| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # Convert a GPTQ quantized LLaMA model to a ggml compatible file
- # Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
- #
- import os
- import re
- import sys
- import json
- import struct
- import numpy as np
- import torch
- from sentencepiece import SentencePieceProcessor
- if len(sys.argv) != 4:
- print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
- sys.exit(1)
- fname_model = sys.argv[1]
- fname_tokenizer = sys.argv[2]
- dir_out = sys.argv[3]
- model = torch.load(fname_model, map_location="cpu")
- n_vocab, n_embd = model['model.embed_tokens.weight'].shape
- n_layer = 1 + max(int(m.group(1)) for name in model
- if (m := re.match(r'model\.layers\.([0-9]+)', name)))
- # hardcoded:
- n_mult = 256
- n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
- tokenizer = SentencePieceProcessor(fname_tokenizer)
- assert tokenizer.vocab_size() == n_vocab
- fname_out = sys.argv[3]
- fout = open(fname_out, "wb")
- fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex
- fout.write(struct.pack("i", 1)) # file version
- fout.write(struct.pack("i", n_vocab))
- fout.write(struct.pack("i", n_embd))
- fout.write(struct.pack("i", n_mult))
- fout.write(struct.pack("i", n_head))
- fout.write(struct.pack("i", n_layer))
- fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
- fout.write(struct.pack("i", 4))
- # This loop unchanged from convert-pth-to-ggml.py:
- for i in range(tokenizer.vocab_size()):
- if tokenizer.is_unknown(i):
- text = " \u2047 ".encode()
- elif tokenizer.is_control(i):
- text = b""
- elif tokenizer.is_byte(i):
- piece = tokenizer.id_to_piece(i)
- if len(piece) != 6:
- print(f"Invalid token: {piece}")
- sys.exit(1)
- byte_value = int(piece[3:-1], 16)
- text = struct.pack("B", byte_value)
- else:
- text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- fout.write(struct.pack("f", tokenizer.get_score(i)))
- def write_header(shape, dst_name, ftype_cur):
- sname = dst_name.encode()
- fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
- fout.write(struct.pack("i" * len(shape), *shape[::-1]))
- fout.write(sname)
- # ensure tensor data is aligned
- tensor_data_offset = fout.tell()
- tensor_data_offset = (tensor_data_offset + 31) & -32
- fout.seek(tensor_data_offset)
- def convert_non_q4(src_name, dst_name):
- v = model[src_name]
- shape = v.shape
- print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}")
- if len(shape) == 1:
- print(" Converting to float32")
- v = v.to(torch.float32)
- ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
- # header
- write_header(shape, dst_name, ftype_cur)
- # data
- v.numpy().tofile(fout)
- def convert_q4(src_name, dst_name, permute=False):
- zeros = model[f"{src_name}.zeros"].numpy()
- scales = model[f"{src_name}.scales"].numpy()
- bias = model[f"{src_name}.bias"].numpy()
- qweight = model[f"{src_name}.qweight"].numpy().T # transpose
- # Q4_1 does not support bias; good thing the bias is always all zeros.
- assert not np.any(bias)
- # Each int32 item is actually 8 int4 items packed together, and it's transposed.
- shape = (qweight.shape[0], qweight.shape[1] * 8)
- print(f"Processing Q4 variable: {src_name} with shape: {shape}")
- # The output format has the int4 weights in groups of 32 rather than 8.
- # It looks like this:
- # For each row:
- # For each group of 32 columns:
- # - addend (float32, 4 bytes)
- # - scale (float32, 4 bytes)
- # - weights (int4 * 32, 16 bytes)
- # Note that in the input, the scales and addends are shared between all
- # the columns in a row, so we end up wasting quite a bit of memory with
- # repeated scales and addends.
- addends = -zeros # flip sign
- # Since the output format is mixed between integers and floats, we have
- # to hackily view the floats as int32s just so numpy will let us
- # concatenate them.
- addends_view = addends.view(dtype=np.int32)
- scales_view = scales.view(dtype=np.int32)
- # Split into groups of 4 columns (i.e. 32 columns of quantized data):
- grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
- # Repeat addends and scales:
- addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
- scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
- blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
- if permute:
- # Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
- # This can be done after the above conversion because it doesn't affect column order/layout.
- blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
- .swapaxes(1, 2)
- .reshape(blob.shape))
- # header
- write_header(shape, dst_name, 3) # ftype = Q4_1
- # data
- blob.tofile(fout)
- convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
- convert_non_q4("model.norm.weight", "norm.weight")
- convert_non_q4("lm_head.weight", "output.weight")
- for i in range(n_layer):
- convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
- convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
- convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
- convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
- convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
- convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
- convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
- convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
- convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
- fout.close()
- print(f"Done. Output file: {fname_out}")
- print()
|