llama-model.cpp 532 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <sstream>
  18. #include <stdexcept>
  19. const char * llm_type_name(llm_type type) {
  20. switch (type) {
  21. case LLM_TYPE_14M: return "14M";
  22. case LLM_TYPE_17M: return "17M";
  23. case LLM_TYPE_22M: return "22M";
  24. case LLM_TYPE_33M: return "33M";
  25. case LLM_TYPE_60M: return "60M";
  26. case LLM_TYPE_70M: return "70M";
  27. case LLM_TYPE_80M: return "80M";
  28. case LLM_TYPE_109M: return "109M";
  29. case LLM_TYPE_137M: return "137M";
  30. case LLM_TYPE_160M: return "160M";
  31. case LLM_TYPE_190M: return "190M";
  32. case LLM_TYPE_220M: return "220M";
  33. case LLM_TYPE_250M: return "250M";
  34. case LLM_TYPE_270M: return "270M";
  35. case LLM_TYPE_335M: return "335M";
  36. case LLM_TYPE_410M: return "410M";
  37. case LLM_TYPE_450M: return "450M";
  38. case LLM_TYPE_770M: return "770M";
  39. case LLM_TYPE_780M: return "780M";
  40. case LLM_TYPE_0_5B: return "0.5B";
  41. case LLM_TYPE_1B: return "1B";
  42. case LLM_TYPE_1_3B: return "1.3B";
  43. case LLM_TYPE_1_4B: return "1.4B";
  44. case LLM_TYPE_1_5B: return "1.5B";
  45. case LLM_TYPE_1_6B: return "1.6B";
  46. case LLM_TYPE_1_8B: return "1.8B";
  47. case LLM_TYPE_2B: return "2B";
  48. case LLM_TYPE_2_8B: return "2.8B";
  49. case LLM_TYPE_2_9B: return "2.9B";
  50. case LLM_TYPE_3B: return "3B";
  51. case LLM_TYPE_4B: return "4B";
  52. case LLM_TYPE_6B: return "6B";
  53. case LLM_TYPE_6_9B: return "6.9B";
  54. case LLM_TYPE_7B: return "7B";
  55. case LLM_TYPE_8B: return "8B";
  56. case LLM_TYPE_9B: return "9B";
  57. case LLM_TYPE_11B: return "11B";
  58. case LLM_TYPE_12B: return "12B";
  59. case LLM_TYPE_13B: return "13B";
  60. case LLM_TYPE_14B: return "14B";
  61. case LLM_TYPE_15B: return "15B";
  62. case LLM_TYPE_16B: return "16B";
  63. case LLM_TYPE_20B: return "20B";
  64. case LLM_TYPE_30B: return "30B";
  65. case LLM_TYPE_32B: return "32B";
  66. case LLM_TYPE_34B: return "34B";
  67. case LLM_TYPE_35B: return "35B";
  68. case LLM_TYPE_40B: return "40B";
  69. case LLM_TYPE_65B: return "65B";
  70. case LLM_TYPE_70B: return "70B";
  71. case LLM_TYPE_236B: return "236B";
  72. case LLM_TYPE_314B: return "314B";
  73. case LLM_TYPE_671B: return "671B";
  74. case LLM_TYPE_SMALL: return "0.1B";
  75. case LLM_TYPE_MEDIUM: return "0.4B";
  76. case LLM_TYPE_LARGE: return "0.8B";
  77. case LLM_TYPE_XL: return "1.5B";
  78. case LLM_TYPE_A1_7B: return "A1.7B";
  79. case LLM_TYPE_A2_7B: return "A2.7B";
  80. case LLM_TYPE_8x7B: return "8x7B";
  81. case LLM_TYPE_8x22B: return "8x22B";
  82. case LLM_TYPE_16x12B: return "16x12B";
  83. case LLM_TYPE_16x3_8B: return "16x3.8B";
  84. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  85. case LLM_TYPE_57B_A14B: return "57B.A14B";
  86. case LLM_TYPE_27B: return "27B";
  87. default: return "?B";
  88. }
  89. }
  90. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  91. switch (type) {
  92. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  93. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  94. default: return "unknown";
  95. }
  96. }
  97. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  98. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  99. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  100. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  101. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  102. };
  103. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  104. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  105. if (kv.second == name) {
  106. return (llama_rope_scaling_type) kv.first;
  107. }
  108. }
  109. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  110. }
  111. // checks if the weight tensor can be used with the specified buffer type and device
  112. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  113. GGML_ASSERT(w != nullptr);
  114. if (op == GGML_OP_NONE) {
  115. return true;
  116. }
  117. ggml_init_params params = {
  118. /*.mem_size =*/ ggml_tensor_overhead()*8,
  119. /*.mem_buffer =*/ NULL,
  120. /*.no_alloc =*/ true,
  121. };
  122. ggml_context_ptr ctx_ptr { ggml_init(params) };
  123. if (!ctx_ptr) {
  124. throw std::runtime_error(format("failed to create ggml context"));
  125. }
  126. ggml_context * ctx = ctx_ptr.get();
  127. ggml_tensor * op_tensor = nullptr;
  128. switch (op) {
  129. case GGML_OP_GET_ROWS:
  130. {
  131. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  132. op_tensor = ggml_get_rows(ctx, w, b);
  133. } break;
  134. case GGML_OP_MUL_MAT:
  135. {
  136. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  137. op_tensor = ggml_mul_mat(ctx, w, b);
  138. } break;
  139. case GGML_OP_MUL_MAT_ID:
  140. {
  141. int n_expert_used = hparams.n_expert_used;
  142. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  143. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  144. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  145. } break;
  146. case GGML_OP_ADD:
  147. {
  148. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  149. op_tensor = ggml_add(ctx, a, w);
  150. } break;
  151. case GGML_OP_MUL:
  152. {
  153. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  154. op_tensor = ggml_mul(ctx, a, w);
  155. } break;
  156. case GGML_OP_DIV:
  157. {
  158. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  159. op_tensor = ggml_div(ctx, a, w);
  160. } break;
  161. case GGML_OP_ROPE:
  162. {
  163. int n_embd_head = hparams.n_embd_head_v;
  164. int n_head = hparams.n_head();
  165. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  166. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  167. op_tensor = ggml_rope_ext(
  168. ctx, a, b, w,
  169. 0, 0, 0, 0, 0,
  170. 0, 0, 0, 0
  171. );
  172. } break;
  173. case GGML_OP_SSM_CONV:
  174. {
  175. // FIXME
  176. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  177. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  178. } break;
  179. case GGML_OP_SSM_SCAN:
  180. {
  181. // FIXME
  182. const int64_t d_state = w->ne[0];
  183. const int64_t d_inner = w->ne[1];
  184. const int64_t n_seq_tokens = 512;
  185. const int64_t n_seqs = 1;
  186. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  187. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  188. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  189. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  190. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  191. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  192. } break;
  193. case GGML_OP_RWKV_WKV6:
  194. {
  195. // FIXME
  196. const int64_t S = 123;
  197. const int64_t H = 123;
  198. const int64_t n_tokens = 123;
  199. const int64_t n_seqs = 123;
  200. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  201. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  202. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  203. ggml_tensor * tf = w;
  204. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  205. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  206. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  207. } break;
  208. case GGML_OP_IM2COL:
  209. {
  210. const int n_embd = hparams.n_embd;
  211. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  212. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  213. } break;
  214. default:
  215. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  216. }
  217. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  218. GGML_ASSERT(w->buffer == nullptr);
  219. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  220. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  221. ggml_backend_buffer_free(w->buffer);
  222. w->buffer = nullptr;
  223. return op_supported;
  224. }
  225. // lists of buffer types used for each layer
  226. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  227. // find the first buffer type in the list that can use the tensor
  228. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  229. GGML_ASSERT(!buft_list.empty());
  230. for (const auto & cur : buft_list) {
  231. ggml_backend_dev_t cur_dev = cur.first;
  232. ggml_backend_buffer_type_t cur_buft = cur.second;
  233. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  234. return cur_buft;
  235. }
  236. }
  237. return nullptr;
  238. }
  239. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  240. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  241. buft_list_t buft_list;
  242. // add ACCEL buffer types
  243. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  244. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  245. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  246. auto * buft = ggml_backend_dev_buffer_type(dev);
  247. // skip
  248. if (buft != ggml_backend_cpu_buffer_type()) {
  249. buft_list.emplace_back(dev, buft);
  250. }
  251. }
  252. }
  253. // add a host buffer type
  254. // storing the tensors in a host buffer is useful when the processing of large batches
  255. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  256. // generally, this will be done using the first device in the list
  257. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  258. // function of the device to determine if it would benefit from being stored in a host buffer
  259. for (auto * dev : devices) {
  260. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  261. if (buft) {
  262. buft_list.emplace_back(dev, buft);
  263. break;
  264. }
  265. }
  266. // add extra buffer types, only if no GPU device is present
  267. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  268. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  269. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  270. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  271. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  272. if (ggml_backend_dev_get_extra_bufts_fn) {
  273. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  274. while (extra_bufts && *extra_bufts) {
  275. buft_list.emplace_back(cpu_dev, *extra_bufts);
  276. ++extra_bufts;
  277. }
  278. }
  279. // add the CPU buffer type
  280. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  281. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  282. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  283. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  284. }
  285. }
  286. return buft_list;
  287. }
  288. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  289. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  290. buft_list_t buft_list;
  291. // add the device split buffer type if requested and available
  292. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  293. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  294. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  295. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  296. if (ggml_backend_split_buffer_type_fn) {
  297. size_t dev_index = [&]() {
  298. auto * reg = ggml_backend_dev_backend_reg(dev);
  299. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  300. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  301. return i;
  302. }
  303. }
  304. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  305. }();
  306. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  307. if (buft != nullptr) {
  308. buft_list.emplace_back(dev, buft);
  309. }
  310. }
  311. }
  312. // add the device default buffer type
  313. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  314. return buft_list;
  315. }
  316. struct llama_model::impl {
  317. impl() {}
  318. ~impl() {}
  319. uint64_t n_elements = 0;
  320. size_t n_bytes = 0;
  321. std::string desc_str;
  322. // model memory mapped files
  323. llama_mmaps mappings;
  324. // objects representing data potentially being locked in memory
  325. llama_mlocks mlock_bufs;
  326. llama_mlocks mlock_mmaps;
  327. // contexts where the model tensors metadata is stored
  328. std::vector<ggml_context_ptr> ctxs;
  329. // the model memory buffers for the tensor data
  330. std::vector<ggml_backend_buffer_ptr> bufs;
  331. buft_list_t cpu_buft_list;
  332. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  333. struct layer_dev {
  334. ggml_backend_dev_t dev;
  335. buft_list_t * buft_list;
  336. };
  337. layer_dev dev_input = {};
  338. layer_dev dev_output = {};
  339. std::vector<layer_dev> dev_layer;
  340. };
  341. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  342. }
  343. llama_model::~llama_model() {}
  344. void llama_model::load_stats(llama_model_loader & ml) {
  345. pimpl->n_elements = ml.n_elements;
  346. pimpl->n_bytes = ml.n_bytes;
  347. }
  348. void llama_model::load_arch(llama_model_loader & ml) {
  349. arch = ml.get_arch();
  350. if (arch == LLM_ARCH_UNKNOWN) {
  351. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  352. }
  353. }
  354. void llama_model::load_hparams(llama_model_loader & ml) {
  355. const gguf_context * ctx = ml.meta.get();
  356. // get metadata as string
  357. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  358. gguf_type type = gguf_get_kv_type(ctx, i);
  359. if (type == GGUF_TYPE_ARRAY) {
  360. continue;
  361. }
  362. const char * name = gguf_get_key(ctx, i);
  363. const std::string value = gguf_kv_to_str(ctx, i);
  364. gguf_kv.emplace(name, value);
  365. }
  366. // get general kv
  367. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  368. // everything past this point is not vocab-related
  369. if (hparams.vocab_only) {
  370. return;
  371. }
  372. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  373. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  374. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  375. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  376. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  377. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  378. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  379. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  380. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  381. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  382. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  383. }
  384. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  385. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  386. if (hparams.n_expert > 0) {
  387. GGML_ASSERT(hparams.n_expert_used > 0);
  388. } else {
  389. GGML_ASSERT(hparams.n_expert_used == 0);
  390. }
  391. // zero-out the array hparams
  392. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  393. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  394. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  395. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  396. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  397. // n_head_kv is optional, default to n_head
  398. hparams.n_head_kv_arr = hparams.n_head_arr;
  399. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  400. bool rope_finetuned = false;
  401. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  402. hparams.rope_finetuned = rope_finetuned;
  403. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  404. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  405. // rope_freq_base (optional)
  406. hparams.rope_freq_base_train = 10000.0f;
  407. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  408. std::string rope_scaling("linear");
  409. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  410. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  411. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  412. // rope_freq_scale (inverse of the kv) is optional
  413. float ropescale = 0.0f;
  414. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  415. // try the old key name
  416. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  417. }
  418. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  419. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  420. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  421. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  422. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  423. // non-transformer models do not have attention heads
  424. if (hparams.n_head() > 0) {
  425. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  426. // gpt-j n_rot = rotary_dim
  427. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  428. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  429. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  430. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  431. // sanity check for n_rot (optional)
  432. hparams.n_rot = hparams.n_embd_head_k;
  433. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  434. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  435. if (hparams.n_rot != hparams.n_embd_head_k) {
  436. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  437. }
  438. }
  439. } else {
  440. hparams.n_rot = 0;
  441. hparams.n_embd_head_k = 0;
  442. hparams.n_embd_head_v = 0;
  443. }
  444. // for differentiating model types
  445. uint32_t n_vocab = 0;
  446. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  447. // arch-specific KVs
  448. switch (arch) {
  449. case LLM_ARCH_LLAMA:
  450. {
  451. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  452. if (hparams.n_expert == 8) {
  453. switch (hparams.n_layer) {
  454. case 32: type = LLM_TYPE_8x7B; break;
  455. case 56: type = LLM_TYPE_8x22B; break;
  456. default: type = LLM_TYPE_UNKNOWN;
  457. }
  458. } else {
  459. switch (hparams.n_layer) {
  460. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  461. case 22: type = LLM_TYPE_1B; break;
  462. case 26: type = LLM_TYPE_3B; break;
  463. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  464. // granite uses a vocab with len 49152
  465. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  466. case 36: type = LLM_TYPE_8B; break; // granite
  467. case 40: type = LLM_TYPE_13B; break;
  468. case 48: type = LLM_TYPE_34B; break;
  469. case 60: type = LLM_TYPE_30B; break;
  470. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  471. default: type = LLM_TYPE_UNKNOWN;
  472. }
  473. }
  474. } break;
  475. case LLM_ARCH_DECI:
  476. {
  477. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  478. switch (hparams.n_layer) {
  479. case 32: type = LLM_TYPE_7B; break;
  480. case 80: type = LLM_TYPE_70B; break;
  481. default: type = LLM_TYPE_UNKNOWN;
  482. }
  483. } break;
  484. case LLM_ARCH_MINICPM:
  485. {
  486. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  487. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  488. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  489. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  490. switch (hparams.n_layer) {
  491. case 52: type = LLM_TYPE_1B; break;
  492. case 40: type = LLM_TYPE_2B; break;
  493. default: type = LLM_TYPE_UNKNOWN;
  494. }
  495. } break;
  496. case LLM_ARCH_MINICPM3:
  497. {
  498. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  499. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  500. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  501. switch (hparams.n_layer) {
  502. case 62: type = LLM_TYPE_4B; break;
  503. default: type = LLM_TYPE_UNKNOWN;
  504. }
  505. } break;
  506. case LLM_ARCH_GROK:
  507. {
  508. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  509. switch (hparams.n_layer) {
  510. case 64: type = LLM_TYPE_314B; break;
  511. default: type = LLM_TYPE_UNKNOWN;
  512. }
  513. } break;
  514. case LLM_ARCH_FALCON:
  515. {
  516. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  517. switch (hparams.n_layer) {
  518. case 32: type = LLM_TYPE_7B; break;
  519. case 60: type = LLM_TYPE_40B; break;
  520. default: type = LLM_TYPE_UNKNOWN;
  521. }
  522. } break;
  523. case LLM_ARCH_BAICHUAN:
  524. {
  525. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  526. switch (hparams.n_layer) {
  527. case 32: type = LLM_TYPE_7B; break;
  528. case 40: type = LLM_TYPE_13B; break;
  529. default: type = LLM_TYPE_UNKNOWN;
  530. }
  531. if (type == LLM_TYPE_13B) {
  532. // TODO: become GGUF KV parameter
  533. hparams.f_max_alibi_bias = 8.0f;
  534. }
  535. } break;
  536. case LLM_ARCH_STARCODER:
  537. {
  538. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  539. switch (hparams.n_layer) {
  540. case 24: type = LLM_TYPE_1B; break;
  541. case 36: type = LLM_TYPE_3B; break;
  542. case 42: type = LLM_TYPE_7B; break;
  543. case 40: type = LLM_TYPE_15B; break;
  544. default: type = LLM_TYPE_UNKNOWN;
  545. }
  546. } break;
  547. case LLM_ARCH_REFACT:
  548. {
  549. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  550. switch (hparams.n_layer) {
  551. case 32: type = LLM_TYPE_1B; break;
  552. default: type = LLM_TYPE_UNKNOWN;
  553. }
  554. // TODO: become GGUF KV parameter
  555. hparams.f_max_alibi_bias = 8.0f;
  556. } break;
  557. case LLM_ARCH_BERT:
  558. {
  559. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  560. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  561. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  562. switch (hparams.n_layer) {
  563. case 3:
  564. type = LLM_TYPE_17M; break; // bge-micro
  565. case 6:
  566. type = LLM_TYPE_22M; break; // MiniLM-L6
  567. case 12:
  568. switch (hparams.n_embd) {
  569. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  570. case 768: type = LLM_TYPE_109M; break; // bge-base
  571. default: type = LLM_TYPE_UNKNOWN;
  572. } break;
  573. case 24:
  574. type = LLM_TYPE_335M; break; // bge-large
  575. default: type = LLM_TYPE_UNKNOWN;
  576. }
  577. } break;
  578. case LLM_ARCH_JINA_BERT_V2:
  579. {
  580. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  581. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  582. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  583. hparams.f_max_alibi_bias = 8.0f;
  584. switch (hparams.n_layer) {
  585. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  586. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  587. default: type = LLM_TYPE_UNKNOWN;
  588. }
  589. } break;
  590. case LLM_ARCH_NOMIC_BERT:
  591. {
  592. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  593. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  594. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  595. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  596. type = LLM_TYPE_137M;
  597. }
  598. } break;
  599. case LLM_ARCH_BLOOM:
  600. {
  601. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  602. switch (hparams.n_layer) {
  603. case 24: type = LLM_TYPE_1B; break;
  604. case 30:
  605. switch (hparams.n_embd) {
  606. case 2560: type = LLM_TYPE_3B; break;
  607. case 4096: type = LLM_TYPE_7B; break;
  608. default: type = LLM_TYPE_UNKNOWN;
  609. } break;
  610. default: type = LLM_TYPE_UNKNOWN;
  611. }
  612. // TODO: become GGUF KV parameter
  613. hparams.f_max_alibi_bias = 8.0f;
  614. } break;
  615. case LLM_ARCH_MPT:
  616. {
  617. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  618. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  619. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  620. switch (hparams.n_layer) {
  621. case 32: type = LLM_TYPE_7B; break;
  622. case 48: type = LLM_TYPE_30B; break;
  623. default: type = LLM_TYPE_UNKNOWN;
  624. }
  625. } break;
  626. case LLM_ARCH_STABLELM:
  627. {
  628. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  629. switch (hparams.n_layer) {
  630. case 24: type = LLM_TYPE_1B; break;
  631. case 32: type = LLM_TYPE_3B; break;
  632. case 40: type = LLM_TYPE_12B; break;
  633. default: type = LLM_TYPE_UNKNOWN;
  634. }
  635. } break;
  636. case LLM_ARCH_QWEN:
  637. {
  638. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  639. switch (hparams.n_layer) {
  640. case 32: type = LLM_TYPE_7B; break;
  641. case 40: type = LLM_TYPE_13B; break;
  642. default: type = LLM_TYPE_UNKNOWN;
  643. }
  644. } break;
  645. case LLM_ARCH_QWEN2VL:
  646. {
  647. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  648. }
  649. // fall through
  650. case LLM_ARCH_QWEN2:
  651. {
  652. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  653. switch (hparams.n_layer) {
  654. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  655. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  656. case 32: type = LLM_TYPE_7B; break;
  657. case 36: type = LLM_TYPE_3B; break;
  658. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  659. case 48: type = LLM_TYPE_14B; break;
  660. case 64: type = LLM_TYPE_32B; break;
  661. case 80: type = LLM_TYPE_70B; break;
  662. default: type = LLM_TYPE_UNKNOWN;
  663. }
  664. } break;
  665. case LLM_ARCH_QWEN2MOE:
  666. {
  667. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  668. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  669. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  670. switch (hparams.n_layer) {
  671. case 24: type = LLM_TYPE_A2_7B; break;
  672. case 28: type = LLM_TYPE_57B_A14B; break;
  673. default: type = LLM_TYPE_UNKNOWN;
  674. }
  675. } break;
  676. case LLM_ARCH_PHI2:
  677. {
  678. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  679. switch (hparams.n_layer) {
  680. case 24: type = LLM_TYPE_1B; break;
  681. case 32: type = LLM_TYPE_3B; break;
  682. default: type = LLM_TYPE_UNKNOWN;
  683. }
  684. } break;
  685. case LLM_ARCH_PHI3:
  686. {
  687. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  688. switch (hparams.n_layer) {
  689. case 24: type = LLM_TYPE_1B; break;
  690. case 32: type = LLM_TYPE_3B; break;
  691. case 40: type = LLM_TYPE_14B; break;
  692. default: type = LLM_TYPE_UNKNOWN;
  693. }
  694. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  695. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  696. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  697. hparams.n_swa = 2047;
  698. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  699. // default value for Phi-3-mini-128k-instruct
  700. // note: this seems incorrect because the window is bigger than the train context?
  701. hparams.n_swa = 262144;
  702. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  703. // default value for Phi-3-medium-128k-instruct
  704. // note: this seems incorrect because the window is equal to the train context?
  705. hparams.n_swa = 131072;
  706. }
  707. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  708. if (!found_swa && hparams.n_swa == 0) {
  709. throw std::runtime_error("invalid value for sliding_window");
  710. }
  711. } break;
  712. case LLM_ARCH_PHIMOE:
  713. {
  714. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  715. switch (hparams.n_layer) {
  716. case 32: type = LLM_TYPE_16x3_8B; break;
  717. default: type = LLM_TYPE_UNKNOWN;
  718. }
  719. } break;
  720. case LLM_ARCH_PLAMO:
  721. {
  722. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  723. switch (hparams.n_layer) {
  724. case 40: type = LLM_TYPE_13B; break;
  725. default: type = LLM_TYPE_UNKNOWN;
  726. }
  727. } break;
  728. case LLM_ARCH_GPT2:
  729. {
  730. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  731. switch (hparams.n_layer) {
  732. case 12: type = LLM_TYPE_SMALL; break;
  733. case 24: type = LLM_TYPE_MEDIUM; break;
  734. case 36: type = LLM_TYPE_LARGE; break;
  735. case 48: type = LLM_TYPE_XL; break;
  736. default: type = LLM_TYPE_UNKNOWN;
  737. }
  738. } break;
  739. case LLM_ARCH_CODESHELL:
  740. {
  741. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  742. switch (hparams.n_layer) {
  743. case 42: type = LLM_TYPE_7B; break;
  744. default: type = LLM_TYPE_UNKNOWN;
  745. }
  746. } break;
  747. case LLM_ARCH_ORION:
  748. {
  749. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  750. switch (hparams.n_layer) {
  751. case 40: type = LLM_TYPE_14B; break;
  752. default: type = LLM_TYPE_UNKNOWN;
  753. }
  754. } break;
  755. case LLM_ARCH_INTERNLM2:
  756. {
  757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  758. switch (hparams.n_layer) {
  759. case 32: type = LLM_TYPE_7B; break;
  760. case 48: type = LLM_TYPE_20B; break;
  761. default: type = LLM_TYPE_UNKNOWN;
  762. }
  763. } break;
  764. case LLM_ARCH_GEMMA:
  765. {
  766. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  767. switch (hparams.n_layer) {
  768. case 18: type = LLM_TYPE_2B; break;
  769. case 28: type = LLM_TYPE_7B; break;
  770. default: type = LLM_TYPE_UNKNOWN;
  771. }
  772. } break;
  773. case LLM_ARCH_GEMMA2:
  774. {
  775. hparams.n_swa = 4096; // default value of gemma 2
  776. hparams.n_swa_pattern = 2;
  777. hparams.attn_soft_cap = true;
  778. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  779. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  780. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  781. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  782. switch (hparams.n_layer) {
  783. case 26: type = LLM_TYPE_2B; break;
  784. case 42: type = LLM_TYPE_9B; break;
  785. case 46: type = LLM_TYPE_27B; break;
  786. default: type = LLM_TYPE_UNKNOWN;
  787. }
  788. } break;
  789. case LLM_ARCH_GEMMA3:
  790. {
  791. hparams.n_swa_pattern = 6;
  792. hparams.rope_freq_base_train_swa = 10000.0f;
  793. hparams.rope_freq_scale_train_swa = 1.0f;
  794. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  795. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  796. switch (hparams.n_layer) {
  797. case 26: type = LLM_TYPE_1B; break;
  798. case 34: type = LLM_TYPE_4B; break;
  799. case 48: type = LLM_TYPE_12B; break;
  800. case 62: type = LLM_TYPE_27B; break;
  801. default: type = LLM_TYPE_UNKNOWN;
  802. }
  803. hparams.f_attention_scale = type == LLM_TYPE_27B
  804. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  805. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  806. } break;
  807. case LLM_ARCH_STARCODER2:
  808. {
  809. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  810. switch (hparams.n_layer) {
  811. case 30: type = LLM_TYPE_3B; break;
  812. case 32: type = LLM_TYPE_7B; break;
  813. case 40: type = LLM_TYPE_15B; break;
  814. case 52: type = LLM_TYPE_20B; break; // granite
  815. case 88: type = LLM_TYPE_34B; break; // granite
  816. default: type = LLM_TYPE_UNKNOWN;
  817. }
  818. } break;
  819. case LLM_ARCH_MAMBA:
  820. {
  821. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  822. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  823. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  824. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  825. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  826. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  827. switch (hparams.n_layer) {
  828. case 24:
  829. switch (hparams.n_embd) {
  830. case 768: type = LLM_TYPE_SMALL; break;
  831. default: type = LLM_TYPE_UNKNOWN;
  832. } break;
  833. case 48:
  834. switch (hparams.n_embd) {
  835. case 1024: type = LLM_TYPE_MEDIUM; break;
  836. case 1536: type = LLM_TYPE_LARGE; break;
  837. case 2048: type = LLM_TYPE_XL; break;
  838. default: type = LLM_TYPE_UNKNOWN;
  839. } break;
  840. case 64:
  841. switch (hparams.n_embd) {
  842. case 2560: type = LLM_TYPE_3B; break;
  843. default: type = LLM_TYPE_UNKNOWN;
  844. } break;
  845. default: type = LLM_TYPE_UNKNOWN;
  846. }
  847. } break;
  848. case LLM_ARCH_XVERSE:
  849. {
  850. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  851. switch (hparams.n_layer) {
  852. case 32: type = LLM_TYPE_7B; break;
  853. case 40: type = LLM_TYPE_13B; break;
  854. case 80: type = LLM_TYPE_65B; break;
  855. default: type = LLM_TYPE_UNKNOWN;
  856. }
  857. } break;
  858. case LLM_ARCH_COMMAND_R:
  859. {
  860. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  861. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  862. switch (hparams.n_layer) {
  863. case 40: type = LLM_TYPE_35B; break;
  864. default: type = LLM_TYPE_UNKNOWN;
  865. }
  866. } break;
  867. case LLM_ARCH_COHERE2:
  868. {
  869. hparams.n_swa_pattern = 4;
  870. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  871. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  872. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  873. switch (hparams.n_layer) {
  874. case 32: type = LLM_TYPE_8B; break;
  875. default: type = LLM_TYPE_UNKNOWN;
  876. }
  877. } break;
  878. case LLM_ARCH_DBRX:
  879. {
  880. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  881. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  882. switch (hparams.n_layer) {
  883. case 40: type = LLM_TYPE_16x12B; break;
  884. default: type = LLM_TYPE_UNKNOWN;
  885. }
  886. } break;
  887. case LLM_ARCH_OLMO:
  888. {
  889. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  890. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  891. switch (hparams.n_layer) {
  892. case 22: type = LLM_TYPE_1B; break;
  893. case 32: type = LLM_TYPE_7B; break;
  894. case 80: type = LLM_TYPE_70B; break;
  895. default: type = LLM_TYPE_UNKNOWN;
  896. }
  897. } break;
  898. case LLM_ARCH_OLMO2:
  899. {
  900. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  901. switch (hparams.n_layer) {
  902. case 16: type = LLM_TYPE_1B; break;
  903. case 32: type = LLM_TYPE_7B; break;
  904. case 40: type = LLM_TYPE_13B; break;
  905. case 64: type = LLM_TYPE_32B; break;
  906. default: type = LLM_TYPE_UNKNOWN;
  907. }
  908. } break;
  909. case LLM_ARCH_OLMOE:
  910. {
  911. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  912. switch (hparams.n_layer) {
  913. case 16: type = LLM_TYPE_A1_7B; break;
  914. default: type = LLM_TYPE_UNKNOWN;
  915. }
  916. } break;
  917. case LLM_ARCH_OPENELM:
  918. {
  919. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  920. switch (hparams.n_layer) {
  921. case 16: type = LLM_TYPE_270M; break;
  922. case 20: type = LLM_TYPE_450M; break;
  923. case 28: type = LLM_TYPE_1B; break;
  924. case 36: type = LLM_TYPE_3B; break;
  925. default: type = LLM_TYPE_UNKNOWN;
  926. }
  927. } break;
  928. case LLM_ARCH_GPTNEOX:
  929. {
  930. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  931. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  932. switch (hparams.n_layer) {
  933. case 6:
  934. switch (hparams.n_ff()) {
  935. case 512: type = LLM_TYPE_14M; break;
  936. case 2048: type = LLM_TYPE_70M; break;
  937. default: type = LLM_TYPE_UNKNOWN;
  938. } break;
  939. case 12:
  940. switch (hparams.n_ff()) {
  941. case 3072: type = LLM_TYPE_160M; break;
  942. default: type = LLM_TYPE_UNKNOWN;
  943. } break;
  944. case 16:
  945. switch (hparams.n_ff()) {
  946. case 8192: type = LLM_TYPE_1B; break;
  947. default: type = LLM_TYPE_UNKNOWN;
  948. } break;
  949. case 24:
  950. switch (hparams.n_ff()) {
  951. case 4096: type = LLM_TYPE_410M; break;
  952. case 8192: type = LLM_TYPE_1_4B; break;
  953. default: type = LLM_TYPE_UNKNOWN;
  954. } break;
  955. case 32:
  956. switch (hparams.n_ff()) {
  957. case 10240: type = LLM_TYPE_2_8B; break;
  958. case 16384: type = LLM_TYPE_6_9B; break;
  959. default: type = LLM_TYPE_UNKNOWN;
  960. } break;
  961. case 36:
  962. switch (hparams.n_ff()) {
  963. case 20480: type = LLM_TYPE_12B; break;
  964. default: type = LLM_TYPE_UNKNOWN;
  965. } break;
  966. case 44:
  967. switch (hparams.n_ff()) {
  968. case 24576: type = LLM_TYPE_20B; break;
  969. default: type = LLM_TYPE_UNKNOWN;
  970. } break;
  971. default: type = LLM_TYPE_UNKNOWN;
  972. }
  973. } break;
  974. case LLM_ARCH_ARCTIC:
  975. {
  976. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  977. if (hparams.n_expert == 128) {
  978. switch (hparams.n_layer) {
  979. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  980. default: type = LLM_TYPE_UNKNOWN;
  981. }
  982. } else {
  983. type = LLM_TYPE_UNKNOWN;
  984. }
  985. } break;
  986. case LLM_ARCH_DEEPSEEK:
  987. {
  988. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  989. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  990. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  991. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  992. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  993. switch (hparams.n_layer) {
  994. case 28: type = LLM_TYPE_20B; break;
  995. default: type = LLM_TYPE_UNKNOWN;
  996. }
  997. } break;
  998. case LLM_ARCH_DEEPSEEK2:
  999. {
  1000. bool is_lite = (hparams.n_layer == 27);
  1001. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1002. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1003. if (!is_lite) {
  1004. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1005. }
  1006. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1007. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1008. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1009. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1010. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1011. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1012. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1013. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1014. // that have no expert_gating_func model parameter set
  1015. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1016. }
  1017. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1018. switch (hparams.n_layer) {
  1019. case 27: type = LLM_TYPE_16B; break;
  1020. case 60: type = LLM_TYPE_236B; break;
  1021. case 61: type = LLM_TYPE_671B; break;
  1022. default: type = LLM_TYPE_UNKNOWN;
  1023. }
  1024. } break;
  1025. case LLM_ARCH_PLM:
  1026. {
  1027. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1028. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1029. switch (hparams.n_layer) {
  1030. case 32: type = LLM_TYPE_1_8B; break;
  1031. default: type = LLM_TYPE_UNKNOWN;
  1032. }
  1033. } break;
  1034. case LLM_ARCH_CHATGLM:
  1035. {
  1036. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1037. switch (hparams.n_layer) {
  1038. case 28: {
  1039. if (hparams.n_head(0) == 16) {
  1040. type = LLM_TYPE_1_5B;
  1041. } else {
  1042. type = LLM_TYPE_6B;
  1043. }
  1044. } break;
  1045. case 40: {
  1046. if (hparams.n_head(0) == 24) {
  1047. type = LLM_TYPE_4B;
  1048. } else {
  1049. type = LLM_TYPE_9B;
  1050. }
  1051. } break;
  1052. default: type = LLM_TYPE_UNKNOWN;
  1053. }
  1054. } break;
  1055. case LLM_ARCH_BITNET:
  1056. {
  1057. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1058. switch (hparams.n_layer) {
  1059. case 26: type = LLM_TYPE_3B; break;
  1060. default: type = LLM_TYPE_UNKNOWN;
  1061. }
  1062. } break;
  1063. case LLM_ARCH_T5:
  1064. {
  1065. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1066. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1067. uint32_t dec_start_token_id;
  1068. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1069. hparams.dec_start_token_id = dec_start_token_id;
  1070. }
  1071. switch (hparams.n_layer) {
  1072. case 6: type = LLM_TYPE_60M; break; // t5-small
  1073. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1074. case 12:
  1075. switch (hparams.n_ff()) {
  1076. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1077. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1078. default: type = LLM_TYPE_UNKNOWN;
  1079. } break;
  1080. case 24:
  1081. switch (hparams.n_ff()) {
  1082. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1083. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1084. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1085. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1086. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1087. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1088. default: type = LLM_TYPE_UNKNOWN;
  1089. } break;
  1090. default: type = LLM_TYPE_UNKNOWN;
  1091. }
  1092. } break;
  1093. case LLM_ARCH_T5ENCODER:
  1094. {
  1095. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1096. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1097. type = LLM_TYPE_UNKNOWN;
  1098. } break;
  1099. case LLM_ARCH_JAIS:
  1100. {
  1101. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1102. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1103. switch (hparams.n_layer) {
  1104. case 24: type = LLM_TYPE_1_3B; break;
  1105. case 40: type = LLM_TYPE_13B; break;
  1106. /* TODO: add variants */
  1107. default: type = LLM_TYPE_UNKNOWN;
  1108. }
  1109. } break;
  1110. case LLM_ARCH_NEMOTRON:
  1111. {
  1112. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1113. switch (hparams.n_layer) {
  1114. case 32: type = LLM_TYPE_4B; break;
  1115. default: type = LLM_TYPE_UNKNOWN;
  1116. }
  1117. } break;
  1118. case LLM_ARCH_EXAONE:
  1119. {
  1120. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1121. switch (hparams.n_layer) {
  1122. case 32: type = LLM_TYPE_8B; break;
  1123. default: type = LLM_TYPE_UNKNOWN;
  1124. }
  1125. } break;
  1126. case LLM_ARCH_RWKV6:
  1127. case LLM_ARCH_RWKV6QWEN2:
  1128. {
  1129. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1130. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1131. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1132. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1133. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1134. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1135. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1136. switch (hparams.n_layer) {
  1137. case 24: type = LLM_TYPE_1_6B; break;
  1138. case 32:
  1139. switch (hparams.n_embd) {
  1140. case 2560: type = LLM_TYPE_3B; break;
  1141. case 4096: type = LLM_TYPE_7B; break;
  1142. default: type = LLM_TYPE_UNKNOWN;
  1143. } break;
  1144. case 61: type = LLM_TYPE_14B; break;
  1145. case 64: type = LLM_TYPE_32B; break;
  1146. default: type = LLM_TYPE_UNKNOWN;
  1147. }
  1148. } break;
  1149. case LLM_ARCH_RWKV7:
  1150. case LLM_ARCH_ARWKV7:
  1151. {
  1152. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1153. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1154. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1155. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1156. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1157. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1158. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1159. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1160. switch (hparams.n_layer) {
  1161. case 12: type = LLM_TYPE_190M; break;
  1162. case 24:
  1163. switch (hparams.n_embd) {
  1164. case 1024: type = LLM_TYPE_450M; break;
  1165. case 2048: type = LLM_TYPE_1_5B; break;
  1166. default: type = LLM_TYPE_UNKNOWN;
  1167. } break;
  1168. case 28:
  1169. switch (hparams.n_embd) {
  1170. case 1536: type = LLM_TYPE_1_5B; break;
  1171. case 3584: type = LLM_TYPE_7B; break;
  1172. default: type = LLM_TYPE_UNKNOWN;
  1173. } break;
  1174. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1175. default: type = LLM_TYPE_UNKNOWN;
  1176. }
  1177. } break;
  1178. case LLM_ARCH_GRANITE:
  1179. case LLM_ARCH_GRANITE_MOE:
  1180. {
  1181. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1182. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1183. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1184. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1185. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1186. switch (hparams.n_layer) {
  1187. case 32: type = LLM_TYPE_3B; break;
  1188. case 40: type = LLM_TYPE_3B; break;
  1189. // Add additional layer/vocab/etc checks here for other model sizes
  1190. default: type = LLM_TYPE_UNKNOWN;
  1191. }
  1192. } break;
  1193. case LLM_ARCH_CHAMELEON:
  1194. {
  1195. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1196. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1197. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1198. switch (hparams.n_layer) {
  1199. case 32: type = LLM_TYPE_7B; break;
  1200. case 48: type = LLM_TYPE_34B; break;
  1201. default: type = LLM_TYPE_UNKNOWN;
  1202. }
  1203. } break;
  1204. case LLM_ARCH_WAVTOKENIZER_DEC:
  1205. {
  1206. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1207. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1208. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1209. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1210. } break;
  1211. default: throw std::runtime_error("unsupported model architecture");
  1212. }
  1213. pimpl->n_bytes = ml.n_bytes;
  1214. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1215. if (hparams.f_max_alibi_bias > 0.0f) {
  1216. hparams.use_alibi = true;
  1217. }
  1218. hparams.rope_type = llama_model_rope_type(this);
  1219. }
  1220. void llama_model::load_vocab(llama_model_loader & ml) {
  1221. const auto kv = LLM_KV(arch);
  1222. vocab.load(ml, kv);
  1223. }
  1224. bool llama_model::load_tensors(llama_model_loader & ml) {
  1225. const auto & split_mode = params.split_mode;
  1226. const auto & n_gpu_layers = params.n_gpu_layers;
  1227. const auto & use_mlock = params.use_mlock;
  1228. const auto & tensor_split = params.tensor_split;
  1229. const int n_layer = hparams.n_layer;
  1230. const bool use_mmap_buffer = true;
  1231. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1232. // build a list of buffer types for the CPU and GPU devices
  1233. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1234. for (auto * dev : devices) {
  1235. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1236. // add CPU buffer types as a fallback
  1237. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1238. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1239. }
  1240. // calculate the split points
  1241. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1242. std::vector<float> splits(n_devices());
  1243. if (all_zero) {
  1244. // default split, by free memory
  1245. for (size_t i = 0; i < n_devices(); ++i) {
  1246. ggml_backend_dev_t dev = devices[i];
  1247. size_t total;
  1248. size_t free;
  1249. ggml_backend_dev_memory(dev, &free, &total);
  1250. splits[i] = free;
  1251. }
  1252. } else {
  1253. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1254. }
  1255. // sum and normalize the splits to get the split points
  1256. float split_sum = 0.0f;
  1257. for (size_t i = 0; i < n_devices(); ++i) {
  1258. split_sum += splits[i];
  1259. splits[i] = split_sum;
  1260. }
  1261. for (size_t i = 0; i < n_devices(); ++i) {
  1262. splits[i] /= split_sum;
  1263. }
  1264. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1265. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1266. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1267. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1268. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1269. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1270. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1271. return {cpu_dev, &pimpl->cpu_buft_list};
  1272. }
  1273. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1274. auto * dev = devices.at(layer_gpu);
  1275. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1276. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1277. };
  1278. // assign the input layer
  1279. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1280. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1281. // assign the repeating layers to the devices according to the splits
  1282. pimpl->dev_layer.resize(n_layer);
  1283. for (int il = 0; il < n_layer; ++il) {
  1284. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1285. }
  1286. // assign the output layer
  1287. pimpl->dev_output = get_layer_buft_list(n_layer);
  1288. // one ggml context per buffer type
  1289. int max_n_tensors = ml.n_tensors;
  1290. max_n_tensors += 1; // duplicated output tensor
  1291. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1292. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1293. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1294. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1295. auto it = ctx_map.find(buft);
  1296. if (it == ctx_map.end()) {
  1297. ggml_init_params params = {
  1298. /*.mem_size =*/ ctx_size,
  1299. /*.mem_buffer =*/ NULL,
  1300. /*.no_alloc =*/ true,
  1301. };
  1302. ggml_context * ctx = ggml_init(params);
  1303. if (!ctx) {
  1304. throw std::runtime_error(format("failed to create ggml context"));
  1305. }
  1306. ctx_map[buft] = ctx;
  1307. pimpl->ctxs.emplace_back(ctx);
  1308. return ctx;
  1309. }
  1310. return it->second;
  1311. };
  1312. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1313. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1314. // create tensors for the weights
  1315. {
  1316. // note: cast to int64_t since we will use these for the tensor dimensions
  1317. const int64_t n_head = hparams.n_head();
  1318. const int64_t n_head_kv = hparams.n_head_kv();
  1319. const int64_t n_embd = hparams.n_embd;
  1320. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1321. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1322. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1323. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1324. const int64_t n_ff = hparams.n_ff();
  1325. const int64_t n_embd_gqa = n_embd_v_gqa;
  1326. const int64_t n_vocab = vocab.n_tokens();
  1327. const int64_t n_token_types = vocab.n_token_types();
  1328. const int64_t n_rot = hparams.n_rot;
  1329. const int64_t n_expert = hparams.n_expert;
  1330. const int64_t n_expert_used = hparams.n_expert_used;
  1331. const int64_t n_ctx_train = hparams.n_ctx_train;
  1332. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1333. throw std::runtime_error("model has expert layers but no expert layers are used");
  1334. }
  1335. int n_moved_tensors = 0;
  1336. ggml_tensor * first_moved_tensor = nullptr;
  1337. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1338. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1339. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1340. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1341. if (!t_meta) {
  1342. if (flags & TENSOR_NOT_REQUIRED) {
  1343. return nullptr;
  1344. }
  1345. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1346. }
  1347. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1348. // the tensor is duplicated
  1349. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1350. llm_tensor tn_tensor = tn.tensor;
  1351. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1352. tn_tensor = LLM_TENSOR_OUTPUT;
  1353. }
  1354. llm_tensor_info info;
  1355. try {
  1356. info = llm_tensor_info_for(tn_tensor);
  1357. } catch (const std::out_of_range & e) {
  1358. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1359. }
  1360. // skip unused tensors
  1361. if (info.op == GGML_OP_NONE) {
  1362. const size_t nbytes = ggml_nbytes(t_meta);
  1363. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1364. ml.size_data -= nbytes;
  1365. ml.n_created++;
  1366. return nullptr;
  1367. }
  1368. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1369. ggml_op op;
  1370. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1371. if (bias) {
  1372. op = GGML_OP_ADD;
  1373. } else {
  1374. op = info.op;
  1375. }
  1376. // sanity checks
  1377. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1378. if (tn.bid != -1) {
  1379. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1380. }
  1381. } else {
  1382. if (tn.bid == -1) {
  1383. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1384. }
  1385. }
  1386. // select the buffer type for this tensor
  1387. buft_list_t * buft_list;
  1388. switch (info.layer) {
  1389. case LLM_TENSOR_LAYER_INPUT:
  1390. buft_list = pimpl->dev_input.buft_list;
  1391. break;
  1392. case LLM_TENSOR_LAYER_OUTPUT:
  1393. buft_list = pimpl->dev_output.buft_list;
  1394. break;
  1395. case LLM_TENSOR_LAYER_REPEATING:
  1396. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1397. break;
  1398. default:
  1399. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1400. }
  1401. ggml_backend_buffer_type_t buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1402. if (!buft) {
  1403. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1404. }
  1405. // avoid using a host buffer when using mmap
  1406. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1407. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1408. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1409. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1410. }
  1411. if (buft != buft_list->front().second) {
  1412. n_moved_tensors++;
  1413. if (!first_moved_tensor) {
  1414. first_moved_tensor = t_meta;
  1415. first_moved_from_buft = buft_list->front().second;
  1416. first_moved_to_buft = buft;
  1417. }
  1418. }
  1419. ggml_context * ctx = ctx_for_buft(buft);
  1420. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1421. if (flags & TENSOR_DUPLICATED) {
  1422. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1423. if (t) {
  1424. return t;
  1425. }
  1426. }
  1427. return ml.create_tensor(ctx, tn, ne, flags);
  1428. };
  1429. layers.resize(n_layer);
  1430. // TODO: move to a separate function
  1431. const auto tn = LLM_TN(arch);
  1432. switch (arch) {
  1433. case LLM_ARCH_LLAMA:
  1434. case LLM_ARCH_REFACT:
  1435. case LLM_ARCH_MINICPM:
  1436. case LLM_ARCH_GRANITE:
  1437. case LLM_ARCH_GRANITE_MOE:
  1438. {
  1439. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1440. // output
  1441. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1442. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1443. // if output is NULL, init from the input tok embed
  1444. if (output == NULL) {
  1445. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1446. }
  1447. for (int i = 0; i < n_layer; ++i) {
  1448. auto & layer = layers[i];
  1449. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1450. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1451. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1452. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1453. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1454. // optional bias tensors
  1455. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1456. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1457. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1458. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1459. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1460. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1461. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1462. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1463. }
  1464. else {
  1465. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1466. }
  1467. if (n_expert == 0) {
  1468. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1469. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1470. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1471. // optional MLP bias
  1472. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1473. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1474. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1475. } else {
  1476. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1477. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1478. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1479. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1480. }
  1481. }
  1482. } break;
  1483. case LLM_ARCH_DECI:
  1484. {
  1485. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1486. // output
  1487. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1488. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1489. // if output is NULL, init from the input tok embed
  1490. if (output == NULL) {
  1491. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1492. }
  1493. for (int i = 0; i < n_layer; ++i) {
  1494. auto & layer = layers[i];
  1495. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1496. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1497. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1498. const int64_t n_ff = hparams.n_ff(i);
  1499. const int64_t n_head = hparams.n_head(i);
  1500. const int64_t n_head_kv = hparams.n_head_kv(i);
  1501. if (n_head_kv == 0 && n_head > 0) {
  1502. // linear attention for DeciLMCausalModel
  1503. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1504. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1505. }
  1506. else if (n_head_kv > 0) {
  1507. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1508. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1509. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1510. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1511. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1512. }
  1513. // optional bias tensors
  1514. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1515. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1516. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1517. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1518. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1519. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1520. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1521. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1522. }
  1523. else {
  1524. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1525. }
  1526. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1527. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1528. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1529. // optional MLP bias
  1530. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1531. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1532. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1533. }
  1534. } break;
  1535. case LLM_ARCH_MINICPM3:
  1536. {
  1537. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1538. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1539. const int64_t q_lora_rank = hparams.n_lora_q;
  1540. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1541. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1542. // output
  1543. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1544. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1545. // if output is NULL, init from the input tok embed
  1546. if (output == NULL) {
  1547. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1548. }
  1549. for (int i = 0; i < n_layer; ++i) {
  1550. auto & layer = layers[i];
  1551. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1552. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1553. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1554. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1555. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1556. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1557. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1558. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1559. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1560. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1561. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1562. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1563. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1564. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1565. }
  1566. } break;
  1567. case LLM_ARCH_GROK:
  1568. {
  1569. if (n_expert == 0) {
  1570. throw std::runtime_error("Grok model cannot have zero experts");
  1571. }
  1572. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1573. // output
  1574. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1575. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1576. // if output is NULL, init from the input tok embed
  1577. if (output == NULL) {
  1578. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1579. }
  1580. for (int i = 0; i < n_layer; ++i) {
  1581. auto & layer = layers[i];
  1582. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1583. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1584. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1585. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1586. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1587. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1588. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1589. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1590. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1591. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1592. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1593. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1594. }
  1595. } break;
  1596. case LLM_ARCH_DBRX:
  1597. {
  1598. if (n_expert == 0) {
  1599. throw std::runtime_error("DBRX model cannot have zero experts");
  1600. }
  1601. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1602. // output
  1603. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1604. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1605. for (int i = 0; i < n_layer; ++i) {
  1606. auto & layer = layers[i];
  1607. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1608. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1609. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1610. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1611. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1612. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1613. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1614. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1615. }
  1616. } break;
  1617. case LLM_ARCH_BAICHUAN:
  1618. {
  1619. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1620. {
  1621. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1622. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1623. }
  1624. for (int i = 0; i < n_layer; ++i) {
  1625. auto & layer = layers[i];
  1626. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1627. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1628. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1629. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1630. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1631. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1632. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1633. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1634. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1635. }
  1636. } break;
  1637. case LLM_ARCH_FALCON:
  1638. {
  1639. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1640. // output
  1641. {
  1642. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1643. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1644. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1645. if (!output) {
  1646. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1647. }
  1648. }
  1649. for (int i = 0; i < n_layer; ++i) {
  1650. auto & layer = layers[i];
  1651. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1652. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1653. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1654. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1655. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1656. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1657. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1658. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1659. }
  1660. } break;
  1661. case LLM_ARCH_STARCODER:
  1662. {
  1663. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1664. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1665. // output
  1666. {
  1667. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1668. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1669. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1670. if (!output) {
  1671. // needs to be on GPU
  1672. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1673. }
  1674. }
  1675. for (int i = 0; i < n_layer; ++i) {
  1676. auto & layer = layers[i];
  1677. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1678. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1679. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1680. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1681. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1682. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1683. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1684. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1685. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1686. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1687. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1688. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1689. }
  1690. } break;
  1691. case LLM_ARCH_BERT:
  1692. case LLM_ARCH_NOMIC_BERT:
  1693. {
  1694. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1695. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1696. if (arch == LLM_ARCH_BERT) {
  1697. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1698. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1699. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1700. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1701. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1702. }
  1703. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1704. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1705. for (int i = 0; i < n_layer; ++i) {
  1706. auto & layer = layers[i];
  1707. if (arch == LLM_ARCH_BERT) {
  1708. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1709. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1710. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1711. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1712. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1713. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1714. } else {
  1715. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1716. }
  1717. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1718. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1719. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1720. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1721. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1722. if (arch == LLM_ARCH_BERT) {
  1723. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1724. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1725. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1726. } else {
  1727. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1728. }
  1729. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1730. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1731. }
  1732. } break;
  1733. case LLM_ARCH_JINA_BERT_V2:
  1734. {
  1735. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1736. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1737. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1738. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1739. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1740. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1741. for (int i = 0; i < n_layer; ++i) {
  1742. auto & layer = layers[i]; // JinaBertLayer
  1743. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1744. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1745. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1746. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1747. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1748. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1749. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1750. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1751. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1752. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1753. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1754. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1755. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1756. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1757. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1758. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1759. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1760. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1761. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1762. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1763. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1764. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1765. }
  1766. } break;
  1767. case LLM_ARCH_BLOOM:
  1768. {
  1769. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1770. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1771. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1772. // output
  1773. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1774. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1775. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1776. // if output is NULL, init from the input tok embed
  1777. if (output == NULL) {
  1778. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1779. }
  1780. for (int i = 0; i < n_layer; ++i) {
  1781. auto & layer = layers[i];
  1782. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1783. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1784. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1785. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1786. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1787. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1788. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1789. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1790. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1791. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1792. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1793. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1794. }
  1795. } break;
  1796. case LLM_ARCH_MPT:
  1797. {
  1798. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1799. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1800. // output
  1801. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1802. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1803. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1804. if (!output) {
  1805. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1806. }
  1807. for (int i = 0; i < n_layer; ++i) {
  1808. auto & layer = layers[i];
  1809. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1810. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1811. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1812. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1813. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1814. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1815. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1816. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1817. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1818. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1819. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1820. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1821. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1822. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1823. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1824. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1825. // AWQ ScaleActivation layer
  1826. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1827. }
  1828. } break;
  1829. case LLM_ARCH_STABLELM:
  1830. {
  1831. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1832. // output
  1833. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1834. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1835. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1836. for (int i = 0; i < n_layer; ++i) {
  1837. auto & layer = layers[i];
  1838. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1839. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1840. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1841. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1842. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1843. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1844. // optional bias tensors, present in Stable LM 2 1.6B
  1845. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1846. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1847. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1848. // optional q and k layernorms, present in StableLM 2 12B
  1849. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  1850. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  1851. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  1852. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1853. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1854. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1855. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1856. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1857. }
  1858. } break;
  1859. case LLM_ARCH_QWEN:
  1860. {
  1861. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1862. // output
  1863. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1864. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1865. for (int i = 0; i < n_layer; ++i) {
  1866. auto & layer = layers[i];
  1867. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1868. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  1869. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  1870. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1871. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1872. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  1873. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  1874. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  1875. }
  1876. } break;
  1877. case LLM_ARCH_QWEN2:
  1878. case LLM_ARCH_QWEN2VL:
  1879. {
  1880. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1881. // output
  1882. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1883. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1884. // if output is NULL, init from the input tok embed
  1885. if (output == NULL) {
  1886. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1887. }
  1888. for (int i = 0; i < n_layer; ++i) {
  1889. auto & layer = layers[i];
  1890. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1891. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1892. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1893. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1894. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1895. // optional bias tensors
  1896. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1897. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1898. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1899. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1900. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1901. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1902. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1903. }
  1904. } break;
  1905. case LLM_ARCH_QWEN2MOE:
  1906. {
  1907. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1908. // output
  1909. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1910. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1911. for (int i = 0; i < n_layer; ++i) {
  1912. auto & layer = layers[i];
  1913. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1914. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1915. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1916. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1917. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1918. // optional bias tensors
  1919. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1920. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1921. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1922. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1923. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1924. if (n_expert == 0) {
  1925. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  1926. }
  1927. if (n_expert_used == 0) {
  1928. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  1929. }
  1930. // MoE branch
  1931. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  1932. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1933. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  1934. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1935. // Shared expert branch
  1936. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  1937. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  1938. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1939. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  1940. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1941. }
  1942. } break;
  1943. case LLM_ARCH_PHI2:
  1944. {
  1945. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1946. // output
  1947. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1948. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1949. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1950. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  1951. for (int i = 0; i < n_layer; ++i) {
  1952. auto & layer = layers[i];
  1953. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1954. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1955. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1956. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1957. if (layer.wqkv == nullptr) {
  1958. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1959. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1960. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1961. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1962. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1963. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1964. }
  1965. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1966. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1967. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1968. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1969. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1970. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1971. }
  1972. } break;
  1973. case LLM_ARCH_PHI3:
  1974. {
  1975. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  1976. // output
  1977. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  1978. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1979. // if output is NULL, init from the input tok embed
  1980. if (output == NULL) {
  1981. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1982. }
  1983. for (int i = 0; i < n_layer; ++i) {
  1984. auto & layer = layers[i];
  1985. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  1986. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  1987. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  1988. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  1989. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  1990. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  1991. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1992. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1993. }
  1994. } break;
  1995. case LLM_ARCH_PHIMOE:
  1996. {
  1997. const int64_t n_embd_head = n_embd / n_head;
  1998. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  1999. // output
  2000. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2001. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2002. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2003. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2004. for (int i = 0; i < n_layer; ++i) {
  2005. auto & layer = layers[i];
  2006. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2007. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2008. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2009. if (layer.wqkv == nullptr) {
  2010. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2011. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2012. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2013. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2014. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2015. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2016. }
  2017. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2018. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2019. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2020. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2021. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2022. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2023. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2024. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2025. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2026. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2027. }
  2028. } break;
  2029. case LLM_ARCH_PLAMO:
  2030. {
  2031. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2032. // output
  2033. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2034. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2035. for (int i = 0; i < n_layer; ++i) {
  2036. auto & layer = layers[i];
  2037. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2038. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2039. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2040. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2041. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2042. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2043. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2044. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2045. }
  2046. } break;
  2047. case LLM_ARCH_GPT2:
  2048. {
  2049. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2050. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2051. // output
  2052. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2053. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2054. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2055. // if output is NULL, init from the input tok embed
  2056. if (output == NULL) {
  2057. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2058. }
  2059. for (int i = 0; i < n_layer; ++i) {
  2060. auto & layer = layers[i];
  2061. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2062. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2063. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2064. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2065. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2066. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2067. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2068. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2069. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2070. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2071. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2072. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2073. }
  2074. } break;
  2075. case LLM_ARCH_CODESHELL:
  2076. {
  2077. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2078. // if tok embd is NULL, init from output
  2079. if (tok_embd == NULL) {
  2080. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2081. }
  2082. // output
  2083. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2084. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2085. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2086. for (int i = 0; i < n_layer; ++i) {
  2087. auto & layer = layers[i];
  2088. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2089. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2090. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2091. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2092. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2093. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2094. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2095. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2096. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2097. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2098. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2099. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2100. }
  2101. } break;
  2102. case LLM_ARCH_ORION:
  2103. {
  2104. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2105. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2106. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2107. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2108. for (int i = 0; i < n_layer; ++i) {
  2109. auto & layer = layers[i];
  2110. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2111. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2112. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2113. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2114. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2115. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2116. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2117. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2118. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2119. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2120. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2121. }
  2122. } break;
  2123. case LLM_ARCH_INTERNLM2:
  2124. {
  2125. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2126. // output
  2127. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2128. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2129. for (int i = 0; i < n_layer; ++i) {
  2130. auto & layer = layers[i];
  2131. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2132. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2133. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2134. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2135. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2136. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2137. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2138. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2139. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2140. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2141. }
  2142. } break;
  2143. case LLM_ARCH_GEMMA:
  2144. {
  2145. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2146. // output
  2147. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2148. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2149. for (int i = 0; i < n_layer; ++i) {
  2150. auto & layer = layers[i];
  2151. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2152. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2153. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2154. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2155. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2156. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2157. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2158. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2159. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2160. }
  2161. } break;
  2162. case LLM_ARCH_GEMMA2:
  2163. {
  2164. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2165. // output
  2166. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2167. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2168. for (int i = 0; i < n_layer; ++i) {
  2169. auto & layer = layers[i];
  2170. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2171. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2172. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2173. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2174. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2175. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2176. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2177. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2178. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2179. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2180. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2181. }
  2182. } break;
  2183. case LLM_ARCH_GEMMA3:
  2184. {
  2185. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2186. // output
  2187. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2188. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2189. // if output is NULL, init from the input tok embed
  2190. if (output == NULL) {
  2191. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2192. }
  2193. for (int i = 0; i < n_layer; ++i) {
  2194. auto & layer = layers[i];
  2195. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2196. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2197. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2198. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2199. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2200. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2201. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2202. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2203. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2204. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2205. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2206. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2207. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2208. }
  2209. } break;
  2210. case LLM_ARCH_STARCODER2:
  2211. {
  2212. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2213. // output
  2214. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2215. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2216. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2217. // if output is NULL, init from the input tok embed
  2218. if (output == NULL) {
  2219. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2220. }
  2221. for (int i = 0; i < n_layer; ++i) {
  2222. auto & layer = layers[i];
  2223. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2224. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2225. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2226. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2227. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2228. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2229. // optional bias tensors
  2230. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2231. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2232. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2233. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2234. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2235. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2236. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2237. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2238. // optional bias tensors
  2239. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2240. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2241. }
  2242. } break;
  2243. case LLM_ARCH_MAMBA:
  2244. {
  2245. const int64_t d_conv = hparams.ssm_d_conv;
  2246. const int64_t d_inner = hparams.ssm_d_inner;
  2247. const int64_t d_state = hparams.ssm_d_state;
  2248. const int64_t dt_rank = hparams.ssm_dt_rank;
  2249. // only an expansion factor of 2 is supported for now
  2250. if (2 * n_embd != d_inner) {
  2251. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2252. }
  2253. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2254. // output
  2255. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2256. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2257. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2258. if (output == NULL) {
  2259. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2260. }
  2261. for (int i = 0; i < n_layer; ++i) {
  2262. auto & layer = layers[i];
  2263. // norm
  2264. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2265. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2266. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2267. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2268. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2269. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2270. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2271. // no "weight" suffix for these
  2272. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2273. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2274. // out_proj
  2275. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2276. }
  2277. } break;
  2278. case LLM_ARCH_XVERSE:
  2279. {
  2280. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2281. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2282. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2283. for (int i = 0; i < n_layer; ++i) {
  2284. auto & layer = layers[i];
  2285. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2286. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2287. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2288. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2289. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2290. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2291. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2292. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2293. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2294. }
  2295. } break;
  2296. case LLM_ARCH_COMMAND_R:
  2297. {
  2298. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2299. // output
  2300. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2301. // init output from the input tok embed
  2302. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2303. for (int i = 0; i < n_layer; ++i) {
  2304. auto & layer = layers[i];
  2305. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2306. if (n_layer >= 64){
  2307. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2308. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2309. }
  2310. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2311. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2312. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2313. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2314. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2315. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2316. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2317. }
  2318. } break;
  2319. case LLM_ARCH_COHERE2:
  2320. {
  2321. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2322. // output
  2323. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2324. // init output from the input tok embed
  2325. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2326. TENSOR_DUPLICATED);
  2327. for (int i = 0; i < n_layer; ++i) {
  2328. auto & layer = layers[i];
  2329. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2330. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2331. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2332. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2333. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2334. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2335. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2336. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2337. }
  2338. }
  2339. break;
  2340. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2341. {
  2342. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2343. // output
  2344. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2345. // if output is NULL, init from the input tok embed
  2346. if (output == NULL) {
  2347. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2348. }
  2349. for (int i = 0; i < n_layer; ++i) {
  2350. auto & layer = layers[i];
  2351. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2352. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2353. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2354. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2355. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2356. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2357. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2358. }
  2359. } break;
  2360. case LLM_ARCH_OLMO2:
  2361. {
  2362. const int64_t n_embd_head = n_embd / n_head;
  2363. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2364. // output
  2365. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2366. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2367. for (int i = 0; i < n_layer; ++i) {
  2368. auto & layer = layers[i];
  2369. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2370. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2371. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2372. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2373. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2374. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2375. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2376. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2377. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2378. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2379. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2380. }
  2381. } break;
  2382. case LLM_ARCH_OLMOE:
  2383. {
  2384. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2385. // output
  2386. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2387. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2388. for (int i = 0; i < n_layer; ++i) {
  2389. auto & layer = layers[i];
  2390. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2391. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2392. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2393. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2394. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2395. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2396. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2397. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2398. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2399. if (n_expert == 0) {
  2400. throw std::runtime_error("n_expert must be > 0");
  2401. }
  2402. if (n_expert_used == 0) {
  2403. throw std::runtime_error("n_expert_used must be > 0");
  2404. }
  2405. // MoE branch
  2406. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2407. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2408. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2409. }
  2410. } break;
  2411. case LLM_ARCH_OPENELM:
  2412. {
  2413. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2414. // output
  2415. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2416. // init output from the input tok embed
  2417. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2418. for (int i = 0; i < n_layer; ++i) {
  2419. const int64_t n_head = hparams.n_head(i);
  2420. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2421. const int64_t n_ff = hparams.n_ff(i);
  2422. auto & layer = layers[i];
  2423. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2424. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2425. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2426. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2427. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2428. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2429. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2430. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2431. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2432. }
  2433. } break;
  2434. case LLM_ARCH_GPTNEOX:
  2435. {
  2436. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2437. // output
  2438. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2439. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2440. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2441. for (int i = 0; i < n_layer; ++i) {
  2442. auto & layer = layers[i];
  2443. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2444. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2445. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2446. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2447. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2448. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2449. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2450. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2451. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2452. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2453. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2454. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2455. }
  2456. } break;
  2457. case LLM_ARCH_ARCTIC:
  2458. {
  2459. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2460. // output
  2461. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2462. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2463. // if output is NULL, init from the input tok embed
  2464. if (output == NULL) {
  2465. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2466. }
  2467. for (int i = 0; i < n_layer; ++i) {
  2468. auto & layer = layers[i];
  2469. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2470. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2471. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2472. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2473. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2474. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2475. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2476. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2477. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2478. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2479. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2480. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2481. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2482. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2483. }
  2484. } break;
  2485. case LLM_ARCH_DEEPSEEK:
  2486. {
  2487. const int64_t n_ff_exp = hparams.n_ff_exp;
  2488. const int64_t n_expert_shared = hparams.n_expert_shared;
  2489. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2490. // output
  2491. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2492. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2493. for (int i = 0; i < n_layer; ++i) {
  2494. auto & layer = layers[i];
  2495. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2496. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2497. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2498. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2499. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2500. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2501. if (i < (int) hparams.n_layer_dense_lead) {
  2502. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2503. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2504. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2505. } else {
  2506. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2507. if (n_expert == 0) {
  2508. throw std::runtime_error("n_expert must be > 0");
  2509. }
  2510. if (n_expert_used == 0) {
  2511. throw std::runtime_error("n_expert_used must be > 0");
  2512. }
  2513. // MoE branch
  2514. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2515. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2516. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2517. // Shared expert branch
  2518. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2519. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2520. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2521. }
  2522. }
  2523. } break;
  2524. case LLM_ARCH_DEEPSEEK2:
  2525. {
  2526. const bool is_lite = (hparams.n_layer == 27);
  2527. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2528. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2529. const int64_t q_lora_rank = hparams.n_lora_q;
  2530. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2531. const int64_t n_ff_exp = hparams.n_ff_exp;
  2532. const int64_t n_expert_shared = hparams.n_expert_shared;
  2533. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2534. // output
  2535. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2536. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2537. for (int i = 0; i < n_layer; ++i) {
  2538. auto & layer = layers[i];
  2539. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2540. if (!is_lite) {
  2541. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2542. }
  2543. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2544. if (!is_lite) {
  2545. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2546. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2547. } else {
  2548. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2549. }
  2550. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2551. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2552. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2553. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2554. if (i < (int) hparams.n_layer_dense_lead) {
  2555. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2556. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2557. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2558. } else {
  2559. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2560. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2561. if (n_expert == 0) {
  2562. throw std::runtime_error("n_expert must be > 0");
  2563. }
  2564. if (n_expert_used == 0) {
  2565. throw std::runtime_error("n_expert_used must be > 0");
  2566. }
  2567. // MoE branch
  2568. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2569. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2570. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2571. // Shared expert branch
  2572. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2573. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2574. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2575. }
  2576. }
  2577. } break;
  2578. case LLM_ARCH_PLM:
  2579. {
  2580. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2581. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2582. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2583. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2584. // output
  2585. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2586. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2587. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2588. for (int i = 0; i < n_layer; ++i) {
  2589. auto & layer = layers[i];
  2590. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2591. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2592. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2593. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2594. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2595. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2596. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2597. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2598. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2599. }
  2600. } break;
  2601. case LLM_ARCH_BITNET:
  2602. {
  2603. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2604. // output
  2605. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2606. for (int i = 0; i < n_layer; ++i) {
  2607. auto & layer = layers[i];
  2608. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2609. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2610. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2611. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2612. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2613. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2614. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2615. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2616. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2617. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2618. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2619. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2620. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2621. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2622. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2623. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2624. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2625. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2626. }
  2627. } break;
  2628. case LLM_ARCH_T5:
  2629. {
  2630. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2631. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2632. // output
  2633. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2634. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2635. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2636. // if output is NULL, init from the input tok embed
  2637. if (output == NULL) {
  2638. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2639. }
  2640. for (int i = 0; i < n_layer; ++i) {
  2641. auto & layer = layers[i];
  2642. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2643. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2644. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2645. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2646. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2647. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2648. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2649. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2650. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2651. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2652. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2653. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2654. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2655. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2656. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2657. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2658. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2659. // this tensor seems to be unused in HF transformers implementation
  2660. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2661. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2662. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2663. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2664. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2665. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2666. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2667. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2668. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2669. }
  2670. } break;
  2671. case LLM_ARCH_T5ENCODER:
  2672. {
  2673. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2674. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2675. // output
  2676. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2677. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2678. // if output is NULL, init from the input tok embed
  2679. if (output == NULL) {
  2680. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2681. }
  2682. for (int i = 0; i < n_layer; ++i) {
  2683. auto & layer = layers[i];
  2684. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2685. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2686. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2687. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2688. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2689. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2690. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2691. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2692. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2693. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2694. }
  2695. } break;
  2696. case LLM_ARCH_JAIS:
  2697. {
  2698. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2699. // output
  2700. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2701. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2702. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2703. for (int i = 0; i < n_layer; ++i) {
  2704. auto & layer = layers[i];
  2705. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2706. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2707. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2708. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2709. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2710. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2711. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2712. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2713. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2714. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2715. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2716. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2717. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2718. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2719. }
  2720. } break;
  2721. case LLM_ARCH_CHATGLM:
  2722. {
  2723. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2724. // output
  2725. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2726. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2727. for (int i = 0; i < n_layer; ++i) {
  2728. auto & layer = layers[i];
  2729. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2730. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2731. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2732. if (layer.wqkv == nullptr) {
  2733. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2734. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2735. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2736. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2737. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2738. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2739. }
  2740. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2741. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2742. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2743. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2744. }
  2745. } break;
  2746. case LLM_ARCH_NEMOTRON:
  2747. {
  2748. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2749. // output
  2750. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2751. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2752. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2753. for (int i = 0; i < n_layer; ++i) {
  2754. auto & layer = layers[i];
  2755. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2756. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2757. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2758. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2759. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2760. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2761. // optional bias tensors
  2762. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2763. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2764. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2765. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2766. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2767. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2768. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2769. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2770. // optional MLP bias
  2771. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2772. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2773. }
  2774. } break;
  2775. case LLM_ARCH_EXAONE:
  2776. {
  2777. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2778. // output
  2779. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2780. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2781. // if output is NULL, init from the input tok embed
  2782. if (output == NULL) {
  2783. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2784. }
  2785. for (int i = 0; i < n_layer; ++i) {
  2786. auto & layer = layers[i];
  2787. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2788. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2789. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2790. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2791. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2792. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2793. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2794. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2795. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2796. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2797. }
  2798. } break;
  2799. case LLM_ARCH_RWKV6:
  2800. {
  2801. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2802. // Block 0, LN0
  2803. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2804. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2805. // output
  2806. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2807. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2808. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2809. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2810. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2811. const int head_size = hparams.wkv_head_size;
  2812. const int attn_hidden_size = n_embd;
  2813. const int ffn_size = hparams.n_ff_arr[0];
  2814. for (int i = 0; i < n_layer; ++i) {
  2815. auto & layer = layers[i];
  2816. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2817. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2818. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2819. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2820. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2821. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2822. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2823. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2824. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2825. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2826. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2827. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2828. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  2829. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  2830. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  2831. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2832. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2833. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2834. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2835. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2836. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2837. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2838. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2839. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2840. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2841. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2842. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  2843. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2844. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2845. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  2846. }
  2847. } break;
  2848. case LLM_ARCH_RWKV6QWEN2:
  2849. {
  2850. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2851. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2852. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2853. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2854. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2855. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2856. const int head_size = hparams.wkv_head_size;
  2857. const int attn_hidden_size = n_embd;
  2858. const int n_head_kv = hparams.n_head_kv();
  2859. int attn_key_value_size;
  2860. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  2861. attn_key_value_size = attn_hidden_size;
  2862. } else {
  2863. attn_key_value_size = n_head_kv * head_size;
  2864. }
  2865. for (int i = 0; i < n_layer; ++i) {
  2866. auto & layer = layers[i];
  2867. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2868. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2869. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2870. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2871. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  2872. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  2873. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2874. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2875. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2876. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  2877. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  2878. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2879. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2880. // optional bias tensors
  2881. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  2882. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  2883. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  2884. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2885. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2886. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2887. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2888. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2889. }
  2890. } break;
  2891. case LLM_ARCH_RWKV7:
  2892. {
  2893. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2894. // Block 0, LN0
  2895. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2896. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2897. // output
  2898. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2899. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2900. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2901. const int n_lora_decay = hparams.n_lora_decay;
  2902. const int n_lora_iclr = hparams.n_lora_iclr;
  2903. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  2904. const int n_lora_gate = hparams.n_lora_gate;
  2905. const int attn_hidden_size = n_embd;
  2906. const int ffn_size = hparams.n_ff_arr[0];
  2907. for (int i = 0; i < n_layer; ++i) {
  2908. auto & layer = layers[i];
  2909. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2910. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2911. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2912. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2913. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  2914. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  2915. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  2916. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  2917. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2918. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2919. if (i == 0) {
  2920. // actually not used
  2921. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2922. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2923. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2924. } else {
  2925. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2926. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  2927. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  2928. }
  2929. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  2930. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  2931. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  2932. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  2933. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  2934. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  2935. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2936. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2937. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2938. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2939. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2940. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2941. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2942. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2943. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2944. }
  2945. } break;
  2946. case LLM_ARCH_ARWKV7:
  2947. {
  2948. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2949. // output
  2950. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2951. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2952. const int n_lora_decay = hparams.n_lora_decay;
  2953. const int n_lora_iclr = hparams.n_lora_iclr;
  2954. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  2955. const int n_lora_gate = hparams.n_lora_gate;
  2956. const int attn_hidden_size = n_embd;
  2957. for (int i = 0; i < n_layer; ++i) {
  2958. auto & layer = layers[i];
  2959. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2960. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  2961. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  2962. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  2963. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  2964. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2965. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2966. if (i == 0) {
  2967. // actually not used
  2968. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2969. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2970. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2971. } else {
  2972. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2973. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  2974. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  2975. }
  2976. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  2977. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  2978. try {
  2979. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  2980. } catch(std::runtime_error & e) {
  2981. // ARWKV models may not have gate tensors
  2982. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  2983. }
  2984. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  2985. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  2986. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  2987. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2988. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2989. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2990. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2991. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2992. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2993. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2994. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2995. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2996. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2997. }
  2998. } break;
  2999. case LLM_ARCH_CHAMELEON:
  3000. {
  3001. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3002. // output
  3003. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3004. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3005. // if output is NULL, init from the input tok embed
  3006. if (output == NULL) {
  3007. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3008. }
  3009. for (int i = 0; i < n_layer; ++i) {
  3010. auto & layer = layers[i];
  3011. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3012. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3013. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3014. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3015. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3016. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3017. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3018. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3019. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3020. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3021. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3022. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3023. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3024. }
  3025. } break;
  3026. case LLM_ARCH_WAVTOKENIZER_DEC:
  3027. {
  3028. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3029. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3030. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3031. // posnet
  3032. {
  3033. const int64_t n_embd = hparams.posnet.n_embd;
  3034. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3035. auto & layer = layers[i].posnet;
  3036. // posnet:
  3037. //
  3038. // - resnet
  3039. // - resnet
  3040. // - attn
  3041. // - resnet
  3042. // - resnet
  3043. // - norm
  3044. //
  3045. switch (i) {
  3046. case 0:
  3047. case 1:
  3048. case 3:
  3049. case 4:
  3050. {
  3051. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3052. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3053. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3054. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3055. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3056. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3057. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3058. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3059. } break;
  3060. case 2:
  3061. {
  3062. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3063. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3064. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3065. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3066. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3067. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3068. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3069. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3070. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3071. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3072. } break;
  3073. case 5:
  3074. {
  3075. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3076. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3077. } break;
  3078. default: GGML_ABORT("unknown posnet layer");
  3079. };
  3080. }
  3081. }
  3082. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3083. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3084. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3085. // convnext
  3086. {
  3087. const int64_t n_embd = hparams.convnext.n_embd;
  3088. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3089. auto & layer = layers[i].convnext;
  3090. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3091. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3092. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3093. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3094. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3095. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3096. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3097. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3098. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3099. }
  3100. // output
  3101. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3102. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3103. }
  3104. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3105. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3106. } break;
  3107. default:
  3108. throw std::runtime_error("unknown architecture");
  3109. }
  3110. if (n_moved_tensors > 0) {
  3111. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3112. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3113. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3114. }
  3115. }
  3116. ml.done_getting_tensors();
  3117. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3118. pimpl->mappings.reserve(ml.mappings.size());
  3119. // create the backend buffers
  3120. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3121. ctx_bufs.reserve(ctx_map.size());
  3122. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3123. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3124. pimpl->bufs.reserve(n_max_backend_buffer);
  3125. for (auto & it : ctx_map) {
  3126. ggml_backend_buffer_type_t buft = it.first;
  3127. ggml_context * ctx = it.second;
  3128. // skip contexts without tensors
  3129. if (ggml_get_first_tensor(ctx) == nullptr) {
  3130. continue;
  3131. }
  3132. llama_buf_map buf_map;
  3133. buf_map.reserve(n_max_backend_buffer);
  3134. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3135. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3136. if (!dev) {
  3137. // FIXME: workaround for CPU backend buft having a NULL device
  3138. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3139. }
  3140. ggml_backend_dev_props props;
  3141. ggml_backend_dev_get_props(dev, &props);
  3142. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3143. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3144. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3145. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3146. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3147. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3148. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3149. void * addr = nullptr;
  3150. size_t first, last; // NOLINT
  3151. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3152. if (first >= last) {
  3153. continue;
  3154. }
  3155. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3156. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3157. if (buf == nullptr) {
  3158. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3159. }
  3160. pimpl->bufs.emplace_back(buf);
  3161. buf_map.emplace(idx, buf);
  3162. }
  3163. }
  3164. else {
  3165. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3166. if (buf == nullptr) {
  3167. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3168. }
  3169. pimpl->bufs.emplace_back(buf);
  3170. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3171. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3172. auto & mlock_buf = pimpl->mlock_bufs.back();
  3173. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3174. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3175. }
  3176. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3177. buf_map.emplace(idx, buf);
  3178. }
  3179. }
  3180. if (pimpl->bufs.empty()) {
  3181. throw std::runtime_error("failed to allocate buffer");
  3182. }
  3183. for (auto & buf : buf_map) {
  3184. // indicate that this buffer contains weights
  3185. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3186. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3187. }
  3188. ctx_bufs.emplace_back(ctx, buf_map);
  3189. }
  3190. if (llama_supports_gpu_offload()) {
  3191. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3192. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3193. if (n_gpu_layers > (int) hparams.n_layer) {
  3194. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3195. }
  3196. const int max_backend_supported_layers = hparams.n_layer + 1;
  3197. const int max_offloadable_layers = hparams.n_layer + 1;
  3198. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3199. }
  3200. // print memory requirements per buffer type
  3201. for (auto & buf : pimpl->bufs) {
  3202. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3203. }
  3204. // populate tensors_by_name
  3205. for (auto & ctx : pimpl->ctxs) {
  3206. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3207. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3208. }
  3209. }
  3210. // load tensor data
  3211. for (auto & it : ctx_bufs) {
  3212. ggml_context * ctx = it.first;
  3213. auto & bufs = it.second;
  3214. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3215. return false;
  3216. }
  3217. }
  3218. if (use_mmap_buffer) {
  3219. for (auto & mapping : ml.mappings) {
  3220. pimpl->mappings.emplace_back(std::move(mapping));
  3221. }
  3222. }
  3223. return true;
  3224. }
  3225. std::string llama_model::arch_name() const {
  3226. return llm_arch_name(arch);
  3227. }
  3228. std::string llama_model::type_name() const {
  3229. return llm_type_name(type);
  3230. }
  3231. std::string llama_model::desc() const {
  3232. return pimpl->desc_str;
  3233. }
  3234. size_t llama_model::size() const {
  3235. return pimpl->n_bytes;
  3236. }
  3237. size_t llama_model::n_tensors() const {
  3238. return tensors_by_name.size();
  3239. }
  3240. size_t llama_model::n_devices() const {
  3241. return devices.size();
  3242. }
  3243. uint64_t llama_model::n_elements() const {
  3244. return pimpl->n_elements;
  3245. }
  3246. void llama_model::print_info() const {
  3247. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3248. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3249. bool is_var = false;
  3250. std::vector<uint32_t> v;
  3251. for (uint32_t i = 0; i < n; ++i) {
  3252. v.push_back(f(i));
  3253. if (v[i] != v[0]) {
  3254. is_var = true;
  3255. }
  3256. }
  3257. std::stringstream ss;
  3258. if (is_var) {
  3259. ss << "[";
  3260. for (uint32_t i = 0; i < n; ++i) {
  3261. ss << v[i];
  3262. if (i < n - 1) {
  3263. ss << ", ";
  3264. }
  3265. }
  3266. ss << "]";
  3267. } else {
  3268. ss << v[0];
  3269. }
  3270. return ss.str();
  3271. };
  3272. // hparams
  3273. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3274. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3275. if (!hparams.vocab_only) {
  3276. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3277. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3278. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3279. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3280. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3281. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3282. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3283. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3284. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3285. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3286. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3287. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3288. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3289. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3290. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3291. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3292. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3293. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3294. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3295. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3296. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3297. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3298. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3299. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3300. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3301. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3302. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3303. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3304. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3305. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3306. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3307. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3308. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3309. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3310. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3311. }
  3312. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3313. if (pimpl->n_elements >= 1e12) {
  3314. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3315. } else if (pimpl->n_elements >= 1e9) {
  3316. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3317. } else if (pimpl->n_elements >= 1e6) {
  3318. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3319. } else {
  3320. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3321. }
  3322. // general kv
  3323. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3324. if (arch == LLM_ARCH_DEEPSEEK) {
  3325. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3326. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3327. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3328. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3329. }
  3330. if (arch == LLM_ARCH_DEEPSEEK2) {
  3331. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3332. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3333. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3334. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3335. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3336. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3337. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3338. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3339. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3340. }
  3341. if (arch == LLM_ARCH_QWEN2MOE) {
  3342. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3343. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3344. }
  3345. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3346. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3347. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3348. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3349. }
  3350. vocab.print_info();
  3351. }
  3352. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3353. return pimpl->dev_layer.at(il).dev;
  3354. }
  3355. ggml_backend_dev_t llama_model::dev_output() const {
  3356. return pimpl->dev_output.dev;
  3357. }
  3358. template<typename F>
  3359. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3360. ggml_init_params params = {
  3361. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3362. /*.mem_buffer =*/ NULL,
  3363. /*.no_alloc =*/ true,
  3364. };
  3365. ggml_context_ptr ctx { ggml_init(params) };
  3366. if (!ctx) {
  3367. throw std::runtime_error(format("failed to create ggml context"));
  3368. }
  3369. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3370. ggml_tensor * op_tensor = fn(ctx.get());
  3371. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3372. if (op_tensor->src[i] != nullptr) {
  3373. assert(op_tensor->src[i]->buffer == nullptr);
  3374. op_tensor->src[i]->buffer = buf.get();
  3375. }
  3376. }
  3377. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3378. return op_supported;
  3379. }
  3380. template<typename F>
  3381. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3382. for (const auto & cur : buft_list) {
  3383. ggml_backend_dev_t cur_dev = cur.first;
  3384. ggml_backend_buffer_type_t cur_buft = cur.second;
  3385. if (buft_supported(cur_buft, cur_dev, fn)) {
  3386. return cur_buft;
  3387. }
  3388. }
  3389. throw std::runtime_error(format("no suitable buffer type found"));
  3390. }
  3391. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3392. return ::select_buft(
  3393. *pimpl->dev_layer.at(il).buft_list,
  3394. [&](ggml_context * ctx) {
  3395. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3396. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3397. return ggml_add(ctx, cur, layer_dir);
  3398. });
  3399. }
  3400. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3401. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3402. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3403. return it.first == name;
  3404. });
  3405. if (it == tensors_by_name.end()) {
  3406. return nullptr;
  3407. }
  3408. return it->second;
  3409. }
  3410. struct llm_build_llama : public llm_graph_context {
  3411. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3412. const int64_t n_embd_head = hparams.n_embd_head_v;
  3413. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3414. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3415. ggml_tensor * cur;
  3416. ggml_tensor * inpL;
  3417. inpL = build_inp_embd(model.tok_embd);
  3418. // inp_pos - contains the positions
  3419. ggml_tensor * inp_pos = build_inp_pos();
  3420. auto * inp_attn = build_attn_inp_kv_unified();
  3421. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3422. for (int il = 0; il < n_layer; ++il) {
  3423. ggml_tensor * inpSA = inpL;
  3424. // norm
  3425. cur = build_norm(inpL,
  3426. model.layers[il].attn_norm, NULL,
  3427. LLM_NORM_RMS, il);
  3428. cb(cur, "attn_norm", il);
  3429. // self-attention
  3430. {
  3431. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3432. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3433. // compute Q and K and RoPE them
  3434. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3435. cb(Qcur, "Qcur", il);
  3436. if (model.layers[il].bq) {
  3437. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3438. cb(Qcur, "Qcur", il);
  3439. }
  3440. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3441. cb(Kcur, "Kcur", il);
  3442. if (model.layers[il].bk) {
  3443. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3444. cb(Kcur, "Kcur", il);
  3445. }
  3446. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3447. cb(Vcur, "Vcur", il);
  3448. if (model.layers[il].bv) {
  3449. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3450. cb(Vcur, "Vcur", il);
  3451. }
  3452. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3453. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3454. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3455. Qcur = ggml_rope_ext(
  3456. ctx0, Qcur, inp_pos, rope_factors,
  3457. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3458. ext_factor, attn_factor, beta_fast, beta_slow
  3459. );
  3460. Kcur = ggml_rope_ext(
  3461. ctx0, Kcur, inp_pos, rope_factors,
  3462. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3463. ext_factor, attn_factor, beta_fast, beta_slow
  3464. );
  3465. cb(Qcur, "Qcur", il);
  3466. cb(Kcur, "Kcur", il);
  3467. cb(Vcur, "Vcur", il);
  3468. cur = build_attn(inp_attn, gf,
  3469. model.layers[il].wo, model.layers[il].bo,
  3470. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  3471. }
  3472. if (il == n_layer - 1) {
  3473. // skip computing output for unused tokens
  3474. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3475. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3476. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3477. }
  3478. // For Granite architecture
  3479. if (hparams.f_residual_scale) {
  3480. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3481. }
  3482. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3483. cb(ffn_inp, "ffn_inp", il);
  3484. // feed-forward network
  3485. if (model.layers[il].ffn_gate_inp == nullptr) {
  3486. cur = build_norm(ffn_inp,
  3487. model.layers[il].ffn_norm, NULL,
  3488. LLM_NORM_RMS, il);
  3489. cb(cur, "ffn_norm", il);
  3490. cur = build_ffn(cur,
  3491. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3492. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3493. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3494. NULL,
  3495. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3496. cb(cur, "ffn_out", il);
  3497. } else {
  3498. // MoE branch
  3499. cur = build_norm(ffn_inp,
  3500. model.layers[il].ffn_norm, NULL,
  3501. LLM_NORM_RMS, il);
  3502. cb(cur, "ffn_norm", il);
  3503. cur = build_moe_ffn(cur,
  3504. model.layers[il].ffn_gate_inp,
  3505. model.layers[il].ffn_up_exps,
  3506. model.layers[il].ffn_gate_exps,
  3507. model.layers[il].ffn_down_exps,
  3508. nullptr,
  3509. n_expert, n_expert_used,
  3510. LLM_FFN_SILU, true,
  3511. false, 0.0,
  3512. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3513. il);
  3514. cb(cur, "ffn_moe_out", il);
  3515. }
  3516. // For Granite architecture
  3517. if (hparams.f_residual_scale) {
  3518. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3519. }
  3520. cur = ggml_add(ctx0, cur, ffn_inp);
  3521. cb(cur, "ffn_out", il);
  3522. cur = build_cvec(cur, il);
  3523. cb(cur, "l_out", il);
  3524. // input for next layer
  3525. inpL = cur;
  3526. }
  3527. cur = inpL;
  3528. cur = build_norm(cur,
  3529. model.output_norm, NULL,
  3530. LLM_NORM_RMS, -1);
  3531. cb(cur, "result_norm", -1);
  3532. res->t_embd = cur;
  3533. // lm_head
  3534. cur = build_lora_mm(model.output, cur);
  3535. // For Granite architecture
  3536. if (hparams.f_logit_scale) {
  3537. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3538. }
  3539. cb(cur, "result_output", -1);
  3540. res->t_logits = cur;
  3541. ggml_build_forward_expand(gf, cur);
  3542. }
  3543. };
  3544. struct llm_build_deci : public llm_graph_context {
  3545. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3546. const int64_t n_embd_head = hparams.n_embd_head_v;
  3547. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3548. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3549. ggml_tensor * cur;
  3550. ggml_tensor * inpL;
  3551. inpL = build_inp_embd(model.tok_embd);
  3552. // inp_pos - contains the positions
  3553. ggml_tensor * inp_pos = build_inp_pos();
  3554. auto * inp_attn = build_attn_inp_kv_unified();
  3555. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3556. for (int il = 0; il < n_layer; ++il) {
  3557. ggml_tensor * inpSA = inpL;
  3558. const int64_t n_head_kv = hparams.n_head_kv(il);
  3559. const int64_t n_head = hparams.n_head(il);
  3560. if (n_head == 0) {
  3561. // attention-free layer of Llama-3_1-Nemotron-51B
  3562. cur = inpL;
  3563. } else {
  3564. // norm
  3565. cur = build_norm(inpL,
  3566. model.layers[il].attn_norm, NULL,
  3567. LLM_NORM_RMS, il);
  3568. cb(cur, "attn_norm", il);
  3569. }
  3570. if (n_head > 0 && n_head_kv == 0) {
  3571. // "linear attention" of Llama-3_1-Nemotron-51B
  3572. cur = build_lora_mm(model.layers[il].wo, cur);
  3573. cb(cur, "wo", il);
  3574. } else if (n_head > 0) {
  3575. // self-attention
  3576. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3577. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3578. // compute Q and K and RoPE them
  3579. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3580. cb(Qcur, "Qcur", il);
  3581. if (model.layers[il].bq) {
  3582. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3583. cb(Qcur, "Qcur", il);
  3584. }
  3585. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3586. cb(Kcur, "Kcur", il);
  3587. if (model.layers[il].bk) {
  3588. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3589. cb(Kcur, "Kcur", il);
  3590. }
  3591. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3592. cb(Vcur, "Vcur", il);
  3593. if (model.layers[il].bv) {
  3594. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3595. cb(Vcur, "Vcur", il);
  3596. }
  3597. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3598. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3599. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3600. Qcur = ggml_rope_ext(
  3601. ctx0, Qcur, inp_pos, rope_factors,
  3602. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3603. ext_factor, attn_factor, beta_fast, beta_slow
  3604. );
  3605. Kcur = ggml_rope_ext(
  3606. ctx0, Kcur, inp_pos, rope_factors,
  3607. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3608. ext_factor, attn_factor, beta_fast, beta_slow
  3609. );
  3610. cb(Qcur, "Qcur", il);
  3611. cb(Kcur, "Kcur", il);
  3612. cb(Vcur, "Vcur", il);
  3613. cur = build_attn(inp_attn, gf,
  3614. model.layers[il].wo, model.layers[il].bo,
  3615. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  3616. }
  3617. if (il == n_layer - 1) {
  3618. // skip computing output for unused tokens
  3619. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3620. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3621. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3622. }
  3623. // For Granite architecture
  3624. if (hparams.f_residual_scale) {
  3625. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3626. }
  3627. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3628. ggml_tensor * ffn_inp = cur;
  3629. if (n_head > 0) {
  3630. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3631. cb(ffn_inp, "ffn_inp", il);
  3632. }
  3633. // feed-forward network
  3634. if (model.layers[il].ffn_gate_inp == nullptr) {
  3635. cur = build_norm(ffn_inp,
  3636. model.layers[il].ffn_norm, NULL,
  3637. LLM_NORM_RMS, il);
  3638. cb(cur, "ffn_norm", il);
  3639. cur = build_ffn(cur,
  3640. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3641. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3642. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3643. NULL,
  3644. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3645. cb(cur, "ffn_out", il);
  3646. }
  3647. // For Granite architecture
  3648. if (hparams.f_residual_scale) {
  3649. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3650. }
  3651. cur = ggml_add(ctx0, cur, ffn_inp);
  3652. cb(cur, "ffn_out", il);
  3653. cur = build_cvec(cur, il);
  3654. cb(cur, "l_out", il);
  3655. // input for next layer
  3656. inpL = cur;
  3657. }
  3658. cur = inpL;
  3659. cur = build_norm(cur,
  3660. model.output_norm, NULL,
  3661. LLM_NORM_RMS, -1);
  3662. cb(cur, "result_norm", -1);
  3663. res->t_embd = cur;
  3664. // lm_head
  3665. cur = build_lora_mm(model.output, cur);
  3666. // For Granite architecture
  3667. if (hparams.f_logit_scale) {
  3668. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3669. }
  3670. cb(cur, "result_output", -1);
  3671. res->t_logits = cur;
  3672. ggml_build_forward_expand(gf, cur);
  3673. }
  3674. };
  3675. struct llm_build_baichuan : public llm_graph_context {
  3676. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3677. const int64_t n_embd_head = hparams.n_embd_head_v;
  3678. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3679. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3680. ggml_tensor * cur;
  3681. ggml_tensor * inpL;
  3682. inpL = build_inp_embd(model.tok_embd);
  3683. // inp_pos - contains the positions
  3684. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  3685. auto * inp_attn = build_attn_inp_kv_unified();
  3686. for (int il = 0; il < n_layer; ++il) {
  3687. ggml_tensor * inpSA = inpL;
  3688. cur = build_norm(inpL,
  3689. model.layers[il].attn_norm, NULL,
  3690. LLM_NORM_RMS, il);
  3691. cb(cur, "attn_norm", il);
  3692. // self-attention
  3693. {
  3694. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3695. cb(Qcur, "Qcur", il);
  3696. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3697. cb(Kcur, "Kcur", il);
  3698. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3699. cb(Vcur, "Vcur", il);
  3700. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3701. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3702. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3703. switch (model.type) {
  3704. case LLM_TYPE_7B:
  3705. Qcur = ggml_rope_ext(
  3706. ctx0, Qcur, inp_pos, nullptr,
  3707. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3708. ext_factor, attn_factor, beta_fast, beta_slow
  3709. );
  3710. Kcur = ggml_rope_ext(
  3711. ctx0, Kcur, inp_pos, nullptr,
  3712. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3713. ext_factor, attn_factor, beta_fast, beta_slow
  3714. );
  3715. break;
  3716. case LLM_TYPE_13B:
  3717. break;
  3718. default:
  3719. GGML_ABORT("fatal error");
  3720. }
  3721. cb(Qcur, "Qcur", il);
  3722. cb(Kcur, "Kcur", il);
  3723. cb(Vcur, "Vcur", il);
  3724. cur = build_attn(inp_attn, gf,
  3725. model.layers[il].wo, NULL,
  3726. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3727. }
  3728. if (il == n_layer - 1) {
  3729. // skip computing output for unused tokens
  3730. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3731. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3732. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3733. }
  3734. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3735. cb(ffn_inp, "ffn_inp", il);
  3736. // feed-forward network
  3737. {
  3738. cur = build_norm(ffn_inp,
  3739. model.layers[il].ffn_norm, NULL,
  3740. LLM_NORM_RMS, il);
  3741. cb(cur, "ffn_norm", il);
  3742. cur = build_ffn(cur,
  3743. model.layers[il].ffn_up, NULL, NULL,
  3744. model.layers[il].ffn_gate, NULL, NULL,
  3745. model.layers[il].ffn_down, NULL, NULL,
  3746. NULL,
  3747. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3748. cb(cur, "ffn_out", il);
  3749. }
  3750. cur = ggml_add(ctx0, cur, ffn_inp);
  3751. cur = build_cvec(cur, il);
  3752. cb(cur, "l_out", il);
  3753. // input for next layer
  3754. inpL = cur;
  3755. }
  3756. cur = inpL;
  3757. cur = build_norm(cur,
  3758. model.output_norm, NULL,
  3759. LLM_NORM_RMS, -1);
  3760. cb(cur, "result_norm", -1);
  3761. res->t_embd = cur;
  3762. // lm_head
  3763. cur = build_lora_mm(model.output, cur);
  3764. cb(cur, "result_output", -1);
  3765. res->t_logits = cur;
  3766. ggml_build_forward_expand(gf, cur);
  3767. }
  3768. };
  3769. struct llm_build_xverse : public llm_graph_context {
  3770. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3771. const int64_t n_embd_head = hparams.n_embd_head_v;
  3772. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3773. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3774. ggml_tensor * cur;
  3775. ggml_tensor * inpL;
  3776. inpL = build_inp_embd(model.tok_embd);
  3777. // inp_pos - contains the positions
  3778. ggml_tensor * inp_pos = build_inp_pos();
  3779. auto * inp_attn = build_attn_inp_kv_unified();
  3780. for (int il = 0; il < n_layer; ++il) {
  3781. ggml_tensor * inpSA = inpL;
  3782. cur = build_norm(inpL,
  3783. model.layers[il].attn_norm, NULL,
  3784. LLM_NORM_RMS, il);
  3785. cb(cur, "attn_norm", il);
  3786. // self-attention
  3787. {
  3788. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3789. cb(Qcur, "Qcur", il);
  3790. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3791. cb(Kcur, "Kcur", il);
  3792. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3793. cb(Vcur, "Vcur", il);
  3794. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3795. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3796. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3797. Qcur = ggml_rope_ext(
  3798. ctx0, Qcur, inp_pos, nullptr,
  3799. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3800. ext_factor, attn_factor, beta_fast, beta_slow
  3801. );
  3802. Kcur = ggml_rope_ext(
  3803. ctx0, Kcur, inp_pos, nullptr,
  3804. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3805. ext_factor, attn_factor, beta_fast, beta_slow
  3806. );
  3807. cb(Qcur, "Qcur", il);
  3808. cb(Kcur, "Kcur", il);
  3809. cb(Vcur, "Vcur", il);
  3810. cur = build_attn(inp_attn, gf,
  3811. model.layers[il].wo, NULL,
  3812. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3813. }
  3814. if (il == n_layer - 1) {
  3815. // skip computing output for unused tokens
  3816. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3817. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3818. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3819. }
  3820. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3821. cb(ffn_inp, "ffn_inp", il);
  3822. // feed-forward network
  3823. {
  3824. cur = build_norm(ffn_inp,
  3825. model.layers[il].ffn_norm, NULL,
  3826. LLM_NORM_RMS, il);
  3827. cb(cur, "ffn_norm", il);
  3828. cur = build_ffn(cur,
  3829. model.layers[il].ffn_up, NULL, NULL,
  3830. model.layers[il].ffn_gate, NULL, NULL,
  3831. model.layers[il].ffn_down, NULL, NULL,
  3832. NULL,
  3833. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3834. cb(cur, "ffn_out", il);
  3835. }
  3836. cur = ggml_add(ctx0, cur, ffn_inp);
  3837. cur = build_cvec(cur, il);
  3838. cb(cur, "l_out", il);
  3839. // input for next layer
  3840. inpL = cur;
  3841. }
  3842. cur = inpL;
  3843. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  3844. cb(cur, "result_norm", -1);
  3845. res->t_embd = cur;
  3846. // lm_head
  3847. cur = build_lora_mm(model.output, cur);
  3848. cb(cur, "result_output", -1);
  3849. res->t_logits = cur;
  3850. ggml_build_forward_expand(gf, cur);
  3851. }
  3852. };
  3853. struct llm_build_falcon : public llm_graph_context {
  3854. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3855. const int64_t n_embd_head = hparams.n_embd_head_v;
  3856. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  3857. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3858. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3859. ggml_tensor * cur;
  3860. ggml_tensor * inpL;
  3861. inpL = build_inp_embd(model.tok_embd);
  3862. // inp_pos - contains the positions
  3863. ggml_tensor * inp_pos = build_inp_pos();
  3864. auto * inp_attn = build_attn_inp_kv_unified();
  3865. for (int il = 0; il < n_layer; ++il) {
  3866. ggml_tensor * attn_norm;
  3867. attn_norm = build_norm(inpL,
  3868. model.layers[il].attn_norm,
  3869. model.layers[il].attn_norm_b,
  3870. LLM_NORM, il);
  3871. cb(attn_norm, "attn_norm", il);
  3872. // self-attention
  3873. {
  3874. if (model.layers[il].attn_norm_2) {
  3875. // Falcon-40B
  3876. cur = build_norm(inpL,
  3877. model.layers[il].attn_norm_2,
  3878. model.layers[il].attn_norm_2_b,
  3879. LLM_NORM, il);
  3880. cb(cur, "attn_norm_2", il);
  3881. } else {
  3882. cur = attn_norm;
  3883. }
  3884. cur = build_lora_mm(model.layers[il].wqkv, cur);
  3885. cb(cur, "wqkv", il);
  3886. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3887. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3888. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3889. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3890. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3891. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3892. // using mode = 2 for neox mode
  3893. Qcur = ggml_rope_ext(
  3894. ctx0, Qcur, inp_pos, nullptr,
  3895. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3896. ext_factor, attn_factor, beta_fast, beta_slow
  3897. );
  3898. Kcur = ggml_rope_ext(
  3899. ctx0, Kcur, inp_pos, nullptr,
  3900. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3901. ext_factor, attn_factor, beta_fast, beta_slow
  3902. );
  3903. cb(Qcur, "Qcur", il);
  3904. cb(Kcur, "Kcur", il);
  3905. cb(Vcur, "Vcur", il);
  3906. cur = build_attn(inp_attn, gf,
  3907. model.layers[il].wo, NULL,
  3908. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3909. }
  3910. if (il == n_layer - 1) {
  3911. // skip computing output for unused tokens
  3912. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3913. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3914. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  3915. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  3916. }
  3917. ggml_tensor * ffn_inp = cur;
  3918. // feed forward
  3919. {
  3920. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  3921. model.layers[il].ffn_up, NULL, NULL,
  3922. NULL, NULL, NULL,
  3923. model.layers[il].ffn_down, NULL, NULL,
  3924. NULL,
  3925. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  3926. cb(cur, "ffn_out", il);
  3927. }
  3928. cur = ggml_add(ctx0, cur, ffn_inp);
  3929. cur = ggml_add(ctx0, cur, inpL);
  3930. cur = build_cvec(cur, il);
  3931. cb(cur, "l_out", il);
  3932. // input for next layer
  3933. inpL = cur;
  3934. }
  3935. cur = inpL;
  3936. // norm
  3937. cur = build_norm(cur,
  3938. model.output_norm,
  3939. model.output_norm_b,
  3940. LLM_NORM, -1);
  3941. cb(cur, "result_norm", -1);
  3942. res->t_embd = cur;
  3943. cur = build_lora_mm(model.output, cur);
  3944. cb(cur, "result_output", -1);
  3945. res->t_logits = cur;
  3946. ggml_build_forward_expand(gf, cur);
  3947. }
  3948. };
  3949. struct llm_build_grok : public llm_graph_context {
  3950. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3951. const int64_t n_embd_head = hparams.n_embd_head_v;
  3952. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3953. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3954. ggml_tensor * cur;
  3955. ggml_tensor * inpL;
  3956. inpL = build_inp_embd(model.tok_embd);
  3957. // multiply by embedding_multiplier_scale of 78.38367176906169
  3958. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  3959. // inp_pos - contains the positions
  3960. ggml_tensor * inp_pos = build_inp_pos();
  3961. auto * inp_attn = build_attn_inp_kv_unified();
  3962. for (int il = 0; il < n_layer; ++il) {
  3963. ggml_tensor * inpSA = inpL;
  3964. // norm
  3965. cur = build_norm(inpL,
  3966. model.layers[il].attn_norm, NULL,
  3967. LLM_NORM_RMS, il);
  3968. cb(cur, "attn_norm", il);
  3969. // self-attention
  3970. {
  3971. // compute Q and K and RoPE them
  3972. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3973. cb(Qcur, "Qcur", il);
  3974. if (model.layers[il].bq) {
  3975. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3976. cb(Qcur, "Qcur", il);
  3977. }
  3978. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3979. cb(Kcur, "Kcur", il);
  3980. if (model.layers[il].bk) {
  3981. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3982. cb(Kcur, "Kcur", il);
  3983. }
  3984. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3985. cb(Vcur, "Vcur", il);
  3986. if (model.layers[il].bv) {
  3987. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3988. cb(Vcur, "Vcur", il);
  3989. }
  3990. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3991. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3992. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3993. Qcur = ggml_rope_ext(
  3994. ctx0, Qcur, inp_pos, nullptr,
  3995. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3996. ext_factor, attn_factor, beta_fast, beta_slow
  3997. );
  3998. Kcur = ggml_rope_ext(
  3999. ctx0, Kcur, inp_pos, nullptr,
  4000. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4001. ext_factor, attn_factor, beta_fast, beta_slow
  4002. );
  4003. cb(Qcur, "Qcur", il);
  4004. cb(Kcur, "Kcur", il);
  4005. cb(Vcur, "Vcur", il);
  4006. cur = build_attn(inp_attn, gf,
  4007. model.layers[il].wo, model.layers[il].bo,
  4008. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  4009. }
  4010. if (il == n_layer - 1) {
  4011. // skip computing output for unused tokens
  4012. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4013. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4014. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4015. }
  4016. // Grok
  4017. // if attn_out_norm is present then apply it before adding the input
  4018. if (model.layers[il].attn_out_norm) {
  4019. cur = build_norm(cur,
  4020. model.layers[il].attn_out_norm, NULL,
  4021. LLM_NORM_RMS, il);
  4022. cb(cur, "attn_out_norm", il);
  4023. }
  4024. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4025. cb(ffn_inp, "ffn_inp", il);
  4026. // feed-forward network
  4027. // MoE branch
  4028. cur = build_norm(ffn_inp,
  4029. model.layers[il].ffn_norm, NULL,
  4030. LLM_NORM_RMS, il);
  4031. cb(cur, "ffn_norm", il);
  4032. cur = build_moe_ffn(cur,
  4033. model.layers[il].ffn_gate_inp,
  4034. model.layers[il].ffn_up_exps,
  4035. model.layers[il].ffn_gate_exps,
  4036. model.layers[il].ffn_down_exps,
  4037. nullptr,
  4038. n_expert, n_expert_used,
  4039. LLM_FFN_GELU, true,
  4040. false, 0.0,
  4041. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4042. il);
  4043. cb(cur, "ffn_moe_out", il);
  4044. // Grok
  4045. // if layer_out_norm is present then apply it before adding the input
  4046. // Idea: maybe ffn_out_norm is a better name
  4047. if (model.layers[il].layer_out_norm) {
  4048. cur = build_norm(cur,
  4049. model.layers[il].layer_out_norm, NULL,
  4050. LLM_NORM_RMS, il);
  4051. cb(cur, "layer_out_norm", il);
  4052. }
  4053. cur = ggml_add(ctx0, cur, ffn_inp);
  4054. cb(cur, "ffn_out", il);
  4055. cur = build_cvec(cur, il);
  4056. cb(cur, "l_out", il);
  4057. // input for next layer
  4058. inpL = cur;
  4059. }
  4060. cur = inpL;
  4061. cur = build_norm(cur,
  4062. model.output_norm, NULL,
  4063. LLM_NORM_RMS, -1);
  4064. cb(cur, "result_norm", -1);
  4065. res->t_embd = cur;
  4066. // lm_head
  4067. cur = build_lora_mm(model.output, cur);
  4068. // Grok
  4069. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4070. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4071. cb(cur, "result_output", -1);
  4072. res->t_logits = cur;
  4073. ggml_build_forward_expand(gf, cur);
  4074. }
  4075. };
  4076. struct llm_build_dbrx : public llm_graph_context {
  4077. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4078. const int64_t n_embd_head = hparams.n_embd_head_v;
  4079. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4080. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4081. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4082. ggml_tensor * cur;
  4083. ggml_tensor * inpL;
  4084. inpL = build_inp_embd(model.tok_embd);
  4085. // inp_pos - contains the positions
  4086. ggml_tensor * inp_pos = build_inp_pos();
  4087. auto * inp_attn = build_attn_inp_kv_unified();
  4088. for (int il = 0; il < n_layer; ++il) {
  4089. ggml_tensor * inpSA = inpL;
  4090. // norm
  4091. cur = build_norm(inpL,
  4092. model.layers[il].attn_norm, NULL,
  4093. LLM_NORM, il);
  4094. cb(cur, "attn_norm", il);
  4095. // self-attention
  4096. {
  4097. ggml_tensor * Qcur = nullptr;
  4098. ggml_tensor * Kcur = nullptr;
  4099. ggml_tensor * Vcur = nullptr;
  4100. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4101. cb(cur, "wqkv", il);
  4102. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4103. cb(cur, "wqkv_clamped", il);
  4104. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4105. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4106. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4107. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4108. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4109. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4110. Qcur = ggml_rope_ext(
  4111. ctx0, Qcur, inp_pos, nullptr,
  4112. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4113. ext_factor, attn_factor, beta_fast, beta_slow
  4114. );
  4115. Kcur = ggml_rope_ext(
  4116. ctx0, Kcur, inp_pos, nullptr,
  4117. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4118. ext_factor, attn_factor, beta_fast, beta_slow
  4119. );
  4120. cb(Qcur, "Qcur", il);
  4121. cb(Kcur, "Kcur", il);
  4122. cb(Vcur, "Vcur", il);
  4123. cur = build_attn(inp_attn, gf,
  4124. model.layers[il].wo, NULL,
  4125. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4126. }
  4127. if (il == n_layer - 1) {
  4128. // skip computing output for unused tokens
  4129. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4130. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4131. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4132. }
  4133. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4134. cb(ffn_inp, "ffn_inp", il);
  4135. // feed-forward network
  4136. // MoE branch
  4137. cur = build_norm(ffn_inp,
  4138. model.layers[il].attn_out_norm, NULL,
  4139. LLM_NORM, il);
  4140. cb(cur, "attn_out_norm", il);
  4141. cur = build_moe_ffn(cur,
  4142. model.layers[il].ffn_gate_inp,
  4143. model.layers[il].ffn_up_exps,
  4144. model.layers[il].ffn_gate_exps,
  4145. model.layers[il].ffn_down_exps,
  4146. nullptr,
  4147. n_expert, n_expert_used,
  4148. LLM_FFN_SILU, true,
  4149. false, 0.0,
  4150. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4151. il);
  4152. cb(cur, "ffn_moe_out", il);
  4153. cur = ggml_add(ctx0, cur, ffn_inp);
  4154. cb(cur, "ffn_out", il);
  4155. cur = build_cvec(cur, il);
  4156. cb(cur, "l_out", il);
  4157. // input for next layer
  4158. inpL = cur;
  4159. }
  4160. cur = inpL;
  4161. cur = build_norm(cur,
  4162. model.output_norm, NULL,
  4163. LLM_NORM, -1);
  4164. cb(cur, "result_norm", -1);
  4165. res->t_embd = cur;
  4166. // lm_head
  4167. cur = build_lora_mm(model.output, cur);
  4168. cb(cur, "result_output", -1);
  4169. res->t_logits = cur;
  4170. ggml_build_forward_expand(gf, cur);
  4171. }
  4172. };
  4173. struct llm_build_starcoder : public llm_graph_context {
  4174. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4175. const int64_t n_embd_head = hparams.n_embd_head_v;
  4176. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4177. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4178. ggml_tensor * cur;
  4179. ggml_tensor * inpL;
  4180. inpL = build_inp_embd(model.tok_embd);
  4181. // inp_pos - contains the positions
  4182. ggml_tensor * inp_pos = build_inp_pos();
  4183. auto * inp_attn = build_attn_inp_kv_unified();
  4184. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4185. cb(pos, "pos_embd", -1);
  4186. inpL = ggml_add(ctx0, inpL, pos);
  4187. cb(inpL, "inpL", -1);
  4188. for (int il = 0; il < n_layer; ++il) {
  4189. cur = build_norm(inpL,
  4190. model.layers[il].attn_norm,
  4191. model.layers[il].attn_norm_b,
  4192. LLM_NORM, il);
  4193. cb(cur, "attn_norm", il);
  4194. // self-attention
  4195. {
  4196. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4197. cb(cur, "wqkv", il);
  4198. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4199. cb(cur, "bqkv", il);
  4200. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4201. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4202. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4203. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4204. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4205. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4206. cb(Qcur, "Qcur", il);
  4207. cb(Kcur, "Kcur", il);
  4208. cb(Vcur, "Vcur", il);
  4209. cur = build_attn(inp_attn, gf,
  4210. model.layers[il].wo, model.layers[il].bo,
  4211. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4212. }
  4213. if (il == n_layer - 1) {
  4214. // skip computing output for unused tokens
  4215. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4216. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4217. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4218. }
  4219. // add the input
  4220. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4221. cb(ffn_inp, "ffn_inp", il);
  4222. // FF
  4223. {
  4224. cur = build_norm(ffn_inp,
  4225. model.layers[il].ffn_norm,
  4226. model.layers[il].ffn_norm_b,
  4227. LLM_NORM, il);
  4228. cb(cur, "ffn_norm", il);
  4229. cur = build_ffn(cur,
  4230. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4231. NULL, NULL, NULL,
  4232. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4233. NULL,
  4234. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4235. cb(cur, "ffn_out", il);
  4236. }
  4237. cur = ggml_add(ctx0, cur, ffn_inp);
  4238. cur = build_cvec(cur, il);
  4239. cb(cur, "l_out", il);
  4240. // input for next layer
  4241. inpL = cur;
  4242. }
  4243. cur = build_norm(inpL,
  4244. model.output_norm,
  4245. model.output_norm_b,
  4246. LLM_NORM, -1);
  4247. cb(cur, "result_norm", -1);
  4248. res->t_embd = cur;
  4249. cur = build_lora_mm(model.output, cur);
  4250. cb(cur, "result_output", -1);
  4251. res->t_logits = cur;
  4252. ggml_build_forward_expand(gf, cur);
  4253. }
  4254. };
  4255. struct llm_build_refact : public llm_graph_context {
  4256. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4257. const int64_t n_embd_head = hparams.n_embd_head_v;
  4258. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4259. ggml_tensor * cur;
  4260. ggml_tensor * inpL;
  4261. inpL = build_inp_embd(model.tok_embd);
  4262. auto * inp_attn = build_attn_inp_kv_unified();
  4263. for (int il = 0; il < n_layer; ++il) {
  4264. ggml_tensor * inpSA = inpL;
  4265. cur = build_norm(inpL,
  4266. model.layers[il].attn_norm, NULL,
  4267. LLM_NORM_RMS, il);
  4268. cb(cur, "attn_norm", il);
  4269. // self-attention
  4270. {
  4271. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4272. cb(Qcur, "Qcur", il);
  4273. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4274. cb(Kcur, "Kcur", il);
  4275. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4276. cb(Vcur, "Vcur", il);
  4277. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4278. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4279. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4280. cb(Qcur, "Qcur", il);
  4281. cb(Kcur, "Kcur", il);
  4282. cb(Vcur, "Vcur", il);
  4283. cur = build_attn(inp_attn, gf,
  4284. model.layers[il].wo, NULL,
  4285. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4286. }
  4287. if (il == n_layer - 1) {
  4288. // skip computing output for unused tokens
  4289. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4290. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4291. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4292. }
  4293. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4294. cb(ffn_inp, "ffn_inp", il);
  4295. // feed-forward network
  4296. {
  4297. cur = build_norm(ffn_inp,
  4298. model.layers[il].ffn_norm, NULL,
  4299. LLM_NORM_RMS, il);
  4300. cb(cur, "ffn_norm", il);
  4301. cur = build_ffn(cur,
  4302. model.layers[il].ffn_up, NULL, NULL,
  4303. model.layers[il].ffn_gate, NULL, NULL,
  4304. model.layers[il].ffn_down, NULL, NULL,
  4305. NULL,
  4306. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4307. cb(cur, "ffn_out", il);
  4308. }
  4309. cur = ggml_add(ctx0, cur, ffn_inp);
  4310. cur = build_cvec(cur, il);
  4311. cb(cur, "l_out", il);
  4312. // input for next layer
  4313. inpL = cur;
  4314. }
  4315. cur = inpL;
  4316. cur = build_norm(cur,
  4317. model.output_norm, NULL,
  4318. LLM_NORM_RMS, -1);
  4319. cb(cur, "result_norm", -1);
  4320. res->t_embd = cur;
  4321. // lm_head
  4322. cur = build_lora_mm(model.output, cur);
  4323. cb(cur, "result_output", -1);
  4324. res->t_logits = cur;
  4325. ggml_build_forward_expand(gf, cur);
  4326. }
  4327. };
  4328. struct llm_build_bert : public llm_graph_context {
  4329. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4330. const int64_t n_embd_head = hparams.n_embd_head_v;
  4331. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4332. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4333. ggml_tensor * cur;
  4334. ggml_tensor * inpL;
  4335. ggml_tensor * inp_pos = nullptr;
  4336. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4337. inp_pos = build_inp_pos();
  4338. }
  4339. // construct input embeddings (token, type, position)
  4340. inpL = build_inp_embd(model.tok_embd);
  4341. // token types are hardcoded to zero ("Sentence A")
  4342. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4343. inpL = ggml_add(ctx0, inpL, type_row0);
  4344. if (model.arch == LLM_ARCH_BERT) {
  4345. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4346. }
  4347. cb(inpL, "inp_embd", -1);
  4348. // embed layer norm
  4349. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4350. cb(inpL, "inp_norm", -1);
  4351. auto * inp_attn = build_attn_inp_no_cache();
  4352. // iterate layers
  4353. for (int il = 0; il < n_layer; ++il) {
  4354. ggml_tensor * cur = inpL;
  4355. ggml_tensor * Qcur;
  4356. ggml_tensor * Kcur;
  4357. ggml_tensor * Vcur;
  4358. // self-attention
  4359. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4360. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4361. if (model.layers[il].attn_q_norm) {
  4362. Qcur = build_norm(Qcur,
  4363. model.layers[il].attn_q_norm,
  4364. model.layers[il].attn_q_norm_b,
  4365. LLM_NORM, il);
  4366. }
  4367. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4368. if (model.layers[il].attn_k_norm) {
  4369. Kcur = build_norm(Kcur,
  4370. model.layers[il].attn_k_norm,
  4371. model.layers[il].attn_k_norm_b,
  4372. LLM_NORM, il);
  4373. }
  4374. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4375. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4376. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4377. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4378. } else {
  4379. // compute Q and K and RoPE them
  4380. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4381. cb(cur, "wqkv", il);
  4382. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4383. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4384. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4385. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4386. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4387. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4388. Qcur = ggml_rope_ext(
  4389. ctx0, Qcur, inp_pos, nullptr,
  4390. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4391. ext_factor, attn_factor, beta_fast, beta_slow
  4392. );
  4393. Kcur = ggml_rope_ext(
  4394. ctx0, Kcur, inp_pos, nullptr,
  4395. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4396. ext_factor, attn_factor, beta_fast, beta_slow
  4397. );
  4398. }
  4399. cb(Qcur, "Qcur", il);
  4400. cb(Kcur, "Kcur", il);
  4401. cb(Vcur, "Vcur", il);
  4402. cur = build_attn(inp_attn, gf,
  4403. model.layers[il].wo, model.layers[il].bo,
  4404. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4405. cb(cur, "kqv_out", il);
  4406. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4407. // skip computing output for unused tokens
  4408. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4409. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4410. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4411. }
  4412. // re-add the layer input
  4413. cur = ggml_add(ctx0, cur, inpL);
  4414. // attention layer norm
  4415. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4416. if (model.layers[il].attn_norm_2 != nullptr) {
  4417. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4418. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4419. }
  4420. ggml_tensor * ffn_inp = cur;
  4421. cb(ffn_inp, "ffn_inp", il);
  4422. // feed-forward network
  4423. if (model.arch == LLM_ARCH_BERT) {
  4424. cur = build_ffn(cur,
  4425. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4426. NULL, NULL, NULL,
  4427. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4428. NULL,
  4429. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4430. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4431. cur = build_ffn(cur,
  4432. model.layers[il].ffn_up, NULL, NULL,
  4433. model.layers[il].ffn_gate, NULL, NULL,
  4434. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4435. NULL,
  4436. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4437. } else {
  4438. cur = build_ffn(cur,
  4439. model.layers[il].ffn_up, NULL, NULL,
  4440. model.layers[il].ffn_gate, NULL, NULL,
  4441. model.layers[il].ffn_down, NULL, NULL,
  4442. NULL,
  4443. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4444. }
  4445. cb(cur, "ffn_out", il);
  4446. // attentions bypass the intermediate layer
  4447. cur = ggml_add(ctx0, cur, ffn_inp);
  4448. // output layer norm
  4449. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4450. // input for next layer
  4451. inpL = cur;
  4452. }
  4453. cur = inpL;
  4454. cb(cur, "result_embd", -1);
  4455. res->t_embd = cur;
  4456. ggml_build_forward_expand(gf, cur);
  4457. }
  4458. };
  4459. struct llm_build_bloom : public llm_graph_context {
  4460. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4461. const int64_t n_embd_head = hparams.n_embd_head_v;
  4462. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4463. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4464. ggml_tensor * cur;
  4465. ggml_tensor * inpL;
  4466. inpL = build_inp_embd(model.tok_embd);
  4467. auto * inp_attn = build_attn_inp_kv_unified();
  4468. inpL = build_norm(inpL,
  4469. model.tok_norm,
  4470. model.tok_norm_b,
  4471. LLM_NORM, -1);
  4472. cb(inpL, "inp_norm", -1);
  4473. for (int il = 0; il < n_layer; ++il) {
  4474. cur = build_norm(inpL,
  4475. model.layers[il].attn_norm,
  4476. model.layers[il].attn_norm_b,
  4477. LLM_NORM, il);
  4478. cb(cur, "attn_norm", il);
  4479. // self-attention
  4480. {
  4481. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4482. cb(cur, "wqkv", il);
  4483. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4484. cb(cur, "bqkv", il);
  4485. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4486. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4487. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4488. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4489. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4490. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4491. cb(Qcur, "Qcur", il);
  4492. cb(Kcur, "Kcur", il);
  4493. cb(Vcur, "Vcur", il);
  4494. cur = build_attn(inp_attn, gf,
  4495. model.layers[il].wo, model.layers[il].bo,
  4496. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4497. }
  4498. if (il == n_layer - 1) {
  4499. // skip computing output for unused tokens
  4500. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4501. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4502. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4503. }
  4504. // Add the input
  4505. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4506. cb(ffn_inp, "ffn_inp", il);
  4507. // FF
  4508. {
  4509. cur = build_norm(ffn_inp,
  4510. model.layers[il].ffn_norm,
  4511. model.layers[il].ffn_norm_b,
  4512. LLM_NORM, il);
  4513. cb(cur, "ffn_norm", il);
  4514. cur = build_ffn(cur,
  4515. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4516. NULL, NULL, NULL,
  4517. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4518. NULL,
  4519. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4520. cb(cur, "ffn_out", il);
  4521. }
  4522. cur = ggml_add(ctx0, cur, ffn_inp);
  4523. cur = build_cvec(cur, il);
  4524. cb(cur, "l_out", il);
  4525. // input for next layer
  4526. inpL = cur;
  4527. }
  4528. cur = build_norm(inpL,
  4529. model.output_norm,
  4530. model.output_norm_b,
  4531. LLM_NORM, -1);
  4532. cb(cur, "result_norm", -1);
  4533. res->t_embd = cur;
  4534. cur = build_lora_mm(model.output, cur);
  4535. cb(cur, "result_output", -1);
  4536. res->t_logits = cur;
  4537. ggml_build_forward_expand(gf, cur);
  4538. }
  4539. };
  4540. struct llm_build_mpt : public llm_graph_context {
  4541. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4542. const int64_t n_embd_head = hparams.n_embd_head_v;
  4543. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4544. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4545. ggml_tensor * cur;
  4546. ggml_tensor * pos;
  4547. ggml_tensor * inpL;
  4548. inpL = build_inp_embd(model.tok_embd);
  4549. auto * inp_attn = build_attn_inp_kv_unified();
  4550. if (model.pos_embd) {
  4551. // inp_pos - contains the positions
  4552. ggml_tensor * inp_pos = build_inp_pos();
  4553. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4554. cb(pos, "pos_embd", -1);
  4555. inpL = ggml_add(ctx0, inpL, pos);
  4556. cb(inpL, "inpL", -1);
  4557. }
  4558. for (int il = 0; il < n_layer; ++il) {
  4559. ggml_tensor * attn_norm;
  4560. attn_norm = build_norm(inpL,
  4561. model.layers[il].attn_norm,
  4562. model.layers[il].attn_norm_b,
  4563. LLM_NORM, il);
  4564. cb(attn_norm, "attn_norm", il);
  4565. // self-attention
  4566. {
  4567. cur = attn_norm;
  4568. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4569. cb(cur, "wqkv", il);
  4570. if (model.layers[il].bqkv){
  4571. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4572. cb(cur, "bqkv", il);
  4573. }
  4574. if (hparams.f_clamp_kqv > 0.0f) {
  4575. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4576. cb(cur, "wqkv_clamped", il);
  4577. }
  4578. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4579. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4580. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4581. cb(Qcur, "Qcur", il);
  4582. cb(Kcur, "Kcur", il);
  4583. cb(Vcur, "Vcur", il);
  4584. // Q/K Layernorm
  4585. if (model.layers[il].attn_q_norm) {
  4586. Qcur = build_norm(Qcur,
  4587. model.layers[il].attn_q_norm,
  4588. model.layers[il].attn_q_norm_b,
  4589. LLM_NORM, il);
  4590. cb(Qcur, "Qcur", il);
  4591. Kcur = build_norm(Kcur,
  4592. model.layers[il].attn_k_norm,
  4593. model.layers[il].attn_k_norm_b,
  4594. LLM_NORM, il);
  4595. cb(Kcur, "Kcur", il);
  4596. }
  4597. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4598. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4599. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4600. cb(Qcur, "Qcur", il);
  4601. cb(Kcur, "Kcur", il);
  4602. cb(Vcur, "Vcur", il);
  4603. cur = build_attn(inp_attn, gf,
  4604. model.layers[il].wo, model.layers[il].bo,
  4605. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4606. }
  4607. if (il == n_layer - 1) {
  4608. // skip computing output for unused tokens
  4609. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4610. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4611. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4612. }
  4613. // Add the input
  4614. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4615. cb(ffn_inp, "ffn_inp", il);
  4616. // feed forward
  4617. {
  4618. cur = build_norm(ffn_inp,
  4619. model.layers[il].ffn_norm,
  4620. model.layers[il].ffn_norm_b,
  4621. LLM_NORM, il);
  4622. cb(cur, "ffn_norm", il);
  4623. cur = build_ffn(cur,
  4624. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4625. NULL, NULL, NULL,
  4626. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4627. model.layers[il].ffn_act,
  4628. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4629. cb(cur, "ffn_out", il);
  4630. }
  4631. cur = ggml_add(ctx0, cur, ffn_inp);
  4632. cur = build_cvec(cur, il);
  4633. cb(cur, "l_out", il);
  4634. // input for next layer
  4635. inpL = cur;
  4636. }
  4637. cur = inpL;
  4638. cur = build_norm(cur,
  4639. model.output_norm,
  4640. model.output_norm_b,
  4641. LLM_NORM, -1);
  4642. cb(cur, "result_norm", -1);
  4643. res->t_embd = cur;
  4644. cur = build_lora_mm(model.output, cur);
  4645. cb(cur, "result_output", -1);
  4646. res->t_logits = cur;
  4647. ggml_build_forward_expand(gf, cur);
  4648. }
  4649. };
  4650. struct llm_build_stablelm : public llm_graph_context {
  4651. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4652. const int64_t n_embd_head = hparams.n_embd_head_v;
  4653. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4654. ggml_tensor * cur;
  4655. ggml_tensor * inpL;
  4656. inpL = build_inp_embd(model.tok_embd);
  4657. // inp_pos - contains the positions
  4658. ggml_tensor * inp_pos = build_inp_pos();
  4659. auto * inp_attn = build_attn_inp_kv_unified();
  4660. for (int il = 0; il < n_layer; ++il) {
  4661. // norm
  4662. cur = build_norm(inpL,
  4663. model.layers[il].attn_norm,
  4664. model.layers[il].attn_norm_b,
  4665. LLM_NORM, il);
  4666. cb(cur, "attn_norm", il);
  4667. ggml_tensor * inpSA = cur;
  4668. // self-attention
  4669. {
  4670. // compute Q and K and RoPE them
  4671. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4672. cb(Qcur, "Qcur", il);
  4673. if (model.layers[il].bq) {
  4674. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4675. cb(Qcur, "Qcur", il);
  4676. }
  4677. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4678. cb(Kcur, "Kcur", il);
  4679. if (model.layers[il].bk) {
  4680. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4681. cb(Kcur, "Kcur", il);
  4682. }
  4683. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4684. cb(Vcur, "Vcur", il);
  4685. if (model.layers[il].bv) {
  4686. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4687. cb(Vcur, "Vcur", il);
  4688. }
  4689. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4690. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4691. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4692. if (model.layers[il].attn_q_norm) {
  4693. Qcur = build_norm(Qcur,
  4694. model.layers[il].attn_q_norm,
  4695. NULL,
  4696. LLM_NORM, il);
  4697. cb(Qcur, "Qcur", il);
  4698. }
  4699. if (model.layers[il].attn_k_norm) {
  4700. Kcur = build_norm(Kcur,
  4701. model.layers[il].attn_k_norm,
  4702. NULL,
  4703. LLM_NORM, il);
  4704. cb(Kcur, "Kcur", il);
  4705. }
  4706. Qcur = ggml_rope_ext(
  4707. ctx0, Qcur, inp_pos, nullptr,
  4708. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4709. ext_factor, attn_factor, beta_fast, beta_slow
  4710. );
  4711. Kcur = ggml_rope_ext(
  4712. ctx0, Kcur, inp_pos, nullptr,
  4713. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4714. ext_factor, attn_factor, beta_fast, beta_slow
  4715. );
  4716. cb(Qcur, "Qcur", il);
  4717. cb(Kcur, "Kcur", il);
  4718. cb(Vcur, "Vcur", il);
  4719. cur = build_attn(inp_attn, gf,
  4720. model.layers[il].wo, NULL,
  4721. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4722. }
  4723. if (il == n_layer - 1) {
  4724. // skip computing output for unused tokens
  4725. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4726. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4727. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4728. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4729. }
  4730. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4731. cb(ffn_inp, "ffn_inp", il);
  4732. // feed-forward network
  4733. {
  4734. if (model.layers[il].ffn_norm) {
  4735. cur = build_norm(ffn_inp,
  4736. model.layers[il].ffn_norm,
  4737. model.layers[il].ffn_norm_b,
  4738. LLM_NORM, il);
  4739. cb(cur, "ffn_norm", il);
  4740. } else {
  4741. // parallel residual
  4742. cur = inpSA;
  4743. }
  4744. cur = build_ffn(cur,
  4745. model.layers[il].ffn_up, NULL, NULL,
  4746. model.layers[il].ffn_gate, NULL, NULL,
  4747. model.layers[il].ffn_down, NULL, NULL,
  4748. NULL,
  4749. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4750. cb(cur, "ffn_out", il);
  4751. }
  4752. cur = ggml_add(ctx0, cur, ffn_inp);
  4753. cur = build_cvec(cur, il);
  4754. cb(cur, "l_out", il);
  4755. // input for next layer
  4756. inpL = cur;
  4757. }
  4758. cur = inpL;
  4759. cur = build_norm(cur,
  4760. model.output_norm,
  4761. model.output_norm_b,
  4762. LLM_NORM, -1);
  4763. cb(cur, "result_norm", -1);
  4764. res->t_embd = cur;
  4765. // lm_head
  4766. cur = build_lora_mm(model.output, cur);
  4767. cb(cur, "result_output", -1);
  4768. res->t_logits = cur;
  4769. ggml_build_forward_expand(gf, cur);
  4770. }
  4771. };
  4772. struct llm_build_qwen : public llm_graph_context {
  4773. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4774. const int64_t n_embd_head = hparams.n_embd_head_v;
  4775. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4776. ggml_tensor * cur;
  4777. ggml_tensor * inpL;
  4778. inpL = build_inp_embd(model.tok_embd);
  4779. // inp_pos - contains the positions
  4780. ggml_tensor * inp_pos = build_inp_pos();
  4781. auto * inp_attn = build_attn_inp_kv_unified();
  4782. for (int il = 0; il < n_layer; ++il) {
  4783. ggml_tensor * inpSA = inpL;
  4784. cur = build_norm(inpL,
  4785. model.layers[il].attn_norm, NULL,
  4786. LLM_NORM_RMS, il);
  4787. cb(cur, "attn_norm", il);
  4788. // self-attention
  4789. {
  4790. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4791. cb(cur, "wqkv", il);
  4792. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4793. cb(cur, "bqkv", il);
  4794. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4795. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4796. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  4797. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4798. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4799. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4800. // using mode = 2 for neox mode
  4801. Qcur = ggml_rope_ext(
  4802. ctx0, Qcur, inp_pos, nullptr,
  4803. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4804. ext_factor, attn_factor, beta_fast, beta_slow
  4805. );
  4806. Kcur = ggml_rope_ext(
  4807. ctx0, Kcur, inp_pos, nullptr,
  4808. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4809. ext_factor, attn_factor, beta_fast, beta_slow
  4810. );
  4811. cb(Qcur, "Qcur", il);
  4812. cb(Kcur, "Kcur", il);
  4813. cb(Vcur, "Vcur", il);
  4814. cur = build_attn(inp_attn, gf,
  4815. model.layers[il].wo, NULL,
  4816. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4817. }
  4818. if (il == n_layer - 1) {
  4819. // skip computing output for unused tokens
  4820. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4821. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4822. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4823. }
  4824. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4825. cb(ffn_inp, "ffn_inp", il);
  4826. // feed-forward forward
  4827. {
  4828. cur = build_norm(ffn_inp,
  4829. model.layers[il].ffn_norm, NULL,
  4830. LLM_NORM_RMS, il);
  4831. cb(cur, "ffn_norm", il);
  4832. cur = build_ffn(cur,
  4833. model.layers[il].ffn_up, NULL, NULL,
  4834. model.layers[il].ffn_gate, NULL, NULL,
  4835. model.layers[il].ffn_down, NULL, NULL,
  4836. NULL,
  4837. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4838. cb(cur, "ffn_out", il);
  4839. }
  4840. cur = ggml_add(ctx0, cur, ffn_inp);
  4841. cur = build_cvec(cur, il);
  4842. cb(cur, "l_out", il);
  4843. // input for next layer
  4844. inpL = cur;
  4845. }
  4846. cur = inpL;
  4847. cur = build_norm(cur,
  4848. model.output_norm, NULL,
  4849. LLM_NORM_RMS, -1);
  4850. cb(cur, "result_norm", -1);
  4851. res->t_embd = cur;
  4852. // lm_head
  4853. cur = build_lora_mm(model.output, cur);
  4854. cb(cur, "result_output", -1);
  4855. res->t_logits = cur;
  4856. ggml_build_forward_expand(gf, cur);
  4857. }
  4858. };
  4859. struct llm_build_qwen2 : public llm_graph_context {
  4860. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4861. const int64_t n_embd_head = hparams.n_embd_head_v;
  4862. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4863. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4864. ggml_tensor * cur;
  4865. ggml_tensor * inpL;
  4866. inpL = build_inp_embd(model.tok_embd);
  4867. // inp_pos - contains the positions
  4868. ggml_tensor * inp_pos = build_inp_pos();
  4869. auto * inp_attn = build_attn_inp_kv_unified();
  4870. for (int il = 0; il < n_layer; ++il) {
  4871. ggml_tensor * inpSA = inpL;
  4872. // norm
  4873. cur = build_norm(inpL,
  4874. model.layers[il].attn_norm, NULL,
  4875. LLM_NORM_RMS, il);
  4876. cb(cur, "attn_norm", il);
  4877. // self-attention
  4878. {
  4879. // compute Q and K and RoPE them
  4880. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4881. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4882. cb(Qcur, "Qcur", il);
  4883. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4884. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4885. cb(Kcur, "Kcur", il);
  4886. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4887. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4888. cb(Vcur, "Vcur", il);
  4889. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4890. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4891. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4892. Qcur = ggml_rope_ext(
  4893. ctx0, Qcur, inp_pos, nullptr,
  4894. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4895. ext_factor, attn_factor, beta_fast, beta_slow
  4896. );
  4897. Kcur = ggml_rope_ext(
  4898. ctx0, Kcur, inp_pos, nullptr,
  4899. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4900. ext_factor, attn_factor, beta_fast, beta_slow
  4901. );
  4902. cb(Qcur, "Qcur", il);
  4903. cb(Kcur, "Kcur", il);
  4904. cb(Vcur, "Vcur", il);
  4905. cur = build_attn(inp_attn, gf,
  4906. model.layers[il].wo, model.layers[il].bo,
  4907. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4908. }
  4909. if (il == n_layer - 1) {
  4910. // skip computing output for unused tokens
  4911. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4912. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4913. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4914. }
  4915. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4916. cb(ffn_inp, "ffn_inp", il);
  4917. // feed-forward network
  4918. cur = build_norm(ffn_inp,
  4919. model.layers[il].ffn_norm, NULL,
  4920. LLM_NORM_RMS, il);
  4921. cb(cur, "ffn_norm", il);
  4922. cur = build_ffn(cur,
  4923. model.layers[il].ffn_up, NULL, NULL,
  4924. model.layers[il].ffn_gate, NULL, NULL,
  4925. model.layers[il].ffn_down, NULL, NULL,
  4926. NULL,
  4927. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4928. cb(cur, "ffn_out", il);
  4929. cur = ggml_add(ctx0, cur, ffn_inp);
  4930. cur = build_cvec(cur, il);
  4931. cb(cur, "l_out", il);
  4932. // input for next layer
  4933. inpL = cur;
  4934. }
  4935. cur = inpL;
  4936. cur = build_norm(cur,
  4937. model.output_norm, NULL,
  4938. LLM_NORM_RMS, -1);
  4939. cb(cur, "result_norm", -1);
  4940. res->t_embd = cur;
  4941. // lm_head
  4942. cur = build_lora_mm(model.output, cur);
  4943. cb(cur, "result_output", -1);
  4944. res->t_logits = cur;
  4945. ggml_build_forward_expand(gf, cur);
  4946. }
  4947. };
  4948. struct llm_build_qwen2vl : public llm_graph_context {
  4949. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4950. const int64_t n_embd_head = hparams.n_embd_head_v;
  4951. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4952. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4953. ggml_tensor * cur;
  4954. ggml_tensor * inpL;
  4955. inpL = build_inp_embd(model.tok_embd);
  4956. // inp_pos - contains the positions
  4957. ggml_tensor * inp_pos = build_inp_pos();
  4958. auto * inp_attn = build_attn_inp_kv_unified();
  4959. int sections[4];
  4960. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  4961. for (int il = 0; il < n_layer; ++il) {
  4962. ggml_tensor * inpSA = inpL;
  4963. // norm
  4964. cur = build_norm(inpL,
  4965. model.layers[il].attn_norm, NULL,
  4966. LLM_NORM_RMS, il);
  4967. cb(cur, "attn_norm", il);
  4968. // self-attention
  4969. {
  4970. // compute Q and K and RoPE them
  4971. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4972. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4973. cb(Qcur, "Qcur", il);
  4974. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4975. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4976. cb(Kcur, "Kcur", il);
  4977. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4978. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4979. cb(Vcur, "Vcur", il);
  4980. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4981. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4982. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4983. Qcur = ggml_rope_multi(
  4984. ctx0, Qcur, inp_pos, nullptr,
  4985. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  4986. ext_factor, attn_factor, beta_fast, beta_slow
  4987. );
  4988. Kcur = ggml_rope_multi(
  4989. ctx0, Kcur, inp_pos, nullptr,
  4990. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  4991. ext_factor, attn_factor, beta_fast, beta_slow
  4992. );
  4993. cb(Qcur, "Qcur", il);
  4994. cb(Kcur, "Kcur", il);
  4995. cb(Vcur, "Vcur", il);
  4996. cur = build_attn(inp_attn, gf,
  4997. model.layers[il].wo, model.layers[il].bo,
  4998. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4999. }
  5000. if (il == n_layer - 1) {
  5001. // skip computing output for unused tokens
  5002. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5003. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5004. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5005. }
  5006. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5007. cb(ffn_inp, "ffn_inp", il);
  5008. // feed-forward network
  5009. cur = build_norm(ffn_inp,
  5010. model.layers[il].ffn_norm, NULL,
  5011. LLM_NORM_RMS, il);
  5012. cb(cur, "ffn_norm", il);
  5013. cur = build_ffn(cur,
  5014. model.layers[il].ffn_up, NULL, NULL,
  5015. model.layers[il].ffn_gate, NULL, NULL,
  5016. model.layers[il].ffn_down, NULL, NULL,
  5017. NULL,
  5018. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5019. cb(cur, "ffn_out", il);
  5020. cur = ggml_add(ctx0, cur, ffn_inp);
  5021. cur = build_cvec(cur, il);
  5022. cb(cur, "l_out", il);
  5023. // input for next layer
  5024. inpL = cur;
  5025. }
  5026. cur = inpL;
  5027. cur = build_norm(cur,
  5028. model.output_norm, NULL,
  5029. LLM_NORM_RMS, -1);
  5030. cb(cur, "result_norm", -1);
  5031. res->t_embd = cur;
  5032. // lm_head
  5033. cur = build_lora_mm(model.output, cur);
  5034. cb(cur, "result_output", -1);
  5035. res->t_logits = cur;
  5036. ggml_build_forward_expand(gf, cur);
  5037. }
  5038. };
  5039. struct llm_build_qwen2moe : public llm_graph_context {
  5040. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5041. const int64_t n_embd_head = hparams.n_embd_head_v;
  5042. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5043. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5044. ggml_tensor * cur;
  5045. ggml_tensor * inpL;
  5046. inpL = build_inp_embd(model.tok_embd);
  5047. // inp_pos - contains the positions
  5048. ggml_tensor * inp_pos = build_inp_pos();
  5049. auto * inp_attn = build_attn_inp_kv_unified();
  5050. for (int il = 0; il < n_layer; ++il) {
  5051. ggml_tensor * inpSA = inpL;
  5052. // norm
  5053. cur = build_norm(inpL,
  5054. model.layers[il].attn_norm, NULL,
  5055. LLM_NORM_RMS, il);
  5056. cb(cur, "attn_norm", il);
  5057. // self_attention
  5058. {
  5059. // compute Q and K and RoPE them
  5060. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5061. cb(Qcur, "Qcur", il);
  5062. if (model.layers[il].bq) {
  5063. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5064. cb(Qcur, "Qcur", il);
  5065. }
  5066. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5067. cb(Kcur, "Kcur", il);
  5068. if (model.layers[il].bk) {
  5069. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5070. cb(Kcur, "Kcur", il);
  5071. }
  5072. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5073. cb(Vcur, "Vcur", il);
  5074. if (model.layers[il].bv) {
  5075. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5076. cb(Vcur, "Vcur", il);
  5077. }
  5078. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5079. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5080. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5081. Qcur = ggml_rope_ext(
  5082. ctx0, Qcur, inp_pos, nullptr,
  5083. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5084. ext_factor, attn_factor, beta_fast, beta_slow
  5085. );
  5086. Kcur = ggml_rope_ext(
  5087. ctx0, Kcur, inp_pos, nullptr,
  5088. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5089. ext_factor, attn_factor, beta_fast, beta_slow
  5090. );
  5091. cb(Qcur, "Qcur", il);
  5092. cb(Kcur, "Kcur", il);
  5093. cb(Vcur, "Vcur", il);
  5094. cur = build_attn(inp_attn, gf,
  5095. model.layers[il].wo, model.layers[il].bo,
  5096. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5097. }
  5098. if (il == n_layer - 1) {
  5099. // skip computing output for unused tokens
  5100. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5101. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5102. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5103. }
  5104. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5105. cb(ffn_inp, "ffn_inp", il);
  5106. // MoE branch
  5107. cur = build_norm(ffn_inp,
  5108. model.layers[il].ffn_norm, NULL,
  5109. LLM_NORM_RMS, il);
  5110. cb(cur, "ffn_norm", il);
  5111. ggml_tensor * moe_out =
  5112. build_moe_ffn(cur,
  5113. model.layers[il].ffn_gate_inp,
  5114. model.layers[il].ffn_up_exps,
  5115. model.layers[il].ffn_gate_exps,
  5116. model.layers[il].ffn_down_exps,
  5117. nullptr,
  5118. n_expert, n_expert_used,
  5119. LLM_FFN_SILU, false,
  5120. false, 0.0,
  5121. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5122. il);
  5123. cb(moe_out, "ffn_moe_out", il);
  5124. // FFN shared expert
  5125. {
  5126. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5127. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5128. // sigmoid
  5129. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5130. cb(cur_gate, "ffn_shexp_gate", il);
  5131. ggml_tensor * cur_ffn = build_ffn(cur,
  5132. model.layers[il].ffn_up_shexp, NULL, NULL,
  5133. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5134. model.layers[il].ffn_down_shexp, NULL, NULL,
  5135. NULL,
  5136. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5137. cb(cur_ffn, "ffn_shexp", il);
  5138. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5139. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5140. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5141. cb(moe_out, "ffn_out", il);
  5142. cur = moe_out;
  5143. }
  5144. cur = ggml_add(ctx0, cur, ffn_inp);
  5145. cur = build_cvec(cur, il);
  5146. cb(cur, "l_out", il);
  5147. // input for next layer
  5148. inpL = cur;
  5149. }
  5150. cur = inpL;
  5151. cur = build_norm(cur,
  5152. model.output_norm, NULL,
  5153. LLM_NORM_RMS, -1);
  5154. cb(cur, "result_norm", -1);
  5155. res->t_embd = cur;
  5156. // lm_head
  5157. cur = build_lora_mm(model.output, cur);
  5158. cb(cur, "result_output", -1);
  5159. res->t_logits = cur;
  5160. ggml_build_forward_expand(gf, cur);
  5161. }
  5162. };
  5163. struct llm_build_phi2 : public llm_graph_context {
  5164. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5165. const int64_t n_embd_head = hparams.n_embd_head_v;
  5166. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5167. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5168. ggml_tensor * cur;
  5169. ggml_tensor * attn_norm_output;
  5170. ggml_tensor * ffn_output;
  5171. ggml_tensor * inpL;
  5172. inpL = build_inp_embd(model.tok_embd);
  5173. // inp_pos - contains the positions
  5174. ggml_tensor * inp_pos = build_inp_pos();
  5175. auto * inp_attn = build_attn_inp_kv_unified();
  5176. for (int il = 0; il < n_layer; ++il) {
  5177. attn_norm_output = build_norm(inpL,
  5178. model.layers[il].attn_norm,
  5179. model.layers[il].attn_norm_b,
  5180. LLM_NORM, il);
  5181. cb(attn_norm_output, "attn_norm", il);
  5182. // self-attention
  5183. {
  5184. ggml_tensor * Qcur = nullptr;
  5185. ggml_tensor * Kcur = nullptr;
  5186. ggml_tensor * Vcur = nullptr;
  5187. if (model.layers[il].wqkv) {
  5188. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5189. cb(cur, "wqkv", il);
  5190. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5191. cb(cur, "bqkv", il);
  5192. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5193. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5194. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5195. } else {
  5196. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5197. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5198. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5199. }
  5200. cb(Qcur, "Qcur", il);
  5201. cb(Kcur, "Kcur", il);
  5202. cb(Vcur, "Vcur", il);
  5203. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5204. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5205. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5206. Qcur = ggml_rope_ext(
  5207. ctx0, Qcur, inp_pos, nullptr,
  5208. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5209. ext_factor, attn_factor, beta_fast, beta_slow
  5210. );
  5211. Kcur = ggml_rope_ext(
  5212. ctx0, Kcur, inp_pos, nullptr,
  5213. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5214. ext_factor, attn_factor, beta_fast, beta_slow
  5215. );
  5216. cb(Qcur, "Qcur", il);
  5217. cb(Kcur, "Kcur", il);
  5218. cb(Vcur, "Vcur", il);
  5219. // with phi2, we scale the Q to avoid precision issues
  5220. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5221. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5222. cur = build_attn(inp_attn, gf,
  5223. model.layers[il].wo, model.layers[il].bo,
  5224. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  5225. }
  5226. if (il == n_layer - 1) {
  5227. // skip computing output for unused tokens
  5228. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5229. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5230. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5231. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5232. }
  5233. // FF
  5234. {
  5235. ffn_output = build_ffn(attn_norm_output,
  5236. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5237. NULL, NULL, NULL,
  5238. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5239. NULL,
  5240. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5241. cb(ffn_output, "ffn_out", il);
  5242. }
  5243. cur = ggml_add(ctx0, cur, ffn_output);
  5244. cur = ggml_add(ctx0, cur, inpL);
  5245. cur = build_cvec(cur, il);
  5246. cb(cur, "l_out", il);
  5247. // input for next layer
  5248. inpL = cur;
  5249. }
  5250. cur = build_norm(inpL,
  5251. model.output_norm,
  5252. model.output_norm_b,
  5253. LLM_NORM, -1);
  5254. cb(cur, "result_norm", -1);
  5255. res->t_embd = cur;
  5256. cur = build_lora_mm(model.output, cur);
  5257. cb(cur, "result_output_no_bias", -1);
  5258. cur = ggml_add(ctx0, cur, model.output_b);
  5259. cb(cur, "result_output", -1);
  5260. res->t_logits = cur;
  5261. ggml_build_forward_expand(gf, cur);
  5262. }
  5263. };
  5264. struct llm_build_phi3 : public llm_graph_context {
  5265. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5266. const int64_t n_embd_head = hparams.n_embd_head_v;
  5267. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5268. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5269. ggml_tensor * cur;
  5270. ggml_tensor * inpL;
  5271. inpL = build_inp_embd(model.tok_embd);
  5272. // inp_pos - contains the positions
  5273. ggml_tensor * inp_pos = build_inp_pos();
  5274. auto * inp_attn = build_attn_inp_kv_unified();
  5275. for (int il = 0; il < n_layer; ++il) {
  5276. auto * residual = inpL;
  5277. // self-attention
  5278. {
  5279. // rope freq factors for 128k context
  5280. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5281. ggml_tensor* attn_norm_output = build_norm(inpL,
  5282. model.layers[il].attn_norm,
  5283. model.layers[il].attn_norm_b,
  5284. LLM_NORM_RMS, il);
  5285. cb(attn_norm_output, "attn_norm", il);
  5286. ggml_tensor * Qcur = nullptr;
  5287. ggml_tensor * Kcur = nullptr;
  5288. ggml_tensor * Vcur = nullptr;
  5289. if (model.layers[il].wqkv) {
  5290. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5291. cb(cur, "wqkv", il);
  5292. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5293. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5294. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5295. } else {
  5296. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5297. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5298. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5299. }
  5300. cb(Qcur, "Qcur", il);
  5301. cb(Kcur, "Kcur", il);
  5302. cb(Vcur, "Vcur", il);
  5303. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5304. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5305. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5306. Qcur = ggml_rope_ext(
  5307. ctx0, Qcur, inp_pos, rope_factors,
  5308. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5309. ext_factor, attn_factor, beta_fast, beta_slow
  5310. );
  5311. Kcur = ggml_rope_ext(
  5312. ctx0, Kcur, inp_pos, rope_factors,
  5313. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5314. ext_factor, attn_factor, beta_fast, beta_slow
  5315. );
  5316. cb(Qcur, "Qcur", il);
  5317. cb(Kcur, "Kcur", il);
  5318. cb(Vcur, "Vcur", il);
  5319. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5320. cb(Qcur, "Qcur", il);
  5321. cur = build_attn(inp_attn, gf,
  5322. model.layers[il].wo, model.layers[il].bo,
  5323. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  5324. }
  5325. if (il == n_layer - 1) {
  5326. // skip computing output for unused tokens
  5327. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5328. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5329. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5330. }
  5331. cur = ggml_add(ctx0, cur, residual);
  5332. residual = cur;
  5333. cur = build_norm(cur,
  5334. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5335. LLM_NORM_RMS, il);
  5336. cb(cur, "ffn_norm", il);
  5337. // feed-forward network
  5338. if (model.layers[il].ffn_gate_inp == nullptr) {
  5339. cur = build_ffn(cur,
  5340. model.layers[il].ffn_up, NULL, NULL,
  5341. NULL, NULL, NULL,
  5342. model.layers[il].ffn_down, NULL, NULL,
  5343. NULL,
  5344. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5345. cb(cur, "ffn_out", il);
  5346. } else {
  5347. // MoE branch
  5348. cur = build_moe_ffn(cur,
  5349. model.layers[il].ffn_gate_inp,
  5350. model.layers[il].ffn_up_exps,
  5351. model.layers[il].ffn_gate_exps,
  5352. model.layers[il].ffn_down_exps,
  5353. nullptr,
  5354. n_expert, n_expert_used,
  5355. LLM_FFN_SILU, true,
  5356. false, 0.0,
  5357. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5358. il);
  5359. cb(cur, "ffn_moe_out", il);
  5360. }
  5361. cur = ggml_add(ctx0, residual, cur);
  5362. cur = build_cvec(cur, il);
  5363. cb(cur, "l_out", il);
  5364. // input for next layer
  5365. inpL = cur;
  5366. }
  5367. cur = build_norm(inpL,
  5368. model.output_norm,
  5369. model.output_norm_b,
  5370. LLM_NORM_RMS, -1);
  5371. cb(cur, "result_norm", -1);
  5372. res->t_embd = cur;
  5373. cur = build_lora_mm(model.output, cur);
  5374. if (model.output_b != nullptr) {
  5375. cb(cur, "result_output_no_bias", -1);
  5376. cur = ggml_add(ctx0, cur, model.output_b);
  5377. }
  5378. cb(cur, "result_output", -1);
  5379. res->t_logits = cur;
  5380. ggml_build_forward_expand(gf, cur);
  5381. }
  5382. };
  5383. struct llm_build_plamo : public llm_graph_context {
  5384. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5385. const int64_t n_embd_head = hparams.n_embd_head_v;
  5386. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5387. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5388. ggml_tensor * cur;
  5389. ggml_tensor * inpL;
  5390. inpL = build_inp_embd(model.tok_embd);
  5391. // inp_pos - contains the positions
  5392. ggml_tensor * inp_pos = build_inp_pos();
  5393. auto * inp_attn = build_attn_inp_kv_unified();
  5394. for (int il = 0; il < n_layer; ++il) {
  5395. // norm
  5396. cur = build_norm(inpL,
  5397. model.layers[il].attn_norm, NULL,
  5398. LLM_NORM_RMS, il);
  5399. cb(cur, "attn_norm", il);
  5400. ggml_tensor * attention_norm = cur;
  5401. // self-attention
  5402. {
  5403. // compute Q and K and RoPE them
  5404. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5405. cb(Qcur, "Qcur", il);
  5406. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5407. cb(Kcur, "Kcur", il);
  5408. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5409. cb(Vcur, "Vcur", il);
  5410. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5411. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5412. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5413. Qcur = ggml_rope_ext(
  5414. ctx0, Qcur, inp_pos, nullptr,
  5415. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5416. ext_factor, attn_factor, beta_fast, beta_slow
  5417. );
  5418. Kcur = ggml_rope_ext(
  5419. ctx0, Kcur, inp_pos, nullptr,
  5420. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5421. ext_factor, attn_factor, beta_fast, beta_slow
  5422. );
  5423. cb(Qcur, "Qcur", il);
  5424. cb(Kcur, "Kcur", il);
  5425. cb(Vcur, "Vcur", il);
  5426. cur = build_attn(inp_attn, gf,
  5427. model.layers[il].wo, NULL,
  5428. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5429. }
  5430. ggml_tensor * sa_out = cur;
  5431. cur = attention_norm;
  5432. if (il == n_layer - 1) {
  5433. // skip computing output for unused tokens
  5434. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5435. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5436. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  5437. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5438. }
  5439. // feed-forward network
  5440. {
  5441. cur = build_ffn(cur,
  5442. model.layers[il].ffn_up, NULL, NULL,
  5443. model.layers[il].ffn_gate, NULL, NULL,
  5444. model.layers[il].ffn_down, NULL, NULL,
  5445. NULL,
  5446. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5447. cb(cur, "ffn_out", il);
  5448. }
  5449. cur = ggml_add(ctx0, cur, sa_out);
  5450. cur = ggml_add(ctx0, cur, inpL);
  5451. cur = build_cvec(cur, il);
  5452. cb(cur, "l_out", il);
  5453. // input for next layer
  5454. inpL = cur;
  5455. }
  5456. cur = inpL;
  5457. cur = build_norm(cur,
  5458. model.output_norm, NULL,
  5459. LLM_NORM_RMS, -1);
  5460. cb(cur, "result_norm", -1);
  5461. res->t_embd = cur;
  5462. // lm_head
  5463. cur = build_lora_mm(model.output, cur);
  5464. cb(cur, "result_output", -1);
  5465. res->t_logits = cur;
  5466. ggml_build_forward_expand(gf, cur);
  5467. }
  5468. };
  5469. struct llm_build_gpt2 : public llm_graph_context {
  5470. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5471. const int64_t n_embd_head = hparams.n_embd_head_v;
  5472. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5473. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5474. ggml_tensor * cur;
  5475. ggml_tensor * pos;
  5476. ggml_tensor * inpL;
  5477. inpL = build_inp_embd(model.tok_embd);
  5478. // inp_pos - contains the positions
  5479. ggml_tensor * inp_pos = build_inp_pos();
  5480. auto * inp_attn = build_attn_inp_kv_unified();
  5481. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5482. cb(pos, "pos_embd", -1);
  5483. inpL = ggml_add(ctx0, inpL, pos);
  5484. cb(inpL, "inpL", -1);
  5485. for (int il = 0; il < n_layer; ++il) {
  5486. cur = build_norm(inpL,
  5487. model.layers[il].attn_norm,
  5488. model.layers[il].attn_norm_b,
  5489. LLM_NORM, il);
  5490. cb(cur, "attn_norm", il);
  5491. // self-attention
  5492. {
  5493. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5494. cb(cur, "wqkv", il);
  5495. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5496. cb(cur, "bqkv", il);
  5497. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5498. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5499. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5500. cb(Qcur, "Qcur", il);
  5501. cb(Kcur, "Kcur", il);
  5502. cb(Vcur, "Vcur", il);
  5503. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5504. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5505. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5506. cur = build_attn(inp_attn, gf,
  5507. model.layers[il].wo, model.layers[il].bo,
  5508. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5509. }
  5510. if (il == n_layer - 1) {
  5511. // skip computing output for unused tokens
  5512. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5513. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5514. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5515. }
  5516. // add the input
  5517. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5518. cb(ffn_inp, "ffn_inp", il);
  5519. // FF
  5520. {
  5521. cur = build_norm(ffn_inp,
  5522. model.layers[il].ffn_norm,
  5523. model.layers[il].ffn_norm_b,
  5524. LLM_NORM, il);
  5525. cb(cur, "ffn_norm", il);
  5526. cur = build_ffn(cur,
  5527. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5528. NULL, NULL, NULL,
  5529. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5530. NULL,
  5531. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5532. cb(cur, "ffn_out", il);
  5533. }
  5534. cur = ggml_add(ctx0, cur, ffn_inp);
  5535. cur = build_cvec(cur, il);
  5536. cb(cur, "l_out", il);
  5537. // input for next layer
  5538. inpL = cur;
  5539. }
  5540. cur = build_norm(inpL,
  5541. model.output_norm,
  5542. model.output_norm_b,
  5543. LLM_NORM, -1);
  5544. cb(cur, "result_norm", -1);
  5545. res->t_embd = cur;
  5546. cur = build_lora_mm(model.output, cur);
  5547. cb(cur, "result_output", -1);
  5548. res->t_logits = cur;
  5549. ggml_build_forward_expand(gf, cur);
  5550. }
  5551. };
  5552. struct llm_build_codeshell : public llm_graph_context {
  5553. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5554. const int64_t n_embd_head = hparams.n_embd_head_v;
  5555. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5556. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5557. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5558. ggml_tensor * cur;
  5559. ggml_tensor * inpL;
  5560. inpL = build_inp_embd(model.tok_embd);
  5561. // inp_pos - contains the positions
  5562. ggml_tensor * inp_pos = build_inp_pos();
  5563. auto * inp_attn = build_attn_inp_kv_unified();
  5564. for (int il = 0; il < n_layer; ++il) {
  5565. cur = build_norm(inpL,
  5566. model.layers[il].attn_norm,
  5567. model.layers[il].attn_norm_b,
  5568. LLM_NORM, il);
  5569. cb(cur, "attn_norm", il);
  5570. // self-attention
  5571. {
  5572. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5573. cb(cur, "wqkv", il);
  5574. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5575. cb(cur, "bqkv", il);
  5576. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5577. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5578. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5579. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5580. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5581. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5582. Qcur = ggml_rope_ext(
  5583. ctx0, Qcur, inp_pos, nullptr,
  5584. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5585. ext_factor, attn_factor, beta_fast, beta_slow
  5586. );
  5587. Kcur = ggml_rope_ext(
  5588. ctx0, Kcur, inp_pos, nullptr,
  5589. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5590. ext_factor, attn_factor, beta_fast, beta_slow
  5591. );
  5592. cb(Qcur, "Qcur", il);
  5593. cb(Kcur, "Kcur", il);
  5594. cb(Vcur, "Vcur", il);
  5595. cur = build_attn(inp_attn, gf,
  5596. model.layers[il].wo, model.layers[il].bo,
  5597. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5598. }
  5599. if (il == n_layer - 1) {
  5600. // skip computing output for unused tokens
  5601. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5602. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5603. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5604. }
  5605. // add the input
  5606. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5607. cb(ffn_inp, "ffn_inp", il);
  5608. // FF
  5609. {
  5610. cur = build_norm(ffn_inp,
  5611. model.layers[il].ffn_norm,
  5612. model.layers[il].ffn_norm_b,
  5613. LLM_NORM, il);
  5614. cb(cur, "ffn_norm", il);
  5615. cur = build_ffn(cur,
  5616. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5617. NULL, NULL, NULL,
  5618. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5619. NULL,
  5620. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5621. cb(cur, "ffn_out", il);
  5622. }
  5623. cur = ggml_add(ctx0, cur, ffn_inp);
  5624. cur = build_cvec(cur, il);
  5625. cb(cur, "l_out", il);
  5626. // input for next layer
  5627. inpL = cur;
  5628. }
  5629. cur = build_norm(inpL,
  5630. model.output_norm,
  5631. model.output_norm_b,
  5632. LLM_NORM, -1);
  5633. cb(cur, "result_norm", -1);
  5634. res->t_embd = cur;
  5635. cur = build_lora_mm(model.output, cur);
  5636. cb(cur, "result_output", -1);
  5637. res->t_logits = cur;
  5638. ggml_build_forward_expand(gf, cur);
  5639. }
  5640. };
  5641. struct llm_build_orion : public llm_graph_context {
  5642. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5643. const int64_t n_embd_head = hparams.n_embd_head_v;
  5644. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5645. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5646. ggml_tensor * cur;
  5647. ggml_tensor * inpL;
  5648. inpL = build_inp_embd(model.tok_embd);
  5649. // inp_pos - contains the positions
  5650. ggml_tensor * inp_pos = build_inp_pos();
  5651. auto * inp_attn = build_attn_inp_kv_unified();
  5652. for (int il = 0; il < n_layer; ++il) {
  5653. ggml_tensor * inpSA = inpL;
  5654. // norm
  5655. cur = build_norm(inpL,
  5656. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  5657. LLM_NORM, il);
  5658. cb(cur, "attn_norm", il);
  5659. // self-attention
  5660. {
  5661. // compute Q and K and RoPE them
  5662. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5663. cb(Qcur, "Qcur", il);
  5664. // if (model.layers[il].bq) {
  5665. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5666. // cb(Qcur, "Qcur", il);
  5667. // }
  5668. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5669. cb(Kcur, "Kcur", il);
  5670. // if (model.layers[il].bk) {
  5671. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5672. // cb(Kcur, "Kcur", il);
  5673. // }
  5674. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5675. cb(Vcur, "Vcur", il);
  5676. // if (model.layers[il].bv) {
  5677. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5678. // cb(Vcur, "Vcur", il);
  5679. // }
  5680. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5681. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5682. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5683. Qcur = ggml_rope_ext(
  5684. ctx0, Qcur, inp_pos, nullptr,
  5685. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5686. ext_factor, attn_factor, beta_fast, beta_slow
  5687. );
  5688. Kcur = ggml_rope_ext(
  5689. ctx0, Kcur, inp_pos, nullptr,
  5690. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5691. ext_factor, attn_factor, beta_fast, beta_slow
  5692. );
  5693. cb(Qcur, "Qcur", il);
  5694. cb(Kcur, "Kcur", il);
  5695. cb(Vcur, "Vcur", il);
  5696. cur = build_attn(inp_attn, gf,
  5697. model.layers[il].wo, NULL,
  5698. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5699. }
  5700. if (il == n_layer - 1) {
  5701. // skip computing output for unused tokens
  5702. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5703. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5704. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5705. }
  5706. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5707. cb(ffn_inp, "ffn_inp", il);
  5708. // feed-forward network
  5709. cur = build_norm(ffn_inp,
  5710. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5711. LLM_NORM, il);
  5712. cb(cur, "ffn_norm", il);
  5713. cur = build_ffn(cur,
  5714. model.layers[il].ffn_up, NULL, NULL,
  5715. model.layers[il].ffn_gate, NULL, NULL,
  5716. model.layers[il].ffn_down, NULL, NULL,
  5717. NULL,
  5718. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5719. cb(cur, "ffn_out", il);
  5720. cur = ggml_add(ctx0, cur, ffn_inp);
  5721. cur = build_cvec(cur, il);
  5722. cb(cur, "l_out", il);
  5723. // input for next layer
  5724. inpL = cur;
  5725. }
  5726. cur = inpL;
  5727. cur = build_norm(cur,
  5728. model.output_norm, model.output_norm_b,
  5729. LLM_NORM, -1);
  5730. cb(cur, "result_norm", -1);
  5731. res->t_embd = cur;
  5732. // lm_head
  5733. cur = build_lora_mm(model.output, cur);
  5734. cb(cur, "result_output", -1);
  5735. res->t_logits = cur;
  5736. ggml_build_forward_expand(gf, cur);
  5737. }
  5738. };
  5739. struct llm_build_internlm2 : public llm_graph_context {
  5740. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5741. const int64_t n_embd_head = hparams.n_embd_head_v;
  5742. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5743. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5744. ggml_tensor * cur;
  5745. ggml_tensor * inpL;
  5746. inpL = build_inp_embd(model.tok_embd);
  5747. // inp_pos - contains the positions
  5748. ggml_tensor * inp_pos = build_inp_pos();
  5749. auto * inp_attn = build_attn_inp_kv_unified();
  5750. for (int il = 0; il < n_layer; ++il) {
  5751. ggml_tensor * inpSA = inpL;
  5752. // norm
  5753. cur = build_norm(inpL,
  5754. model.layers[il].attn_norm, NULL,
  5755. LLM_NORM_RMS, il);
  5756. cb(cur, "attn_norm", il);
  5757. // self-attention
  5758. {
  5759. // compute Q and K and RoPE them
  5760. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5761. cb(Qcur, "Qcur", il);
  5762. if (model.layers[il].bq) {
  5763. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5764. cb(Qcur, "Qcur", il);
  5765. }
  5766. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5767. cb(Kcur, "Kcur", il);
  5768. if (model.layers[il].bk) {
  5769. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5770. cb(Kcur, "Kcur", il);
  5771. }
  5772. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5773. cb(Vcur, "Vcur", il);
  5774. if (model.layers[il].bv) {
  5775. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5776. cb(Vcur, "Vcur", il);
  5777. }
  5778. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5779. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5780. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5781. Qcur = ggml_rope_ext(
  5782. ctx0, Qcur, inp_pos, nullptr,
  5783. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5784. ext_factor, attn_factor, beta_fast, beta_slow
  5785. );
  5786. Kcur = ggml_rope_ext(
  5787. ctx0, Kcur, inp_pos, nullptr,
  5788. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5789. ext_factor, attn_factor, beta_fast, beta_slow
  5790. );
  5791. cb(Qcur, "Qcur", il);
  5792. cb(Kcur, "Kcur", il);
  5793. cb(Vcur, "Vcur", il);
  5794. cur = build_attn(inp_attn, gf,
  5795. model.layers[il].wo, model.layers[il].bo,
  5796. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5797. }
  5798. if (il == n_layer - 1) {
  5799. // skip computing output for unused tokens
  5800. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5801. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5802. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5803. }
  5804. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5805. cb(ffn_inp, "ffn_inp", il);
  5806. // feed-forward network
  5807. cur = build_norm(ffn_inp,
  5808. model.layers[il].ffn_norm, NULL,
  5809. LLM_NORM_RMS, il);
  5810. cb(cur, "ffn_norm", il);
  5811. cur = build_ffn(cur,
  5812. model.layers[il].ffn_up, NULL, NULL,
  5813. model.layers[il].ffn_gate, NULL, NULL,
  5814. model.layers[il].ffn_down, NULL, NULL,
  5815. NULL,
  5816. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5817. cb(cur, "ffn_out", il);
  5818. cur = ggml_add(ctx0, cur, ffn_inp);
  5819. cur = build_cvec(cur, il);
  5820. cb(cur, "l_out", il);
  5821. // input for next layer
  5822. inpL = cur;
  5823. }
  5824. cur = inpL;
  5825. cur = build_norm(cur,
  5826. model.output_norm, NULL,
  5827. LLM_NORM_RMS, -1);
  5828. cb(cur, "result_norm", -1);
  5829. res->t_embd = cur;
  5830. // lm_head
  5831. cur = build_lora_mm(model.output, cur);
  5832. cb(cur, "result_output", -1);
  5833. res->t_logits = cur;
  5834. ggml_build_forward_expand(gf, cur);
  5835. }
  5836. };
  5837. struct llm_build_minicpm3 : public llm_graph_context {
  5838. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5839. //TODO: if the model varies, these parameters need to be read from the model
  5840. const int64_t n_embd_base = 256;
  5841. const float scale_embd = 12.0f;
  5842. const float scale_depth = 1.4f;
  5843. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  5844. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5845. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5846. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5847. ggml_tensor * cur;
  5848. ggml_tensor * inpL;
  5849. inpL = build_inp_embd(model.tok_embd);
  5850. // scale the input embeddings
  5851. inpL = ggml_scale(ctx0, inpL, scale_embd);
  5852. cb(inpL, "inp_scaled", -1);
  5853. // inp_pos - contains the positions
  5854. ggml_tensor * inp_pos = build_inp_pos();
  5855. auto * inp_attn = build_attn_inp_kv_unified();
  5856. for (int il = 0; il < n_layer; ++il) {
  5857. ggml_tensor * inpSA = inpL;
  5858. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5859. // norm
  5860. cur = build_norm(inpL,
  5861. model.layers[il].attn_norm, NULL,
  5862. LLM_NORM_RMS, il);
  5863. cb(cur, "attn_norm", il);
  5864. // self_attention
  5865. {
  5866. ggml_tensor * q = NULL;
  5867. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  5868. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  5869. cb(q, "q", il);
  5870. q = build_norm(q,
  5871. model.layers[il].attn_q_a_norm, NULL,
  5872. LLM_NORM_RMS, il);
  5873. cb(q, "q", il);
  5874. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  5875. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  5876. cb(q, "q", il);
  5877. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  5878. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  5879. ggml_row_size(q->type, hparams.n_embd_head_k),
  5880. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  5881. 0);
  5882. cb(q_nope, "q_nope", il);
  5883. // and {n_head * n_embd_head_qk_rope, n_tokens}
  5884. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  5885. ggml_row_size(q->type, hparams.n_embd_head_k),
  5886. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  5887. ggml_row_size(q->type, n_embd_head_qk_nope));
  5888. cb(q_pe, "q_pe", il);
  5889. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  5890. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  5891. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  5892. // split into {kv_lora_rank, n_tokens}
  5893. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  5894. kv_pe_compresseed->nb[1],
  5895. 0);
  5896. cb(kv_compressed, "kv_compressed", il);
  5897. // and {n_embd_head_qk_rope, n_tokens}
  5898. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  5899. kv_pe_compresseed->nb[1],
  5900. kv_pe_compresseed->nb[1],
  5901. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  5902. cb(k_pe, "k_pe", il);
  5903. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  5904. kv_compressed = ggml_cont(ctx0, kv_compressed);
  5905. kv_compressed = build_norm(kv_compressed,
  5906. model.layers[il].attn_kv_a_norm, NULL,
  5907. LLM_NORM_RMS, il);
  5908. cb(kv_compressed, "kv_compressed", il);
  5909. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  5910. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  5911. cb(kv, "kv", il);
  5912. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  5913. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  5914. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  5915. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  5916. 0);
  5917. cb(k_nope, "k_nope", il);
  5918. // and {n_head * n_embd_head_v, n_tokens}
  5919. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  5920. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  5921. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  5922. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  5923. cb(v_states, "v_states", il);
  5924. v_states = ggml_cont(ctx0, v_states);
  5925. cb(v_states, "v_states", il);
  5926. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  5927. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  5928. 0);
  5929. cb(v_states, "v_states", il);
  5930. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  5931. q_pe = ggml_rope_ext(
  5932. ctx0, q_pe, inp_pos, rope_factors,
  5933. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5934. ext_factor, attn_factor, beta_fast, beta_slow
  5935. );
  5936. cb(q_pe, "q_pe", il);
  5937. // shared RoPE key
  5938. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  5939. k_pe = ggml_rope_ext(
  5940. ctx0, k_pe, inp_pos, rope_factors,
  5941. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5942. ext_factor, attn_factor, beta_fast, beta_slow
  5943. );
  5944. cb(k_pe, "k_pe", il);
  5945. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  5946. cb(q_states, "q_states", il);
  5947. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  5948. cb(k_states, "k_states", il);
  5949. cur = build_attn(inp_attn, gf,
  5950. model.layers[il].wo, NULL,
  5951. q_states, k_states, v_states, nullptr, kq_scale, il);
  5952. }
  5953. if (il == n_layer - 1) {
  5954. // skip computing output for unused tokens
  5955. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5956. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5957. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5958. }
  5959. // scale_res - scale the hidden states for residual connection
  5960. const float scale_res = scale_depth/sqrtf(float(n_layer));
  5961. cur = ggml_scale(ctx0, cur, scale_res);
  5962. cb(cur, "hidden_scaled", il);
  5963. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5964. cb(ffn_inp, "ffn_inp", il);
  5965. // feed-forward network
  5966. {
  5967. cur = build_norm(ffn_inp,
  5968. model.layers[il].ffn_norm, NULL,
  5969. LLM_NORM_RMS, il);
  5970. cb(cur, "ffn_norm", il);
  5971. cur = build_ffn(cur,
  5972. model.layers[il].ffn_up, NULL, NULL,
  5973. model.layers[il].ffn_gate, NULL, NULL,
  5974. model.layers[il].ffn_down, NULL, NULL,
  5975. NULL,
  5976. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5977. cb(cur, "ffn_out", il);
  5978. }
  5979. // scale the hidden states for residual connection
  5980. cur = ggml_scale(ctx0, cur, scale_res);
  5981. cb(cur, "hidden_scaled_ffn", il);
  5982. cur = ggml_add(ctx0, cur, ffn_inp);
  5983. cur = build_cvec(cur, il);
  5984. cb(cur, "l_out", il);
  5985. // input for next layer
  5986. inpL = cur;
  5987. }
  5988. cur = inpL;
  5989. cur = build_norm(cur,
  5990. model.output_norm, NULL,
  5991. LLM_NORM_RMS, -1);
  5992. cb(cur, "result_norm", -1);
  5993. res->t_embd = cur;
  5994. // lm_head scaling
  5995. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  5996. cur = ggml_scale(ctx0, cur, scale_lmhead);
  5997. cb(cur, "lmhead_scaling", -1);
  5998. // lm_head
  5999. cur = build_lora_mm(model.output, cur);
  6000. cb(cur, "result_output", -1);
  6001. res->t_logits = cur;
  6002. ggml_build_forward_expand(gf, cur);
  6003. }
  6004. };
  6005. struct llm_build_gemma : public llm_graph_context {
  6006. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6007. const int64_t n_embd_head = hparams.n_embd_head_v;
  6008. ggml_tensor * cur;
  6009. ggml_tensor * inpL;
  6010. inpL = build_inp_embd(model.tok_embd);
  6011. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6012. cb(inpL, "inp_scaled", -1);
  6013. // inp_pos - contains the positions
  6014. ggml_tensor * inp_pos = build_inp_pos();
  6015. auto * inp_attn = build_attn_inp_kv_unified();
  6016. for (int il = 0; il < n_layer; ++il) {
  6017. // norm
  6018. cur = build_norm(inpL,
  6019. model.layers[il].attn_norm, NULL,
  6020. LLM_NORM_RMS, il);
  6021. cb(cur, "attn_norm", il);
  6022. // self-attention
  6023. {
  6024. // compute Q and K and RoPE them
  6025. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6026. cb(Qcur, "Qcur", il);
  6027. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6028. cb(Kcur, "Kcur", il);
  6029. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6030. cb(Vcur, "Vcur", il);
  6031. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6032. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6033. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6034. Qcur = ggml_rope_ext(
  6035. ctx0, Qcur, inp_pos, nullptr,
  6036. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6037. ext_factor, attn_factor, beta_fast, beta_slow);
  6038. Kcur = ggml_rope_ext(
  6039. ctx0, Kcur, inp_pos, nullptr,
  6040. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6041. ext_factor, attn_factor, beta_fast, beta_slow);
  6042. cb(Qcur, "Qcur", il);
  6043. cb(Kcur, "Kcur", il);
  6044. cb(Vcur, "Vcur", il);
  6045. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6046. cb(Qcur, "Qcur_scaled", il);
  6047. cur = build_attn(inp_attn, gf,
  6048. model.layers[il].wo, NULL,
  6049. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  6050. }
  6051. if (il == n_layer - 1) {
  6052. // skip computing output for unused tokens
  6053. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6054. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6055. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6056. }
  6057. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6058. cb(sa_out, "sa_out", il);
  6059. cur = build_norm(sa_out,
  6060. model.layers[il].ffn_norm, NULL,
  6061. LLM_NORM_RMS, il);
  6062. cb(cur, "ffn_norm", il);
  6063. // feed-forward network
  6064. {
  6065. cur = build_ffn(cur,
  6066. model.layers[il].ffn_up, NULL, NULL,
  6067. model.layers[il].ffn_gate, NULL, NULL,
  6068. model.layers[il].ffn_down, NULL, NULL,
  6069. NULL,
  6070. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6071. cb(cur, "ffn_out", il);
  6072. }
  6073. cur = ggml_add(ctx0, cur, sa_out);
  6074. cur = build_cvec(cur, il);
  6075. cb(cur, "l_out", il);
  6076. // input for next layer
  6077. inpL = cur;
  6078. }
  6079. cur = inpL;
  6080. cur = build_norm(cur,
  6081. model.output_norm, NULL,
  6082. LLM_NORM_RMS, -1);
  6083. cb(cur, "result_norm", -1);
  6084. res->t_embd = cur;
  6085. // lm_head
  6086. cur = build_lora_mm(model.output, cur);
  6087. cb(cur, "result_output", -1);
  6088. res->t_logits = cur;
  6089. ggml_build_forward_expand(gf, cur);
  6090. }
  6091. };
  6092. struct llm_build_gemma2 : public llm_graph_context {
  6093. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6094. const int64_t n_embd_head = hparams.n_embd_head_k;
  6095. ggml_tensor * cur;
  6096. ggml_tensor * inpL;
  6097. inpL = build_inp_embd(model.tok_embd);
  6098. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6099. cb(inpL, "inp_scaled", -1);
  6100. // inp_pos - contains the positions
  6101. ggml_tensor * inp_pos = build_inp_pos();
  6102. auto * inp_attn = build_attn_inp_kv_unified();
  6103. for (int il = 0; il < n_layer; ++il) {
  6104. // norm
  6105. cur = build_norm(inpL,
  6106. model.layers[il].attn_norm, NULL,
  6107. LLM_NORM_RMS, il);
  6108. cb(cur, "attn_norm", il);
  6109. // self-attention
  6110. {
  6111. // compute Q and K and RoPE them
  6112. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6113. cb(Qcur, "Qcur", il);
  6114. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6115. cb(Kcur, "Kcur", il);
  6116. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6117. cb(Vcur, "Vcur", il);
  6118. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6119. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6120. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6121. Qcur = ggml_rope_ext(
  6122. ctx0, Qcur, inp_pos, nullptr,
  6123. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6124. ext_factor, attn_factor, beta_fast, beta_slow);
  6125. Kcur = ggml_rope_ext(
  6126. ctx0, Kcur, inp_pos, nullptr,
  6127. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6128. ext_factor, attn_factor, beta_fast, beta_slow);
  6129. cb(Qcur, "Qcur", il);
  6130. cb(Kcur, "Kcur", il);
  6131. cb(Vcur, "Vcur", il);
  6132. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6133. switch (model.type) {
  6134. case LLM_TYPE_2B:
  6135. case LLM_TYPE_9B:
  6136. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6137. default: GGML_ABORT("fatal error");
  6138. };
  6139. cb(Qcur, "Qcur_scaled", il);
  6140. cur = build_attn(inp_attn, gf,
  6141. model.layers[il].wo, NULL,
  6142. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  6143. }
  6144. cur = build_norm(cur,
  6145. model.layers[il].attn_post_norm, NULL,
  6146. LLM_NORM_RMS, il);
  6147. cb(cur, "attn_post_norm", il);
  6148. if (il == n_layer - 1) {
  6149. // skip computing output for unused tokens
  6150. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6151. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6152. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6153. }
  6154. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6155. cb(sa_out, "sa_out", il);
  6156. cur = build_norm(sa_out,
  6157. model.layers[il].ffn_norm, NULL,
  6158. LLM_NORM_RMS, il);
  6159. cb(cur, "ffn_norm", il);
  6160. // feed-forward network
  6161. {
  6162. cur = build_ffn(cur,
  6163. model.layers[il].ffn_up, NULL, NULL,
  6164. model.layers[il].ffn_gate, NULL, NULL,
  6165. model.layers[il].ffn_down, NULL, NULL,
  6166. NULL,
  6167. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6168. cb(cur, "ffn_out", il);
  6169. }
  6170. cur = build_norm(cur,
  6171. model.layers[il].ffn_post_norm, NULL,
  6172. LLM_NORM_RMS, -1);
  6173. cb(cur, "ffn_post_norm", -1);
  6174. cur = ggml_add(ctx0, cur, sa_out);
  6175. cur = build_cvec(cur, il);
  6176. cb(cur, "l_out", il);
  6177. // input for next layer
  6178. inpL = cur;
  6179. }
  6180. cur = inpL;
  6181. cur = build_norm(cur,
  6182. model.output_norm, NULL,
  6183. LLM_NORM_RMS, -1);
  6184. cb(cur, "result_norm", -1);
  6185. res->t_embd = cur;
  6186. // lm_head
  6187. cur = build_lora_mm(model.output, cur);
  6188. // final logit soft-capping
  6189. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6190. cur = ggml_tanh(ctx0, cur);
  6191. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6192. cb(cur, "result_output", -1);
  6193. res->t_logits = cur;
  6194. ggml_build_forward_expand(gf, cur);
  6195. }
  6196. };
  6197. struct llm_build_gemma3 : public llm_graph_context {
  6198. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6199. const int64_t n_embd_head = hparams.n_embd_head_k;
  6200. ggml_tensor * cur;
  6201. ggml_tensor * inpL;
  6202. inpL = build_inp_embd(model.tok_embd);
  6203. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6204. if (ubatch.token) {
  6205. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6206. cb(inpL, "inp_scaled", -1);
  6207. }
  6208. // inp_pos - contains the positions
  6209. ggml_tensor * inp_pos = build_inp_pos();
  6210. // TODO: is causal == true correct? might need some changes
  6211. auto * inp_attn = build_attn_inp_kv_unified();
  6212. for (int il = 0; il < n_layer; ++il) {
  6213. const bool is_swa = hparams.is_swa(il);
  6214. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6215. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6216. // norm
  6217. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6218. cb(cur, "attn_norm", il);
  6219. // self-attention
  6220. {
  6221. // compute Q and K and RoPE them
  6222. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6223. cb(Qcur, "Qcur", il);
  6224. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6225. cb(Kcur, "Kcur", il);
  6226. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6227. cb(Vcur, "Vcur", il);
  6228. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6229. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6230. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6231. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6232. cb(Qcur, "Qcur_normed", il);
  6233. Qcur = ggml_rope_ext(
  6234. ctx0, Qcur, inp_pos, nullptr,
  6235. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6236. ext_factor, attn_factor, beta_fast, beta_slow);
  6237. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6238. cb(Kcur, "Kcur_normed", il);
  6239. Kcur = ggml_rope_ext(
  6240. ctx0, Kcur, inp_pos, nullptr,
  6241. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6242. ext_factor, attn_factor, beta_fast, beta_slow);
  6243. cb(Qcur, "Qcur", il);
  6244. cb(Kcur, "Kcur", il);
  6245. cb(Vcur, "Vcur", il);
  6246. cur = build_attn(inp_attn, gf,
  6247. model.layers[il].wo, NULL,
  6248. Qcur, Kcur, Vcur, nullptr, hparams.f_attention_scale, il);
  6249. }
  6250. cur = build_norm(cur,
  6251. model.layers[il].attn_post_norm, NULL,
  6252. LLM_NORM_RMS, il);
  6253. cb(cur, "attn_post_norm", il);
  6254. if (il == n_layer - 1) {
  6255. // skip computing output for unused tokens
  6256. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6257. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6258. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6259. }
  6260. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6261. cb(sa_out, "sa_out", il);
  6262. cur = build_norm(sa_out,
  6263. model.layers[il].ffn_norm, NULL,
  6264. LLM_NORM_RMS, il);
  6265. cb(cur, "ffn_norm", il);
  6266. // feed-forward network
  6267. {
  6268. cur = build_ffn(cur,
  6269. model.layers[il].ffn_up, NULL, NULL,
  6270. model.layers[il].ffn_gate, NULL, NULL,
  6271. model.layers[il].ffn_down, NULL, NULL,
  6272. NULL,
  6273. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6274. cb(cur, "ffn_out", il);
  6275. }
  6276. cur = build_norm(cur,
  6277. model.layers[il].ffn_post_norm, NULL,
  6278. LLM_NORM_RMS, -1);
  6279. cb(cur, "ffn_post_norm", -1);
  6280. cur = ggml_add(ctx0, cur, sa_out);
  6281. cur = build_cvec(cur, il);
  6282. cb(cur, "l_out", il);
  6283. // input for next layer
  6284. inpL = cur;
  6285. }
  6286. cur = inpL;
  6287. cur = build_norm(cur,
  6288. model.output_norm, NULL,
  6289. LLM_NORM_RMS, -1);
  6290. cb(cur, "result_norm", -1);
  6291. res->t_embd = cur;
  6292. // lm_head
  6293. cur = build_lora_mm(model.output, cur);
  6294. cb(cur, "result_output", -1);
  6295. res->t_logits = cur;
  6296. ggml_build_forward_expand(gf, cur);
  6297. }
  6298. };
  6299. // TODO: move up next to build_starcoder
  6300. struct llm_build_starcoder2 : public llm_graph_context {
  6301. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6302. const int64_t n_embd_head = hparams.n_embd_head_v;
  6303. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6304. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6305. ggml_tensor * cur;
  6306. ggml_tensor * inpL;
  6307. inpL = build_inp_embd(model.tok_embd);
  6308. // inp_pos - contains the positions
  6309. ggml_tensor * inp_pos = build_inp_pos();
  6310. auto * inp_attn = build_attn_inp_kv_unified();
  6311. for (int il = 0; il < n_layer; ++il) {
  6312. ggml_tensor * inpSA = inpL;
  6313. // norm
  6314. cur = build_norm(inpL,
  6315. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6316. LLM_NORM, il);
  6317. cb(cur, "attn_norm", il);
  6318. // self-attention
  6319. {
  6320. // compute Q and K and RoPE them
  6321. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6322. cb(Qcur, "Qcur", il);
  6323. if (model.layers[il].bq) {
  6324. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6325. cb(Qcur, "Qcur", il);
  6326. }
  6327. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6328. cb(Kcur, "Kcur", il);
  6329. if (model.layers[il].bk) {
  6330. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6331. cb(Kcur, "Kcur", il);
  6332. }
  6333. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6334. cb(Vcur, "Vcur", il);
  6335. if (model.layers[il].bv) {
  6336. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6337. cb(Vcur, "Vcur", il);
  6338. }
  6339. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6340. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6341. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6342. Qcur = ggml_rope_ext(
  6343. ctx0, Qcur, inp_pos, nullptr,
  6344. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6345. ext_factor, attn_factor, beta_fast, beta_slow
  6346. );
  6347. Kcur = ggml_rope_ext(
  6348. ctx0, Kcur, inp_pos, nullptr,
  6349. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6350. ext_factor, attn_factor, beta_fast, beta_slow
  6351. );
  6352. cb(Qcur, "Qcur", il);
  6353. cb(Kcur, "Kcur", il);
  6354. cb(Vcur, "Vcur", il);
  6355. cur = build_attn(inp_attn, gf,
  6356. model.layers[il].wo, model.layers[il].bo,
  6357. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6358. }
  6359. if (il == n_layer - 1) {
  6360. // skip computing output for unused tokens
  6361. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6362. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6363. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6364. }
  6365. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6366. cb(ffn_inp, "ffn_inp", il);
  6367. // feed-forward network
  6368. cur = build_norm(ffn_inp,
  6369. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6370. LLM_NORM, il);
  6371. cb(cur, "ffn_norm", il);
  6372. cur = build_ffn(cur,
  6373. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6374. NULL, NULL, NULL,
  6375. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6376. NULL,
  6377. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6378. cb(cur, "ffn_out", il);
  6379. cur = ggml_add(ctx0, cur, ffn_inp);
  6380. cur = build_cvec(cur, il);
  6381. cb(cur, "l_out", il);
  6382. // input for next layer
  6383. inpL = cur;
  6384. }
  6385. cur = inpL;
  6386. cur = build_norm(cur,
  6387. model.output_norm, model.output_norm_b,
  6388. LLM_NORM, -1);
  6389. cb(cur, "result_norm", -1);
  6390. res->t_embd = cur;
  6391. // lm_head
  6392. cur = build_lora_mm(model.output, cur);
  6393. cb(cur, "result_output", -1);
  6394. res->t_logits = cur;
  6395. ggml_build_forward_expand(gf, cur);
  6396. }
  6397. };
  6398. struct llm_build_mamba : public llm_graph_context {
  6399. const llama_model & model;
  6400. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6401. ggml_tensor * cur;
  6402. ggml_tensor * inpL;
  6403. // {n_embd, n_tokens}
  6404. inpL = build_inp_embd(model.tok_embd);
  6405. ggml_tensor * state_copy = build_inp_s_copy();
  6406. ggml_tensor * state_mask = build_inp_s_mask();
  6407. for (int il = 0; il < n_layer; ++il) {
  6408. // norm
  6409. cur = build_norm(inpL,
  6410. model.layers[il].attn_norm, NULL,
  6411. LLM_NORM_RMS, il);
  6412. cb(cur, "attn_norm", il);
  6413. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6414. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6415. if (il == n_layer - 1) {
  6416. // skip computing output for unused tokens
  6417. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6418. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6419. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6420. }
  6421. // residual
  6422. cur = ggml_add(ctx0, cur, inpL);
  6423. cur = build_cvec(cur, il);
  6424. cb(cur, "l_out", il);
  6425. // input for next layer
  6426. inpL = cur;
  6427. }
  6428. // final rmsnorm
  6429. cur = build_norm(inpL,
  6430. model.output_norm, NULL,
  6431. LLM_NORM_RMS, -1);
  6432. cb(cur, "result_norm", -1);
  6433. res->t_embd = cur;
  6434. // lm_head
  6435. cur = build_lora_mm(model.output, cur);
  6436. cb(cur, "result_output", -1);
  6437. res->t_logits = cur;
  6438. ggml_build_forward_expand(gf, cur);
  6439. }
  6440. // TODO: split
  6441. ggml_tensor * build_mamba_layer(
  6442. ggml_cgraph * gf,
  6443. ggml_tensor * cur,
  6444. ggml_tensor * state_copy,
  6445. ggml_tensor * state_mask,
  6446. const llama_ubatch & ubatch,
  6447. int il) const {
  6448. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  6449. const auto kv_head = kv_self->head;
  6450. const int64_t d_conv = hparams.ssm_d_conv;
  6451. const int64_t d_inner = hparams.ssm_d_inner;
  6452. const int64_t d_state = hparams.ssm_d_state;
  6453. const int64_t dt_rank = hparams.ssm_dt_rank;
  6454. const int64_t n_seqs = ubatch.n_seqs;
  6455. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  6456. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  6457. // Use the same RMS norm as the final layer norm
  6458. const float norm_rms_eps = hparams.f_norm_rms_eps;
  6459. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  6460. GGML_ASSERT(n_seqs != 0);
  6461. GGML_ASSERT(ubatch.equal_seqs);
  6462. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  6463. ggml_tensor * conv_states_all = kv_self->k_l[il];
  6464. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  6465. // (ab)using the KV cache to store the states
  6466. ggml_tensor * conv = build_copy_mask_state(
  6467. gf, conv_states_all, state_copy, state_mask,
  6468. hparams.n_embd_k_s(), n_seqs);
  6469. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  6470. ggml_tensor * ssm = build_copy_mask_state(
  6471. gf, ssm_states_all, state_copy, state_mask,
  6472. hparams.n_embd_v_s(), n_seqs);
  6473. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  6474. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  6475. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  6476. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  6477. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  6478. // split the above in two
  6479. // => {d_inner, n_seq_tokens, n_seqs}
  6480. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  6481. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  6482. // conv
  6483. {
  6484. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  6485. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  6486. // copy last (d_conv - 1) columns back into the state cache
  6487. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  6488. ggml_build_forward_expand(gf,
  6489. ggml_cpy(ctx0, last_conv,
  6490. ggml_view_1d(ctx0, conv_states_all,
  6491. (d_conv - 1)*(d_inner)*(n_seqs),
  6492. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  6493. // 1D convolution
  6494. // The equivalent is to make a self-overlapping view of conv_x
  6495. // over d_conv columns at each stride in the 3rd dimension,
  6496. // then element-wise multiply that with the conv1d weight,
  6497. // then sum the elements of each row,
  6498. // (the last two steps are a dot product over rows (also doable with mul_mat))
  6499. // then permute away the ne[0] dimension,
  6500. // and then you're left with the resulting x tensor.
  6501. // For simultaneous sequences, all sequences need to have the same length.
  6502. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  6503. // bias
  6504. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  6505. x = ggml_silu(ctx0, x);
  6506. }
  6507. // ssm
  6508. {
  6509. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  6510. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  6511. // split
  6512. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  6513. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  6514. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  6515. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  6516. if (ssm_dt_b_c_rms) {
  6517. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  6518. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  6519. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  6520. }
  6521. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  6522. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  6523. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  6524. // Custom operator to optimize the parallel associative scan
  6525. // as described in the Annex D of the Mamba paper.
  6526. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  6527. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  6528. // store last states
  6529. ggml_build_forward_expand(gf,
  6530. ggml_cpy(ctx0,
  6531. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  6532. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  6533. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  6534. // TODO: skip computing output earlier for unused tokens
  6535. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  6536. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  6537. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  6538. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  6539. cur = build_lora_mm(model.layers[il].ssm_out, y);
  6540. }
  6541. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  6542. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  6543. //cb(cur, "mamba_out", il);
  6544. return cur;
  6545. }
  6546. };
  6547. struct llm_build_command_r : public llm_graph_context {
  6548. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6549. const int64_t n_embd_head = hparams.n_embd_head_v;
  6550. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6551. const float f_logit_scale = hparams.f_logit_scale;
  6552. ggml_tensor * cur;
  6553. ggml_tensor * inpL;
  6554. inpL = build_inp_embd(model.tok_embd);
  6555. // inp_pos - contains the positions
  6556. ggml_tensor * inp_pos = build_inp_pos();
  6557. auto * inp_attn = build_attn_inp_kv_unified();
  6558. for (int il = 0; il < n_layer; ++il) {
  6559. // norm
  6560. cur = build_norm(inpL,
  6561. model.layers[il].attn_norm, NULL,
  6562. LLM_NORM, il);
  6563. cb(cur, "attn_norm", il);
  6564. ggml_tensor * ffn_inp = cur;
  6565. // self-attention
  6566. {
  6567. // compute Q and K and RoPE them
  6568. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6569. cb(Qcur, "Qcur", il);
  6570. if (model.layers[il].bq) {
  6571. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6572. cb(Qcur, "Qcur", il);
  6573. }
  6574. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6575. cb(Kcur, "Kcur", il);
  6576. if (model.layers[il].bk) {
  6577. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6578. cb(Kcur, "Kcur", il);
  6579. }
  6580. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6581. cb(Vcur, "Vcur", il);
  6582. if (model.layers[il].bv) {
  6583. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6584. cb(Vcur, "Vcur", il);
  6585. }
  6586. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6587. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6588. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6589. if (model.layers[il].attn_q_norm) {
  6590. Qcur = build_norm(Qcur,
  6591. model.layers[il].attn_q_norm,
  6592. NULL,
  6593. LLM_NORM, il);
  6594. cb(Qcur, "Qcur", il);
  6595. }
  6596. Qcur = ggml_rope_ext(
  6597. ctx0, Qcur, inp_pos, nullptr,
  6598. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6599. ext_factor, attn_factor, beta_fast, beta_slow
  6600. );
  6601. if (model.layers[il].attn_k_norm) {
  6602. Kcur = build_norm(Kcur,
  6603. model.layers[il].attn_k_norm,
  6604. NULL,
  6605. LLM_NORM, il);
  6606. cb(Kcur, "Kcur", il);
  6607. }
  6608. Kcur = ggml_rope_ext(
  6609. ctx0, Kcur, inp_pos, nullptr,
  6610. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6611. ext_factor, attn_factor, beta_fast, beta_slow
  6612. );
  6613. cb(Qcur, "Qcur", il);
  6614. cb(Kcur, "Kcur", il);
  6615. cb(Vcur, "Vcur", il);
  6616. cur = build_attn(inp_attn, gf,
  6617. model.layers[il].wo, model.layers[il].bo,
  6618. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6619. }
  6620. if (il == n_layer - 1) {
  6621. // skip computing output for unused tokens
  6622. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6623. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6624. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6625. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  6626. }
  6627. ggml_tensor * attn_out = cur;
  6628. // feed-forward network
  6629. {
  6630. cur = build_ffn(ffn_inp,
  6631. model.layers[il].ffn_up, NULL, NULL,
  6632. model.layers[il].ffn_gate, NULL, NULL,
  6633. model.layers[il].ffn_down, NULL, NULL,
  6634. NULL,
  6635. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6636. cb(cur, "ffn_out", il);
  6637. }
  6638. // add together residual + FFN + self-attention
  6639. cur = ggml_add(ctx0, cur, inpL);
  6640. cur = ggml_add(ctx0, cur, attn_out);
  6641. cur = build_cvec(cur, il);
  6642. cb(cur, "l_out", il);
  6643. // input for next layer
  6644. inpL = cur;
  6645. }
  6646. cur = inpL;
  6647. cur = build_norm(cur,
  6648. model.output_norm, NULL,
  6649. LLM_NORM, -1);
  6650. cb(cur, "result_norm", -1);
  6651. res->t_embd = cur;
  6652. // lm_head
  6653. cur = build_lora_mm(model.output, cur);
  6654. if (f_logit_scale) {
  6655. cur = ggml_scale(ctx0, cur, f_logit_scale);
  6656. }
  6657. cb(cur, "result_output", -1);
  6658. res->t_logits = cur;
  6659. ggml_build_forward_expand(gf, cur);
  6660. }
  6661. };
  6662. struct llm_build_cohere2 : public llm_graph_context {
  6663. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6664. const int64_t n_embd_head = hparams.n_embd_head_v;
  6665. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6666. const float f_logit_scale = hparams.f_logit_scale;
  6667. ggml_tensor * cur;
  6668. ggml_tensor * inpL;
  6669. inpL = build_inp_embd(model.tok_embd);
  6670. // inp_pos - contains the positions
  6671. ggml_tensor * inp_pos = build_inp_pos();
  6672. auto * inp_attn = build_attn_inp_kv_unified();
  6673. for (int il = 0; il < n_layer; ++il) {
  6674. const bool is_swa = hparams.is_swa(il);
  6675. // norm
  6676. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  6677. cb(cur, "attn_norm", il);
  6678. ggml_tensor * ffn_inp = cur;
  6679. // self-attention
  6680. {
  6681. // rope freq factors for 128k context
  6682. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  6683. // compute Q and K and RoPE them
  6684. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6685. cb(Qcur, "Qcur", il);
  6686. if (model.layers[il].bq) {
  6687. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6688. cb(Qcur, "Qcur", il);
  6689. }
  6690. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6691. cb(Kcur, "Kcur", il);
  6692. if (model.layers[il].bk) {
  6693. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6694. cb(Kcur, "Kcur", il);
  6695. }
  6696. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6697. cb(Vcur, "Vcur", il);
  6698. if (model.layers[il].bv) {
  6699. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6700. cb(Vcur, "Vcur", il);
  6701. }
  6702. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6703. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6704. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6705. if (is_swa) {
  6706. Qcur = ggml_rope_ext(
  6707. ctx0, Qcur, inp_pos, rope_factors,
  6708. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6709. ext_factor, attn_factor, beta_fast, beta_slow
  6710. );
  6711. Kcur = ggml_rope_ext(
  6712. ctx0, Kcur, inp_pos, rope_factors,
  6713. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6714. ext_factor, attn_factor, beta_fast, beta_slow
  6715. );
  6716. }
  6717. cb(Qcur, "Qcur", il);
  6718. cb(Kcur, "Kcur", il);
  6719. cb(Vcur, "Vcur", il);
  6720. cur = build_attn(inp_attn, gf,
  6721. model.layers[il].wo, model.layers[il].bo,
  6722. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6723. }
  6724. if (il == n_layer - 1) {
  6725. // skip computing output for unused tokens
  6726. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6727. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6728. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6729. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  6730. }
  6731. ggml_tensor * attn_out = cur;
  6732. // feed-forward network
  6733. {
  6734. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  6735. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  6736. il);
  6737. cb(cur, "ffn_out", il);
  6738. }
  6739. // add together residual + FFN + self-attention
  6740. cur = ggml_add(ctx0, cur, inpL);
  6741. cur = ggml_add(ctx0, cur, attn_out);
  6742. cur = build_cvec(cur, il);
  6743. cb(cur, "l_out", il);
  6744. // input for next layer
  6745. inpL = cur;
  6746. }
  6747. cur = inpL;
  6748. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  6749. cb(cur, "result_norm", -1);
  6750. res->t_embd = cur;
  6751. // lm_head
  6752. cur = build_lora_mm(model.output, cur);
  6753. if (f_logit_scale) {
  6754. cur = ggml_scale(ctx0, cur, f_logit_scale);
  6755. }
  6756. cb(cur, "result_output", -1);
  6757. res->t_logits = cur;
  6758. ggml_build_forward_expand(gf, cur);
  6759. }
  6760. };
  6761. // ref: https://allenai.org/olmo
  6762. // based on the original build_llama() function, changes:
  6763. // * non-parametric layer norm
  6764. // * clamp qkv
  6765. // * removed bias
  6766. // * removed MoE
  6767. struct llm_build_olmo : public llm_graph_context {
  6768. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6769. const int64_t n_embd_head = hparams.n_embd_head_v;
  6770. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6771. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6772. ggml_tensor * cur;
  6773. ggml_tensor * inpL;
  6774. inpL = build_inp_embd(model.tok_embd);
  6775. // inp_pos - contains the positions
  6776. ggml_tensor * inp_pos = build_inp_pos();
  6777. auto * inp_attn = build_attn_inp_kv_unified();
  6778. for (int il = 0; il < n_layer; ++il) {
  6779. ggml_tensor * inpSA = inpL;
  6780. // norm
  6781. cur = build_norm(inpL,
  6782. NULL, NULL,
  6783. LLM_NORM, il);
  6784. cb(cur, "attn_norm", il);
  6785. // self-attention
  6786. {
  6787. // compute Q and K and RoPE them
  6788. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6789. cb(Qcur, "Qcur", il);
  6790. if (hparams.f_clamp_kqv > 0.0f) {
  6791. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6792. cb(Qcur, "Qcur", il);
  6793. }
  6794. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6795. cb(Kcur, "Kcur", il);
  6796. if (hparams.f_clamp_kqv > 0.0f) {
  6797. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6798. cb(Kcur, "Kcur", il);
  6799. }
  6800. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6801. cb(Vcur, "Vcur", il);
  6802. if (hparams.f_clamp_kqv > 0.0f) {
  6803. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6804. cb(Vcur, "Vcur", il);
  6805. }
  6806. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6807. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6808. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6809. Qcur = ggml_rope_ext(
  6810. ctx0, Qcur, inp_pos, nullptr,
  6811. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6812. ext_factor, attn_factor, beta_fast, beta_slow
  6813. );
  6814. Kcur = ggml_rope_ext(
  6815. ctx0, Kcur, inp_pos, nullptr,
  6816. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6817. ext_factor, attn_factor, beta_fast, beta_slow
  6818. );
  6819. cb(Qcur, "Qcur", il);
  6820. cb(Kcur, "Kcur", il);
  6821. cb(Vcur, "Vcur", il);
  6822. cur = build_attn(inp_attn, gf,
  6823. model.layers[il].wo, nullptr,
  6824. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6825. }
  6826. if (il == n_layer - 1) {
  6827. // skip computing output for unused tokens
  6828. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6829. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6830. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6831. }
  6832. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6833. cb(ffn_inp, "ffn_inp", il);
  6834. // feed-forward network
  6835. cur = build_norm(ffn_inp,
  6836. NULL, NULL,
  6837. LLM_NORM, il);
  6838. cb(cur, "ffn_norm", il);
  6839. cur = build_ffn(cur,
  6840. model.layers[il].ffn_up, NULL, NULL,
  6841. model.layers[il].ffn_gate, NULL, NULL,
  6842. model.layers[il].ffn_down, NULL, NULL,
  6843. NULL,
  6844. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6845. cb(cur, "ffn_out", il);
  6846. cur = ggml_add(ctx0, cur, ffn_inp);
  6847. cb(cur, "ffn_out", il);
  6848. cur = build_cvec(cur, il);
  6849. cb(cur, "l_out", il);
  6850. // input for next layer
  6851. inpL = cur;
  6852. }
  6853. cur = inpL;
  6854. cur = build_norm(cur,
  6855. NULL, NULL,
  6856. LLM_NORM, -1);
  6857. cb(cur, "result_norm", -1);
  6858. res->t_embd = cur;
  6859. // lm_head
  6860. cur = build_lora_mm(model.output, cur);
  6861. cb(cur, "result_output", -1);
  6862. res->t_logits = cur;
  6863. ggml_build_forward_expand(gf, cur);
  6864. }
  6865. };
  6866. struct llm_build_olmo2 : public llm_graph_context {
  6867. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6868. const int64_t n_embd_head = hparams.n_embd_head_v;
  6869. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6870. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6871. ggml_tensor * cur;
  6872. ggml_tensor * inpL;
  6873. inpL = build_inp_embd(model.tok_embd);
  6874. // inp_pos - contains the positions
  6875. ggml_tensor * inp_pos = build_inp_pos();
  6876. auto * inp_attn = build_attn_inp_kv_unified();
  6877. for (int il = 0; il < n_layer; ++il) {
  6878. ggml_tensor * inpSA = inpL;
  6879. cur = inpL;
  6880. // self_attention
  6881. {
  6882. // compute Q and K and RoPE them
  6883. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6884. cb(Qcur, "Qcur", il);
  6885. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6886. cb(Kcur, "Kcur", il);
  6887. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6888. cb(Vcur, "Vcur", il);
  6889. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  6890. LLM_NORM_RMS, il);
  6891. cb(Qcur, "Qcur_normed", il);
  6892. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  6893. LLM_NORM_RMS, il);
  6894. cb(Kcur, "Kcur_normed", il);
  6895. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6896. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6897. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6898. Qcur = ggml_rope_ext(
  6899. ctx0, Qcur, inp_pos, nullptr,
  6900. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6901. ext_factor, attn_factor, beta_fast, beta_slow
  6902. );
  6903. Kcur = ggml_rope_ext(
  6904. ctx0, Kcur, inp_pos, nullptr,
  6905. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6906. ext_factor, attn_factor, beta_fast, beta_slow
  6907. );
  6908. cb(Qcur, "Qcur", il);
  6909. cb(Kcur, "Kcur", il);
  6910. cb(Vcur, "Vcur", il);
  6911. cur = build_attn(inp_attn, gf,
  6912. model.layers[il].wo, NULL,
  6913. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6914. }
  6915. cur = build_norm(cur,
  6916. model.layers[il].attn_post_norm, NULL,
  6917. LLM_NORM_RMS, il);
  6918. cb(cur, "attn_post_norm", il);
  6919. if (il == n_layer - 1) {
  6920. // skip computing output for unused tokens
  6921. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6922. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6923. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6924. }
  6925. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6926. cb(ffn_inp, "ffn_inp", il);
  6927. // feed-forward network
  6928. cur = build_ffn(ffn_inp,
  6929. model.layers[il].ffn_up, NULL, NULL,
  6930. model.layers[il].ffn_gate, NULL, NULL,
  6931. model.layers[il].ffn_down, NULL, NULL,
  6932. NULL,
  6933. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6934. cb(cur, "ffn_out", il);
  6935. cur = build_norm(cur,
  6936. model.layers[il].ffn_post_norm, NULL,
  6937. LLM_NORM_RMS, -1);
  6938. cb(cur, "ffn_post_norm", -1);
  6939. cur = ggml_add(ctx0, cur, ffn_inp);
  6940. cb(cur, "ffn_out", il);
  6941. cur = build_cvec(cur, il);
  6942. cb(cur, "l_out", il);
  6943. // input for next layer
  6944. inpL = cur;
  6945. }
  6946. cur = inpL;
  6947. cur = build_norm(cur,
  6948. model.output_norm, NULL,
  6949. LLM_NORM_RMS, -1);
  6950. cb(cur, "result_norm", -1);
  6951. res->t_embd = cur;
  6952. // lm_head
  6953. cur = build_lora_mm(model.output, cur);
  6954. cb(cur, "result_output", -1);
  6955. res->t_logits = cur;
  6956. ggml_build_forward_expand(gf, cur);
  6957. }
  6958. };
  6959. // based on the build_qwen2moe() function, changes:
  6960. // * removed shared experts
  6961. // * removed bias
  6962. // * added q, k norm
  6963. struct llm_build_olmoe : public llm_graph_context {
  6964. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6965. const int64_t n_embd_head = hparams.n_embd_head_v;
  6966. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6967. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6968. ggml_tensor * cur;
  6969. ggml_tensor * inpL;
  6970. inpL = build_inp_embd(model.tok_embd);
  6971. // inp_pos - contains the positions
  6972. ggml_tensor * inp_pos = build_inp_pos();
  6973. auto * inp_attn = build_attn_inp_kv_unified();
  6974. for (int il = 0; il < n_layer; ++il) {
  6975. ggml_tensor * inpSA = inpL;
  6976. // norm
  6977. cur = build_norm(inpL,
  6978. model.layers[il].attn_norm, NULL,
  6979. LLM_NORM_RMS, il);
  6980. cb(cur, "attn_norm", il);
  6981. // self_attention
  6982. {
  6983. // compute Q and K and RoPE them
  6984. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6985. cb(Qcur, "Qcur", il);
  6986. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6987. cb(Kcur, "Kcur", il);
  6988. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6989. cb(Vcur, "Vcur", il);
  6990. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  6991. LLM_NORM_RMS, il);
  6992. cb(Qcur, "Qcur_normed", il);
  6993. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  6994. LLM_NORM_RMS, il);
  6995. cb(Kcur, "Kcur_normed", il);
  6996. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6997. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6998. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6999. Qcur = ggml_rope_ext(
  7000. ctx0, Qcur, inp_pos, nullptr,
  7001. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7002. ext_factor, attn_factor, beta_fast, beta_slow
  7003. );
  7004. Kcur = ggml_rope_ext(
  7005. ctx0, Kcur, inp_pos, nullptr,
  7006. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7007. ext_factor, attn_factor, beta_fast, beta_slow
  7008. );
  7009. cb(Qcur, "Qcur", il);
  7010. cb(Kcur, "Kcur", il);
  7011. cb(Vcur, "Vcur", il);
  7012. cur = build_attn(inp_attn, gf,
  7013. model.layers[il].wo, NULL,
  7014. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7015. }
  7016. if (il == n_layer - 1) {
  7017. // skip computing output for unused tokens
  7018. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7019. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7020. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7021. }
  7022. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7023. cb(ffn_inp, "ffn_inp", il);
  7024. // MoE branch
  7025. cur = build_norm(ffn_inp,
  7026. model.layers[il].ffn_norm, NULL,
  7027. LLM_NORM_RMS, il);
  7028. cb(cur, "ffn_norm", il);
  7029. cur = build_moe_ffn(cur,
  7030. model.layers[il].ffn_gate_inp,
  7031. model.layers[il].ffn_up_exps,
  7032. model.layers[il].ffn_gate_exps,
  7033. model.layers[il].ffn_down_exps,
  7034. nullptr,
  7035. n_expert, n_expert_used,
  7036. LLM_FFN_SILU, false,
  7037. false, 0.0,
  7038. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7039. il);
  7040. cb(cur, "ffn_moe_out", il);
  7041. cur = ggml_add(ctx0, cur, ffn_inp);
  7042. cur = build_cvec(cur, il);
  7043. cb(cur, "l_out", il);
  7044. // input for next layer
  7045. inpL = cur;
  7046. }
  7047. cur = inpL;
  7048. cur = build_norm(cur,
  7049. model.output_norm, NULL,
  7050. LLM_NORM_RMS, -1);
  7051. cb(cur, "result_norm", -1);
  7052. res->t_embd = cur;
  7053. // lm_head
  7054. cur = build_lora_mm(model.output, cur);
  7055. cb(cur, "result_output", -1);
  7056. res->t_logits = cur;
  7057. ggml_build_forward_expand(gf, cur);
  7058. }
  7059. };
  7060. struct llm_build_openelm : public llm_graph_context {
  7061. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7062. const int64_t n_embd_head = hparams.n_embd_head_v;
  7063. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7064. ggml_tensor * cur;
  7065. ggml_tensor * inpL;
  7066. inpL = build_inp_embd(model.tok_embd);
  7067. // inp_pos - contains the positions
  7068. ggml_tensor * inp_pos = build_inp_pos();
  7069. auto * inp_attn = build_attn_inp_kv_unified();
  7070. for (int il = 0; il < n_layer; ++il) {
  7071. const int64_t n_head = hparams.n_head(il);
  7072. const int64_t n_head_kv = hparams.n_head_kv(il);
  7073. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7074. cur = inpL;
  7075. ggml_tensor * residual = cur;
  7076. // norm
  7077. cur = build_norm(inpL,
  7078. model.layers[il].attn_norm, NULL,
  7079. LLM_NORM_RMS, il);
  7080. cb(cur, "attn_norm", il);
  7081. // self-attention
  7082. {
  7083. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7084. cb(cur, "wqkv", il);
  7085. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7086. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7087. cb(Qcur, "Qcur", il);
  7088. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7089. cb(Kcur, "Kcur", il);
  7090. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7091. cb(Vcur, "Vcur", il);
  7092. Qcur = build_norm(Qcur,
  7093. model.layers[il].attn_q_norm, NULL,
  7094. LLM_NORM_RMS, il);
  7095. cb(Qcur, "Qcur", il);
  7096. Kcur = build_norm(Kcur,
  7097. model.layers[il].attn_k_norm, NULL,
  7098. LLM_NORM_RMS, il);
  7099. cb(Kcur, "Kcur", il);
  7100. Qcur = ggml_rope_ext(
  7101. ctx0, Qcur, inp_pos, NULL,
  7102. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7103. ext_factor, attn_factor, beta_fast, beta_slow
  7104. );
  7105. Kcur = ggml_rope_ext(
  7106. ctx0, Kcur, inp_pos, NULL,
  7107. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7108. ext_factor, attn_factor, beta_fast, beta_slow
  7109. );
  7110. cb(Qcur, "Qcur", il);
  7111. cb(Kcur, "Kcur", il);
  7112. cb(Qcur, "Vcur", il);
  7113. cur = build_attn(inp_attn, gf,
  7114. model.layers[il].wo, NULL,
  7115. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7116. }
  7117. if (il == n_layer - 1) {
  7118. // skip computing output for unused tokens
  7119. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7120. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7121. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7122. }
  7123. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7124. cb(ffn_inp, "ffn_inp", il);
  7125. // feed-forward network
  7126. {
  7127. cur = build_norm(ffn_inp,
  7128. model.layers[il].ffn_norm, NULL,
  7129. LLM_NORM_RMS, il);
  7130. cb(cur, "ffn_norm", il);
  7131. cur = build_ffn(cur,
  7132. model.layers[il].ffn_up, NULL, NULL,
  7133. model.layers[il].ffn_gate, NULL, NULL,
  7134. model.layers[il].ffn_down, NULL, NULL,
  7135. NULL,
  7136. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7137. cb(cur, "ffn_out", il);
  7138. }
  7139. cur = ggml_add(ctx0, cur, ffn_inp);
  7140. cur = build_cvec(cur, il);
  7141. cb(cur, "l_out", il);
  7142. inpL = cur;
  7143. }
  7144. cur = inpL;
  7145. // norm
  7146. cur = build_norm(cur,
  7147. model.output_norm, NULL,
  7148. LLM_NORM_RMS, -1);
  7149. cb(cur, "result_norm", -1);
  7150. res->t_embd = cur;
  7151. cur = build_lora_mm(model.output, cur);
  7152. cb(cur, "result_output", -1);
  7153. res->t_logits = cur;
  7154. ggml_build_forward_expand(gf, cur);
  7155. }
  7156. };
  7157. struct llm_build_gptneox : public llm_graph_context {
  7158. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7159. const int64_t n_embd_head = hparams.n_embd_head_v;
  7160. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7161. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7162. ggml_tensor * cur;
  7163. ggml_tensor * inpL;
  7164. inpL = build_inp_embd(model.tok_embd);
  7165. // inp_pos - contains the positions
  7166. ggml_tensor * inp_pos = build_inp_pos();
  7167. auto * inp_attn = build_attn_inp_kv_unified();
  7168. for (int il = 0; il < n_layer; ++il) {
  7169. cur = build_norm(inpL,
  7170. model.layers[il].attn_norm,
  7171. model.layers[il].attn_norm_b,
  7172. LLM_NORM, il);
  7173. cb(cur, "attn_norm", il);
  7174. // self-attention
  7175. {
  7176. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7177. cb(cur, "wqkv", il);
  7178. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7179. cb(cur, "bqkv", il);
  7180. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7181. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7182. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7183. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7184. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7185. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7186. Qcur = ggml_rope_ext(
  7187. ctx0, Qcur, inp_pos, nullptr,
  7188. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7189. ext_factor, attn_factor, beta_fast, beta_slow
  7190. );
  7191. Kcur = ggml_rope_ext(
  7192. ctx0, Kcur, inp_pos, nullptr,
  7193. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7194. ext_factor, attn_factor, beta_fast, beta_slow
  7195. );
  7196. cb(Qcur, "Qcur", il);
  7197. cb(Kcur, "Kcur", il);
  7198. cb(Vcur, "Vcur", il);
  7199. cur = build_attn(inp_attn, gf,
  7200. model.layers[il].wo, model.layers[il].bo,
  7201. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7202. }
  7203. if (il == n_layer - 1) {
  7204. // skip computing output for unused tokens
  7205. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7206. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7207. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7208. }
  7209. // ffn
  7210. if (hparams.use_par_res) {
  7211. // attention and ffn are computed in parallel
  7212. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7213. ggml_tensor * attn_out = cur;
  7214. cur = build_norm(inpL,
  7215. model.layers[il].ffn_norm,
  7216. model.layers[il].ffn_norm_b,
  7217. LLM_NORM, il);
  7218. cb(cur, "ffn_norm", il);
  7219. cur = build_ffn(cur,
  7220. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7221. NULL, NULL, NULL,
  7222. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7223. NULL,
  7224. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7225. cb(cur, "ffn_out", il);
  7226. cur = ggml_add(ctx0, cur, inpL);
  7227. cb(cur, "ffn_out", il);
  7228. cur = ggml_add(ctx0, cur, attn_out);
  7229. cur = build_cvec(cur, il);
  7230. cb(cur, "l_out", il);
  7231. // input for next layer
  7232. inpL = cur;
  7233. } else {
  7234. // attention and ffn are computed sequentially
  7235. // x = x + attn(ln1(x))
  7236. // x = x + ffn(ln2(x))
  7237. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7238. cb(ffn_inp, "ffn_inp", il);
  7239. cur = build_norm(ffn_inp,
  7240. model.layers[il].ffn_norm,
  7241. model.layers[il].ffn_norm_b,
  7242. LLM_NORM, il);
  7243. cb(cur, "ffn_norm", il);
  7244. cur = build_ffn(cur,
  7245. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7246. NULL, NULL, NULL,
  7247. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7248. NULL,
  7249. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7250. cb(cur, "ffn_out", il);
  7251. cur = ggml_add(ctx0, cur, ffn_inp);
  7252. cur = build_cvec(cur, il);
  7253. cb(cur, "l_out", il);
  7254. // input for next layer
  7255. inpL = cur;
  7256. }
  7257. }
  7258. cur = build_norm(inpL,
  7259. model.output_norm,
  7260. model.output_norm_b,
  7261. LLM_NORM, -1);
  7262. cb(cur, "result_norm", -1);
  7263. res->t_embd = cur;
  7264. cur = build_lora_mm(model.output, cur);
  7265. cb(cur, "result_output", -1);
  7266. res->t_logits = cur;
  7267. ggml_build_forward_expand(gf, cur);
  7268. }
  7269. };
  7270. struct llm_build_arctic : public llm_graph_context {
  7271. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7272. const int64_t n_embd_head = hparams.n_embd_head_v;
  7273. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7274. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7275. ggml_tensor * cur;
  7276. ggml_tensor * inpL;
  7277. inpL = build_inp_embd(model.tok_embd);
  7278. // inp_pos - contains the positions
  7279. ggml_tensor * inp_pos = build_inp_pos();
  7280. auto * inp_attn = build_attn_inp_kv_unified();
  7281. for (int il = 0; il < n_layer; ++il) {
  7282. ggml_tensor * inpSA = inpL;
  7283. // norm
  7284. cur = build_norm(inpL,
  7285. model.layers[il].attn_norm, NULL,
  7286. LLM_NORM_RMS, il);
  7287. cb(cur, "attn_norm", il);
  7288. // self-attention
  7289. {
  7290. // compute Q and K and RoPE them
  7291. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7292. cb(Qcur, "Qcur", il);
  7293. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7294. cb(Kcur, "Kcur", il);
  7295. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7296. cb(Vcur, "Vcur", il);
  7297. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7298. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7299. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7300. Qcur = ggml_rope_ext(
  7301. ctx0, Qcur, inp_pos, nullptr,
  7302. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7303. ext_factor, attn_factor, beta_fast, beta_slow
  7304. );
  7305. Kcur = ggml_rope_ext(
  7306. ctx0, Kcur, inp_pos, nullptr,
  7307. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7308. ext_factor, attn_factor, beta_fast, beta_slow
  7309. );
  7310. cb(Qcur, "Qcur", il);
  7311. cb(Kcur, "Kcur", il);
  7312. cb(Vcur, "Vcur", il);
  7313. cur = build_attn(inp_attn, gf,
  7314. model.layers[il].wo, NULL,
  7315. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7316. }
  7317. if (il == n_layer - 1) {
  7318. // skip computing output for unused tokens
  7319. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7320. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7321. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7322. }
  7323. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7324. cb(ffn_inp, "ffn_inp", il);
  7325. // feed-forward network
  7326. cur = build_norm(ffn_inp,
  7327. model.layers[il].ffn_norm, NULL,
  7328. LLM_NORM_RMS, il);
  7329. cb(cur, "ffn_norm", il);
  7330. cur = build_ffn(cur,
  7331. model.layers[il].ffn_up, NULL, NULL,
  7332. model.layers[il].ffn_gate, NULL, NULL,
  7333. model.layers[il].ffn_down, NULL, NULL,
  7334. NULL,
  7335. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7336. cb(cur, "ffn_out", il);
  7337. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7338. cb(ffn_out, "ffn_out", il);
  7339. // MoE
  7340. cur = build_norm(inpSA,
  7341. model.layers[il].ffn_norm_exps, NULL,
  7342. LLM_NORM_RMS, il);
  7343. cb(cur, "ffn_norm_exps", il);
  7344. cur = build_moe_ffn(cur,
  7345. model.layers[il].ffn_gate_inp,
  7346. model.layers[il].ffn_up_exps,
  7347. model.layers[il].ffn_gate_exps,
  7348. model.layers[il].ffn_down_exps,
  7349. nullptr,
  7350. n_expert, n_expert_used,
  7351. LLM_FFN_SILU, true,
  7352. false, 0.0,
  7353. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7354. il);
  7355. cb(cur, "ffn_moe_out", il);
  7356. cur = ggml_add(ctx0, cur, ffn_out);
  7357. cb(cur, "ffn_out", il);
  7358. cur = build_cvec(cur, il);
  7359. cb(cur, "l_out", il);
  7360. // input for next layer
  7361. inpL = cur;
  7362. }
  7363. cur = inpL;
  7364. cur = build_norm(cur,
  7365. model.output_norm, NULL,
  7366. LLM_NORM_RMS, -1);
  7367. cb(cur, "result_norm", -1);
  7368. res->t_embd = cur;
  7369. // lm_head
  7370. cur = build_lora_mm(model.output, cur);
  7371. cb(cur, "result_output", -1);
  7372. res->t_logits = cur;
  7373. ggml_build_forward_expand(gf, cur);
  7374. }
  7375. };
  7376. struct llm_build_deepseek : public llm_graph_context {
  7377. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7378. const int64_t n_embd_head = hparams.n_embd_head_v;
  7379. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7380. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7381. ggml_tensor * cur;
  7382. ggml_tensor * inpL;
  7383. inpL = build_inp_embd(model.tok_embd);
  7384. // inp_pos - contains the positions
  7385. ggml_tensor * inp_pos = build_inp_pos();
  7386. auto * inp_attn = build_attn_inp_kv_unified();
  7387. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7388. for (int il = 0; il < n_layer; ++il) {
  7389. ggml_tensor * inpSA = inpL;
  7390. // norm
  7391. cur = build_norm(inpL,
  7392. model.layers[il].attn_norm, NULL,
  7393. LLM_NORM_RMS, il);
  7394. cb(cur, "attn_norm", il);
  7395. // self-attention
  7396. {
  7397. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7398. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  7399. // compute Q and K and RoPE them
  7400. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7401. cb(Qcur, "Qcur", il);
  7402. if (model.layers[il].bq) {
  7403. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7404. cb(Qcur, "Qcur", il);
  7405. }
  7406. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7407. cb(Kcur, "Kcur", il);
  7408. if (model.layers[il].bk) {
  7409. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7410. cb(Kcur, "Kcur", il);
  7411. }
  7412. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7413. cb(Vcur, "Vcur", il);
  7414. if (model.layers[il].bv) {
  7415. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7416. cb(Vcur, "Vcur", il);
  7417. }
  7418. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7419. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7420. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7421. Qcur = ggml_rope_ext(
  7422. ctx0, Qcur, inp_pos, rope_factors,
  7423. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7424. ext_factor, attn_factor, beta_fast, beta_slow
  7425. );
  7426. Kcur = ggml_rope_ext(
  7427. ctx0, Kcur, inp_pos, rope_factors,
  7428. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7429. ext_factor, attn_factor, beta_fast, beta_slow
  7430. );
  7431. cb(Qcur, "Qcur", il);
  7432. cb(Kcur, "Kcur", il);
  7433. cb(Vcur, "Vcur", il);
  7434. cur = build_attn(inp_attn, gf,
  7435. model.layers[il].wo, model.layers[il].bo,
  7436. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  7437. }
  7438. if (il == n_layer - 1) {
  7439. // skip computing output for unused tokens
  7440. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7441. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7442. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7443. }
  7444. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7445. cb(ffn_inp, "ffn_inp", il);
  7446. cur = build_norm(ffn_inp,
  7447. model.layers[il].ffn_norm, NULL,
  7448. LLM_NORM_RMS, il);
  7449. cb(cur, "ffn_norm", il);
  7450. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7451. cur = build_ffn(cur,
  7452. model.layers[il].ffn_up, NULL, NULL,
  7453. model.layers[il].ffn_gate, NULL, NULL,
  7454. model.layers[il].ffn_down, NULL, NULL,
  7455. NULL,
  7456. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7457. cb(cur, "ffn_out", il);
  7458. } else {
  7459. // MoE branch
  7460. ggml_tensor * moe_out =
  7461. build_moe_ffn(cur,
  7462. model.layers[il].ffn_gate_inp,
  7463. model.layers[il].ffn_up_exps,
  7464. model.layers[il].ffn_gate_exps,
  7465. model.layers[il].ffn_down_exps,
  7466. nullptr,
  7467. n_expert, n_expert_used,
  7468. LLM_FFN_SILU, false,
  7469. false, hparams.expert_weights_scale,
  7470. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7471. il);
  7472. cb(moe_out, "ffn_moe_out", il);
  7473. // FFN shared expert
  7474. {
  7475. ggml_tensor * ffn_shexp = build_ffn(cur,
  7476. model.layers[il].ffn_up_shexp, NULL, NULL,
  7477. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7478. model.layers[il].ffn_down_shexp, NULL, NULL,
  7479. NULL,
  7480. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7481. cb(ffn_shexp, "ffn_shexp", il);
  7482. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  7483. cb(cur, "ffn_out", il);
  7484. }
  7485. }
  7486. cur = ggml_add(ctx0, cur, ffn_inp);
  7487. cur = build_cvec(cur, il);
  7488. cb(cur, "l_out", il);
  7489. // input for next layer
  7490. inpL = cur;
  7491. }
  7492. cur = inpL;
  7493. cur = build_norm(cur,
  7494. model.output_norm, NULL,
  7495. LLM_NORM_RMS, -1);
  7496. cb(cur, "result_norm", -1);
  7497. res->t_embd = cur;
  7498. // lm_head
  7499. cur = build_lora_mm(model.output, cur);
  7500. cb(cur, "result_output", -1);
  7501. res->t_logits = cur;
  7502. ggml_build_forward_expand(gf, cur);
  7503. }
  7504. };
  7505. struct llm_build_deepseek2 : public llm_graph_context {
  7506. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7507. bool is_lite = (hparams.n_layer == 27);
  7508. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  7509. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  7510. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  7511. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  7512. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  7513. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  7514. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  7515. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  7516. ggml_tensor * cur;
  7517. ggml_tensor * inpL;
  7518. // {n_embd, n_tokens}
  7519. inpL = build_inp_embd(model.tok_embd);
  7520. // inp_pos - contains the positions
  7521. ggml_tensor * inp_pos = build_inp_pos();
  7522. auto * inp_attn = build_attn_inp_kv_unified();
  7523. for (int il = 0; il < n_layer; ++il) {
  7524. ggml_tensor * inpSA = inpL;
  7525. // norm
  7526. cur = build_norm(inpL,
  7527. model.layers[il].attn_norm, NULL,
  7528. LLM_NORM_RMS, il);
  7529. cb(cur, "attn_norm", il);
  7530. // self_attention
  7531. {
  7532. ggml_tensor * q = NULL;
  7533. if (!is_lite) {
  7534. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  7535. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  7536. cb(q, "q", il);
  7537. q = build_norm(q,
  7538. model.layers[il].attn_q_a_norm, NULL,
  7539. LLM_NORM_RMS, il);
  7540. cb(q, "q", il);
  7541. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  7542. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  7543. cb(q, "q", il);
  7544. } else {
  7545. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7546. cb(q, "q", il);
  7547. }
  7548. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  7549. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  7550. ggml_row_size(q->type, hparams.n_embd_head_k),
  7551. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  7552. 0);
  7553. cb(q_nope, "q_nope", il);
  7554. // and {n_head * n_embd_head_qk_rope, n_tokens}
  7555. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  7556. ggml_row_size(q->type, hparams.n_embd_head_k),
  7557. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  7558. ggml_row_size(q->type, n_embd_head_qk_nope));
  7559. cb(q_pe, "q_pe", il);
  7560. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  7561. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  7562. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  7563. // split into {kv_lora_rank, n_tokens}
  7564. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  7565. kv_pe_compresseed->nb[1],
  7566. 0);
  7567. cb(kv_compressed, "kv_compressed", il);
  7568. // and {n_embd_head_qk_rope, n_tokens}
  7569. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  7570. kv_pe_compresseed->nb[1],
  7571. kv_pe_compresseed->nb[1],
  7572. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  7573. cb(k_pe, "k_pe", il);
  7574. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  7575. kv_compressed = ggml_cont(ctx0, kv_compressed);
  7576. kv_compressed = build_norm(kv_compressed,
  7577. model.layers[il].attn_kv_a_norm, NULL,
  7578. LLM_NORM_RMS, il);
  7579. cb(kv_compressed, "kv_compressed", il);
  7580. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  7581. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  7582. cb(kv, "kv", il);
  7583. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  7584. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  7585. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  7586. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  7587. 0);
  7588. cb(k_nope, "k_nope", il);
  7589. // and {n_head * n_embd_head_v, n_tokens}
  7590. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  7591. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  7592. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  7593. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  7594. cb(v_states, "v_states", il);
  7595. v_states = ggml_cont(ctx0, v_states);
  7596. cb(v_states, "v_states", il);
  7597. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  7598. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  7599. 0);
  7600. cb(v_states, "v_states", il);
  7601. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  7602. q_pe = ggml_rope_ext(
  7603. ctx0, q_pe, inp_pos, nullptr,
  7604. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7605. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  7606. );
  7607. cb(q_pe, "q_pe", il);
  7608. // shared RoPE key
  7609. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  7610. k_pe = ggml_rope_ext(
  7611. ctx0, k_pe, inp_pos, nullptr,
  7612. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7613. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  7614. );
  7615. cb(k_pe, "k_pe", il);
  7616. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  7617. cb(q_states, "q_states", il);
  7618. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  7619. cb(k_states, "k_states", il);
  7620. cur = build_attn(inp_attn, gf,
  7621. model.layers[il].wo, NULL,
  7622. q_states, k_states, v_states, nullptr, kq_scale, il);
  7623. }
  7624. if (il == n_layer - 1) {
  7625. // skip computing output for unused tokens
  7626. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7627. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7628. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7629. }
  7630. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7631. cb(ffn_inp, "ffn_inp", il);
  7632. cur = build_norm(ffn_inp,
  7633. model.layers[il].ffn_norm, NULL,
  7634. LLM_NORM_RMS, il);
  7635. cb(cur, "ffn_norm", il);
  7636. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7637. cur = build_ffn(cur,
  7638. model.layers[il].ffn_up, NULL, NULL,
  7639. model.layers[il].ffn_gate, NULL, NULL,
  7640. model.layers[il].ffn_down, NULL, NULL,
  7641. NULL,
  7642. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7643. cb(cur, "ffn_out", il);
  7644. } else {
  7645. // MoE branch
  7646. ggml_tensor * moe_out =
  7647. build_moe_ffn(cur,
  7648. model.layers[il].ffn_gate_inp,
  7649. model.layers[il].ffn_up_exps,
  7650. model.layers[il].ffn_gate_exps,
  7651. model.layers[il].ffn_down_exps,
  7652. model.layers[il].ffn_exp_probs_b,
  7653. n_expert, n_expert_used,
  7654. LLM_FFN_SILU, hparams.expert_weights_norm,
  7655. true, hparams.expert_weights_scale,
  7656. (llama_expert_gating_func_type) hparams.expert_gating_func,
  7657. il);
  7658. cb(moe_out, "ffn_moe_out", il);
  7659. // FFN shared expert
  7660. {
  7661. ggml_tensor * ffn_shexp = build_ffn(cur,
  7662. model.layers[il].ffn_up_shexp, NULL, NULL,
  7663. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7664. model.layers[il].ffn_down_shexp, NULL, NULL,
  7665. NULL,
  7666. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7667. cb(ffn_shexp, "ffn_shexp", il);
  7668. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  7669. cb(cur, "ffn_out", il);
  7670. }
  7671. }
  7672. cur = ggml_add(ctx0, cur, ffn_inp);
  7673. cur = build_cvec(cur, il);
  7674. cb(cur, "l_out", il);
  7675. // input for next layer
  7676. inpL = cur;
  7677. }
  7678. cur = inpL;
  7679. cur = build_norm(cur,
  7680. model.output_norm, NULL,
  7681. LLM_NORM_RMS, -1);
  7682. cb(cur, "result_norm", -1);
  7683. res->t_embd = cur;
  7684. // lm_head
  7685. cur = ggml_mul_mat(ctx0, model.output, cur);
  7686. cb(cur, "result_output", -1);
  7687. res->t_logits = cur;
  7688. ggml_build_forward_expand(gf, cur);
  7689. }
  7690. };
  7691. struct llm_build_bitnet : public llm_graph_context {
  7692. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7693. const int64_t n_embd_head = hparams.n_embd_head_v;
  7694. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7695. ggml_tensor * cur;
  7696. ggml_tensor * inpL;
  7697. inpL = build_inp_embd(model.tok_embd);
  7698. // inp_pos - contains the positions
  7699. ggml_tensor * inp_pos = build_inp_pos();
  7700. auto * inp_attn = build_attn_inp_kv_unified();
  7701. for (int il = 0; il < n_layer; ++il) {
  7702. ggml_tensor * inpSA = inpL;
  7703. cur = build_norm(inpL,
  7704. model.layers[il].attn_norm, NULL,
  7705. LLM_NORM_RMS, il);
  7706. cb(cur, "attn_norm", il);
  7707. // self-attention
  7708. {
  7709. // compute Q and K and RoPE them
  7710. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7711. if (model.layers[il].wq_scale) {
  7712. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  7713. }
  7714. cb(Qcur, "Qcur", il);
  7715. if (model.layers[il].bq) {
  7716. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7717. cb(Qcur, "Qcur", il);
  7718. }
  7719. // B1.K
  7720. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7721. if (model.layers[il].wk_scale) {
  7722. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  7723. }
  7724. cb(Kcur, "Kcur", il);
  7725. if (model.layers[il].bk) {
  7726. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7727. cb(Kcur, "Kcur", il);
  7728. }
  7729. // B1.V
  7730. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7731. if (model.layers[il].wv_scale) {
  7732. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  7733. }
  7734. cb(Vcur, "Vcur", il);
  7735. if (model.layers[il].bv) {
  7736. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7737. cb(Vcur, "Vcur", il);
  7738. }
  7739. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7740. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7741. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7742. Qcur = ggml_rope_ext(
  7743. ctx0, Qcur, inp_pos, nullptr,
  7744. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7745. ext_factor, attn_factor, beta_fast, beta_slow
  7746. );
  7747. Kcur = ggml_rope_ext(
  7748. ctx0, Kcur, inp_pos, nullptr,
  7749. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7750. ext_factor, attn_factor, beta_fast, beta_slow
  7751. );
  7752. cb(Qcur, "Qcur", il);
  7753. cb(Kcur, "Kcur", il);
  7754. cb(Vcur, "Vcur", il);
  7755. cur = build_attn(inp_attn, gf,
  7756. NULL, NULL,
  7757. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7758. cur = build_norm(cur,
  7759. model.layers[il].attn_sub_norm, NULL,
  7760. LLM_NORM_RMS, il);
  7761. cb(cur, "attn_sub_norm", il);
  7762. cur = build_lora_mm(model.layers[il].wo, cur);
  7763. if (model.layers[il].wo_scale) {
  7764. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  7765. }
  7766. if (model.layers[il].bo) {
  7767. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7768. }
  7769. cb(cur, "attn_o_out", il);
  7770. }
  7771. if (il == n_layer - 1) {
  7772. // skip computing output for unused tokens
  7773. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7774. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7775. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7776. }
  7777. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7778. cb(ffn_inp, "ffn_inp", il);
  7779. // feed-forward forward
  7780. cur = build_norm(ffn_inp,
  7781. model.layers[il].ffn_norm, NULL,
  7782. LLM_NORM_RMS, il);
  7783. cb(cur, "ffn_norm", il);
  7784. cur = build_ffn(cur,
  7785. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  7786. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  7787. NULL, NULL, NULL,
  7788. NULL,
  7789. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7790. cb(cur, "ffn_sub_out", il);
  7791. cur = build_norm(cur,
  7792. model.layers[il].ffn_sub_norm, NULL,
  7793. LLM_NORM_RMS, il);
  7794. cb(cur, "ffn_sub_norm", il);
  7795. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  7796. if (model.layers[il].ffn_down_scale) {
  7797. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  7798. }
  7799. cb(cur, "ffn_down", il);
  7800. cur = ggml_add(ctx0, cur, ffn_inp);
  7801. cb(cur, "l_out", il);
  7802. // input for next layer
  7803. inpL = cur;
  7804. }
  7805. cur = inpL;
  7806. cur = build_norm(cur,
  7807. model.output_norm, NULL,
  7808. LLM_NORM_RMS, -1);
  7809. cb(cur, "result_norm", -1);
  7810. res->t_embd = cur;
  7811. // lm_head
  7812. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  7813. cur = build_lora_mm(model.tok_embd, cur);
  7814. cb(cur, "result_output", -1);
  7815. res->t_logits = cur;
  7816. ggml_build_forward_expand(gf, cur);
  7817. }
  7818. };
  7819. struct llm_build_t5_enc : public llm_graph_context {
  7820. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7821. const int64_t n_embd_head = hparams.n_embd_head_v;
  7822. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7823. ggml_tensor * cur;
  7824. ggml_tensor * inpL;
  7825. inpL = build_inp_embd(model.tok_embd);
  7826. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  7827. auto * inp_attn = build_attn_inp_no_cache();
  7828. for (int il = 0; il < n_layer; ++il) {
  7829. ggml_tensor * inpSA = inpL;
  7830. // norm
  7831. cur = build_norm(inpL,
  7832. model.layers[il].attn_norm_enc, NULL,
  7833. LLM_NORM_RMS, il);
  7834. cb(cur, "attn_norm", il);
  7835. // self-attention
  7836. {
  7837. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  7838. cb(Qcur, "Qcur", il);
  7839. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  7840. cb(Kcur, "Kcur", il);
  7841. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  7842. cb(Vcur, "Vcur", il);
  7843. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7844. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7845. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7846. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  7847. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  7848. cur = build_attn(inp_attn, gf,
  7849. model.layers[il].wo_enc, nullptr,
  7850. Qcur, Kcur, Vcur, kq_b, 1.0f, il);
  7851. cb(cur, "kqv_out", il);
  7852. }
  7853. if (il == n_layer - 1) {
  7854. // skip computing output for unused tokens
  7855. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7856. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7857. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7858. }
  7859. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7860. cb(ffn_inp, "ffn_inp", il);
  7861. // feed-forward network
  7862. {
  7863. cur = build_norm(ffn_inp,
  7864. model.layers[il].ffn_norm_enc, NULL,
  7865. LLM_NORM_RMS, il);
  7866. cb(cur, "ffn_norm", il);
  7867. // T5 uses relu, flan-T5 uses gelu-gated
  7868. cur = build_ffn(cur,
  7869. model.layers[il].ffn_up_enc, NULL, NULL,
  7870. model.layers[il].ffn_gate_enc, NULL, NULL,
  7871. model.layers[il].ffn_down_enc, NULL, NULL,
  7872. NULL,
  7873. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  7874. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  7875. il);
  7876. cb(cur, "ffn_out", il);
  7877. }
  7878. cur = ggml_add(ctx0, cur, ffn_inp);
  7879. cb(cur, "ffn_out", il);
  7880. cur = build_cvec(cur, il);
  7881. cb(cur, "l_out", il);
  7882. // input for next layer
  7883. inpL = cur;
  7884. }
  7885. cur = inpL;
  7886. cb(cur, "result_embd", -1);
  7887. cur = build_norm(cur,
  7888. model.output_norm_enc, NULL,
  7889. LLM_NORM_RMS, -1);
  7890. cb(cur, "result_norm", -1);
  7891. res->t_embd = cur;
  7892. ggml_build_forward_expand(gf, cur);
  7893. }
  7894. };
  7895. struct llm_build_t5_dec : public llm_graph_context {
  7896. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7897. const int64_t n_embd_head = hparams.n_embd_head_v;
  7898. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7899. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7900. ggml_tensor * cur;
  7901. ggml_tensor * inpL;
  7902. inpL = build_inp_embd(model.tok_embd);
  7903. ggml_tensor * embd_enc = build_inp_cross_embd();
  7904. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  7905. const int64_t n_outputs_enc = embd_enc->ne[1];
  7906. auto * inp_attn_self = build_attn_inp_kv_unified();
  7907. auto * inp_attn_cross = build_attn_inp_cross();
  7908. for (int il = 0; il < n_layer; ++il) {
  7909. ggml_tensor * inpSA = inpL;
  7910. // norm
  7911. cur = build_norm(inpL,
  7912. model.layers[il].attn_norm, NULL,
  7913. LLM_NORM_RMS, il);
  7914. cb(cur, "attn_norm", il);
  7915. // self-attention
  7916. {
  7917. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7918. cb(Qcur, "Qcur", il);
  7919. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7920. cb(Kcur, "Kcur", il);
  7921. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7922. cb(Vcur, "Vcur", il);
  7923. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7924. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7925. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7926. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  7927. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  7928. cur = build_attn(inp_attn_self, gf,
  7929. model.layers[il].wo, model.layers[il].bo,
  7930. Qcur, Kcur, Vcur, kq_b, 1.0f, il);
  7931. cb(cur, "kqv_out", il);
  7932. }
  7933. cur = ggml_add(ctx0, cur, inpSA);
  7934. cb(cur, "cross_inp", il);
  7935. ggml_tensor * inpCA = cur;
  7936. // norm
  7937. cur = build_norm(cur,
  7938. model.layers[il].attn_norm_cross, NULL,
  7939. LLM_NORM_RMS, il);
  7940. cb(cur, "attn_norm_cross", il);
  7941. // cross-attention
  7942. {
  7943. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  7944. cb(Qcur, "Qcur", il);
  7945. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  7946. cb(Kcur, "Kcur", il);
  7947. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  7948. cb(Vcur, "Vcur", il);
  7949. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7950. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  7951. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  7952. cur = build_attn(inp_attn_cross, gf,
  7953. model.layers[il].wo_cross, nullptr,
  7954. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  7955. cb(cur, "kqv_out", il);
  7956. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7957. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7958. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7959. //cb(kq, "kq", il);
  7960. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  7961. //cb(kq, "kq_soft_max_ext", il);
  7962. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  7963. //cb(v, "v", il);
  7964. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  7965. //cb(kqv, "kqv", il);
  7966. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7967. //cb(kqv_merged, "kqv_merged", il);
  7968. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7969. //cb(cur, "kqv_merged_cont", il);
  7970. //ggml_build_forward_expand(gf, cur);
  7971. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  7972. //cb(cur, "kqv_out", il);
  7973. }
  7974. if (il == n_layer - 1) {
  7975. // skip computing output for unused tokens
  7976. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7977. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7978. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7979. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  7980. }
  7981. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  7982. cb(ffn_inp, "ffn_inp", il);
  7983. // feed-forward network
  7984. {
  7985. cur = build_norm(ffn_inp,
  7986. model.layers[il].ffn_norm, NULL,
  7987. LLM_NORM_RMS, il);
  7988. cb(cur, "ffn_norm", il);
  7989. // T5 uses relu, flan-T5 uses gelu-gated
  7990. cur = build_ffn(cur,
  7991. model.layers[il].ffn_up, NULL, NULL,
  7992. model.layers[il].ffn_gate, NULL, NULL,
  7993. model.layers[il].ffn_down, NULL, NULL,
  7994. NULL,
  7995. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  7996. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  7997. il);
  7998. cb(cur, "ffn_out", il);
  7999. }
  8000. cur = ggml_add(ctx0, cur, ffn_inp);
  8001. cb(cur, "ffn_out", il);
  8002. cur = build_cvec(cur, il);
  8003. cb(cur, "l_out", il);
  8004. // input for next layer
  8005. inpL = cur;
  8006. }
  8007. cur = inpL;
  8008. cb(cur, "result_embd", -1);
  8009. cur = build_norm(cur,
  8010. model.output_norm, NULL,
  8011. LLM_NORM_RMS, -1);
  8012. cb(cur, "result_norm", -1);
  8013. res->t_embd = cur;
  8014. // lm_head
  8015. cur = build_lora_mm(model.output, cur);
  8016. cb(cur, "result_output", -1);
  8017. res->t_logits = cur;
  8018. ggml_build_forward_expand(gf, cur);
  8019. }
  8020. };
  8021. struct llm_build_jais : public llm_graph_context {
  8022. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8023. const int64_t n_embd_head = hparams.n_embd_head_v;
  8024. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8025. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8026. ggml_tensor * cur;
  8027. ggml_tensor * inpL;
  8028. inpL = build_inp_embd(model.tok_embd);
  8029. auto * inp_attn = build_attn_inp_kv_unified();
  8030. for (int il = 0; il < n_layer; ++il) {
  8031. cur = build_norm(inpL,
  8032. model.layers[il].attn_norm,
  8033. model.layers[il].attn_norm_b,
  8034. LLM_NORM, il);
  8035. cb(cur, "attn_norm", il);
  8036. // self-attention
  8037. {
  8038. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8039. cb(cur, "wqkv", il);
  8040. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8041. cb(cur, "bqkv", il);
  8042. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8043. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8044. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8045. cb(Qcur, "Qcur", il);
  8046. cb(Kcur, "Kcur", il);
  8047. cb(Vcur, "Vcur", il);
  8048. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8049. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8050. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8051. cur = build_attn(inp_attn, gf,
  8052. model.layers[il].wo, model.layers[il].bo,
  8053. Qcur, Kcur, Vcur, nullptr, 1.0f/float(n_embd_head), il);
  8054. }
  8055. if (il == n_layer - 1) {
  8056. // skip computing output for unused tokens
  8057. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8058. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8059. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8060. }
  8061. // add the input
  8062. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8063. cb(ffn_inp, "ffn_inp", il);
  8064. // FF
  8065. {
  8066. cur = build_norm(ffn_inp,
  8067. model.layers[il].ffn_norm,
  8068. model.layers[il].ffn_norm_b,
  8069. LLM_NORM, il);
  8070. cb(cur, "ffn_norm", il);
  8071. cur = build_ffn(cur,
  8072. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8073. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8074. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8075. NULL,
  8076. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8077. cb(cur, "ffn_out", il);
  8078. }
  8079. inpL = ggml_add(ctx0, cur, ffn_inp);
  8080. cb(inpL, "l_out", il);
  8081. }
  8082. cur = build_norm(inpL,
  8083. model.output_norm,
  8084. model.output_norm_b,
  8085. LLM_NORM, -1);
  8086. cb(cur, "result_norm", -1);
  8087. res->t_embd = cur;
  8088. cur = build_lora_mm(model.output, cur);
  8089. cb(cur, "result_output", -1);
  8090. res->t_logits = cur;
  8091. ggml_build_forward_expand(gf, cur);
  8092. }
  8093. };
  8094. struct llm_build_chatglm : public llm_graph_context {
  8095. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8096. const int64_t n_embd_head = hparams.n_embd_head_v;
  8097. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8098. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8099. ggml_tensor * cur;
  8100. ggml_tensor * inpL;
  8101. inpL = build_inp_embd(model.tok_embd);
  8102. // inp_pos - contains the positions
  8103. ggml_tensor * inp_pos = build_inp_pos();
  8104. auto * inp_attn = build_attn_inp_kv_unified();
  8105. for (int il = 0; il < n_layer; ++il) {
  8106. ggml_tensor * inpSA = inpL;
  8107. cur = build_norm(inpL,
  8108. model.layers[il].attn_norm,
  8109. NULL,
  8110. LLM_NORM_RMS, il);
  8111. cb(cur, "attn_norm", il);
  8112. // self-attention
  8113. {
  8114. ggml_tensor * Qcur = nullptr;
  8115. ggml_tensor * Kcur = nullptr;
  8116. ggml_tensor * Vcur = nullptr;
  8117. if (model.layers[il].wqkv == nullptr) {
  8118. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8119. if (model.layers[il].bq) {
  8120. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8121. }
  8122. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8123. if (model.layers[il].bk) {
  8124. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8125. }
  8126. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8127. if (model.layers[il].bv) {
  8128. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8129. }
  8130. } else {
  8131. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8132. cb(cur, "wqkv", il);
  8133. if (model.layers[il].bqkv) {
  8134. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8135. cb(cur, "bqkv", il);
  8136. }
  8137. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8138. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8139. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8140. }
  8141. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8142. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8143. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8144. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8145. Qcur = ggml_rope_ext(
  8146. ctx0, Qcur, inp_pos, nullptr,
  8147. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8148. ext_factor, attn_factor, beta_fast, beta_slow
  8149. );
  8150. Kcur = ggml_rope_ext(
  8151. ctx0, Kcur, inp_pos, nullptr,
  8152. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8153. ext_factor, attn_factor, beta_fast, beta_slow
  8154. );
  8155. cb(Qcur, "Qcur", il);
  8156. cb(Kcur, "Kcur", il);
  8157. cb(Vcur, "Vcur", il);
  8158. cur = build_attn(inp_attn, gf,
  8159. model.layers[il].wo, NULL,
  8160. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8161. }
  8162. if (il == n_layer - 1) {
  8163. // skip computing output for unused tokens
  8164. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8165. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8166. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8167. }
  8168. // Add the input
  8169. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8170. cb(ffn_inp, "ffn_inp", il);
  8171. // FF
  8172. {
  8173. cur = build_norm(ffn_inp,
  8174. model.layers[il].ffn_norm,
  8175. NULL,
  8176. LLM_NORM_RMS, il);
  8177. cb(cur, "ffn_norm", il);
  8178. cur = build_ffn(cur,
  8179. model.layers[il].ffn_up, NULL, NULL,
  8180. NULL, NULL, NULL,
  8181. model.layers[il].ffn_down, NULL, NULL,
  8182. NULL,
  8183. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8184. cb(cur, "ffn_out", il);
  8185. }
  8186. inpL = ggml_add(ctx0, cur, ffn_inp);
  8187. cb(inpL, "l_out", il);
  8188. }
  8189. cur = build_norm(inpL,
  8190. model.output_norm,
  8191. NULL,
  8192. LLM_NORM_RMS, -1);
  8193. cb(cur, "result_norm", -1);
  8194. res->t_embd = cur;
  8195. cur = build_lora_mm(model.output, cur);
  8196. cb(cur, "result_output", -1);
  8197. res->t_logits = cur;
  8198. ggml_build_forward_expand(gf, cur);
  8199. }
  8200. };
  8201. struct llm_build_nemotron : public llm_graph_context {
  8202. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8203. const int64_t n_embd_head = hparams.n_embd_head_v;
  8204. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8205. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8206. ggml_tensor * cur;
  8207. ggml_tensor * inpL;
  8208. inpL = build_inp_embd(model.tok_embd);
  8209. // inp_pos - contains the positions
  8210. ggml_tensor * inp_pos = build_inp_pos();
  8211. auto * inp_attn = build_attn_inp_kv_unified();
  8212. for (int il = 0; il < n_layer; ++il) {
  8213. ggml_tensor * inpSA = inpL;
  8214. // norm
  8215. cur = build_norm(inpL,
  8216. model.layers[il].attn_norm,
  8217. model.layers[il].attn_norm_b,
  8218. LLM_NORM, il);
  8219. cb(cur, "attn_norm", il);
  8220. // self-attention
  8221. {
  8222. // compute Q and K and RoPE them
  8223. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8224. cb(Qcur, "Qcur", il);
  8225. if (model.layers[il].bq) {
  8226. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8227. cb(Qcur, "Qcur", il);
  8228. }
  8229. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8230. cb(Kcur, "Kcur", il);
  8231. if (model.layers[il].bk) {
  8232. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8233. cb(Kcur, "Kcur", il);
  8234. }
  8235. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8236. cb(Vcur, "Vcur", il);
  8237. if (model.layers[il].bv) {
  8238. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8239. cb(Vcur, "Vcur", il);
  8240. }
  8241. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8242. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8243. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8244. Qcur = ggml_rope_ext(
  8245. ctx0, Qcur, inp_pos, nullptr,
  8246. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8247. ext_factor, attn_factor, beta_fast, beta_slow
  8248. );
  8249. Kcur = ggml_rope_ext(
  8250. ctx0, Kcur, inp_pos, nullptr,
  8251. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8252. ext_factor, attn_factor, beta_fast, beta_slow
  8253. );
  8254. cb(Qcur, "Qcur", il);
  8255. cb(Kcur, "Kcur", il);
  8256. cb(Vcur, "Vcur", il);
  8257. cur = build_attn(inp_attn, gf,
  8258. model.layers[il].wo, model.layers[il].bo,
  8259. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8260. }
  8261. if (il == n_layer - 1) {
  8262. // skip computing output for unused tokens
  8263. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8264. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8265. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8266. }
  8267. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8268. cb(ffn_inp, "ffn_inp", il);
  8269. // feed-forward network
  8270. cur = build_norm(ffn_inp,
  8271. model.layers[il].ffn_norm,
  8272. model.layers[il].ffn_norm_b,
  8273. LLM_NORM, il);
  8274. cb(cur, "ffn_norm", il);
  8275. cur = build_ffn(cur,
  8276. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8277. NULL, NULL, NULL,
  8278. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8279. NULL,
  8280. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  8281. cur = ggml_add(ctx0, cur, ffn_inp);
  8282. cb(cur, "ffn_out", il);
  8283. cur = build_cvec(cur, il);
  8284. cb(cur, "l_out", il);
  8285. // input for next layer
  8286. inpL = cur;
  8287. }
  8288. cur = inpL;
  8289. cur = build_norm(cur,
  8290. model.output_norm, model.output_norm_b,
  8291. LLM_NORM, -1);
  8292. cb(cur, "result_norm", -1);
  8293. res->t_embd = cur;
  8294. // lm_head
  8295. cur = build_lora_mm(model.output, cur);
  8296. cb(cur, "result_output", -1);
  8297. res->t_logits = cur;
  8298. ggml_build_forward_expand(gf, cur);
  8299. }
  8300. };
  8301. struct llm_build_exaone : public llm_graph_context {
  8302. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8303. const int64_t n_embd_head = hparams.n_embd_head_v;
  8304. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8305. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8306. ggml_tensor * cur;
  8307. ggml_tensor * inpL;
  8308. inpL = build_inp_embd(model.tok_embd);
  8309. // inp_pos - contains the positions
  8310. ggml_tensor * inp_pos = build_inp_pos();
  8311. auto * inp_attn = build_attn_inp_kv_unified();
  8312. for (int il = 0; il < n_layer; ++il) {
  8313. ggml_tensor * inpSA = inpL;
  8314. // norm
  8315. cur = build_norm(inpL,
  8316. model.layers[il].attn_norm, NULL,
  8317. LLM_NORM_RMS, il);
  8318. cb(cur, "attn_norm", il);
  8319. // self-attention
  8320. {
  8321. // rope freq factors for llama3; may return nullptr for llama2 and other models
  8322. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  8323. // compute Q and K and RoPE them
  8324. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8325. cb(Qcur, "Qcur", il);
  8326. if (model.layers[il].bq) {
  8327. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8328. cb(Qcur, "Qcur", il);
  8329. }
  8330. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8331. cb(Kcur, "Kcur", il);
  8332. if (model.layers[il].bk) {
  8333. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8334. cb(Kcur, "Kcur", il);
  8335. }
  8336. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8337. cb(Vcur, "Vcur", il);
  8338. if (model.layers[il].bv) {
  8339. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8340. cb(Vcur, "Vcur", il);
  8341. }
  8342. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8343. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8344. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8345. Qcur = ggml_rope_ext(
  8346. ctx0, Qcur, inp_pos, rope_factors,
  8347. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8348. ext_factor, attn_factor, beta_fast, beta_slow
  8349. );
  8350. Kcur = ggml_rope_ext(
  8351. ctx0, Kcur, inp_pos, rope_factors,
  8352. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8353. ext_factor, attn_factor, beta_fast, beta_slow
  8354. );
  8355. cb(Qcur, "Qcur", il);
  8356. cb(Kcur, "Kcur", il);
  8357. cb(Vcur, "Vcur", il);
  8358. cur = build_attn(inp_attn, gf,
  8359. model.layers[il].wo, model.layers[il].bo,
  8360. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8361. }
  8362. if (il == n_layer - 1) {
  8363. // skip computing output for unused tokens
  8364. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8365. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8366. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8367. }
  8368. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8369. cb(ffn_inp, "ffn_inp", il);
  8370. // feed-forward network
  8371. cur = build_norm(ffn_inp,
  8372. model.layers[il].ffn_norm, NULL,
  8373. LLM_NORM_RMS, il);
  8374. cb(cur, "ffn_norm", il);
  8375. cur = build_ffn(cur,
  8376. model.layers[il].ffn_up, NULL, NULL,
  8377. model.layers[il].ffn_gate, NULL, NULL,
  8378. model.layers[il].ffn_down, NULL, NULL,
  8379. NULL,
  8380. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8381. cb(cur, "ffn_out", il);
  8382. cur = ggml_add(ctx0, cur, ffn_inp);
  8383. cb(cur, "ffn_out", il);
  8384. cur = build_cvec(cur, il);
  8385. cb(cur, "l_out", il);
  8386. // input for next layer
  8387. inpL = cur;
  8388. }
  8389. cur = inpL;
  8390. cur = build_norm(cur,
  8391. model.output_norm, NULL,
  8392. LLM_NORM_RMS, -1);
  8393. cb(cur, "result_norm", -1);
  8394. res->t_embd = cur;
  8395. // lm_head
  8396. cur = build_lora_mm(model.output, cur);
  8397. cb(cur, "result_output", -1);
  8398. res->t_logits = cur;
  8399. ggml_build_forward_expand(gf, cur);
  8400. }
  8401. };
  8402. struct llm_build_rwkv6_base : public llm_graph_context {
  8403. const llama_model & model;
  8404. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  8405. }
  8406. ggml_tensor * build_rwkv6_channel_mix(
  8407. const llama_layer * layer,
  8408. ggml_tensor * cur,
  8409. ggml_tensor * x_prev,
  8410. llm_arch arch) const {
  8411. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8412. switch (arch) {
  8413. case LLM_ARCH_RWKV6:
  8414. {
  8415. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  8416. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  8417. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  8418. ggml_tensor * k = ggml_sqr(
  8419. ctx0,
  8420. ggml_relu(
  8421. ctx0,
  8422. build_lora_mm(layer->channel_mix_key, xk)
  8423. )
  8424. );
  8425. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  8426. } break;
  8427. default:
  8428. GGML_ABORT("fatal error");
  8429. }
  8430. return cur;
  8431. }
  8432. ggml_tensor * build_rwkv6_time_mix(
  8433. ggml_cgraph * gf,
  8434. ggml_tensor * cur,
  8435. ggml_tensor * x_prev,
  8436. ggml_tensor * state_copy,
  8437. ggml_tensor * state_mask,
  8438. const llama_ubatch & ubatch,
  8439. int il) const {
  8440. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  8441. const auto n_tokens = ubatch.n_tokens;
  8442. const auto n_seqs = ubatch.n_seqs;
  8443. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8444. const auto n_embd = hparams.n_embd;
  8445. const auto head_size = hparams.wkv_head_size;
  8446. const auto n_head = n_embd / head_size;
  8447. const auto n_head_kv = hparams.n_head_kv(il);
  8448. const auto kv_head = kv_self->head;
  8449. const auto & layer = model.layers[il];
  8450. bool is_qrwkv = layer.time_mix_first == nullptr;
  8451. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8452. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  8453. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8454. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  8455. xxx = ggml_reshape_4d(
  8456. ctx0,
  8457. ggml_tanh(
  8458. ctx0,
  8459. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  8460. ),
  8461. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  8462. );
  8463. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  8464. xxx = ggml_mul_mat(
  8465. ctx0,
  8466. ggml_reshape_4d(
  8467. ctx0,
  8468. layer.time_mix_w2,
  8469. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  8470. ),
  8471. xxx
  8472. );
  8473. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  8474. if (layer.time_mix_lerp_fused) {
  8475. // fusing these weights makes some performance improvement
  8476. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  8477. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  8478. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  8479. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8480. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8481. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8482. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8483. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8484. } else {
  8485. // for backward compatibility
  8486. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8487. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8488. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8489. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8490. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8491. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  8492. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  8493. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  8494. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  8495. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  8496. }
  8497. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  8498. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  8499. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  8500. if (layer.time_mix_receptance_b) {
  8501. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  8502. }
  8503. if (layer.time_mix_key_b) {
  8504. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  8505. }
  8506. if (layer.time_mix_value_b) {
  8507. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  8508. }
  8509. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  8510. if (is_qrwkv) {
  8511. g = ggml_sigmoid(ctx0, g);
  8512. } else {
  8513. g = ggml_silu(ctx0, g);
  8514. }
  8515. if (n_head_kv != 0 && n_head_kv != n_head) {
  8516. GGML_ASSERT(n_head % n_head_kv == 0);
  8517. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  8518. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  8519. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  8520. k = ggml_repeat(ctx0, k, tmp);
  8521. v = ggml_repeat(ctx0, v, tmp);
  8522. }
  8523. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  8524. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  8525. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  8526. ggml_tensor * w = ggml_mul_mat(
  8527. ctx0,
  8528. layer.time_mix_decay_w2,
  8529. ggml_tanh(
  8530. ctx0,
  8531. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  8532. )
  8533. );
  8534. w = ggml_add(ctx0, w, layer.time_mix_decay);
  8535. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  8536. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  8537. if (is_qrwkv) {
  8538. // k = k * (1 - w)
  8539. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  8540. }
  8541. ggml_tensor * wkv_state = build_copy_mask_state(
  8542. gf, kv_self->v_l[il], state_copy, state_mask,
  8543. hparams.n_embd_v_s(), n_seqs);
  8544. ggml_tensor * wkv_output;
  8545. if (is_qrwkv) {
  8546. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  8547. } else {
  8548. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  8549. }
  8550. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  8551. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  8552. ggml_build_forward_expand(
  8553. gf,
  8554. ggml_cpy(
  8555. ctx0,
  8556. wkv_state,
  8557. ggml_view_1d(
  8558. ctx0,
  8559. kv_self->v_l[il],
  8560. hparams.n_embd_v_s() * n_seqs,
  8561. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  8562. )
  8563. )
  8564. );
  8565. if (!is_qrwkv) {
  8566. // group norm with head_count groups
  8567. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  8568. cur = ggml_norm(ctx0, cur, 64e-5f);
  8569. // Convert back to regular vectors.
  8570. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8571. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  8572. } else {
  8573. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8574. }
  8575. cur = ggml_mul(ctx0, cur, g);
  8576. cur = build_lora_mm(layer.time_mix_output, cur);
  8577. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  8578. }
  8579. };
  8580. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  8581. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  8582. GGML_ASSERT(hparams.token_shift_count == 2);
  8583. ggml_tensor * cur;
  8584. ggml_tensor * inpL;
  8585. inpL = build_inp_embd(model.tok_embd);
  8586. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  8587. ggml_tensor * state_copy = build_inp_s_copy();
  8588. ggml_tensor * state_mask = build_inp_s_mask();
  8589. const auto n_embd = hparams.n_embd;
  8590. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8591. const auto n_seqs = ubatch.n_seqs;
  8592. for (int il = 0; il < n_layer; ++il) {
  8593. const llama_layer * layer = &model.layers[il];
  8594. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8595. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8596. gf, state_copy, state_mask, ubatch, il
  8597. );
  8598. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  8599. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  8600. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  8601. cb(att_norm, "attn_norm", il);
  8602. ggml_tensor * x_prev = ggml_concat(
  8603. ctx0,
  8604. att_shift,
  8605. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8606. 1
  8607. );
  8608. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  8609. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8610. cb(ffn_inp, "ffn_inp", il);
  8611. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  8612. cb(ffn_norm, "ffn_norm", il);
  8613. x_prev = ggml_concat(
  8614. ctx0,
  8615. ffn_shift,
  8616. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  8617. 1
  8618. );
  8619. token_shift = ggml_concat(ctx0,
  8620. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  8621. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  8622. 1
  8623. );
  8624. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8625. if (il == n_layer - 1) {
  8626. // skip computing output for unused tokens
  8627. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8628. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8629. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  8630. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  8631. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8632. }
  8633. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  8634. cur = ggml_add(ctx0, cur, ffn_inp);
  8635. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  8636. cur = ggml_scale(ctx0, cur, 0.5F);
  8637. }
  8638. cur = build_cvec(cur, il);
  8639. cb(cur, "l_out", il);
  8640. // input for next layer
  8641. inpL = cur;
  8642. }
  8643. cur = inpL;
  8644. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  8645. cb(cur, "result_norm", -1);
  8646. res->t_embd = cur;
  8647. cur = build_lora_mm(model.output, cur);
  8648. cb(cur, "result_output", -1);
  8649. res->t_logits = cur;
  8650. ggml_build_forward_expand(gf, cur);
  8651. }
  8652. };
  8653. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  8654. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  8655. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  8656. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  8657. ggml_tensor * cur;
  8658. ggml_tensor * inpL;
  8659. inpL = build_inp_embd(model.tok_embd);
  8660. ggml_tensor * state_copy = build_inp_s_copy();
  8661. ggml_tensor * state_mask = build_inp_s_mask();
  8662. const auto n_embd = hparams.n_embd;
  8663. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8664. const auto n_seqs = ubatch.n_seqs;
  8665. for (int il = 0; il < n_layer; ++il) {
  8666. const llama_layer * layer = &model.layers[il];
  8667. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8668. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8669. gf, state_copy, state_mask, ubatch, il
  8670. );
  8671. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  8672. cb(att_norm, "attn_norm", il);
  8673. ggml_tensor * x_prev = ggml_concat(
  8674. ctx0,
  8675. token_shift,
  8676. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8677. 1
  8678. );
  8679. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  8680. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  8681. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8682. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8683. cb(ffn_inp, "ffn_inp", il);
  8684. if (il == n_layer - 1) {
  8685. // skip computing output for unused tokens
  8686. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8687. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8688. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8689. }
  8690. // feed-forward network
  8691. cur = build_norm(ffn_inp,
  8692. model.layers[il].ffn_norm, NULL,
  8693. LLM_NORM_RMS, il);
  8694. cb(cur, "ffn_norm", il);
  8695. cur = build_ffn(cur,
  8696. model.layers[il].ffn_up, NULL, NULL,
  8697. model.layers[il].ffn_gate, NULL, NULL,
  8698. model.layers[il].ffn_down, NULL, NULL,
  8699. NULL,
  8700. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8701. cb(cur, "ffn_out", il);
  8702. cur = ggml_add(ctx0, cur, ffn_inp);
  8703. cur = build_cvec(cur, il);
  8704. cb(cur, "l_out", il);
  8705. // input for next layer
  8706. inpL = cur;
  8707. }
  8708. cur = inpL;
  8709. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  8710. cb(cur, "result_norm", -1);
  8711. res->t_embd = cur;
  8712. cur = build_lora_mm(model.output, cur);
  8713. cb(cur, "result_output", -1);
  8714. res->t_logits = cur;
  8715. ggml_build_forward_expand(gf, cur);
  8716. }
  8717. };
  8718. struct llm_build_rwkv7_base : public llm_graph_context {
  8719. const llama_model & model;
  8720. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  8721. }
  8722. ggml_tensor * build_rwkv7_channel_mix(
  8723. const llama_layer * layer,
  8724. ggml_tensor * cur,
  8725. ggml_tensor * x_prev,
  8726. llm_arch arch) const {
  8727. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8728. switch (arch) {
  8729. case LLM_ARCH_RWKV7:
  8730. {
  8731. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  8732. ggml_tensor * k = ggml_sqr(
  8733. ctx0,
  8734. ggml_relu(
  8735. ctx0,
  8736. build_lora_mm(layer->channel_mix_key, xk)
  8737. )
  8738. );
  8739. cur = build_lora_mm(layer->channel_mix_value, k);
  8740. } break;
  8741. default:
  8742. GGML_ABORT("fatal error");
  8743. }
  8744. return cur;
  8745. }
  8746. ggml_tensor * build_rwkv7_time_mix(
  8747. ggml_cgraph * gf,
  8748. ggml_tensor * cur,
  8749. ggml_tensor * x_prev,
  8750. ggml_tensor * state_copy,
  8751. ggml_tensor * state_mask,
  8752. ggml_tensor *& first_layer_value,
  8753. const llama_ubatch & ubatch,
  8754. int il) const {
  8755. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  8756. const auto n_tokens = ubatch.n_tokens;
  8757. const auto n_seqs = ubatch.n_seqs;
  8758. const auto n_embd = hparams.n_embd;
  8759. const auto head_size = hparams.wkv_head_size;
  8760. const auto head_count = n_embd / head_size;
  8761. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8762. const auto kv_head = kv_self->head;
  8763. const auto & layer = model.layers[il];
  8764. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  8765. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8766. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  8767. sx = ggml_repeat(ctx0, sx, dummy);
  8768. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  8769. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8770. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8771. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8772. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8773. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8774. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  8775. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  8776. ggml_tensor * w = ggml_add(
  8777. ctx0,
  8778. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  8779. layer.time_mix_w0
  8780. );
  8781. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  8782. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  8783. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  8784. if (first_layer_value == nullptr) {
  8785. first_layer_value = v;
  8786. } else {
  8787. // Add the first layer value as a residual connection.
  8788. v = ggml_add(ctx0, v,
  8789. ggml_mul(ctx0,
  8790. ggml_sub(ctx0, first_layer_value, v),
  8791. ggml_sigmoid(ctx0, ggml_add(ctx0,
  8792. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  8793. layer.time_mix_v0
  8794. )
  8795. )
  8796. )
  8797. );
  8798. }
  8799. ggml_tensor * g = nullptr;
  8800. if (layer.time_mix_g1 && layer.time_mix_g2) {
  8801. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  8802. }
  8803. ggml_tensor * a = ggml_sigmoid(ctx0,
  8804. ggml_add(
  8805. ctx0,
  8806. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  8807. layer.time_mix_a0
  8808. )
  8809. );
  8810. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  8811. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  8812. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  8813. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  8814. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  8815. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  8816. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  8817. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  8818. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  8819. ggml_tensor * wkv_state = build_copy_mask_state(
  8820. gf, kv_self->v_l[il], state_copy, state_mask,
  8821. hparams.n_embd_v_s(), n_seqs);
  8822. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  8823. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  8824. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  8825. ggml_build_forward_expand(
  8826. gf,
  8827. ggml_cpy(
  8828. ctx0,
  8829. wkv_state,
  8830. ggml_view_1d(
  8831. ctx0,
  8832. kv_self->v_l[il],
  8833. hparams.n_embd_v_s() * n_seqs,
  8834. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  8835. )
  8836. )
  8837. );
  8838. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  8839. // group norm with head_count groups
  8840. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  8841. cur = ggml_norm(ctx0, cur, 64e-5f);
  8842. // Convert back to regular vectors.
  8843. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8844. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  8845. } else {
  8846. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8847. }
  8848. ggml_tensor * rk = ggml_sum_rows(ctx0,
  8849. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  8850. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  8851. if (has_gating) {
  8852. cur = ggml_mul(ctx0, cur, g);
  8853. }
  8854. cur = build_lora_mm(layer.time_mix_output, cur);
  8855. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  8856. }
  8857. };
  8858. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  8859. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  8860. GGML_ASSERT(hparams.token_shift_count == 2);
  8861. ggml_tensor * cur;
  8862. ggml_tensor * inpL;
  8863. ggml_tensor * v_first = nullptr;
  8864. inpL = build_inp_embd(model.tok_embd);
  8865. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  8866. ggml_tensor * state_copy = build_inp_s_copy();
  8867. ggml_tensor * state_mask = build_inp_s_mask();
  8868. const auto n_embd = hparams.n_embd;
  8869. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8870. const auto n_seqs = ubatch.n_seqs;
  8871. for (int il = 0; il < n_layer; ++il) {
  8872. const llama_layer * layer = &model.layers[il];
  8873. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8874. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8875. gf, state_copy, state_mask, ubatch, il
  8876. );
  8877. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  8878. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  8879. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  8880. cb(att_norm, "attn_norm", il);
  8881. ggml_tensor * x_prev = ggml_concat(
  8882. ctx0,
  8883. att_shift,
  8884. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8885. 1
  8886. );
  8887. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  8888. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8889. cb(ffn_inp, "ffn_inp", il);
  8890. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  8891. cb(ffn_norm, "ffn_norm", il);
  8892. x_prev = ggml_concat(
  8893. ctx0,
  8894. ffn_shift,
  8895. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  8896. 1
  8897. );
  8898. token_shift = ggml_concat(ctx0,
  8899. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  8900. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  8901. 1
  8902. );
  8903. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8904. if (il == n_layer - 1) {
  8905. // skip computing output for unused tokens
  8906. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8907. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8908. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  8909. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  8910. }
  8911. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  8912. cur = ggml_add(ctx0, cur, ffn_inp);
  8913. cur = build_cvec(cur, il);
  8914. cb(cur, "l_out", il);
  8915. // input for next layer
  8916. inpL = cur;
  8917. }
  8918. cur = inpL;
  8919. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  8920. cb(cur, "result_norm", -1);
  8921. res->t_embd = cur;
  8922. cur = build_lora_mm(model.output, cur);
  8923. cb(cur, "result_output", -1);
  8924. res->t_logits = cur;
  8925. ggml_build_forward_expand(gf, cur);
  8926. }
  8927. };
  8928. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  8929. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  8930. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  8931. ggml_tensor * cur;
  8932. ggml_tensor * inpL;
  8933. ggml_tensor * v_first = nullptr;
  8934. inpL = build_inp_embd(model.tok_embd);
  8935. ggml_tensor * state_copy = build_inp_s_copy();
  8936. ggml_tensor * state_mask = build_inp_s_mask();
  8937. const auto n_embd = hparams.n_embd;
  8938. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8939. const auto n_seqs = ubatch.n_seqs;
  8940. for (int il = 0; il < n_layer; ++il) {
  8941. const llama_layer * layer = &model.layers[il];
  8942. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8943. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8944. gf, state_copy, state_mask, ubatch, il
  8945. );
  8946. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  8947. cb(att_norm, "attn_norm", il);
  8948. ggml_tensor * x_prev = ggml_concat(
  8949. ctx0,
  8950. token_shift,
  8951. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8952. 1
  8953. );
  8954. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  8955. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  8956. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8957. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8958. cb(ffn_inp, "ffn_inp", il);
  8959. if (il == n_layer - 1) {
  8960. // skip computing output for unused tokens
  8961. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8962. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8963. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8964. }
  8965. // feed-forward network
  8966. cur = build_norm(ffn_inp,
  8967. model.layers[il].ffn_norm, NULL,
  8968. LLM_NORM_RMS, il);
  8969. cb(cur, "ffn_norm", il);
  8970. cur = build_ffn(cur,
  8971. model.layers[il].ffn_up, NULL, NULL,
  8972. model.layers[il].ffn_gate, NULL, NULL,
  8973. model.layers[il].ffn_down, NULL, NULL,
  8974. NULL,
  8975. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8976. cb(cur, "ffn_out", il);
  8977. cur = ggml_add(ctx0, cur, ffn_inp);
  8978. cur = build_cvec(cur, il);
  8979. cb(cur, "l_out", il);
  8980. // input for next layer
  8981. inpL = cur;
  8982. }
  8983. cur = inpL;
  8984. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  8985. cb(cur, "result_norm", -1);
  8986. res->t_embd = cur;
  8987. cur = build_lora_mm(model.output, cur);
  8988. cb(cur, "result_output", -1);
  8989. res->t_logits = cur;
  8990. ggml_build_forward_expand(gf, cur);
  8991. }
  8992. };
  8993. // ref: https://github.com/facebookresearch/chameleon
  8994. // based on the original build_llama() function, changes:
  8995. // * qk-norm
  8996. // * swin-norm
  8997. // * removed bias
  8998. // * removed MoE
  8999. struct llm_build_chameleon : public llm_graph_context {
  9000. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9001. const int64_t n_embd_head = hparams.n_embd_head_v;
  9002. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9003. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9004. ggml_tensor * cur;
  9005. ggml_tensor * inpL;
  9006. inpL = build_inp_embd(model.tok_embd);
  9007. // inp_pos - contains the positions
  9008. ggml_tensor * inp_pos = build_inp_pos();
  9009. auto * inp_attn = build_attn_inp_kv_unified();
  9010. for (int il = 0; il < n_layer; ++il) {
  9011. ggml_tensor * inpSA = inpL;
  9012. // norm
  9013. if (hparams.swin_norm) {
  9014. cur = inpL;
  9015. } else {
  9016. cur = build_norm(inpL,
  9017. model.layers[il].attn_norm, NULL,
  9018. LLM_NORM_RMS, il);
  9019. cb(cur, "attn_norm", il);
  9020. }
  9021. // self-attention
  9022. {
  9023. // compute Q and K and RoPE them
  9024. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9025. cb(Qcur, "Qcur", il);
  9026. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9027. cb(Kcur, "Kcur", il);
  9028. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9029. cb(Vcur, "Vcur", il);
  9030. if (model.layers[il].attn_q_norm) {
  9031. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9032. ggml_element_size(Qcur) * n_embd_head,
  9033. ggml_element_size(Qcur) * n_embd_head * n_head,
  9034. 0);
  9035. cb(Qcur, "Qcur", il);
  9036. Qcur = build_norm(Qcur,
  9037. model.layers[il].attn_q_norm,
  9038. model.layers[il].attn_q_norm_b,
  9039. LLM_NORM, il);
  9040. cb(Qcur, "Qcur", il);
  9041. }
  9042. if (model.layers[il].attn_k_norm) {
  9043. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9044. ggml_element_size(Kcur) * n_embd_head,
  9045. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9046. 0);
  9047. cb(Kcur, "Kcur", il);
  9048. Kcur = build_norm(Kcur,
  9049. model.layers[il].attn_k_norm,
  9050. model.layers[il].attn_k_norm_b,
  9051. LLM_NORM, il);
  9052. cb(Kcur, "Kcur", il);
  9053. }
  9054. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9055. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9056. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9057. Qcur = ggml_rope_ext(
  9058. ctx0, Qcur, inp_pos, nullptr,
  9059. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9060. ext_factor, attn_factor, beta_fast, beta_slow
  9061. );
  9062. Kcur = ggml_rope_ext(
  9063. ctx0, Kcur, inp_pos, nullptr,
  9064. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9065. ext_factor, attn_factor, beta_fast, beta_slow
  9066. );
  9067. cb(Qcur, "Qcur", il);
  9068. cb(Kcur, "Kcur", il);
  9069. cb(Vcur, "Vcur", il);
  9070. cur = build_attn(inp_attn, gf,
  9071. model.layers[il].wo, nullptr,
  9072. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9073. if (hparams.swin_norm) {
  9074. cur = build_norm(cur,
  9075. model.layers[il].attn_norm, NULL,
  9076. LLM_NORM_RMS, il);
  9077. }
  9078. }
  9079. if (il == n_layer - 1) {
  9080. // skip computing output for unused tokens
  9081. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9082. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9083. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9084. }
  9085. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9086. cb(ffn_inp, "ffn_inp", il);
  9087. // feed-forward network
  9088. if (!hparams.swin_norm) {
  9089. cur = build_norm(ffn_inp,
  9090. model.layers[il].ffn_norm, NULL,
  9091. LLM_NORM_RMS, il);
  9092. cb(cur, "ffn_norm", il);
  9093. }
  9094. cur = build_ffn(cur,
  9095. model.layers[il].ffn_up, NULL, NULL,
  9096. model.layers[il].ffn_gate, NULL, NULL,
  9097. model.layers[il].ffn_down, NULL, NULL,
  9098. NULL,
  9099. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9100. cb(cur, "ffn_out", il);
  9101. if (hparams.swin_norm) {
  9102. cur = build_norm(cur,
  9103. model.layers[il].ffn_norm, NULL,
  9104. LLM_NORM_RMS, il);
  9105. cb(cur, "ffn_norm", il);
  9106. }
  9107. cur = ggml_add(ctx0, cur, ffn_inp);
  9108. cb(cur, "ffn_out", il);
  9109. cur = build_cvec(cur, il);
  9110. cb(cur, "l_out", il);
  9111. // input for next layer
  9112. inpL = cur;
  9113. }
  9114. cur = inpL;
  9115. cur = build_norm(cur,
  9116. model.output_norm, NULL,
  9117. LLM_NORM_RMS, -1);
  9118. cb(cur, "result_norm", -1);
  9119. res->t_embd = cur;
  9120. // lm_head
  9121. cur = build_lora_mm(model.output, cur);
  9122. cb(cur, "result_output_with_img_logits", -1);
  9123. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9124. // Needs to be removed once image outputs are supported.
  9125. int img_token_end_idx = 8196;
  9126. int img_token_start_idx = 4;
  9127. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9128. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9129. // which ensures that text token values are always at least larger than image token values
  9130. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9131. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9132. cb(img_logits, "img_logits", -1);
  9133. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9134. cb(cur, "result_output", -1);
  9135. res->t_logits = cur;
  9136. ggml_build_forward_expand(gf, cur);
  9137. }
  9138. };
  9139. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9140. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9141. ggml_tensor * cur;
  9142. ggml_tensor * inpL;
  9143. inpL = build_inp_embd(model.tok_embd);
  9144. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9145. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9146. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9147. // posnet
  9148. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9149. const auto & layer = model.layers[il].posnet;
  9150. inpL = cur;
  9151. switch (il) {
  9152. case 0:
  9153. case 1:
  9154. case 3:
  9155. case 4:
  9156. {
  9157. cur = build_norm(cur,
  9158. layer.norm1,
  9159. layer.norm1_b,
  9160. LLM_NORM_GROUP, 0);
  9161. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9162. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9163. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9164. cur = build_norm(cur,
  9165. layer.norm2,
  9166. layer.norm2_b,
  9167. LLM_NORM_GROUP, 0);
  9168. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9169. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9170. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9171. cur = ggml_add(ctx0, cur, inpL);
  9172. } break;
  9173. case 2:
  9174. {
  9175. cur = build_norm(cur,
  9176. layer.attn_norm,
  9177. layer.attn_norm_b,
  9178. LLM_NORM_GROUP, 0);
  9179. ggml_tensor * q;
  9180. ggml_tensor * k;
  9181. ggml_tensor * v;
  9182. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9183. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9184. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9185. q = ggml_add(ctx0, q, layer.attn_q_b);
  9186. k = ggml_add(ctx0, k, layer.attn_k_b);
  9187. v = ggml_add(ctx0, v, layer.attn_v_b);
  9188. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9189. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9190. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9191. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9192. cur = ggml_mul_mat(ctx0, kq, v);
  9193. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9194. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9195. cur = ggml_add(ctx0, cur, inpL);
  9196. } break;
  9197. case 5:
  9198. {
  9199. cur = build_norm(cur,
  9200. layer.norm,
  9201. layer.norm_b,
  9202. LLM_NORM_GROUP, 0);
  9203. } break;
  9204. default: GGML_ABORT("unknown posnet layer");
  9205. };
  9206. }
  9207. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9208. cur = build_norm(cur,
  9209. model.tok_norm,
  9210. model.tok_norm_b,
  9211. LLM_NORM, -1);
  9212. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9213. inpL = cur;
  9214. // convnext
  9215. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9216. const auto & layer = model.layers[il].convnext;
  9217. cur = inpL;
  9218. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9219. cur = ggml_add(ctx0, cur, layer.dw_b);
  9220. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9221. cur = build_norm(cur,
  9222. layer.norm,
  9223. layer.norm_b,
  9224. LLM_NORM, -1);
  9225. cur = build_ffn(cur,
  9226. layer.pw1, layer.pw1_b, NULL,
  9227. NULL, NULL, NULL,
  9228. layer.pw2, layer.pw2_b, NULL,
  9229. NULL,
  9230. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9231. cur = ggml_mul(ctx0, cur, layer.gamma);
  9232. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9233. inpL = ggml_add(ctx0, cur, inpL);
  9234. }
  9235. cur = inpL;
  9236. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9237. cur = build_norm(cur,
  9238. model.output_norm,
  9239. model.output_norm_b,
  9240. LLM_NORM, -1);
  9241. // lm_head
  9242. cur = build_lora_mm(model.output, cur);
  9243. cur = ggml_add(ctx0, cur, model.output_b);
  9244. cb(cur, "result_embd", -1);
  9245. res->t_embd = cur;
  9246. ggml_build_forward_expand(gf, cur);
  9247. }
  9248. };
  9249. struct llm_build_plm : public llm_graph_context {
  9250. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9251. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  9252. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9253. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9254. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9255. ggml_tensor * cur;
  9256. ggml_tensor * inpL;
  9257. // {n_embd, n_tokens}
  9258. inpL = build_inp_embd(model.tok_embd);
  9259. // inp_pos - contains the positions
  9260. ggml_tensor * inp_pos = build_inp_pos();
  9261. auto * inp_attn = build_attn_inp_kv_unified();
  9262. for (int il = 0; il < n_layer; ++il) {
  9263. ggml_tensor * inpSA = inpL;
  9264. // norm
  9265. cur = build_norm(inpL,
  9266. model.layers[il].attn_norm, NULL,
  9267. LLM_NORM_RMS, il);
  9268. cb(cur, "attn_norm", il);
  9269. // self_attention
  9270. {
  9271. ggml_tensor * q = NULL;
  9272. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9273. cb(q, "q", il);
  9274. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9275. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9276. ggml_row_size(q->type, hparams.n_embd_head_k),
  9277. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9278. 0);
  9279. cb(q_nope, "q_nope", il);
  9280. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9281. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9282. ggml_row_size(q->type, hparams.n_embd_head_k),
  9283. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9284. ggml_row_size(q->type, n_embd_head_qk_nope));
  9285. cb(q_pe, "q_pe", il);
  9286. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9287. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9288. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9289. // split into {kv_lora_rank, n_tokens}
  9290. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9291. kv_pe_compresseed->nb[1],
  9292. 0);
  9293. cb(kv_compressed, "kv_compressed", il);
  9294. // and {n_embd_head_qk_rope, n_tokens}
  9295. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9296. kv_pe_compresseed->nb[1],
  9297. kv_pe_compresseed->nb[1],
  9298. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9299. cb(k_pe, "k_pe", il);
  9300. kv_compressed = build_norm(kv_compressed,
  9301. model.layers[il].attn_kv_a_norm, NULL,
  9302. LLM_NORM_RMS, il);
  9303. cb(kv_compressed, "kv_compressed", il);
  9304. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9305. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9306. cb(kv, "kv", il);
  9307. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9308. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9309. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9310. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9311. 0);
  9312. cb(k_nope, "k_nope", il);
  9313. // and {n_head * n_embd_head_v, n_tokens}
  9314. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9315. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9316. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9317. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9318. cb(v_states, "v_states", il);
  9319. v_states = ggml_cont(ctx0, v_states);
  9320. cb(v_states, "v_states", il);
  9321. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9322. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9323. 0);
  9324. cb(v_states, "v_states", il);
  9325. q_pe = ggml_rope_ext(
  9326. ctx0, q_pe, inp_pos, nullptr,
  9327. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9328. ext_factor, attn_factor, beta_fast, beta_slow
  9329. );
  9330. cb(q_pe, "q_pe", il);
  9331. // shared RoPE key
  9332. k_pe = ggml_rope_ext(
  9333. ctx0, k_pe, inp_pos, nullptr,
  9334. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9335. ext_factor, attn_factor, beta_fast, beta_slow
  9336. );
  9337. cb(k_pe, "k_pe", il);
  9338. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9339. cb(q_states, "q_states", il);
  9340. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9341. cb(k_states, "k_states", il);
  9342. cur = build_attn(inp_attn, gf,
  9343. model.layers[il].wo, NULL,
  9344. q_states, k_states, v_states, nullptr, kq_scale, il);
  9345. }
  9346. if (il == n_layer - 1) {
  9347. // skip computing output for unused tokens
  9348. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9349. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9350. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9351. }
  9352. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9353. cb(ffn_inp, "ffn_inp", il);
  9354. cur = build_norm(ffn_inp,
  9355. model.layers[il].ffn_norm, NULL,
  9356. LLM_NORM_RMS, il);
  9357. cb(cur, "ffn_norm", il);
  9358. cur = build_ffn(cur,
  9359. model.layers[il].ffn_up, NULL, NULL,
  9360. NULL, NULL, NULL,
  9361. model.layers[il].ffn_down, NULL, NULL,
  9362. NULL,
  9363. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  9364. cb(cur, "ffn_out", il);
  9365. cur = ggml_add(ctx0, cur, ffn_inp);
  9366. cur = build_cvec(cur, il);
  9367. cb(cur, "l_out", il);
  9368. // input for next layer
  9369. inpL = cur;
  9370. }
  9371. cur = inpL;
  9372. cur = build_norm(cur,
  9373. model.output_norm, NULL,
  9374. LLM_NORM_RMS, -1);
  9375. cb(cur, "result_norm", -1);
  9376. res->t_embd = cur;
  9377. cur = build_lora_mm(model.output, cur);
  9378. cb(cur, "result_output", -1);
  9379. res->t_logits = cur;
  9380. ggml_build_forward_expand(gf, cur);
  9381. }
  9382. };
  9383. llama_memory_i * llama_model::create_memory() const {
  9384. llama_memory_i * res;
  9385. switch (arch) {
  9386. case LLM_ARCH_MAMBA:
  9387. case LLM_ARCH_RWKV6:
  9388. case LLM_ARCH_RWKV6QWEN2:
  9389. case LLM_ARCH_RWKV7:
  9390. case LLM_ARCH_ARWKV7:
  9391. {
  9392. res = new llama_kv_cache_unified(hparams, {
  9393. /*.get_rope_factors =*/ nullptr
  9394. });
  9395. } break;
  9396. default:
  9397. {
  9398. res = new llama_kv_cache_unified(hparams, {
  9399. /*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
  9400. // choose long/short freq factors based on the context size
  9401. if (layers[il].rope_freqs != nullptr) {
  9402. return layers[il].rope_freqs;
  9403. }
  9404. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  9405. return layers[il].rope_long;
  9406. }
  9407. return layers[il].rope_short;
  9408. }
  9409. });
  9410. }
  9411. }
  9412. return res;
  9413. }
  9414. llm_graph_result_ptr llama_model::build_graph(
  9415. const llm_graph_params & params,
  9416. ggml_cgraph * gf,
  9417. llm_graph_type type) const {
  9418. std::unique_ptr<llm_graph_context> llm;
  9419. switch (arch) {
  9420. case LLM_ARCH_LLAMA:
  9421. case LLM_ARCH_MINICPM:
  9422. case LLM_ARCH_GRANITE:
  9423. case LLM_ARCH_GRANITE_MOE:
  9424. {
  9425. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  9426. } break;
  9427. case LLM_ARCH_DECI:
  9428. {
  9429. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  9430. } break;
  9431. case LLM_ARCH_BAICHUAN:
  9432. {
  9433. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  9434. } break;
  9435. case LLM_ARCH_FALCON:
  9436. {
  9437. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  9438. } break;
  9439. case LLM_ARCH_GROK:
  9440. {
  9441. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  9442. } break;
  9443. case LLM_ARCH_STARCODER:
  9444. {
  9445. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  9446. } break;
  9447. case LLM_ARCH_REFACT:
  9448. {
  9449. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  9450. } break;
  9451. case LLM_ARCH_BERT:
  9452. case LLM_ARCH_JINA_BERT_V2:
  9453. case LLM_ARCH_NOMIC_BERT:
  9454. {
  9455. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  9456. } break;
  9457. case LLM_ARCH_BLOOM:
  9458. {
  9459. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  9460. } break;
  9461. case LLM_ARCH_MPT:
  9462. {
  9463. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  9464. } break;
  9465. case LLM_ARCH_STABLELM:
  9466. {
  9467. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  9468. } break;
  9469. case LLM_ARCH_QWEN:
  9470. {
  9471. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  9472. } break;
  9473. case LLM_ARCH_QWEN2:
  9474. {
  9475. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  9476. } break;
  9477. case LLM_ARCH_QWEN2VL:
  9478. {
  9479. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  9480. } break;
  9481. case LLM_ARCH_QWEN2MOE:
  9482. {
  9483. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  9484. } break;
  9485. case LLM_ARCH_PHI2:
  9486. {
  9487. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  9488. } break;
  9489. case LLM_ARCH_PHI3:
  9490. case LLM_ARCH_PHIMOE:
  9491. {
  9492. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  9493. } break;
  9494. case LLM_ARCH_PLAMO:
  9495. {
  9496. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  9497. } break;
  9498. case LLM_ARCH_GPT2:
  9499. {
  9500. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  9501. } break;
  9502. case LLM_ARCH_CODESHELL:
  9503. {
  9504. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  9505. } break;
  9506. case LLM_ARCH_ORION:
  9507. {
  9508. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  9509. } break;
  9510. case LLM_ARCH_INTERNLM2:
  9511. {
  9512. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  9513. } break;
  9514. case LLM_ARCH_MINICPM3:
  9515. {
  9516. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  9517. } break;
  9518. case LLM_ARCH_GEMMA:
  9519. {
  9520. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  9521. } break;
  9522. case LLM_ARCH_GEMMA2:
  9523. {
  9524. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  9525. } break;
  9526. case LLM_ARCH_GEMMA3:
  9527. {
  9528. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  9529. } break;
  9530. case LLM_ARCH_STARCODER2:
  9531. {
  9532. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  9533. } break;
  9534. case LLM_ARCH_MAMBA:
  9535. {
  9536. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  9537. } break;
  9538. case LLM_ARCH_XVERSE:
  9539. {
  9540. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  9541. } break;
  9542. case LLM_ARCH_COMMAND_R:
  9543. {
  9544. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  9545. } break;
  9546. case LLM_ARCH_COHERE2:
  9547. {
  9548. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  9549. } break;
  9550. case LLM_ARCH_DBRX:
  9551. {
  9552. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  9553. } break;
  9554. case LLM_ARCH_OLMO:
  9555. {
  9556. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  9557. } break;
  9558. case LLM_ARCH_OLMO2:
  9559. {
  9560. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  9561. } break;
  9562. case LLM_ARCH_OLMOE:
  9563. {
  9564. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  9565. } break;
  9566. case LLM_ARCH_OPENELM:
  9567. {
  9568. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  9569. } break;
  9570. case LLM_ARCH_GPTNEOX:
  9571. {
  9572. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  9573. } break;
  9574. case LLM_ARCH_ARCTIC:
  9575. {
  9576. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  9577. } break;
  9578. case LLM_ARCH_DEEPSEEK:
  9579. {
  9580. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  9581. } break;
  9582. case LLM_ARCH_DEEPSEEK2:
  9583. {
  9584. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  9585. } break;
  9586. case LLM_ARCH_CHATGLM:
  9587. {
  9588. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  9589. } break;
  9590. case LLM_ARCH_BITNET:
  9591. {
  9592. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  9593. } break;
  9594. case LLM_ARCH_T5:
  9595. {
  9596. switch (type) {
  9597. case LLM_GRAPH_TYPE_ENCODER:
  9598. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  9599. break;
  9600. case LLM_GRAPH_TYPE_DEFAULT:
  9601. case LLM_GRAPH_TYPE_DECODER:
  9602. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  9603. break;
  9604. default:
  9605. GGML_ABORT("invalid graph type");
  9606. };
  9607. } break;
  9608. case LLM_ARCH_T5ENCODER:
  9609. {
  9610. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  9611. }
  9612. break;
  9613. case LLM_ARCH_JAIS:
  9614. {
  9615. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  9616. } break;
  9617. case LLM_ARCH_NEMOTRON:
  9618. {
  9619. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  9620. } break;
  9621. case LLM_ARCH_EXAONE:
  9622. {
  9623. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  9624. } break;
  9625. case LLM_ARCH_RWKV6:
  9626. {
  9627. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  9628. } break;
  9629. case LLM_ARCH_RWKV6QWEN2:
  9630. {
  9631. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  9632. } break;
  9633. case LLM_ARCH_RWKV7:
  9634. {
  9635. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  9636. } break;
  9637. case LLM_ARCH_ARWKV7:
  9638. {
  9639. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  9640. } break;
  9641. case LLM_ARCH_CHAMELEON:
  9642. {
  9643. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  9644. } break;
  9645. case LLM_ARCH_WAVTOKENIZER_DEC:
  9646. {
  9647. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  9648. } break;
  9649. case LLM_ARCH_PLM:
  9650. {
  9651. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  9652. } break;
  9653. default:
  9654. GGML_ABORT("fatal error");
  9655. }
  9656. // add on pooling layer
  9657. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  9658. return std::move(llm->res);
  9659. }
  9660. //
  9661. // interface implementation
  9662. //
  9663. llama_model_params llama_model_default_params() {
  9664. llama_model_params result = {
  9665. /*.devices =*/ nullptr,
  9666. /*.n_gpu_layers =*/ 0,
  9667. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  9668. /*.main_gpu =*/ 0,
  9669. /*.tensor_split =*/ nullptr,
  9670. /*.progress_callback =*/ nullptr,
  9671. /*.progress_callback_user_data =*/ nullptr,
  9672. /*.kv_overrides =*/ nullptr,
  9673. /*.vocab_only =*/ false,
  9674. /*.use_mmap =*/ true,
  9675. /*.use_mlock =*/ false,
  9676. /*.check_tensors =*/ false,
  9677. };
  9678. #ifdef GGML_USE_METAL
  9679. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  9680. result.n_gpu_layers = 999;
  9681. #endif
  9682. return result;
  9683. }
  9684. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  9685. return &model->vocab;
  9686. }
  9687. void llama_free_model(llama_model * model) {
  9688. llama_model_free(model);
  9689. }
  9690. void llama_model_free(llama_model * model) {
  9691. delete model;
  9692. }
  9693. int32_t llama_model_n_ctx_train(const llama_model * model) {
  9694. return model->hparams.n_ctx_train;
  9695. }
  9696. int32_t llama_model_n_embd(const llama_model * model) {
  9697. return model->hparams.n_embd;
  9698. }
  9699. int32_t llama_model_n_layer(const llama_model * model) {
  9700. return model->hparams.n_layer;
  9701. }
  9702. int32_t llama_model_n_head(const llama_model * model) {
  9703. return model->hparams.n_head();
  9704. }
  9705. int32_t llama_model_n_head_kv(const llama_model * model) {
  9706. return model->hparams.n_head_kv();
  9707. }
  9708. // deprecated
  9709. int32_t llama_n_ctx_train(const llama_model * model) {
  9710. return llama_model_n_ctx_train(model);
  9711. }
  9712. // deprecated
  9713. int32_t llama_n_embd(const llama_model * model) {
  9714. return llama_model_n_embd(model);
  9715. }
  9716. // deprecated
  9717. int32_t llama_n_layer(const llama_model * model) {
  9718. return llama_model_n_layer(model);
  9719. }
  9720. // deprecated
  9721. int32_t llama_n_head(const llama_model * model) {
  9722. return llama_model_n_head(model);
  9723. }
  9724. llama_rope_type llama_model_rope_type(const llama_model * model) {
  9725. switch (model->arch) {
  9726. // these models do not use RoPE
  9727. case LLM_ARCH_GPT2:
  9728. case LLM_ARCH_GPTJ:
  9729. case LLM_ARCH_MPT:
  9730. case LLM_ARCH_REFACT:
  9731. case LLM_ARCH_BLOOM:
  9732. case LLM_ARCH_MAMBA:
  9733. case LLM_ARCH_JINA_BERT_V2:
  9734. case LLM_ARCH_T5:
  9735. case LLM_ARCH_T5ENCODER:
  9736. case LLM_ARCH_JAIS:
  9737. case LLM_ARCH_RWKV6:
  9738. case LLM_ARCH_RWKV6QWEN2:
  9739. case LLM_ARCH_RWKV7:
  9740. case LLM_ARCH_ARWKV7:
  9741. case LLM_ARCH_WAVTOKENIZER_DEC:
  9742. return LLAMA_ROPE_TYPE_NONE;
  9743. // use what we call a normal RoPE, operating on pairs of consecutive head values
  9744. case LLM_ARCH_LLAMA:
  9745. case LLM_ARCH_DECI:
  9746. case LLM_ARCH_BAICHUAN:
  9747. case LLM_ARCH_STARCODER:
  9748. case LLM_ARCH_PLAMO:
  9749. case LLM_ARCH_ORION:
  9750. case LLM_ARCH_INTERNLM2:
  9751. case LLM_ARCH_MINICPM:
  9752. case LLM_ARCH_XVERSE:
  9753. case LLM_ARCH_COMMAND_R:
  9754. case LLM_ARCH_COHERE2:
  9755. case LLM_ARCH_OLMO:
  9756. case LLM_ARCH_ARCTIC:
  9757. case LLM_ARCH_DEEPSEEK:
  9758. case LLM_ARCH_DEEPSEEK2:
  9759. case LLM_ARCH_PLM:
  9760. case LLM_ARCH_CHATGLM:
  9761. case LLM_ARCH_GRANITE:
  9762. case LLM_ARCH_GRANITE_MOE:
  9763. case LLM_ARCH_CHAMELEON:
  9764. return LLAMA_ROPE_TYPE_NORM;
  9765. // the pairs of head values are offset by n_rot/2
  9766. case LLM_ARCH_FALCON:
  9767. case LLM_ARCH_GROK:
  9768. case LLM_ARCH_DBRX:
  9769. case LLM_ARCH_BERT:
  9770. case LLM_ARCH_NOMIC_BERT:
  9771. case LLM_ARCH_STABLELM:
  9772. case LLM_ARCH_BITNET:
  9773. case LLM_ARCH_QWEN:
  9774. case LLM_ARCH_QWEN2:
  9775. case LLM_ARCH_QWEN2MOE:
  9776. case LLM_ARCH_OLMO2:
  9777. case LLM_ARCH_OLMOE:
  9778. case LLM_ARCH_PHI2:
  9779. case LLM_ARCH_PHI3:
  9780. case LLM_ARCH_PHIMOE:
  9781. case LLM_ARCH_GEMMA:
  9782. case LLM_ARCH_GEMMA2:
  9783. case LLM_ARCH_GEMMA3:
  9784. case LLM_ARCH_STARCODER2:
  9785. case LLM_ARCH_OPENELM:
  9786. case LLM_ARCH_GPTNEOX:
  9787. case LLM_ARCH_CODESHELL:
  9788. case LLM_ARCH_NEMOTRON:
  9789. case LLM_ARCH_EXAONE:
  9790. case LLM_ARCH_MINICPM3:
  9791. return LLAMA_ROPE_TYPE_NEOX;
  9792. case LLM_ARCH_QWEN2VL:
  9793. return LLAMA_ROPE_TYPE_MROPE;
  9794. // all model arches should be listed explicitly here
  9795. case LLM_ARCH_UNKNOWN:
  9796. GGML_ABORT("unknown architecture");
  9797. }
  9798. return LLAMA_ROPE_TYPE_NONE;
  9799. }
  9800. float llama_model_rope_freq_scale_train(const llama_model * model) {
  9801. return model->hparams.rope_freq_scale_train;
  9802. }
  9803. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  9804. const auto & it = model->gguf_kv.find(key);
  9805. if (it == model->gguf_kv.end()) {
  9806. if (buf_size > 0) {
  9807. buf[0] = '\0';
  9808. }
  9809. return -1;
  9810. }
  9811. return snprintf(buf, buf_size, "%s", it->second.c_str());
  9812. }
  9813. int32_t llama_model_meta_count(const llama_model * model) {
  9814. return (int)model->gguf_kv.size();
  9815. }
  9816. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  9817. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  9818. if (buf_size > 0) {
  9819. buf[0] = '\0';
  9820. }
  9821. return -1;
  9822. }
  9823. auto it = model->gguf_kv.begin();
  9824. std::advance(it, i);
  9825. return snprintf(buf, buf_size, "%s", it->first.c_str());
  9826. }
  9827. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  9828. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  9829. if (buf_size > 0) {
  9830. buf[0] = '\0';
  9831. }
  9832. return -1;
  9833. }
  9834. auto it = model->gguf_kv.begin();
  9835. std::advance(it, i);
  9836. return snprintf(buf, buf_size, "%s", it->second.c_str());
  9837. }
  9838. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  9839. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  9840. }
  9841. uint64_t llama_model_size(const llama_model * model) {
  9842. return model->size();
  9843. }
  9844. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  9845. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  9846. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  9847. const auto & it = model->gguf_kv.find(key);
  9848. if (it == model->gguf_kv.end()) {
  9849. return nullptr;
  9850. }
  9851. return it->second.c_str();
  9852. }
  9853. uint64_t llama_model_n_params(const llama_model * model) {
  9854. return model->n_elements();
  9855. }
  9856. bool llama_model_has_encoder(const llama_model * model) {
  9857. switch (model->arch) {
  9858. case LLM_ARCH_T5: return true;
  9859. case LLM_ARCH_T5ENCODER: return true;
  9860. default: return false;
  9861. }
  9862. }
  9863. bool llama_model_has_decoder(const llama_model * model) {
  9864. switch (model->arch) {
  9865. case LLM_ARCH_T5ENCODER: return false;
  9866. default: return true;
  9867. }
  9868. }
  9869. llama_token llama_model_decoder_start_token(const llama_model * model) {
  9870. return model->hparams.dec_start_token_id;
  9871. }
  9872. bool llama_model_is_recurrent(const llama_model * model) {
  9873. switch (model->arch) {
  9874. case LLM_ARCH_MAMBA: return true;
  9875. case LLM_ARCH_RWKV6: return true;
  9876. case LLM_ARCH_RWKV6QWEN2: return true;
  9877. case LLM_ARCH_RWKV7: return true;
  9878. case LLM_ARCH_ARWKV7: return true;
  9879. default: return false;
  9880. }
  9881. }
  9882. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  9883. return model->tensors_by_name;
  9884. }