| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- # Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic
- #
- # We caused a breaking change to the file format on 2023-03-30 in:
- # https://github.com/ggerganov/llama.cpp/pull/613
- #
- # (1) If you still have the Meta LLaMA .pth files, then close this
- # file now; you can just run `convert-pth-to-ggml.py` again to
- # migrate to the new format. The tool is easier to use too. It
- # isn't necessary anymore to manage split output files because
- # the new format always combines things into a single file.
- #
- # (2) If you deleted the Meta LLaMA .pth files due to save on disk
- # space, then this tool is intended to help you. Please check
- # out the instructions below.
- #
- # USAGE
- #
- # python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT
- #
- # PREREQUISITES
- #
- # pip install numpy
- # cd llama.cpp
- # make -j4
- #
- # EXAMPLE (7B MODEL)
- #
- # # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
- # python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin
- #
- # # check that it works
- # ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
- #
- # # you can delete the old files
- # rm -f models/7B/ggml-model-f16.bin
- # mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin
- #
- # EXAMPLE (13B MODEL)
- #
- # # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
- # python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin
- #
- # # check that it works
- # ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
- #
- # # you can delete the old files
- # rm -f models/13B/ggml-model-f16.bin*
- # mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin
- #
- import argparse
- import os
- import sys
- import json
- import struct
- import numpy as np
- QK = 32
- GGML_TYPE_Q4_0 = 0
- GGML_TYPE_Q4_1 = 1
- GGML_TYPE_I8 = 2
- GGML_TYPE_I16 = 3
- GGML_TYPE_I32 = 4
- GGML_TYPE_F16 = 5
- GGML_TYPE_F32 = 6
- WTYPE_NAMES = {
- 0: "F32",
- 1: "F16",
- 2: "Q4_0",
- 3: "Q4_1",
- }
- WTYPES = {
- 0: GGML_TYPE_F32,
- 1: GGML_TYPE_F16,
- 2: GGML_TYPE_Q4_0,
- 3: GGML_TYPE_Q4_1,
- }
- GGML_BLCK_SIZE = {
- GGML_TYPE_Q4_0: QK,
- GGML_TYPE_Q4_1: QK,
- GGML_TYPE_I8: 1,
- GGML_TYPE_I16: 1,
- GGML_TYPE_I32: 1,
- GGML_TYPE_F16: 1,
- GGML_TYPE_F32: 1,
- }
- GGML_TYPE_SIZE = {
- GGML_TYPE_Q4_0: 4 + QK//2,
- GGML_TYPE_Q4_1: 4*2 + QK//2,
- GGML_TYPE_I8: 1,
- GGML_TYPE_I16: 2,
- GGML_TYPE_I32: 4,
- GGML_TYPE_F16: 2,
- GGML_TYPE_F32: 4,
- }
- HPARAMS = [
- 'magic', # int32
- 'version', # int32
- 'n_vocab', # int32
- 'n_embd', # int32
- 'n_mult', # int32
- 'n_head', # int32
- 'n_layer', # int32
- 'n_rot', # int32
- 'f16', # int32
- ]
- def read_hparams(fin):
- struct_fmt = "i" * len(HPARAMS)
- struct_size = struct.calcsize(struct_fmt)
- buf = fin.read(struct_size)
- ints = struct.unpack(struct_fmt, buf)
- hparams = dict(zip(HPARAMS, ints))
- return hparams
- def write_hparams(fout, hparams):
- struct_fmt = "i" * len(HPARAMS)
- struct_size = struct.calcsize(struct_fmt)
- ints = [hparams[h] for h in HPARAMS]
- fout.write(struct.pack(struct_fmt, *ints))
- def read_tokens(fin, hparams):
- tokens = []
- for i in range(hparams['n_vocab']):
- len_b = fin.read(4)
- (length,) = struct.unpack("i", len_b)
- word = fin.read(length)
- score_b = fin.read(4)
- (score,) = struct.unpack("f", score_b)
- tokens.append((word, score))
- return tokens
- def write_tokens(fout, tokens):
- for word, score in tokens:
- fout.write(struct.pack("i", len(word)))
- fout.write(word)
- fout.write(struct.pack("f", score))
- def ggml_nelements(shape):
- r = 1
- for i in shape:
- r *= i
- return r
- def ggml_nbytes(shape, ftype):
- x = ggml_nelements(shape)
- t = WTYPES[ftype]
- x *= GGML_TYPE_SIZE[t]
- x //= GGML_BLCK_SIZE[t]
- return x
- def copy_tensors(fin, fout, part_id, n_parts):
- while True:
- b = fin.read(4)
- if not b: break
- (n_dims,) = struct.unpack("i", b)
- b = fin.read(4)
- (length,) = struct.unpack("i", b)
- b = fin.read(4)
- (ftype,) = struct.unpack("i", b)
- assert n_dims in (1, 2)
- partshape = list(range(n_dims))
- for i in range(n_dims):
- b = fin.read(4)
- partshape[i] = struct.unpack("i", b)[0]
- partshape = list(reversed(partshape))
- name = fin.read(length)
- data = fin.read(ggml_nbytes(partshape, ftype))
- blck_size = GGML_BLCK_SIZE[WTYPES[ftype]]
- type_size = GGML_TYPE_SIZE[WTYPES[ftype]]
- print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}")
- # determine dimension along which multipart tensor is sharded
- #
- # split_dim 0 regex:
- # - output.*
- # - layers.*.attention.wq.weight
- # - layers.*.attention.wk.weight
- # - layers.*.attention.wv.weight
- # - layers.*.feed_forward.w1.weight
- # - layers.*.feed_forward.w3.weight
- #
- # split_dim 1 regex:
- # - tok_embeddings.*
- # - layers.*.attention.wo.weight
- # - layers.*.feed_forward.w2.weight
- #
- if n_dims > 1:
- split_dim = 1
- if b"tok_embeddings" in name:
- split_dim = 1
- elif b"layers" in name:
- if b"attention.wo.weight" in name:
- split_dim = 1
- elif b"feed_forward.w2.weight" in name:
- split_dim = 1
- else:
- split_dim = 0
- elif b"output" in name:
- split_dim = 0
- # output tensor header
- fullshape = list(partshape)
- if n_dims > 1:
- fullshape[split_dim] *= n_parts
- fout.write(struct.pack("iii", n_dims, len(name), ftype))
- for dim in reversed(fullshape):
- fout.write(struct.pack("i", dim))
- fout.write(name)
- # ensure tensor data is aligned
- tensor_data_offset = fout.tell()
- while tensor_data_offset % QK != 0:
- fout.write(struct.pack("B", 0))
- tensor_data_offset += 1
- # output unified mappable tensor data
- if n_dims == 1 or n_parts == 1:
- # copy tensor which we thankfully received in one piece
- if part_id == 0:
- fout.write(data)
- elif split_dim == 0:
- # reassemble multifile tensor containing some of the rows
- rows_per_chunk = partshape[0]
- current_row = part_id * rows_per_chunk
- bytes_per_row = fullshape[1] // blck_size * type_size
- offset = current_row * bytes_per_row
- fout.seek(tensor_data_offset + offset)
- fout.write(data)
- elif split_dim == 1:
- # reassemble multifile tensor containing some of the cols
- cols_per_chunk = partshape[1]
- current_col = part_id * cols_per_chunk
- bpr = partshape[1] // blck_size * type_size
- bytes_per_row = fullshape[1] // blck_size * type_size
- offset_current_col = current_col // blck_size * type_size
- for row in range(partshape[0]):
- offset_row = row * bytes_per_row
- offset = offset_row + offset_current_col
- fout.seek(tensor_data_offset + offset)
- fout.write(data[row * bpr:row * bpr + bpr])
- # advance file position to next tensor
- fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype))
- def parse_args():
- parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format')
- parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)')
- parser.add_argument('fout_path', help='your new ggjt file name')
- return parser.parse_args()
- def main():
- args = parse_args()
- assert args.fin_path
- assert args.fout_path
- assert args.fin_path != args.fout_path
- with open(args.fin_path, "rb") as fin:
- hparams = read_hparams(fin)
- tokens = read_tokens(fin, hparams)
- if hparams['magic'] == 0x67676a74: # ggjt
- print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n")
- sys.exit(1)
- if hparams['magic'] != 0x67676d66: # ggmf
- print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n")
- sys.exit(1)
- hparams['magic'] = 0x67676a74 # ggjt
- # count number of multipart files by convention
- n_parts = 1
- while True:
- if os.path.exists(f"{args.fin_path}.{n_parts}"):
- n_parts += 1
- else:
- break
- # we output a single file for ggml
- with open(args.fout_path, "wb") as fout:
- write_hparams(fout, hparams)
- write_tokens(fout, tokens)
- offset_of_tensors = fout.tell()
- # the tensors we load could be split across multiple files
- for part_id in range(n_parts):
- fout.seek(offset_of_tensors)
- print(f"Processing part {part_id+1} of {n_parts}\n")
- fin_path = args.fin_path
- if part_id > 0:
- fin_path += f".{part_id}"
- with open(fin_path, "rb") as fin:
- read_tokens(fin, read_hparams(fin))
- copy_tensors(fin, fout, part_id, n_parts)
- print(f"Done. Output file: {args.fout_path}\n")
- if __name__ == "__main__":
- main()
|