| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- #if defined(_WIN32)
- #include <windows.h>
- #else
- #include <unistd.h>
- #endif
- #include <climits>
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- #include <sstream>
- #include <string>
- #include <unordered_map>
- #include <vector>
- #include "llama-cpp.h"
- typedef std::unique_ptr<char[]> char_array_ptr;
- struct Argument {
- std::string flag;
- std::string help_text;
- };
- struct Options {
- std::string model_path, prompt_non_interactive;
- int ngl = 99;
- int n_ctx = 2048;
- };
- class ArgumentParser {
- public:
- ArgumentParser(const char * program_name) : program_name(program_name) {}
- void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") {
- string_args[flag] = &var;
- arguments.push_back({flag, help_text});
- }
- void add_argument(const std::string & flag, int & var, const std::string & help_text = "") {
- int_args[flag] = &var;
- arguments.push_back({flag, help_text});
- }
- int parse(int argc, const char ** argv) {
- for (int i = 1; i < argc; ++i) {
- std::string arg = argv[i];
- if (string_args.count(arg)) {
- if (i + 1 < argc) {
- *string_args[arg] = argv[++i];
- } else {
- fprintf(stderr, "error: missing value for %s\n", arg.c_str());
- print_usage();
- return 1;
- }
- } else if (int_args.count(arg)) {
- if (i + 1 < argc) {
- if (parse_int_arg(argv[++i], *int_args[arg]) != 0) {
- fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]);
- print_usage();
- return 1;
- }
- } else {
- fprintf(stderr, "error: missing value for %s\n", arg.c_str());
- print_usage();
- return 1;
- }
- } else {
- fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str());
- print_usage();
- return 1;
- }
- }
- if (string_args["-m"]->empty()) {
- fprintf(stderr, "error: -m is required\n");
- print_usage();
- return 1;
- }
- return 0;
- }
- private:
- const char * program_name;
- std::unordered_map<std::string, std::string *> string_args;
- std::unordered_map<std::string, int *> int_args;
- std::vector<Argument> arguments;
- int parse_int_arg(const char * arg, int & value) {
- char * end;
- const long val = std::strtol(arg, &end, 10);
- if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) {
- value = static_cast<int>(val);
- return 0;
- }
- return 1;
- }
- void print_usage() const {
- printf("\nUsage:\n");
- printf(" %s [OPTIONS]\n\n", program_name);
- printf("Options:\n");
- for (const auto & arg : arguments) {
- printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str());
- }
- printf("\n");
- }
- };
- class LlamaData {
- public:
- llama_model_ptr model;
- llama_sampler_ptr sampler;
- llama_context_ptr context;
- std::vector<llama_chat_message> messages;
- int init(const Options & opt) {
- model = initialize_model(opt.model_path, opt.ngl);
- if (!model) {
- return 1;
- }
- context = initialize_context(model, opt.n_ctx);
- if (!context) {
- return 1;
- }
- sampler = initialize_sampler();
- return 0;
- }
- private:
- // Initializes the model and returns a unique pointer to it
- llama_model_ptr initialize_model(const std::string & model_path, const int ngl) {
- llama_model_params model_params = llama_model_default_params();
- model_params.n_gpu_layers = ngl;
- llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params));
- if (!model) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- }
- return model;
- }
- // Initializes the context with the specified parameters
- llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.n_ctx = n_ctx;
- ctx_params.n_batch = n_ctx;
- llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
- if (!context) {
- fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__);
- }
- return context;
- }
- // Initializes and configures the sampler
- llama_sampler_ptr initialize_sampler() {
- llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
- llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
- llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
- llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
- return sampler;
- }
- };
- // Add a message to `messages` and store its content in `owned_content`
- static void add_message(const char * role, const std::string & text, LlamaData & llama_data,
- std::vector<char_array_ptr> & owned_content) {
- char_array_ptr content(new char[text.size() + 1]);
- std::strcpy(content.get(), text.c_str());
- llama_data.messages.push_back({role, content.get()});
- owned_content.push_back(std::move(content));
- }
- // Function to apply the chat template and resize `formatted` if needed
- static int apply_chat_template(const LlamaData & llama_data, std::vector<char> & formatted, const bool append) {
- int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
- llama_data.messages.size(), append, formatted.data(), formatted.size());
- if (result > static_cast<int>(formatted.size())) {
- formatted.resize(result);
- result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
- llama_data.messages.size(), append, formatted.data(), formatted.size());
- }
- return result;
- }
- // Function to tokenize the prompt
- static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
- std::vector<llama_token> & prompt_tokens) {
- const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
- prompt_tokens.resize(n_prompt_tokens);
- if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
- true) < 0) {
- GGML_ABORT("failed to tokenize the prompt\n");
- }
- return n_prompt_tokens;
- }
- // Check if we have enough space in the context to evaluate this batch
- static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
- const int n_ctx = llama_n_ctx(ctx.get());
- const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
- if (n_ctx_used + batch.n_tokens > n_ctx) {
- printf("\033[0m\n");
- fprintf(stderr, "context size exceeded\n");
- return 1;
- }
- return 0;
- }
- // convert the token to a string
- static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
- char buf[256];
- int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
- if (n < 0) {
- GGML_ABORT("failed to convert token to piece\n");
- }
- piece = std::string(buf, n);
- return 0;
- }
- static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
- printf("%s", piece.c_str());
- fflush(stdout);
- response += piece;
- }
- // helper function to evaluate a prompt and generate a response
- static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
- std::vector<llama_token> prompt_tokens;
- const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens);
- if (n_prompt_tokens < 0) {
- return 1;
- }
- // prepare a batch for the prompt
- llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
- llama_token new_token_id;
- while (true) {
- check_context_size(llama_data.context, batch);
- if (llama_decode(llama_data.context.get(), batch)) {
- GGML_ABORT("failed to decode\n");
- }
- // sample the next token, check is it an end of generation?
- new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
- if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
- break;
- }
- std::string piece;
- if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
- return 1;
- }
- print_word_and_concatenate_to_response(piece, response);
- // prepare the next batch with the sampled token
- batch = llama_batch_get_one(&new_token_id, 1);
- }
- return 0;
- }
- static int parse_arguments(const int argc, const char ** argv, Options & opt) {
- ArgumentParser parser(argv[0]);
- parser.add_argument("-m", opt.model_path, "model");
- parser.add_argument("-p", opt.prompt_non_interactive, "prompt");
- parser.add_argument("-c", opt.n_ctx, "context_size");
- parser.add_argument("-ngl", opt.ngl, "n_gpu_layers");
- if (parser.parse(argc, argv)) {
- return 1;
- }
- return 0;
- }
- static int read_user_input(std::string & user) {
- std::getline(std::cin, user);
- return user.empty(); // Indicate an error or empty input
- }
- // Function to generate a response based on the prompt
- static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) {
- // Set response color
- printf("\033[33m");
- if (generate(llama_data, prompt, response)) {
- fprintf(stderr, "failed to generate response\n");
- return 1;
- }
- // End response with color reset and newline
- printf("\n\033[0m");
- return 0;
- }
- // Helper function to apply the chat template and handle errors
- static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector<char> & formatted,
- const bool is_user_input, int & output_length) {
- const int new_len = apply_chat_template(llama_data, formatted, is_user_input);
- if (new_len < 0) {
- fprintf(stderr, "failed to apply the chat template\n");
- return -1;
- }
- output_length = new_len;
- return 0;
- }
- // Helper function to handle user input
- static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) {
- if (!prompt_non_interactive.empty()) {
- user_input = prompt_non_interactive;
- return true; // No need for interactive input
- }
- printf("\033[32m> \033[0m");
- return !read_user_input(user_input); // Returns false if input ends the loop
- }
- // Function to tokenize the prompt
- static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) {
- std::vector<char_array_ptr> owned_content;
- std::vector<char> fmtted(llama_n_ctx(llama_data.context.get()));
- int prev_len = 0;
- while (true) {
- // Get user input
- std::string user_input;
- if (!handle_user_input(user_input, prompt_non_interactive)) {
- break;
- }
- add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data,
- owned_content);
- int new_len;
- if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) {
- return 1;
- }
- std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len);
- std::string response;
- if (generate_response(llama_data, prompt, response)) {
- return 1;
- }
- }
- return 0;
- }
- static void log_callback(const enum ggml_log_level level, const char * text, void *) {
- if (level == GGML_LOG_LEVEL_ERROR) {
- fprintf(stderr, "%s", text);
- }
- }
- static bool is_stdin_a_terminal() {
- #if defined(_WIN32)
- HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
- DWORD mode;
- return GetConsoleMode(hStdin, &mode);
- #else
- return isatty(STDIN_FILENO);
- #endif
- }
- static std::string read_pipe_data() {
- std::ostringstream result;
- result << std::cin.rdbuf(); // Read all data from std::cin
- return result.str();
- }
- int main(int argc, const char ** argv) {
- Options opt;
- if (parse_arguments(argc, argv, opt)) {
- return 1;
- }
- if (!is_stdin_a_terminal()) {
- if (!opt.prompt_non_interactive.empty()) {
- opt.prompt_non_interactive += "\n\n";
- }
- opt.prompt_non_interactive += read_pipe_data();
- }
- llama_log_set(log_callback, nullptr);
- LlamaData llama_data;
- if (llama_data.init(opt)) {
- return 1;
- }
- if (chat_loop(llama_data, opt.prompt_non_interactive)) {
- return 1;
- }
- return 0;
- }
|