true);
  4144. }
  4145. // ggml_sum
  4146. struct ggml_tensor * ggml_sum(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a) {
  4149. bool is_node = false;
  4150. if (a->grad) {
  4151. is_node = true;
  4152. }
  4153. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4154. result->op = GGML_OP_SUM;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src0 = a;
  4157. result->src1 = NULL;
  4158. return result;
  4159. }
  4160. // ggml_mean
  4161. struct ggml_tensor * ggml_mean(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a) {
  4164. bool is_node = false;
  4165. if (a->grad) {
  4166. GGML_ASSERT(false); // TODO: implement
  4167. is_node = true;
  4168. }
  4169. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4170. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4171. result->op = GGML_OP_MEAN;
  4172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4173. result->src0 = a;
  4174. result->src1 = NULL;
  4175. return result;
  4176. }
  4177. // ggml_repeat
  4178. struct ggml_tensor * ggml_repeat(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. struct ggml_tensor * b) {
  4182. GGML_ASSERT(ggml_can_repeat(a, b));
  4183. bool is_node = false;
  4184. if (a->grad) {
  4185. is_node = true;
  4186. }
  4187. if (ggml_are_same_shape(a, b) && !is_node) {
  4188. return a;
  4189. }
  4190. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4191. result->op = GGML_OP_REPEAT;
  4192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4193. result->src0 = a;
  4194. result->src1 = b;
  4195. return result;
  4196. }
  4197. // ggml_abs
  4198. struct ggml_tensor * ggml_abs_impl(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. bool inplace) {
  4202. bool is_node = false;
  4203. if (!inplace && (a->grad)) {
  4204. is_node = true;
  4205. }
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. result->op = GGML_OP_ABS;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src0 = a;
  4210. result->src1 = NULL;
  4211. return result;
  4212. }
  4213. struct ggml_tensor * ggml_abs(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. return ggml_abs_impl(ctx, a, false);
  4217. }
  4218. struct ggml_tensor * ggml_abs_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_abs_impl(ctx, a, true);
  4222. }
  4223. // ggml_sgn
  4224. struct ggml_tensor * ggml_sgn_impl(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. bool inplace) {
  4228. bool is_node = false;
  4229. if (!inplace && (a->grad)) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. result->op = GGML_OP_SGN;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = NULL;
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_sgn(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. return ggml_sgn_impl(ctx, a, false);
  4243. }
  4244. struct ggml_tensor * ggml_sgn_inplace(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_sgn_impl(ctx, a, true);
  4248. }
  4249. // ggml_neg
  4250. struct ggml_tensor * ggml_neg_impl(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. bool inplace) {
  4254. bool is_node = false;
  4255. if (!inplace && (a->grad)) {
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_NEG;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = NULL;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_neg(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_neg_impl(ctx, a, false);
  4269. }
  4270. struct ggml_tensor * ggml_neg_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_neg_impl(ctx, a, true);
  4274. }
  4275. // ggml_step
  4276. struct ggml_tensor * ggml_step_impl(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. bool inplace) {
  4280. bool is_node = false;
  4281. if (!inplace && (a->grad)) {
  4282. is_node = true;
  4283. }
  4284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4285. result->op = GGML_OP_STEP;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src0 = a;
  4288. result->src1 = NULL;
  4289. return result;
  4290. }
  4291. struct ggml_tensor * ggml_step(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_step_impl(ctx, a, false);
  4295. }
  4296. struct ggml_tensor * ggml_step_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a) {
  4299. return ggml_step_impl(ctx, a, true);
  4300. }
  4301. // ggml_relu
  4302. struct ggml_tensor * ggml_relu_impl(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. bool inplace) {
  4306. bool is_node = false;
  4307. if (!inplace && (a->grad)) {
  4308. is_node = true;
  4309. }
  4310. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4311. result->op = GGML_OP_RELU;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src0 = a;
  4314. result->src1 = NULL;
  4315. return result;
  4316. }
  4317. struct ggml_tensor * ggml_relu(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a) {
  4320. return ggml_relu_impl(ctx, a, false);
  4321. }
  4322. struct ggml_tensor * ggml_relu_inplace(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a) {
  4325. return ggml_relu_impl(ctx, a, true);
  4326. }
  4327. // ggml_gelu
  4328. struct ggml_tensor * ggml_gelu_impl(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. bool inplace) {
  4332. bool is_node = false;
  4333. if (!inplace && (a->grad)) {
  4334. is_node = true;
  4335. }
  4336. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. result->op = GGML_OP_GELU;
  4338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4339. result->src0 = a;
  4340. result->src1 = NULL;
  4341. return result;
  4342. }
  4343. struct ggml_tensor * ggml_gelu(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a) {
  4346. return ggml_gelu_impl(ctx, a, false);
  4347. }
  4348. struct ggml_tensor * ggml_gelu_inplace(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a) {
  4351. return ggml_gelu_impl(ctx, a, true);
  4352. }
  4353. // ggml_silu
  4354. struct ggml_tensor * ggml_silu_impl(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. bool inplace) {
  4358. bool is_node = false;
  4359. if (!inplace && (a->grad)) {
  4360. is_node = true;
  4361. }
  4362. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4363. result->op = GGML_OP_SILU;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->src1 = NULL;
  4367. return result;
  4368. }
  4369. struct ggml_tensor * ggml_silu(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a) {
  4372. return ggml_silu_impl(ctx, a, false);
  4373. }
  4374. struct ggml_tensor * ggml_silu_inplace(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a) {
  4377. return ggml_silu_impl(ctx, a, true);
  4378. }
  4379. // ggml_norm
  4380. struct ggml_tensor * ggml_norm_impl(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. bool inplace) {
  4384. bool is_node = false;
  4385. if (!inplace && (a->grad)) {
  4386. GGML_ASSERT(false); // TODO: implement backward
  4387. is_node = true;
  4388. }
  4389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4390. result->op = GGML_OP_NORM;
  4391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4392. result->src0 = a;
  4393. result->src1 = NULL; // TODO: maybe store epsilon here?
  4394. return result;
  4395. }
  4396. struct ggml_tensor * ggml_norm(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a) {
  4399. return ggml_norm_impl(ctx, a, false);
  4400. }
  4401. struct ggml_tensor * ggml_norm_inplace(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_norm_impl(ctx, a, true);
  4405. }
  4406. struct ggml_tensor * ggml_rms_norm_impl(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. bool inplace) {
  4410. bool is_node = false;
  4411. if (!inplace && (a->grad)) {
  4412. GGML_ASSERT(false); // TODO: implement backward
  4413. is_node = true;
  4414. }
  4415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4416. result->op = GGML_OP_RMS_NORM;
  4417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4418. result->src0 = a;
  4419. result->src1 = NULL; // TODO: maybe store epsilon here?
  4420. return result;
  4421. }
  4422. struct ggml_tensor * ggml_rms_norm(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a) {
  4425. return ggml_rms_norm_impl(ctx, a, false);
  4426. }
  4427. struct ggml_tensor * ggml_rms_norm_inplace(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a) {
  4430. return ggml_rms_norm_impl(ctx, a, true);
  4431. }
  4432. // ggml_mul_mat
  4433. struct ggml_tensor * ggml_mul_mat(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b) {
  4437. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4438. GGML_ASSERT(!ggml_is_transposed(a));
  4439. bool is_node = false;
  4440. if (a->grad || b->grad) {
  4441. is_node = true;
  4442. }
  4443. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4444. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4445. result->op = GGML_OP_MUL_MAT;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src0 = a;
  4448. result->src1 = b;
  4449. return result;
  4450. }
  4451. // ggml_scale
  4452. struct ggml_tensor * ggml_scale_impl(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. struct ggml_tensor * b,
  4456. bool inplace) {
  4457. GGML_ASSERT(ggml_is_scalar(b));
  4458. GGML_ASSERT(ggml_is_padded_1d(a));
  4459. bool is_node = false;
  4460. if (!inplace && (a->grad || b->grad)) {
  4461. GGML_ASSERT(false); // TODO: implement backward
  4462. is_node = true;
  4463. }
  4464. // TODO: when implement backward, fix this:
  4465. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4466. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4467. result->op = GGML_OP_SCALE;
  4468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4469. result->src0 = a;
  4470. result->src1 = b;
  4471. return result;
  4472. }
  4473. struct ggml_tensor * ggml_scale(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b) {
  4477. return ggml_scale_impl(ctx, a, b, false);
  4478. }
  4479. struct ggml_tensor * ggml_scale_inplace(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. struct ggml_tensor * b) {
  4483. return ggml_scale_impl(ctx, a, b, true);
  4484. }
  4485. // ggml_cpy
  4486. struct ggml_tensor * ggml_cpy_impl(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b,
  4490. bool inplace) {
  4491. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4492. bool is_node = false;
  4493. if (!inplace && (a->grad || b->grad)) {
  4494. GGML_ASSERT(false); // TODO: implement backward
  4495. is_node = true;
  4496. }
  4497. // make a view of the destination
  4498. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4499. result->op = GGML_OP_CPY;
  4500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4501. result->src0 = a;
  4502. result->src1 = b;
  4503. return result;
  4504. }
  4505. struct ggml_tensor * ggml_cpy(
  4506. struct ggml_context * ctx,
  4507. struct ggml_tensor * a,
  4508. struct ggml_tensor * b) {
  4509. return ggml_cpy_impl(ctx, a, b, false);
  4510. }
  4511. struct ggml_tensor * ggml_cpy_inplace(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b) {
  4515. return ggml_cpy_impl(ctx, a, b, true);
  4516. }
  4517. // ggml_cont
  4518. struct ggml_tensor * ggml_cont_impl(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. bool inplace) {
  4522. bool is_node = false;
  4523. if (!inplace && a->grad) {
  4524. GGML_ASSERT(false); // TODO: implement backward
  4525. is_node = true;
  4526. }
  4527. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4528. result->op = GGML_OP_CONT;
  4529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4530. result->src0 = a;
  4531. result->src1 = NULL;
  4532. return result;
  4533. }
  4534. struct ggml_tensor * ggml_cont(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a) {
  4537. return ggml_cont_impl(ctx, a, false);
  4538. }
  4539. struct ggml_tensor * ggml_cont_inplace(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. return ggml_cont_impl(ctx, a, true);
  4543. }
  4544. // ggml_reshape
  4545. struct ggml_tensor * ggml_reshape(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b) {
  4549. GGML_ASSERT(ggml_is_contiguous(a));
  4550. GGML_ASSERT(ggml_is_contiguous(b));
  4551. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4552. bool is_node = false;
  4553. if (a->grad || b->grad) {
  4554. GGML_ASSERT(false); // TODO: implement backward
  4555. is_node = true;
  4556. }
  4557. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4558. result->op = GGML_OP_RESHAPE;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src0 = a;
  4561. result->src1 = NULL;
  4562. return result;
  4563. }
  4564. struct ggml_tensor * ggml_reshape_2d(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. int64_t ne0,
  4568. int64_t ne1) {
  4569. GGML_ASSERT(ggml_is_contiguous(a));
  4570. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4571. bool is_node = false;
  4572. if (a->grad) {
  4573. GGML_ASSERT(false); // TODO: implement backward
  4574. is_node = true;
  4575. }
  4576. const int64_t ne[2] = { ne0, ne1 };
  4577. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4578. result->op = GGML_OP_RESHAPE;
  4579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4580. result->src0 = a;
  4581. result->src1 = NULL;
  4582. return result;
  4583. }
  4584. struct ggml_tensor * ggml_reshape_3d(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a,
  4587. int64_t ne0,
  4588. int64_t ne1,
  4589. int64_t ne2) {
  4590. GGML_ASSERT(ggml_is_contiguous(a));
  4591. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4592. bool is_node = false;
  4593. if (a->grad) {
  4594. GGML_ASSERT(false); // TODO: implement backward
  4595. is_node = true;
  4596. }
  4597. const int64_t ne[3] = { ne0, ne1, ne2 };
  4598. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4599. result->op = GGML_OP_RESHAPE;
  4600. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4601. result->src0 = a;
  4602. result->src1 = NULL;
  4603. return result;
  4604. }
  4605. // ggml_view_1d
  4606. struct ggml_tensor * ggml_view_1d(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a,
  4609. int64_t ne0,
  4610. size_t offset) {
  4611. if (a->grad) {
  4612. GGML_ASSERT(false); // gradient propagation is not supported
  4613. }
  4614. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4615. result->op = GGML_OP_VIEW;
  4616. result->grad = NULL;
  4617. result->src0 = a;
  4618. result->src1 = NULL; // TODO: maybe store the offset here?
  4619. return result;
  4620. }
  4621. // ggml_view_2d
  4622. struct ggml_tensor * ggml_view_2d(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. int64_t ne0,
  4626. int64_t ne1,
  4627. size_t nb1,
  4628. size_t offset) {
  4629. if (a->grad) {
  4630. GGML_ASSERT(false); // gradient propagation is not supported
  4631. }
  4632. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4633. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4634. result->nb[1] = nb1;
  4635. result->nb[2] = result->nb[1]*ne1;
  4636. result->nb[3] = result->nb[2];
  4637. result->op = GGML_OP_VIEW;
  4638. result->grad = NULL;
  4639. result->src0 = a;
  4640. result->src1 = NULL; // TODO: maybe store the offset here?
  4641. return result;
  4642. }
  4643. // ggml_view_3d
  4644. struct ggml_tensor * ggml_view_3d(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a,
  4647. int64_t ne0,
  4648. int64_t ne1,
  4649. int64_t ne2,
  4650. size_t nb1,
  4651. size_t nb2,
  4652. size_t offset) {
  4653. if (a->grad) {
  4654. GGML_ASSERT(false); // gradient propagation is not supported
  4655. }
  4656. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4657. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4658. result->nb[1] = nb1;
  4659. result->nb[2] = nb2;
  4660. result->nb[3] = result->nb[2]*ne2;
  4661. result->op = GGML_OP_VIEW;
  4662. result->grad = NULL;
  4663. result->src0 = a;
  4664. result->src1 = NULL; // TODO: maybe store the offset here?
  4665. return result;
  4666. }
  4667. // ggml_permute
  4668. struct ggml_tensor * ggml_permute(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. int axis0,
  4672. int axis1,
  4673. int axis2,
  4674. int axis3) {
  4675. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4676. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4677. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4678. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4679. GGML_ASSERT(axis0 != axis1);
  4680. GGML_ASSERT(axis0 != axis2);
  4681. GGML_ASSERT(axis0 != axis3);
  4682. GGML_ASSERT(axis1 != axis2);
  4683. GGML_ASSERT(axis1 != axis3);
  4684. GGML_ASSERT(axis2 != axis3);
  4685. bool is_node = false;
  4686. if (a->grad) {
  4687. GGML_ASSERT(false); // TODO: implement backward
  4688. is_node = true;
  4689. }
  4690. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4691. int ne[GGML_MAX_DIMS];
  4692. int nb[GGML_MAX_DIMS];
  4693. ne[axis0] = a->ne[0];
  4694. ne[axis1] = a->ne[1];
  4695. ne[axis2] = a->ne[2];
  4696. ne[axis3] = a->ne[3];
  4697. nb[axis0] = a->nb[0];
  4698. nb[axis1] = a->nb[1];
  4699. nb[axis2] = a->nb[2];
  4700. nb[axis3] = a->nb[3];
  4701. result->ne[0] = ne[0];
  4702. result->ne[1] = ne[1];
  4703. result->ne[2] = ne[2];
  4704. result->ne[3] = ne[3];
  4705. result->nb[0] = nb[0];
  4706. result->nb[1] = nb[1];
  4707. result->nb[2] = nb[2];
  4708. result->nb[3] = nb[3];
  4709. result->op = GGML_OP_PERMUTE;
  4710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4711. result->src0 = a;
  4712. result->src1 = NULL; // TODO: maybe store the permutation here?
  4713. return result;
  4714. }
  4715. // ggml_transpose
  4716. struct ggml_tensor * ggml_transpose(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a) {
  4719. bool is_node = false;
  4720. if (a->grad) {
  4721. GGML_ASSERT(false); // TODO: implement backward
  4722. is_node = true;
  4723. }
  4724. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4725. result->ne[0] = a->ne[1];
  4726. result->ne[1] = a->ne[0];
  4727. result->nb[0] = a->nb[1];
  4728. result->nb[1] = a->nb[0];
  4729. result->op = GGML_OP_TRANSPOSE;
  4730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4731. result->src0 = a;
  4732. result->src1 = NULL;
  4733. return result;
  4734. }
  4735. // ggml_get_rows
  4736. struct ggml_tensor * ggml_get_rows(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * b) {
  4740. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4741. bool is_node = false;
  4742. if (a->grad || b->grad) {
  4743. GGML_ASSERT(false); // TODO: implement backward
  4744. is_node = true;
  4745. }
  4746. // TODO: implement non F32 return
  4747. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4748. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4749. result->op = GGML_OP_GET_ROWS;
  4750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4751. result->src0 = a;
  4752. result->src1 = b;
  4753. return result;
  4754. }
  4755. // ggml_diag_mask_inf
  4756. struct ggml_tensor * ggml_diag_mask_inf(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a,
  4759. int n_past) {
  4760. bool is_node = false;
  4761. if (a->grad) {
  4762. GGML_ASSERT(false); // TODO: implement backward
  4763. is_node = true;
  4764. }
  4765. // TODO: when implement backward, fix this:
  4766. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4767. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4768. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4769. result->op = GGML_OP_DIAG_MASK_INF;
  4770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4771. result->src0 = a;
  4772. result->src1 = b;
  4773. return result;
  4774. }
  4775. // ggml_soft_max
  4776. struct ggml_tensor * ggml_soft_max(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a) {
  4779. bool is_node = false;
  4780. if (a->grad) {
  4781. GGML_ASSERT(false); // TODO: implement backward
  4782. is_node = true;
  4783. }
  4784. // TODO: when implement backward, fix this:
  4785. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4786. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4787. result->op = GGML_OP_SOFT_MAX;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src0 = a;
  4790. result->src1 = NULL;
  4791. return result;
  4792. }
  4793. // ggml_rope
  4794. struct ggml_tensor * ggml_rope(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. int n_past,
  4798. int n_dims,
  4799. int mode) {
  4800. GGML_ASSERT(n_past >= 0);
  4801. bool is_node = false;
  4802. if (a->grad) {
  4803. GGML_ASSERT(false); // TODO: implement backward
  4804. is_node = true;
  4805. }
  4806. // TODO: when implement backward, fix this:
  4807. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4808. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4809. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4810. ((int32_t *) b->data)[0] = n_past;
  4811. ((int32_t *) b->data)[1] = n_dims;
  4812. ((int32_t *) b->data)[2] = mode;
  4813. result->op = GGML_OP_ROPE;
  4814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4815. result->src0 = a;
  4816. result->src1 = b;
  4817. return result;
  4818. }
  4819. // ggml_conv_1d_1s
  4820. struct ggml_tensor * ggml_conv_1d_1s(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. struct ggml_tensor * b) {
  4824. GGML_ASSERT(ggml_is_matrix(b));
  4825. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4826. GGML_ASSERT(a->ne[3] == 1);
  4827. bool is_node = false;
  4828. if (a->grad || b->grad) {
  4829. GGML_ASSERT(false); // TODO: implement backward
  4830. is_node = true;
  4831. }
  4832. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4833. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4834. result->op = GGML_OP_CONV_1D_1S;
  4835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4836. result->src0 = a;
  4837. result->src1 = b;
  4838. return result;
  4839. }
  4840. // ggml_conv_1d_2s
  4841. struct ggml_tensor * ggml_conv_1d_2s(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. struct ggml_tensor * b) {
  4845. GGML_ASSERT(ggml_is_matrix(b));
  4846. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4847. GGML_ASSERT(a->ne[3] == 1);
  4848. bool is_node = false;
  4849. if (a->grad || b->grad) {
  4850. GGML_ASSERT(false); // TODO: implement backward
  4851. is_node = true;
  4852. }
  4853. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4854. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4855. result->op = GGML_OP_CONV_1D_2S;
  4856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4857. result->src0 = a;
  4858. result->src1 = b;
  4859. return result;
  4860. }
  4861. // ggml_flash_attn
  4862. struct ggml_tensor * ggml_flash_attn(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * q,
  4865. struct ggml_tensor * k,
  4866. struct ggml_tensor * v,
  4867. bool masked) {
  4868. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4869. // TODO: check if vT can be multiplied by (k*qT)
  4870. bool is_node = false;
  4871. if (q->grad || k->grad || v->grad) {
  4872. GGML_ASSERT(false); // TODO: implement backward
  4873. is_node = true;
  4874. }
  4875. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4876. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4877. result->op = GGML_OP_FLASH_ATTN;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src0 = q;
  4880. result->src1 = k;
  4881. result->opt[0] = v;
  4882. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4883. return result;
  4884. }
  4885. // ggml_flash_ff
  4886. struct ggml_tensor * ggml_flash_ff(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. struct ggml_tensor * b0,
  4890. struct ggml_tensor * b1,
  4891. struct ggml_tensor * c0,
  4892. struct ggml_tensor * c1) {
  4893. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4894. // TODO: more checks
  4895. bool is_node = false;
  4896. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4897. GGML_ASSERT(false); // TODO: implement backward
  4898. is_node = true;
  4899. }
  4900. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4901. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4902. result->op = GGML_OP_FLASH_FF;
  4903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4904. result->src0 = a;
  4905. result->src1 = b0;
  4906. result->opt[0] = b1;
  4907. result->opt[1] = c0;
  4908. result->opt[2] = c1;
  4909. return result;
  4910. }
  4911. // ggml_map_unary
  4912. struct ggml_tensor * ggml_map_unary_impl_f32(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. const ggml_unary_op_f32_t fun,
  4916. bool inplace) {
  4917. bool is_node = false;
  4918. if (!inplace && a->grad) {
  4919. is_node = true;
  4920. }
  4921. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4922. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4923. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4924. result->op = GGML_OP_MAP_UNARY;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src0 = a;
  4927. result->opt[0] = addr_tensor;
  4928. return result;
  4929. }
  4930. struct ggml_tensor * ggml_map_unary_f32(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. const ggml_unary_op_f32_t fun) {
  4934. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4935. }
  4936. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. const ggml_unary_op_f32_t fun) {
  4940. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4941. }
  4942. // ggml_map_binary
  4943. struct ggml_tensor * ggml_map_binary_impl_f32(
  4944. struct ggml_context * ctx,
  4945. struct ggml_tensor * a,
  4946. struct ggml_tensor * b,
  4947. const ggml_binary_op_f32_t fun,
  4948. bool inplace) {
  4949. GGML_ASSERT(ggml_are_same_shape(a, b));
  4950. bool is_node = false;
  4951. if (!inplace && (a->grad || b->grad)) {
  4952. is_node = true;
  4953. }
  4954. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4955. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4956. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4957. result->op = GGML_OP_MAP_BINARY;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src0 = a;
  4960. result->src1 = b;
  4961. result->opt[0] = addr_tensor;
  4962. return result;
  4963. }
  4964. struct ggml_tensor * ggml_map_binary_f32(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b,
  4968. const ggml_binary_op_f32_t fun) {
  4969. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4970. }
  4971. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. struct ggml_tensor * b,
  4975. const ggml_binary_op_f32_t fun) {
  4976. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4977. }
  4978. ////////////////////////////////////////////////////////////////////////////////
  4979. void ggml_set_param(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * tensor) {
  4982. tensor->is_param = true;
  4983. GGML_ASSERT(tensor->grad == NULL);
  4984. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4985. }
  4986. // ggml_compute_forward_dup
  4987. static void ggml_compute_forward_dup_f16(
  4988. const struct ggml_compute_params * params,
  4989. const struct ggml_tensor * src0,
  4990. struct ggml_tensor * dst) {
  4991. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4993. return;
  4994. }
  4995. const int64_t ne00 = src0->ne[0];
  4996. const int64_t ne01 = src0->ne[1];
  4997. const int64_t ne02 = src0->ne[2];
  4998. const int64_t ne03 = src0->ne[3];
  4999. const int64_t ne0 = dst->ne[0];
  5000. const int64_t ne1 = dst->ne[1];
  5001. const int64_t ne2 = dst->ne[2];
  5002. const int64_t ne3 = dst->ne[3];
  5003. const size_t nb00 = src0->nb[0];
  5004. const size_t nb01 = src0->nb[1];
  5005. const size_t nb02 = src0->nb[2];
  5006. const size_t nb03 = src0->nb[3];
  5007. const size_t nb0 = dst->nb[0];
  5008. const size_t nb1 = dst->nb[1];
  5009. const size_t nb2 = dst->nb[2];
  5010. const size_t nb3 = dst->nb[3];
  5011. const int ith = params->ith; // thread index
  5012. const int nth = params->nth; // number of threads
  5013. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5014. // parallelize by elements
  5015. const int ne = ggml_nelements(dst);
  5016. const int dr = (ne + nth - 1) / nth;
  5017. const int ie0 = dr * ith;
  5018. const int ie1 = MIN(ie0 + dr, ne);
  5019. memcpy(
  5020. ((char *) dst->data + ie0*nb0),
  5021. ((char *) src0->data + ie0*nb00),
  5022. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5023. return;
  5024. }
  5025. // parallelize by rows
  5026. const int nr = ne01;
  5027. // number of rows per thread
  5028. const int dr = (nr + nth - 1) / nth;
  5029. // row range for this thread
  5030. const int ir0 = dr * ith;
  5031. const int ir1 = MIN(ir0 + dr, nr);
  5032. if (src0->type == dst->type &&
  5033. ne00 == ne0 &&
  5034. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5035. // copy by rows
  5036. const size_t rs = ne00*nb00;
  5037. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5038. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5039. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5040. memcpy(
  5041. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5042. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5043. rs);
  5044. }
  5045. }
  5046. }
  5047. return;
  5048. }
  5049. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5050. if (ggml_is_contiguous(dst)) {
  5051. if (nb00 == sizeof(ggml_fp16_t)) {
  5052. if (dst->type == GGML_TYPE_F16) {
  5053. size_t id = 0;
  5054. const size_t rs = ne00 * nb00;
  5055. char * dst_ptr = (char *) dst->data;
  5056. for (int i03 = 0; i03 < ne03; i03++) {
  5057. for (int i02 = 0; i02 < ne02; i02++) {
  5058. id += rs * ir0;
  5059. for (int i01 = ir0; i01 < ir1; i01++) {
  5060. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5061. memcpy(dst_ptr + id, src0_ptr, rs);
  5062. id += rs;
  5063. }
  5064. id += rs * (ne01 - ir1);
  5065. }
  5066. }
  5067. } else if (dst->type == GGML_TYPE_F32) {
  5068. size_t id = 0;
  5069. float * dst_ptr = (float *) dst->data;
  5070. for (int i03 = 0; i03 < ne03; i03++) {
  5071. for (int i02 = 0; i02 < ne02; i02++) {
  5072. id += ne00 * ir0;
  5073. for (int i01 = ir0; i01 < ir1; i01++) {
  5074. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5075. for (int i00 = 0; i00 < ne00; i00++) {
  5076. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5077. id++;
  5078. }
  5079. }
  5080. id += ne00 * (ne01 - ir1);
  5081. }
  5082. }
  5083. } else if (ggml_is_quantized(dst->type)) {
  5084. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5085. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5086. size_t id = 0;
  5087. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5088. char * dst_ptr = (char *) dst->data;
  5089. for (int i03 = 0; i03 < ne03; i03++) {
  5090. for (int i02 = 0; i02 < ne02; i02++) {
  5091. id += rs * ir0;
  5092. for (int i01 = ir0; i01 < ir1; i01++) {
  5093. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5094. for (int i00 = 0; i00 < ne00; i00++) {
  5095. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5096. }
  5097. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5098. id += rs;
  5099. }
  5100. id += rs * (ne01 - ir1);
  5101. }
  5102. }
  5103. } else {
  5104. GGML_ASSERT(false); // TODO: implement
  5105. }
  5106. } else {
  5107. //printf("%s: this is not optimal - fix me\n", __func__);
  5108. if (dst->type == GGML_TYPE_F32) {
  5109. size_t id = 0;
  5110. float * dst_ptr = (float *) dst->data;
  5111. for (int i03 = 0; i03 < ne03; i03++) {
  5112. for (int i02 = 0; i02 < ne02; i02++) {
  5113. id += ne00 * ir0;
  5114. for (int i01 = ir0; i01 < ir1; i01++) {
  5115. for (int i00 = 0; i00 < ne00; i00++) {
  5116. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5117. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5118. id++;
  5119. }
  5120. }
  5121. id += ne00 * (ne01 - ir1);
  5122. }
  5123. }
  5124. } else if (dst->type == GGML_TYPE_F16) {
  5125. size_t id = 0;
  5126. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5127. for (int i03 = 0; i03 < ne03; i03++) {
  5128. for (int i02 = 0; i02 < ne02; i02++) {
  5129. id += ne00 * ir0;
  5130. for (int i01 = ir0; i01 < ir1; i01++) {
  5131. for (int i00 = 0; i00 < ne00; i00++) {
  5132. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5133. dst_ptr[id] = *src0_ptr;
  5134. id++;
  5135. }
  5136. }
  5137. id += ne00 * (ne01 - ir1);
  5138. }
  5139. }
  5140. } else {
  5141. GGML_ASSERT(false); // TODO: implement
  5142. }
  5143. }
  5144. return;
  5145. }
  5146. // dst counters
  5147. int64_t i10 = 0;
  5148. int64_t i11 = 0;
  5149. int64_t i12 = 0;
  5150. int64_t i13 = 0;
  5151. if (dst->type == GGML_TYPE_F16) {
  5152. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5153. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5154. i10 += ne00 * ir0;
  5155. while (i10 >= ne0) {
  5156. i10 -= ne0;
  5157. if (++i11 == ne1) {
  5158. i11 = 0;
  5159. if (++i12 == ne2) {
  5160. i12 = 0;
  5161. if (++i13 == ne3) {
  5162. i13 = 0;
  5163. }
  5164. }
  5165. }
  5166. }
  5167. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5168. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5169. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5170. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5171. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5172. if (++i10 == ne00) {
  5173. i10 = 0;
  5174. if (++i11 == ne01) {
  5175. i11 = 0;
  5176. if (++i12 == ne02) {
  5177. i12 = 0;
  5178. if (++i13 == ne03) {
  5179. i13 = 0;
  5180. }
  5181. }
  5182. }
  5183. }
  5184. }
  5185. }
  5186. i10 += ne00 * (ne01 - ir1);
  5187. while (i10 >= ne0) {
  5188. i10 -= ne0;
  5189. if (++i11 == ne1) {
  5190. i11 = 0;
  5191. if (++i12 == ne2) {
  5192. i12 = 0;
  5193. if (++i13 == ne3) {
  5194. i13 = 0;
  5195. }
  5196. }
  5197. }
  5198. }
  5199. }
  5200. }
  5201. } else if (dst->type == GGML_TYPE_F32) {
  5202. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5203. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5204. i10 += ne00 * ir0;
  5205. while (i10 >= ne0) {
  5206. i10 -= ne0;
  5207. if (++i11 == ne1) {
  5208. i11 = 0;
  5209. if (++i12 == ne2) {
  5210. i12 = 0;
  5211. if (++i13 == ne3) {
  5212. i13 = 0;
  5213. }
  5214. }
  5215. }
  5216. }
  5217. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5219. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5220. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5221. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5222. if (++i10 == ne0) {
  5223. i10 = 0;
  5224. if (++i11 == ne1) {
  5225. i11 = 0;
  5226. if (++i12 == ne2) {
  5227. i12 = 0;
  5228. if (++i13 == ne3) {
  5229. i13 = 0;
  5230. }
  5231. }
  5232. }
  5233. }
  5234. }
  5235. }
  5236. i10 += ne00 * (ne01 - ir1);
  5237. while (i10 >= ne0) {
  5238. i10 -= ne0;
  5239. if (++i11 == ne1) {
  5240. i11 = 0;
  5241. if (++i12 == ne2) {
  5242. i12 = 0;
  5243. if (++i13 == ne3) {
  5244. i13 = 0;
  5245. }
  5246. }
  5247. }
  5248. }
  5249. }
  5250. }
  5251. } else {
  5252. GGML_ASSERT(false); // TODO: implement
  5253. }
  5254. }
  5255. static void ggml_compute_forward_dup_f32(
  5256. const struct ggml_compute_params * params,
  5257. const struct ggml_tensor * src0,
  5258. struct ggml_tensor * dst) {
  5259. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5261. return;
  5262. }
  5263. const int64_t ne00 = src0->ne[0];
  5264. const int64_t ne01 = src0->ne[1];
  5265. const int64_t ne02 = src0->ne[2];
  5266. const int64_t ne03 = src0->ne[3];
  5267. const int64_t ne0 = dst->ne[0];
  5268. const int64_t ne1 = dst->ne[1];
  5269. const int64_t ne2 = dst->ne[2];
  5270. const int64_t ne3 = dst->ne[3];
  5271. const size_t nb00 = src0->nb[0];
  5272. const size_t nb01 = src0->nb[1];
  5273. const size_t nb02 = src0->nb[2];
  5274. const size_t nb03 = src0->nb[3];
  5275. const size_t nb0 = dst->nb[0];
  5276. const size_t nb1 = dst->nb[1];
  5277. const size_t nb2 = dst->nb[2];
  5278. const size_t nb3 = dst->nb[3];
  5279. const int ith = params->ith; // thread index
  5280. const int nth = params->nth; // number of threads
  5281. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5282. // parallelize by elements
  5283. const int ne = ggml_nelements(dst);
  5284. const int dr = (ne + nth - 1) / nth;
  5285. const int ie0 = dr * ith;
  5286. const int ie1 = MIN(ie0 + dr, ne);
  5287. memcpy(
  5288. ((char *) dst->data + ie0*nb0),
  5289. ((char *) src0->data + ie0*nb00),
  5290. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5291. return;
  5292. }
  5293. // parallelize by rows
  5294. const int nr = ne01;
  5295. // number of rows per thread
  5296. const int dr = (nr + nth - 1) / nth;
  5297. // row range for this thread
  5298. const int ir0 = dr * ith;
  5299. const int ir1 = MIN(ir0 + dr, nr);
  5300. if (src0->type == dst->type &&
  5301. ne00 == ne0 &&
  5302. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5303. // copy by rows
  5304. const size_t rs = ne00*nb00;
  5305. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5306. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5307. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5308. memcpy(
  5309. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5310. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5311. rs);
  5312. }
  5313. }
  5314. }
  5315. return;
  5316. }
  5317. if (ggml_is_contiguous(dst)) {
  5318. // TODO: simplify
  5319. if (nb00 == sizeof(float)) {
  5320. if (dst->type == GGML_TYPE_F32) {
  5321. size_t id = 0;
  5322. const size_t rs = ne00 * nb00;
  5323. char * dst_ptr = (char *) dst->data;
  5324. for (int i03 = 0; i03 < ne03; i03++) {
  5325. for (int i02 = 0; i02 < ne02; i02++) {
  5326. id += rs * ir0;
  5327. for (int i01 = ir0; i01 < ir1; i01++) {
  5328. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5329. memcpy(dst_ptr + id, src0_ptr, rs);
  5330. id += rs;
  5331. }
  5332. id += rs * (ne01 - ir1);
  5333. }
  5334. }
  5335. } else if (dst->type == GGML_TYPE_F16) {
  5336. size_t id = 0;
  5337. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5338. for (int i03 = 0; i03 < ne03; i03++) {
  5339. for (int i02 = 0; i02 < ne02; i02++) {
  5340. id += ne00 * ir0;
  5341. for (int i01 = ir0; i01 < ir1; i01++) {
  5342. for (int i00 = 0; i00 < ne00; i00++) {
  5343. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5344. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5345. id++;
  5346. }
  5347. }
  5348. id += ne00 * (ne01 - ir1);
  5349. }
  5350. }
  5351. } else if (ggml_is_quantized(dst->type)) {
  5352. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5353. size_t id = 0;
  5354. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5355. char * dst_ptr = (char *) dst->data;
  5356. for (int i03 = 0; i03 < ne03; i03++) {
  5357. for (int i02 = 0; i02 < ne02; i02++) {
  5358. id += rs * ir0;
  5359. for (int i01 = ir0; i01 < ir1; i01++) {
  5360. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5361. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5362. id += rs;
  5363. }
  5364. id += rs * (ne01 - ir1);
  5365. }
  5366. }
  5367. } else {
  5368. GGML_ASSERT(false); // TODO: implement
  5369. }
  5370. } else {
  5371. //printf("%s: this is not optimal - fix me\n", __func__);
  5372. if (dst->type == GGML_TYPE_F32) {
  5373. size_t id = 0;
  5374. float * dst_ptr = (float *) dst->data;
  5375. for (int i03 = 0; i03 < ne03; i03++) {
  5376. for (int i02 = 0; i02 < ne02; i02++) {
  5377. id += ne00 * ir0;
  5378. for (int i01 = ir0; i01 < ir1; i01++) {
  5379. for (int i00 = 0; i00 < ne00; i00++) {
  5380. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5381. dst_ptr[id] = *src0_ptr;
  5382. id++;
  5383. }
  5384. }
  5385. id += ne00 * (ne01 - ir1);
  5386. }
  5387. }
  5388. } else if (dst->type == GGML_TYPE_F16) {
  5389. size_t id = 0;
  5390. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5391. for (int i03 = 0; i03 < ne03; i03++) {
  5392. for (int i02 = 0; i02 < ne02; i02++) {
  5393. id += ne00 * ir0;
  5394. for (int i01 = ir0; i01 < ir1; i01++) {
  5395. for (int i00 = 0; i00 < ne00; i00++) {
  5396. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5397. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5398. id++;
  5399. }
  5400. }
  5401. id += ne00 * (ne01 - ir1);
  5402. }
  5403. }
  5404. } else {
  5405. GGML_ASSERT(false); // TODO: implement
  5406. }
  5407. }
  5408. return;
  5409. }
  5410. // dst counters
  5411. int64_t i10 = 0;
  5412. int64_t i11 = 0;
  5413. int64_t i12 = 0;
  5414. int64_t i13 = 0;
  5415. if (dst->type == GGML_TYPE_F32) {
  5416. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5417. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5418. i10 += ne00 * ir0;
  5419. while (i10 >= ne0) {
  5420. i10 -= ne0;
  5421. if (++i11 == ne1) {
  5422. i11 = 0;
  5423. if (++i12 == ne2) {
  5424. i12 = 0;
  5425. if (++i13 == ne3) {
  5426. i13 = 0;
  5427. }
  5428. }
  5429. }
  5430. }
  5431. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5432. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5433. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5434. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5435. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5436. if (++i10 == ne0) {
  5437. i10 = 0;
  5438. if (++i11 == ne1) {
  5439. i11 = 0;
  5440. if (++i12 == ne2) {
  5441. i12 = 0;
  5442. if (++i13 == ne3) {
  5443. i13 = 0;
  5444. }
  5445. }
  5446. }
  5447. }
  5448. }
  5449. }
  5450. i10 += ne00 * (ne01 - ir1);
  5451. while (i10 >= ne0) {
  5452. i10 -= ne0;
  5453. if (++i11 == ne1) {
  5454. i11 = 0;
  5455. if (++i12 == ne2) {
  5456. i12 = 0;
  5457. if (++i13 == ne3) {
  5458. i13 = 0;
  5459. }
  5460. }
  5461. }
  5462. }
  5463. }
  5464. }
  5465. } else if (dst->type == GGML_TYPE_F16) {
  5466. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5467. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5468. i10 += ne00 * ir0;
  5469. while (i10 >= ne0) {
  5470. i10 -= ne0;
  5471. if (++i11 == ne1) {
  5472. i11 = 0;
  5473. if (++i12 == ne2) {
  5474. i12 = 0;
  5475. if (++i13 == ne3) {
  5476. i13 = 0;
  5477. }
  5478. }
  5479. }
  5480. }
  5481. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5482. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5483. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5484. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5485. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5486. if (++i10 == ne0) {
  5487. i10 = 0;
  5488. if (++i11 == ne1) {
  5489. i11 = 0;
  5490. if (++i12 == ne2) {
  5491. i12 = 0;
  5492. if (++i13 == ne3) {
  5493. i13 = 0;
  5494. }
  5495. }
  5496. }
  5497. }
  5498. }
  5499. }
  5500. i10 += ne00 * (ne01 - ir1);
  5501. while (i10 >= ne0) {
  5502. i10 -= ne0;
  5503. if (++i11 == ne1) {
  5504. i11 = 0;
  5505. if (++i12 == ne2) {
  5506. i12 = 0;
  5507. if (++i13 == ne3) {
  5508. i13 = 0;
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. }
  5515. } else {
  5516. GGML_ASSERT(false); // TODO: implement
  5517. }
  5518. }
  5519. static void ggml_compute_forward_dup(
  5520. const struct ggml_compute_params * params,
  5521. const struct ggml_tensor * src0,
  5522. struct ggml_tensor * dst) {
  5523. switch (src0->type) {
  5524. case GGML_TYPE_F16:
  5525. {
  5526. ggml_compute_forward_dup_f16(params, src0, dst);
  5527. } break;
  5528. case GGML_TYPE_F32:
  5529. {
  5530. ggml_compute_forward_dup_f32(params, src0, dst);
  5531. } break;
  5532. default:
  5533. {
  5534. GGML_ASSERT(false);
  5535. } break;
  5536. }
  5537. }
  5538. // ggml_compute_forward_add
  5539. static void ggml_compute_forward_add_f32(
  5540. const struct ggml_compute_params * params,
  5541. const struct ggml_tensor * src0,
  5542. const struct ggml_tensor * src1,
  5543. struct ggml_tensor * dst) {
  5544. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5546. return;
  5547. }
  5548. const int ith = params->ith;
  5549. const int nth = params->nth;
  5550. const int n = ggml_nrows(src0);
  5551. const int nc = src0->ne[0];
  5552. const size_t nb00 = src0->nb[0];
  5553. const size_t nb01 = src0->nb[1];
  5554. const size_t nb10 = src1->nb[0];
  5555. const size_t nb11 = src1->nb[1];
  5556. const size_t nb0 = dst->nb[0];
  5557. const size_t nb1 = dst->nb[1];
  5558. GGML_ASSERT( nb0 == sizeof(float));
  5559. GGML_ASSERT(nb00 == sizeof(float));
  5560. if (nb10 == sizeof(float)) {
  5561. for (int j = ith; j < n; j += nth) {
  5562. #ifdef GGML_USE_ACCELERATE
  5563. vDSP_vadd(
  5564. (float *) ((char *) src0->data + j*nb01), 1,
  5565. (float *) ((char *) src1->data + j*nb11), 1,
  5566. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5567. #else
  5568. ggml_vec_add_f32(nc,
  5569. (float *) ((char *) dst->data + j*nb1),
  5570. (float *) ((char *) src0->data + j*nb01),
  5571. (float *) ((char *) src1->data + j*nb11));
  5572. #endif
  5573. }
  5574. } else {
  5575. // src1 is not contiguous
  5576. for (int j = ith; j < n; j += nth) {
  5577. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5578. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5579. for (int i = 0; i < nc; i++) {
  5580. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5581. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5582. }
  5583. }
  5584. }
  5585. }
  5586. static void ggml_compute_forward_add_f16_f32(
  5587. const struct ggml_compute_params * params,
  5588. const struct ggml_tensor * src0,
  5589. const struct ggml_tensor * src1,
  5590. struct ggml_tensor * dst) {
  5591. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5593. return;
  5594. }
  5595. const int ith = params->ith;
  5596. const int nth = params->nth;
  5597. const int n = ggml_nrows(src0);
  5598. const int nc = src0->ne[0];
  5599. const size_t nb00 = src0->nb[0];
  5600. const size_t nb01 = src0->nb[1];
  5601. const size_t nb10 = src1->nb[0];
  5602. const size_t nb11 = src1->nb[1];
  5603. const size_t nb0 = dst->nb[0];
  5604. const size_t nb1 = dst->nb[1];
  5605. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5606. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5607. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5608. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5609. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5610. if (nb10 == sizeof(float)) {
  5611. for (int j = ith; j < n; j += nth) {
  5612. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5613. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5614. for (int i = 0; i < nc; i++) {
  5615. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5616. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5617. }
  5618. }
  5619. }
  5620. else {
  5621. // src1 is not contiguous
  5622. GGML_ASSERT(false);
  5623. }
  5624. }
  5625. static void ggml_compute_forward_add_f16_f16(
  5626. const struct ggml_compute_params * params,
  5627. const struct ggml_tensor * src0,
  5628. const struct ggml_tensor * src1,
  5629. struct ggml_tensor * dst) {
  5630. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5632. return;
  5633. }
  5634. const int ith = params->ith;
  5635. const int nth = params->nth;
  5636. const int n = ggml_nrows(src0);
  5637. const int nc = src0->ne[0];
  5638. const size_t nb00 = src0->nb[0];
  5639. const size_t nb01 = src0->nb[1];
  5640. const size_t nb10 = src1->nb[0];
  5641. const size_t nb11 = src1->nb[1];
  5642. const size_t nb0 = dst->nb[0];
  5643. const size_t nb1 = dst->nb[1];
  5644. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5645. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5646. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5647. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5648. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5649. if (nb10 == sizeof(ggml_fp16_t)) {
  5650. for (int j = ith; j < n; j += nth) {
  5651. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5652. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5653. for (int i = 0; i < nc; i++) {
  5654. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5655. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5656. }
  5657. }
  5658. }
  5659. else {
  5660. // src1 is not contiguous
  5661. GGML_ASSERT(false);
  5662. }
  5663. }
  5664. static void ggml_compute_forward_add_q_f32(
  5665. const struct ggml_compute_params * params,
  5666. const struct ggml_tensor * src0,
  5667. const struct ggml_tensor * src1,
  5668. struct ggml_tensor * dst) {
  5669. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5671. return;
  5672. }
  5673. const int64_t ne00 = src0->ne[0];
  5674. const int64_t ne01 = src0->ne[1];
  5675. const int64_t ne02 = src0->ne[2];
  5676. const int64_t ne03 = src0->ne[3];
  5677. //const int64_t ne10 = src1->ne[0];
  5678. //const int64_t ne11 = src1->ne[1];
  5679. const int64_t ne12 = src1->ne[2];
  5680. const int64_t ne13 = src1->ne[3];
  5681. //const int64_t ne0 = dst->ne[0];
  5682. //const int64_t ne1 = dst->ne[1];
  5683. const int64_t ne2 = dst->ne[2];
  5684. const int64_t ne3 = dst->ne[3];
  5685. const int nb00 = src0->nb[0];
  5686. const int nb01 = src0->nb[1];
  5687. const int nb02 = src0->nb[2];
  5688. const int nb03 = src0->nb[3];
  5689. const int nb10 = src1->nb[0];
  5690. const int nb11 = src1->nb[1];
  5691. const int nb12 = src1->nb[2];
  5692. const int nb13 = src1->nb[3];
  5693. const int nb0 = dst->nb[0];
  5694. const int nb1 = dst->nb[1];
  5695. const int nb2 = dst->nb[2];
  5696. const int nb3 = dst->nb[3];
  5697. const int ith = params->ith;
  5698. const int nth = params->nth;
  5699. GGML_ASSERT(ne02 == ne12);
  5700. GGML_ASSERT(ne03 == ne13);
  5701. GGML_ASSERT(ne2 == ne12);
  5702. GGML_ASSERT(ne3 == ne13);
  5703. const enum ggml_type type = src0->type;
  5704. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5705. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5706. // we don't support permuted src0 or src1
  5707. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5708. GGML_ASSERT(nb10 == sizeof(float));
  5709. // dst cannot be transposed or permuted
  5710. GGML_ASSERT(nb0 <= nb1);
  5711. GGML_ASSERT(nb1 <= nb2);
  5712. GGML_ASSERT(nb2 <= nb3);
  5713. GGML_ASSERT(ggml_is_quantized(src0->type));
  5714. GGML_ASSERT(dst->type == src0->type);
  5715. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5716. // total rows in src0
  5717. const int nr = ne01*ne02*ne03;
  5718. // rows per thread
  5719. const int dr = (nr + nth - 1)/nth;
  5720. // row range for this thread
  5721. const int ir0 = dr*ith;
  5722. const int ir1 = MIN(ir0 + dr, nr);
  5723. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5724. for (int ir = ir0; ir < ir1; ++ir) {
  5725. // src0 indices
  5726. const int i03 = ir/(ne02*ne01);
  5727. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5728. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5729. // src1 and dst are same shape as src0 => same indices
  5730. const int i13 = i03;
  5731. const int i12 = i02;
  5732. const int i11 = i01;
  5733. const int i3 = i03;
  5734. const int i2 = i02;
  5735. const int i1 = i01;
  5736. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5737. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5738. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5739. assert(ne00 % 32 == 0);
  5740. // unquantize row from src0 to temp buffer
  5741. dequantize_row_q(src0_row, wdata, ne00);
  5742. // add src1
  5743. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5744. // quantize row to dst
  5745. quantize_row_q(wdata, dst_row, ne00);
  5746. }
  5747. }
  5748. static void ggml_compute_forward_add(
  5749. const struct ggml_compute_params * params,
  5750. const struct ggml_tensor * src0,
  5751. const struct ggml_tensor * src1,
  5752. struct ggml_tensor * dst) {
  5753. switch (src0->type) {
  5754. case GGML_TYPE_F32:
  5755. {
  5756. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5757. } break;
  5758. case GGML_TYPE_F16:
  5759. {
  5760. if (src1->type == GGML_TYPE_F16) {
  5761. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5762. }
  5763. else if (src1->type == GGML_TYPE_F32) {
  5764. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5765. }
  5766. else {
  5767. GGML_ASSERT(false);
  5768. }
  5769. } break;
  5770. case GGML_TYPE_Q4_0:
  5771. case GGML_TYPE_Q4_1:
  5772. case GGML_TYPE_Q4_2:
  5773. case GGML_TYPE_Q4_3:
  5774. case GGML_TYPE_Q5_0:
  5775. case GGML_TYPE_Q5_1:
  5776. case GGML_TYPE_Q8_0:
  5777. {
  5778. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5779. } break;
  5780. default:
  5781. {
  5782. GGML_ASSERT(false);
  5783. } break;
  5784. }
  5785. }
  5786. // ggml_compute_forward_sub
  5787. static void ggml_compute_forward_sub_f32(
  5788. const struct ggml_compute_params * params,
  5789. const struct ggml_tensor * src0,
  5790. const struct ggml_tensor * src1,
  5791. struct ggml_tensor * dst) {
  5792. assert(params->ith == 0);
  5793. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5795. return;
  5796. }
  5797. const int n = ggml_nrows(src0);
  5798. const int nc = src0->ne[0];
  5799. assert( dst->nb[0] == sizeof(float));
  5800. assert(src0->nb[0] == sizeof(float));
  5801. assert(src1->nb[0] == sizeof(float));
  5802. for (int i = 0; i < n; i++) {
  5803. ggml_vec_sub_f32(nc,
  5804. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5805. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5806. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5807. }
  5808. }
  5809. static void ggml_compute_forward_sub(
  5810. const struct ggml_compute_params * params,
  5811. const struct ggml_tensor * src0,
  5812. const struct ggml_tensor * src1,
  5813. struct ggml_tensor * dst) {
  5814. switch (src0->type) {
  5815. case GGML_TYPE_F32:
  5816. {
  5817. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5818. } break;
  5819. default:
  5820. {
  5821. GGML_ASSERT(false);
  5822. } break;
  5823. }
  5824. }
  5825. // ggml_compute_forward_mul
  5826. static void ggml_compute_forward_mul_f32(
  5827. const struct ggml_compute_params * params,
  5828. const struct ggml_tensor * src0,
  5829. const struct ggml_tensor * src1,
  5830. struct ggml_tensor * dst) {
  5831. assert(params->ith == 0);
  5832. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5834. return;
  5835. }
  5836. const int n = ggml_nrows(src0);
  5837. const int nc = src0->ne[0];
  5838. assert( dst->nb[0] == sizeof(float));
  5839. assert(src0->nb[0] == sizeof(float));
  5840. assert(src1->nb[0] == sizeof(float));
  5841. for (int i = 0; i < n; i++) {
  5842. ggml_vec_mul_f32(nc,
  5843. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5844. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5845. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5846. }
  5847. }
  5848. static void ggml_compute_forward_mul(
  5849. const struct ggml_compute_params * params,
  5850. const struct ggml_tensor * src0,
  5851. const struct ggml_tensor * src1,
  5852. struct ggml_tensor * dst) {
  5853. switch (src0->type) {
  5854. case GGML_TYPE_F32:
  5855. {
  5856. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5857. } break;
  5858. default:
  5859. {
  5860. GGML_ASSERT(false);
  5861. } break;
  5862. }
  5863. }
  5864. // ggml_compute_forward_div
  5865. static void ggml_compute_forward_div_f32(
  5866. const struct ggml_compute_params * params,
  5867. const struct ggml_tensor * src0,
  5868. const struct ggml_tensor * src1,
  5869. struct ggml_tensor * dst) {
  5870. assert(params->ith == 0);
  5871. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5873. return;
  5874. }
  5875. const int n = ggml_nrows(src0);
  5876. const int nc = src0->ne[0];
  5877. assert( dst->nb[0] == sizeof(float));
  5878. assert(src0->nb[0] == sizeof(float));
  5879. assert(src1->nb[0] == sizeof(float));
  5880. for (int i = 0; i < n; i++) {
  5881. ggml_vec_div_f32(nc,
  5882. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5883. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5884. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5885. }
  5886. }
  5887. static void ggml_compute_forward_div(
  5888. const struct ggml_compute_params * params,
  5889. const struct ggml_tensor * src0,
  5890. const struct ggml_tensor * src1,
  5891. struct ggml_tensor * dst) {
  5892. switch (src0->type) {
  5893. case GGML_TYPE_F32:
  5894. {
  5895. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5896. } break;
  5897. default:
  5898. {
  5899. GGML_ASSERT(false);
  5900. } break;
  5901. }
  5902. }
  5903. // ggml_compute_forward_sqr
  5904. static void ggml_compute_forward_sqr_f32(
  5905. const struct ggml_compute_params * params,
  5906. const struct ggml_tensor * src0,
  5907. struct ggml_tensor * dst) {
  5908. assert(params->ith == 0);
  5909. assert(ggml_are_same_shape(src0, dst));
  5910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5911. return;
  5912. }
  5913. const int n = ggml_nrows(src0);
  5914. const int nc = src0->ne[0];
  5915. assert( dst->nb[0] == sizeof(float));
  5916. assert(src0->nb[0] == sizeof(float));
  5917. for (int i = 0; i < n; i++) {
  5918. ggml_vec_sqr_f32(nc,
  5919. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5920. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5921. }
  5922. }
  5923. static void ggml_compute_forward_sqr(
  5924. const struct ggml_compute_params * params,
  5925. const struct ggml_tensor * src0,
  5926. struct ggml_tensor * dst) {
  5927. switch (src0->type) {
  5928. case GGML_TYPE_F32:
  5929. {
  5930. ggml_compute_forward_sqr_f32(params, src0, dst);
  5931. } break;
  5932. default:
  5933. {
  5934. GGML_ASSERT(false);
  5935. } break;
  5936. }
  5937. }
  5938. // ggml_compute_forward_sqrt
  5939. static void ggml_compute_forward_sqrt_f32(
  5940. const struct ggml_compute_params * params,
  5941. const struct ggml_tensor * src0,
  5942. struct ggml_tensor * dst) {
  5943. assert(params->ith == 0);
  5944. assert(ggml_are_same_shape(src0, dst));
  5945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5946. return;
  5947. }
  5948. const int n = ggml_nrows(src0);
  5949. const int nc = src0->ne[0];
  5950. assert( dst->nb[0] == sizeof(float));
  5951. assert(src0->nb[0] == sizeof(float));
  5952. for (int i = 0; i < n; i++) {
  5953. ggml_vec_sqrt_f32(nc,
  5954. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5955. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5956. }
  5957. }
  5958. static void ggml_compute_forward_sqrt(
  5959. const struct ggml_compute_params * params,
  5960. const struct ggml_tensor * src0,
  5961. struct ggml_tensor * dst) {
  5962. switch (src0->type) {
  5963. case GGML_TYPE_F32:
  5964. {
  5965. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5966. } break;
  5967. default:
  5968. {
  5969. GGML_ASSERT(false);
  5970. } break;
  5971. }
  5972. }
  5973. // ggml_compute_forward_sum
  5974. static void ggml_compute_forward_sum_f32(
  5975. const struct ggml_compute_params * params,
  5976. const struct ggml_tensor * src0,
  5977. struct ggml_tensor * dst) {
  5978. assert(params->ith == 0);
  5979. assert(ggml_is_scalar(dst));
  5980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5981. return;
  5982. }
  5983. assert(ggml_is_scalar(dst));
  5984. assert(src0->nb[0] == sizeof(float));
  5985. const int64_t ne00 = src0->ne[0];
  5986. const int64_t ne01 = src0->ne[1];
  5987. const int64_t ne02 = src0->ne[2];
  5988. const int64_t ne03 = src0->ne[3];
  5989. const size_t nb01 = src0->nb[1];
  5990. const size_t nb02 = src0->nb[2];
  5991. const size_t nb03 = src0->nb[3];
  5992. ggml_float sum = 0;
  5993. ggml_float row_sum = 0;
  5994. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5995. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5996. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5997. ggml_vec_sum_ggf(ne00,
  5998. &row_sum,
  5999. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6000. sum += row_sum;
  6001. }
  6002. }
  6003. }
  6004. ((float *) dst->data)[0] = sum;
  6005. }
  6006. static void ggml_compute_forward_sum(
  6007. const struct ggml_compute_params * params,
  6008. const struct ggml_tensor * src0,
  6009. struct ggml_tensor * dst) {
  6010. switch (src0->type) {
  6011. case GGML_TYPE_F32:
  6012. {
  6013. ggml_compute_forward_sum_f32(params, src0, dst);
  6014. } break;
  6015. default:
  6016. {
  6017. GGML_ASSERT(false);
  6018. } break;
  6019. }
  6020. }
  6021. // ggml_compute_forward_mean
  6022. static void ggml_compute_forward_mean_f32(
  6023. const struct ggml_compute_params * params,
  6024. const struct ggml_tensor * src0,
  6025. struct ggml_tensor * dst) {
  6026. assert(params->ith == 0);
  6027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6028. return;
  6029. }
  6030. assert(src0->nb[0] == sizeof(float));
  6031. const int64_t ne00 = src0->ne[0];
  6032. const int64_t ne01 = src0->ne[1];
  6033. const int64_t ne02 = src0->ne[2];
  6034. const int64_t ne03 = src0->ne[3];
  6035. const size_t nb01 = src0->nb[1];
  6036. const size_t nb02 = src0->nb[2];
  6037. const size_t nb03 = src0->nb[3];
  6038. const int64_t ne0 = dst->ne[0];
  6039. const int64_t ne1 = dst->ne[1];
  6040. const int64_t ne2 = dst->ne[2];
  6041. const int64_t ne3 = dst->ne[3];
  6042. assert(ne0 == 1);
  6043. assert(ne1 == ne01);
  6044. assert(ne2 == ne02);
  6045. assert(ne3 == ne03);
  6046. UNUSED(ne0);
  6047. UNUSED(ne1);
  6048. UNUSED(ne2);
  6049. UNUSED(ne3);
  6050. const size_t nb1 = dst->nb[1];
  6051. const size_t nb2 = dst->nb[2];
  6052. const size_t nb3 = dst->nb[3];
  6053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6055. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6056. ggml_vec_sum_f32(ne00,
  6057. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6058. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6059. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6060. }
  6061. }
  6062. }
  6063. }
  6064. static void ggml_compute_forward_mean(
  6065. const struct ggml_compute_params * params,
  6066. const struct ggml_tensor * src0,
  6067. struct ggml_tensor * dst) {
  6068. switch (src0->type) {
  6069. case GGML_TYPE_F32:
  6070. {
  6071. ggml_compute_forward_mean_f32(params, src0, dst);
  6072. } break;
  6073. default:
  6074. {
  6075. GGML_ASSERT(false);
  6076. } break;
  6077. }
  6078. }
  6079. // ggml_compute_forward_repeat
  6080. static void ggml_compute_forward_repeat_f32(
  6081. const struct ggml_compute_params * params,
  6082. const struct ggml_tensor * src0,
  6083. struct ggml_tensor * dst) {
  6084. assert(params->ith == 0);
  6085. assert(ggml_can_repeat(src0, dst));
  6086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6087. return;
  6088. }
  6089. // TODO: implement support for rank > 2 tensors
  6090. assert(src0->ne[2] == 1);
  6091. assert(src0->ne[3] == 1);
  6092. assert( dst->ne[2] == 1);
  6093. assert( dst->ne[3] == 1);
  6094. const int nc = dst->ne[0];
  6095. const int nr = dst->ne[1];
  6096. const int nc0 = src0->ne[0];
  6097. const int nr0 = src0->ne[1];
  6098. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6099. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6100. // TODO: support for transposed / permuted tensors
  6101. assert( dst->nb[0] == sizeof(float));
  6102. assert(src0->nb[0] == sizeof(float));
  6103. // TODO: maybe this is not optimal?
  6104. for (int i = 0; i < nrr; i++) {
  6105. for (int j = 0; j < ncr; j++) {
  6106. for (int k = 0; k < nr0; k++) {
  6107. ggml_vec_cpy_f32(nc0,
  6108. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6109. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6110. }
  6111. }
  6112. }
  6113. }
  6114. static void ggml_compute_forward_repeat(
  6115. const struct ggml_compute_params * params,
  6116. const struct ggml_tensor * src0,
  6117. struct ggml_tensor * dst) {
  6118. switch (src0->type) {
  6119. case GGML_TYPE_F32:
  6120. {
  6121. ggml_compute_forward_repeat_f32(params, src0, dst);
  6122. } break;
  6123. default:
  6124. {
  6125. GGML_ASSERT(false);
  6126. } break;
  6127. }
  6128. }
  6129. // ggml_compute_forward_abs
  6130. static void ggml_compute_forward_abs_f32(
  6131. const struct ggml_compute_params * params,
  6132. const struct ggml_tensor * src0,
  6133. struct ggml_tensor * dst) {
  6134. assert(params->ith == 0);
  6135. assert(ggml_are_same_shape(src0, dst));
  6136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6137. return;
  6138. }
  6139. const int n = ggml_nrows(src0);
  6140. const int nc = src0->ne[0];
  6141. assert(dst->nb[0] == sizeof(float));
  6142. assert(src0->nb[0] == sizeof(float));
  6143. for (int i = 0; i < n; i++) {
  6144. ggml_vec_abs_f32(nc,
  6145. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6146. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6147. }
  6148. }
  6149. static void ggml_compute_forward_abs(
  6150. const struct ggml_compute_params * params,
  6151. const struct ggml_tensor * src0,
  6152. struct ggml_tensor * dst) {
  6153. switch (src0->type) {
  6154. case GGML_TYPE_F32:
  6155. {
  6156. ggml_compute_forward_abs_f32(params, src0, dst);
  6157. } break;
  6158. default:
  6159. {
  6160. GGML_ASSERT(false);
  6161. } break;
  6162. }
  6163. }
  6164. // ggml_compute_forward_sgn
  6165. static void ggml_compute_forward_sgn_f32(
  6166. const struct ggml_compute_params * params,
  6167. const struct ggml_tensor * src0,
  6168. struct ggml_tensor * dst) {
  6169. assert(params->ith == 0);
  6170. assert(ggml_are_same_shape(src0, dst));
  6171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6172. return;
  6173. }
  6174. const int n = ggml_nrows(src0);
  6175. const int nc = src0->ne[0];
  6176. assert(dst->nb[0] == sizeof(float));
  6177. assert(src0->nb[0] == sizeof(float));
  6178. for (int i = 0; i < n; i++) {
  6179. ggml_vec_sgn_f32(nc,
  6180. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6181. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6182. }
  6183. }
  6184. static void ggml_compute_forward_sgn(
  6185. const struct ggml_compute_params * params,
  6186. const struct ggml_tensor * src0,
  6187. struct ggml_tensor * dst) {
  6188. switch (src0->type) {
  6189. case GGML_TYPE_F32:
  6190. {
  6191. ggml_compute_forward_sgn_f32(params, src0, dst);
  6192. } break;
  6193. default:
  6194. {
  6195. GGML_ASSERT(false);
  6196. } break;
  6197. }
  6198. }
  6199. // ggml_compute_forward_neg
  6200. static void ggml_compute_forward_neg_f32(
  6201. const struct ggml_compute_params * params,
  6202. const struct ggml_tensor * src0,
  6203. struct ggml_tensor * dst) {
  6204. assert(params->ith == 0);
  6205. assert(ggml_are_same_shape(src0, dst));
  6206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6207. return;
  6208. }
  6209. const int n = ggml_nrows(src0);
  6210. const int nc = src0->ne[0];
  6211. assert(dst->nb[0] == sizeof(float));
  6212. assert(src0->nb[0] == sizeof(float));
  6213. for (int i = 0; i < n; i++) {
  6214. ggml_vec_neg_f32(nc,
  6215. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6216. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6217. }
  6218. }
  6219. static void ggml_compute_forward_neg(
  6220. const struct ggml_compute_params * params,
  6221. const struct ggml_tensor * src0,
  6222. struct ggml_tensor * dst) {
  6223. switch (src0->type) {
  6224. case GGML_TYPE_F32:
  6225. {
  6226. ggml_compute_forward_neg_f32(params, src0, dst);
  6227. } break;
  6228. default:
  6229. {
  6230. GGML_ASSERT(false);
  6231. } break;
  6232. }
  6233. }
  6234. // ggml_compute_forward_step
  6235. static void ggml_compute_forward_step_f32(
  6236. const struct ggml_compute_params * params,
  6237. const struct ggml_tensor * src0,
  6238. struct ggml_tensor * dst) {
  6239. assert(params->ith == 0);
  6240. assert(ggml_are_same_shape(src0, dst));
  6241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6242. return;
  6243. }
  6244. const int n = ggml_nrows(src0);
  6245. const int nc = src0->ne[0];
  6246. assert(dst->nb[0] == sizeof(float));
  6247. assert(src0->nb[0] == sizeof(float));
  6248. for (int i = 0; i < n; i++) {
  6249. ggml_vec_step_f32(nc,
  6250. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6251. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6252. }
  6253. }
  6254. static void ggml_compute_forward_step(
  6255. const struct ggml_compute_params * params,
  6256. const struct ggml_tensor * src0,
  6257. struct ggml_tensor * dst) {
  6258. switch (src0->type) {
  6259. case GGML_TYPE_F32:
  6260. {
  6261. ggml_compute_forward_step_f32(params, src0, dst);
  6262. } break;
  6263. default:
  6264. {
  6265. GGML_ASSERT(false);
  6266. } break;
  6267. }
  6268. }
  6269. // ggml_compute_forward_relu
  6270. static void ggml_compute_forward_relu_f32(
  6271. const struct ggml_compute_params * params,
  6272. const struct ggml_tensor * src0,
  6273. struct ggml_tensor * dst) {
  6274. assert(params->ith == 0);
  6275. assert(ggml_are_same_shape(src0, dst));
  6276. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6277. return;
  6278. }
  6279. const int n = ggml_nrows(src0);
  6280. const int nc = src0->ne[0];
  6281. assert(dst->nb[0] == sizeof(float));
  6282. assert(src0->nb[0] == sizeof(float));
  6283. for (int i = 0; i < n; i++) {
  6284. ggml_vec_relu_f32(nc,
  6285. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6286. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6287. }
  6288. }
  6289. static void ggml_compute_forward_relu(
  6290. const struct ggml_compute_params * params,
  6291. const struct ggml_tensor * src0,
  6292. struct ggml_tensor * dst) {
  6293. switch (src0->type) {
  6294. case GGML_TYPE_F32:
  6295. {
  6296. ggml_compute_forward_relu_f32(params, src0, dst);
  6297. } break;
  6298. default:
  6299. {
  6300. GGML_ASSERT(false);
  6301. } break;
  6302. }
  6303. }
  6304. // ggml_compute_forward_gelu
  6305. static void ggml_compute_forward_gelu_f32(
  6306. const struct ggml_compute_params * params,
  6307. const struct ggml_tensor * src0,
  6308. struct ggml_tensor * dst) {
  6309. GGML_ASSERT(ggml_is_contiguous(src0));
  6310. GGML_ASSERT(ggml_is_contiguous(dst));
  6311. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6313. return;
  6314. }
  6315. const int ith = params->ith;
  6316. const int nth = params->nth;
  6317. const int nc = src0->ne[0];
  6318. const int nr = ggml_nrows(src0);
  6319. // rows per thread
  6320. const int dr = (nr + nth - 1)/nth;
  6321. // row range for this thread
  6322. const int ir0 = dr*ith;
  6323. const int ir1 = MIN(ir0 + dr, nr);
  6324. for (int i1 = ir0; i1 < ir1; i1++) {
  6325. ggml_vec_gelu_f32(nc,
  6326. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6327. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6328. #ifndef NDEBUG
  6329. for (int k = 0; k < nc; k++) {
  6330. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6331. UNUSED(x);
  6332. assert(!isnan(x));
  6333. assert(!isinf(x));
  6334. }
  6335. #endif
  6336. }
  6337. }
  6338. static void ggml_compute_forward_gelu(
  6339. const struct ggml_compute_params * params,
  6340. const struct ggml_tensor * src0,
  6341. struct ggml_tensor * dst) {
  6342. switch (src0->type) {
  6343. case GGML_TYPE_F32:
  6344. {
  6345. ggml_compute_forward_gelu_f32(params, src0, dst);
  6346. } break;
  6347. default:
  6348. {
  6349. GGML_ASSERT(false);
  6350. } break;
  6351. }
  6352. //printf("XXXXXXXX gelu\n");
  6353. }
  6354. // ggml_compute_forward_silu
  6355. static void ggml_compute_forward_silu_f32(
  6356. const struct ggml_compute_params * params,
  6357. const struct ggml_tensor * src0,
  6358. struct ggml_tensor * dst) {
  6359. GGML_ASSERT(ggml_is_contiguous(src0));
  6360. GGML_ASSERT(ggml_is_contiguous(dst));
  6361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6363. return;
  6364. }
  6365. const int ith = params->ith;
  6366. const int nth = params->nth;
  6367. const int nc = src0->ne[0];
  6368. const int nr = ggml_nrows(src0);
  6369. // rows per thread
  6370. const int dr = (nr + nth - 1)/nth;
  6371. // row range for this thread
  6372. const int ir0 = dr*ith;
  6373. const int ir1 = MIN(ir0 + dr, nr);
  6374. for (int i1 = ir0; i1 < ir1; i1++) {
  6375. ggml_vec_silu_f32(nc,
  6376. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6377. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6378. #ifndef NDEBUG
  6379. for (int k = 0; k < nc; k++) {
  6380. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6381. UNUSED(x);
  6382. assert(!isnan(x));
  6383. assert(!isinf(x));
  6384. }
  6385. #endif
  6386. }
  6387. }
  6388. static void ggml_compute_forward_silu(
  6389. const struct ggml_compute_params * params,
  6390. const struct ggml_tensor * src0,
  6391. struct ggml_tensor * dst) {
  6392. switch (src0->type) {
  6393. case GGML_TYPE_F32:
  6394. {
  6395. ggml_compute_forward_silu_f32(params, src0, dst);
  6396. } break;
  6397. default:
  6398. {
  6399. GGML_ASSERT(false);
  6400. } break;
  6401. }
  6402. }
  6403. // ggml_compute_forward_norm
  6404. static void ggml_compute_forward_norm_f32(
  6405. const struct ggml_compute_params * params,
  6406. const struct ggml_tensor * src0,
  6407. struct ggml_tensor * dst) {
  6408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6410. return;
  6411. }
  6412. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6413. const int ith = params->ith;
  6414. const int nth = params->nth;
  6415. const int64_t ne00 = src0->ne[0];
  6416. const int64_t ne01 = src0->ne[1];
  6417. const int64_t ne02 = src0->ne[2];
  6418. const int64_t ne03 = src0->ne[3];
  6419. const size_t nb01 = src0->nb[1];
  6420. const size_t nb02 = src0->nb[2];
  6421. const size_t nb03 = src0->nb[3];
  6422. const size_t nb1 = dst->nb[1];
  6423. const size_t nb2 = dst->nb[2];
  6424. const size_t nb3 = dst->nb[3];
  6425. const float eps = 1e-5f; // TODO: make this a parameter
  6426. // TODO: optimize
  6427. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6429. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6430. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6431. ggml_float sum = 0.0;
  6432. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6433. sum += (ggml_float)x[i00];
  6434. }
  6435. float mean = sum/ne00;
  6436. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6437. ggml_float sum2 = 0.0;
  6438. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6439. float v = x[i00] - mean;
  6440. y[i00] = v;
  6441. sum2 += (ggml_float)(v*v);
  6442. }
  6443. float variance = sum2/ne00;
  6444. const float scale = 1.0f/sqrtf(variance + eps);
  6445. ggml_vec_scale_f32(ne00, y, scale);
  6446. }
  6447. }
  6448. }
  6449. }
  6450. static void ggml_compute_forward_norm(
  6451. const struct ggml_compute_params * params,
  6452. const struct ggml_tensor * src0,
  6453. struct ggml_tensor * dst) {
  6454. switch (src0->type) {
  6455. case GGML_TYPE_F32:
  6456. {
  6457. ggml_compute_forward_norm_f32(params, src0, dst);
  6458. } break;
  6459. default:
  6460. {
  6461. GGML_ASSERT(false);
  6462. } break;
  6463. }
  6464. }
  6465. static void ggml_compute_forward_rms_norm_f32(
  6466. const struct ggml_compute_params * params,
  6467. const struct ggml_tensor * src0,
  6468. struct ggml_tensor * dst) {
  6469. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6471. return;
  6472. }
  6473. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6474. const int ith = params->ith;
  6475. const int nth = params->nth;
  6476. const int64_t ne00 = src0->ne[0];
  6477. const int64_t ne01 = src0->ne[1];
  6478. const int64_t ne02 = src0->ne[2];
  6479. const int64_t ne03 = src0->ne[3];
  6480. const size_t nb01 = src0->nb[1];
  6481. const size_t nb02 = src0->nb[2];
  6482. const size_t nb03 = src0->nb[3];
  6483. const size_t nb1 = dst->nb[1];
  6484. const size_t nb2 = dst->nb[2];
  6485. const size_t nb3 = dst->nb[3];
  6486. const float eps = 1e-6f; // TODO: make this a parameter
  6487. // TODO: optimize
  6488. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6489. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6490. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6491. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6492. ggml_float sum = 0.0;
  6493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6494. sum += (ggml_float)(x[i00] * x[i00]);
  6495. }
  6496. float mean = sum/ne00;
  6497. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6498. memcpy(y, x, ne00 * sizeof(float));
  6499. // for (int i00 = 0; i00 < ne00; i00++) {
  6500. // y[i00] = x[i00];
  6501. // }
  6502. const float scale = 1.0f/sqrtf(mean + eps);
  6503. ggml_vec_scale_f32(ne00, y, scale);
  6504. }
  6505. }
  6506. }
  6507. }
  6508. static void ggml_compute_forward_rms_norm(
  6509. const struct ggml_compute_params * params,
  6510. const struct ggml_tensor * src0,
  6511. struct ggml_tensor * dst) {
  6512. switch (src0->type) {
  6513. case GGML_TYPE_F32:
  6514. {
  6515. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6516. } break;
  6517. default:
  6518. {
  6519. GGML_ASSERT(false);
  6520. } break;
  6521. }
  6522. }
  6523. // ggml_compute_forward_mul_mat
  6524. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6525. // helper function to determine if it is better to use BLAS or not
  6526. // for large matrices, BLAS is faster
  6527. static bool ggml_compute_forward_mul_mat_use_blas(
  6528. const struct ggml_tensor * src0,
  6529. const struct ggml_tensor * src1,
  6530. struct ggml_tensor * dst) {
  6531. //const int64_t ne00 = src0->ne[0];
  6532. //const int64_t ne01 = src0->ne[1];
  6533. const int64_t ne10 = src1->ne[0];
  6534. const int64_t ne0 = dst->ne[0];
  6535. const int64_t ne1 = dst->ne[1];
  6536. // TODO: find the optimal values for these
  6537. if (ggml_is_contiguous(src0) &&
  6538. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6539. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6540. return true;
  6541. }
  6542. return false;
  6543. }
  6544. #endif
  6545. static void ggml_compute_forward_mul_mat_f32(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. const struct ggml_tensor * src1,
  6549. struct ggml_tensor * dst) {
  6550. int64_t t0 = ggml_perf_time_us();
  6551. UNUSED(t0);
  6552. const int64_t ne00 = src0->ne[0];
  6553. const int64_t ne01 = src0->ne[1];
  6554. const int64_t ne02 = src0->ne[2];
  6555. const int64_t ne03 = src0->ne[3];
  6556. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6557. const int64_t ne10 = src1->ne[0];
  6558. #endif
  6559. const int64_t ne11 = src1->ne[1];
  6560. #ifndef NDEBUG
  6561. const int64_t ne12 = src1->ne[2];
  6562. const int64_t ne13 = src1->ne[3];
  6563. const int64_t ne0 = dst->ne[0];
  6564. const int64_t ne1 = dst->ne[1];
  6565. const int64_t ne2 = dst->ne[2];
  6566. const int64_t ne3 = dst->ne[3];
  6567. const int nb00 = src0->nb[0];
  6568. #endif
  6569. const int nb01 = src0->nb[1];
  6570. const int nb02 = src0->nb[2];
  6571. const int nb03 = src0->nb[3];
  6572. #ifndef NDEBUG
  6573. const int nb10 = src1->nb[0];
  6574. #endif
  6575. const int nb11 = src1->nb[1];
  6576. const int nb12 = src1->nb[2];
  6577. const int nb13 = src1->nb[3];
  6578. const int nb0 = dst->nb[0];
  6579. const int nb1 = dst->nb[1];
  6580. const int nb2 = dst->nb[2];
  6581. const int nb3 = dst->nb[3];
  6582. const int ith = params->ith;
  6583. const int nth = params->nth;
  6584. assert(ne02 == ne12);
  6585. assert(ne03 == ne13);
  6586. assert(ne2 == ne12);
  6587. assert(ne3 == ne13);
  6588. // we don't support permuted src0 or src1
  6589. assert(nb00 == sizeof(float));
  6590. assert(nb10 == sizeof(float));
  6591. // dst cannot be transposed or permuted
  6592. assert(nb0 == sizeof(float));
  6593. assert(nb0 <= nb1);
  6594. assert(nb1 <= nb2);
  6595. assert(nb2 <= nb3);
  6596. assert(ne0 == ne01);
  6597. assert(ne1 == ne11);
  6598. assert(ne2 == ne02);
  6599. assert(ne3 == ne03);
  6600. // nb01 >= nb00 - src0 is not transposed
  6601. // compute by src0 rows
  6602. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6603. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6604. if (params->ith != 0) {
  6605. return;
  6606. }
  6607. if (params->type == GGML_TASK_INIT) {
  6608. return;
  6609. }
  6610. if (params->type == GGML_TASK_FINALIZE) {
  6611. return;
  6612. }
  6613. #if defined(GGML_USE_CUBLAS)
  6614. const float alpha = 1.0f;
  6615. const float beta = 0.0f;
  6616. const int x_ne = ne01 * ne10;
  6617. const int y_ne = ne11 * ne10;
  6618. const int d_ne = ne11 * ne01;
  6619. size_t x_size, y_size, d_size;
  6620. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6621. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6622. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6623. #endif
  6624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6626. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6627. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6628. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6629. #if defined(GGML_USE_CUBLAS)
  6630. // copy data to device
  6631. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6632. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6633. // compute
  6634. CUBLAS_CHECK(
  6635. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6636. ne01, ne11, ne10,
  6637. &alpha, d_X, ne00,
  6638. d_Y, ne10,
  6639. &beta, d_D, ne01));
  6640. // copy data to host
  6641. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6642. #else
  6643. // zT = y * xT
  6644. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6645. ne11, ne01, ne10,
  6646. 1.0f, y, ne10,
  6647. x, ne00,
  6648. 0.0f, d, ne01);
  6649. #endif
  6650. }
  6651. }
  6652. #if defined(GGML_USE_CUBLAS)
  6653. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6654. ggml_cuda_pool_free(d_X, x_size);
  6655. ggml_cuda_pool_free(d_Y, y_size);
  6656. ggml_cuda_pool_free(d_D, d_size);
  6657. #endif
  6658. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6659. return;
  6660. }
  6661. #endif
  6662. if (params->type == GGML_TASK_INIT) {
  6663. return;
  6664. }
  6665. if (params->type == GGML_TASK_FINALIZE) {
  6666. return;
  6667. }
  6668. // parallelize by src0 rows using ggml_vec_dot_f32
  6669. // total rows in src0
  6670. const int nr = ne01*ne02*ne03;
  6671. // rows per thread
  6672. const int dr = (nr + nth - 1)/nth;
  6673. // row range for this thread
  6674. const int ir0 = dr*ith;
  6675. const int ir1 = MIN(ir0 + dr, nr);
  6676. for (int ir = ir0; ir < ir1; ++ir) {
  6677. // src0 indices
  6678. const int i03 = ir/(ne02*ne01);
  6679. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6680. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6681. for (int64_t ic = 0; ic < ne11; ++ic) {
  6682. // src1 indices
  6683. const int i13 = i03;
  6684. const int i12 = i02;
  6685. const int i11 = ic;
  6686. // dst indices
  6687. const int i0 = i01;
  6688. const int i1 = i11;
  6689. const int i2 = i02;
  6690. const int i3 = i03;
  6691. ggml_vec_dot_f32(ne00,
  6692. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6693. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6694. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6695. }
  6696. }
  6697. //int64_t t1 = ggml_perf_time_us();
  6698. //static int64_t acc = 0;
  6699. //acc += t1 - t0;
  6700. //if (t1 - t0 > 10) {
  6701. // printf("\n");
  6702. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6703. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6704. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6705. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6706. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6707. //}
  6708. }
  6709. static void ggml_compute_forward_mul_mat_f16_f32(
  6710. const struct ggml_compute_params * params,
  6711. const struct ggml_tensor * src0,
  6712. const struct ggml_tensor * src1,
  6713. struct ggml_tensor * dst) {
  6714. int64_t t0 = ggml_perf_time_us();
  6715. UNUSED(t0);
  6716. const int64_t ne00 = src0->ne[0];
  6717. const int64_t ne01 = src0->ne[1];
  6718. const int64_t ne02 = src0->ne[2];
  6719. const int64_t ne03 = src0->ne[3];
  6720. const int64_t ne10 = src1->ne[0];
  6721. const int64_t ne11 = src1->ne[1];
  6722. const int64_t ne12 = src1->ne[2];
  6723. const int64_t ne13 = src1->ne[3];
  6724. const int64_t ne0 = dst->ne[0];
  6725. const int64_t ne1 = dst->ne[1];
  6726. const int64_t ne2 = dst->ne[2];
  6727. const int64_t ne3 = dst->ne[3];
  6728. //const int64_t ne = ne0*ne1*ne2*ne3;
  6729. const int nb00 = src0->nb[0];
  6730. const int nb01 = src0->nb[1];
  6731. const int nb02 = src0->nb[2];
  6732. const int nb03 = src0->nb[3];
  6733. const int nb10 = src1->nb[0];
  6734. const int nb11 = src1->nb[1];
  6735. const int nb12 = src1->nb[2];
  6736. const int nb13 = src1->nb[3];
  6737. const int nb0 = dst->nb[0];
  6738. const int nb1 = dst->nb[1];
  6739. const int nb2 = dst->nb[2];
  6740. const int nb3 = dst->nb[3];
  6741. const int ith = params->ith;
  6742. const int nth = params->nth;
  6743. GGML_ASSERT(ne02 == ne12);
  6744. GGML_ASSERT(ne03 == ne13);
  6745. GGML_ASSERT(ne2 == ne12);
  6746. GGML_ASSERT(ne3 == ne13);
  6747. // TODO: we don't support permuted src0
  6748. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6749. // dst cannot be transposed or permuted
  6750. GGML_ASSERT(nb0 == sizeof(float));
  6751. GGML_ASSERT(nb0 <= nb1);
  6752. GGML_ASSERT(nb1 <= nb2);
  6753. GGML_ASSERT(nb2 <= nb3);
  6754. GGML_ASSERT(ne0 == ne01);
  6755. GGML_ASSERT(ne1 == ne11);
  6756. GGML_ASSERT(ne2 == ne02);
  6757. GGML_ASSERT(ne3 == ne03);
  6758. // nb01 >= nb00 - src0 is not transposed
  6759. // compute by src0 rows
  6760. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6761. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6762. GGML_ASSERT(nb10 == sizeof(float));
  6763. if (params->ith != 0) {
  6764. return;
  6765. }
  6766. if (params->type == GGML_TASK_INIT) {
  6767. return;
  6768. }
  6769. if (params->type == GGML_TASK_FINALIZE) {
  6770. return;
  6771. }
  6772. #if defined(GGML_USE_CUBLAS)
  6773. ggml_fp16_t * const wdata = params->wdata;
  6774. const float alpha = 1.0f;
  6775. const float beta = 0.0f;
  6776. const int x_ne = ne01 * ne10;
  6777. const int y_ne = ne11 * ne10;
  6778. const int d_ne = ne11 * ne01;
  6779. size_t x_size, y_size, d_size;
  6780. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6781. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6782. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6783. #else
  6784. float * const wdata = params->wdata;
  6785. #endif
  6786. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6787. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6788. #if defined(GGML_USE_CUBLAS)
  6789. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6790. {
  6791. size_t id = 0;
  6792. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6793. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6794. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6795. }
  6796. }
  6797. }
  6798. #else
  6799. {
  6800. size_t id = 0;
  6801. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6802. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6803. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6804. }
  6805. }
  6806. }
  6807. #endif
  6808. #if defined(GGML_USE_CUBLAS)
  6809. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6810. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6811. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6812. // copy data to device
  6813. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6814. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6815. // compute
  6816. CUBLAS_CHECK(
  6817. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6818. ne01, ne11, ne10,
  6819. &alpha, d_X, CUDA_R_16F, ne00,
  6820. d_Y, CUDA_R_16F, ne10,
  6821. &beta, d_D, CUDA_R_32F, ne01,
  6822. CUBLAS_COMPUTE_32F,
  6823. CUBLAS_GEMM_DEFAULT));
  6824. // copy data to host
  6825. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6826. #else
  6827. const float * x = wdata;
  6828. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6829. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6830. // zT = y * xT
  6831. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6832. ne11, ne01, ne10,
  6833. 1.0f, y, ne10,
  6834. x, ne00,
  6835. 0.0f, d, ne01);
  6836. #endif
  6837. }
  6838. }
  6839. #if defined(GGML_USE_CUBLAS)
  6840. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6841. ggml_cuda_pool_free(d_X, x_size);
  6842. ggml_cuda_pool_free(d_Y, y_size);
  6843. ggml_cuda_pool_free(d_D, d_size);
  6844. #endif
  6845. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6846. return;
  6847. }
  6848. #endif
  6849. if (params->type == GGML_TASK_INIT) {
  6850. ggml_fp16_t * const wdata = params->wdata;
  6851. size_t id = 0;
  6852. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6853. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6854. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6855. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6856. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6857. }
  6858. }
  6859. }
  6860. }
  6861. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6862. return;
  6863. }
  6864. if (params->type == GGML_TASK_FINALIZE) {
  6865. return;
  6866. }
  6867. // fp16 -> half the size, so divide by 2
  6868. // TODO: do not support transposed src1
  6869. assert(nb10/2 == sizeof(ggml_fp16_t));
  6870. // parallelize by src0 rows using ggml_vec_dot_f16
  6871. // total rows in src0
  6872. const int nr = ne01*ne02*ne03;
  6873. // rows per thread
  6874. const int dr = (nr + nth - 1)/nth;
  6875. // row range for this thread
  6876. const int ir0 = dr*ith;
  6877. const int ir1 = MIN(ir0 + dr, nr);
  6878. ggml_fp16_t * wdata = params->wdata;
  6879. for (int ir = ir0; ir < ir1; ++ir) {
  6880. // src0 indices
  6881. const int i03 = ir/(ne02*ne01);
  6882. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6883. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6884. const int i13 = i03;
  6885. const int i12 = i02;
  6886. const int i0 = i01;
  6887. const int i2 = i02;
  6888. const int i3 = i03;
  6889. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6890. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6891. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6892. for (int64_t ic = 0; ic < ne11; ++ic) {
  6893. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6894. }
  6895. }
  6896. //int64_t t1 = ggml_time_us();
  6897. //static int64_t acc = 0;
  6898. //acc += t1 - t0;
  6899. //if (t1 - t0 > 10) {
  6900. // printf("\n");
  6901. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6902. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6903. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6904. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6905. //}
  6906. }
  6907. static void ggml_compute_forward_mul_mat_q_f32(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. const struct ggml_tensor * src1,
  6911. struct ggml_tensor * dst) {
  6912. int64_t t0 = ggml_perf_time_us();
  6913. UNUSED(t0);
  6914. const int64_t ne00 = src0->ne[0];
  6915. const int64_t ne01 = src0->ne[1];
  6916. const int64_t ne02 = src0->ne[2];
  6917. const int64_t ne03 = src0->ne[3];
  6918. const int64_t ne10 = src1->ne[0];
  6919. const int64_t ne11 = src1->ne[1];
  6920. const int64_t ne12 = src1->ne[2];
  6921. const int64_t ne13 = src1->ne[3];
  6922. const int64_t ne0 = dst->ne[0];
  6923. const int64_t ne1 = dst->ne[1];
  6924. const int64_t ne2 = dst->ne[2];
  6925. const int64_t ne3 = dst->ne[3];
  6926. const int nb00 = src0->nb[0];
  6927. const int nb01 = src0->nb[1];
  6928. const int nb02 = src0->nb[2];
  6929. const int nb03 = src0->nb[3];
  6930. const int nb10 = src1->nb[0];
  6931. const int nb11 = src1->nb[1];
  6932. const int nb12 = src1->nb[2];
  6933. const int nb13 = src1->nb[3];
  6934. const int nb0 = dst->nb[0];
  6935. const int nb1 = dst->nb[1];
  6936. const int nb2 = dst->nb[2];
  6937. const int nb3 = dst->nb[3];
  6938. const int ith = params->ith;
  6939. const int nth = params->nth;
  6940. GGML_ASSERT(ne02 == ne12);
  6941. GGML_ASSERT(ne03 == ne13);
  6942. GGML_ASSERT(ne2 == ne12);
  6943. GGML_ASSERT(ne3 == ne13);
  6944. const enum ggml_type type = src0->type;
  6945. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6946. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6947. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6948. // we don't support permuted src0 or src1
  6949. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6950. GGML_ASSERT(nb10 == sizeof(float));
  6951. // dst cannot be transposed or permuted
  6952. GGML_ASSERT(nb0 == sizeof(float));
  6953. GGML_ASSERT(nb0 <= nb1);
  6954. GGML_ASSERT(nb1 <= nb2);
  6955. GGML_ASSERT(nb2 <= nb3);
  6956. GGML_ASSERT(ne0 == ne01);
  6957. GGML_ASSERT(ne1 == ne11);
  6958. GGML_ASSERT(ne2 == ne02);
  6959. GGML_ASSERT(ne3 == ne03);
  6960. // nb01 >= nb00 - src0 is not transposed
  6961. // compute by src0 rows
  6962. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6963. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6964. if (params->ith != 0) {
  6965. return;
  6966. }
  6967. if (params->type == GGML_TASK_INIT) {
  6968. return;
  6969. }
  6970. if (params->type == GGML_TASK_FINALIZE) {
  6971. return;
  6972. }
  6973. #if defined(GGML_USE_CUBLAS)
  6974. const float alpha = 1.0f;
  6975. const float beta = 0.0f;
  6976. const int x_ne = ne01 * ne10;
  6977. const int y_ne = ne11 * ne10;
  6978. const int d_ne = ne11 * ne01;
  6979. size_t x_size, y_size, d_size, q_size;
  6980. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6981. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6982. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6983. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6984. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6985. if (type == GGML_TYPE_Q4_0) {
  6986. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6987. }
  6988. else if (type == GGML_TYPE_Q4_1) {
  6989. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6990. }
  6991. else if (type == GGML_TYPE_Q4_2) {
  6992. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6993. }
  6994. else if (type == GGML_TYPE_Q4_3) {
  6995. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  6996. }
  6997. else if (type == GGML_TYPE_Q5_0) {
  6998. dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
  6999. }
  7000. else if (type == GGML_TYPE_Q5_1) {
  7001. dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
  7002. }
  7003. else if (type == GGML_TYPE_Q8_0) {
  7004. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  7005. }
  7006. else {
  7007. GGML_ASSERT(false);
  7008. }
  7009. #else
  7010. float * const wdata = params->wdata;
  7011. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7012. #endif
  7013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7015. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7016. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7017. #if defined(GGML_USE_CUBLAS)
  7018. // copy and dequantize on device
  7019. CUDA_CHECK(
  7020. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  7021. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  7022. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  7023. CUDA_CHECK(cudaGetLastError());
  7024. #else
  7025. {
  7026. size_t id = 0;
  7027. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7028. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7029. id += ne00;
  7030. }
  7031. }
  7032. const float * x = wdata;
  7033. #endif
  7034. #if defined(GGML_USE_CUBLAS)
  7035. // copy data to device
  7036. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  7037. // compute
  7038. CUBLAS_CHECK(
  7039. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  7040. ne01, ne11, ne10,
  7041. &alpha, d_X, ne00,
  7042. d_Y, ne10,
  7043. &beta, d_D, ne01));
  7044. // copy data to host
  7045. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  7046. #else
  7047. // zT = y * xT
  7048. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7049. ne11, ne01, ne10,
  7050. 1.0f, y, ne10,
  7051. x, ne00,
  7052. 0.0f, d, ne01);
  7053. #endif
  7054. }
  7055. }
  7056. #if defined(GGML_USE_CUBLAS)
  7057. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  7058. ggml_cuda_pool_free(d_X, x_size);
  7059. ggml_cuda_pool_free(d_Y, y_size);
  7060. ggml_cuda_pool_free(d_D, d_size);
  7061. ggml_cuda_pool_free(d_Q, q_size);
  7062. #endif
  7063. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7064. return;
  7065. }
  7066. #endif
  7067. if (params->type == GGML_TASK_INIT) {
  7068. char * wdata = params->wdata;
  7069. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7070. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7071. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7072. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7073. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7074. wdata += row_size;
  7075. }
  7076. }
  7077. }
  7078. return;
  7079. }
  7080. if (params->type == GGML_TASK_FINALIZE) {
  7081. return;
  7082. }
  7083. // parallelize by src0 rows using ggml_vec_dot_q
  7084. // total rows in src0
  7085. const int nr = ne01*ne02*ne03;
  7086. // rows per thread
  7087. const int dr = (nr + nth - 1)/nth;
  7088. // row range for this thread
  7089. const int ir0 = dr*ith;
  7090. const int ir1 = MIN(ir0 + dr, nr);
  7091. void * wdata = params->wdata;
  7092. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7093. for (int ir = ir0; ir < ir1; ++ir) {
  7094. // src0 indices
  7095. const int i03 = ir/(ne02*ne01);
  7096. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7097. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7098. const int i13 = i03;
  7099. const int i12 = i02;
  7100. const int i0 = i01;
  7101. const int i2 = i02;
  7102. const int i3 = i03;
  7103. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7104. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7105. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7106. assert(ne00 % 32 == 0);
  7107. for (int64_t ic = 0; ic < ne11; ++ic) {
  7108. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7109. }
  7110. }
  7111. //int64_t t1 = ggml_time_us();
  7112. //static int64_t acc = 0;
  7113. //acc += t1 - t0;
  7114. //if (t1 - t0 > 10) {
  7115. // printf("\n");
  7116. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7117. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7118. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7119. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7120. //}
  7121. }
  7122. static void ggml_compute_forward_mul_mat(
  7123. const struct ggml_compute_params * params,
  7124. const struct ggml_tensor * src0,
  7125. const struct ggml_tensor * src1,
  7126. struct ggml_tensor * dst) {
  7127. switch (src0->type) {
  7128. case GGML_TYPE_Q4_0:
  7129. case GGML_TYPE_Q4_1:
  7130. case GGML_TYPE_Q4_2:
  7131. case GGML_TYPE_Q4_3:
  7132. case GGML_TYPE_Q5_0:
  7133. case GGML_TYPE_Q5_1:
  7134. case GGML_TYPE_Q8_0:
  7135. case GGML_TYPE_Q8_1:
  7136. {
  7137. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7138. } break;
  7139. case GGML_TYPE_F16:
  7140. {
  7141. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7142. } break;
  7143. case GGML_TYPE_F32:
  7144. {
  7145. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7146. } break;
  7147. default:
  7148. {
  7149. GGML_ASSERT(false);
  7150. } break;
  7151. }
  7152. }
  7153. // ggml_compute_forward_scale
  7154. static void ggml_compute_forward_scale_f32(
  7155. const struct ggml_compute_params * params,
  7156. const struct ggml_tensor * src0,
  7157. const struct ggml_tensor * src1,
  7158. struct ggml_tensor * dst) {
  7159. GGML_ASSERT(ggml_is_contiguous(src0));
  7160. GGML_ASSERT(ggml_is_contiguous(dst));
  7161. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7162. GGML_ASSERT(ggml_is_scalar(src1));
  7163. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7164. return;
  7165. }
  7166. // scale factor
  7167. const float v = *(float *) src1->data;
  7168. const int ith = params->ith;
  7169. const int nth = params->nth;
  7170. const int nc = src0->ne[0];
  7171. const int nr = ggml_nrows(src0);
  7172. // rows per thread
  7173. const int dr = (nr + nth - 1)/nth;
  7174. // row range for this thread
  7175. const int ir0 = dr*ith;
  7176. const int ir1 = MIN(ir0 + dr, nr);
  7177. for (int i1 = ir0; i1 < ir1; i1++) {
  7178. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7179. }
  7180. }
  7181. static void ggml_compute_forward_scale(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. const struct ggml_tensor * src1,
  7185. struct ggml_tensor * dst) {
  7186. switch (src0->type) {
  7187. case GGML_TYPE_F32:
  7188. {
  7189. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7190. } break;
  7191. default:
  7192. {
  7193. GGML_ASSERT(false);
  7194. } break;
  7195. }
  7196. }
  7197. // ggml_compute_forward_cpy
  7198. static void ggml_compute_forward_cpy(
  7199. const struct ggml_compute_params * params,
  7200. const struct ggml_tensor * src0,
  7201. struct ggml_tensor * dst) {
  7202. ggml_compute_forward_dup(params, src0, dst);
  7203. }
  7204. // ggml_compute_forward_cont
  7205. static void ggml_compute_forward_cont(
  7206. const struct ggml_compute_params * params,
  7207. const struct ggml_tensor * src0,
  7208. struct ggml_tensor * dst) {
  7209. ggml_compute_forward_dup(params, src0, dst);
  7210. }
  7211. // ggml_compute_forward_reshape
  7212. static void ggml_compute_forward_reshape(
  7213. const struct ggml_compute_params * params,
  7214. const struct ggml_tensor * src0,
  7215. struct ggml_tensor * dst) {
  7216. // NOP
  7217. UNUSED(params);
  7218. UNUSED(src0);
  7219. UNUSED(dst);
  7220. }
  7221. // ggml_compute_forward_view
  7222. static void ggml_compute_forward_view(
  7223. const struct ggml_compute_params * params,
  7224. const struct ggml_tensor * src0) {
  7225. // NOP
  7226. UNUSED(params);
  7227. UNUSED(src0);
  7228. }
  7229. // ggml_compute_forward_permute
  7230. static void ggml_compute_forward_permute(
  7231. const struct ggml_compute_params * params,
  7232. const struct ggml_tensor * src0) {
  7233. // NOP
  7234. UNUSED(params);
  7235. UNUSED(src0);
  7236. }
  7237. // ggml_compute_forward_transpose
  7238. static void ggml_compute_forward_transpose(
  7239. const struct ggml_compute_params * params,
  7240. const struct ggml_tensor * src0) {
  7241. // NOP
  7242. UNUSED(params);
  7243. UNUSED(src0);
  7244. }
  7245. // ggml_compute_forward_get_rows
  7246. static void ggml_compute_forward_get_rows_q(
  7247. const struct ggml_compute_params * params,
  7248. const struct ggml_tensor * src0,
  7249. const struct ggml_tensor * src1,
  7250. struct ggml_tensor * dst) {
  7251. assert(params->ith == 0);
  7252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7253. return;
  7254. }
  7255. const int nc = src0->ne[0];
  7256. const int nr = ggml_nelements(src1);
  7257. const enum ggml_type type = src0->type;
  7258. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7259. assert( dst->ne[0] == nc);
  7260. assert( dst->ne[1] == nr);
  7261. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7262. for (int i = 0; i < nr; ++i) {
  7263. const int r = ((int32_t *) src1->data)[i];
  7264. dequantize_row_q(
  7265. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7266. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7267. }
  7268. }
  7269. static void ggml_compute_forward_get_rows_f16(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. const struct ggml_tensor * src1,
  7273. struct ggml_tensor * dst) {
  7274. assert(params->ith == 0);
  7275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7276. return;
  7277. }
  7278. const int nc = src0->ne[0];
  7279. const int nr = ggml_nelements(src1);
  7280. assert( dst->ne[0] == nc);
  7281. assert( dst->ne[1] == nr);
  7282. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7283. for (int i = 0; i < nr; ++i) {
  7284. const int r = ((int32_t *) src1->data)[i];
  7285. for (int j = 0; j < nc; ++j) {
  7286. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7287. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7288. }
  7289. }
  7290. }
  7291. static void ggml_compute_forward_get_rows_f32(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0,
  7294. const struct ggml_tensor * src1,
  7295. struct ggml_tensor * dst) {
  7296. assert(params->ith == 0);
  7297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7298. return;
  7299. }
  7300. const int nc = src0->ne[0];
  7301. const int nr = ggml_nelements(src1);
  7302. assert( dst->ne[0] == nc);
  7303. assert( dst->ne[1] == nr);
  7304. assert(src0->nb[0] == sizeof(float));
  7305. for (int i = 0; i < nr; ++i) {
  7306. const int r = ((int32_t *) src1->data)[i];
  7307. ggml_vec_cpy_f32(nc,
  7308. (float *) ((char *) dst->data + i*dst->nb[1]),
  7309. (float *) ((char *) src0->data + r*src0->nb[1]));
  7310. }
  7311. }
  7312. static void ggml_compute_forward_get_rows(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. const struct ggml_tensor * src1,
  7316. struct ggml_tensor * dst) {
  7317. switch (src0->type) {
  7318. case GGML_TYPE_Q4_0:
  7319. case GGML_TYPE_Q4_1:
  7320. case GGML_TYPE_Q4_2:
  7321. case GGML_TYPE_Q4_3:
  7322. case GGML_TYPE_Q5_0:
  7323. case GGML_TYPE_Q5_1:
  7324. case GGML_TYPE_Q8_0:
  7325. case GGML_TYPE_Q8_1:
  7326. {
  7327. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7328. } break;
  7329. case GGML_TYPE_F16:
  7330. {
  7331. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7332. } break;
  7333. case GGML_TYPE_F32:
  7334. {
  7335. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7336. } break;
  7337. default:
  7338. {
  7339. GGML_ASSERT(false);
  7340. } break;
  7341. }
  7342. //static bool first = true;
  7343. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7344. //if (first) {
  7345. // first = false;
  7346. //} else {
  7347. // for (int k = 0; k < dst->ne[1]; ++k) {
  7348. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7349. // for (int i = 0; i < 16; ++i) {
  7350. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7351. // }
  7352. // printf("\n");
  7353. // }
  7354. // printf("\n");
  7355. // }
  7356. // printf("\n");
  7357. // exit(0);
  7358. //}
  7359. }
  7360. // ggml_compute_forward_diag_mask_inf
  7361. static void ggml_compute_forward_diag_mask_inf_f32(
  7362. const struct ggml_compute_params * params,
  7363. const struct ggml_tensor * src0,
  7364. const struct ggml_tensor * src1,
  7365. struct ggml_tensor * dst) {
  7366. assert(params->ith == 0);
  7367. assert(src1->type == GGML_TYPE_I32);
  7368. assert(ggml_nelements(src1) == 1);
  7369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7370. return;
  7371. }
  7372. const int n_past = ((int32_t *) src1->data)[0];
  7373. // TODO: handle transposed/permuted matrices
  7374. const int n = ggml_nrows(src0);
  7375. const int nc = src0->ne[0];
  7376. const int nr = src0->ne[1];
  7377. const int nz = n/nr;
  7378. assert( dst->nb[0] == sizeof(float));
  7379. assert(src0->nb[0] == sizeof(float));
  7380. for (int k = 0; k < nz; k++) {
  7381. for (int j = 0; j < nr; j++) {
  7382. for (int i = n_past; i < nc; i++) {
  7383. if (i > n_past + j) {
  7384. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7385. }
  7386. }
  7387. }
  7388. }
  7389. }
  7390. static void ggml_compute_forward_diag_mask_inf(
  7391. const struct ggml_compute_params * params,
  7392. const struct ggml_tensor * src0,
  7393. const struct ggml_tensor * src1,
  7394. struct ggml_tensor * dst) {
  7395. switch (src0->type) {
  7396. case GGML_TYPE_F32:
  7397. {
  7398. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7399. } break;
  7400. default:
  7401. {
  7402. GGML_ASSERT(false);
  7403. } break;
  7404. }
  7405. }
  7406. // ggml_compute_forward_soft_max
  7407. static void ggml_compute_forward_soft_max_f32(
  7408. const struct ggml_compute_params * params,
  7409. const struct ggml_tensor * src0,
  7410. struct ggml_tensor * dst) {
  7411. GGML_ASSERT(ggml_is_contiguous(src0));
  7412. GGML_ASSERT(ggml_is_contiguous(dst));
  7413. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7415. return;
  7416. }
  7417. // TODO: handle transposed/permuted matrices
  7418. const int ith = params->ith;
  7419. const int nth = params->nth;
  7420. const int nc = src0->ne[0];
  7421. const int nr = ggml_nrows(src0);
  7422. // rows per thread
  7423. const int dr = (nr + nth - 1)/nth;
  7424. // row range for this thread
  7425. const int ir0 = dr*ith;
  7426. const int ir1 = MIN(ir0 + dr, nr);
  7427. for (int i1 = ir0; i1 < ir1; i1++) {
  7428. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7429. #ifndef NDEBUG
  7430. for (int i = 0; i < nc; ++i) {
  7431. //printf("p[%d] = %f\n", i, p[i]);
  7432. assert(!isnan(p[i]));
  7433. }
  7434. #endif
  7435. float max = -INFINITY;
  7436. ggml_vec_max_f32(nc, &max, p);
  7437. ggml_float sum = 0.0;
  7438. uint16_t scvt;
  7439. for (int i = 0; i < nc; i++) {
  7440. if (p[i] == -INFINITY) {
  7441. p[i] = 0.0f;
  7442. } else {
  7443. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7444. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7445. memcpy(&scvt, &s, sizeof(scvt));
  7446. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7447. sum += (ggml_float)val;
  7448. p[i] = val;
  7449. }
  7450. }
  7451. assert(sum > 0.0);
  7452. sum = 1.0/sum;
  7453. ggml_vec_scale_f32(nc, p, sum);
  7454. #ifndef NDEBUG
  7455. for (int i = 0; i < nc; ++i) {
  7456. assert(!isnan(p[i]));
  7457. assert(!isinf(p[i]));
  7458. }
  7459. #endif
  7460. }
  7461. }
  7462. static void ggml_compute_forward_soft_max(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. struct ggml_tensor * dst) {
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F32:
  7468. {
  7469. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7470. } break;
  7471. default:
  7472. {
  7473. GGML_ASSERT(false);
  7474. } break;
  7475. }
  7476. }
  7477. // ggml_compute_forward_rope
  7478. static void ggml_compute_forward_rope_f32(
  7479. const struct ggml_compute_params * params,
  7480. const struct ggml_tensor * src0,
  7481. const struct ggml_tensor * src1,
  7482. struct ggml_tensor * dst) {
  7483. assert(src1->type == GGML_TYPE_I32);
  7484. assert(ggml_nelements(src1) == 3);
  7485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7486. return;
  7487. }
  7488. const int n_past = ((int32_t *) src1->data)[0];
  7489. const int n_dims = ((int32_t *) src1->data)[1];
  7490. const int mode = ((int32_t *) src1->data)[2];
  7491. //const int64_t ne0 = src0->ne[0];
  7492. const int64_t ne1 = src0->ne[1];
  7493. const int64_t ne2 = src0->ne[2];
  7494. const int64_t ne3 = src0->ne[3];
  7495. const int nb0 = src0->nb[0];
  7496. const int nb1 = src0->nb[1];
  7497. const int nb2 = src0->nb[2];
  7498. const int nb3 = src0->nb[3];
  7499. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7500. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7501. assert(nb0 == sizeof(float));
  7502. const int ith = params->ith;
  7503. const int nth = params->nth;
  7504. const int nr = ggml_nrows(src0);
  7505. // rows per thread
  7506. const int dr = (nr + nth - 1)/nth;
  7507. // row range for this thread
  7508. const int ir0 = dr*ith;
  7509. const int ir1 = MIN(ir0 + dr, nr);
  7510. // row index used to determine which thread to use
  7511. int ir = 0;
  7512. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7513. const bool is_neox = mode & 2;
  7514. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7515. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7516. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7517. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7518. if (ir++ < ir0) continue;
  7519. if (ir > ir1) break;
  7520. float theta = (float)p;
  7521. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7522. const float cos_theta = cosf(theta);
  7523. const float sin_theta = sinf(theta);
  7524. theta *= theta_scale;
  7525. if (!is_neox) {
  7526. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7527. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7528. const float x0 = src[0];
  7529. const float x1 = src[1];
  7530. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7531. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7532. } else {
  7533. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7534. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7535. const float x0 = src[0];
  7536. const float x1 = src[n_dims/2];
  7537. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7538. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7539. }
  7540. }
  7541. }
  7542. }
  7543. }
  7544. }
  7545. static void ggml_compute_forward_rope_f16(
  7546. const struct ggml_compute_params * params,
  7547. const struct ggml_tensor * src0,
  7548. const struct ggml_tensor * src1,
  7549. struct ggml_tensor * dst) {
  7550. assert(src1->type == GGML_TYPE_I32);
  7551. assert(ggml_nelements(src1) == 3);
  7552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7553. return;
  7554. }
  7555. const int n_past = ((int32_t *) src1->data)[0];
  7556. const int n_dims = ((int32_t *) src1->data)[1];
  7557. const int mode = ((int32_t *) src1->data)[2];
  7558. //const int64_t ne0 = src0->ne[0];
  7559. const int64_t ne1 = src0->ne[1];
  7560. const int64_t ne2 = src0->ne[2];
  7561. const int64_t ne3 = src0->ne[3];
  7562. const int nb0 = src0->nb[0];
  7563. const int nb1 = src0->nb[1];
  7564. const int nb2 = src0->nb[2];
  7565. const int nb3 = src0->nb[3];
  7566. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7567. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7568. assert(nb0 == sizeof(ggml_fp16_t));
  7569. const int ith = params->ith;
  7570. const int nth = params->nth;
  7571. const int nr = ggml_nrows(src0);
  7572. // rows per thread
  7573. const int dr = (nr + nth - 1)/nth;
  7574. // row range for this thread
  7575. const int ir0 = dr*ith;
  7576. const int ir1 = MIN(ir0 + dr, nr);
  7577. // row index used to determine which thread to use
  7578. int ir = 0;
  7579. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7580. const bool is_neox = mode & 2;
  7581. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7582. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7583. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7584. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7585. if (ir++ < ir0) continue;
  7586. if (ir > ir1) break;
  7587. float theta = (float)p;
  7588. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7589. const float cos_theta = cosf(theta);
  7590. const float sin_theta = sinf(theta);
  7591. theta *= theta_scale;
  7592. if (!is_neox) {
  7593. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7594. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7595. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7596. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7597. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7598. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7599. } else {
  7600. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7601. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7602. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7603. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7604. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7605. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7606. }
  7607. }
  7608. }
  7609. }
  7610. }
  7611. }
  7612. static void ggml_compute_forward_rope(
  7613. const struct ggml_compute_params * params,
  7614. const struct ggml_tensor * src0,
  7615. const struct ggml_tensor * src1,
  7616. struct ggml_tensor * dst) {
  7617. switch (src0->type) {
  7618. case GGML_TYPE_F16:
  7619. {
  7620. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7621. } break;
  7622. case GGML_TYPE_F32:
  7623. {
  7624. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7625. } break;
  7626. default:
  7627. {
  7628. GGML_ASSERT(false);
  7629. } break;
  7630. }
  7631. }
  7632. // ggml_compute_forward_conv_1d_1s
  7633. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7634. const struct ggml_compute_params * params,
  7635. const struct ggml_tensor * src0,
  7636. const struct ggml_tensor * src1,
  7637. struct ggml_tensor * dst) {
  7638. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7639. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7640. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7641. int64_t t0 = ggml_perf_time_us();
  7642. UNUSED(t0);
  7643. const int64_t ne00 = src0->ne[0];
  7644. const int64_t ne01 = src0->ne[1];
  7645. const int64_t ne02 = src0->ne[2];
  7646. //const int64_t ne03 = src0->ne[3];
  7647. const int64_t ne10 = src1->ne[0];
  7648. const int64_t ne11 = src1->ne[1];
  7649. //const int64_t ne12 = src1->ne[2];
  7650. //const int64_t ne13 = src1->ne[3];
  7651. //const int64_t ne0 = dst->ne[0];
  7652. //const int64_t ne1 = dst->ne[1];
  7653. //const int64_t ne2 = dst->ne[2];
  7654. //const int64_t ne3 = dst->ne[3];
  7655. //const int64_t ne = ne0*ne1*ne2*ne3;
  7656. const int nb00 = src0->nb[0];
  7657. const int nb01 = src0->nb[1];
  7658. const int nb02 = src0->nb[2];
  7659. //const int nb03 = src0->nb[3];
  7660. const int nb10 = src1->nb[0];
  7661. const int nb11 = src1->nb[1];
  7662. //const int nb12 = src1->nb[2];
  7663. //const int nb13 = src1->nb[3];
  7664. //const int nb0 = dst->nb[0];
  7665. const int nb1 = dst->nb[1];
  7666. //const int nb2 = dst->nb[2];
  7667. //const int nb3 = dst->nb[3];
  7668. const int ith = params->ith;
  7669. const int nth = params->nth;
  7670. const int nk = ne00;
  7671. const int nh = nk/2;
  7672. const int ew0 = ggml_up32(ne01);
  7673. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7674. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7675. GGML_ASSERT(nb10 == sizeof(float));
  7676. if (params->type == GGML_TASK_INIT) {
  7677. // TODO: fix this memset (wsize is overestimated)
  7678. memset(params->wdata, 0, params->wsize);
  7679. // prepare kernel data (src0)
  7680. {
  7681. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7682. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7683. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7684. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7685. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7686. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7687. dst_data[i00*ew0 + i01] = src[i00];
  7688. }
  7689. }
  7690. }
  7691. }
  7692. // prepare source data (src1)
  7693. {
  7694. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7695. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7696. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7697. ggml_fp16_t * dst_data = wdata;
  7698. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7699. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7700. }
  7701. }
  7702. }
  7703. return;
  7704. }
  7705. if (params->type == GGML_TASK_FINALIZE) {
  7706. return;
  7707. }
  7708. // total rows in dst
  7709. const int nr = ne02;
  7710. // rows per thread
  7711. const int dr = (nr + nth - 1)/nth;
  7712. // row range for this thread
  7713. const int ir0 = dr*ith;
  7714. const int ir1 = MIN(ir0 + dr, nr);
  7715. for (int i1 = ir0; i1 < ir1; i1++) {
  7716. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7717. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7718. dst_data[i0] = 0;
  7719. for (int k = -nh; k <= nh; k++) {
  7720. float v = 0.0f;
  7721. ggml_vec_dot_f16(ew0, &v,
  7722. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7723. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7724. dst_data[i0] += v;
  7725. }
  7726. }
  7727. }
  7728. }
  7729. static void ggml_compute_forward_conv_1d_1s_f32(
  7730. const struct ggml_compute_params * params,
  7731. const struct ggml_tensor * src0,
  7732. const struct ggml_tensor * src1,
  7733. struct ggml_tensor * dst) {
  7734. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7735. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7736. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7737. int64_t t0 = ggml_perf_time_us();
  7738. UNUSED(t0);
  7739. const int64_t ne00 = src0->ne[0];
  7740. const int64_t ne01 = src0->ne[1];
  7741. const int64_t ne02 = src0->ne[2];
  7742. //const int64_t ne03 = src0->ne[3];
  7743. const int64_t ne10 = src1->ne[0];
  7744. const int64_t ne11 = src1->ne[1];
  7745. //const int64_t ne12 = src1->ne[2];
  7746. //const int64_t ne13 = src1->ne[3];
  7747. //const int64_t ne0 = dst->ne[0];
  7748. //const int64_t ne1 = dst->ne[1];
  7749. //const int64_t ne2 = dst->ne[2];
  7750. //const int64_t ne3 = dst->ne[3];
  7751. //const int64_t ne = ne0*ne1*ne2*ne3;
  7752. const int nb00 = src0->nb[0];
  7753. const int nb01 = src0->nb[1];
  7754. const int nb02 = src0->nb[2];
  7755. //const int nb03 = src0->nb[3];
  7756. const int nb10 = src1->nb[0];
  7757. const int nb11 = src1->nb[1];
  7758. //const int nb12 = src1->nb[2];
  7759. //const int nb13 = src1->nb[3];
  7760. //const int nb0 = dst->nb[0];
  7761. const int nb1 = dst->nb[1];
  7762. //const int nb2 = dst->nb[2];
  7763. //const int nb3 = dst->nb[3];
  7764. const int ith = params->ith;
  7765. const int nth = params->nth;
  7766. const int nk = ne00;
  7767. const int nh = nk/2;
  7768. const int ew0 = ggml_up32(ne01);
  7769. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7770. GGML_ASSERT(nb00 == sizeof(float));
  7771. GGML_ASSERT(nb10 == sizeof(float));
  7772. if (params->type == GGML_TASK_INIT) {
  7773. // TODO: fix this memset (wsize is overestimated)
  7774. memset(params->wdata, 0, params->wsize);
  7775. // prepare kernel data (src0)
  7776. {
  7777. float * const wdata = (float *) params->wdata + 0;
  7778. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7779. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7780. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7781. float * dst_data = wdata + i02*ew0*ne00;
  7782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7783. dst_data[i00*ew0 + i01] = src[i00];
  7784. }
  7785. }
  7786. }
  7787. }
  7788. // prepare source data (src1)
  7789. {
  7790. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7791. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7792. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7793. float * dst_data = wdata;
  7794. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7795. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7796. }
  7797. }
  7798. }
  7799. return;
  7800. }
  7801. if (params->type == GGML_TASK_FINALIZE) {
  7802. return;
  7803. }
  7804. // total rows in dst
  7805. const int nr = ne02;
  7806. // rows per thread
  7807. const int dr = (nr + nth - 1)/nth;
  7808. // row range for this thread
  7809. const int ir0 = dr*ith;
  7810. const int ir1 = MIN(ir0 + dr, nr);
  7811. for (int i1 = ir0; i1 < ir1; i1++) {
  7812. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7813. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7814. dst_data[i0] = 0;
  7815. for (int k = -nh; k <= nh; k++) {
  7816. float v = 0.0f;
  7817. ggml_vec_dot_f32(ew0, &v,
  7818. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7819. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7820. dst_data[i0] += v;
  7821. }
  7822. }
  7823. }
  7824. }
  7825. static void ggml_compute_forward_conv_1d_1s(
  7826. const struct ggml_compute_params * params,
  7827. const struct ggml_tensor * src0,
  7828. const struct ggml_tensor * src1,
  7829. struct ggml_tensor * dst) {
  7830. switch (src0->type) {
  7831. case GGML_TYPE_F16:
  7832. {
  7833. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7834. } break;
  7835. case GGML_TYPE_F32:
  7836. {
  7837. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7838. } break;
  7839. default:
  7840. {
  7841. GGML_ASSERT(false);
  7842. } break;
  7843. }
  7844. }
  7845. // ggml_compute_forward_conv_1d_2s
  7846. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7847. const struct ggml_compute_params * params,
  7848. const struct ggml_tensor * src0,
  7849. const struct ggml_tensor * src1,
  7850. struct ggml_tensor * dst) {
  7851. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7852. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7853. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7854. int64_t t0 = ggml_perf_time_us();
  7855. UNUSED(t0);
  7856. const int64_t ne00 = src0->ne[0];
  7857. const int64_t ne01 = src0->ne[1];
  7858. const int64_t ne02 = src0->ne[2];
  7859. //const int64_t ne03 = src0->ne[3];
  7860. const int64_t ne10 = src1->ne[0];
  7861. const int64_t ne11 = src1->ne[1];
  7862. //const int64_t ne12 = src1->ne[2];
  7863. //const int64_t ne13 = src1->ne[3];
  7864. //const int64_t ne0 = dst->ne[0];
  7865. //const int64_t ne1 = dst->ne[1];
  7866. //const int64_t ne2 = dst->ne[2];
  7867. //const int64_t ne3 = dst->ne[3];
  7868. //const int64_t ne = ne0*ne1*ne2*ne3;
  7869. const int nb00 = src0->nb[0];
  7870. const int nb01 = src0->nb[1];
  7871. const int nb02 = src0->nb[2];
  7872. //const int nb03 = src0->nb[3];
  7873. const int nb10 = src1->nb[0];
  7874. const int nb11 = src1->nb[1];
  7875. //const int nb12 = src1->nb[2];
  7876. //const int nb13 = src1->nb[3];
  7877. //const int nb0 = dst->nb[0];
  7878. const int nb1 = dst->nb[1];
  7879. //const int nb2 = dst->nb[2];
  7880. //const int nb3 = dst->nb[3];
  7881. const int ith = params->ith;
  7882. const int nth = params->nth;
  7883. const int nk = ne00;
  7884. const int nh = nk/2;
  7885. const int ew0 = ggml_up32(ne01);
  7886. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7887. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7888. GGML_ASSERT(nb10 == sizeof(float));
  7889. if (params->type == GGML_TASK_INIT) {
  7890. // TODO: fix this memset (wsize is overestimated)
  7891. memset(params->wdata, 0, params->wsize);
  7892. // prepare kernel data (src0)
  7893. {
  7894. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7895. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7896. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7897. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7898. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7899. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7900. dst_data[i00*ew0 + i01] = src[i00];
  7901. }
  7902. }
  7903. }
  7904. }
  7905. // prepare source data (src1)
  7906. {
  7907. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7908. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7909. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7910. ggml_fp16_t * dst_data = wdata;
  7911. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7912. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7913. }
  7914. }
  7915. }
  7916. return;
  7917. }
  7918. if (params->type == GGML_TASK_FINALIZE) {
  7919. return;
  7920. }
  7921. // total rows in dst
  7922. const int nr = ne02;
  7923. // rows per thread
  7924. const int dr = (nr + nth - 1)/nth;
  7925. // row range for this thread
  7926. const int ir0 = dr*ith;
  7927. const int ir1 = MIN(ir0 + dr, nr);
  7928. for (int i1 = ir0; i1 < ir1; i1++) {
  7929. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7930. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7931. dst_data[i0/2] = 0;
  7932. for (int k = -nh; k <= nh; k++) {
  7933. float v = 0.0f;
  7934. ggml_vec_dot_f16(ew0, &v,
  7935. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7936. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7937. dst_data[i0/2] += v;
  7938. }
  7939. }
  7940. }
  7941. }
  7942. static void ggml_compute_forward_conv_1d_2s_f32(
  7943. const struct ggml_compute_params * params,
  7944. const struct ggml_tensor * src0,
  7945. const struct ggml_tensor * src1,
  7946. struct ggml_tensor * dst) {
  7947. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7948. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7949. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7950. int64_t t0 = ggml_perf_time_us();
  7951. UNUSED(t0);
  7952. const int64_t ne00 = src0->ne[0];
  7953. const int64_t ne01 = src0->ne[1];
  7954. const int64_t ne02 = src0->ne[2];
  7955. //const int64_t ne03 = src0->ne[3];
  7956. const int64_t ne10 = src1->ne[0];
  7957. const int64_t ne11 = src1->ne[1];
  7958. //const int64_t ne12 = src1->ne[2];
  7959. //const int64_t ne13 = src1->ne[3];
  7960. //const int64_t ne0 = dst->ne[0];
  7961. //const int64_t ne1 = dst->ne[1];
  7962. //const int64_t ne2 = dst->ne[2];
  7963. //const int64_t ne3 = dst->ne[3];
  7964. //const int64_t ne = ne0*ne1*ne2*ne3;
  7965. const int nb00 = src0->nb[0];
  7966. const int nb01 = src0->nb[1];
  7967. const int nb02 = src0->nb[2];
  7968. //const int nb03 = src0->nb[3];
  7969. const int nb10 = src1->nb[0];
  7970. const int nb11 = src1->nb[1];
  7971. //const int nb12 = src1->nb[2];
  7972. //const int nb13 = src1->nb[3];
  7973. //const int nb0 = dst->nb[0];
  7974. const int nb1 = dst->nb[1];
  7975. //const int nb2 = dst->nb[2];
  7976. //const int nb3 = dst->nb[3];
  7977. const int ith = params->ith;
  7978. const int nth = params->nth;
  7979. const int nk = ne00;
  7980. const int nh = nk/2;
  7981. const int ew0 = ggml_up32(ne01);
  7982. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7983. GGML_ASSERT(nb00 == sizeof(float));
  7984. GGML_ASSERT(nb10 == sizeof(float));
  7985. if (params->type == GGML_TASK_INIT) {
  7986. // TODO: fix this memset (wsize is overestimated)
  7987. memset(params->wdata, 0, params->wsize);
  7988. // prepare kernel data (src0)
  7989. {
  7990. float * const wdata = (float *) params->wdata + 0;
  7991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7992. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7993. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7994. float * dst_data = wdata + i02*ew0*ne00;
  7995. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7996. dst_data[i00*ew0 + i01] = src[i00];
  7997. }
  7998. }
  7999. }
  8000. }
  8001. // prepare source data (src1)
  8002. {
  8003. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8004. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8005. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8006. float * dst_data = wdata;
  8007. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8008. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8009. }
  8010. }
  8011. }
  8012. return;
  8013. }
  8014. if (params->type == GGML_TASK_FINALIZE) {
  8015. return;
  8016. }
  8017. // total rows in dst
  8018. const int nr = ne02;
  8019. // rows per thread
  8020. const int dr = (nr + nth - 1)/nth;
  8021. // row range for this thread
  8022. const int ir0 = dr*ith;
  8023. const int ir1 = MIN(ir0 + dr, nr);
  8024. for (int i1 = ir0; i1 < ir1; i1++) {
  8025. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8026. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8027. dst_data[i0/2] = 0;
  8028. for (int k = -nh; k <= nh; k++) {
  8029. float v = 0.0f;
  8030. ggml_vec_dot_f32(ew0, &v,
  8031. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8032. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8033. dst_data[i0/2] += v;
  8034. }
  8035. }
  8036. }
  8037. }
  8038. static void ggml_compute_forward_conv_1d_2s(
  8039. const struct ggml_compute_params * params,
  8040. const struct ggml_tensor * src0,
  8041. const struct ggml_tensor * src1,
  8042. struct ggml_tensor * dst) {
  8043. switch (src0->type) {
  8044. case GGML_TYPE_F16:
  8045. {
  8046. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8047. } break;
  8048. case GGML_TYPE_F32:
  8049. {
  8050. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8051. } break;
  8052. default:
  8053. {
  8054. GGML_ASSERT(false);
  8055. } break;
  8056. }
  8057. }
  8058. // ggml_compute_forward_flash_attn
  8059. static void ggml_compute_forward_flash_attn_f32(
  8060. const struct ggml_compute_params * params,
  8061. const struct ggml_tensor * q,
  8062. const struct ggml_tensor * k,
  8063. const struct ggml_tensor * v,
  8064. const bool masked,
  8065. struct ggml_tensor * dst) {
  8066. int64_t t0 = ggml_perf_time_us();
  8067. UNUSED(t0);
  8068. const int64_t neq0 = q->ne[0];
  8069. const int64_t neq1 = q->ne[1];
  8070. const int64_t neq2 = q->ne[2];
  8071. const int64_t neq3 = q->ne[3];
  8072. const int64_t nek0 = k->ne[0];
  8073. const int64_t nek1 = k->ne[1];
  8074. //const int64_t nek2 = k->ne[2];
  8075. //const int64_t nek3 = k->ne[3];
  8076. //const int64_t nev0 = v->ne[0];
  8077. const int64_t nev1 = v->ne[1];
  8078. //const int64_t nev2 = v->ne[2];
  8079. //const int64_t nev3 = v->ne[3];
  8080. const int64_t ne0 = dst->ne[0];
  8081. const int64_t ne1 = dst->ne[1];
  8082. //const int64_t ne2 = dst->ne[2];
  8083. //const int64_t ne3 = dst->ne[3];
  8084. const int nbk0 = k->nb[0];
  8085. const int nbk1 = k->nb[1];
  8086. const int nbk2 = k->nb[2];
  8087. const int nbk3 = k->nb[3];
  8088. const int nbq0 = q->nb[0];
  8089. const int nbq1 = q->nb[1];
  8090. const int nbq2 = q->nb[2];
  8091. const int nbq3 = q->nb[3];
  8092. const int nbv0 = v->nb[0];
  8093. const int nbv1 = v->nb[1];
  8094. const int nbv2 = v->nb[2];
  8095. const int nbv3 = v->nb[3];
  8096. const int nb0 = dst->nb[0];
  8097. const int nb1 = dst->nb[1];
  8098. const int nb2 = dst->nb[2];
  8099. const int nb3 = dst->nb[3];
  8100. const int ith = params->ith;
  8101. const int nth = params->nth;
  8102. const int64_t D = neq0;
  8103. const int64_t N = neq1;
  8104. const int64_t P = nek1 - N;
  8105. const int64_t M = P + N;
  8106. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8107. GGML_ASSERT(ne0 == D);
  8108. GGML_ASSERT(ne1 == N);
  8109. GGML_ASSERT(P >= 0);
  8110. GGML_ASSERT(nbq0 == sizeof(float));
  8111. GGML_ASSERT(nbk0 == sizeof(float));
  8112. GGML_ASSERT(nbv0 == sizeof(float));
  8113. GGML_ASSERT(neq0 == D);
  8114. GGML_ASSERT(nek0 == D);
  8115. GGML_ASSERT(nev1 == D);
  8116. GGML_ASSERT(neq1 == N);
  8117. GGML_ASSERT(nek1 == N + P);
  8118. GGML_ASSERT(nev1 == D);
  8119. // dst cannot be transposed or permuted
  8120. GGML_ASSERT(nb0 == sizeof(float));
  8121. GGML_ASSERT(nb0 <= nb1);
  8122. GGML_ASSERT(nb1 <= nb2);
  8123. GGML_ASSERT(nb2 <= nb3);
  8124. if (params->type == GGML_TASK_INIT) {
  8125. return;
  8126. }
  8127. if (params->type == GGML_TASK_FINALIZE) {
  8128. return;
  8129. }
  8130. // parallelize by q rows using ggml_vec_dot_f32
  8131. // total rows in q
  8132. const int nr = neq1*neq2*neq3;
  8133. // rows per thread
  8134. const int dr = (nr + nth - 1)/nth;
  8135. // row range for this thread
  8136. const int ir0 = dr*ith;
  8137. const int ir1 = MIN(ir0 + dr, nr);
  8138. const float scale = 1.0f/sqrtf(D);
  8139. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8140. for (int ir = ir0; ir < ir1; ++ir) {
  8141. // q indices
  8142. const int iq3 = ir/(neq2*neq1);
  8143. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8144. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8145. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8146. for (int i = M; i < Mup; ++i) {
  8147. S[i] = -INFINITY;
  8148. }
  8149. for (int64_t ic = 0; ic < nek1; ++ic) {
  8150. // k indices
  8151. const int ik3 = iq3;
  8152. const int ik2 = iq2;
  8153. const int ik1 = ic;
  8154. // S indices
  8155. const int i1 = ik1;
  8156. ggml_vec_dot_f32(neq0,
  8157. S + i1,
  8158. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8159. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8160. }
  8161. // scale
  8162. ggml_vec_scale_f32(nek1, S, scale);
  8163. if (masked) {
  8164. for (int64_t i = P; i < M; i++) {
  8165. if (i > P + iq1) {
  8166. S[i] = -INFINITY;
  8167. }
  8168. }
  8169. }
  8170. // softmax
  8171. {
  8172. float max = -INFINITY;
  8173. ggml_vec_max_f32(M, &max, S);
  8174. ggml_float sum = 0.0;
  8175. {
  8176. #ifdef GGML_SOFT_MAX_ACCELERATE
  8177. max = -max;
  8178. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8179. vvexpf(S, S, &Mup);
  8180. ggml_vec_sum_f32(Mup, &sum, S);
  8181. #else
  8182. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8183. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8184. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8185. float * SS = S + i;
  8186. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8187. if (SS[j] == -INFINITY) {
  8188. SS[j] = 0.0f;
  8189. } else {
  8190. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8191. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8192. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8193. sump[j] += (ggml_float)val;
  8194. SS[j] = val;
  8195. }
  8196. }
  8197. }
  8198. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8199. sum += sump[i];
  8200. }
  8201. #endif
  8202. }
  8203. assert(sum > 0.0);
  8204. sum = 1.0/sum;
  8205. ggml_vec_scale_f32(M, S, sum);
  8206. #ifndef NDEBUG
  8207. for (int i = 0; i < M; ++i) {
  8208. assert(!isnan(S[i]));
  8209. assert(!isinf(S[i]));
  8210. }
  8211. #endif
  8212. }
  8213. for (int64_t ic = 0; ic < nev1; ++ic) {
  8214. // dst indices
  8215. const int i1 = iq1;
  8216. const int i2 = iq2;
  8217. const int i3 = iq3;
  8218. ggml_vec_dot_f32(nek1,
  8219. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8220. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8221. S);
  8222. }
  8223. }
  8224. }
  8225. static void ggml_compute_forward_flash_attn_f16(
  8226. const struct ggml_compute_params * params,
  8227. const struct ggml_tensor * q,
  8228. const struct ggml_tensor * k,
  8229. const struct ggml_tensor * v,
  8230. const bool masked,
  8231. struct ggml_tensor * dst) {
  8232. int64_t t0 = ggml_perf_time_us();
  8233. UNUSED(t0);
  8234. const int64_t neq0 = q->ne[0];
  8235. const int64_t neq1 = q->ne[1];
  8236. const int64_t neq2 = q->ne[2];
  8237. const int64_t neq3 = q->ne[3];
  8238. const int64_t nek0 = k->ne[0];
  8239. const int64_t nek1 = k->ne[1];
  8240. //const int64_t nek2 = k->ne[2];
  8241. //const int64_t nek3 = k->ne[3];
  8242. //const int64_t nev0 = v->ne[0];
  8243. const int64_t nev1 = v->ne[1];
  8244. //const int64_t nev2 = v->ne[2];
  8245. //const int64_t nev3 = v->ne[3];
  8246. const int64_t ne0 = dst->ne[0];
  8247. const int64_t ne1 = dst->ne[1];
  8248. //const int64_t ne2 = dst->ne[2];
  8249. //const int64_t ne3 = dst->ne[3];
  8250. const int nbk0 = k->nb[0];
  8251. const int nbk1 = k->nb[1];
  8252. const int nbk2 = k->nb[2];
  8253. const int nbk3 = k->nb[3];
  8254. const int nbq0 = q->nb[0];
  8255. const int nbq1 = q->nb[1];
  8256. const int nbq2 = q->nb[2];
  8257. const int nbq3 = q->nb[3];
  8258. const int nbv0 = v->nb[0];
  8259. const int nbv1 = v->nb[1];
  8260. const int nbv2 = v->nb[2];
  8261. const int nbv3 = v->nb[3];
  8262. const int nb0 = dst->nb[0];
  8263. const int nb1 = dst->nb[1];
  8264. const int nb2 = dst->nb[2];
  8265. const int nb3 = dst->nb[3];
  8266. const int ith = params->ith;
  8267. const int nth = params->nth;
  8268. const int64_t D = neq0;
  8269. const int64_t N = neq1;
  8270. const int64_t P = nek1 - N;
  8271. const int64_t M = P + N;
  8272. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8273. GGML_ASSERT(ne0 == D);
  8274. GGML_ASSERT(ne1 == N);
  8275. GGML_ASSERT(P >= 0);
  8276. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8277. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8278. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8279. GGML_ASSERT(neq0 == D);
  8280. GGML_ASSERT(nek0 == D);
  8281. GGML_ASSERT(nev1 == D);
  8282. GGML_ASSERT(neq1 == N);
  8283. GGML_ASSERT(nek1 == N + P);
  8284. GGML_ASSERT(nev1 == D);
  8285. // dst cannot be transposed or permuted
  8286. GGML_ASSERT(nb0 == sizeof(float));
  8287. GGML_ASSERT(nb0 <= nb1);
  8288. GGML_ASSERT(nb1 <= nb2);
  8289. GGML_ASSERT(nb2 <= nb3);
  8290. if (params->type == GGML_TASK_INIT) {
  8291. return;
  8292. }
  8293. if (params->type == GGML_TASK_FINALIZE) {
  8294. return;
  8295. }
  8296. // parallelize by q rows using ggml_vec_dot_f32
  8297. // total rows in q
  8298. const int nr = neq1*neq2*neq3;
  8299. // rows per thread
  8300. const int dr = (nr + nth - 1)/nth;
  8301. // row range for this thread
  8302. const int ir0 = dr*ith;
  8303. const int ir1 = MIN(ir0 + dr, nr);
  8304. const float scale = 1.0f/sqrtf(D);
  8305. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8306. for (int ir = ir0; ir < ir1; ++ir) {
  8307. // q indices
  8308. const int iq3 = ir/(neq2*neq1);
  8309. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8310. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8311. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8312. for (int i = M; i < Mup; ++i) {
  8313. S[i] = -INFINITY;
  8314. }
  8315. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8316. for (int64_t ic = 0; ic < nek1; ++ic) {
  8317. // k indices
  8318. const int ik3 = iq3;
  8319. const int ik2 = iq2;
  8320. const int ik1 = ic;
  8321. // S indices
  8322. const int i1 = ik1;
  8323. ggml_vec_dot_f16(neq0,
  8324. S + i1,
  8325. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8326. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8327. }
  8328. } else {
  8329. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8330. // k indices
  8331. const int ik3 = iq3;
  8332. const int ik2 = iq2;
  8333. const int ik1 = ic;
  8334. // S indices
  8335. const int i1 = ik1;
  8336. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8337. S + i1,
  8338. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8339. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8340. }
  8341. }
  8342. // scale
  8343. ggml_vec_scale_f32(nek1, S, scale);
  8344. if (masked) {
  8345. for (int64_t i = P; i < M; i++) {
  8346. if (i > P + iq1) {
  8347. S[i] = -INFINITY;
  8348. }
  8349. }
  8350. }
  8351. // softmax
  8352. {
  8353. float max = -INFINITY;
  8354. ggml_vec_max_f32(M, &max, S);
  8355. ggml_float sum = 0.0;
  8356. {
  8357. #ifdef GGML_SOFT_MAX_ACCELERATE
  8358. max = -max;
  8359. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8360. vvexpf(S, S, &Mup);
  8361. ggml_vec_sum_f32(Mup, &sum, S);
  8362. #else
  8363. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8364. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8365. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8366. float * SS = S + i;
  8367. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8368. if (SS[j] == -INFINITY) {
  8369. SS[j] = 0.0f;
  8370. } else {
  8371. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8372. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8373. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8374. sump[j] += (ggml_float)val;
  8375. SS[j] = val;
  8376. }
  8377. }
  8378. }
  8379. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8380. sum += sump[i];
  8381. }
  8382. #endif
  8383. }
  8384. assert(sum > 0.0);
  8385. sum = 1.0/sum;
  8386. ggml_vec_scale_f32(M, S, sum);
  8387. #ifndef NDEBUG
  8388. for (int i = 0; i < M; ++i) {
  8389. assert(!isnan(S[i]));
  8390. assert(!isinf(S[i]));
  8391. }
  8392. #endif
  8393. }
  8394. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8395. for (int64_t i = 0; i < M; i++) {
  8396. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8397. }
  8398. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8399. for (int64_t ic = 0; ic < nev1; ++ic) {
  8400. // dst indices
  8401. const int i1 = iq1;
  8402. const int i2 = iq2;
  8403. const int i3 = iq3;
  8404. ggml_vec_dot_f16(nek1,
  8405. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8406. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8407. S16);
  8408. }
  8409. } else {
  8410. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8411. // dst indices
  8412. const int i1 = iq1;
  8413. const int i2 = iq2;
  8414. const int i3 = iq3;
  8415. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8416. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8417. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8418. S16);
  8419. }
  8420. }
  8421. }
  8422. }
  8423. static void ggml_compute_forward_flash_attn(
  8424. const struct ggml_compute_params * params,
  8425. const struct ggml_tensor * q,
  8426. const struct ggml_tensor * k,
  8427. const struct ggml_tensor * v,
  8428. const bool masked,
  8429. struct ggml_tensor * dst) {
  8430. switch (q->type) {
  8431. case GGML_TYPE_F16:
  8432. {
  8433. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8434. } break;
  8435. case GGML_TYPE_F32:
  8436. {
  8437. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8438. } break;
  8439. default:
  8440. {
  8441. GGML_ASSERT(false);
  8442. } break;
  8443. }
  8444. }
  8445. // ggml_compute_forward_flash_ff
  8446. static void ggml_compute_forward_flash_ff_f16(
  8447. const struct ggml_compute_params * params,
  8448. const struct ggml_tensor * a, // F16
  8449. const struct ggml_tensor * b0, // F16 fc_w
  8450. const struct ggml_tensor * b1, // F32 fc_b
  8451. const struct ggml_tensor * c0, // F16 proj_w
  8452. const struct ggml_tensor * c1, // F32 proj_b
  8453. struct ggml_tensor * dst) {
  8454. int64_t t0 = ggml_perf_time_us();
  8455. UNUSED(t0);
  8456. const int64_t nea0 = a->ne[0];
  8457. const int64_t nea1 = a->ne[1];
  8458. const int64_t nea2 = a->ne[2];
  8459. const int64_t nea3 = a->ne[3];
  8460. const int64_t neb00 = b0->ne[0];
  8461. const int64_t neb01 = b0->ne[1];
  8462. //const int64_t neb02 = b0->ne[2];
  8463. //const int64_t neb03 = b0->ne[3];
  8464. const int64_t neb10 = b1->ne[0];
  8465. const int64_t neb11 = b1->ne[1];
  8466. //const int64_t neb12 = b1->ne[2];
  8467. //const int64_t neb13 = b1->ne[3];
  8468. const int64_t nec00 = c0->ne[0];
  8469. const int64_t nec01 = c0->ne[1];
  8470. //const int64_t nec02 = c0->ne[2];
  8471. //const int64_t nec03 = c0->ne[3];
  8472. const int64_t nec10 = c1->ne[0];
  8473. const int64_t nec11 = c1->ne[1];
  8474. //const int64_t nec12 = c1->ne[2];
  8475. //const int64_t nec13 = c1->ne[3];
  8476. const int64_t ne0 = dst->ne[0];
  8477. const int64_t ne1 = dst->ne[1];
  8478. const int64_t ne2 = dst->ne[2];
  8479. //const int64_t ne3 = dst->ne[3];
  8480. const int nba0 = a->nb[0];
  8481. const int nba1 = a->nb[1];
  8482. const int nba2 = a->nb[2];
  8483. const int nba3 = a->nb[3];
  8484. const int nbb00 = b0->nb[0];
  8485. const int nbb01 = b0->nb[1];
  8486. const int nbb02 = b0->nb[2];
  8487. const int nbb03 = b0->nb[3];
  8488. const int nbb10 = b1->nb[0];
  8489. //const int nbb11 = b1->nb[1];
  8490. //const int nbb12 = b1->nb[2];
  8491. //const int nbb13 = b1->nb[3];
  8492. const int nbc00 = c0->nb[0];
  8493. const int nbc01 = c0->nb[1];
  8494. const int nbc02 = c0->nb[2];
  8495. const int nbc03 = c0->nb[3];
  8496. const int nbc10 = c1->nb[0];
  8497. //const int nbc11 = c1->nb[1];
  8498. //const int nbc12 = c1->nb[2];
  8499. //const int nbc13 = c1->nb[3];
  8500. const int nb0 = dst->nb[0];
  8501. const int nb1 = dst->nb[1];
  8502. const int nb2 = dst->nb[2];
  8503. const int nb3 = dst->nb[3];
  8504. const int ith = params->ith;
  8505. const int nth = params->nth;
  8506. const int64_t D = nea0;
  8507. //const int64_t N = nea1;
  8508. const int64_t M = neb01;
  8509. GGML_ASSERT(ne0 == nea0);
  8510. GGML_ASSERT(ne1 == nea1);
  8511. GGML_ASSERT(ne2 == nea2);
  8512. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8513. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8514. GGML_ASSERT(nbb10 == sizeof(float));
  8515. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8516. GGML_ASSERT(nbc10 == sizeof(float));
  8517. GGML_ASSERT(neb00 == D);
  8518. GGML_ASSERT(neb01 == M);
  8519. GGML_ASSERT(neb10 == M);
  8520. GGML_ASSERT(neb11 == 1);
  8521. GGML_ASSERT(nec00 == M);
  8522. GGML_ASSERT(nec01 == D);
  8523. GGML_ASSERT(nec10 == D);
  8524. GGML_ASSERT(nec11 == 1);
  8525. // dst cannot be transposed or permuted
  8526. GGML_ASSERT(nb0 == sizeof(float));
  8527. GGML_ASSERT(nb0 <= nb1);
  8528. GGML_ASSERT(nb1 <= nb2);
  8529. GGML_ASSERT(nb2 <= nb3);
  8530. if (params->type == GGML_TASK_INIT) {
  8531. return;
  8532. }
  8533. if (params->type == GGML_TASK_FINALIZE) {
  8534. return;
  8535. }
  8536. // parallelize by a rows using ggml_vec_dot_f32
  8537. // total rows in a
  8538. const int nr = nea1*nea2*nea3;
  8539. // rows per thread
  8540. const int dr = (nr + nth - 1)/nth;
  8541. // row range for this thread
  8542. const int ir0 = dr*ith;
  8543. const int ir1 = MIN(ir0 + dr, nr);
  8544. for (int ir = ir0; ir < ir1; ++ir) {
  8545. // a indices
  8546. const int ia3 = ir/(nea2*nea1);
  8547. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8548. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8549. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8550. for (int64_t ic = 0; ic < neb01; ++ic) {
  8551. // b0 indices
  8552. const int ib03 = ia3;
  8553. const int ib02 = ia2;
  8554. const int ib01 = ic;
  8555. // S indices
  8556. const int i1 = ib01;
  8557. ggml_vec_dot_f16(nea0,
  8558. S + i1,
  8559. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8560. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8561. }
  8562. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8563. //ggml_vec_gelu_f32(neb01, S, S);
  8564. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8565. for (int64_t i = 0; i < M; i++) {
  8566. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8567. }
  8568. ggml_vec_gelu_f16(neb01, S16, S16);
  8569. {
  8570. // dst indices
  8571. const int i1 = ia1;
  8572. const int i2 = ia2;
  8573. const int i3 = ia3;
  8574. for (int64_t ic = 0; ic < nec01; ++ic) {
  8575. ggml_vec_dot_f16(neb01,
  8576. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8577. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8578. S16);
  8579. }
  8580. ggml_vec_add_f32(nec01,
  8581. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8582. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8583. (float *) c1->data);
  8584. }
  8585. }
  8586. }
  8587. static void ggml_compute_forward_flash_ff(
  8588. const struct ggml_compute_params * params,
  8589. const struct ggml_tensor * a,
  8590. const struct ggml_tensor * b0,
  8591. const struct ggml_tensor * b1,
  8592. const struct ggml_tensor * c0,
  8593. const struct ggml_tensor * c1,
  8594. struct ggml_tensor * dst) {
  8595. switch (b0->type) {
  8596. case GGML_TYPE_F16:
  8597. {
  8598. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8599. } break;
  8600. case GGML_TYPE_F32:
  8601. {
  8602. GGML_ASSERT(false); // TODO
  8603. } break;
  8604. default:
  8605. {
  8606. GGML_ASSERT(false);
  8607. } break;
  8608. }
  8609. }
  8610. // ggml_compute_forward_map_unary
  8611. static void ggml_compute_forward_map_unary_f32(
  8612. const struct ggml_compute_params * params,
  8613. const struct ggml_tensor * src0,
  8614. struct ggml_tensor * dst,
  8615. const ggml_unary_op_f32_t fun) {
  8616. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8617. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8618. return;
  8619. }
  8620. const int n = ggml_nrows(src0);
  8621. const int nc = src0->ne[0];
  8622. assert( dst->nb[0] == sizeof(float));
  8623. assert(src0->nb[0] == sizeof(float));
  8624. for (int i = 0; i < n; i++) {
  8625. fun(nc,
  8626. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8627. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8628. }
  8629. }
  8630. static void ggml_compute_forward_map_unary(
  8631. const struct ggml_compute_params * params,
  8632. const struct ggml_tensor * src0,
  8633. struct ggml_tensor * dst,
  8634. const ggml_unary_op_f32_t fun) {
  8635. switch (src0->type) {
  8636. case GGML_TYPE_F32:
  8637. {
  8638. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8639. } break;
  8640. default:
  8641. {
  8642. GGML_ASSERT(false);
  8643. } break;
  8644. }
  8645. }
  8646. // ggml_compute_forward_map_binary
  8647. static void ggml_compute_forward_map_binary_f32(
  8648. const struct ggml_compute_params * params,
  8649. const struct ggml_tensor * src0,
  8650. const struct ggml_tensor * src1,
  8651. struct ggml_tensor * dst,
  8652. const ggml_binary_op_f32_t fun) {
  8653. assert(params->ith == 0);
  8654. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8656. return;
  8657. }
  8658. const int n = ggml_nrows(src0);
  8659. const int nc = src0->ne[0];
  8660. assert( dst->nb[0] == sizeof(float));
  8661. assert(src0->nb[0] == sizeof(float));
  8662. assert(src1->nb[0] == sizeof(float));
  8663. for (int i = 0; i < n; i++) {
  8664. fun(nc,
  8665. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8666. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8667. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8668. }
  8669. }
  8670. static void ggml_compute_forward_map_binary(
  8671. const struct ggml_compute_params * params,
  8672. const struct ggml_tensor * src0,
  8673. const struct ggml_tensor * src1,
  8674. struct ggml_tensor * dst,
  8675. const ggml_binary_op_f32_t fun) {
  8676. switch (src0->type) {
  8677. case GGML_TYPE_F32:
  8678. {
  8679. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8680. } break;
  8681. default:
  8682. {
  8683. GGML_ASSERT(false);
  8684. } break;
  8685. }
  8686. }
  8687. /////////////////////////////////
  8688. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8689. GGML_ASSERT(params);
  8690. switch (tensor->op) {
  8691. case GGML_OP_DUP:
  8692. {
  8693. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8694. } break;
  8695. case GGML_OP_ADD:
  8696. {
  8697. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8698. } break;
  8699. case GGML_OP_SUB:
  8700. {
  8701. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8702. } break;
  8703. case GGML_OP_MUL:
  8704. {
  8705. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8706. } break;
  8707. case GGML_OP_DIV:
  8708. {
  8709. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8710. } break;
  8711. case GGML_OP_SQR:
  8712. {
  8713. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8714. } break;
  8715. case GGML_OP_SQRT:
  8716. {
  8717. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8718. } break;
  8719. case GGML_OP_SUM:
  8720. {
  8721. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8722. } break;
  8723. case GGML_OP_MEAN:
  8724. {
  8725. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8726. } break;
  8727. case GGML_OP_REPEAT:
  8728. {
  8729. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8730. } break;
  8731. case GGML_OP_ABS:
  8732. {
  8733. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8734. } break;
  8735. case GGML_OP_SGN:
  8736. {
  8737. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8738. } break;
  8739. case GGML_OP_NEG:
  8740. {
  8741. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8742. } break;
  8743. case GGML_OP_STEP:
  8744. {
  8745. ggml_compute_forward_step(params, tensor->src0, tensor);
  8746. } break;
  8747. case GGML_OP_RELU:
  8748. {
  8749. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8750. } break;
  8751. case GGML_OP_GELU:
  8752. {
  8753. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8754. } break;
  8755. case GGML_OP_SILU:
  8756. {
  8757. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8758. } break;
  8759. case GGML_OP_NORM:
  8760. {
  8761. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8762. } break;
  8763. case GGML_OP_RMS_NORM:
  8764. {
  8765. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8766. } break;
  8767. case GGML_OP_MUL_MAT:
  8768. {
  8769. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8770. } break;
  8771. case GGML_OP_SCALE:
  8772. {
  8773. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8774. } break;
  8775. case GGML_OP_CPY:
  8776. {
  8777. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8778. } break;
  8779. case GGML_OP_CONT:
  8780. {
  8781. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8782. } break;
  8783. case GGML_OP_RESHAPE:
  8784. {
  8785. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8786. } break;
  8787. case GGML_OP_VIEW:
  8788. {
  8789. ggml_compute_forward_view(params, tensor->src0);
  8790. } break;
  8791. case GGML_OP_PERMUTE:
  8792. {
  8793. ggml_compute_forward_permute(params, tensor->src0);
  8794. } break;
  8795. case GGML_OP_TRANSPOSE:
  8796. {
  8797. ggml_compute_forward_transpose(params, tensor->src0);
  8798. } break;
  8799. case GGML_OP_GET_ROWS:
  8800. {
  8801. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8802. } break;
  8803. case GGML_OP_DIAG_MASK_INF:
  8804. {
  8805. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8806. } break;
  8807. case GGML_OP_SOFT_MAX:
  8808. {
  8809. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8810. } break;
  8811. case GGML_OP_ROPE:
  8812. {
  8813. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8814. } break;
  8815. case GGML_OP_CONV_1D_1S:
  8816. {
  8817. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8818. } break;
  8819. case GGML_OP_CONV_1D_2S:
  8820. {
  8821. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8822. } break;
  8823. case GGML_OP_FLASH_ATTN:
  8824. {
  8825. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8826. GGML_ASSERT(t == 0 || t == 1);
  8827. bool masked = t != 0;
  8828. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8829. } break;
  8830. case GGML_OP_FLASH_FF:
  8831. {
  8832. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8833. } break;
  8834. case GGML_OP_MAP_UNARY:
  8835. {
  8836. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8837. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8838. }
  8839. break;
  8840. case GGML_OP_MAP_BINARY:
  8841. {
  8842. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8843. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8844. }
  8845. break;
  8846. case GGML_OP_NONE:
  8847. {
  8848. // nop
  8849. } break;
  8850. case GGML_OP_COUNT:
  8851. {
  8852. GGML_ASSERT(false);
  8853. } break;
  8854. }
  8855. }
  8856. ////////////////////////////////////////////////////////////////////////////////
  8857. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8858. struct ggml_tensor * src0 = tensor->src0;
  8859. struct ggml_tensor * src1 = tensor->src1;
  8860. switch (tensor->op) {
  8861. case GGML_OP_DUP:
  8862. {
  8863. if (src0->grad) {
  8864. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8865. }
  8866. } break;
  8867. case GGML_OP_ADD:
  8868. {
  8869. if (src0->grad) {
  8870. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8871. }
  8872. if (src1->grad) {
  8873. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8874. }
  8875. } break;
  8876. case GGML_OP_SUB:
  8877. {
  8878. if (src0->grad) {
  8879. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8880. }
  8881. if (src1->grad) {
  8882. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8883. }
  8884. } break;
  8885. case GGML_OP_MUL:
  8886. {
  8887. if (src0->grad) {
  8888. src0->grad =
  8889. ggml_add_impl(ctx,
  8890. src0->grad,
  8891. ggml_mul(ctx, src1, tensor->grad),
  8892. inplace);
  8893. }
  8894. if (src1->grad) {
  8895. src1->grad =
  8896. ggml_add_impl(ctx,
  8897. src1->grad,
  8898. ggml_mul(ctx, src0, tensor->grad),
  8899. inplace);
  8900. }
  8901. } break;
  8902. case GGML_OP_DIV:
  8903. {
  8904. if (src0->grad) {
  8905. src0->grad =
  8906. ggml_add_impl(ctx,
  8907. src0->grad,
  8908. ggml_div(ctx, tensor->grad, src1),
  8909. inplace);
  8910. }
  8911. if (src1->grad) {
  8912. src1->grad =
  8913. ggml_sub_impl(ctx,
  8914. src1->grad,
  8915. ggml_mul(ctx,
  8916. tensor->grad,
  8917. ggml_div(ctx, tensor, src1)),
  8918. inplace);
  8919. }
  8920. } break;
  8921. case GGML_OP_SQR:
  8922. {
  8923. if (src0->grad) {
  8924. src0->grad =
  8925. ggml_add_impl(ctx,
  8926. src0->grad,
  8927. ggml_mul(ctx,
  8928. ggml_mul(ctx, src0, tensor->grad),
  8929. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8930. inplace);
  8931. }
  8932. } break;
  8933. case GGML_OP_SQRT:
  8934. {
  8935. if (src0->grad) {
  8936. src0->grad =
  8937. ggml_add_impl(ctx,
  8938. src0->grad,
  8939. ggml_div(ctx,
  8940. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8941. tensor),
  8942. inplace);
  8943. }
  8944. } break;
  8945. case GGML_OP_SUM:
  8946. {
  8947. if (src0->grad) {
  8948. src0->grad =
  8949. ggml_add_impl(ctx,
  8950. src0->grad,
  8951. ggml_repeat(ctx, tensor->grad, src0->grad),
  8952. inplace);
  8953. }
  8954. } break;
  8955. case GGML_OP_MEAN:
  8956. {
  8957. GGML_ASSERT(false); // TODO: implement
  8958. } break;
  8959. case GGML_OP_REPEAT:
  8960. {
  8961. if (src0->grad) {
  8962. src0->grad =
  8963. ggml_add_impl(ctx,
  8964. src0->grad,
  8965. ggml_sum(ctx, tensor->grad),
  8966. inplace);
  8967. }
  8968. } break;
  8969. case GGML_OP_ABS:
  8970. {
  8971. if (src0->grad) {
  8972. src0->grad =
  8973. ggml_add_impl(ctx,
  8974. src0->grad,
  8975. ggml_mul(ctx,
  8976. ggml_sgn(ctx, src0),
  8977. tensor->grad),
  8978. inplace);
  8979. }
  8980. } break;
  8981. case GGML_OP_SGN:
  8982. {
  8983. if (src0->grad) {
  8984. // noop
  8985. }
  8986. } break;
  8987. case GGML_OP_NEG:
  8988. {
  8989. if (src0->grad) {
  8990. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8991. }
  8992. } break;
  8993. case GGML_OP_STEP:
  8994. {
  8995. if (src0->grad) {
  8996. // noop
  8997. }
  8998. } break;
  8999. case GGML_OP_RELU:
  9000. {
  9001. if (src0->grad) {
  9002. src0->grad = ggml_sub_impl(ctx,
  9003. src0->grad,
  9004. ggml_mul(ctx,
  9005. ggml_step(ctx, src0),
  9006. tensor->grad),
  9007. inplace);
  9008. }
  9009. } break;
  9010. case GGML_OP_GELU:
  9011. {
  9012. GGML_ASSERT(false); // TODO: not implemented
  9013. } break;
  9014. case GGML_OP_SILU:
  9015. {
  9016. GGML_ASSERT(false); // TODO: not implemented
  9017. } break;
  9018. case GGML_OP_NORM:
  9019. {
  9020. GGML_ASSERT(false); // TODO: not implemented
  9021. } break;
  9022. case GGML_OP_RMS_NORM:
  9023. {
  9024. GGML_ASSERT(false); // TODO: not implemented
  9025. } break;
  9026. case GGML_OP_MUL_MAT:
  9027. {
  9028. if (src0->grad) {
  9029. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9030. GGML_ASSERT(false);
  9031. }
  9032. if (src1->grad) {
  9033. src1->grad =
  9034. ggml_add_impl(ctx,
  9035. src1->grad,
  9036. ggml_mul_mat(ctx,
  9037. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9038. tensor->grad),
  9039. inplace);
  9040. }
  9041. } break;
  9042. case GGML_OP_SCALE:
  9043. {
  9044. GGML_ASSERT(false); // TODO: not implemented
  9045. } break;
  9046. case GGML_OP_CPY:
  9047. {
  9048. GGML_ASSERT(false); // TODO: not implemented
  9049. } break;
  9050. case GGML_OP_CONT:
  9051. {
  9052. GGML_ASSERT(false); // TODO: not implemented
  9053. } break;
  9054. case GGML_OP_RESHAPE:
  9055. {
  9056. GGML_ASSERT(false); // TODO: not implemented
  9057. } break;
  9058. case GGML_OP_VIEW:
  9059. {
  9060. GGML_ASSERT(false); // not supported
  9061. } break;
  9062. case GGML_OP_PERMUTE:
  9063. {
  9064. GGML_ASSERT(false); // TODO: not implemented
  9065. } break;
  9066. case GGML_OP_TRANSPOSE:
  9067. {
  9068. GGML_ASSERT(false); // TODO: not implemented
  9069. } break;
  9070. case GGML_OP_GET_ROWS:
  9071. {
  9072. GGML_ASSERT(false); // TODO: not implemented
  9073. } break;
  9074. case GGML_OP_DIAG_MASK_INF:
  9075. {
  9076. GGML_ASSERT(false); // TODO: not implemented
  9077. } break;
  9078. case GGML_OP_SOFT_MAX:
  9079. {
  9080. GGML_ASSERT(false); // TODO: not implemented
  9081. } break;
  9082. case GGML_OP_ROPE:
  9083. {
  9084. GGML_ASSERT(false); // TODO: not implemented
  9085. } break;
  9086. case GGML_OP_CONV_1D_1S:
  9087. {
  9088. GGML_ASSERT(false); // TODO: not implemented
  9089. } break;
  9090. case GGML_OP_CONV_1D_2S:
  9091. {
  9092. GGML_ASSERT(false); // TODO: not implemented
  9093. } break;
  9094. case GGML_OP_FLASH_ATTN:
  9095. {
  9096. GGML_ASSERT(false); // not supported
  9097. } break;
  9098. case GGML_OP_FLASH_FF:
  9099. {
  9100. GGML_ASSERT(false); // not supported
  9101. } break;
  9102. case GGML_OP_MAP_UNARY:
  9103. case GGML_OP_MAP_BINARY:
  9104. {
  9105. GGML_ASSERT(false); // not supported
  9106. } break;
  9107. case GGML_OP_NONE:
  9108. {
  9109. // nop
  9110. } break;
  9111. case GGML_OP_COUNT:
  9112. {
  9113. GGML_ASSERT(false);
  9114. } break;
  9115. }
  9116. }
  9117. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9118. if (node->grad == NULL) {
  9119. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9120. // it can also happen during forward pass, if the user performs computations with constants
  9121. if (node->op != GGML_OP_NONE) {
  9122. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9123. }
  9124. }
  9125. // check if already visited
  9126. for (int i = 0; i < cgraph->n_nodes; i++) {
  9127. if (cgraph->nodes[i] == node) {
  9128. return;
  9129. }
  9130. }
  9131. for (int i = 0; i < cgraph->n_leafs; i++) {
  9132. if (cgraph->leafs[i] == node) {
  9133. return;
  9134. }
  9135. }
  9136. if (node->src0) {
  9137. ggml_visit_parents(cgraph, node->src0);
  9138. }
  9139. if (node->src1) {
  9140. ggml_visit_parents(cgraph, node->src1);
  9141. }
  9142. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9143. if (node->opt[i]) {
  9144. ggml_visit_parents(cgraph, node->opt[i]);
  9145. }
  9146. }
  9147. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9148. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9149. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9150. cgraph->leafs[cgraph->n_leafs] = node;
  9151. cgraph->n_leafs++;
  9152. } else {
  9153. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9154. cgraph->nodes[cgraph->n_nodes] = node;
  9155. cgraph->grads[cgraph->n_nodes] = node->grad;
  9156. cgraph->n_nodes++;
  9157. }
  9158. }
  9159. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9160. if (!expand) {
  9161. cgraph->n_nodes = 0;
  9162. cgraph->n_leafs = 0;
  9163. }
  9164. const int n0 = cgraph->n_nodes;
  9165. UNUSED(n0);
  9166. ggml_visit_parents(cgraph, tensor);
  9167. const int n_new = cgraph->n_nodes - n0;
  9168. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9169. if (n_new > 0) {
  9170. // the last added node should always be starting point
  9171. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9172. }
  9173. }
  9174. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9175. ggml_build_forward_impl(cgraph, tensor, true);
  9176. }
  9177. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9178. struct ggml_cgraph result = {
  9179. /*.n_nodes =*/ 0,
  9180. /*.n_leafs =*/ 0,
  9181. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9182. /*.work_size =*/ 0,
  9183. /*.work =*/ NULL,
  9184. /*.nodes =*/ { NULL },
  9185. /*.grads =*/ { NULL },
  9186. /*.leafs =*/ { NULL },
  9187. /*.perf_runs =*/ 0,
  9188. /*.perf_cycles =*/ 0,
  9189. /*.perf_time_us =*/ 0,
  9190. };
  9191. ggml_build_forward_impl(&result, tensor, false);
  9192. return result;
  9193. }
  9194. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9195. struct ggml_cgraph result = *gf;
  9196. GGML_ASSERT(gf->n_nodes > 0);
  9197. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9198. if (keep) {
  9199. for (int i = 0; i < gf->n_nodes; i++) {
  9200. struct ggml_tensor * node = gf->nodes[i];
  9201. if (node->grad) {
  9202. node->grad = ggml_dup_tensor(ctx, node);
  9203. gf->grads[i] = node->grad;
  9204. }
  9205. }
  9206. }
  9207. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9208. struct ggml_tensor * node = gf->nodes[i];
  9209. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9210. if (node->grad) {
  9211. ggml_compute_backward(ctx, node, keep);
  9212. }
  9213. }
  9214. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9215. struct ggml_tensor * node = gf->nodes[i];
  9216. if (node->is_param) {
  9217. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9218. ggml_build_forward_impl(&result, node->grad, true);
  9219. }
  9220. }
  9221. return result;
  9222. }
  9223. //
  9224. // thread data
  9225. //
  9226. // synchronization is done via busy loops
  9227. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9228. //
  9229. #ifdef __APPLE__
  9230. //#include <os/lock.h>
  9231. //
  9232. //typedef os_unfair_lock ggml_lock_t;
  9233. //
  9234. //#define ggml_lock_init(x) UNUSED(x)
  9235. //#define ggml_lock_destroy(x) UNUSED(x)
  9236. //#define ggml_lock_lock os_unfair_lock_lock
  9237. //#define ggml_lock_unlock os_unfair_lock_unlock
  9238. //
  9239. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9240. typedef int ggml_lock_t;
  9241. #define ggml_lock_init(x) UNUSED(x)
  9242. #define ggml_lock_destroy(x) UNUSED(x)
  9243. #define ggml_lock_lock(x) UNUSED(x)
  9244. #define ggml_lock_unlock(x) UNUSED(x)
  9245. #define GGML_LOCK_INITIALIZER 0
  9246. typedef pthread_t ggml_thread_t;
  9247. #define ggml_thread_create pthread_create
  9248. #define ggml_thread_join pthread_join
  9249. #else
  9250. //typedef pthread_spinlock_t ggml_lock_t;
  9251. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9252. //#define ggml_lock_destroy pthread_spin_destroy
  9253. //#define ggml_lock_lock pthread_spin_lock
  9254. //#define ggml_lock_unlock pthread_spin_unlock
  9255. typedef int ggml_lock_t;
  9256. #define ggml_lock_init(x) UNUSED(x)
  9257. #define ggml_lock_destroy(x) UNUSED(x)
  9258. #define ggml_lock_lock(x) UNUSED(x)
  9259. #define ggml_lock_unlock(x) UNUSED(x)
  9260. #define GGML_LOCK_INITIALIZER 0
  9261. typedef pthread_t ggml_thread_t;
  9262. #define ggml_thread_create pthread_create
  9263. #define ggml_thread_join pthread_join
  9264. #endif
  9265. struct ggml_compute_state_shared {
  9266. ggml_lock_t spin;
  9267. int n_threads;
  9268. // synchronization primitives
  9269. atomic_int n_ready;
  9270. atomic_bool has_work;
  9271. atomic_bool stop; // stop all threads
  9272. };
  9273. struct ggml_compute_state {
  9274. ggml_thread_t thrd;
  9275. struct ggml_compute_params params;
  9276. struct ggml_tensor * node;
  9277. struct ggml_compute_state_shared * shared;
  9278. };
  9279. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9280. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9281. const int n_threads = state->shared->n_threads;
  9282. while (true) {
  9283. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9284. atomic_store(&state->shared->has_work, false);
  9285. } else {
  9286. while (atomic_load(&state->shared->has_work)) {
  9287. if (atomic_load(&state->shared->stop)) {
  9288. return 0;
  9289. }
  9290. ggml_lock_lock (&state->shared->spin);
  9291. ggml_lock_unlock(&state->shared->spin);
  9292. }
  9293. }
  9294. atomic_fetch_sub(&state->shared->n_ready, 1);
  9295. // wait for work
  9296. while (!atomic_load(&state->shared->has_work)) {
  9297. if (atomic_load(&state->shared->stop)) {
  9298. return 0;
  9299. }
  9300. ggml_lock_lock (&state->shared->spin);
  9301. ggml_lock_unlock(&state->shared->spin);
  9302. }
  9303. // check if we should stop
  9304. if (atomic_load(&state->shared->stop)) {
  9305. break;
  9306. }
  9307. if (state->node) {
  9308. if (state->params.ith < state->params.nth) {
  9309. ggml_compute_forward(&state->params, state->node);
  9310. }
  9311. state->node = NULL;
  9312. } else {
  9313. break;
  9314. }
  9315. }
  9316. return 0;
  9317. }
  9318. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9319. const int n_threads = cgraph->n_threads;
  9320. struct ggml_compute_state_shared state_shared = {
  9321. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9322. /*.n_threads =*/ n_threads,
  9323. /*.n_ready =*/ 0,
  9324. /*.has_work =*/ false,
  9325. /*.stop =*/ false,
  9326. };
  9327. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9328. // create thread pool
  9329. if (n_threads > 1) {
  9330. ggml_lock_init(&state_shared.spin);
  9331. atomic_store(&state_shared.has_work, true);
  9332. for (int j = 0; j < n_threads - 1; j++) {
  9333. workers[j] = (struct ggml_compute_state) {
  9334. .thrd = 0,
  9335. .params = {
  9336. .type = GGML_TASK_COMPUTE,
  9337. .ith = j + 1,
  9338. .nth = n_threads,
  9339. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9340. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9341. },
  9342. .node = NULL,
  9343. .shared = &state_shared,
  9344. };
  9345. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9346. GGML_ASSERT(rc == 0);
  9347. UNUSED(rc);
  9348. }
  9349. }
  9350. // initialize tasks + work buffer
  9351. {
  9352. size_t work_size = 0;
  9353. // thread scheduling for the different operations
  9354. for (int i = 0; i < cgraph->n_nodes; i++) {
  9355. struct ggml_tensor * node = cgraph->nodes[i];
  9356. switch (node->op) {
  9357. case GGML_OP_CPY:
  9358. case GGML_OP_DUP:
  9359. {
  9360. node->n_tasks = n_threads;
  9361. size_t cur = 0;
  9362. if (ggml_is_quantized(node->type)) {
  9363. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9364. }
  9365. work_size = MAX(work_size, cur);
  9366. } break;
  9367. case GGML_OP_ADD:
  9368. {
  9369. node->n_tasks = n_threads;
  9370. size_t cur = 0;
  9371. if (ggml_is_quantized(node->src0->type)) {
  9372. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9373. }
  9374. work_size = MAX(work_size, cur);
  9375. } break;
  9376. case GGML_OP_SUB:
  9377. case GGML_OP_MUL:
  9378. case GGML_OP_DIV:
  9379. case GGML_OP_SQR:
  9380. case GGML_OP_SQRT:
  9381. case GGML_OP_SUM:
  9382. case GGML_OP_MEAN:
  9383. case GGML_OP_REPEAT:
  9384. case GGML_OP_ABS:
  9385. case GGML_OP_SGN:
  9386. case GGML_OP_NEG:
  9387. case GGML_OP_STEP:
  9388. case GGML_OP_RELU:
  9389. {
  9390. node->n_tasks = 1;
  9391. } break;
  9392. case GGML_OP_GELU:
  9393. {
  9394. node->n_tasks = n_threads;
  9395. } break;
  9396. case GGML_OP_SILU:
  9397. {
  9398. node->n_tasks = n_threads;
  9399. } break;
  9400. case GGML_OP_NORM:
  9401. case GGML_OP_RMS_NORM:
  9402. {
  9403. node->n_tasks = n_threads;
  9404. } break;
  9405. case GGML_OP_MUL_MAT:
  9406. {
  9407. node->n_tasks = n_threads;
  9408. // TODO: use different scheduling for different matrix sizes
  9409. //const int nr0 = ggml_nrows(node->src0);
  9410. //const int nr1 = ggml_nrows(node->src1);
  9411. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9412. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9413. size_t cur = 0;
  9414. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9415. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9416. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9417. node->n_tasks = 1; // TODO: this actually is doing nothing
  9418. // the threads are still spinning
  9419. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9420. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9421. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9422. //printf("cur = %zu\n", cur);
  9423. } else {
  9424. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9425. }
  9426. #else
  9427. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9428. #endif
  9429. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9430. cur = 0;
  9431. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9432. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9433. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9434. node->n_tasks = 1;
  9435. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9436. } else
  9437. #endif
  9438. {
  9439. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9440. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9441. }
  9442. } else {
  9443. GGML_ASSERT(false);
  9444. }
  9445. work_size = MAX(work_size, cur);
  9446. } break;
  9447. case GGML_OP_SCALE:
  9448. {
  9449. node->n_tasks = n_threads;
  9450. } break;
  9451. case GGML_OP_CONT:
  9452. case GGML_OP_RESHAPE:
  9453. case GGML_OP_VIEW:
  9454. case GGML_OP_PERMUTE:
  9455. case GGML_OP_TRANSPOSE:
  9456. case GGML_OP_GET_ROWS:
  9457. case GGML_OP_DIAG_MASK_INF:
  9458. {
  9459. node->n_tasks = 1;
  9460. } break;
  9461. case GGML_OP_SOFT_MAX:
  9462. {
  9463. node->n_tasks = n_threads;
  9464. } break;
  9465. case GGML_OP_ROPE:
  9466. {
  9467. node->n_tasks = n_threads;
  9468. } break;
  9469. case GGML_OP_CONV_1D_1S:
  9470. case GGML_OP_CONV_1D_2S:
  9471. {
  9472. node->n_tasks = n_threads;
  9473. GGML_ASSERT(node->src0->ne[3] == 1);
  9474. GGML_ASSERT(node->src1->ne[2] == 1);
  9475. GGML_ASSERT(node->src1->ne[3] == 1);
  9476. size_t cur = 0;
  9477. const int nk = node->src0->ne[0];
  9478. if (node->src0->type == GGML_TYPE_F16 &&
  9479. node->src1->type == GGML_TYPE_F32) {
  9480. cur = sizeof(ggml_fp16_t)*(
  9481. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9482. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9483. );
  9484. } else if (node->src0->type == GGML_TYPE_F32 &&
  9485. node->src1->type == GGML_TYPE_F32) {
  9486. cur = sizeof(float)*(
  9487. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9488. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9489. );
  9490. } else {
  9491. GGML_ASSERT(false);
  9492. }
  9493. work_size = MAX(work_size, cur);
  9494. } break;
  9495. case GGML_OP_FLASH_ATTN:
  9496. {
  9497. node->n_tasks = n_threads;
  9498. size_t cur = 0;
  9499. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9500. if (node->src1->type == GGML_TYPE_F32) {
  9501. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9502. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9503. }
  9504. if (node->src1->type == GGML_TYPE_F16) {
  9505. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9506. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9507. }
  9508. work_size = MAX(work_size, cur);
  9509. } break;
  9510. case GGML_OP_FLASH_FF:
  9511. {
  9512. node->n_tasks = n_threads;
  9513. size_t cur = 0;
  9514. if (node->src1->type == GGML_TYPE_F32) {
  9515. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9516. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9517. }
  9518. if (node->src1->type == GGML_TYPE_F16) {
  9519. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9520. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9521. }
  9522. work_size = MAX(work_size, cur);
  9523. } break;
  9524. case GGML_OP_MAP_UNARY:
  9525. case GGML_OP_MAP_BINARY:
  9526. {
  9527. node->n_tasks = 1;
  9528. } break;
  9529. case GGML_OP_NONE:
  9530. {
  9531. node->n_tasks = 1;
  9532. } break;
  9533. case GGML_OP_COUNT:
  9534. {
  9535. GGML_ASSERT(false);
  9536. } break;
  9537. }
  9538. }
  9539. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9540. GGML_ASSERT(false); // TODO: better handling
  9541. }
  9542. if (work_size > 0 && cgraph->work == NULL) {
  9543. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9544. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9545. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9546. }
  9547. }
  9548. const int64_t perf_start_cycles = ggml_perf_cycles();
  9549. const int64_t perf_start_time_us = ggml_perf_time_us();
  9550. for (int i = 0; i < cgraph->n_nodes; i++) {
  9551. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9552. struct ggml_tensor * node = cgraph->nodes[i];
  9553. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9554. //if (node->grad == NULL && node->perf_runs > 0) {
  9555. // continue;
  9556. //}
  9557. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9558. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9559. // INIT
  9560. struct ggml_compute_params params = {
  9561. /*.type =*/ GGML_TASK_INIT,
  9562. /*.ith =*/ 0,
  9563. /*.nth =*/ node->n_tasks,
  9564. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9565. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9566. };
  9567. ggml_compute_forward(&params, node);
  9568. // COMPUTE
  9569. if (node->n_tasks > 1) {
  9570. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9571. atomic_store(&state_shared.has_work, false);
  9572. }
  9573. while (atomic_load(&state_shared.has_work)) {
  9574. ggml_lock_lock (&state_shared.spin);
  9575. ggml_lock_unlock(&state_shared.spin);
  9576. }
  9577. // launch thread pool
  9578. for (int j = 0; j < n_threads - 1; j++) {
  9579. workers[j].params = (struct ggml_compute_params) {
  9580. .type = GGML_TASK_COMPUTE,
  9581. .ith = j + 1,
  9582. .nth = node->n_tasks,
  9583. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9584. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9585. };
  9586. workers[j].node = node;
  9587. }
  9588. atomic_fetch_sub(&state_shared.n_ready, 1);
  9589. while (atomic_load(&state_shared.n_ready) > 0) {
  9590. ggml_lock_lock (&state_shared.spin);
  9591. ggml_lock_unlock(&state_shared.spin);
  9592. }
  9593. atomic_store(&state_shared.has_work, true);
  9594. }
  9595. params.type = GGML_TASK_COMPUTE;
  9596. ggml_compute_forward(&params, node);
  9597. // wait for thread pool
  9598. if (node->n_tasks > 1) {
  9599. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9600. atomic_store(&state_shared.has_work, false);
  9601. }
  9602. while (atomic_load(&state_shared.has_work)) {
  9603. ggml_lock_lock (&state_shared.spin);
  9604. ggml_lock_unlock(&state_shared.spin);
  9605. }
  9606. atomic_fetch_sub(&state_shared.n_ready, 1);
  9607. while (atomic_load(&state_shared.n_ready) != 0) {
  9608. ggml_lock_lock (&state_shared.spin);
  9609. ggml_lock_unlock(&state_shared.spin);
  9610. }
  9611. }
  9612. // FINALIZE
  9613. if (node->n_tasks > 1) {
  9614. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9615. atomic_store(&state_shared.has_work, false);
  9616. }
  9617. while (atomic_load(&state_shared.has_work)) {
  9618. ggml_lock_lock (&state_shared.spin);
  9619. ggml_lock_unlock(&state_shared.spin);
  9620. }
  9621. // launch thread pool
  9622. for (int j = 0; j < n_threads - 1; j++) {
  9623. workers[j].params = (struct ggml_compute_params) {
  9624. .type = GGML_TASK_FINALIZE,
  9625. .ith = j + 1,
  9626. .nth = node->n_tasks,
  9627. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9628. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9629. };
  9630. workers[j].node = node;
  9631. }
  9632. atomic_fetch_sub(&state_shared.n_ready, 1);
  9633. while (atomic_load(&state_shared.n_ready) > 0) {
  9634. ggml_lock_lock (&state_shared.spin);
  9635. ggml_lock_unlock(&state_shared.spin);
  9636. }
  9637. atomic_store(&state_shared.has_work, true);
  9638. }
  9639. params.type = GGML_TASK_FINALIZE;
  9640. ggml_compute_forward(&params, node);
  9641. // wait for thread pool
  9642. if (node->n_tasks > 1) {
  9643. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9644. atomic_store(&state_shared.has_work, false);
  9645. }
  9646. while (atomic_load(&state_shared.has_work)) {
  9647. ggml_lock_lock (&state_shared.spin);
  9648. ggml_lock_unlock(&state_shared.spin);
  9649. }
  9650. atomic_fetch_sub(&state_shared.n_ready, 1);
  9651. while (atomic_load(&state_shared.n_ready) != 0) {
  9652. ggml_lock_lock (&state_shared.spin);
  9653. ggml_lock_unlock(&state_shared.spin);
  9654. }
  9655. }
  9656. // performance stats (node)
  9657. {
  9658. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9659. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9660. node->perf_runs++;
  9661. node->perf_cycles += perf_cycles_cur;
  9662. node->perf_time_us += perf_time_us_cur;
  9663. }
  9664. }
  9665. // join thread pool
  9666. if (n_threads > 1) {
  9667. atomic_store(&state_shared.stop, true);
  9668. atomic_store(&state_shared.has_work, true);
  9669. for (int j = 0; j < n_threads - 1; j++) {
  9670. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9671. GGML_ASSERT(rc == 0);
  9672. UNUSED(rc);
  9673. }
  9674. ggml_lock_destroy(&state_shared.spin);
  9675. }
  9676. // performance stats (graph)
  9677. {
  9678. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9679. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9680. cgraph->perf_runs++;
  9681. cgraph->perf_cycles += perf_cycles_cur;
  9682. cgraph->perf_time_us += perf_time_us_cur;
  9683. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9684. __func__, cgraph->perf_runs,
  9685. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9686. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9687. (double) perf_time_us_cur / 1000.0,
  9688. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9689. }
  9690. }
  9691. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9692. for (int i = 0; i < cgraph->n_nodes; i++) {
  9693. struct ggml_tensor * grad = cgraph->grads[i];
  9694. if (grad) {
  9695. ggml_set_zero(grad);
  9696. }
  9697. }
  9698. }
  9699. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9700. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9701. GGML_PRINT("=== GRAPH ===\n");
  9702. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9703. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9704. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9705. for (int i = 0; i < cgraph->n_nodes; i++) {
  9706. struct ggml_tensor * node = cgraph->nodes[i];
  9707. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9708. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9709. i,
  9710. node->ne[0], node->ne[1], node->ne[2],
  9711. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9712. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9713. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9714. (double) node->perf_time_us / 1000.0,
  9715. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9716. }
  9717. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9718. for (int i = 0; i < cgraph->n_leafs; i++) {
  9719. struct ggml_tensor * node = cgraph->leafs[i];
  9720. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9721. i,
  9722. node->ne[0], node->ne[1],
  9723. GGML_OP_LABEL[node->op]);
  9724. }
  9725. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9726. if (perf_total_per_op_us[i] == 0) {
  9727. continue;
  9728. }
  9729. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9730. }
  9731. GGML_PRINT("========================================\n");
  9732. }
  9733. // check if node is part of the graph
  9734. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9735. if (cgraph == NULL) {
  9736. return true;
  9737. }
  9738. for (int i = 0; i < cgraph->n_nodes; i++) {
  9739. if (cgraph->nodes[i] == node) {
  9740. return true;
  9741. }
  9742. }
  9743. return false;
  9744. }
  9745. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9746. for (int i = 0; i < cgraph->n_nodes; i++) {
  9747. struct ggml_tensor * parent = cgraph->nodes[i];
  9748. if (parent->grad == node) {
  9749. return parent;
  9750. }
  9751. }
  9752. return NULL;
  9753. }
  9754. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9755. char color[16];
  9756. FILE * fp = fopen(filename, "w");
  9757. GGML_ASSERT(fp);
  9758. fprintf(fp, "digraph G {\n");
  9759. fprintf(fp, " newrank = true;\n");
  9760. fprintf(fp, " rankdir = LR;\n");
  9761. for (int i = 0; i < gb->n_nodes; i++) {
  9762. struct ggml_tensor * node = gb->nodes[i];
  9763. if (ggml_graph_get_parent(gb, node) != NULL) {
  9764. continue;
  9765. }
  9766. if (node->is_param) {
  9767. snprintf(color, sizeof(color), "yellow");
  9768. } else if (node->grad) {
  9769. if (ggml_graph_find(gf, node)) {
  9770. snprintf(color, sizeof(color), "green");
  9771. } else {
  9772. snprintf(color, sizeof(color), "lightblue");
  9773. }
  9774. } else {
  9775. snprintf(color, sizeof(color), "white");
  9776. }
  9777. fprintf(fp, " \"%p\" [ \
  9778. style = filled; fillcolor = %s; shape = record; \
  9779. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9780. (void *) node, color,
  9781. i, node->ne[0], node->ne[1],
  9782. GGML_OP_SYMBOL[node->op]);
  9783. if (node->grad) {
  9784. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9785. } else {
  9786. fprintf(fp, "\"; ]\n");
  9787. }
  9788. }
  9789. for (int i = 0; i < gb->n_leafs; i++) {
  9790. struct ggml_tensor * node = gb->leafs[i];
  9791. snprintf(color, sizeof(color), "pink");
  9792. if (ggml_nelements(node) == 1) {
  9793. fprintf(fp, " \"%p\" [ \
  9794. style = filled; fillcolor = %s; shape = record; \
  9795. label=\"<x>%.1e\"; ]\n",
  9796. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9797. } else {
  9798. fprintf(fp, " \"%p\" [ \
  9799. style = filled; fillcolor = %s; shape = record; \
  9800. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9801. (void *) node, color,
  9802. i, node->ne[0], node->ne[1]);
  9803. }
  9804. }
  9805. for (int i = 0; i < gb->n_nodes; i++) {
  9806. struct ggml_tensor * node = gb->nodes[i];
  9807. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9808. if (node->src0) {
  9809. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9810. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9811. parent0 ? (void *) parent0 : (void *) node->src0,
  9812. parent0 ? "g" : "x",
  9813. parent ? (void *) parent : (void *) node,
  9814. parent ? "g" : "x",
  9815. parent ? "empty" : "vee",
  9816. parent ? "dashed" : "solid");
  9817. }
  9818. if (node->src1) {
  9819. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9820. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9821. parent1 ? (void *) parent1 : (void *) node->src1,
  9822. parent1 ? "g" : "x",
  9823. parent ? (void *) parent : (void *) node,
  9824. parent ? "g" : "x",
  9825. parent ? "empty" : "vee",
  9826. parent ? "dashed" : "solid");
  9827. }
  9828. }
  9829. for (int i = 0; i < gb->n_leafs; i++) {
  9830. struct ggml_tensor * node = gb->leafs[i];
  9831. if (node->src0) {
  9832. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9833. (void *) node->src0, "x",
  9834. (void *) node, "x");
  9835. }
  9836. if (node->src1) {
  9837. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9838. (void *) node->src1, "x",
  9839. (void *) node, "x");
  9840. }
  9841. }
  9842. fprintf(fp, "}\n");
  9843. fclose(fp);
  9844. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9845. }
  9846. ////////////////////////////////////////////////////////////////////////////////
  9847. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9848. int i = 0;
  9849. for (int p = 0; p < np; ++p) {
  9850. const int64_t ne = ggml_nelements(ps[p]) ;
  9851. // TODO: add function to set tensor from array
  9852. for (int64_t j = 0; j < ne; ++j) {
  9853. ggml_set_f32_1d(ps[p], j, x[i++]);
  9854. }
  9855. }
  9856. }
  9857. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9858. int i = 0;
  9859. for (int p = 0; p < np; ++p) {
  9860. const int64_t ne = ggml_nelements(ps[p]) ;
  9861. // TODO: add function to get all elements at once
  9862. for (int64_t j = 0; j < ne; ++j) {
  9863. x[i++] = ggml_get_f32_1d(ps[p], j);
  9864. }
  9865. }
  9866. }
  9867. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9868. int i = 0;
  9869. for (int p = 0; p < np; ++p) {
  9870. const int64_t ne = ggml_nelements(ps[p]) ;
  9871. // TODO: add function to get all elements at once
  9872. for (int64_t j = 0; j < ne; ++j) {
  9873. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9874. }
  9875. }
  9876. }
  9877. //
  9878. // ADAM
  9879. //
  9880. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9881. //
  9882. static enum ggml_opt_result ggml_opt_adam(
  9883. struct ggml_context * ctx,
  9884. struct ggml_opt_params params,
  9885. struct ggml_tensor * f,
  9886. struct ggml_cgraph * gf,
  9887. struct ggml_cgraph * gb) {
  9888. GGML_ASSERT(ggml_is_scalar(f));
  9889. gf->n_threads = params.n_threads;
  9890. gb->n_threads = params.n_threads;
  9891. // these will store the parameters we want to optimize
  9892. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9893. int np = 0;
  9894. int nx = 0;
  9895. for (int i = 0; i < gf->n_nodes; ++i) {
  9896. if (gf->nodes[i]->is_param) {
  9897. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9898. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9899. ps[np++] = gf->nodes[i];
  9900. nx += ggml_nelements(gf->nodes[i]);
  9901. }
  9902. }
  9903. // constants
  9904. const float alpha = params.adam.alpha;
  9905. const float beta1 = params.adam.beta1;
  9906. const float beta2 = params.adam.beta2;
  9907. const float eps = params.adam.eps;
  9908. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9909. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9910. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9911. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9912. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9913. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9914. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9915. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9916. // initialize
  9917. ggml_vec_set_f32(nx, m, 0.0f);
  9918. ggml_vec_set_f32(nx, v, 0.0f);
  9919. // update view
  9920. ggml_opt_get_params(np, ps, x);
  9921. // compute the function value
  9922. ggml_graph_reset (gf);
  9923. ggml_set_f32 (f->grad, 1.0f);
  9924. ggml_graph_compute(ctx, gb);
  9925. float fx_prev = ggml_get_f32_1d(f, 0);
  9926. if (pf) {
  9927. pf[0] = fx_prev;
  9928. }
  9929. int n_no_improvement = 0;
  9930. float fx_best = fx_prev;
  9931. // run the optimizer
  9932. for (int t = 0; t < params.adam.n_iter; ++t) {
  9933. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9934. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9935. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9936. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9937. for (int i = 0; i < np; ++i) {
  9938. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9939. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9940. }
  9941. const int64_t t_start_wall = ggml_time_us();
  9942. const int64_t t_start_cpu = ggml_cycles();
  9943. UNUSED(t_start_wall);
  9944. UNUSED(t_start_cpu);
  9945. {
  9946. // update the gradient
  9947. ggml_opt_get_grad(np, ps, g1);
  9948. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9949. ggml_vec_scale_f32(nx, m, beta1);
  9950. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9951. // g2 = g1^2
  9952. ggml_vec_sqr_f32 (nx, g2, g1);
  9953. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9954. ggml_vec_scale_f32(nx, v, beta2);
  9955. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9956. // m^hat = m_t / (1 - beta1^t)
  9957. // v^hat = v_t / (1 - beta2^t)
  9958. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9959. ggml_vec_cpy_f32 (nx, mh, m);
  9960. ggml_vec_cpy_f32 (nx, vh, v);
  9961. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9962. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9963. ggml_vec_sqrt_f32 (nx, vh, vh);
  9964. ggml_vec_acc1_f32 (nx, vh, eps);
  9965. ggml_vec_div_f32 (nx, mh, mh, vh);
  9966. ggml_vec_sub_f32 (nx, x, x, mh);
  9967. // update the parameters
  9968. ggml_opt_set_params(np, ps, x);
  9969. }
  9970. ggml_graph_reset (gf);
  9971. ggml_set_f32 (f->grad, 1.0f);
  9972. ggml_graph_compute(ctx, gb);
  9973. const float fx = ggml_get_f32_1d(f, 0);
  9974. // check convergence
  9975. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9976. GGML_PRINT_DEBUG("converged\n");
  9977. return GGML_OPT_OK;
  9978. }
  9979. // delta-based convergence test
  9980. if (pf != NULL) {
  9981. // need at least params.past iterations to start checking for convergence
  9982. if (params.past <= t) {
  9983. const float rate = (pf[t%params.past] - fx)/fx;
  9984. if (fabsf(rate) < params.delta) {
  9985. return GGML_OPT_OK;
  9986. }
  9987. }
  9988. pf[t%params.past] = fx;
  9989. }
  9990. // check for improvement
  9991. if (params.max_no_improvement > 0) {
  9992. if (fx_best > fx) {
  9993. fx_best = fx;
  9994. n_no_improvement = 0;
  9995. } else {
  9996. ++n_no_improvement;
  9997. if (n_no_improvement >= params.max_no_improvement) {
  9998. return GGML_OPT_OK;
  9999. }
  10000. }
  10001. }
  10002. fx_prev = fx;
  10003. {
  10004. const int64_t t_end_cpu = ggml_cycles();
  10005. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10006. UNUSED(t_end_cpu);
  10007. const int64_t t_end_wall = ggml_time_us();
  10008. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10009. UNUSED(t_end_wall);
  10010. }
  10011. }
  10012. return GGML_OPT_DID_NOT_CONVERGE;
  10013. }
  10014. //
  10015. // L-BFGS
  10016. //
  10017. // the L-BFGS implementation below is based on the following implementation:
  10018. //
  10019. // https://github.com/chokkan/liblbfgs
  10020. //
  10021. struct ggml_lbfgs_iteration_data {
  10022. float alpha;
  10023. float ys;
  10024. float * s;
  10025. float * y;
  10026. };
  10027. static enum ggml_opt_result linesearch_backtracking(
  10028. struct ggml_context * ctx,
  10029. const struct ggml_opt_params * params,
  10030. int nx,
  10031. float * x,
  10032. float * fx,
  10033. float * g,
  10034. float * d,
  10035. float * step,
  10036. const float * xp,
  10037. struct ggml_tensor * f,
  10038. struct ggml_cgraph * gf,
  10039. struct ggml_cgraph * gb,
  10040. const int np,
  10041. struct ggml_tensor * ps[]) {
  10042. int count = 0;
  10043. float width = 0.0f;
  10044. float dg = 0.0f;
  10045. float finit = 0.0f;
  10046. float dginit = 0.0f;
  10047. float dgtest = 0.0f;
  10048. const float dec = 0.5f;
  10049. const float inc = 2.1f;
  10050. if (*step <= 0.f) {
  10051. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10052. }
  10053. // compute the initial gradient in the search direction
  10054. ggml_vec_dot_f32(nx, &dginit, g, d);
  10055. // make sure that d points to a descent direction
  10056. if (0 < dginit) {
  10057. return GGML_LINESEARCH_FAIL;
  10058. }
  10059. // initialize local variables
  10060. finit = *fx;
  10061. dgtest = params->lbfgs.ftol*dginit;
  10062. while (true) {
  10063. ggml_vec_cpy_f32(nx, x, xp);
  10064. ggml_vec_mad_f32(nx, x, d, *step);
  10065. // evaluate the function and gradient values
  10066. {
  10067. ggml_opt_set_params(np, ps, x);
  10068. ggml_graph_reset (gf);
  10069. ggml_set_f32 (f->grad, 1.0f);
  10070. ggml_graph_compute(ctx, gb);
  10071. ggml_opt_get_grad(np, ps, g);
  10072. *fx = ggml_get_f32_1d(f, 0);
  10073. }
  10074. ++count;
  10075. if (*fx > finit + (*step)*dgtest) {
  10076. width = dec;
  10077. } else {
  10078. // Armijo condition is satisfied
  10079. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10080. return count;
  10081. }
  10082. ggml_vec_dot_f32(nx, &dg, g, d);
  10083. // check the Wolfe condition
  10084. if (dg < params->lbfgs.wolfe * dginit) {
  10085. width = inc;
  10086. } else {
  10087. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10088. // regular Wolfe conditions
  10089. return count;
  10090. }
  10091. if(dg > -params->lbfgs.wolfe*dginit) {
  10092. width = dec;
  10093. } else {
  10094. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10095. return count;
  10096. }
  10097. return count;
  10098. }
  10099. }
  10100. if (*step < params->lbfgs.min_step) {
  10101. return GGML_LINESEARCH_MINIMUM_STEP;
  10102. }
  10103. if (*step > params->lbfgs.max_step) {
  10104. return GGML_LINESEARCH_MAXIMUM_STEP;
  10105. }
  10106. if (params->lbfgs.max_linesearch <= count) {
  10107. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10108. }
  10109. (*step) *= width;
  10110. }
  10111. return GGML_LINESEARCH_FAIL;
  10112. }
  10113. static enum ggml_opt_result ggml_opt_lbfgs(
  10114. struct ggml_context * ctx,
  10115. struct ggml_opt_params params,
  10116. struct ggml_tensor * f,
  10117. struct ggml_cgraph * gf,
  10118. struct ggml_cgraph * gb) {
  10119. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10120. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10121. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10122. return GGML_OPT_INVALID_WOLFE;
  10123. }
  10124. }
  10125. gf->n_threads = params.n_threads;
  10126. gb->n_threads = params.n_threads;
  10127. const int m = params.lbfgs.m;
  10128. // these will store the parameters we want to optimize
  10129. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10130. int np = 0;
  10131. int nx = 0;
  10132. for (int i = 0; i < gf->n_nodes; ++i) {
  10133. if (gf->nodes[i]->is_param) {
  10134. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10135. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10136. ps[np++] = gf->nodes[i];
  10137. nx += ggml_nelements(gf->nodes[i]);
  10138. }
  10139. }
  10140. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10141. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10142. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10143. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10144. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10145. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10146. float fx = 0.0f; // cost function value
  10147. float xnorm = 0.0f; // ||x||
  10148. float gnorm = 0.0f; // ||g||
  10149. float step = 0.0f;
  10150. // initialize x from the graph nodes
  10151. ggml_opt_get_params(np, ps, x);
  10152. // the L-BFGS memory
  10153. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10154. for (int i = 0; i < m; ++i) {
  10155. lm[i].alpha = 0.0f;
  10156. lm[i].ys = 0.0f;
  10157. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10158. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10159. }
  10160. // evaluate the function value and its gradient
  10161. {
  10162. ggml_opt_set_params(np, ps, x);
  10163. ggml_graph_reset (gf);
  10164. ggml_set_f32 (f->grad, 1.0f);
  10165. ggml_graph_compute(ctx, gb);
  10166. ggml_opt_get_grad(np, ps, g);
  10167. fx = ggml_get_f32_1d(f, 0);
  10168. }
  10169. if (pf) {
  10170. pf[0] = fx;
  10171. }
  10172. float fx_best = fx;
  10173. // search direction = -gradient
  10174. ggml_vec_neg_f32(nx, d, g);
  10175. // ||x||, ||g||
  10176. ggml_vec_norm_f32(nx, &xnorm, x);
  10177. ggml_vec_norm_f32(nx, &gnorm, g);
  10178. if (xnorm < 1.0f) {
  10179. xnorm = 1.0f;
  10180. }
  10181. // already optimized
  10182. if (gnorm/xnorm <= params.lbfgs.eps) {
  10183. return GGML_OPT_OK;
  10184. }
  10185. // initial step
  10186. ggml_vec_norm_inv_f32(nx, &step, d);
  10187. int j = 0;
  10188. int k = 1;
  10189. int ls = 0;
  10190. int end = 0;
  10191. int bound = 0;
  10192. int n_no_improvement = 0;
  10193. float ys = 0.0f;
  10194. float yy = 0.0f;
  10195. float beta = 0.0f;
  10196. while (true) {
  10197. // store the current position and gradient vectors
  10198. ggml_vec_cpy_f32(nx, xp, x);
  10199. ggml_vec_cpy_f32(nx, gp, g);
  10200. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10201. if (ls < 0) {
  10202. // linesearch failed - go back to the previous point and return
  10203. ggml_vec_cpy_f32(nx, x, xp);
  10204. ggml_vec_cpy_f32(nx, g, gp);
  10205. return ls;
  10206. }
  10207. ggml_vec_norm_f32(nx, &xnorm, x);
  10208. ggml_vec_norm_f32(nx, &gnorm, g);
  10209. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10210. if (xnorm < 1.0f) {
  10211. xnorm = 1.0f;
  10212. }
  10213. if (gnorm/xnorm <= params.lbfgs.eps) {
  10214. // converged
  10215. return GGML_OPT_OK;
  10216. }
  10217. // delta-based convergence test
  10218. if (pf != NULL) {
  10219. // need at least params.past iterations to start checking for convergence
  10220. if (params.past <= k) {
  10221. const float rate = (pf[k%params.past] - fx)/fx;
  10222. if (fabsf(rate) < params.delta) {
  10223. return GGML_OPT_OK;
  10224. }
  10225. }
  10226. pf[k%params.past] = fx;
  10227. }
  10228. // check for improvement
  10229. if (params.max_no_improvement > 0) {
  10230. if (fx < fx_best) {
  10231. fx_best = fx;
  10232. n_no_improvement = 0;
  10233. } else {
  10234. n_no_improvement++;
  10235. if (n_no_improvement >= params.max_no_improvement) {
  10236. return GGML_OPT_OK;
  10237. }
  10238. }
  10239. }
  10240. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10241. // reached the maximum number of iterations
  10242. return GGML_OPT_DID_NOT_CONVERGE;
  10243. }
  10244. // update vectors s and y:
  10245. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10246. // y_{k+1} = g_{k+1} - g_{k}.
  10247. //
  10248. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10249. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10250. // compute scalars ys and yy:
  10251. // ys = y^t \cdot s -> 1 / \rho.
  10252. // yy = y^t \cdot y.
  10253. //
  10254. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10255. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10256. lm[end].ys = ys;
  10257. // find new search direction
  10258. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10259. bound = (m <= k) ? m : k;
  10260. k++;
  10261. end = (end + 1)%m;
  10262. // initialize search direction with -g
  10263. ggml_vec_neg_f32(nx, d, g);
  10264. j = end;
  10265. for (int i = 0; i < bound; ++i) {
  10266. j = (j + m - 1) % m;
  10267. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10268. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10269. lm[j].alpha /= lm[j].ys;
  10270. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10271. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10272. }
  10273. ggml_vec_scale_f32(nx, d, ys/yy);
  10274. for (int i = 0; i < bound; ++i) {
  10275. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10276. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10277. beta /= lm[j].ys;
  10278. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10279. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10280. j = (j + 1)%m;
  10281. }
  10282. step = 1.0;
  10283. }
  10284. return GGML_OPT_DID_NOT_CONVERGE;
  10285. }
  10286. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10287. struct ggml_opt_params result;
  10288. switch (type) {
  10289. case GGML_OPT_ADAM:
  10290. {
  10291. result = (struct ggml_opt_params) {
  10292. .type = GGML_OPT_ADAM,
  10293. .n_threads = 1,
  10294. .past = 0,
  10295. .delta = 1e-5f,
  10296. .max_no_improvement = 100,
  10297. .print_forward_graph = true,
  10298. .print_backward_graph = true,
  10299. .adam = {
  10300. .n_iter = 10000,
  10301. .alpha = 0.001f,
  10302. .beta1 = 0.9f,
  10303. .beta2 = 0.999f,
  10304. .eps = 1e-8f,
  10305. .eps_f = 1e-5f,
  10306. .eps_g = 1e-3f,
  10307. },
  10308. };
  10309. } break;
  10310. case GGML_OPT_LBFGS:
  10311. {
  10312. result = (struct ggml_opt_params) {
  10313. .type = GGML_OPT_LBFGS,
  10314. .n_threads = 1,
  10315. .past = 0,
  10316. .delta = 1e-5f,
  10317. .max_no_improvement = 0,
  10318. .print_forward_graph = true,
  10319. .print_backward_graph = true,
  10320. .lbfgs = {
  10321. .m = 6,
  10322. .n_iter = 100,
  10323. .max_linesearch = 20,
  10324. .eps = 1e-5f,
  10325. .ftol = 1e-4f,
  10326. .wolfe = 0.9f,
  10327. .min_step = 1e-20f,
  10328. .max_step = 1e+20f,
  10329. .linesearch = GGML_LINESEARCH_DEFAULT,
  10330. },
  10331. };
  10332. } break;
  10333. }
  10334. return result;
  10335. }
  10336. enum ggml_opt_result ggml_opt(
  10337. struct ggml_context * ctx,
  10338. struct ggml_opt_params params,
  10339. struct ggml_tensor * f) {
  10340. bool free_ctx = false;
  10341. if (ctx == NULL) {
  10342. struct ggml_init_params params_ctx = {
  10343. .mem_size = 16*1024*1024,
  10344. .mem_buffer = NULL,
  10345. .no_alloc = false,
  10346. };
  10347. ctx = ggml_init(params_ctx);
  10348. if (ctx == NULL) {
  10349. return GGML_OPT_NO_CONTEXT;
  10350. }
  10351. free_ctx = true;
  10352. }
  10353. enum ggml_opt_result result = GGML_OPT_OK;
  10354. // build forward + backward compute graphs
  10355. struct ggml_cgraph gf = ggml_build_forward (f);
  10356. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10357. switch (params.type) {
  10358. case GGML_OPT_ADAM:
  10359. {
  10360. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10361. } break;
  10362. case GGML_OPT_LBFGS:
  10363. {
  10364. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10365. } break;
  10366. }
  10367. if (params.print_forward_graph) {
  10368. ggml_graph_print (&gf);
  10369. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10370. }
  10371. if (params.print_backward_graph) {
  10372. ggml_graph_print (&gb);
  10373. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10374. }
  10375. if (free_ctx) {
  10376. ggml_free(ctx);
  10377. }
  10378. return result;
  10379. }
  10380. ////////////////////////////////////////////////////////////////////////////////
  10381. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10382. assert(k % QK4_0 == 0);
  10383. const int nb = k / QK4_0;
  10384. for (int j = 0; j < n; j += k) {
  10385. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10386. quantize_row_q4_0_reference(src + j, y, k);
  10387. for (int i = 0; i < nb; i++) {
  10388. for (int l = 0; l < QK4_0; l += 2) {
  10389. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10390. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10391. hist[vi0]++;
  10392. hist[vi1]++;
  10393. }
  10394. }
  10395. }
  10396. return (n/QK4_0*sizeof(block_q4_0));
  10397. }
  10398. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10399. assert(k % QK4_1 == 0);
  10400. const int nb = k / QK4_1;
  10401. for (int j = 0; j < n; j += k) {
  10402. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10403. quantize_row_q4_1_reference(src + j, y, k);
  10404. for (int i = 0; i < nb; i++) {
  10405. for (int l = 0; l < QK4_1; l += 2) {
  10406. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10407. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10408. hist[vi0]++;
  10409. hist[vi1]++;
  10410. }
  10411. }
  10412. }
  10413. return (n/QK4_1*sizeof(block_q4_1));
  10414. }
  10415. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10416. assert(k % QK4_2 == 0);
  10417. const int nb = k / QK4_2;
  10418. for (int j = 0; j < n; j += k) {
  10419. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10420. quantize_row_q4_2_reference(src + j, y, k);
  10421. for (int i = 0; i < nb; i++) {
  10422. for (int l = 0; l < QK4_2; l += 2) {
  10423. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10424. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10425. hist[vi0]++;
  10426. hist[vi1]++;
  10427. }
  10428. }
  10429. }
  10430. return (n/QK4_2*sizeof(block_q4_2));
  10431. }
  10432. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  10433. assert(k % QK4_3 == 0);
  10434. const int nb = k / QK4_3;
  10435. for (int j = 0; j < n; j += k) {
  10436. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  10437. quantize_row_q4_3_reference(src + j, y, k);
  10438. for (int i = 0; i < nb; i++) {
  10439. for (int l = 0; l < QK4_3; l += 2) {
  10440. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10441. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10442. hist[vi0]++;
  10443. hist[vi1]++;
  10444. }
  10445. }
  10446. }
  10447. return (n/QK4_3*sizeof(block_q4_3));
  10448. }
  10449. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10450. assert(k % QK5_0 == 0);
  10451. const int nb = k / QK5_0;
  10452. for (int j = 0; j < n; j += k) {
  10453. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10454. quantize_row_q5_0_reference(src + j, y, k);
  10455. for (int i = 0; i < nb; i++) {
  10456. uint32_t qh;
  10457. memcpy(&qh, &y[i].qh, sizeof(qh));
  10458. for (int l = 0; l < QK5_0; l += 2) {
  10459. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10460. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10461. // cast to 16 bins
  10462. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10463. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10464. hist[vi0]++;
  10465. hist[vi1]++;
  10466. }
  10467. }
  10468. }
  10469. return (n/QK5_0*sizeof(block_q5_0));
  10470. }
  10471. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10472. assert(k % QK5_1 == 0);
  10473. const int nb = k / QK5_1;
  10474. for (int j = 0; j < n; j += k) {
  10475. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10476. quantize_row_q5_1_reference(src + j, y, k);
  10477. for (int i = 0; i < nb; i++) {
  10478. uint32_t qh;
  10479. memcpy(&qh, &y[i].qh, sizeof(qh));
  10480. for (int l = 0; l < QK5_1; l += 2) {
  10481. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10482. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10483. // cast to 16 bins
  10484. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10485. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10486. hist[vi0]++;
  10487. hist[vi1]++;
  10488. }
  10489. }
  10490. }
  10491. return (n/QK5_1*sizeof(block_q5_1));
  10492. }
  10493. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10494. assert(k % QK8_0 == 0);
  10495. const int nb = k / QK8_0;
  10496. for (int j = 0; j < n; j += k) {
  10497. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10498. quantize_row_q8_0_reference(src + j, y, k);
  10499. for (int i = 0; i < nb; i++) {
  10500. for (int l = 0; l < QK8_0; ++l) {
  10501. const int8_t vi = y[i].qs[l];
  10502. hist[vi/16 + 8]++;
  10503. }
  10504. }
  10505. }
  10506. return (n/QK8_0*sizeof(block_q8_0));
  10507. }
  10508. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10509. size_t result = 0;
  10510. switch (type) {
  10511. case GGML_TYPE_Q4_0:
  10512. {
  10513. GGML_ASSERT(start % QK4_0 == 0);
  10514. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10515. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10516. } break;
  10517. case GGML_TYPE_Q4_1:
  10518. {
  10519. GGML_ASSERT(start % QK4_1 == 0);
  10520. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10521. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10522. } break;
  10523. case GGML_TYPE_Q4_2:
  10524. {
  10525. GGML_ASSERT(start % QK4_2 == 0);
  10526. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10527. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10528. } break;
  10529. case GGML_TYPE_Q4_3:
  10530. {
  10531. GGML_ASSERT(start % QK4_3 == 0);
  10532. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10533. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10534. } break;
  10535. case GGML_TYPE_Q5_0:
  10536. {
  10537. GGML_ASSERT(start % QK5_0 == 0);
  10538. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10539. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10540. } break;
  10541. case GGML_TYPE_Q5_1:
  10542. {
  10543. GGML_ASSERT(start % QK5_1 == 0);
  10544. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10545. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10546. } break;
  10547. case GGML_TYPE_Q8_0:
  10548. {
  10549. GGML_ASSERT(start % QK8_0 == 0);
  10550. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10551. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10552. } break;
  10553. default:
  10554. assert(false);
  10555. }
  10556. return result;
  10557. }
  10558. ////////////////////////////////////////////////////////////////////////////////
  10559. int ggml_cpu_has_avx(void) {
  10560. #if defined(__AVX__)
  10561. return 1;
  10562. #else
  10563. return 0;
  10564. #endif
  10565. }
  10566. int ggml_cpu_has_avx2(void) {
  10567. #if defined(__AVX2__)
  10568. return 1;
  10569. #else
  10570. return 0;
  10571. #endif
  10572. }
  10573. int ggml_cpu_has_avx512(void) {
  10574. #if defined(__AVX512F__)
  10575. return 1;
  10576. #else
  10577. return 0;
  10578. #endif
  10579. }
  10580. int ggml_cpu_has_avx512_vbmi(void) {
  10581. #if defined(__AVX512VBMI__)
  10582. return 1;
  10583. #else
  10584. return 0;
  10585. #endif
  10586. }
  10587. int ggml_cpu_has_avx512_vnni(void) {
  10588. #if defined(__AVX512VNNI__)
  10589. return 1;
  10590. #else
  10591. return 0;
  10592. #endif
  10593. }
  10594. int ggml_cpu_has_fma(void) {
  10595. #if defined(__FMA__)
  10596. return 1;
  10597. #else
  10598. return 0;
  10599. #endif
  10600. }
  10601. int ggml_cpu_has_neon(void) {
  10602. #if defined(__ARM_NEON)
  10603. return 1;
  10604. #else
  10605. return 0;
  10606. #endif
  10607. }
  10608. int ggml_cpu_has_arm_fma(void) {
  10609. #if defined(__ARM_FEATURE_FMA)
  10610. return 1;
  10611. #else
  10612. return 0;
  10613. #endif
  10614. }
  10615. int ggml_cpu_has_f16c(void) {
  10616. #if defined(__F16C__)
  10617. return 1;
  10618. #else
  10619. return 0;
  10620. #endif
  10621. }
  10622. int ggml_cpu_has_fp16_va(void) {
  10623. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10624. return 1;
  10625. #else
  10626. return 0;
  10627. #endif
  10628. }
  10629. int ggml_cpu_has_wasm_simd(void) {
  10630. #if defined(__wasm_simd128__)
  10631. return 1;
  10632. #else
  10633. return 0;
  10634. #endif
  10635. }
  10636. int ggml_cpu_has_blas(void) {
  10637. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10638. return 1;
  10639. #else
  10640. return 0;
  10641. #endif
  10642. }
  10643. int ggml_cpu_has_cublas(void) {
  10644. #if defined(GGML_USE_CUBLAS)
  10645. return 1;
  10646. #else
  10647. return 0;
  10648. #endif
  10649. }
  10650. int ggml_cpu_has_sse3(void) {
  10651. #if defined(__SSE3__)
  10652. return 1;
  10653. #else
  10654. return 0;
  10655. #endif
  10656. }
  10657. int ggml_cpu_has_vsx(void) {
  10658. #if defined(__POWER9_VECTOR__)
  10659. return 1;
  10660. #else
  10661. return 0;
  10662. #endif
  10663. }
  10664. ////////////////////////////////////////////////////////////////////////////////