ggml.c 381 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if __AVX__ || __AVX2__ || __AVX512F__
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. // horizontally add 8 floats
  410. static inline float hsum_float_8(const __m256 x) {
  411. __m128 res = _mm256_extractf128_ps(x, 1);
  412. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  413. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  414. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  415. return _mm_cvtss_f32(res);
  416. }
  417. // horizontally add 8 int32_t
  418. static inline int hsum_i32_8(const __m256i a) {
  419. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  420. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  421. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  422. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  423. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  424. }
  425. // horizontally add 4 int32_t
  426. static inline int hsum_i32_4(const __m128i a) {
  427. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  428. const __m128i sum64 = _mm_add_epi32(hi64, a);
  429. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  430. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  431. }
  432. #if __AVX2__ || __AVX512F__
  433. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  434. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  435. uint32_t x32;
  436. memcpy(&x32, x, sizeof(uint32_t));
  437. const __m256i shuf_mask = _mm256_set_epi64x(
  438. 0x0303030303030303, 0x0202020202020202,
  439. 0x0101010101010101, 0x0000000000000000);
  440. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  441. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  442. bytes = _mm256_or_si256(bytes, bit_mask);
  443. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  444. }
  445. // Unpack 32 4-bit fields into 32 bytes
  446. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  447. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  448. {
  449. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  450. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  451. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  452. return _mm256_and_si256(lowMask, bytes);
  453. }
  454. // add int16_t pairwise and return as float vector
  455. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  456. const __m256i ones = _mm256_set1_epi16(1);
  457. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  458. return _mm256_cvtepi32_ps(summed_pairs);
  459. }
  460. // multiply int8_t, add results pairwise twice and return as float vector
  461. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  462. // Get absolute values of x vectors
  463. const __m256i ax = _mm256_sign_epi8(x, x);
  464. // Sign the values of the y vectors
  465. const __m256i sy = _mm256_sign_epi8(y, x);
  466. #if __AVXVNNI__
  467. const __m256i zero = _mm256_setzero_si256();
  468. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  469. return _mm256_cvtepi32_ps(summed_pairs);
  470. #else
  471. // Perform multiplication and create 16-bit values
  472. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  473. return sum_i16_pairs_float(dot);
  474. #endif
  475. }
  476. static inline __m128i packNibbles( __m256i bytes )
  477. {
  478. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  479. #if __AVX512F__
  480. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  481. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  482. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  483. #else
  484. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  485. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  486. __m256i low = _mm256_and_si256( lowByte, bytes );
  487. high = _mm256_srli_epi16( high, 4 );
  488. bytes = _mm256_or_si256( low, high );
  489. // Compress uint16_t lanes into bytes
  490. __m128i r0 = _mm256_castsi256_si128( bytes );
  491. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  492. return _mm_packus_epi16( r0, r1 );
  493. #endif
  494. }
  495. #else
  496. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  497. {
  498. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  499. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  500. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  501. __m128i low = _mm_and_si128( lowByte, bytes1 );
  502. high = _mm_srli_epi16( high, 4 );
  503. bytes1 = _mm_or_si128( low, high );
  504. high = _mm_andnot_si128( lowByte, bytes2 );
  505. low = _mm_and_si128( lowByte, bytes2 );
  506. high = _mm_srli_epi16( high, 4 );
  507. bytes2 = _mm_or_si128( low, high );
  508. return _mm_packus_epi16( bytes1, bytes2);
  509. }
  510. #endif
  511. #endif // __AVX__ || __AVX2__ || __AVX512F__
  512. #if __ARM_NEON
  513. #if !defined(__aarch64__)
  514. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  515. return
  516. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  517. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  518. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  519. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  520. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  521. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  522. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  523. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  524. }
  525. inline static int16_t vaddvq_s8(int8x16_t v) {
  526. return
  527. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  528. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  529. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  530. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  531. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  532. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  533. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  534. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  535. }
  536. inline static int32_t vaddvq_s16(int16x8_t v) {
  537. return
  538. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  539. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  540. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  541. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  542. }
  543. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  544. return
  545. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  546. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  547. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  548. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  549. }
  550. inline static int32_t vaddvq_s32(int32x4_t v) {
  551. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  552. }
  553. inline static float vaddvq_f32(float32x4_t v) {
  554. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  555. }
  556. float vminvq_f32(float32x4_t v) {
  557. return
  558. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  559. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  560. }
  561. float vmaxvq_f32(float32x4_t v) {
  562. return
  563. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  564. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  565. }
  566. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  567. int32x4_t res;
  568. res[0] = roundf(vgetq_lane_f32(v, 0));
  569. res[1] = roundf(vgetq_lane_f32(v, 1));
  570. res[2] = roundf(vgetq_lane_f32(v, 2));
  571. res[3] = roundf(vgetq_lane_f32(v, 3));
  572. return res;
  573. }
  574. #endif
  575. #endif
  576. #define QK4_0 32
  577. typedef struct {
  578. float d; // delta
  579. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  580. } block_q4_0;
  581. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  582. #define QK4_1 32
  583. typedef struct {
  584. float d; // delta
  585. float m; // min
  586. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  587. } block_q4_1;
  588. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  589. #define QK5_0 32
  590. typedef struct {
  591. ggml_fp16_t d; // delta
  592. uint8_t qh[4]; // 5-th bit of quants
  593. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  594. } block_q5_0;
  595. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  596. #define QK5_1 32
  597. typedef struct {
  598. ggml_fp16_t d; // delta
  599. ggml_fp16_t m; // min
  600. uint8_t qh[4]; // 5-th bit of quants
  601. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  602. } block_q5_1;
  603. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  604. #define QK8_0 32
  605. typedef struct {
  606. float d; // delta
  607. int8_t qs[QK8_0]; // quants
  608. } block_q8_0;
  609. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  610. #define QK8_1 32
  611. typedef struct {
  612. float d; // delta
  613. float s; // d * sum(qs[i])
  614. int8_t qs[QK8_1]; // quants
  615. } block_q8_1;
  616. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  617. // reference implementation for deterministic creation of model files
  618. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  619. static const int qk = QK4_0;
  620. assert(k % qk == 0);
  621. const int nb = k / qk;
  622. for (int i = 0; i < nb; i++) {
  623. float amax = 0.0f; // absolute max
  624. float max = 0.0f;
  625. for (int j = 0; j < qk; j++) {
  626. const float v = x[i*qk + j];
  627. if (amax < fabsf(v)) {
  628. amax = fabsf(v);
  629. max = v;
  630. }
  631. }
  632. const float d = max / -8;
  633. const float id = d ? 1.0f/d : 0.0f;
  634. y[i].d = d;
  635. for (int j = 0; j < qk/2; ++j) {
  636. const float x0 = x[i*qk + 0 + j]*id;
  637. const float x1 = x[i*qk + qk/2 + j]*id;
  638. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  639. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  640. y[i].qs[j] = xi0;
  641. y[i].qs[j] |= xi1 << 4;
  642. }
  643. }
  644. }
  645. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  646. quantize_row_q4_0_reference(x, y, k);
  647. }
  648. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  649. const int qk = QK4_1;
  650. assert(k % qk == 0);
  651. const int nb = k / qk;
  652. for (int i = 0; i < nb; i++) {
  653. float min = FLT_MAX;
  654. float max = -FLT_MAX;
  655. for (int j = 0; j < qk; j++) {
  656. const float v = x[i*qk + j];
  657. if (v < min) min = v;
  658. if (v > max) max = v;
  659. }
  660. const float d = (max - min) / ((1 << 4) - 1);
  661. const float id = d ? 1.0f/d : 0.0f;
  662. y[i].d = d;
  663. y[i].m = min;
  664. for (int j = 0; j < qk/2; ++j) {
  665. const float x0 = (x[i*qk + 0 + j] - min)*id;
  666. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  667. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  668. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  669. y[i].qs[j] = xi0;
  670. y[i].qs[j] |= xi1 << 4;
  671. }
  672. }
  673. }
  674. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  675. quantize_row_q4_1_reference(x, y, k);
  676. }
  677. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  678. static const int qk = QK5_0;
  679. assert(k % qk == 0);
  680. const int nb = k / qk;
  681. for (int i = 0; i < nb; i++) {
  682. float amax = 0.0f; // absolute max
  683. float max = 0.0f;
  684. for (int j = 0; j < qk; j++) {
  685. const float v = x[i*qk + j];
  686. if (amax < fabsf(v)) {
  687. amax = fabsf(v);
  688. max = v;
  689. }
  690. }
  691. const float d = max / -16;
  692. const float id = d ? 1.0f/d : 0.0f;
  693. y[i].d = GGML_FP32_TO_FP16(d);
  694. uint32_t qh = 0;
  695. for (int j = 0; j < qk/2; ++j) {
  696. const float x0 = x[i*qk + 0 + j]*id;
  697. const float x1 = x[i*qk + qk/2 + j]*id;
  698. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  699. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  700. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  701. // get the 5-th bit and store it in qh at the right position
  702. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  703. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  704. }
  705. memcpy(&y[i].qh, &qh, sizeof(qh));
  706. }
  707. }
  708. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  709. quantize_row_q5_0_reference(x, y, k);
  710. }
  711. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  712. const int qk = QK5_1;
  713. assert(k % qk == 0);
  714. const int nb = k / qk;
  715. for (int i = 0; i < nb; i++) {
  716. float min = FLT_MAX;
  717. float max = -FLT_MAX;
  718. for (int j = 0; j < qk; j++) {
  719. const float v = x[i*qk + j];
  720. if (v < min) min = v;
  721. if (v > max) max = v;
  722. }
  723. const float d = (max - min) / ((1 << 5) - 1);
  724. const float id = d ? 1.0f/d : 0.0f;
  725. y[i].d = GGML_FP32_TO_FP16(d);
  726. y[i].m = GGML_FP32_TO_FP16(min);
  727. uint32_t qh = 0;
  728. for (int j = 0; j < qk/2; ++j) {
  729. const float x0 = (x[i*qk + 0 + j] - min)*id;
  730. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  731. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  732. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  733. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  734. // get the 5-th bit and store it in qh at the right position
  735. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  736. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  737. }
  738. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  739. }
  740. }
  741. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  742. quantize_row_q5_1_reference(x, y, k);
  743. }
  744. // reference implementation for deterministic creation of model files
  745. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  746. assert(k % QK8_0 == 0);
  747. const int nb = k / QK8_0;
  748. for (int i = 0; i < nb; i++) {
  749. float amax = 0.0f; // absolute max
  750. for (int j = 0; j < QK8_0; j++) {
  751. const float v = x[i*QK8_0 + j];
  752. amax = MAX(amax, fabsf(v));
  753. }
  754. const float d = amax / ((1 << 7) - 1);
  755. const float id = d ? 1.0f/d : 0.0f;
  756. y[i].d = d;
  757. for (int j = 0; j < QK8_0; ++j) {
  758. const float x0 = x[i*QK8_0 + j]*id;
  759. y[i].qs[j] = roundf(x0);
  760. }
  761. }
  762. }
  763. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  764. assert(QK8_0 == 32);
  765. assert(k % QK8_0 == 0);
  766. const int nb = k / QK8_0;
  767. block_q8_0 * restrict y = vy;
  768. #if defined(__ARM_NEON)
  769. for (int i = 0; i < nb; i++) {
  770. float32x4_t srcv [8];
  771. float32x4_t asrcv[8];
  772. float32x4_t amaxv[8];
  773. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  774. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  775. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  776. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  777. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  778. const float amax = vmaxvq_f32(amaxv[0]);
  779. const float d = amax / ((1 << 7) - 1);
  780. const float id = d ? 1.0f/d : 0.0f;
  781. y[i].d = d;
  782. for (int j = 0; j < 8; j++) {
  783. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  784. const int32x4_t vi = vcvtnq_s32_f32(v);
  785. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  786. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  787. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  788. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  789. }
  790. }
  791. #elif defined(__AVX2__) || defined(__AVX__)
  792. for (int i = 0; i < nb; i++) {
  793. // Load elements into 4 AVX vectors
  794. __m256 v0 = _mm256_loadu_ps( x );
  795. __m256 v1 = _mm256_loadu_ps( x + 8 );
  796. __m256 v2 = _mm256_loadu_ps( x + 16 );
  797. __m256 v3 = _mm256_loadu_ps( x + 24 );
  798. x += 32;
  799. // Compute max(abs(e)) for the block
  800. const __m256 signBit = _mm256_set1_ps( -0.0f );
  801. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  802. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  803. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  804. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  805. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  806. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  807. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  808. const float maxScalar = _mm_cvtss_f32( max4 );
  809. // Quantize these floats
  810. const float d = maxScalar / 127.f;
  811. y[i].d = d;
  812. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  813. const __m256 mul = _mm256_set1_ps( id );
  814. // Apply the multiplier
  815. v0 = _mm256_mul_ps( v0, mul );
  816. v1 = _mm256_mul_ps( v1, mul );
  817. v2 = _mm256_mul_ps( v2, mul );
  818. v3 = _mm256_mul_ps( v3, mul );
  819. // Round to nearest integer
  820. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  821. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  822. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  823. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  824. // Convert floats to integers
  825. __m256i i0 = _mm256_cvtps_epi32( v0 );
  826. __m256i i1 = _mm256_cvtps_epi32( v1 );
  827. __m256i i2 = _mm256_cvtps_epi32( v2 );
  828. __m256i i3 = _mm256_cvtps_epi32( v3 );
  829. #if defined(__AVX2__)
  830. // Convert int32 to int16
  831. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  832. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  833. // Convert int16 to int8
  834. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  835. // We got our precious signed bytes, but the order is now wrong
  836. // These AVX2 pack instructions process 16-byte pieces independently
  837. // The following instruction is fixing the order
  838. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  839. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  840. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  841. #else
  842. // Since we don't have in AVX some necessary functions,
  843. // we split the registers in half and call AVX2 analogs from SSE
  844. __m128i ni0 = _mm256_castsi256_si128( i0 );
  845. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  846. __m128i ni2 = _mm256_castsi256_si128( i1 );
  847. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  848. __m128i ni4 = _mm256_castsi256_si128( i2 );
  849. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  850. __m128i ni6 = _mm256_castsi256_si128( i3 );
  851. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  852. // Convert int32 to int16
  853. ni0 = _mm_packs_epi32( ni0, ni1 );
  854. ni2 = _mm_packs_epi32( ni2, ni3 );
  855. ni4 = _mm_packs_epi32( ni4, ni5 );
  856. ni6 = _mm_packs_epi32( ni6, ni7 );
  857. // Convert int16 to int8
  858. ni0 = _mm_packs_epi16( ni0, ni2 );
  859. ni4 = _mm_packs_epi16( ni4, ni6 );
  860. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  861. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  862. #endif
  863. }
  864. #else
  865. // scalar
  866. quantize_row_q8_0_reference(x, y, k);
  867. #endif
  868. }
  869. // reference implementation for deterministic creation of model files
  870. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  871. assert(QK8_1 == 32);
  872. assert(k % QK8_1 == 0);
  873. const int nb = k / QK8_1;
  874. for (int i = 0; i < nb; i++) {
  875. float amax = 0.0f; // absolute max
  876. for (int j = 0; j < QK8_1; j++) {
  877. const float v = x[i*QK8_1 + j];
  878. amax = MAX(amax, fabsf(v));
  879. }
  880. const float d = amax / ((1 << 7) - 1);
  881. const float id = d ? 1.0f/d : 0.0f;
  882. y[i].d = d;
  883. int sum = 0;
  884. for (int j = 0; j < QK8_1/2; ++j) {
  885. const float v0 = x[i*QK8_1 + j]*id;
  886. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  887. y[i].qs[ j] = roundf(v0);
  888. y[i].qs[QK8_1/2 + j] = roundf(v1);
  889. sum += y[i].qs[ j];
  890. sum += y[i].qs[QK8_1/2 + j];
  891. }
  892. y[i].s = d * sum;
  893. }
  894. }
  895. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  896. assert(k % QK8_1 == 0);
  897. const int nb = k / QK8_1;
  898. block_q8_1 * restrict y = vy;
  899. #if defined(__ARM_NEON)
  900. for (int i = 0; i < nb; i++) {
  901. float32x4_t srcv [8];
  902. float32x4_t asrcv[8];
  903. float32x4_t amaxv[8];
  904. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  905. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  906. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  907. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  908. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  909. const float amax = vmaxvq_f32(amaxv[0]);
  910. const float d = amax / ((1 << 7) - 1);
  911. const float id = d ? 1.0f/d : 0.0f;
  912. y[i].d = d;
  913. int32x4_t accv = vdupq_n_s32(0);
  914. for (int j = 0; j < 8; j++) {
  915. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  916. const int32x4_t vi = vcvtnq_s32_f32(v);
  917. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  918. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  919. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  920. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  921. accv = vaddq_s32(accv, vi);
  922. }
  923. y[i].s = d * vaddvq_s32(accv);
  924. }
  925. #elif defined(__AVX2__) || defined(__AVX__)
  926. for (int i = 0; i < nb; i++) {
  927. // Load elements into 4 AVX vectors
  928. __m256 v0 = _mm256_loadu_ps( x );
  929. __m256 v1 = _mm256_loadu_ps( x + 8 );
  930. __m256 v2 = _mm256_loadu_ps( x + 16 );
  931. __m256 v3 = _mm256_loadu_ps( x + 24 );
  932. x += 32;
  933. // Compute max(abs(e)) for the block
  934. const __m256 signBit = _mm256_set1_ps( -0.0f );
  935. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  936. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  937. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  938. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  939. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  940. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  941. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  942. const float maxScalar = _mm_cvtss_f32( max4 );
  943. // Quantize these floats
  944. const float d = maxScalar / 127.f;
  945. y[i].d = d;
  946. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  947. const __m256 mul = _mm256_set1_ps( id );
  948. // Apply the multiplier
  949. v0 = _mm256_mul_ps( v0, mul );
  950. v1 = _mm256_mul_ps( v1, mul );
  951. v2 = _mm256_mul_ps( v2, mul );
  952. v3 = _mm256_mul_ps( v3, mul );
  953. // Round to nearest integer
  954. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  955. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  956. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  957. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  958. // Convert floats to integers
  959. __m256i i0 = _mm256_cvtps_epi32( v0 );
  960. __m256i i1 = _mm256_cvtps_epi32( v1 );
  961. __m256i i2 = _mm256_cvtps_epi32( v2 );
  962. __m256i i3 = _mm256_cvtps_epi32( v3 );
  963. #if defined(__AVX2__)
  964. // Compute the sum of the quants and set y[i].s
  965. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  966. // Convert int32 to int16
  967. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  968. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  969. // Convert int16 to int8
  970. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  971. // We got our precious signed bytes, but the order is now wrong
  972. // These AVX2 pack instructions process 16-byte pieces independently
  973. // The following instruction is fixing the order
  974. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  975. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  976. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  977. #else
  978. // Since we don't have in AVX some necessary functions,
  979. // we split the registers in half and call AVX2 analogs from SSE
  980. __m128i ni0 = _mm256_castsi256_si128( i0 );
  981. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  982. __m128i ni2 = _mm256_castsi256_si128( i1 );
  983. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  984. __m128i ni4 = _mm256_castsi256_si128( i2 );
  985. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  986. __m128i ni6 = _mm256_castsi256_si128( i3 );
  987. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  988. // Compute the sum of the quants and set y[i].s
  989. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  990. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  991. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  992. // Convert int32 to int16
  993. ni0 = _mm_packs_epi32( ni0, ni1 );
  994. ni2 = _mm_packs_epi32( ni2, ni3 );
  995. ni4 = _mm_packs_epi32( ni4, ni5 );
  996. ni6 = _mm_packs_epi32( ni6, ni7 );
  997. // Convert int16 to int8
  998. ni0 = _mm_packs_epi16( ni0, ni2 );
  999. ni4 = _mm_packs_epi16( ni4, ni6 );
  1000. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1001. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1002. #endif
  1003. }
  1004. #else
  1005. // scalar
  1006. quantize_row_q8_1_reference(x, y, k);
  1007. #endif
  1008. }
  1009. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1010. static const int qk = QK4_0;
  1011. assert(k % qk == 0);
  1012. const int nb = k / qk;
  1013. for (int i = 0; i < nb; i++) {
  1014. const float d = x[i].d;
  1015. for (int j = 0; j < qk/2; ++j) {
  1016. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1017. const int x1 = (x[i].qs[j] >> 4) - 8;
  1018. y[i*qk + j + 0 ] = x0*d;
  1019. y[i*qk + j + qk/2] = x1*d;
  1020. }
  1021. }
  1022. }
  1023. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1024. static const int qk = QK4_1;
  1025. assert(k % qk == 0);
  1026. const int nb = k / qk;
  1027. for (int i = 0; i < nb; i++) {
  1028. const float d = x[i].d;
  1029. const float m = x[i].m;
  1030. for (int j = 0; j < qk/2; ++j) {
  1031. const int x0 = (x[i].qs[j] & 0x0F);
  1032. const int x1 = (x[i].qs[j] >> 4);
  1033. y[i*qk + j + 0 ] = x0*d + m;
  1034. y[i*qk + j + qk/2] = x1*d + m;
  1035. }
  1036. }
  1037. }
  1038. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1039. static const int qk = QK5_0;
  1040. assert(k % qk == 0);
  1041. const int nb = k / qk;
  1042. for (int i = 0; i < nb; i++) {
  1043. const float d = GGML_FP16_TO_FP32(x[i].d);
  1044. uint32_t qh;
  1045. memcpy(&qh, x[i].qh, sizeof(qh));
  1046. for (int j = 0; j < qk/2; ++j) {
  1047. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1048. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1049. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1050. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1051. y[i*qk + j + 0 ] = x0*d;
  1052. y[i*qk + j + qk/2] = x1*d;
  1053. }
  1054. }
  1055. }
  1056. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1057. static const int qk = QK5_1;
  1058. assert(k % qk == 0);
  1059. const int nb = k / qk;
  1060. for (int i = 0; i < nb; i++) {
  1061. const float d = GGML_FP16_TO_FP32(x[i].d);
  1062. const float m = GGML_FP16_TO_FP32(x[i].m);
  1063. uint32_t qh;
  1064. memcpy(&qh, x[i].qh, sizeof(qh));
  1065. for (int j = 0; j < qk/2; ++j) {
  1066. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1067. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1068. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1069. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1070. y[i*qk + j + 0 ] = x0*d + m;
  1071. y[i*qk + j + qk/2] = x1*d + m;
  1072. }
  1073. }
  1074. }
  1075. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1076. static const int qk = QK8_0;
  1077. assert(k % qk == 0);
  1078. const int nb = k / qk;
  1079. const block_q8_0 * restrict x = vx;
  1080. for (int i = 0; i < nb; i++) {
  1081. const float d = x[i].d;
  1082. for (int j = 0; j < qk; ++j) {
  1083. y[i*qk + j] = x[i].qs[j]*d;
  1084. }
  1085. }
  1086. }
  1087. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1088. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1089. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1090. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1091. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1092. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1093. [GGML_TYPE_Q4_0] = {
  1094. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1095. .quantize_row_q = quantize_row_q4_0,
  1096. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1097. .quantize_row_q_dot = quantize_row_q8_0,
  1098. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1099. .vec_dot_type = GGML_TYPE_Q8_0,
  1100. },
  1101. [GGML_TYPE_Q4_1] = {
  1102. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1103. .quantize_row_q = quantize_row_q4_1,
  1104. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1105. .quantize_row_q_dot = quantize_row_q8_1,
  1106. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1107. .vec_dot_type = GGML_TYPE_Q8_1,
  1108. },
  1109. [GGML_TYPE_Q5_0] = {
  1110. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1111. .quantize_row_q = quantize_row_q5_0,
  1112. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1113. .quantize_row_q_dot = quantize_row_q8_0,
  1114. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1115. .vec_dot_type = GGML_TYPE_Q8_0,
  1116. },
  1117. [GGML_TYPE_Q5_1] = {
  1118. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1119. .quantize_row_q = quantize_row_q5_1,
  1120. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1121. .quantize_row_q_dot = quantize_row_q8_1,
  1122. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1123. .vec_dot_type = GGML_TYPE_Q8_1,
  1124. },
  1125. [GGML_TYPE_Q8_0] = {
  1126. .dequantize_row_q = dequantize_row_q8_0,
  1127. .quantize_row_q = quantize_row_q8_0,
  1128. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1129. .quantize_row_q_dot = quantize_row_q8_0,
  1130. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1131. .vec_dot_type = GGML_TYPE_Q8_0,
  1132. },
  1133. [GGML_TYPE_Q8_1] = {
  1134. .dequantize_row_q = NULL, // TODO
  1135. .quantize_row_q = quantize_row_q8_1,
  1136. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1137. .quantize_row_q_dot = quantize_row_q8_1,
  1138. .vec_dot_q = NULL, // TODO
  1139. .vec_dot_type = GGML_TYPE_Q8_1,
  1140. },
  1141. };
  1142. // For internal test use
  1143. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1144. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1145. return quantize_fns[i];
  1146. }
  1147. //
  1148. // simd mappings
  1149. //
  1150. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1151. // we then implement the fundamental computation operations below using only these macros
  1152. // adding support for new architectures requires to define the corresponding SIMD macros
  1153. //
  1154. // GGML_F32_STEP / GGML_F16_STEP
  1155. // number of elements to process in a single step
  1156. //
  1157. // GGML_F32_EPR / GGML_F16_EPR
  1158. // number of elements to fit in a single register
  1159. //
  1160. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1161. #define GGML_SIMD
  1162. // F32 NEON
  1163. #define GGML_F32_STEP 16
  1164. #define GGML_F32_EPR 4
  1165. #define GGML_F32x4 float32x4_t
  1166. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1167. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1168. #define GGML_F32x4_LOAD vld1q_f32
  1169. #define GGML_F32x4_STORE vst1q_f32
  1170. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1171. #define GGML_F32x4_ADD vaddq_f32
  1172. #define GGML_F32x4_MUL vmulq_f32
  1173. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1174. #define GGML_F32x4_REDUCE(res, x) \
  1175. { \
  1176. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1177. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1178. } \
  1179. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1180. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1181. } \
  1182. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1183. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1184. } \
  1185. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1186. }
  1187. #define GGML_F32_VEC GGML_F32x4
  1188. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1189. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1190. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1191. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1192. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1193. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1194. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1195. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1196. // F16 NEON
  1197. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1198. #define GGML_F16_STEP 32
  1199. #define GGML_F16_EPR 8
  1200. #define GGML_F16x8 float16x8_t
  1201. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1202. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1203. #define GGML_F16x8_LOAD vld1q_f16
  1204. #define GGML_F16x8_STORE vst1q_f16
  1205. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1206. #define GGML_F16x8_ADD vaddq_f16
  1207. #define GGML_F16x8_MUL vmulq_f16
  1208. #define GGML_F16x8_REDUCE(res, x) \
  1209. { \
  1210. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1211. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1212. } \
  1213. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1214. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1215. } \
  1216. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1217. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1218. } \
  1219. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1220. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1221. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1222. }
  1223. #define GGML_F16_VEC GGML_F16x8
  1224. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1225. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1226. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1227. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1228. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1229. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1230. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1231. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1232. #else
  1233. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1234. // and take advantage of the vcvt_ functions to convert to/from FP16
  1235. #define GGML_F16_STEP 16
  1236. #define GGML_F16_EPR 4
  1237. #define GGML_F32Cx4 float32x4_t
  1238. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1239. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1240. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1241. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1242. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1243. #define GGML_F32Cx4_ADD vaddq_f32
  1244. #define GGML_F32Cx4_MUL vmulq_f32
  1245. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1246. #define GGML_F16_VEC GGML_F32Cx4
  1247. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1248. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1249. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1250. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1251. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1252. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1253. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1254. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1255. #endif
  1256. #elif defined(__AVX__)
  1257. #define GGML_SIMD
  1258. // F32 AVX
  1259. #define GGML_F32_STEP 32
  1260. #define GGML_F32_EPR 8
  1261. #define GGML_F32x8 __m256
  1262. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1263. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1264. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1265. #define GGML_F32x8_STORE _mm256_storeu_ps
  1266. #if defined(__FMA__)
  1267. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1268. #else
  1269. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1270. #endif
  1271. #define GGML_F32x8_ADD _mm256_add_ps
  1272. #define GGML_F32x8_MUL _mm256_mul_ps
  1273. #define GGML_F32x8_REDUCE(res, x) \
  1274. { \
  1275. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1276. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1277. } \
  1278. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1279. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1280. } \
  1281. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1282. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1283. } \
  1284. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1285. _mm256_extractf128_ps(x[0], 1)); \
  1286. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1287. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1288. }
  1289. // TODO: is this optimal ?
  1290. #define GGML_F32_VEC GGML_F32x8
  1291. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1292. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1293. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1294. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1295. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1296. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1297. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1298. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1299. // F16 AVX
  1300. #define GGML_F16_STEP 32
  1301. #define GGML_F16_EPR 8
  1302. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1303. #define GGML_F32Cx8 __m256
  1304. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1305. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1306. #if defined(__F16C__)
  1307. // the _mm256_cvt intrinsics require F16C
  1308. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1309. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1310. #else
  1311. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1312. float tmp[8];
  1313. for (int i = 0; i < 8; i++)
  1314. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1315. return _mm256_loadu_ps(tmp);
  1316. }
  1317. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1318. float arr[8];
  1319. _mm256_storeu_ps(arr, y);
  1320. for (int i = 0; i < 8; i++)
  1321. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1322. }
  1323. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1324. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1325. #endif
  1326. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1327. #define GGML_F32Cx8_ADD _mm256_add_ps
  1328. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1329. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1330. #define GGML_F16_VEC GGML_F32Cx8
  1331. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1332. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1333. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1334. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1335. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1336. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1337. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1338. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1339. #elif defined(__POWER9_VECTOR__)
  1340. #define GGML_SIMD
  1341. // F32 POWER9
  1342. #define GGML_F32_STEP 32
  1343. #define GGML_F32_EPR 4
  1344. #define GGML_F32x4 vector float
  1345. #define GGML_F32x4_ZERO 0.0f
  1346. #define GGML_F32x4_SET1 vec_splats
  1347. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1348. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1349. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1350. #define GGML_F32x4_ADD vec_add
  1351. #define GGML_F32x4_MUL vec_mul
  1352. #define GGML_F32x4_REDUCE(res, x) \
  1353. { \
  1354. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1355. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1356. } \
  1357. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1358. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1359. } \
  1360. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1361. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1362. } \
  1363. res = vec_extract(x[0], 0) + \
  1364. vec_extract(x[0], 1) + \
  1365. vec_extract(x[0], 2) + \
  1366. vec_extract(x[0], 3); \
  1367. }
  1368. #define GGML_F32_VEC GGML_F32x4
  1369. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1370. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1371. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1372. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1373. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1374. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1375. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1376. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1377. // F16 POWER9
  1378. #define GGML_F16_STEP GGML_F32_STEP
  1379. #define GGML_F16_EPR GGML_F32_EPR
  1380. #define GGML_F16_VEC GGML_F32x4
  1381. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1382. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1383. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1384. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1385. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1386. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1387. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1388. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1389. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1390. #define GGML_F16_VEC_STORE(p, r, i) \
  1391. if (i & 0x1) \
  1392. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1393. r[i - GGML_ENDIAN_BYTE(0)]), \
  1394. 0, p - GGML_F16_EPR)
  1395. #elif defined(__wasm_simd128__)
  1396. #define GGML_SIMD
  1397. // F32 WASM
  1398. #define GGML_F32_STEP 16
  1399. #define GGML_F32_EPR 4
  1400. #define GGML_F32x4 v128_t
  1401. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1402. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1403. #define GGML_F32x4_LOAD wasm_v128_load
  1404. #define GGML_F32x4_STORE wasm_v128_store
  1405. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1406. #define GGML_F32x4_ADD wasm_f32x4_add
  1407. #define GGML_F32x4_MUL wasm_f32x4_mul
  1408. #define GGML_F32x4_REDUCE(res, x) \
  1409. { \
  1410. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1411. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1412. } \
  1413. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1414. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1415. } \
  1416. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1417. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1418. } \
  1419. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1420. wasm_f32x4_extract_lane(x[0], 1) + \
  1421. wasm_f32x4_extract_lane(x[0], 2) + \
  1422. wasm_f32x4_extract_lane(x[0], 3); \
  1423. }
  1424. #define GGML_F32_VEC GGML_F32x4
  1425. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1426. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1427. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1428. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1429. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1430. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1431. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1432. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1433. // F16 WASM
  1434. #define GGML_F16_STEP 16
  1435. #define GGML_F16_EPR 4
  1436. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1437. float tmp[4];
  1438. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1439. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1440. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1441. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1442. return wasm_v128_load(tmp);
  1443. }
  1444. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1445. float tmp[4];
  1446. wasm_v128_store(tmp, x);
  1447. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1448. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1449. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1450. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1451. }
  1452. #define GGML_F16x4 v128_t
  1453. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1454. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1455. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1456. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1457. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1458. #define GGML_F16x4_ADD wasm_f32x4_add
  1459. #define GGML_F16x4_MUL wasm_f32x4_mul
  1460. #define GGML_F16x4_REDUCE(res, x) \
  1461. { \
  1462. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1463. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1464. } \
  1465. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1466. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1467. } \
  1468. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1469. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1470. } \
  1471. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1472. wasm_f32x4_extract_lane(x[0], 1) + \
  1473. wasm_f32x4_extract_lane(x[0], 2) + \
  1474. wasm_f32x4_extract_lane(x[0], 3); \
  1475. }
  1476. #define GGML_F16_VEC GGML_F16x4
  1477. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1478. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1479. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1480. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1481. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1482. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1483. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1484. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1485. #elif defined(__SSE3__)
  1486. #define GGML_SIMD
  1487. // F32 SSE
  1488. #define GGML_F32_STEP 32
  1489. #define GGML_F32_EPR 4
  1490. #define GGML_F32x4 __m128
  1491. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1492. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1493. #define GGML_F32x4_LOAD _mm_loadu_ps
  1494. #define GGML_F32x4_STORE _mm_storeu_ps
  1495. #if defined(__FMA__)
  1496. // TODO: Does this work?
  1497. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1498. #else
  1499. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1500. #endif
  1501. #define GGML_F32x4_ADD _mm_add_ps
  1502. #define GGML_F32x4_MUL _mm_mul_ps
  1503. #define GGML_F32x4_REDUCE(res, x) \
  1504. { \
  1505. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1506. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1507. } \
  1508. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1509. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1510. } \
  1511. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1512. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1513. } \
  1514. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1515. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1516. }
  1517. // TODO: is this optimal ?
  1518. #define GGML_F32_VEC GGML_F32x4
  1519. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1520. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1521. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1522. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1523. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1524. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1525. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1526. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1527. // F16 SSE
  1528. #define GGML_F16_STEP 32
  1529. #define GGML_F16_EPR 4
  1530. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1531. float tmp[4];
  1532. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1533. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1534. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1535. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1536. return _mm_loadu_ps(tmp);
  1537. }
  1538. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1539. float arr[4];
  1540. _mm_storeu_ps(arr, y);
  1541. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1542. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1543. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1544. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1545. }
  1546. #define GGML_F32Cx4 __m128
  1547. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1548. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1549. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1550. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1551. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1552. #define GGML_F32Cx4_ADD _mm_add_ps
  1553. #define GGML_F32Cx4_MUL _mm_mul_ps
  1554. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1555. #define GGML_F16_VEC GGML_F32Cx4
  1556. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1557. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1558. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1559. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1560. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1561. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1562. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1563. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1564. #endif
  1565. // GGML_F32_ARR / GGML_F16_ARR
  1566. // number of registers to use per step
  1567. #ifdef GGML_SIMD
  1568. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1569. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1570. #endif
  1571. //
  1572. // fundamental operations
  1573. //
  1574. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1575. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1576. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1577. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1578. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1579. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1580. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1581. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1582. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1583. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1584. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1585. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1586. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1587. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1588. #ifdef GGML_SIMD
  1589. float sumf = 0.0f;
  1590. const int np = (n & ~(GGML_F32_STEP - 1));
  1591. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1592. GGML_F32_VEC ax[GGML_F32_ARR];
  1593. GGML_F32_VEC ay[GGML_F32_ARR];
  1594. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1595. for (int j = 0; j < GGML_F32_ARR; j++) {
  1596. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1597. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1598. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1599. }
  1600. }
  1601. // reduce sum0..sum3 to sum0
  1602. GGML_F32_VEC_REDUCE(sumf, sum);
  1603. // leftovers
  1604. for (int i = np; i < n; ++i) {
  1605. sumf += x[i]*y[i];
  1606. }
  1607. #else
  1608. // scalar
  1609. ggml_float sumf = 0.0;
  1610. for (int i = 0; i < n; ++i) {
  1611. sumf += (ggml_float)(x[i]*y[i]);
  1612. }
  1613. #endif
  1614. *s = sumf;
  1615. }
  1616. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1617. ggml_float sumf = 0.0;
  1618. #if defined(GGML_SIMD)
  1619. const int np = (n & ~(GGML_F16_STEP - 1));
  1620. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1621. GGML_F16_VEC ax[GGML_F16_ARR];
  1622. GGML_F16_VEC ay[GGML_F16_ARR];
  1623. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1624. for (int j = 0; j < GGML_F16_ARR; j++) {
  1625. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1626. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1627. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1628. }
  1629. }
  1630. // reduce sum0..sum3 to sum0
  1631. GGML_F16_VEC_REDUCE(sumf, sum);
  1632. // leftovers
  1633. for (int i = np; i < n; ++i) {
  1634. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1635. }
  1636. #else
  1637. for (int i = 0; i < n; ++i) {
  1638. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1639. }
  1640. #endif
  1641. *s = sumf;
  1642. }
  1643. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1644. const int qk = QK8_0;
  1645. const int nb = n / qk;
  1646. assert(n % qk == 0);
  1647. assert(nb % 2 == 0);
  1648. const block_q4_0 * restrict x = vx;
  1649. const block_q8_0 * restrict y = vy;
  1650. #if defined(__ARM_NEON)
  1651. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1652. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1653. for (int i = 0; i < nb; i += 2) {
  1654. const block_q4_0 * restrict x0 = &x[i + 0];
  1655. const block_q4_0 * restrict x1 = &x[i + 1];
  1656. const block_q8_0 * restrict y0 = &y[i + 0];
  1657. const block_q8_0 * restrict y1 = &y[i + 1];
  1658. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1659. const int8x16_t s8b = vdupq_n_s8(0x8);
  1660. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1661. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1662. // 4-bit -> 8-bit
  1663. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1664. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1665. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1666. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1667. // sub 8
  1668. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1669. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1670. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1671. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1672. // load y
  1673. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1674. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1675. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1676. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1677. #if defined(__ARM_FEATURE_DOTPROD)
  1678. // dot product into int32x4_t
  1679. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1680. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1681. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1682. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1683. #else
  1684. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1685. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1686. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1687. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1688. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1689. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1690. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1691. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1692. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1693. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1694. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1695. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1696. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1697. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1698. #endif
  1699. }
  1700. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1701. #elif defined(__AVX2__)
  1702. // Initialize accumulator with zeros
  1703. __m256 acc = _mm256_setzero_ps();
  1704. // Main loop
  1705. for (int i = 0; i < nb; ++i) {
  1706. /* Compute combined scale for the block */
  1707. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1708. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1709. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1710. const __m256i off = _mm256_set1_epi8( 8 );
  1711. bx = _mm256_sub_epi8( bx, off );
  1712. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1713. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1714. /* Multiply q with scale and accumulate */
  1715. acc = _mm256_fmadd_ps( d, q, acc );
  1716. }
  1717. *s = hsum_float_8(acc);
  1718. #elif defined(__AVX__)
  1719. // Initialize accumulator with zeros
  1720. __m256 acc = _mm256_setzero_ps();
  1721. // Main loop
  1722. for (int i = 0; i < nb; ++i) {
  1723. // Compute combined scale for the block
  1724. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1725. const __m128i lowMask = _mm_set1_epi8(0xF);
  1726. const __m128i off = _mm_set1_epi8(8);
  1727. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1728. __m128i bx = _mm_and_si128(lowMask, tmp);
  1729. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1730. bx = _mm_sub_epi8(bx, off);
  1731. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1732. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1733. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1734. bx = _mm_sub_epi8(bx, off);
  1735. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1736. // Convert int32_t to float
  1737. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1738. // Apply the scale, and accumulate
  1739. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1740. }
  1741. *s = hsum_float_8(acc);
  1742. #else
  1743. // scalar
  1744. float sumf = 0.0;
  1745. for (int i = 0; i < nb; i++) {
  1746. int sumi = 0;
  1747. for (int j = 0; j < qk/2; ++j) {
  1748. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1749. const int v1 = (x[i].qs[j] >> 4) - 8;
  1750. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1751. }
  1752. sumf += (x[i].d*y[i].d)*sumi;
  1753. }
  1754. *s = sumf;
  1755. #endif
  1756. }
  1757. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1758. const int qk = QK8_1;
  1759. const int nb = n / qk;
  1760. assert(n % qk == 0);
  1761. assert(nb % 2 == 0);
  1762. const block_q4_1 * restrict x = vx;
  1763. const block_q8_1 * restrict y = vy;
  1764. // TODO: add WASM SIMD
  1765. #if defined(__ARM_NEON)
  1766. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1767. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1768. float summs = 0;
  1769. for (int i = 0; i < nb; i += 2) {
  1770. const block_q4_1 * restrict x0 = &x[i + 0];
  1771. const block_q4_1 * restrict x1 = &x[i + 1];
  1772. const block_q8_1 * restrict y0 = &y[i + 0];
  1773. const block_q8_1 * restrict y1 = &y[i + 1];
  1774. summs += x0->m * y0->s + x1->m * y1->s;
  1775. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1776. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1777. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1778. // 4-bit -> 8-bit
  1779. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1780. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1781. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1782. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1783. // load y
  1784. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1785. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1786. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1787. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1788. #if defined(__ARM_FEATURE_DOTPROD)
  1789. // dot product into int32x4_t
  1790. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1791. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1792. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1793. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1794. #else
  1795. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1796. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1797. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1798. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1799. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1800. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1801. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1802. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1803. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1804. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1805. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1806. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1807. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1808. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1809. #endif
  1810. }
  1811. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1812. #elif defined(__AVX2__)
  1813. // Initialize accumulator with zeros
  1814. __m256 acc = _mm256_setzero_ps();
  1815. float summs = 0;
  1816. // Main loop
  1817. for (int i = 0; i < nb; ++i) {
  1818. const float * d0 = &x[i].d;
  1819. const float * d1 = &y[i].d;
  1820. summs += x[i].m * y[i].s;
  1821. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1822. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1823. // Compute combined scales
  1824. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  1825. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1826. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1827. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  1828. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  1829. // Accumulate d0*d1*x*y
  1830. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  1831. }
  1832. *s = hsum_float_8(acc) + summs;
  1833. #else
  1834. // scalar
  1835. float sumf = 0.0;
  1836. for (int i = 0; i < nb; i++) {
  1837. int sumi = 0;
  1838. for (int j = 0; j < qk/2; ++j) {
  1839. const int v0 = (x[i].qs[j] & 0x0F);
  1840. const int v1 = (x[i].qs[j] >> 4);
  1841. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1842. }
  1843. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  1844. }
  1845. *s = sumf;
  1846. #endif
  1847. }
  1848. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1849. const int qk = QK8_0;
  1850. const int nb = n / qk;
  1851. assert(n % qk == 0);
  1852. assert(nb % 2 == 0);
  1853. assert(qk == QK5_0);
  1854. const block_q5_0 * restrict x = vx;
  1855. const block_q8_0 * restrict y = vy;
  1856. #if defined(__ARM_NEON)
  1857. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1858. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1859. uint32_t qh0;
  1860. uint32_t qh1;
  1861. uint64_t tmp0[4];
  1862. uint64_t tmp1[4];
  1863. for (int i = 0; i < nb; i += 2) {
  1864. const block_q5_0 * restrict x0 = &x[i];
  1865. const block_q5_0 * restrict x1 = &x[i + 1];
  1866. const block_q8_0 * restrict y0 = &y[i];
  1867. const block_q8_0 * restrict y1 = &y[i + 1];
  1868. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1869. // extract the 5th bit via lookup table ((!b) << 4)
  1870. memcpy(&qh0, x0->qh, sizeof(qh0));
  1871. memcpy(&qh1, x1->qh, sizeof(qh1));
  1872. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  1873. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  1874. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  1875. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  1876. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  1877. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  1878. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  1879. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  1880. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  1881. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  1882. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  1883. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  1884. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1885. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1886. // 4-bit -> 8-bit
  1887. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1888. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1889. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1890. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1891. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  1892. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  1893. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  1894. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  1895. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  1896. // load y
  1897. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1898. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1899. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1900. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1901. const float x0d = GGML_FP16_TO_FP32(x0->d);
  1902. const float x1d = GGML_FP16_TO_FP32(x1->d);
  1903. #if defined(__ARM_FEATURE_DOTPROD)
  1904. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  1905. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  1906. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  1907. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  1908. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  1909. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  1910. #else
  1911. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  1912. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  1913. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  1914. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  1915. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  1916. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  1917. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  1918. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  1919. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1920. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1921. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1922. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1923. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  1924. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  1925. #endif
  1926. }
  1927. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1928. #elif defined(__wasm_simd128__)
  1929. v128_t sumv = wasm_f32x4_splat(0.0f);
  1930. uint32_t qh;
  1931. uint64_t tmp[4];
  1932. // TODO: check if unrolling this is better
  1933. for (int i = 0; i < nb; ++i) {
  1934. const block_q5_0 * restrict x0 = &x[i];
  1935. const block_q8_0 * restrict y0 = &y[i];
  1936. const v128_t m4b = wasm_i8x16_splat(0x0F);
  1937. const v128_t s16b = wasm_i8x16_splat(0x10);
  1938. // extract the 5th bit
  1939. memcpy(&qh, x0->qh, sizeof(qh));
  1940. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  1941. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  1942. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  1943. tmp[3] = table_b2b_1[(qh >> 24) ];
  1944. const v128_t qhl = wasm_v128_load(tmp + 0);
  1945. const v128_t qhh = wasm_v128_load(tmp + 2);
  1946. const v128_t v0 = wasm_v128_load(x0->qs);
  1947. // 4-bit -> 8-bit
  1948. const v128_t v0l = wasm_v128_and (v0, m4b);
  1949. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  1950. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  1951. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  1952. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  1953. // load y
  1954. const v128_t v1l = wasm_v128_load(y0->qs);
  1955. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  1956. // int8x16 -> int16x8
  1957. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  1958. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  1959. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  1960. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  1961. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  1962. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  1963. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  1964. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  1965. const float x0d = GGML_FP16_TO_FP32(x0->d);
  1966. // dot product
  1967. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  1968. wasm_i32x4_add(
  1969. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  1970. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  1971. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  1972. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  1973. }
  1974. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  1975. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  1976. #elif defined(__AVX2__)
  1977. // Initialize accumulator with zeros
  1978. __m256 acc = _mm256_setzero_ps();
  1979. // Main loop
  1980. for (int i = 0; i < nb; i++) {
  1981. /* Compute combined scale for the block */
  1982. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  1983. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1984. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  1985. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  1986. bx = _mm256_or_si256(bx, bxhi);
  1987. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1988. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1989. /* Multiply q with scale and accumulate */
  1990. acc = _mm256_fmadd_ps(d, q, acc);
  1991. }
  1992. *s = hsum_float_8(acc);
  1993. #else
  1994. // scalar
  1995. float sumf = 0.0;
  1996. for (int i = 0; i < nb; i++) {
  1997. uint32_t qh;
  1998. memcpy(&qh, x[i].qh, sizeof(qh));
  1999. int sumi = 0;
  2000. for (int j = 0; j < qk/2; ++j) {
  2001. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2002. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2003. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2004. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2005. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2006. }
  2007. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2008. }
  2009. *s = sumf;
  2010. #endif
  2011. }
  2012. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2013. const int qk = QK8_1;
  2014. const int nb = n / qk;
  2015. assert(n % qk == 0);
  2016. assert(nb % 2 == 0);
  2017. assert(qk == QK5_1);
  2018. const block_q5_1 * restrict x = vx;
  2019. const block_q8_1 * restrict y = vy;
  2020. #if defined(__ARM_NEON)
  2021. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2022. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2023. float summs0 = 0.0f;
  2024. float summs1 = 0.0f;
  2025. uint32_t qh0;
  2026. uint32_t qh1;
  2027. uint64_t tmp0[4];
  2028. uint64_t tmp1[4];
  2029. for (int i = 0; i < nb; i += 2) {
  2030. const block_q5_1 * restrict x0 = &x[i];
  2031. const block_q5_1 * restrict x1 = &x[i + 1];
  2032. const block_q8_1 * restrict y0 = &y[i];
  2033. const block_q8_1 * restrict y1 = &y[i + 1];
  2034. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2035. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2036. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2037. // extract the 5th bit via lookup table ((b) << 4)
  2038. memcpy(&qh0, x0->qh, sizeof(qh0));
  2039. memcpy(&qh1, x1->qh, sizeof(qh1));
  2040. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2041. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2042. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2043. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2044. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2045. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2046. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2047. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2048. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2049. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2050. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2051. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2052. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2053. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2054. // 4-bit -> 8-bit
  2055. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2056. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2057. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2058. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2059. // add high bit
  2060. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2061. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2062. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2063. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2064. // load y
  2065. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2066. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2067. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2068. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2069. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2070. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2071. #if defined(__ARM_FEATURE_DOTPROD)
  2072. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2073. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2074. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2075. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2076. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2077. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2078. #else
  2079. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2080. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2081. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2082. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2083. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2084. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2085. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2086. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2087. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2088. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2089. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2090. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2091. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2092. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2093. #endif
  2094. }
  2095. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2096. #elif defined(__wasm_simd128__)
  2097. v128_t sumv = wasm_f32x4_splat(0.0f);
  2098. float summs = 0.0f;
  2099. uint32_t qh;
  2100. uint64_t tmp[4];
  2101. // TODO: check if unrolling this is better
  2102. for (int i = 0; i < nb; ++i) {
  2103. const block_q5_1 * restrict x0 = &x[i];
  2104. const block_q8_1 * restrict y0 = &y[i];
  2105. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2106. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2107. // extract the 5th bit
  2108. memcpy(&qh, x0->qh, sizeof(qh));
  2109. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2110. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2111. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2112. tmp[3] = table_b2b_0[(qh >> 24) ];
  2113. const v128_t qhl = wasm_v128_load(tmp + 0);
  2114. const v128_t qhh = wasm_v128_load(tmp + 2);
  2115. const v128_t v0 = wasm_v128_load(x0->qs);
  2116. // 4-bit -> 8-bit
  2117. const v128_t v0l = wasm_v128_and (v0, m4b);
  2118. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2119. static bool x = true;
  2120. // add high bit
  2121. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2122. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2123. // load y
  2124. const v128_t v1l = wasm_v128_load(y0->qs);
  2125. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2126. // int8x16 -> int16x8
  2127. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2128. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2129. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2130. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2131. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2132. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2133. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2134. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2135. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2136. // dot product
  2137. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2138. wasm_i32x4_add(
  2139. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2140. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2141. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2142. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2143. }
  2144. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2145. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2146. #elif defined(__AVX2__)
  2147. // Initialize accumulator with zeros
  2148. __m256 acc = _mm256_setzero_ps();
  2149. float summs = 0.0f;
  2150. // Main loop
  2151. for (int i = 0; i < nb; i++) {
  2152. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2153. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2154. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2155. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2156. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2157. bx = _mm256_or_si256(bx, bxhi);
  2158. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2159. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2160. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2161. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2162. }
  2163. *s = hsum_float_8(acc) + summs;
  2164. #else
  2165. // scalar
  2166. float sumf = 0.0;
  2167. for (int i = 0; i < nb; i++) {
  2168. uint32_t qh;
  2169. memcpy(&qh, x[i].qh, sizeof(qh));
  2170. int sumi = 0;
  2171. for (int j = 0; j < qk/2; ++j) {
  2172. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2173. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2174. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2175. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2176. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2177. }
  2178. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2179. }
  2180. *s = sumf;
  2181. #endif
  2182. }
  2183. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2184. const int qk = QK8_0;
  2185. const int nb = n / qk;
  2186. assert(n % qk == 0);
  2187. assert(nb % 2 == 0);
  2188. const block_q8_0 * restrict x = vx;
  2189. const block_q8_0 * restrict y = vy;
  2190. #if defined(__ARM_NEON)
  2191. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2192. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2193. for (int i = 0; i < nb; i += 2) {
  2194. const block_q8_0 * restrict x0 = &x[i + 0];
  2195. const block_q8_0 * restrict x1 = &x[i + 1];
  2196. const block_q8_0 * restrict y0 = &y[i + 0];
  2197. const block_q8_0 * restrict y1 = &y[i + 1];
  2198. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2199. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2200. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2201. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2202. // load y
  2203. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2204. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2205. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2206. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2207. #if defined(__ARM_FEATURE_DOTPROD)
  2208. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2209. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2210. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2211. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2212. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2213. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2214. #else
  2215. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2216. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2217. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2218. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2219. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2220. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2221. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2222. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2223. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2224. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2225. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2226. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2227. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2228. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2229. #endif
  2230. }
  2231. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2232. #elif defined(__AVX2__)
  2233. // Initialize accumulator with zeros
  2234. __m256 acc = _mm256_setzero_ps();
  2235. // Main loop
  2236. for (int i = 0; i < nb; ++i) {
  2237. // Compute combined scale for the block
  2238. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2239. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2240. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2241. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2242. // Multiply q with scale and accumulate
  2243. acc = _mm256_fmadd_ps( d, q, acc );
  2244. }
  2245. *s = hsum_float_8(acc);
  2246. #else
  2247. // scalar
  2248. float sumf = 0.0;
  2249. for (int i = 0; i < nb; i++) {
  2250. int sumi = 0;
  2251. for (int j = 0; j < qk; j++) {
  2252. sumi += x[i].qs[j]*y[i].qs[j];
  2253. }
  2254. sumf += (x[i].d*y[i].d)*sumi;
  2255. }
  2256. *s = sumf;
  2257. #endif
  2258. }
  2259. // compute GGML_VEC_DOT_UNROLL dot products at once
  2260. // xs - x row stride in bytes
  2261. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2262. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2263. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2264. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2265. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2266. }
  2267. #if defined(GGML_SIMD)
  2268. const int np = (n & ~(GGML_F16_STEP - 1));
  2269. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2270. GGML_F16_VEC ax[GGML_F16_ARR];
  2271. GGML_F16_VEC ay[GGML_F16_ARR];
  2272. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2273. for (int j = 0; j < GGML_F16_ARR; j++) {
  2274. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2275. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2276. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2277. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2278. }
  2279. }
  2280. }
  2281. // reduce sum0..sum3 to sum0
  2282. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2283. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2284. }
  2285. // leftovers
  2286. for (int i = np; i < n; ++i) {
  2287. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2288. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2289. }
  2290. }
  2291. #else
  2292. for (int i = 0; i < n; ++i) {
  2293. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2294. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2295. }
  2296. }
  2297. #endif
  2298. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2299. s[i] = sumf[i];
  2300. }
  2301. }
  2302. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2303. #if defined(GGML_SIMD)
  2304. const int np = (n & ~(GGML_F32_STEP - 1));
  2305. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2306. GGML_F32_VEC ax[GGML_F32_ARR];
  2307. GGML_F32_VEC ay[GGML_F32_ARR];
  2308. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2309. for (int j = 0; j < GGML_F32_ARR; j++) {
  2310. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2311. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2312. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2313. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2314. }
  2315. }
  2316. // leftovers
  2317. for (int i = np; i < n; ++i) {
  2318. y[i] += x[i]*v;
  2319. }
  2320. #else
  2321. // scalar
  2322. for (int i = 0; i < n; ++i) {
  2323. y[i] += x[i]*v;
  2324. }
  2325. #endif
  2326. }
  2327. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2328. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2329. #if defined(GGML_SIMD)
  2330. const int np = (n & ~(GGML_F32_STEP - 1));
  2331. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2332. GGML_F32_VEC ay[GGML_F32_ARR];
  2333. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2334. for (int j = 0; j < GGML_F32_ARR; j++) {
  2335. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2336. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2337. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2338. }
  2339. }
  2340. // leftovers
  2341. for (int i = np; i < n; ++i) {
  2342. y[i] *= v;
  2343. }
  2344. #else
  2345. // scalar
  2346. for (int i = 0; i < n; ++i) {
  2347. y[i] *= v;
  2348. }
  2349. #endif
  2350. }
  2351. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2352. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2353. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2354. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2355. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2356. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2357. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2358. static const float GELU_COEF_A = 0.044715f;
  2359. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2360. inline static float ggml_gelu_f32(float x) {
  2361. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2362. }
  2363. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2364. const uint16_t * i16 = (const uint16_t *) x;
  2365. for (int i = 0; i < n; ++i) {
  2366. y[i] = table_gelu_f16[i16[i]];
  2367. }
  2368. }
  2369. #ifdef GGML_GELU_FP16
  2370. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2371. uint16_t t;
  2372. for (int i = 0; i < n; ++i) {
  2373. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2374. memcpy(&t, &fp16, sizeof(uint16_t));
  2375. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2376. }
  2377. }
  2378. #else
  2379. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2380. for (int i = 0; i < n; ++i) {
  2381. y[i] = ggml_gelu_f32(x[i]);
  2382. }
  2383. }
  2384. #endif
  2385. // Sigmoid Linear Unit (SiLU) function
  2386. inline static float ggml_silu_f32(float x) {
  2387. return x/(1.0f + expf(-x));
  2388. }
  2389. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2390. const uint16_t * i16 = (const uint16_t *) x;
  2391. for (int i = 0; i < n; ++i) {
  2392. y[i] = table_silu_f16[i16[i]];
  2393. }
  2394. }
  2395. #ifdef GGML_SILU_FP16
  2396. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2397. uint16_t t;
  2398. for (int i = 0; i < n; ++i) {
  2399. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2400. memcpy(&t, &fp16, sizeof(uint16_t));
  2401. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2402. }
  2403. }
  2404. #else
  2405. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2406. for (int i = 0; i < n; ++i) {
  2407. y[i] = ggml_silu_f32(x[i]);
  2408. }
  2409. }
  2410. #endif
  2411. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2412. #ifndef GGML_USE_ACCELERATE
  2413. ggml_float sum = 0.0;
  2414. for (int i = 0; i < n; ++i) {
  2415. sum += (ggml_float)x[i];
  2416. }
  2417. *s = sum;
  2418. #else
  2419. vDSP_sve(x, 1, s, n);
  2420. #endif
  2421. }
  2422. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2423. ggml_float sum = 0.0;
  2424. for (int i = 0; i < n; ++i) {
  2425. sum += (ggml_float)x[i];
  2426. }
  2427. *s = sum;
  2428. }
  2429. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2430. #ifndef GGML_USE_ACCELERATE
  2431. float max = -INFINITY;
  2432. for (int i = 0; i < n; ++i) {
  2433. max = MAX(max, x[i]);
  2434. }
  2435. *s = max;
  2436. #else
  2437. vDSP_maxv(x, 1, s, n);
  2438. #endif
  2439. }
  2440. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2441. ggml_vec_norm_f32(n, s, x);
  2442. *s = 1.f/(*s);
  2443. }
  2444. //
  2445. // logging
  2446. //
  2447. #if (GGML_DEBUG >= 1)
  2448. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2449. #else
  2450. #define GGML_PRINT_DEBUG(...)
  2451. #endif
  2452. #if (GGML_DEBUG >= 5)
  2453. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2454. #else
  2455. #define GGML_PRINT_DEBUG_5(...)
  2456. #endif
  2457. #if (GGML_DEBUG >= 10)
  2458. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2459. #else
  2460. #define GGML_PRINT_DEBUG_10(...)
  2461. #endif
  2462. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2463. //
  2464. // data types
  2465. //
  2466. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2467. [GGML_TYPE_F32] = 1,
  2468. [GGML_TYPE_F16] = 1,
  2469. [GGML_TYPE_Q4_0] = QK4_0,
  2470. [GGML_TYPE_Q4_1] = QK4_1,
  2471. [GGML_TYPE_Q5_0] = QK5_0,
  2472. [GGML_TYPE_Q5_1] = QK5_1,
  2473. [GGML_TYPE_Q8_0] = QK8_0,
  2474. [GGML_TYPE_Q8_1] = QK8_1,
  2475. [GGML_TYPE_I8] = 1,
  2476. [GGML_TYPE_I16] = 1,
  2477. [GGML_TYPE_I32] = 1,
  2478. };
  2479. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2480. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2481. [GGML_TYPE_F32] = sizeof(float),
  2482. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2483. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2484. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2485. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2486. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2487. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2488. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2489. [GGML_TYPE_I8] = sizeof(int8_t),
  2490. [GGML_TYPE_I16] = sizeof(int16_t),
  2491. [GGML_TYPE_I32] = sizeof(int32_t),
  2492. };
  2493. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2494. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2495. [GGML_TYPE_F32] = "f32",
  2496. [GGML_TYPE_F16] = "f16",
  2497. [GGML_TYPE_Q4_0] = "q4_0",
  2498. [GGML_TYPE_Q4_1] = "q4_1",
  2499. [GGML_TYPE_Q5_0] = "q5_0",
  2500. [GGML_TYPE_Q5_1] = "q5_1",
  2501. [GGML_TYPE_Q8_0] = "q8_0",
  2502. [GGML_TYPE_Q8_1] = "q8_1",
  2503. [GGML_TYPE_I8] = "i8",
  2504. [GGML_TYPE_I16] = "i16",
  2505. [GGML_TYPE_I32] = "i32",
  2506. };
  2507. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2508. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2509. [GGML_TYPE_F32] = false,
  2510. [GGML_TYPE_F16] = false,
  2511. [GGML_TYPE_Q4_0] = true,
  2512. [GGML_TYPE_Q4_1] = true,
  2513. [GGML_TYPE_Q5_0] = true,
  2514. [GGML_TYPE_Q5_1] = true,
  2515. [GGML_TYPE_Q8_0] = true,
  2516. [GGML_TYPE_Q8_1] = true,
  2517. [GGML_TYPE_I8] = false,
  2518. [GGML_TYPE_I16] = false,
  2519. [GGML_TYPE_I32] = false,
  2520. };
  2521. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2522. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2523. "NONE",
  2524. "DUP",
  2525. "ADD",
  2526. "SUB",
  2527. "MUL",
  2528. "DIV",
  2529. "SQR",
  2530. "SQRT",
  2531. "SUM",
  2532. "MEAN",
  2533. "REPEAT",
  2534. "ABS",
  2535. "SGN",
  2536. "NEG",
  2537. "STEP",
  2538. "RELU",
  2539. "GELU",
  2540. "SILU",
  2541. "NORM",
  2542. "RMS_NORM",
  2543. "MUL_MAT",
  2544. "SCALE",
  2545. "CPY",
  2546. "CONT",
  2547. "RESHAPE",
  2548. "VIEW",
  2549. "PERMUTE",
  2550. "TRANSPOSE",
  2551. "GET_ROWS",
  2552. "DIAG_MASK_INF",
  2553. "SOFT_MAX",
  2554. "ROPE",
  2555. "ALIBI",
  2556. "CONV_1D_1S",
  2557. "CONV_1D_2S",
  2558. "FLASH_ATTN",
  2559. "FLASH_FF",
  2560. "MAP_UNARY",
  2561. "MAP_BINARY",
  2562. };
  2563. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  2564. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2565. "none",
  2566. "x",
  2567. "x+y",
  2568. "x-y",
  2569. "x*y",
  2570. "x/y",
  2571. "x^2",
  2572. "√x",
  2573. "Σx",
  2574. "Σx/n",
  2575. "repeat(x)",
  2576. "abs(x)",
  2577. "sgn(x)",
  2578. "-x",
  2579. "step(x)",
  2580. "relu(x)",
  2581. "gelu(x)",
  2582. "silu(x)",
  2583. "norm(x)",
  2584. "rms_norm(x)",
  2585. "X*Y",
  2586. "x*v",
  2587. "x-\\>y",
  2588. "cont(x)",
  2589. "reshape(x)",
  2590. "view(x)",
  2591. "permute(x)",
  2592. "transpose(x)",
  2593. "get_rows(x)",
  2594. "diag_mask_inf(x)",
  2595. "soft_max(x)",
  2596. "rope(x)",
  2597. "alibi(x)",
  2598. "conv_1d_1s(x)",
  2599. "conv_1d_2s(x)",
  2600. "flash_attn(x)",
  2601. "flash_ff(x)",
  2602. "f(x)",
  2603. "f(x,y)",
  2604. };
  2605. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  2606. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2607. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2608. //
  2609. // ggml context
  2610. //
  2611. struct ggml_context {
  2612. size_t mem_size;
  2613. void * mem_buffer;
  2614. bool mem_buffer_owned;
  2615. bool no_alloc;
  2616. int n_objects;
  2617. struct ggml_object * objects_begin;
  2618. struct ggml_object * objects_end;
  2619. struct ggml_scratch scratch;
  2620. struct ggml_scratch scratch_save;
  2621. };
  2622. struct ggml_context_container {
  2623. bool used;
  2624. struct ggml_context context;
  2625. };
  2626. //
  2627. // compute types
  2628. //
  2629. enum ggml_task_type {
  2630. GGML_TASK_INIT = 0,
  2631. GGML_TASK_COMPUTE,
  2632. GGML_TASK_FINALIZE,
  2633. };
  2634. struct ggml_compute_params {
  2635. enum ggml_task_type type;
  2636. int ith, nth;
  2637. // work buffer for all threads
  2638. size_t wsize;
  2639. void * wdata;
  2640. };
  2641. //
  2642. // ggml state
  2643. //
  2644. struct ggml_state {
  2645. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2646. };
  2647. // global state
  2648. static struct ggml_state g_state;
  2649. static atomic_int g_state_barrier = 0;
  2650. // barrier via spin lock
  2651. inline static void ggml_critical_section_start(void) {
  2652. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2653. while (processing > 0) {
  2654. // wait for other threads to finish
  2655. atomic_fetch_sub(&g_state_barrier, 1);
  2656. sched_yield(); // TODO: reconsider this
  2657. processing = atomic_fetch_add(&g_state_barrier, 1);
  2658. }
  2659. }
  2660. // TODO: make this somehow automatically executed
  2661. // some sort of "sentry" mechanism
  2662. inline static void ggml_critical_section_end(void) {
  2663. atomic_fetch_sub(&g_state_barrier, 1);
  2664. }
  2665. ////////////////////////////////////////////////////////////////////////////////
  2666. void ggml_print_object(const struct ggml_object * obj) {
  2667. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2668. obj->offs, obj->size, (const void *) obj->next);
  2669. }
  2670. void ggml_print_objects(const struct ggml_context * ctx) {
  2671. struct ggml_object * obj = ctx->objects_begin;
  2672. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2673. while (obj != NULL) {
  2674. ggml_print_object(obj);
  2675. obj = obj->next;
  2676. }
  2677. GGML_PRINT("%s: --- end ---\n", __func__);
  2678. }
  2679. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2680. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2681. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2682. }
  2683. int ggml_nrows(const struct ggml_tensor * tensor) {
  2684. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2685. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2686. }
  2687. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2688. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2689. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2690. }
  2691. int ggml_blck_size(enum ggml_type type) {
  2692. return GGML_BLCK_SIZE[type];
  2693. }
  2694. size_t ggml_type_size(enum ggml_type type) {
  2695. return GGML_TYPE_SIZE[type];
  2696. }
  2697. float ggml_type_sizef(enum ggml_type type) {
  2698. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2699. }
  2700. const char * ggml_type_name(enum ggml_type type) {
  2701. return GGML_TYPE_NAME[type];
  2702. }
  2703. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2704. return GGML_TYPE_SIZE[tensor->type];
  2705. }
  2706. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2708. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2709. }
  2710. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2711. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2712. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2713. }
  2714. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2715. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2716. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2717. }
  2718. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2719. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2720. return
  2721. (t0->ne[0] == t1->ne[0]) &&
  2722. (t0->ne[2] == t1->ne[2]) &&
  2723. (t0->ne[3] == t1->ne[3]);
  2724. }
  2725. bool ggml_is_quantized(enum ggml_type type) {
  2726. return GGML_IS_QUANTIZED[type];
  2727. }
  2728. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2729. enum ggml_type wtype = GGML_TYPE_COUNT;
  2730. switch (ftype) {
  2731. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2732. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2733. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2734. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2735. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2736. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2737. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2738. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2739. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2740. }
  2741. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2742. return wtype;
  2743. }
  2744. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2745. return tensor->nb[0] > tensor->nb[1];
  2746. }
  2747. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2748. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2749. return
  2750. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2751. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2752. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2753. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2754. }
  2755. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2756. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2757. return
  2758. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2759. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2760. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2761. }
  2762. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2763. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2764. return
  2765. (t0->ne[0] == t1->ne[0] ) &&
  2766. (t0->ne[1] == t1->ne[1] ) &&
  2767. (t0->ne[2] == t1->ne[2] ) &&
  2768. (t0->ne[3] == t1->ne[3] );
  2769. }
  2770. // check if t1 can be represented as a repeatition of t0
  2771. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2772. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2773. return
  2774. (t1->ne[0]%t0->ne[0] == 0) &&
  2775. (t1->ne[1]%t0->ne[1] == 0) &&
  2776. (t1->ne[2]%t0->ne[2] == 0) &&
  2777. (t1->ne[3]%t0->ne[3] == 0);
  2778. }
  2779. static inline int ggml_up32(int n) {
  2780. return (n + 31) & ~31;
  2781. }
  2782. static inline int ggml_up64(int n) {
  2783. return (n + 63) & ~63;
  2784. }
  2785. static inline int ggml_up(int n, int m) {
  2786. // assert m is a power of 2
  2787. GGML_ASSERT((m & (m - 1)) == 0);
  2788. return (n + m - 1) & ~(m - 1);
  2789. }
  2790. // assert that pointer is aligned to GGML_MEM_ALIGN
  2791. #define ggml_assert_aligned(ptr) \
  2792. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2793. ////////////////////////////////////////////////////////////////////////////////
  2794. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2795. // make this function thread safe
  2796. ggml_critical_section_start();
  2797. static bool is_first_call = true;
  2798. if (is_first_call) {
  2799. // initialize time system (required on Windows)
  2800. ggml_time_init();
  2801. // initialize GELU, SILU and EXP F32 tables
  2802. {
  2803. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2804. ggml_fp16_t ii;
  2805. for (int i = 0; i < (1 << 16); ++i) {
  2806. uint16_t ui = i;
  2807. memcpy(&ii, &ui, sizeof(ii));
  2808. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2809. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2810. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2811. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2812. }
  2813. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2814. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2815. }
  2816. // initialize g_state
  2817. {
  2818. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2819. g_state = (struct ggml_state) {
  2820. /*.contexts =*/ { { 0 } },
  2821. };
  2822. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2823. g_state.contexts[i].used = false;
  2824. }
  2825. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2826. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2827. }
  2828. #if defined(GGML_USE_CUBLAS)
  2829. ggml_init_cublas();
  2830. #elif defined(GGML_USE_CLBLAST)
  2831. ggml_cl_init();
  2832. #endif
  2833. is_first_call = false;
  2834. }
  2835. // find non-used context in g_state
  2836. struct ggml_context * ctx = NULL;
  2837. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2838. if (!g_state.contexts[i].used) {
  2839. g_state.contexts[i].used = true;
  2840. ctx = &g_state.contexts[i].context;
  2841. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2842. break;
  2843. }
  2844. }
  2845. if (ctx == NULL) {
  2846. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2847. ggml_critical_section_end();
  2848. return NULL;
  2849. }
  2850. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2851. *ctx = (struct ggml_context) {
  2852. /*.mem_size =*/ mem_size,
  2853. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2854. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2855. /*.no_alloc =*/ params.no_alloc,
  2856. /*.n_objects =*/ 0,
  2857. /*.objects_begin =*/ NULL,
  2858. /*.objects_end =*/ NULL,
  2859. /*.scratch =*/ { 0, 0, NULL, },
  2860. /*.scratch_save =*/ { 0, 0, NULL, },
  2861. };
  2862. GGML_ASSERT(ctx->mem_buffer != NULL);
  2863. ggml_assert_aligned(ctx->mem_buffer);
  2864. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2865. ggml_critical_section_end();
  2866. return ctx;
  2867. }
  2868. void ggml_free(struct ggml_context * ctx) {
  2869. // make this function thread safe
  2870. ggml_critical_section_start();
  2871. bool found = false;
  2872. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2873. if (&g_state.contexts[i].context == ctx) {
  2874. g_state.contexts[i].used = false;
  2875. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2876. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2877. if (ctx->mem_buffer_owned) {
  2878. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2879. }
  2880. found = true;
  2881. break;
  2882. }
  2883. }
  2884. if (!found) {
  2885. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2886. }
  2887. ggml_critical_section_end();
  2888. }
  2889. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2890. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2891. }
  2892. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2893. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2894. ctx->scratch = scratch;
  2895. return result;
  2896. }
  2897. ////////////////////////////////////////////////////////////////////////////////
  2898. struct ggml_tensor * ggml_new_tensor_impl(
  2899. struct ggml_context * ctx,
  2900. enum ggml_type type,
  2901. int n_dims,
  2902. const int64_t* ne,
  2903. void* data) {
  2904. // always insert objects at the end of the context's memory pool
  2905. struct ggml_object * obj_cur = ctx->objects_end;
  2906. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2907. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2908. const size_t cur_end = cur_offs + cur_size;
  2909. size_t size_needed = 0;
  2910. if (data == NULL && !ctx->no_alloc) {
  2911. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2912. for (int i = 1; i < n_dims; i++) {
  2913. size_needed *= ne[i];
  2914. }
  2915. // align to GGML_MEM_ALIGN
  2916. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2917. }
  2918. char * const mem_buffer = ctx->mem_buffer;
  2919. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2920. if (ctx->scratch.data == NULL || data != NULL) {
  2921. size_needed += sizeof(struct ggml_tensor);
  2922. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2923. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2924. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2925. assert(false);
  2926. return NULL;
  2927. }
  2928. *obj_new = (struct ggml_object) {
  2929. .offs = cur_end + GGML_OBJECT_SIZE,
  2930. .size = size_needed,
  2931. .next = NULL,
  2932. };
  2933. } else {
  2934. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2935. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2936. assert(false);
  2937. return NULL;
  2938. }
  2939. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2940. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2941. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2942. assert(false);
  2943. return NULL;
  2944. }
  2945. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2946. *obj_new = (struct ggml_object) {
  2947. .offs = cur_end + GGML_OBJECT_SIZE,
  2948. .size = sizeof(struct ggml_tensor),
  2949. .next = NULL,
  2950. };
  2951. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2952. ctx->scratch.offs += size_needed;
  2953. }
  2954. if (obj_cur != NULL) {
  2955. obj_cur->next = obj_new;
  2956. } else {
  2957. // this is the first object in this context
  2958. ctx->objects_begin = obj_new;
  2959. }
  2960. ctx->objects_end = obj_new;
  2961. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2962. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2963. ggml_assert_aligned(result);
  2964. *result = (struct ggml_tensor) {
  2965. /*.type =*/ type,
  2966. /*.n_dims =*/ n_dims,
  2967. /*.ne =*/ { 1, 1, 1, 1 },
  2968. /*.nb =*/ { 0, 0, 0, 0 },
  2969. /*.op =*/ GGML_OP_NONE,
  2970. /*.is_param =*/ false,
  2971. /*.grad =*/ NULL,
  2972. /*.src0 =*/ NULL,
  2973. /*.src1 =*/ NULL,
  2974. /*.opt =*/ { NULL },
  2975. /*.n_tasks =*/ 0,
  2976. /*.perf_runs =*/ 0,
  2977. /*.perf_cycles =*/ 0,
  2978. /*.perf_time_us =*/ 0,
  2979. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2980. /*.name =*/ { 0 },
  2981. /*.pad =*/ { 0 },
  2982. };
  2983. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2984. //ggml_assert_aligned(result->data);
  2985. for (int i = 0; i < n_dims; i++) {
  2986. result->ne[i] = ne[i];
  2987. }
  2988. result->nb[0] = GGML_TYPE_SIZE[type];
  2989. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2990. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2991. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2992. }
  2993. ctx->n_objects++;
  2994. return result;
  2995. }
  2996. struct ggml_tensor * ggml_new_tensor(
  2997. struct ggml_context * ctx,
  2998. enum ggml_type type,
  2999. int n_dims,
  3000. const int64_t * ne) {
  3001. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3002. }
  3003. struct ggml_tensor * ggml_new_tensor_1d(
  3004. struct ggml_context * ctx,
  3005. enum ggml_type type,
  3006. int64_t ne0) {
  3007. return ggml_new_tensor(ctx, type, 1, &ne0);
  3008. }
  3009. struct ggml_tensor * ggml_new_tensor_2d(
  3010. struct ggml_context * ctx,
  3011. enum ggml_type type,
  3012. int64_t ne0,
  3013. int64_t ne1) {
  3014. const int64_t ne[2] = { ne0, ne1 };
  3015. return ggml_new_tensor(ctx, type, 2, ne);
  3016. }
  3017. struct ggml_tensor * ggml_new_tensor_3d(
  3018. struct ggml_context * ctx,
  3019. enum ggml_type type,
  3020. int64_t ne0,
  3021. int64_t ne1,
  3022. int64_t ne2) {
  3023. const int64_t ne[3] = { ne0, ne1, ne2 };
  3024. return ggml_new_tensor(ctx, type, 3, ne);
  3025. }
  3026. struct ggml_tensor * ggml_new_tensor_4d(
  3027. struct ggml_context * ctx,
  3028. enum ggml_type type,
  3029. int64_t ne0,
  3030. int64_t ne1,
  3031. int64_t ne2,
  3032. int64_t ne3) {
  3033. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3034. return ggml_new_tensor(ctx, type, 4, ne);
  3035. }
  3036. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3037. ctx->scratch_save = ctx->scratch;
  3038. ctx->scratch.data = NULL;
  3039. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3040. ctx->scratch = ctx->scratch_save;
  3041. ggml_set_i32(result, value);
  3042. return result;
  3043. }
  3044. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3045. ctx->scratch_save = ctx->scratch;
  3046. ctx->scratch.data = NULL;
  3047. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3048. ctx->scratch = ctx->scratch_save;
  3049. ggml_set_f32(result, value);
  3050. return result;
  3051. }
  3052. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3053. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3054. }
  3055. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3056. memset(tensor->data, 0, ggml_nbytes(tensor));
  3057. return tensor;
  3058. }
  3059. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3060. const int n = ggml_nrows(tensor);
  3061. const int nc = tensor->ne[0];
  3062. const size_t n1 = tensor->nb[1];
  3063. char * const data = tensor->data;
  3064. switch (tensor->type) {
  3065. case GGML_TYPE_I8:
  3066. {
  3067. assert(tensor->nb[0] == sizeof(int8_t));
  3068. for (int i = 0; i < n; i++) {
  3069. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3070. }
  3071. } break;
  3072. case GGML_TYPE_I16:
  3073. {
  3074. assert(tensor->nb[0] == sizeof(int16_t));
  3075. for (int i = 0; i < n; i++) {
  3076. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3077. }
  3078. } break;
  3079. case GGML_TYPE_I32:
  3080. {
  3081. assert(tensor->nb[0] == sizeof(int32_t));
  3082. for (int i = 0; i < n; i++) {
  3083. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3084. }
  3085. } break;
  3086. case GGML_TYPE_F16:
  3087. {
  3088. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3089. for (int i = 0; i < n; i++) {
  3090. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3091. }
  3092. } break;
  3093. case GGML_TYPE_F32:
  3094. {
  3095. assert(tensor->nb[0] == sizeof(float));
  3096. for (int i = 0; i < n; i++) {
  3097. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3098. }
  3099. } break;
  3100. default:
  3101. {
  3102. GGML_ASSERT(false);
  3103. } break;
  3104. }
  3105. return tensor;
  3106. }
  3107. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3108. const int n = ggml_nrows(tensor);
  3109. const int nc = tensor->ne[0];
  3110. const size_t n1 = tensor->nb[1];
  3111. char * const data = tensor->data;
  3112. switch (tensor->type) {
  3113. case GGML_TYPE_I8:
  3114. {
  3115. assert(tensor->nb[0] == sizeof(int8_t));
  3116. for (int i = 0; i < n; i++) {
  3117. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3118. }
  3119. } break;
  3120. case GGML_TYPE_I16:
  3121. {
  3122. assert(tensor->nb[0] == sizeof(int16_t));
  3123. for (int i = 0; i < n; i++) {
  3124. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3125. }
  3126. } break;
  3127. case GGML_TYPE_I32:
  3128. {
  3129. assert(tensor->nb[0] == sizeof(int32_t));
  3130. for (int i = 0; i < n; i++) {
  3131. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3132. }
  3133. } break;
  3134. case GGML_TYPE_F16:
  3135. {
  3136. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3137. for (int i = 0; i < n; i++) {
  3138. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3139. }
  3140. } break;
  3141. case GGML_TYPE_F32:
  3142. {
  3143. assert(tensor->nb[0] == sizeof(float));
  3144. for (int i = 0; i < n; i++) {
  3145. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3146. }
  3147. } break;
  3148. default:
  3149. {
  3150. GGML_ASSERT(false);
  3151. } break;
  3152. }
  3153. return tensor;
  3154. }
  3155. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3156. switch (tensor->type) {
  3157. case GGML_TYPE_I8:
  3158. {
  3159. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3160. return ((int8_t *)(tensor->data))[i];
  3161. } break;
  3162. case GGML_TYPE_I16:
  3163. {
  3164. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3165. return ((int16_t *)(tensor->data))[i];
  3166. } break;
  3167. case GGML_TYPE_I32:
  3168. {
  3169. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3170. return ((int32_t *)(tensor->data))[i];
  3171. } break;
  3172. case GGML_TYPE_F16:
  3173. {
  3174. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3175. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3176. } break;
  3177. case GGML_TYPE_F32:
  3178. {
  3179. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3180. return ((float *)(tensor->data))[i];
  3181. } break;
  3182. default:
  3183. {
  3184. GGML_ASSERT(false);
  3185. } break;
  3186. }
  3187. return 0.0f;
  3188. }
  3189. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3190. switch (tensor->type) {
  3191. case GGML_TYPE_I8:
  3192. {
  3193. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3194. ((int8_t *)(tensor->data))[i] = value;
  3195. } break;
  3196. case GGML_TYPE_I16:
  3197. {
  3198. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3199. ((int16_t *)(tensor->data))[i] = value;
  3200. } break;
  3201. case GGML_TYPE_I32:
  3202. {
  3203. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3204. ((int32_t *)(tensor->data))[i] = value;
  3205. } break;
  3206. case GGML_TYPE_F16:
  3207. {
  3208. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3209. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3210. } break;
  3211. case GGML_TYPE_F32:
  3212. {
  3213. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3214. ((float *)(tensor->data))[i] = value;
  3215. } break;
  3216. default:
  3217. {
  3218. GGML_ASSERT(false);
  3219. } break;
  3220. }
  3221. }
  3222. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3223. switch (tensor->type) {
  3224. case GGML_TYPE_I8:
  3225. {
  3226. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3227. return ((int8_t *)(tensor->data))[i];
  3228. } break;
  3229. case GGML_TYPE_I16:
  3230. {
  3231. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3232. return ((int16_t *)(tensor->data))[i];
  3233. } break;
  3234. case GGML_TYPE_I32:
  3235. {
  3236. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3237. return ((int32_t *)(tensor->data))[i];
  3238. } break;
  3239. case GGML_TYPE_F16:
  3240. {
  3241. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3242. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3243. } break;
  3244. case GGML_TYPE_F32:
  3245. {
  3246. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3247. return ((float *)(tensor->data))[i];
  3248. } break;
  3249. default:
  3250. {
  3251. GGML_ASSERT(false);
  3252. } break;
  3253. }
  3254. return 0.0f;
  3255. }
  3256. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3257. switch (tensor->type) {
  3258. case GGML_TYPE_I8:
  3259. {
  3260. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3261. ((int8_t *)(tensor->data))[i] = value;
  3262. } break;
  3263. case GGML_TYPE_I16:
  3264. {
  3265. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3266. ((int16_t *)(tensor->data))[i] = value;
  3267. } break;
  3268. case GGML_TYPE_I32:
  3269. {
  3270. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3271. ((int32_t *)(tensor->data))[i] = value;
  3272. } break;
  3273. case GGML_TYPE_F16:
  3274. {
  3275. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3276. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3277. } break;
  3278. case GGML_TYPE_F32:
  3279. {
  3280. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3281. ((float *)(tensor->data))[i] = value;
  3282. } break;
  3283. default:
  3284. {
  3285. GGML_ASSERT(false);
  3286. } break;
  3287. }
  3288. }
  3289. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3290. return tensor->data;
  3291. }
  3292. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3293. assert(tensor->type == GGML_TYPE_F32);
  3294. return (float *)(tensor->data);
  3295. }
  3296. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3297. return tensor->name;
  3298. }
  3299. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3300. strncpy(tensor->name, name, sizeof(tensor->name));
  3301. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3302. }
  3303. struct ggml_tensor * ggml_view_tensor(
  3304. struct ggml_context * ctx,
  3305. const struct ggml_tensor * src) {
  3306. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3307. result->nb[0] = src->nb[0];
  3308. result->nb[1] = src->nb[1];
  3309. result->nb[2] = src->nb[2];
  3310. result->nb[3] = src->nb[3];
  3311. return result;
  3312. }
  3313. ////////////////////////////////////////////////////////////////////////////////
  3314. // ggml_dup
  3315. struct ggml_tensor * ggml_dup_impl(
  3316. struct ggml_context * ctx,
  3317. struct ggml_tensor * a,
  3318. bool inplace) {
  3319. bool is_node = false;
  3320. if (!inplace && (a->grad)) {
  3321. is_node = true;
  3322. }
  3323. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3324. result->op = GGML_OP_DUP;
  3325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3326. result->src0 = a;
  3327. result->src1 = NULL;
  3328. return result;
  3329. }
  3330. struct ggml_tensor * ggml_dup(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a) {
  3333. return ggml_dup_impl(ctx, a, false);
  3334. }
  3335. struct ggml_tensor * ggml_dup_inplace(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a) {
  3338. return ggml_dup_impl(ctx, a, true);
  3339. }
  3340. // ggml_add
  3341. struct ggml_tensor * ggml_add_impl(
  3342. struct ggml_context * ctx,
  3343. struct ggml_tensor * a,
  3344. struct ggml_tensor * b,
  3345. bool inplace) {
  3346. GGML_ASSERT(ggml_are_same_shape(a, b));
  3347. bool is_node = false;
  3348. if (!inplace && (a->grad || b->grad)) {
  3349. is_node = true;
  3350. }
  3351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3352. result->op = GGML_OP_ADD;
  3353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3354. result->src0 = a;
  3355. result->src1 = b;
  3356. return result;
  3357. }
  3358. struct ggml_tensor * ggml_add(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. struct ggml_tensor * b) {
  3362. return ggml_add_impl(ctx, a, b, false);
  3363. }
  3364. struct ggml_tensor * ggml_add_inplace(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a,
  3367. struct ggml_tensor * b) {
  3368. return ggml_add_impl(ctx, a, b, true);
  3369. }
  3370. // ggml_sub
  3371. struct ggml_tensor * ggml_sub_impl(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. struct ggml_tensor * b,
  3375. bool inplace) {
  3376. GGML_ASSERT(ggml_are_same_shape(a, b));
  3377. bool is_node = false;
  3378. if (!inplace && (a->grad || b->grad)) {
  3379. is_node = true;
  3380. }
  3381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3382. result->op = GGML_OP_SUB;
  3383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3384. result->src0 = a;
  3385. result->src1 = b;
  3386. return result;
  3387. }
  3388. struct ggml_tensor * ggml_sub(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a,
  3391. struct ggml_tensor * b) {
  3392. return ggml_sub_impl(ctx, a, b, false);
  3393. }
  3394. struct ggml_tensor * ggml_sub_inplace(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. struct ggml_tensor * b) {
  3398. return ggml_sub_impl(ctx, a, b, true);
  3399. }
  3400. // ggml_mul
  3401. struct ggml_tensor * ggml_mul_impl(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b,
  3405. bool inplace) {
  3406. GGML_ASSERT(ggml_are_same_shape(a, b));
  3407. bool is_node = false;
  3408. if (!inplace && (a->grad || b->grad)) {
  3409. is_node = true;
  3410. }
  3411. if (inplace) {
  3412. GGML_ASSERT(is_node == false);
  3413. }
  3414. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3415. result->op = GGML_OP_MUL;
  3416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3417. result->src0 = a;
  3418. result->src1 = b;
  3419. return result;
  3420. }
  3421. struct ggml_tensor * ggml_mul(
  3422. struct ggml_context * ctx,
  3423. struct ggml_tensor * a,
  3424. struct ggml_tensor * b) {
  3425. return ggml_mul_impl(ctx, a, b, false);
  3426. }
  3427. struct ggml_tensor * ggml_mul_inplace(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * a,
  3430. struct ggml_tensor * b) {
  3431. return ggml_mul_impl(ctx, a, b, true);
  3432. }
  3433. // ggml_div
  3434. struct ggml_tensor * ggml_div_impl(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a,
  3437. struct ggml_tensor * b,
  3438. bool inplace) {
  3439. GGML_ASSERT(ggml_are_same_shape(a, b));
  3440. bool is_node = false;
  3441. if (!inplace && (a->grad || b->grad)) {
  3442. is_node = true;
  3443. }
  3444. if (inplace) {
  3445. GGML_ASSERT(is_node == false);
  3446. }
  3447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3448. result->op = GGML_OP_DIV;
  3449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3450. result->src0 = a;
  3451. result->src1 = b;
  3452. return result;
  3453. }
  3454. struct ggml_tensor * ggml_div(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b) {
  3458. return ggml_div_impl(ctx, a, b, false);
  3459. }
  3460. struct ggml_tensor * ggml_div_inplace(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. struct ggml_tensor * b) {
  3464. return ggml_div_impl(ctx, a, b, true);
  3465. }
  3466. // ggml_sqr
  3467. struct ggml_tensor * ggml_sqr_impl(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. bool inplace) {
  3471. bool is_node = false;
  3472. if (!inplace && (a->grad)) {
  3473. is_node = true;
  3474. }
  3475. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3476. result->op = GGML_OP_SQR;
  3477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3478. result->src0 = a;
  3479. result->src1 = NULL;
  3480. return result;
  3481. }
  3482. struct ggml_tensor * ggml_sqr(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a) {
  3485. return ggml_sqr_impl(ctx, a, false);
  3486. }
  3487. struct ggml_tensor * ggml_sqr_inplace(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a) {
  3490. return ggml_sqr_impl(ctx, a, true);
  3491. }
  3492. // ggml_sqrt
  3493. struct ggml_tensor * ggml_sqrt_impl(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. bool inplace) {
  3497. bool is_node = false;
  3498. if (!inplace && (a->grad)) {
  3499. is_node = true;
  3500. }
  3501. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3502. result->op = GGML_OP_SQRT;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src0 = a;
  3505. result->src1 = NULL;
  3506. return result;
  3507. }
  3508. struct ggml_tensor * ggml_sqrt(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a) {
  3511. return ggml_sqrt_impl(ctx, a, false);
  3512. }
  3513. struct ggml_tensor * ggml_sqrt_inplace(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a) {
  3516. return ggml_sqrt_impl(ctx, a, true);
  3517. }
  3518. // ggml_sum
  3519. struct ggml_tensor * ggml_sum(
  3520. struct ggml_context * ctx,
  3521. struct ggml_tensor * a) {
  3522. bool is_node = false;
  3523. if (a->grad) {
  3524. is_node = true;
  3525. }
  3526. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3527. result->op = GGML_OP_SUM;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src0 = a;
  3530. result->src1 = NULL;
  3531. return result;
  3532. }
  3533. // ggml_mean
  3534. struct ggml_tensor * ggml_mean(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a) {
  3537. bool is_node = false;
  3538. if (a->grad) {
  3539. GGML_ASSERT(false); // TODO: implement
  3540. is_node = true;
  3541. }
  3542. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3543. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3544. result->op = GGML_OP_MEAN;
  3545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3546. result->src0 = a;
  3547. result->src1 = NULL;
  3548. return result;
  3549. }
  3550. // ggml_repeat
  3551. struct ggml_tensor * ggml_repeat(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a,
  3554. struct ggml_tensor * b) {
  3555. GGML_ASSERT(ggml_can_repeat(a, b));
  3556. bool is_node = false;
  3557. if (a->grad) {
  3558. is_node = true;
  3559. }
  3560. if (ggml_are_same_shape(a, b) && !is_node) {
  3561. return a;
  3562. }
  3563. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3564. result->op = GGML_OP_REPEAT;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src0 = a;
  3567. result->src1 = b;
  3568. return result;
  3569. }
  3570. // ggml_abs
  3571. struct ggml_tensor * ggml_abs_impl(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. bool inplace) {
  3575. bool is_node = false;
  3576. if (!inplace && (a->grad)) {
  3577. is_node = true;
  3578. }
  3579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3580. result->op = GGML_OP_ABS;
  3581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3582. result->src0 = a;
  3583. result->src1 = NULL;
  3584. return result;
  3585. }
  3586. struct ggml_tensor * ggml_abs(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a) {
  3589. return ggml_abs_impl(ctx, a, false);
  3590. }
  3591. struct ggml_tensor * ggml_abs_inplace(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_abs_impl(ctx, a, true);
  3595. }
  3596. // ggml_sgn
  3597. struct ggml_tensor * ggml_sgn_impl(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. bool inplace) {
  3601. bool is_node = false;
  3602. if (!inplace && (a->grad)) {
  3603. is_node = true;
  3604. }
  3605. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3606. result->op = GGML_OP_SGN;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src0 = a;
  3609. result->src1 = NULL;
  3610. return result;
  3611. }
  3612. struct ggml_tensor * ggml_sgn(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a) {
  3615. return ggml_sgn_impl(ctx, a, false);
  3616. }
  3617. struct ggml_tensor * ggml_sgn_inplace(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a) {
  3620. return ggml_sgn_impl(ctx, a, true);
  3621. }
  3622. // ggml_neg
  3623. struct ggml_tensor * ggml_neg_impl(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a,
  3626. bool inplace) {
  3627. bool is_node = false;
  3628. if (!inplace && (a->grad)) {
  3629. is_node = true;
  3630. }
  3631. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3632. result->op = GGML_OP_NEG;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src0 = a;
  3635. result->src1 = NULL;
  3636. return result;
  3637. }
  3638. struct ggml_tensor * ggml_neg(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a) {
  3641. return ggml_neg_impl(ctx, a, false);
  3642. }
  3643. struct ggml_tensor * ggml_neg_inplace(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a) {
  3646. return ggml_neg_impl(ctx, a, true);
  3647. }
  3648. // ggml_step
  3649. struct ggml_tensor * ggml_step_impl(
  3650. struct ggml_context * ctx,
  3651. struct ggml_tensor * a,
  3652. bool inplace) {
  3653. bool is_node = false;
  3654. if (!inplace && (a->grad)) {
  3655. is_node = true;
  3656. }
  3657. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3658. result->op = GGML_OP_STEP;
  3659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3660. result->src0 = a;
  3661. result->src1 = NULL;
  3662. return result;
  3663. }
  3664. struct ggml_tensor * ggml_step(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a) {
  3667. return ggml_step_impl(ctx, a, false);
  3668. }
  3669. struct ggml_tensor * ggml_step_inplace(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. return ggml_step_impl(ctx, a, true);
  3673. }
  3674. // ggml_relu
  3675. struct ggml_tensor * ggml_relu_impl(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. bool inplace) {
  3679. bool is_node = false;
  3680. if (!inplace && (a->grad)) {
  3681. is_node = true;
  3682. }
  3683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3684. result->op = GGML_OP_RELU;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src0 = a;
  3687. result->src1 = NULL;
  3688. return result;
  3689. }
  3690. struct ggml_tensor * ggml_relu(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a) {
  3693. return ggml_relu_impl(ctx, a, false);
  3694. }
  3695. struct ggml_tensor * ggml_relu_inplace(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a) {
  3698. return ggml_relu_impl(ctx, a, true);
  3699. }
  3700. // ggml_gelu
  3701. struct ggml_tensor * ggml_gelu_impl(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. bool inplace) {
  3705. bool is_node = false;
  3706. if (!inplace && (a->grad)) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3710. result->op = GGML_OP_GELU;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src0 = a;
  3713. result->src1 = NULL;
  3714. return result;
  3715. }
  3716. struct ggml_tensor * ggml_gelu(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a) {
  3719. return ggml_gelu_impl(ctx, a, false);
  3720. }
  3721. struct ggml_tensor * ggml_gelu_inplace(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a) {
  3724. return ggml_gelu_impl(ctx, a, true);
  3725. }
  3726. // ggml_silu
  3727. struct ggml_tensor * ggml_silu_impl(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. bool inplace) {
  3731. bool is_node = false;
  3732. if (!inplace && (a->grad)) {
  3733. is_node = true;
  3734. }
  3735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3736. result->op = GGML_OP_SILU;
  3737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3738. result->src0 = a;
  3739. result->src1 = NULL;
  3740. return result;
  3741. }
  3742. struct ggml_tensor * ggml_silu(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. return ggml_silu_impl(ctx, a, false);
  3746. }
  3747. struct ggml_tensor * ggml_silu_inplace(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a) {
  3750. return ggml_silu_impl(ctx, a, true);
  3751. }
  3752. // ggml_norm
  3753. struct ggml_tensor * ggml_norm_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. bool inplace) {
  3757. bool is_node = false;
  3758. if (!inplace && (a->grad)) {
  3759. GGML_ASSERT(false); // TODO: implement backward
  3760. is_node = true;
  3761. }
  3762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3763. result->op = GGML_OP_NORM;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src0 = a;
  3766. result->src1 = NULL; // TODO: maybe store epsilon here?
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_norm(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a) {
  3772. return ggml_norm_impl(ctx, a, false);
  3773. }
  3774. struct ggml_tensor * ggml_norm_inplace(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a) {
  3777. return ggml_norm_impl(ctx, a, true);
  3778. }
  3779. struct ggml_tensor * ggml_rms_norm_impl(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. bool inplace) {
  3783. bool is_node = false;
  3784. if (!inplace && (a->grad)) {
  3785. GGML_ASSERT(false); // TODO: implement backward
  3786. is_node = true;
  3787. }
  3788. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3789. result->op = GGML_OP_RMS_NORM;
  3790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3791. result->src0 = a;
  3792. result->src1 = NULL; // TODO: maybe store epsilon here?
  3793. return result;
  3794. }
  3795. struct ggml_tensor * ggml_rms_norm(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a) {
  3798. return ggml_rms_norm_impl(ctx, a, false);
  3799. }
  3800. struct ggml_tensor * ggml_rms_norm_inplace(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a) {
  3803. return ggml_rms_norm_impl(ctx, a, true);
  3804. }
  3805. // ggml_mul_mat
  3806. struct ggml_tensor * ggml_mul_mat(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. struct ggml_tensor * b) {
  3810. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3811. GGML_ASSERT(!ggml_is_transposed(a));
  3812. bool is_node = false;
  3813. if (a->grad || b->grad) {
  3814. is_node = true;
  3815. }
  3816. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3817. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3818. result->op = GGML_OP_MUL_MAT;
  3819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3820. result->src0 = a;
  3821. result->src1 = b;
  3822. return result;
  3823. }
  3824. // ggml_scale
  3825. struct ggml_tensor * ggml_scale_impl(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. struct ggml_tensor * b,
  3829. bool inplace) {
  3830. GGML_ASSERT(ggml_is_scalar(b));
  3831. GGML_ASSERT(ggml_is_padded_1d(a));
  3832. bool is_node = false;
  3833. if (!inplace && (a->grad || b->grad)) {
  3834. GGML_ASSERT(false); // TODO: implement backward
  3835. is_node = true;
  3836. }
  3837. // TODO: when implement backward, fix this:
  3838. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3840. result->op = GGML_OP_SCALE;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src0 = a;
  3843. result->src1 = b;
  3844. return result;
  3845. }
  3846. struct ggml_tensor * ggml_scale(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. struct ggml_tensor * b) {
  3850. return ggml_scale_impl(ctx, a, b, false);
  3851. }
  3852. struct ggml_tensor * ggml_scale_inplace(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. struct ggml_tensor * b) {
  3856. return ggml_scale_impl(ctx, a, b, true);
  3857. }
  3858. // ggml_cpy
  3859. struct ggml_tensor * ggml_cpy_impl(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. struct ggml_tensor * b,
  3863. bool inplace) {
  3864. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3865. bool is_node = false;
  3866. if (!inplace && (a->grad || b->grad)) {
  3867. GGML_ASSERT(false); // TODO: implement backward
  3868. is_node = true;
  3869. }
  3870. // make a view of the destination
  3871. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3872. result->op = GGML_OP_CPY;
  3873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3874. result->src0 = a;
  3875. result->src1 = b;
  3876. return result;
  3877. }
  3878. struct ggml_tensor * ggml_cpy(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * a,
  3881. struct ggml_tensor * b) {
  3882. return ggml_cpy_impl(ctx, a, b, false);
  3883. }
  3884. struct ggml_tensor * ggml_cpy_inplace(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. struct ggml_tensor * b) {
  3888. return ggml_cpy_impl(ctx, a, b, true);
  3889. }
  3890. // ggml_cont
  3891. struct ggml_tensor * ggml_cont_impl(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. bool inplace) {
  3895. bool is_node = false;
  3896. if (!inplace && a->grad) {
  3897. GGML_ASSERT(false); // TODO: implement backward
  3898. is_node = true;
  3899. }
  3900. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3901. result->op = GGML_OP_CONT;
  3902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3903. result->src0 = a;
  3904. result->src1 = NULL;
  3905. return result;
  3906. }
  3907. struct ggml_tensor * ggml_cont(
  3908. struct ggml_context * ctx,
  3909. struct ggml_tensor * a) {
  3910. return ggml_cont_impl(ctx, a, false);
  3911. }
  3912. struct ggml_tensor * ggml_cont_inplace(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a) {
  3915. return ggml_cont_impl(ctx, a, true);
  3916. }
  3917. // ggml_reshape
  3918. struct ggml_tensor * ggml_reshape(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a,
  3921. struct ggml_tensor * b) {
  3922. GGML_ASSERT(ggml_is_contiguous(a));
  3923. GGML_ASSERT(ggml_is_contiguous(b));
  3924. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3925. bool is_node = false;
  3926. if (a->grad || b->grad) {
  3927. GGML_ASSERT(false); // TODO: implement backward
  3928. is_node = true;
  3929. }
  3930. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3931. result->op = GGML_OP_RESHAPE;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src0 = a;
  3934. result->src1 = NULL;
  3935. return result;
  3936. }
  3937. struct ggml_tensor * ggml_reshape_2d(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. int64_t ne0,
  3941. int64_t ne1) {
  3942. GGML_ASSERT(ggml_is_contiguous(a));
  3943. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3944. bool is_node = false;
  3945. if (a->grad) {
  3946. GGML_ASSERT(false); // TODO: implement backward
  3947. is_node = true;
  3948. }
  3949. const int64_t ne[2] = { ne0, ne1 };
  3950. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3951. result->op = GGML_OP_RESHAPE;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src0 = a;
  3954. result->src1 = NULL;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_reshape_3d(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. int64_t ne0,
  3961. int64_t ne1,
  3962. int64_t ne2) {
  3963. GGML_ASSERT(ggml_is_contiguous(a));
  3964. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3965. bool is_node = false;
  3966. if (a->grad) {
  3967. GGML_ASSERT(false); // TODO: implement backward
  3968. is_node = true;
  3969. }
  3970. const int64_t ne[3] = { ne0, ne1, ne2 };
  3971. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3972. result->op = GGML_OP_RESHAPE;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src0 = a;
  3975. result->src1 = NULL;
  3976. return result;
  3977. }
  3978. // ggml_view_1d
  3979. struct ggml_tensor * ggml_view_1d(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. int64_t ne0,
  3983. size_t offset) {
  3984. if (a->grad) {
  3985. GGML_ASSERT(false); // gradient propagation is not supported
  3986. }
  3987. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3988. result->op = GGML_OP_VIEW;
  3989. result->grad = NULL;
  3990. result->src0 = a;
  3991. result->src1 = NULL; // TODO: maybe store the offset here?
  3992. return result;
  3993. }
  3994. // ggml_view_2d
  3995. struct ggml_tensor * ggml_view_2d(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. int64_t ne0,
  3999. int64_t ne1,
  4000. size_t nb1,
  4001. size_t offset) {
  4002. if (a->grad) {
  4003. GGML_ASSERT(false); // gradient propagation is not supported
  4004. }
  4005. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4006. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4007. result->nb[1] = nb1;
  4008. result->nb[2] = result->nb[1]*ne1;
  4009. result->nb[3] = result->nb[2];
  4010. result->op = GGML_OP_VIEW;
  4011. result->grad = NULL;
  4012. result->src0 = a;
  4013. result->src1 = NULL; // TODO: maybe store the offset here?
  4014. return result;
  4015. }
  4016. // ggml_view_3d
  4017. struct ggml_tensor * ggml_view_3d(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. int64_t ne0,
  4021. int64_t ne1,
  4022. int64_t ne2,
  4023. size_t nb1,
  4024. size_t nb2,
  4025. size_t offset) {
  4026. if (a->grad) {
  4027. GGML_ASSERT(false); // gradient propagation is not supported
  4028. }
  4029. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4030. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4031. result->nb[1] = nb1;
  4032. result->nb[2] = nb2;
  4033. result->nb[3] = result->nb[2]*ne2;
  4034. result->op = GGML_OP_VIEW;
  4035. result->grad = NULL;
  4036. result->src0 = a;
  4037. result->src1 = NULL; // TODO: maybe store the offset here?
  4038. return result;
  4039. }
  4040. // ggml_permute
  4041. struct ggml_tensor * ggml_permute(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. int axis0,
  4045. int axis1,
  4046. int axis2,
  4047. int axis3) {
  4048. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4049. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4050. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4051. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4052. GGML_ASSERT(axis0 != axis1);
  4053. GGML_ASSERT(axis0 != axis2);
  4054. GGML_ASSERT(axis0 != axis3);
  4055. GGML_ASSERT(axis1 != axis2);
  4056. GGML_ASSERT(axis1 != axis3);
  4057. GGML_ASSERT(axis2 != axis3);
  4058. bool is_node = false;
  4059. if (a->grad) {
  4060. GGML_ASSERT(false); // TODO: implement backward
  4061. is_node = true;
  4062. }
  4063. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4064. int ne[GGML_MAX_DIMS];
  4065. int nb[GGML_MAX_DIMS];
  4066. ne[axis0] = a->ne[0];
  4067. ne[axis1] = a->ne[1];
  4068. ne[axis2] = a->ne[2];
  4069. ne[axis3] = a->ne[3];
  4070. nb[axis0] = a->nb[0];
  4071. nb[axis1] = a->nb[1];
  4072. nb[axis2] = a->nb[2];
  4073. nb[axis3] = a->nb[3];
  4074. result->ne[0] = ne[0];
  4075. result->ne[1] = ne[1];
  4076. result->ne[2] = ne[2];
  4077. result->ne[3] = ne[3];
  4078. result->nb[0] = nb[0];
  4079. result->nb[1] = nb[1];
  4080. result->nb[2] = nb[2];
  4081. result->nb[3] = nb[3];
  4082. result->op = GGML_OP_PERMUTE;
  4083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4084. result->src0 = a;
  4085. result->src1 = NULL; // TODO: maybe store the permutation here?
  4086. return result;
  4087. }
  4088. // ggml_transpose
  4089. struct ggml_tensor * ggml_transpose(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. bool is_node = false;
  4093. if (a->grad) {
  4094. GGML_ASSERT(false); // TODO: implement backward
  4095. is_node = true;
  4096. }
  4097. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4098. result->ne[0] = a->ne[1];
  4099. result->ne[1] = a->ne[0];
  4100. result->nb[0] = a->nb[1];
  4101. result->nb[1] = a->nb[0];
  4102. result->op = GGML_OP_TRANSPOSE;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src0 = a;
  4105. result->src1 = NULL;
  4106. return result;
  4107. }
  4108. // ggml_get_rows
  4109. struct ggml_tensor * ggml_get_rows(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. struct ggml_tensor * b) {
  4113. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4114. bool is_node = false;
  4115. if (a->grad || b->grad) {
  4116. GGML_ASSERT(false); // TODO: implement backward
  4117. is_node = true;
  4118. }
  4119. // TODO: implement non F32 return
  4120. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4121. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4122. result->op = GGML_OP_GET_ROWS;
  4123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4124. result->src0 = a;
  4125. result->src1 = b;
  4126. return result;
  4127. }
  4128. // ggml_diag_mask_inf
  4129. struct ggml_tensor * ggml_diag_mask_inf(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. int n_past) {
  4133. bool is_node = false;
  4134. if (a->grad) {
  4135. GGML_ASSERT(false); // TODO: implement backward
  4136. is_node = true;
  4137. }
  4138. // TODO: when implement backward, fix this:
  4139. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4140. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4141. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4142. ggml_set_name(b, "n_past");
  4143. result->op = GGML_OP_DIAG_MASK_INF;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src0 = a;
  4146. result->src1 = b;
  4147. return result;
  4148. }
  4149. // ggml_soft_max
  4150. struct ggml_tensor * ggml_soft_max(
  4151. struct ggml_context * ctx,
  4152. struct ggml_tensor * a) {
  4153. bool is_node = false;
  4154. if (a->grad) {
  4155. GGML_ASSERT(false); // TODO: implement backward
  4156. is_node = true;
  4157. }
  4158. // TODO: when implement backward, fix this:
  4159. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4160. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4161. result->op = GGML_OP_SOFT_MAX;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src0 = a;
  4164. result->src1 = NULL;
  4165. return result;
  4166. }
  4167. // ggml_rope
  4168. struct ggml_tensor * ggml_rope(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. int n_past,
  4172. int n_dims,
  4173. int mode) {
  4174. GGML_ASSERT(n_past >= 0);
  4175. bool is_node = false;
  4176. if (a->grad) {
  4177. GGML_ASSERT(false); // TODO: implement backward
  4178. is_node = true;
  4179. }
  4180. // TODO: when implement backward, fix this:
  4181. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4183. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4184. ((int32_t *) b->data)[0] = n_past;
  4185. ((int32_t *) b->data)[1] = n_dims;
  4186. ((int32_t *) b->data)[2] = mode;
  4187. ggml_set_name(b, "n_past, n_dims, mode");
  4188. result->op = GGML_OP_ROPE;
  4189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4190. result->src0 = a;
  4191. result->src1 = b;
  4192. return result;
  4193. }
  4194. // ggml_alibi
  4195. struct ggml_tensor * ggml_alibi(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. int n_past,
  4199. int n_head) {
  4200. GGML_ASSERT(n_past >= 0);
  4201. bool is_node = false;
  4202. if (a->grad) {
  4203. GGML_ASSERT(false); // TODO: implement backward
  4204. is_node = true;
  4205. }
  4206. // TODO: when implement backward, fix this:
  4207. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4209. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4210. ((int32_t *) b->data)[0] = n_past;
  4211. ((int32_t *) b->data)[1] = n_head;
  4212. result->op = GGML_OP_ALIBI;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src0 = a;
  4215. result->src1 = b;
  4216. return result;
  4217. }
  4218. // ggml_conv_1d_1s
  4219. struct ggml_tensor * ggml_conv_1d_1s(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. struct ggml_tensor * b) {
  4223. GGML_ASSERT(ggml_is_matrix(b));
  4224. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4225. GGML_ASSERT(a->ne[3] == 1);
  4226. bool is_node = false;
  4227. if (a->grad || b->grad) {
  4228. GGML_ASSERT(false); // TODO: implement backward
  4229. is_node = true;
  4230. }
  4231. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4232. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4233. result->op = GGML_OP_CONV_1D_1S;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = b;
  4237. return result;
  4238. }
  4239. // ggml_conv_1d_2s
  4240. struct ggml_tensor * ggml_conv_1d_2s(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b) {
  4244. GGML_ASSERT(ggml_is_matrix(b));
  4245. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4246. GGML_ASSERT(a->ne[3] == 1);
  4247. bool is_node = false;
  4248. if (a->grad || b->grad) {
  4249. GGML_ASSERT(false); // TODO: implement backward
  4250. is_node = true;
  4251. }
  4252. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4253. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4254. result->op = GGML_OP_CONV_1D_2S;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src0 = a;
  4257. result->src1 = b;
  4258. return result;
  4259. }
  4260. // ggml_flash_attn
  4261. struct ggml_tensor * ggml_flash_attn(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * q,
  4264. struct ggml_tensor * k,
  4265. struct ggml_tensor * v,
  4266. bool masked) {
  4267. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4268. // TODO: check if vT can be multiplied by (k*qT)
  4269. bool is_node = false;
  4270. if (q->grad || k->grad || v->grad) {
  4271. GGML_ASSERT(false); // TODO: implement backward
  4272. is_node = true;
  4273. }
  4274. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4275. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4276. result->op = GGML_OP_FLASH_ATTN;
  4277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4278. result->src0 = q;
  4279. result->src1 = k;
  4280. result->opt[0] = v;
  4281. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4282. return result;
  4283. }
  4284. // ggml_flash_ff
  4285. struct ggml_tensor * ggml_flash_ff(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. struct ggml_tensor * b0,
  4289. struct ggml_tensor * b1,
  4290. struct ggml_tensor * c0,
  4291. struct ggml_tensor * c1) {
  4292. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4293. // TODO: more checks
  4294. bool is_node = false;
  4295. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4296. GGML_ASSERT(false); // TODO: implement backward
  4297. is_node = true;
  4298. }
  4299. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4300. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4301. result->op = GGML_OP_FLASH_FF;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src0 = a;
  4304. result->src1 = b0;
  4305. result->opt[0] = b1;
  4306. result->opt[1] = c0;
  4307. result->opt[2] = c1;
  4308. return result;
  4309. }
  4310. // ggml_map_unary
  4311. struct ggml_tensor * ggml_map_unary_impl_f32(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. const ggml_unary_op_f32_t fun,
  4315. bool inplace) {
  4316. bool is_node = false;
  4317. if (!inplace && a->grad) {
  4318. is_node = true;
  4319. }
  4320. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4321. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4322. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4323. result->op = GGML_OP_MAP_UNARY;
  4324. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4325. result->src0 = a;
  4326. result->opt[0] = addr_tensor;
  4327. return result;
  4328. }
  4329. struct ggml_tensor * ggml_map_unary_f32(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. const ggml_unary_op_f32_t fun) {
  4333. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4334. }
  4335. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. const ggml_unary_op_f32_t fun) {
  4339. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4340. }
  4341. // ggml_map_binary
  4342. struct ggml_tensor * ggml_map_binary_impl_f32(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b,
  4346. const ggml_binary_op_f32_t fun,
  4347. bool inplace) {
  4348. GGML_ASSERT(ggml_are_same_shape(a, b));
  4349. bool is_node = false;
  4350. if (!inplace && (a->grad || b->grad)) {
  4351. is_node = true;
  4352. }
  4353. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4354. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4355. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4356. result->op = GGML_OP_MAP_BINARY;
  4357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4358. result->src0 = a;
  4359. result->src1 = b;
  4360. result->opt[0] = addr_tensor;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_map_binary_f32(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. struct ggml_tensor * b,
  4367. const ggml_binary_op_f32_t fun) {
  4368. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4369. }
  4370. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. struct ggml_tensor * b,
  4374. const ggml_binary_op_f32_t fun) {
  4375. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4376. }
  4377. ////////////////////////////////////////////////////////////////////////////////
  4378. void ggml_set_param(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * tensor) {
  4381. tensor->is_param = true;
  4382. GGML_ASSERT(tensor->grad == NULL);
  4383. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4384. }
  4385. // ggml_compute_forward_dup
  4386. static void ggml_compute_forward_dup_f16(
  4387. const struct ggml_compute_params * params,
  4388. const struct ggml_tensor * src0,
  4389. struct ggml_tensor * dst) {
  4390. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4392. return;
  4393. }
  4394. const int64_t ne00 = src0->ne[0];
  4395. const int64_t ne01 = src0->ne[1];
  4396. const int64_t ne02 = src0->ne[2];
  4397. const int64_t ne03 = src0->ne[3];
  4398. const int64_t ne0 = dst->ne[0];
  4399. const int64_t ne1 = dst->ne[1];
  4400. const int64_t ne2 = dst->ne[2];
  4401. const int64_t ne3 = dst->ne[3];
  4402. const size_t nb00 = src0->nb[0];
  4403. const size_t nb01 = src0->nb[1];
  4404. const size_t nb02 = src0->nb[2];
  4405. const size_t nb03 = src0->nb[3];
  4406. const size_t nb0 = dst->nb[0];
  4407. const size_t nb1 = dst->nb[1];
  4408. const size_t nb2 = dst->nb[2];
  4409. const size_t nb3 = dst->nb[3];
  4410. const int ith = params->ith; // thread index
  4411. const int nth = params->nth; // number of threads
  4412. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4413. // parallelize by elements
  4414. const int ne = ggml_nelements(dst);
  4415. const int dr = (ne + nth - 1) / nth;
  4416. const int ie0 = dr * ith;
  4417. const int ie1 = MIN(ie0 + dr, ne);
  4418. memcpy(
  4419. ((char *) dst->data + ie0*nb0),
  4420. ((char *) src0->data + ie0*nb00),
  4421. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4422. return;
  4423. }
  4424. // parallelize by rows
  4425. const int nr = ne01;
  4426. // number of rows per thread
  4427. const int dr = (nr + nth - 1) / nth;
  4428. // row range for this thread
  4429. const int ir0 = dr * ith;
  4430. const int ir1 = MIN(ir0 + dr, nr);
  4431. if (src0->type == dst->type &&
  4432. ne00 == ne0 &&
  4433. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4434. // copy by rows
  4435. const size_t rs = ne00*nb00;
  4436. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4437. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4438. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4439. memcpy(
  4440. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4441. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4442. rs);
  4443. }
  4444. }
  4445. }
  4446. return;
  4447. }
  4448. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4449. if (ggml_is_contiguous(dst)) {
  4450. if (nb00 == sizeof(ggml_fp16_t)) {
  4451. if (dst->type == GGML_TYPE_F16) {
  4452. size_t id = 0;
  4453. const size_t rs = ne00 * nb00;
  4454. char * dst_ptr = (char *) dst->data;
  4455. for (int i03 = 0; i03 < ne03; i03++) {
  4456. for (int i02 = 0; i02 < ne02; i02++) {
  4457. id += rs * ir0;
  4458. for (int i01 = ir0; i01 < ir1; i01++) {
  4459. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4460. memcpy(dst_ptr + id, src0_ptr, rs);
  4461. id += rs;
  4462. }
  4463. id += rs * (ne01 - ir1);
  4464. }
  4465. }
  4466. } else if (dst->type == GGML_TYPE_F32) {
  4467. size_t id = 0;
  4468. float * dst_ptr = (float *) dst->data;
  4469. for (int i03 = 0; i03 < ne03; i03++) {
  4470. for (int i02 = 0; i02 < ne02; i02++) {
  4471. id += ne00 * ir0;
  4472. for (int i01 = ir0; i01 < ir1; i01++) {
  4473. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4474. for (int i00 = 0; i00 < ne00; i00++) {
  4475. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4476. id++;
  4477. }
  4478. }
  4479. id += ne00 * (ne01 - ir1);
  4480. }
  4481. }
  4482. } else if (ggml_is_quantized(dst->type)) {
  4483. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4484. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4485. size_t id = 0;
  4486. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4487. char * dst_ptr = (char *) dst->data;
  4488. for (int i03 = 0; i03 < ne03; i03++) {
  4489. for (int i02 = 0; i02 < ne02; i02++) {
  4490. id += rs * ir0;
  4491. for (int i01 = ir0; i01 < ir1; i01++) {
  4492. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4493. for (int i00 = 0; i00 < ne00; i00++) {
  4494. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4495. }
  4496. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4497. id += rs;
  4498. }
  4499. id += rs * (ne01 - ir1);
  4500. }
  4501. }
  4502. } else {
  4503. GGML_ASSERT(false); // TODO: implement
  4504. }
  4505. } else {
  4506. //printf("%s: this is not optimal - fix me\n", __func__);
  4507. if (dst->type == GGML_TYPE_F32) {
  4508. size_t id = 0;
  4509. float * dst_ptr = (float *) dst->data;
  4510. for (int i03 = 0; i03 < ne03; i03++) {
  4511. for (int i02 = 0; i02 < ne02; i02++) {
  4512. id += ne00 * ir0;
  4513. for (int i01 = ir0; i01 < ir1; i01++) {
  4514. for (int i00 = 0; i00 < ne00; i00++) {
  4515. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4516. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4517. id++;
  4518. }
  4519. }
  4520. id += ne00 * (ne01 - ir1);
  4521. }
  4522. }
  4523. } else if (dst->type == GGML_TYPE_F16) {
  4524. size_t id = 0;
  4525. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4526. for (int i03 = 0; i03 < ne03; i03++) {
  4527. for (int i02 = 0; i02 < ne02; i02++) {
  4528. id += ne00 * ir0;
  4529. for (int i01 = ir0; i01 < ir1; i01++) {
  4530. for (int i00 = 0; i00 < ne00; i00++) {
  4531. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4532. dst_ptr[id] = *src0_ptr;
  4533. id++;
  4534. }
  4535. }
  4536. id += ne00 * (ne01 - ir1);
  4537. }
  4538. }
  4539. } else {
  4540. GGML_ASSERT(false); // TODO: implement
  4541. }
  4542. }
  4543. return;
  4544. }
  4545. // dst counters
  4546. int64_t i10 = 0;
  4547. int64_t i11 = 0;
  4548. int64_t i12 = 0;
  4549. int64_t i13 = 0;
  4550. if (dst->type == GGML_TYPE_F16) {
  4551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4552. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4553. i10 += ne00 * ir0;
  4554. while (i10 >= ne0) {
  4555. i10 -= ne0;
  4556. if (++i11 == ne1) {
  4557. i11 = 0;
  4558. if (++i12 == ne2) {
  4559. i12 = 0;
  4560. if (++i13 == ne3) {
  4561. i13 = 0;
  4562. }
  4563. }
  4564. }
  4565. }
  4566. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4567. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4568. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4569. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4570. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4571. if (++i10 == ne00) {
  4572. i10 = 0;
  4573. if (++i11 == ne01) {
  4574. i11 = 0;
  4575. if (++i12 == ne02) {
  4576. i12 = 0;
  4577. if (++i13 == ne03) {
  4578. i13 = 0;
  4579. }
  4580. }
  4581. }
  4582. }
  4583. }
  4584. }
  4585. i10 += ne00 * (ne01 - ir1);
  4586. while (i10 >= ne0) {
  4587. i10 -= ne0;
  4588. if (++i11 == ne1) {
  4589. i11 = 0;
  4590. if (++i12 == ne2) {
  4591. i12 = 0;
  4592. if (++i13 == ne3) {
  4593. i13 = 0;
  4594. }
  4595. }
  4596. }
  4597. }
  4598. }
  4599. }
  4600. } else if (dst->type == GGML_TYPE_F32) {
  4601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4603. i10 += ne00 * ir0;
  4604. while (i10 >= ne0) {
  4605. i10 -= ne0;
  4606. if (++i11 == ne1) {
  4607. i11 = 0;
  4608. if (++i12 == ne2) {
  4609. i12 = 0;
  4610. if (++i13 == ne3) {
  4611. i13 = 0;
  4612. }
  4613. }
  4614. }
  4615. }
  4616. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4617. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4618. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4619. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4620. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4621. if (++i10 == ne0) {
  4622. i10 = 0;
  4623. if (++i11 == ne1) {
  4624. i11 = 0;
  4625. if (++i12 == ne2) {
  4626. i12 = 0;
  4627. if (++i13 == ne3) {
  4628. i13 = 0;
  4629. }
  4630. }
  4631. }
  4632. }
  4633. }
  4634. }
  4635. i10 += ne00 * (ne01 - ir1);
  4636. while (i10 >= ne0) {
  4637. i10 -= ne0;
  4638. if (++i11 == ne1) {
  4639. i11 = 0;
  4640. if (++i12 == ne2) {
  4641. i12 = 0;
  4642. if (++i13 == ne3) {
  4643. i13 = 0;
  4644. }
  4645. }
  4646. }
  4647. }
  4648. }
  4649. }
  4650. } else {
  4651. GGML_ASSERT(false); // TODO: implement
  4652. }
  4653. }
  4654. static void ggml_compute_forward_dup_f32(
  4655. const struct ggml_compute_params * params,
  4656. const struct ggml_tensor * src0,
  4657. struct ggml_tensor * dst) {
  4658. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4660. return;
  4661. }
  4662. const int64_t ne00 = src0->ne[0];
  4663. const int64_t ne01 = src0->ne[1];
  4664. const int64_t ne02 = src0->ne[2];
  4665. const int64_t ne03 = src0->ne[3];
  4666. const int64_t ne0 = dst->ne[0];
  4667. const int64_t ne1 = dst->ne[1];
  4668. const int64_t ne2 = dst->ne[2];
  4669. const int64_t ne3 = dst->ne[3];
  4670. const size_t nb00 = src0->nb[0];
  4671. const size_t nb01 = src0->nb[1];
  4672. const size_t nb02 = src0->nb[2];
  4673. const size_t nb03 = src0->nb[3];
  4674. const size_t nb0 = dst->nb[0];
  4675. const size_t nb1 = dst->nb[1];
  4676. const size_t nb2 = dst->nb[2];
  4677. const size_t nb3 = dst->nb[3];
  4678. const int ith = params->ith; // thread index
  4679. const int nth = params->nth; // number of threads
  4680. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4681. // parallelize by elements
  4682. const int ne = ggml_nelements(dst);
  4683. const int dr = (ne + nth - 1) / nth;
  4684. const int ie0 = dr * ith;
  4685. const int ie1 = MIN(ie0 + dr, ne);
  4686. memcpy(
  4687. ((char *) dst->data + ie0*nb0),
  4688. ((char *) src0->data + ie0*nb00),
  4689. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4690. return;
  4691. }
  4692. // parallelize by rows
  4693. const int nr = ne01;
  4694. // number of rows per thread
  4695. const int dr = (nr + nth - 1) / nth;
  4696. // row range for this thread
  4697. const int ir0 = dr * ith;
  4698. const int ir1 = MIN(ir0 + dr, nr);
  4699. if (src0->type == dst->type &&
  4700. ne00 == ne0 &&
  4701. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4702. // copy by rows
  4703. const size_t rs = ne00*nb00;
  4704. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4705. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4706. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4707. memcpy(
  4708. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4709. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4710. rs);
  4711. }
  4712. }
  4713. }
  4714. return;
  4715. }
  4716. if (ggml_is_contiguous(dst)) {
  4717. // TODO: simplify
  4718. if (nb00 == sizeof(float)) {
  4719. if (dst->type == GGML_TYPE_F32) {
  4720. size_t id = 0;
  4721. const size_t rs = ne00 * nb00;
  4722. char * dst_ptr = (char *) dst->data;
  4723. for (int i03 = 0; i03 < ne03; i03++) {
  4724. for (int i02 = 0; i02 < ne02; i02++) {
  4725. id += rs * ir0;
  4726. for (int i01 = ir0; i01 < ir1; i01++) {
  4727. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4728. memcpy(dst_ptr + id, src0_ptr, rs);
  4729. id += rs;
  4730. }
  4731. id += rs * (ne01 - ir1);
  4732. }
  4733. }
  4734. } else if (dst->type == GGML_TYPE_F16) {
  4735. size_t id = 0;
  4736. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4737. for (int i03 = 0; i03 < ne03; i03++) {
  4738. for (int i02 = 0; i02 < ne02; i02++) {
  4739. id += ne00 * ir0;
  4740. for (int i01 = ir0; i01 < ir1; i01++) {
  4741. for (int i00 = 0; i00 < ne00; i00++) {
  4742. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4743. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4744. id++;
  4745. }
  4746. }
  4747. id += ne00 * (ne01 - ir1);
  4748. }
  4749. }
  4750. } else if (ggml_is_quantized(dst->type)) {
  4751. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4752. size_t id = 0;
  4753. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4754. char * dst_ptr = (char *) dst->data;
  4755. for (int i03 = 0; i03 < ne03; i03++) {
  4756. for (int i02 = 0; i02 < ne02; i02++) {
  4757. id += rs * ir0;
  4758. for (int i01 = ir0; i01 < ir1; i01++) {
  4759. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4760. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4761. id += rs;
  4762. }
  4763. id += rs * (ne01 - ir1);
  4764. }
  4765. }
  4766. } else {
  4767. GGML_ASSERT(false); // TODO: implement
  4768. }
  4769. } else {
  4770. //printf("%s: this is not optimal - fix me\n", __func__);
  4771. if (dst->type == GGML_TYPE_F32) {
  4772. size_t id = 0;
  4773. float * dst_ptr = (float *) dst->data;
  4774. for (int i03 = 0; i03 < ne03; i03++) {
  4775. for (int i02 = 0; i02 < ne02; i02++) {
  4776. id += ne00 * ir0;
  4777. for (int i01 = ir0; i01 < ir1; i01++) {
  4778. for (int i00 = 0; i00 < ne00; i00++) {
  4779. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4780. dst_ptr[id] = *src0_ptr;
  4781. id++;
  4782. }
  4783. }
  4784. id += ne00 * (ne01 - ir1);
  4785. }
  4786. }
  4787. } else if (dst->type == GGML_TYPE_F16) {
  4788. size_t id = 0;
  4789. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4790. for (int i03 = 0; i03 < ne03; i03++) {
  4791. for (int i02 = 0; i02 < ne02; i02++) {
  4792. id += ne00 * ir0;
  4793. for (int i01 = ir0; i01 < ir1; i01++) {
  4794. for (int i00 = 0; i00 < ne00; i00++) {
  4795. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4796. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4797. id++;
  4798. }
  4799. }
  4800. id += ne00 * (ne01 - ir1);
  4801. }
  4802. }
  4803. } else {
  4804. GGML_ASSERT(false); // TODO: implement
  4805. }
  4806. }
  4807. return;
  4808. }
  4809. // dst counters
  4810. int64_t i10 = 0;
  4811. int64_t i11 = 0;
  4812. int64_t i12 = 0;
  4813. int64_t i13 = 0;
  4814. if (dst->type == GGML_TYPE_F32) {
  4815. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4816. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4817. i10 += ne00 * ir0;
  4818. while (i10 >= ne0) {
  4819. i10 -= ne0;
  4820. if (++i11 == ne1) {
  4821. i11 = 0;
  4822. if (++i12 == ne2) {
  4823. i12 = 0;
  4824. if (++i13 == ne3) {
  4825. i13 = 0;
  4826. }
  4827. }
  4828. }
  4829. }
  4830. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4831. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4832. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4833. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4834. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4835. if (++i10 == ne0) {
  4836. i10 = 0;
  4837. if (++i11 == ne1) {
  4838. i11 = 0;
  4839. if (++i12 == ne2) {
  4840. i12 = 0;
  4841. if (++i13 == ne3) {
  4842. i13 = 0;
  4843. }
  4844. }
  4845. }
  4846. }
  4847. }
  4848. }
  4849. i10 += ne00 * (ne01 - ir1);
  4850. while (i10 >= ne0) {
  4851. i10 -= ne0;
  4852. if (++i11 == ne1) {
  4853. i11 = 0;
  4854. if (++i12 == ne2) {
  4855. i12 = 0;
  4856. if (++i13 == ne3) {
  4857. i13 = 0;
  4858. }
  4859. }
  4860. }
  4861. }
  4862. }
  4863. }
  4864. } else if (dst->type == GGML_TYPE_F16) {
  4865. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4866. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4867. i10 += ne00 * ir0;
  4868. while (i10 >= ne0) {
  4869. i10 -= ne0;
  4870. if (++i11 == ne1) {
  4871. i11 = 0;
  4872. if (++i12 == ne2) {
  4873. i12 = 0;
  4874. if (++i13 == ne3) {
  4875. i13 = 0;
  4876. }
  4877. }
  4878. }
  4879. }
  4880. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4881. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4882. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4883. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4884. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4885. if (++i10 == ne0) {
  4886. i10 = 0;
  4887. if (++i11 == ne1) {
  4888. i11 = 0;
  4889. if (++i12 == ne2) {
  4890. i12 = 0;
  4891. if (++i13 == ne3) {
  4892. i13 = 0;
  4893. }
  4894. }
  4895. }
  4896. }
  4897. }
  4898. }
  4899. i10 += ne00 * (ne01 - ir1);
  4900. while (i10 >= ne0) {
  4901. i10 -= ne0;
  4902. if (++i11 == ne1) {
  4903. i11 = 0;
  4904. if (++i12 == ne2) {
  4905. i12 = 0;
  4906. if (++i13 == ne3) {
  4907. i13 = 0;
  4908. }
  4909. }
  4910. }
  4911. }
  4912. }
  4913. }
  4914. } else {
  4915. GGML_ASSERT(false); // TODO: implement
  4916. }
  4917. }
  4918. static void ggml_compute_forward_dup(
  4919. const struct ggml_compute_params * params,
  4920. const struct ggml_tensor * src0,
  4921. struct ggml_tensor * dst) {
  4922. switch (src0->type) {
  4923. case GGML_TYPE_F16:
  4924. {
  4925. ggml_compute_forward_dup_f16(params, src0, dst);
  4926. } break;
  4927. case GGML_TYPE_F32:
  4928. {
  4929. ggml_compute_forward_dup_f32(params, src0, dst);
  4930. } break;
  4931. default:
  4932. {
  4933. GGML_ASSERT(false);
  4934. } break;
  4935. }
  4936. }
  4937. // ggml_compute_forward_add
  4938. static void ggml_compute_forward_add_f32(
  4939. const struct ggml_compute_params * params,
  4940. const struct ggml_tensor * src0,
  4941. const struct ggml_tensor * src1,
  4942. struct ggml_tensor * dst) {
  4943. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4944. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4945. return;
  4946. }
  4947. const int ith = params->ith;
  4948. const int nth = params->nth;
  4949. const int n = ggml_nrows(src0);
  4950. const int nc = src0->ne[0];
  4951. const size_t nb00 = src0->nb[0];
  4952. const size_t nb01 = src0->nb[1];
  4953. const size_t nb10 = src1->nb[0];
  4954. const size_t nb11 = src1->nb[1];
  4955. const size_t nb0 = dst->nb[0];
  4956. const size_t nb1 = dst->nb[1];
  4957. GGML_ASSERT( nb0 == sizeof(float));
  4958. GGML_ASSERT(nb00 == sizeof(float));
  4959. if (nb10 == sizeof(float)) {
  4960. for (int j = ith; j < n; j += nth) {
  4961. #ifdef GGML_USE_ACCELERATE
  4962. vDSP_vadd(
  4963. (float *) ((char *) src0->data + j*nb01), 1,
  4964. (float *) ((char *) src1->data + j*nb11), 1,
  4965. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4966. #else
  4967. ggml_vec_add_f32(nc,
  4968. (float *) ((char *) dst->data + j*nb1),
  4969. (float *) ((char *) src0->data + j*nb01),
  4970. (float *) ((char *) src1->data + j*nb11));
  4971. #endif
  4972. }
  4973. } else {
  4974. // src1 is not contiguous
  4975. for (int j = ith; j < n; j += nth) {
  4976. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4977. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4978. for (int i = 0; i < nc; i++) {
  4979. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4980. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4981. }
  4982. }
  4983. }
  4984. }
  4985. static void ggml_compute_forward_add_f16_f32(
  4986. const struct ggml_compute_params * params,
  4987. const struct ggml_tensor * src0,
  4988. const struct ggml_tensor * src1,
  4989. struct ggml_tensor * dst) {
  4990. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4992. return;
  4993. }
  4994. const int ith = params->ith;
  4995. const int nth = params->nth;
  4996. const int n = ggml_nrows(src0);
  4997. const int nc = src0->ne[0];
  4998. const size_t nb00 = src0->nb[0];
  4999. const size_t nb01 = src0->nb[1];
  5000. const size_t nb10 = src1->nb[0];
  5001. const size_t nb11 = src1->nb[1];
  5002. const size_t nb0 = dst->nb[0];
  5003. const size_t nb1 = dst->nb[1];
  5004. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5005. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5006. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5007. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5008. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5009. if (nb10 == sizeof(float)) {
  5010. for (int j = ith; j < n; j += nth) {
  5011. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5012. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5013. for (int i = 0; i < nc; i++) {
  5014. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5015. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5016. }
  5017. }
  5018. }
  5019. else {
  5020. // src1 is not contiguous
  5021. GGML_ASSERT(false);
  5022. }
  5023. }
  5024. static void ggml_compute_forward_add_f16_f16(
  5025. const struct ggml_compute_params * params,
  5026. const struct ggml_tensor * src0,
  5027. const struct ggml_tensor * src1,
  5028. struct ggml_tensor * dst) {
  5029. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5031. return;
  5032. }
  5033. const int ith = params->ith;
  5034. const int nth = params->nth;
  5035. const int n = ggml_nrows(src0);
  5036. const int nc = src0->ne[0];
  5037. const size_t nb00 = src0->nb[0];
  5038. const size_t nb01 = src0->nb[1];
  5039. const size_t nb10 = src1->nb[0];
  5040. const size_t nb11 = src1->nb[1];
  5041. const size_t nb0 = dst->nb[0];
  5042. const size_t nb1 = dst->nb[1];
  5043. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5044. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5045. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5046. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5047. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5048. if (nb10 == sizeof(ggml_fp16_t)) {
  5049. for (int j = ith; j < n; j += nth) {
  5050. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5051. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5052. for (int i = 0; i < nc; i++) {
  5053. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5054. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5055. }
  5056. }
  5057. }
  5058. else {
  5059. // src1 is not contiguous
  5060. GGML_ASSERT(false);
  5061. }
  5062. }
  5063. static void ggml_compute_forward_add_q_f32(
  5064. const struct ggml_compute_params * params,
  5065. const struct ggml_tensor * src0,
  5066. const struct ggml_tensor * src1,
  5067. struct ggml_tensor * dst) {
  5068. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5070. return;
  5071. }
  5072. const int64_t ne00 = src0->ne[0];
  5073. const int64_t ne01 = src0->ne[1];
  5074. const int64_t ne02 = src0->ne[2];
  5075. const int64_t ne03 = src0->ne[3];
  5076. //const int64_t ne10 = src1->ne[0];
  5077. //const int64_t ne11 = src1->ne[1];
  5078. const int64_t ne12 = src1->ne[2];
  5079. const int64_t ne13 = src1->ne[3];
  5080. //const int64_t ne0 = dst->ne[0];
  5081. //const int64_t ne1 = dst->ne[1];
  5082. const int64_t ne2 = dst->ne[2];
  5083. const int64_t ne3 = dst->ne[3];
  5084. const int nb00 = src0->nb[0];
  5085. const int nb01 = src0->nb[1];
  5086. const int nb02 = src0->nb[2];
  5087. const int nb03 = src0->nb[3];
  5088. const int nb10 = src1->nb[0];
  5089. const int nb11 = src1->nb[1];
  5090. const int nb12 = src1->nb[2];
  5091. const int nb13 = src1->nb[3];
  5092. const int nb0 = dst->nb[0];
  5093. const int nb1 = dst->nb[1];
  5094. const int nb2 = dst->nb[2];
  5095. const int nb3 = dst->nb[3];
  5096. const int ith = params->ith;
  5097. const int nth = params->nth;
  5098. GGML_ASSERT(ne02 == ne12);
  5099. GGML_ASSERT(ne03 == ne13);
  5100. GGML_ASSERT(ne2 == ne12);
  5101. GGML_ASSERT(ne3 == ne13);
  5102. const enum ggml_type type = src0->type;
  5103. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5104. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5105. // we don't support permuted src0 or src1
  5106. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5107. GGML_ASSERT(nb10 == sizeof(float));
  5108. // dst cannot be transposed or permuted
  5109. GGML_ASSERT(nb0 <= nb1);
  5110. GGML_ASSERT(nb1 <= nb2);
  5111. GGML_ASSERT(nb2 <= nb3);
  5112. GGML_ASSERT(ggml_is_quantized(src0->type));
  5113. GGML_ASSERT(dst->type == src0->type);
  5114. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5115. // total rows in src0
  5116. const int nr = ne01*ne02*ne03;
  5117. // rows per thread
  5118. const int dr = (nr + nth - 1)/nth;
  5119. // row range for this thread
  5120. const int ir0 = dr*ith;
  5121. const int ir1 = MIN(ir0 + dr, nr);
  5122. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5123. for (int ir = ir0; ir < ir1; ++ir) {
  5124. // src0 indices
  5125. const int i03 = ir/(ne02*ne01);
  5126. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5127. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5128. // src1 and dst are same shape as src0 => same indices
  5129. const int i13 = i03;
  5130. const int i12 = i02;
  5131. const int i11 = i01;
  5132. const int i3 = i03;
  5133. const int i2 = i02;
  5134. const int i1 = i01;
  5135. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5136. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5137. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5138. assert(ne00 % 32 == 0);
  5139. // unquantize row from src0 to temp buffer
  5140. dequantize_row_q(src0_row, wdata, ne00);
  5141. // add src1
  5142. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5143. // quantize row to dst
  5144. quantize_row_q(wdata, dst_row, ne00);
  5145. }
  5146. }
  5147. static void ggml_compute_forward_add(
  5148. const struct ggml_compute_params * params,
  5149. const struct ggml_tensor * src0,
  5150. const struct ggml_tensor * src1,
  5151. struct ggml_tensor * dst) {
  5152. switch (src0->type) {
  5153. case GGML_TYPE_F32:
  5154. {
  5155. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5156. } break;
  5157. case GGML_TYPE_F16:
  5158. {
  5159. if (src1->type == GGML_TYPE_F16) {
  5160. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5161. }
  5162. else if (src1->type == GGML_TYPE_F32) {
  5163. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5164. }
  5165. else {
  5166. GGML_ASSERT(false);
  5167. }
  5168. } break;
  5169. case GGML_TYPE_Q4_0:
  5170. case GGML_TYPE_Q4_1:
  5171. case GGML_TYPE_Q5_0:
  5172. case GGML_TYPE_Q5_1:
  5173. case GGML_TYPE_Q8_0:
  5174. {
  5175. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5176. } break;
  5177. default:
  5178. {
  5179. GGML_ASSERT(false);
  5180. } break;
  5181. }
  5182. }
  5183. // ggml_compute_forward_sub
  5184. static void ggml_compute_forward_sub_f32(
  5185. const struct ggml_compute_params * params,
  5186. const struct ggml_tensor * src0,
  5187. const struct ggml_tensor * src1,
  5188. struct ggml_tensor * dst) {
  5189. assert(params->ith == 0);
  5190. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5192. return;
  5193. }
  5194. const int n = ggml_nrows(src0);
  5195. const int nc = src0->ne[0];
  5196. assert( dst->nb[0] == sizeof(float));
  5197. assert(src0->nb[0] == sizeof(float));
  5198. assert(src1->nb[0] == sizeof(float));
  5199. for (int i = 0; i < n; i++) {
  5200. ggml_vec_sub_f32(nc,
  5201. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5202. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5203. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5204. }
  5205. }
  5206. static void ggml_compute_forward_sub(
  5207. const struct ggml_compute_params * params,
  5208. const struct ggml_tensor * src0,
  5209. const struct ggml_tensor * src1,
  5210. struct ggml_tensor * dst) {
  5211. switch (src0->type) {
  5212. case GGML_TYPE_F32:
  5213. {
  5214. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5215. } break;
  5216. default:
  5217. {
  5218. GGML_ASSERT(false);
  5219. } break;
  5220. }
  5221. }
  5222. // ggml_compute_forward_mul
  5223. static void ggml_compute_forward_mul_f32(
  5224. const struct ggml_compute_params * params,
  5225. const struct ggml_tensor * src0,
  5226. const struct ggml_tensor * src1,
  5227. struct ggml_tensor * dst) {
  5228. assert(params->ith == 0);
  5229. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5231. return;
  5232. }
  5233. const int n = ggml_nrows(src0);
  5234. const int nc = src0->ne[0];
  5235. assert( dst->nb[0] == sizeof(float));
  5236. assert(src0->nb[0] == sizeof(float));
  5237. assert(src1->nb[0] == sizeof(float));
  5238. for (int i = 0; i < n; i++) {
  5239. ggml_vec_mul_f32(nc,
  5240. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5241. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5242. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5243. }
  5244. }
  5245. static void ggml_compute_forward_mul(
  5246. const struct ggml_compute_params * params,
  5247. const struct ggml_tensor * src0,
  5248. const struct ggml_tensor * src1,
  5249. struct ggml_tensor * dst) {
  5250. switch (src0->type) {
  5251. case GGML_TYPE_F32:
  5252. {
  5253. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5254. } break;
  5255. default:
  5256. {
  5257. GGML_ASSERT(false);
  5258. } break;
  5259. }
  5260. }
  5261. // ggml_compute_forward_div
  5262. static void ggml_compute_forward_div_f32(
  5263. const struct ggml_compute_params * params,
  5264. const struct ggml_tensor * src0,
  5265. const struct ggml_tensor * src1,
  5266. struct ggml_tensor * dst) {
  5267. assert(params->ith == 0);
  5268. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5270. return;
  5271. }
  5272. const int n = ggml_nrows(src0);
  5273. const int nc = src0->ne[0];
  5274. assert( dst->nb[0] == sizeof(float));
  5275. assert(src0->nb[0] == sizeof(float));
  5276. assert(src1->nb[0] == sizeof(float));
  5277. for (int i = 0; i < n; i++) {
  5278. ggml_vec_div_f32(nc,
  5279. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5280. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5281. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5282. }
  5283. }
  5284. static void ggml_compute_forward_div(
  5285. const struct ggml_compute_params * params,
  5286. const struct ggml_tensor * src0,
  5287. const struct ggml_tensor * src1,
  5288. struct ggml_tensor * dst) {
  5289. switch (src0->type) {
  5290. case GGML_TYPE_F32:
  5291. {
  5292. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5293. } break;
  5294. default:
  5295. {
  5296. GGML_ASSERT(false);
  5297. } break;
  5298. }
  5299. }
  5300. // ggml_compute_forward_sqr
  5301. static void ggml_compute_forward_sqr_f32(
  5302. const struct ggml_compute_params * params,
  5303. const struct ggml_tensor * src0,
  5304. struct ggml_tensor * dst) {
  5305. assert(params->ith == 0);
  5306. assert(ggml_are_same_shape(src0, dst));
  5307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5308. return;
  5309. }
  5310. const int n = ggml_nrows(src0);
  5311. const int nc = src0->ne[0];
  5312. assert( dst->nb[0] == sizeof(float));
  5313. assert(src0->nb[0] == sizeof(float));
  5314. for (int i = 0; i < n; i++) {
  5315. ggml_vec_sqr_f32(nc,
  5316. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5317. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5318. }
  5319. }
  5320. static void ggml_compute_forward_sqr(
  5321. const struct ggml_compute_params * params,
  5322. const struct ggml_tensor * src0,
  5323. struct ggml_tensor * dst) {
  5324. switch (src0->type) {
  5325. case GGML_TYPE_F32:
  5326. {
  5327. ggml_compute_forward_sqr_f32(params, src0, dst);
  5328. } break;
  5329. default:
  5330. {
  5331. GGML_ASSERT(false);
  5332. } break;
  5333. }
  5334. }
  5335. // ggml_compute_forward_sqrt
  5336. static void ggml_compute_forward_sqrt_f32(
  5337. const struct ggml_compute_params * params,
  5338. const struct ggml_tensor * src0,
  5339. struct ggml_tensor * dst) {
  5340. assert(params->ith == 0);
  5341. assert(ggml_are_same_shape(src0, dst));
  5342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5343. return;
  5344. }
  5345. const int n = ggml_nrows(src0);
  5346. const int nc = src0->ne[0];
  5347. assert( dst->nb[0] == sizeof(float));
  5348. assert(src0->nb[0] == sizeof(float));
  5349. for (int i = 0; i < n; i++) {
  5350. ggml_vec_sqrt_f32(nc,
  5351. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5352. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5353. }
  5354. }
  5355. static void ggml_compute_forward_sqrt(
  5356. const struct ggml_compute_params * params,
  5357. const struct ggml_tensor * src0,
  5358. struct ggml_tensor * dst) {
  5359. switch (src0->type) {
  5360. case GGML_TYPE_F32:
  5361. {
  5362. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5363. } break;
  5364. default:
  5365. {
  5366. GGML_ASSERT(false);
  5367. } break;
  5368. }
  5369. }
  5370. // ggml_compute_forward_sum
  5371. static void ggml_compute_forward_sum_f32(
  5372. const struct ggml_compute_params * params,
  5373. const struct ggml_tensor * src0,
  5374. struct ggml_tensor * dst) {
  5375. assert(params->ith == 0);
  5376. assert(ggml_is_scalar(dst));
  5377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5378. return;
  5379. }
  5380. assert(ggml_is_scalar(dst));
  5381. assert(src0->nb[0] == sizeof(float));
  5382. const int64_t ne00 = src0->ne[0];
  5383. const int64_t ne01 = src0->ne[1];
  5384. const int64_t ne02 = src0->ne[2];
  5385. const int64_t ne03 = src0->ne[3];
  5386. const size_t nb01 = src0->nb[1];
  5387. const size_t nb02 = src0->nb[2];
  5388. const size_t nb03 = src0->nb[3];
  5389. ggml_float sum = 0;
  5390. ggml_float row_sum = 0;
  5391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5393. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5394. ggml_vec_sum_ggf(ne00,
  5395. &row_sum,
  5396. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5397. sum += row_sum;
  5398. }
  5399. }
  5400. }
  5401. ((float *) dst->data)[0] = sum;
  5402. }
  5403. static void ggml_compute_forward_sum(
  5404. const struct ggml_compute_params * params,
  5405. const struct ggml_tensor * src0,
  5406. struct ggml_tensor * dst) {
  5407. switch (src0->type) {
  5408. case GGML_TYPE_F32:
  5409. {
  5410. ggml_compute_forward_sum_f32(params, src0, dst);
  5411. } break;
  5412. default:
  5413. {
  5414. GGML_ASSERT(false);
  5415. } break;
  5416. }
  5417. }
  5418. // ggml_compute_forward_mean
  5419. static void ggml_compute_forward_mean_f32(
  5420. const struct ggml_compute_params * params,
  5421. const struct ggml_tensor * src0,
  5422. struct ggml_tensor * dst) {
  5423. assert(params->ith == 0);
  5424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5425. return;
  5426. }
  5427. assert(src0->nb[0] == sizeof(float));
  5428. const int64_t ne00 = src0->ne[0];
  5429. const int64_t ne01 = src0->ne[1];
  5430. const int64_t ne02 = src0->ne[2];
  5431. const int64_t ne03 = src0->ne[3];
  5432. const size_t nb01 = src0->nb[1];
  5433. const size_t nb02 = src0->nb[2];
  5434. const size_t nb03 = src0->nb[3];
  5435. const int64_t ne0 = dst->ne[0];
  5436. const int64_t ne1 = dst->ne[1];
  5437. const int64_t ne2 = dst->ne[2];
  5438. const int64_t ne3 = dst->ne[3];
  5439. assert(ne0 == 1);
  5440. assert(ne1 == ne01);
  5441. assert(ne2 == ne02);
  5442. assert(ne3 == ne03);
  5443. UNUSED(ne0);
  5444. UNUSED(ne1);
  5445. UNUSED(ne2);
  5446. UNUSED(ne3);
  5447. const size_t nb1 = dst->nb[1];
  5448. const size_t nb2 = dst->nb[2];
  5449. const size_t nb3 = dst->nb[3];
  5450. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5451. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5452. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5453. ggml_vec_sum_f32(ne00,
  5454. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5455. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5456. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5457. }
  5458. }
  5459. }
  5460. }
  5461. static void ggml_compute_forward_mean(
  5462. const struct ggml_compute_params * params,
  5463. const struct ggml_tensor * src0,
  5464. struct ggml_tensor * dst) {
  5465. switch (src0->type) {
  5466. case GGML_TYPE_F32:
  5467. {
  5468. ggml_compute_forward_mean_f32(params, src0, dst);
  5469. } break;
  5470. default:
  5471. {
  5472. GGML_ASSERT(false);
  5473. } break;
  5474. }
  5475. }
  5476. // ggml_compute_forward_repeat
  5477. static void ggml_compute_forward_repeat_f32(
  5478. const struct ggml_compute_params * params,
  5479. const struct ggml_tensor * src0,
  5480. struct ggml_tensor * dst) {
  5481. assert(params->ith == 0);
  5482. assert(ggml_can_repeat(src0, dst));
  5483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5484. return;
  5485. }
  5486. // TODO: implement support for rank > 2 tensors
  5487. assert(src0->ne[2] == 1);
  5488. assert(src0->ne[3] == 1);
  5489. assert( dst->ne[2] == 1);
  5490. assert( dst->ne[3] == 1);
  5491. const int nc = dst->ne[0];
  5492. const int nr = dst->ne[1];
  5493. const int nc0 = src0->ne[0];
  5494. const int nr0 = src0->ne[1];
  5495. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5496. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5497. // TODO: support for transposed / permuted tensors
  5498. assert( dst->nb[0] == sizeof(float));
  5499. assert(src0->nb[0] == sizeof(float));
  5500. // TODO: maybe this is not optimal?
  5501. for (int i = 0; i < nrr; i++) {
  5502. for (int j = 0; j < ncr; j++) {
  5503. for (int k = 0; k < nr0; k++) {
  5504. ggml_vec_cpy_f32(nc0,
  5505. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5506. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5507. }
  5508. }
  5509. }
  5510. }
  5511. static void ggml_compute_forward_repeat(
  5512. const struct ggml_compute_params * params,
  5513. const struct ggml_tensor * src0,
  5514. struct ggml_tensor * dst) {
  5515. switch (src0->type) {
  5516. case GGML_TYPE_F32:
  5517. {
  5518. ggml_compute_forward_repeat_f32(params, src0, dst);
  5519. } break;
  5520. default:
  5521. {
  5522. GGML_ASSERT(false);
  5523. } break;
  5524. }
  5525. }
  5526. // ggml_compute_forward_abs
  5527. static void ggml_compute_forward_abs_f32(
  5528. const struct ggml_compute_params * params,
  5529. const struct ggml_tensor * src0,
  5530. struct ggml_tensor * dst) {
  5531. assert(params->ith == 0);
  5532. assert(ggml_are_same_shape(src0, dst));
  5533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5534. return;
  5535. }
  5536. const int n = ggml_nrows(src0);
  5537. const int nc = src0->ne[0];
  5538. assert(dst->nb[0] == sizeof(float));
  5539. assert(src0->nb[0] == sizeof(float));
  5540. for (int i = 0; i < n; i++) {
  5541. ggml_vec_abs_f32(nc,
  5542. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5543. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5544. }
  5545. }
  5546. static void ggml_compute_forward_abs(
  5547. const struct ggml_compute_params * params,
  5548. const struct ggml_tensor * src0,
  5549. struct ggml_tensor * dst) {
  5550. switch (src0->type) {
  5551. case GGML_TYPE_F32:
  5552. {
  5553. ggml_compute_forward_abs_f32(params, src0, dst);
  5554. } break;
  5555. default:
  5556. {
  5557. GGML_ASSERT(false);
  5558. } break;
  5559. }
  5560. }
  5561. // ggml_compute_forward_sgn
  5562. static void ggml_compute_forward_sgn_f32(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. struct ggml_tensor * dst) {
  5566. assert(params->ith == 0);
  5567. assert(ggml_are_same_shape(src0, dst));
  5568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5569. return;
  5570. }
  5571. const int n = ggml_nrows(src0);
  5572. const int nc = src0->ne[0];
  5573. assert(dst->nb[0] == sizeof(float));
  5574. assert(src0->nb[0] == sizeof(float));
  5575. for (int i = 0; i < n; i++) {
  5576. ggml_vec_sgn_f32(nc,
  5577. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5578. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5579. }
  5580. }
  5581. static void ggml_compute_forward_sgn(
  5582. const struct ggml_compute_params * params,
  5583. const struct ggml_tensor * src0,
  5584. struct ggml_tensor * dst) {
  5585. switch (src0->type) {
  5586. case GGML_TYPE_F32:
  5587. {
  5588. ggml_compute_forward_sgn_f32(params, src0, dst);
  5589. } break;
  5590. default:
  5591. {
  5592. GGML_ASSERT(false);
  5593. } break;
  5594. }
  5595. }
  5596. // ggml_compute_forward_neg
  5597. static void ggml_compute_forward_neg_f32(
  5598. const struct ggml_compute_params * params,
  5599. const struct ggml_tensor * src0,
  5600. struct ggml_tensor * dst) {
  5601. assert(params->ith == 0);
  5602. assert(ggml_are_same_shape(src0, dst));
  5603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5604. return;
  5605. }
  5606. const int n = ggml_nrows(src0);
  5607. const int nc = src0->ne[0];
  5608. assert(dst->nb[0] == sizeof(float));
  5609. assert(src0->nb[0] == sizeof(float));
  5610. for (int i = 0; i < n; i++) {
  5611. ggml_vec_neg_f32(nc,
  5612. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5613. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5614. }
  5615. }
  5616. static void ggml_compute_forward_neg(
  5617. const struct ggml_compute_params * params,
  5618. const struct ggml_tensor * src0,
  5619. struct ggml_tensor * dst) {
  5620. switch (src0->type) {
  5621. case GGML_TYPE_F32:
  5622. {
  5623. ggml_compute_forward_neg_f32(params, src0, dst);
  5624. } break;
  5625. default:
  5626. {
  5627. GGML_ASSERT(false);
  5628. } break;
  5629. }
  5630. }
  5631. // ggml_compute_forward_step
  5632. static void ggml_compute_forward_step_f32(
  5633. const struct ggml_compute_params * params,
  5634. const struct ggml_tensor * src0,
  5635. struct ggml_tensor * dst) {
  5636. assert(params->ith == 0);
  5637. assert(ggml_are_same_shape(src0, dst));
  5638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5639. return;
  5640. }
  5641. const int n = ggml_nrows(src0);
  5642. const int nc = src0->ne[0];
  5643. assert(dst->nb[0] == sizeof(float));
  5644. assert(src0->nb[0] == sizeof(float));
  5645. for (int i = 0; i < n; i++) {
  5646. ggml_vec_step_f32(nc,
  5647. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5648. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5649. }
  5650. }
  5651. static void ggml_compute_forward_step(
  5652. const struct ggml_compute_params * params,
  5653. const struct ggml_tensor * src0,
  5654. struct ggml_tensor * dst) {
  5655. switch (src0->type) {
  5656. case GGML_TYPE_F32:
  5657. {
  5658. ggml_compute_forward_step_f32(params, src0, dst);
  5659. } break;
  5660. default:
  5661. {
  5662. GGML_ASSERT(false);
  5663. } break;
  5664. }
  5665. }
  5666. // ggml_compute_forward_relu
  5667. static void ggml_compute_forward_relu_f32(
  5668. const struct ggml_compute_params * params,
  5669. const struct ggml_tensor * src0,
  5670. struct ggml_tensor * dst) {
  5671. assert(params->ith == 0);
  5672. assert(ggml_are_same_shape(src0, dst));
  5673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5674. return;
  5675. }
  5676. const int n = ggml_nrows(src0);
  5677. const int nc = src0->ne[0];
  5678. assert(dst->nb[0] == sizeof(float));
  5679. assert(src0->nb[0] == sizeof(float));
  5680. for (int i = 0; i < n; i++) {
  5681. ggml_vec_relu_f32(nc,
  5682. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5683. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5684. }
  5685. }
  5686. static void ggml_compute_forward_relu(
  5687. const struct ggml_compute_params * params,
  5688. const struct ggml_tensor * src0,
  5689. struct ggml_tensor * dst) {
  5690. switch (src0->type) {
  5691. case GGML_TYPE_F32:
  5692. {
  5693. ggml_compute_forward_relu_f32(params, src0, dst);
  5694. } break;
  5695. default:
  5696. {
  5697. GGML_ASSERT(false);
  5698. } break;
  5699. }
  5700. }
  5701. // ggml_compute_forward_gelu
  5702. static void ggml_compute_forward_gelu_f32(
  5703. const struct ggml_compute_params * params,
  5704. const struct ggml_tensor * src0,
  5705. struct ggml_tensor * dst) {
  5706. GGML_ASSERT(ggml_is_contiguous(src0));
  5707. GGML_ASSERT(ggml_is_contiguous(dst));
  5708. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5710. return;
  5711. }
  5712. const int ith = params->ith;
  5713. const int nth = params->nth;
  5714. const int nc = src0->ne[0];
  5715. const int nr = ggml_nrows(src0);
  5716. // rows per thread
  5717. const int dr = (nr + nth - 1)/nth;
  5718. // row range for this thread
  5719. const int ir0 = dr*ith;
  5720. const int ir1 = MIN(ir0 + dr, nr);
  5721. for (int i1 = ir0; i1 < ir1; i1++) {
  5722. ggml_vec_gelu_f32(nc,
  5723. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5724. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5725. #ifndef NDEBUG
  5726. for (int k = 0; k < nc; k++) {
  5727. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5728. UNUSED(x);
  5729. assert(!isnan(x));
  5730. assert(!isinf(x));
  5731. }
  5732. #endif
  5733. }
  5734. }
  5735. static void ggml_compute_forward_gelu(
  5736. const struct ggml_compute_params * params,
  5737. const struct ggml_tensor * src0,
  5738. struct ggml_tensor * dst) {
  5739. switch (src0->type) {
  5740. case GGML_TYPE_F32:
  5741. {
  5742. ggml_compute_forward_gelu_f32(params, src0, dst);
  5743. } break;
  5744. default:
  5745. {
  5746. GGML_ASSERT(false);
  5747. } break;
  5748. }
  5749. //printf("XXXXXXXX gelu\n");
  5750. }
  5751. // ggml_compute_forward_silu
  5752. static void ggml_compute_forward_silu_f32(
  5753. const struct ggml_compute_params * params,
  5754. const struct ggml_tensor * src0,
  5755. struct ggml_tensor * dst) {
  5756. GGML_ASSERT(ggml_is_contiguous(src0));
  5757. GGML_ASSERT(ggml_is_contiguous(dst));
  5758. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5759. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5760. return;
  5761. }
  5762. const int ith = params->ith;
  5763. const int nth = params->nth;
  5764. const int nc = src0->ne[0];
  5765. const int nr = ggml_nrows(src0);
  5766. // rows per thread
  5767. const int dr = (nr + nth - 1)/nth;
  5768. // row range for this thread
  5769. const int ir0 = dr*ith;
  5770. const int ir1 = MIN(ir0 + dr, nr);
  5771. for (int i1 = ir0; i1 < ir1; i1++) {
  5772. ggml_vec_silu_f32(nc,
  5773. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5774. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5775. #ifndef NDEBUG
  5776. for (int k = 0; k < nc; k++) {
  5777. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5778. UNUSED(x);
  5779. assert(!isnan(x));
  5780. assert(!isinf(x));
  5781. }
  5782. #endif
  5783. }
  5784. }
  5785. static void ggml_compute_forward_silu(
  5786. const struct ggml_compute_params * params,
  5787. const struct ggml_tensor * src0,
  5788. struct ggml_tensor * dst) {
  5789. switch (src0->type) {
  5790. case GGML_TYPE_F32:
  5791. {
  5792. ggml_compute_forward_silu_f32(params, src0, dst);
  5793. } break;
  5794. default:
  5795. {
  5796. GGML_ASSERT(false);
  5797. } break;
  5798. }
  5799. }
  5800. // ggml_compute_forward_norm
  5801. static void ggml_compute_forward_norm_f32(
  5802. const struct ggml_compute_params * params,
  5803. const struct ggml_tensor * src0,
  5804. struct ggml_tensor * dst) {
  5805. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5806. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5807. return;
  5808. }
  5809. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5810. const int ith = params->ith;
  5811. const int nth = params->nth;
  5812. const int64_t ne00 = src0->ne[0];
  5813. const int64_t ne01 = src0->ne[1];
  5814. const int64_t ne02 = src0->ne[2];
  5815. const int64_t ne03 = src0->ne[3];
  5816. const size_t nb01 = src0->nb[1];
  5817. const size_t nb02 = src0->nb[2];
  5818. const size_t nb03 = src0->nb[3];
  5819. const size_t nb1 = dst->nb[1];
  5820. const size_t nb2 = dst->nb[2];
  5821. const size_t nb3 = dst->nb[3];
  5822. const float eps = 1e-5f; // TODO: make this a parameter
  5823. // TODO: optimize
  5824. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5825. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5826. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5827. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5828. ggml_float sum = 0.0;
  5829. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5830. sum += (ggml_float)x[i00];
  5831. }
  5832. float mean = sum/ne00;
  5833. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5834. ggml_float sum2 = 0.0;
  5835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5836. float v = x[i00] - mean;
  5837. y[i00] = v;
  5838. sum2 += (ggml_float)(v*v);
  5839. }
  5840. float variance = sum2/ne00;
  5841. const float scale = 1.0f/sqrtf(variance + eps);
  5842. ggml_vec_scale_f32(ne00, y, scale);
  5843. }
  5844. }
  5845. }
  5846. }
  5847. static void ggml_compute_forward_norm(
  5848. const struct ggml_compute_params * params,
  5849. const struct ggml_tensor * src0,
  5850. struct ggml_tensor * dst) {
  5851. switch (src0->type) {
  5852. case GGML_TYPE_F32:
  5853. {
  5854. ggml_compute_forward_norm_f32(params, src0, dst);
  5855. } break;
  5856. default:
  5857. {
  5858. GGML_ASSERT(false);
  5859. } break;
  5860. }
  5861. }
  5862. static void ggml_compute_forward_rms_norm_f32(
  5863. const struct ggml_compute_params * params,
  5864. const struct ggml_tensor * src0,
  5865. struct ggml_tensor * dst) {
  5866. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5868. return;
  5869. }
  5870. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5871. const int ith = params->ith;
  5872. const int nth = params->nth;
  5873. const int64_t ne00 = src0->ne[0];
  5874. const int64_t ne01 = src0->ne[1];
  5875. const int64_t ne02 = src0->ne[2];
  5876. const int64_t ne03 = src0->ne[3];
  5877. const size_t nb01 = src0->nb[1];
  5878. const size_t nb02 = src0->nb[2];
  5879. const size_t nb03 = src0->nb[3];
  5880. const size_t nb1 = dst->nb[1];
  5881. const size_t nb2 = dst->nb[2];
  5882. const size_t nb3 = dst->nb[3];
  5883. const float eps = 1e-6f; // TODO: make this a parameter
  5884. // TODO: optimize
  5885. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5886. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5887. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5888. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5889. ggml_float sum = 0.0;
  5890. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5891. sum += (ggml_float)(x[i00] * x[i00]);
  5892. }
  5893. float mean = sum/ne00;
  5894. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5895. memcpy(y, x, ne00 * sizeof(float));
  5896. // for (int i00 = 0; i00 < ne00; i00++) {
  5897. // y[i00] = x[i00];
  5898. // }
  5899. const float scale = 1.0f/sqrtf(mean + eps);
  5900. ggml_vec_scale_f32(ne00, y, scale);
  5901. }
  5902. }
  5903. }
  5904. }
  5905. static void ggml_compute_forward_rms_norm(
  5906. const struct ggml_compute_params * params,
  5907. const struct ggml_tensor * src0,
  5908. struct ggml_tensor * dst) {
  5909. switch (src0->type) {
  5910. case GGML_TYPE_F32:
  5911. {
  5912. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5913. } break;
  5914. default:
  5915. {
  5916. GGML_ASSERT(false);
  5917. } break;
  5918. }
  5919. }
  5920. // ggml_compute_forward_mul_mat
  5921. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  5922. // helper function to determine if it is better to use BLAS or not
  5923. // for large matrices, BLAS is faster
  5924. static bool ggml_compute_forward_mul_mat_use_blas(
  5925. const struct ggml_tensor * src0,
  5926. const struct ggml_tensor * src1,
  5927. struct ggml_tensor * dst) {
  5928. //const int64_t ne00 = src0->ne[0];
  5929. //const int64_t ne01 = src0->ne[1];
  5930. const int64_t ne10 = src1->ne[0];
  5931. const int64_t ne0 = dst->ne[0];
  5932. const int64_t ne1 = dst->ne[1];
  5933. // TODO: find the optimal values for these
  5934. if (ggml_is_contiguous(src0) &&
  5935. ggml_is_contiguous(src1) &&
  5936. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  5937. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5938. return true;
  5939. }
  5940. return false;
  5941. }
  5942. #endif
  5943. static void ggml_compute_forward_mul_mat_f32(
  5944. const struct ggml_compute_params * params,
  5945. const struct ggml_tensor * src0,
  5946. const struct ggml_tensor * src1,
  5947. struct ggml_tensor * dst) {
  5948. int64_t t0 = ggml_perf_time_us();
  5949. UNUSED(t0);
  5950. const int64_t ne00 = src0->ne[0];
  5951. const int64_t ne01 = src0->ne[1];
  5952. const int64_t ne02 = src0->ne[2];
  5953. const int64_t ne03 = src0->ne[3];
  5954. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  5955. const int64_t ne10 = src1->ne[0];
  5956. #endif
  5957. const int64_t ne11 = src1->ne[1];
  5958. #ifndef NDEBUG
  5959. const int64_t ne12 = src1->ne[2];
  5960. const int64_t ne13 = src1->ne[3];
  5961. const int64_t ne0 = dst->ne[0];
  5962. const int64_t ne1 = dst->ne[1];
  5963. const int64_t ne2 = dst->ne[2];
  5964. const int64_t ne3 = dst->ne[3];
  5965. const int nb00 = src0->nb[0];
  5966. #endif
  5967. const int nb01 = src0->nb[1];
  5968. const int nb02 = src0->nb[2];
  5969. const int nb03 = src0->nb[3];
  5970. #ifndef NDEBUG
  5971. const int nb10 = src1->nb[0];
  5972. #endif
  5973. const int nb11 = src1->nb[1];
  5974. const int nb12 = src1->nb[2];
  5975. const int nb13 = src1->nb[3];
  5976. const int nb0 = dst->nb[0];
  5977. const int nb1 = dst->nb[1];
  5978. const int nb2 = dst->nb[2];
  5979. const int nb3 = dst->nb[3];
  5980. const int ith = params->ith;
  5981. const int nth = params->nth;
  5982. assert(ne02 == ne12);
  5983. assert(ne03 == ne13);
  5984. assert(ne2 == ne12);
  5985. assert(ne3 == ne13);
  5986. // we don't support permuted src0 or src1
  5987. assert(nb00 == sizeof(float));
  5988. assert(nb10 == sizeof(float));
  5989. // dst cannot be transposed or permuted
  5990. assert(nb0 == sizeof(float));
  5991. assert(nb0 <= nb1);
  5992. assert(nb1 <= nb2);
  5993. assert(nb2 <= nb3);
  5994. assert(ne0 == ne01);
  5995. assert(ne1 == ne11);
  5996. assert(ne2 == ne02);
  5997. assert(ne3 == ne03);
  5998. // nb01 >= nb00 - src0 is not transposed
  5999. // compute by src0 rows
  6000. #if defined(GGML_USE_CUBLAS)
  6001. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6002. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6003. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6004. }
  6005. return;
  6006. }
  6007. #endif
  6008. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6009. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6010. if (params->ith != 0) {
  6011. return;
  6012. }
  6013. if (params->type == GGML_TASK_INIT) {
  6014. return;
  6015. }
  6016. if (params->type == GGML_TASK_FINALIZE) {
  6017. return;
  6018. }
  6019. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6020. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6021. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6022. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6023. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6024. #if defined(GGML_USE_CLBLAST)
  6025. // zT = y * xT
  6026. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6027. ne11, ne01, ne10,
  6028. 1.0f, y, ne10,
  6029. x, ne10,
  6030. 0.0f, d, ne01,
  6031. GGML_TYPE_F32);
  6032. #else
  6033. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6034. ne11, ne01, ne10,
  6035. 1.0f, y, ne10,
  6036. x, ne00,
  6037. 0.0f, d, ne01);
  6038. #endif
  6039. }
  6040. }
  6041. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6042. return;
  6043. }
  6044. #endif
  6045. if (params->type == GGML_TASK_INIT) {
  6046. return;
  6047. }
  6048. if (params->type == GGML_TASK_FINALIZE) {
  6049. return;
  6050. }
  6051. // parallelize by src0 rows using ggml_vec_dot_f32
  6052. // total rows in src0
  6053. const int nr = ne01*ne02*ne03;
  6054. // rows per thread
  6055. const int dr = (nr + nth - 1)/nth;
  6056. // row range for this thread
  6057. const int ir0 = dr*ith;
  6058. const int ir1 = MIN(ir0 + dr, nr);
  6059. for (int ir = ir0; ir < ir1; ++ir) {
  6060. // src0 indices
  6061. const int i03 = ir/(ne02*ne01);
  6062. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6063. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6064. for (int64_t ic = 0; ic < ne11; ++ic) {
  6065. // src1 indices
  6066. const int i13 = i03;
  6067. const int i12 = i02;
  6068. const int i11 = ic;
  6069. // dst indices
  6070. const int i0 = i01;
  6071. const int i1 = i11;
  6072. const int i2 = i02;
  6073. const int i3 = i03;
  6074. ggml_vec_dot_f32(ne00,
  6075. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6076. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6077. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6078. }
  6079. }
  6080. //int64_t t1 = ggml_perf_time_us();
  6081. //static int64_t acc = 0;
  6082. //acc += t1 - t0;
  6083. //if (t1 - t0 > 10) {
  6084. // printf("\n");
  6085. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6086. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6087. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6088. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6089. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6090. //}
  6091. }
  6092. static void ggml_compute_forward_mul_mat_f16_f32(
  6093. const struct ggml_compute_params * params,
  6094. const struct ggml_tensor * src0,
  6095. const struct ggml_tensor * src1,
  6096. struct ggml_tensor * dst) {
  6097. int64_t t0 = ggml_perf_time_us();
  6098. UNUSED(t0);
  6099. const int64_t ne00 = src0->ne[0];
  6100. const int64_t ne01 = src0->ne[1];
  6101. const int64_t ne02 = src0->ne[2];
  6102. const int64_t ne03 = src0->ne[3];
  6103. const int64_t ne10 = src1->ne[0];
  6104. const int64_t ne11 = src1->ne[1];
  6105. const int64_t ne12 = src1->ne[2];
  6106. const int64_t ne13 = src1->ne[3];
  6107. const int64_t ne0 = dst->ne[0];
  6108. const int64_t ne1 = dst->ne[1];
  6109. const int64_t ne2 = dst->ne[2];
  6110. const int64_t ne3 = dst->ne[3];
  6111. //const int64_t ne = ne0*ne1*ne2*ne3;
  6112. const int nb00 = src0->nb[0];
  6113. const int nb01 = src0->nb[1];
  6114. const int nb02 = src0->nb[2];
  6115. const int nb03 = src0->nb[3];
  6116. const int nb10 = src1->nb[0];
  6117. const int nb11 = src1->nb[1];
  6118. const int nb12 = src1->nb[2];
  6119. const int nb13 = src1->nb[3];
  6120. const int nb0 = dst->nb[0];
  6121. const int nb1 = dst->nb[1];
  6122. const int nb2 = dst->nb[2];
  6123. const int nb3 = dst->nb[3];
  6124. const int ith = params->ith;
  6125. const int nth = params->nth;
  6126. GGML_ASSERT(ne02 == ne12);
  6127. GGML_ASSERT(ne03 == ne13);
  6128. GGML_ASSERT(ne2 == ne12);
  6129. GGML_ASSERT(ne3 == ne13);
  6130. // TODO: we don't support permuted src0
  6131. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6132. // dst cannot be transposed or permuted
  6133. GGML_ASSERT(nb0 == sizeof(float));
  6134. GGML_ASSERT(nb0 <= nb1);
  6135. GGML_ASSERT(nb1 <= nb2);
  6136. GGML_ASSERT(nb2 <= nb3);
  6137. GGML_ASSERT(ne0 == ne01);
  6138. GGML_ASSERT(ne1 == ne11);
  6139. GGML_ASSERT(ne2 == ne02);
  6140. GGML_ASSERT(ne3 == ne03);
  6141. // nb01 >= nb00 - src0 is not transposed
  6142. // compute by src0 rows
  6143. #if defined(GGML_USE_CUBLAS)
  6144. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6145. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6146. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6147. }
  6148. return;
  6149. }
  6150. #endif
  6151. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6152. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6153. GGML_ASSERT(nb10 == sizeof(float));
  6154. if (params->ith != 0) {
  6155. return;
  6156. }
  6157. if (params->type == GGML_TASK_INIT) {
  6158. return;
  6159. }
  6160. if (params->type == GGML_TASK_FINALIZE) {
  6161. return;
  6162. }
  6163. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6164. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6165. float * const wdata = params->wdata;
  6166. {
  6167. size_t id = 0;
  6168. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6169. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6170. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6171. }
  6172. }
  6173. assert(id*sizeof(float) <= params->wsize);
  6174. }
  6175. #if defined(GGML_USE_CLBLAST)
  6176. const float * x = wdata;
  6177. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6178. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6179. // zT = y * xT
  6180. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6181. ne11, ne01, ne10,
  6182. 1.0f, y, ne10,
  6183. x, ne10,
  6184. 0.0f, d, ne01,
  6185. GGML_TYPE_F32);
  6186. #else
  6187. const float * x = wdata;
  6188. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6189. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6190. // zT = y * xT
  6191. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6192. ne11, ne01, ne10,
  6193. 1.0f, y, ne10,
  6194. x, ne00,
  6195. 0.0f, d, ne01);
  6196. #endif
  6197. }
  6198. }
  6199. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6200. return;
  6201. }
  6202. #endif
  6203. if (params->type == GGML_TASK_INIT) {
  6204. ggml_fp16_t * const wdata = params->wdata;
  6205. size_t id = 0;
  6206. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6207. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6208. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6209. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6210. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6211. }
  6212. }
  6213. }
  6214. }
  6215. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6216. return;
  6217. }
  6218. if (params->type == GGML_TASK_FINALIZE) {
  6219. return;
  6220. }
  6221. // fp16 -> half the size, so divide by 2
  6222. // TODO: do not support transposed src1
  6223. assert(nb10/2 == sizeof(ggml_fp16_t));
  6224. // parallelize by src0 rows using ggml_vec_dot_f16
  6225. // total rows in src0
  6226. const int nr = ne01*ne02*ne03;
  6227. // rows per thread
  6228. const int dr = (nr + nth - 1)/nth;
  6229. // row range for this thread
  6230. const int ir0 = dr*ith;
  6231. const int ir1 = MIN(ir0 + dr, nr);
  6232. ggml_fp16_t * wdata = params->wdata;
  6233. for (int ir = ir0; ir < ir1; ++ir) {
  6234. // src0 indices
  6235. const int i03 = ir/(ne02*ne01);
  6236. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6237. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6238. const int i13 = i03;
  6239. const int i12 = i02;
  6240. const int i0 = i01;
  6241. const int i2 = i02;
  6242. const int i3 = i03;
  6243. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6244. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6245. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6246. for (int64_t ic = 0; ic < ne11; ++ic) {
  6247. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6248. }
  6249. }
  6250. //int64_t t1 = ggml_time_us();
  6251. //static int64_t acc = 0;
  6252. //acc += t1 - t0;
  6253. //if (t1 - t0 > 10) {
  6254. // printf("\n");
  6255. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6256. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6257. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6258. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6259. //}
  6260. }
  6261. static void ggml_compute_forward_mul_mat_q_f32(
  6262. const struct ggml_compute_params * params,
  6263. const struct ggml_tensor * src0,
  6264. const struct ggml_tensor * src1,
  6265. struct ggml_tensor * dst) {
  6266. int64_t t0 = ggml_perf_time_us();
  6267. UNUSED(t0);
  6268. const int64_t ne00 = src0->ne[0];
  6269. const int64_t ne01 = src0->ne[1];
  6270. const int64_t ne02 = src0->ne[2];
  6271. const int64_t ne03 = src0->ne[3];
  6272. const int64_t ne10 = src1->ne[0];
  6273. const int64_t ne11 = src1->ne[1];
  6274. const int64_t ne12 = src1->ne[2];
  6275. const int64_t ne13 = src1->ne[3];
  6276. const int64_t ne0 = dst->ne[0];
  6277. const int64_t ne1 = dst->ne[1];
  6278. const int64_t ne2 = dst->ne[2];
  6279. const int64_t ne3 = dst->ne[3];
  6280. const int nb00 = src0->nb[0];
  6281. const int nb01 = src0->nb[1];
  6282. const int nb02 = src0->nb[2];
  6283. const int nb03 = src0->nb[3];
  6284. const int nb10 = src1->nb[0];
  6285. const int nb11 = src1->nb[1];
  6286. const int nb12 = src1->nb[2];
  6287. const int nb13 = src1->nb[3];
  6288. const int nb0 = dst->nb[0];
  6289. const int nb1 = dst->nb[1];
  6290. const int nb2 = dst->nb[2];
  6291. const int nb3 = dst->nb[3];
  6292. const int ith = params->ith;
  6293. const int nth = params->nth;
  6294. GGML_ASSERT(ne02 == ne12);
  6295. GGML_ASSERT(ne03 == ne13);
  6296. GGML_ASSERT(ne2 == ne12);
  6297. GGML_ASSERT(ne3 == ne13);
  6298. const enum ggml_type type = src0->type;
  6299. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6300. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6301. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6302. // we don't support permuted src0 or src1
  6303. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6304. GGML_ASSERT(nb10 == sizeof(float));
  6305. // dst cannot be transposed or permuted
  6306. GGML_ASSERT(nb0 == sizeof(float));
  6307. GGML_ASSERT(nb0 <= nb1);
  6308. GGML_ASSERT(nb1 <= nb2);
  6309. GGML_ASSERT(nb2 <= nb3);
  6310. GGML_ASSERT(ne0 == ne01);
  6311. GGML_ASSERT(ne1 == ne11);
  6312. GGML_ASSERT(ne2 == ne02);
  6313. GGML_ASSERT(ne3 == ne03);
  6314. // nb01 >= nb00 - src0 is not transposed
  6315. // compute by src0 rows
  6316. #if defined(GGML_USE_CUBLAS)
  6317. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6318. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6319. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6320. }
  6321. return;
  6322. }
  6323. #endif
  6324. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6325. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6326. if (params->ith != 0) {
  6327. return;
  6328. }
  6329. if (params->type == GGML_TASK_INIT) {
  6330. return;
  6331. }
  6332. if (params->type == GGML_TASK_FINALIZE) {
  6333. return;
  6334. }
  6335. float * const wdata = params->wdata;
  6336. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6337. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6338. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6339. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6340. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6341. #if defined(GGML_USE_CLBLAST)
  6342. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6343. #else
  6344. {
  6345. size_t id = 0;
  6346. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6347. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6348. id += ne00;
  6349. }
  6350. assert(id*sizeof(float) <= params->wsize);
  6351. }
  6352. const float * x = wdata;
  6353. #endif
  6354. #if defined(GGML_USE_CLBLAST)
  6355. // zT = y * xT
  6356. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6357. ne11, ne01, ne10,
  6358. 1.0f, y, ne10,
  6359. x, ne10,
  6360. 0.0f, d, ne01,
  6361. type);
  6362. #else
  6363. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6364. ne11, ne01, ne10,
  6365. 1.0f, y, ne10,
  6366. x, ne00,
  6367. 0.0f, d, ne01);
  6368. #endif
  6369. }
  6370. }
  6371. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6372. return;
  6373. }
  6374. #endif
  6375. if (params->type == GGML_TASK_INIT) {
  6376. char * wdata = params->wdata;
  6377. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6378. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6379. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6380. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6381. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6382. wdata += row_size;
  6383. }
  6384. }
  6385. }
  6386. return;
  6387. }
  6388. if (params->type == GGML_TASK_FINALIZE) {
  6389. return;
  6390. }
  6391. // parallelize by src0 rows using ggml_vec_dot_q
  6392. // total rows in src0
  6393. const int nr = ne01*ne02*ne03;
  6394. // rows per thread
  6395. const int dr = (nr + nth - 1)/nth;
  6396. // row range for this thread
  6397. const int ir0 = dr*ith;
  6398. const int ir1 = MIN(ir0 + dr, nr);
  6399. void * wdata = params->wdata;
  6400. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6401. for (int ir = ir0; ir < ir1; ++ir) {
  6402. // src0 indices
  6403. const int i03 = ir/(ne02*ne01);
  6404. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6405. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6406. const int i13 = i03;
  6407. const int i12 = i02;
  6408. const int i0 = i01;
  6409. const int i2 = i02;
  6410. const int i3 = i03;
  6411. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6412. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6413. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6414. assert(ne00 % 32 == 0);
  6415. for (int64_t ic = 0; ic < ne11; ++ic) {
  6416. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6417. }
  6418. }
  6419. //int64_t t1 = ggml_time_us();
  6420. //static int64_t acc = 0;
  6421. //acc += t1 - t0;
  6422. //if (t1 - t0 > 10) {
  6423. // printf("\n");
  6424. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6425. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6426. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6427. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6428. //}
  6429. }
  6430. static void ggml_compute_forward_mul_mat(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. const struct ggml_tensor * src1,
  6434. struct ggml_tensor * dst) {
  6435. switch (src0->type) {
  6436. case GGML_TYPE_Q4_0:
  6437. case GGML_TYPE_Q4_1:
  6438. case GGML_TYPE_Q5_0:
  6439. case GGML_TYPE_Q5_1:
  6440. case GGML_TYPE_Q8_0:
  6441. case GGML_TYPE_Q8_1:
  6442. {
  6443. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6444. } break;
  6445. case GGML_TYPE_F16:
  6446. {
  6447. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6448. } break;
  6449. case GGML_TYPE_F32:
  6450. {
  6451. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6452. } break;
  6453. default:
  6454. {
  6455. GGML_ASSERT(false);
  6456. } break;
  6457. }
  6458. }
  6459. // ggml_compute_forward_scale
  6460. static void ggml_compute_forward_scale_f32(
  6461. const struct ggml_compute_params * params,
  6462. const struct ggml_tensor * src0,
  6463. const struct ggml_tensor * src1,
  6464. struct ggml_tensor * dst) {
  6465. GGML_ASSERT(ggml_is_contiguous(src0));
  6466. GGML_ASSERT(ggml_is_contiguous(dst));
  6467. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6468. GGML_ASSERT(ggml_is_scalar(src1));
  6469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6470. return;
  6471. }
  6472. // scale factor
  6473. const float v = *(float *) src1->data;
  6474. const int ith = params->ith;
  6475. const int nth = params->nth;
  6476. const int nc = src0->ne[0];
  6477. const int nr = ggml_nrows(src0);
  6478. // rows per thread
  6479. const int dr = (nr + nth - 1)/nth;
  6480. // row range for this thread
  6481. const int ir0 = dr*ith;
  6482. const int ir1 = MIN(ir0 + dr, nr);
  6483. for (int i1 = ir0; i1 < ir1; i1++) {
  6484. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6485. }
  6486. }
  6487. static void ggml_compute_forward_scale(
  6488. const struct ggml_compute_params * params,
  6489. const struct ggml_tensor * src0,
  6490. const struct ggml_tensor * src1,
  6491. struct ggml_tensor * dst) {
  6492. switch (src0->type) {
  6493. case GGML_TYPE_F32:
  6494. {
  6495. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6496. } break;
  6497. default:
  6498. {
  6499. GGML_ASSERT(false);
  6500. } break;
  6501. }
  6502. }
  6503. // ggml_compute_forward_cpy
  6504. static void ggml_compute_forward_cpy(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. struct ggml_tensor * dst) {
  6508. ggml_compute_forward_dup(params, src0, dst);
  6509. }
  6510. // ggml_compute_forward_cont
  6511. static void ggml_compute_forward_cont(
  6512. const struct ggml_compute_params * params,
  6513. const struct ggml_tensor * src0,
  6514. struct ggml_tensor * dst) {
  6515. ggml_compute_forward_dup(params, src0, dst);
  6516. }
  6517. // ggml_compute_forward_reshape
  6518. static void ggml_compute_forward_reshape(
  6519. const struct ggml_compute_params * params,
  6520. const struct ggml_tensor * src0,
  6521. struct ggml_tensor * dst) {
  6522. // NOP
  6523. UNUSED(params);
  6524. UNUSED(src0);
  6525. UNUSED(dst);
  6526. }
  6527. // ggml_compute_forward_view
  6528. static void ggml_compute_forward_view(
  6529. const struct ggml_compute_params * params,
  6530. const struct ggml_tensor * src0) {
  6531. // NOP
  6532. UNUSED(params);
  6533. UNUSED(src0);
  6534. }
  6535. // ggml_compute_forward_permute
  6536. static void ggml_compute_forward_permute(
  6537. const struct ggml_compute_params * params,
  6538. const struct ggml_tensor * src0) {
  6539. // NOP
  6540. UNUSED(params);
  6541. UNUSED(src0);
  6542. }
  6543. // ggml_compute_forward_transpose
  6544. static void ggml_compute_forward_transpose(
  6545. const struct ggml_compute_params * params,
  6546. const struct ggml_tensor * src0) {
  6547. // NOP
  6548. UNUSED(params);
  6549. UNUSED(src0);
  6550. }
  6551. // ggml_compute_forward_get_rows
  6552. static void ggml_compute_forward_get_rows_q(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. struct ggml_tensor * dst) {
  6557. assert(params->ith == 0);
  6558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6559. return;
  6560. }
  6561. const int nc = src0->ne[0];
  6562. const int nr = ggml_nelements(src1);
  6563. const enum ggml_type type = src0->type;
  6564. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6565. assert( dst->ne[0] == nc);
  6566. assert( dst->ne[1] == nr);
  6567. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6568. for (int i = 0; i < nr; ++i) {
  6569. const int r = ((int32_t *) src1->data)[i];
  6570. dequantize_row_q(
  6571. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6572. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6573. }
  6574. }
  6575. static void ggml_compute_forward_get_rows_f16(
  6576. const struct ggml_compute_params * params,
  6577. const struct ggml_tensor * src0,
  6578. const struct ggml_tensor * src1,
  6579. struct ggml_tensor * dst) {
  6580. assert(params->ith == 0);
  6581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6582. return;
  6583. }
  6584. const int nc = src0->ne[0];
  6585. const int nr = ggml_nelements(src1);
  6586. assert( dst->ne[0] == nc);
  6587. assert( dst->ne[1] == nr);
  6588. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6589. for (int i = 0; i < nr; ++i) {
  6590. const int r = ((int32_t *) src1->data)[i];
  6591. for (int j = 0; j < nc; ++j) {
  6592. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6593. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6594. }
  6595. }
  6596. }
  6597. static void ggml_compute_forward_get_rows_f32(
  6598. const struct ggml_compute_params * params,
  6599. const struct ggml_tensor * src0,
  6600. const struct ggml_tensor * src1,
  6601. struct ggml_tensor * dst) {
  6602. assert(params->ith == 0);
  6603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6604. return;
  6605. }
  6606. const int nc = src0->ne[0];
  6607. const int nr = ggml_nelements(src1);
  6608. assert( dst->ne[0] == nc);
  6609. assert( dst->ne[1] == nr);
  6610. assert(src0->nb[0] == sizeof(float));
  6611. for (int i = 0; i < nr; ++i) {
  6612. const int r = ((int32_t *) src1->data)[i];
  6613. ggml_vec_cpy_f32(nc,
  6614. (float *) ((char *) dst->data + i*dst->nb[1]),
  6615. (float *) ((char *) src0->data + r*src0->nb[1]));
  6616. }
  6617. }
  6618. static void ggml_compute_forward_get_rows(
  6619. const struct ggml_compute_params * params,
  6620. const struct ggml_tensor * src0,
  6621. const struct ggml_tensor * src1,
  6622. struct ggml_tensor * dst) {
  6623. switch (src0->type) {
  6624. case GGML_TYPE_Q4_0:
  6625. case GGML_TYPE_Q4_1:
  6626. case GGML_TYPE_Q5_0:
  6627. case GGML_TYPE_Q5_1:
  6628. case GGML_TYPE_Q8_0:
  6629. case GGML_TYPE_Q8_1:
  6630. {
  6631. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6632. } break;
  6633. case GGML_TYPE_F16:
  6634. {
  6635. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6636. } break;
  6637. case GGML_TYPE_F32:
  6638. {
  6639. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6640. } break;
  6641. default:
  6642. {
  6643. GGML_ASSERT(false);
  6644. } break;
  6645. }
  6646. //static bool first = true;
  6647. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6648. //if (first) {
  6649. // first = false;
  6650. //} else {
  6651. // for (int k = 0; k < dst->ne[1]; ++k) {
  6652. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6653. // for (int i = 0; i < 16; ++i) {
  6654. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6655. // }
  6656. // printf("\n");
  6657. // }
  6658. // printf("\n");
  6659. // }
  6660. // printf("\n");
  6661. // exit(0);
  6662. //}
  6663. }
  6664. // ggml_compute_forward_diag_mask_inf
  6665. static void ggml_compute_forward_diag_mask_inf_f32(
  6666. const struct ggml_compute_params * params,
  6667. const struct ggml_tensor * src0,
  6668. const struct ggml_tensor * src1,
  6669. struct ggml_tensor * dst) {
  6670. assert(params->ith == 0);
  6671. assert(src1->type == GGML_TYPE_I32);
  6672. assert(ggml_nelements(src1) == 1);
  6673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6674. return;
  6675. }
  6676. const int n_past = ((int32_t *) src1->data)[0];
  6677. // TODO: handle transposed/permuted matrices
  6678. const int n = ggml_nrows(src0);
  6679. const int nc = src0->ne[0];
  6680. const int nr = src0->ne[1];
  6681. const int nz = n/nr;
  6682. assert( dst->nb[0] == sizeof(float));
  6683. assert(src0->nb[0] == sizeof(float));
  6684. for (int k = 0; k < nz; k++) {
  6685. for (int j = 0; j < nr; j++) {
  6686. for (int i = n_past; i < nc; i++) {
  6687. if (i > n_past + j) {
  6688. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6689. }
  6690. }
  6691. }
  6692. }
  6693. }
  6694. static void ggml_compute_forward_diag_mask_inf(
  6695. const struct ggml_compute_params * params,
  6696. const struct ggml_tensor * src0,
  6697. const struct ggml_tensor * src1,
  6698. struct ggml_tensor * dst) {
  6699. switch (src0->type) {
  6700. case GGML_TYPE_F32:
  6701. {
  6702. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6703. } break;
  6704. default:
  6705. {
  6706. GGML_ASSERT(false);
  6707. } break;
  6708. }
  6709. }
  6710. // ggml_compute_forward_soft_max
  6711. static void ggml_compute_forward_soft_max_f32(
  6712. const struct ggml_compute_params * params,
  6713. const struct ggml_tensor * src0,
  6714. struct ggml_tensor * dst) {
  6715. GGML_ASSERT(ggml_is_contiguous(src0));
  6716. GGML_ASSERT(ggml_is_contiguous(dst));
  6717. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6719. return;
  6720. }
  6721. // TODO: handle transposed/permuted matrices
  6722. const int ith = params->ith;
  6723. const int nth = params->nth;
  6724. const int nc = src0->ne[0];
  6725. const int nr = ggml_nrows(src0);
  6726. // rows per thread
  6727. const int dr = (nr + nth - 1)/nth;
  6728. // row range for this thread
  6729. const int ir0 = dr*ith;
  6730. const int ir1 = MIN(ir0 + dr, nr);
  6731. for (int i1 = ir0; i1 < ir1; i1++) {
  6732. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6733. #ifndef NDEBUG
  6734. for (int i = 0; i < nc; ++i) {
  6735. //printf("p[%d] = %f\n", i, p[i]);
  6736. assert(!isnan(p[i]));
  6737. }
  6738. #endif
  6739. float max = -INFINITY;
  6740. ggml_vec_max_f32(nc, &max, p);
  6741. ggml_float sum = 0.0;
  6742. uint16_t scvt;
  6743. for (int i = 0; i < nc; i++) {
  6744. //printf("p[%3d] = %8.4f\n", i, p[i]);
  6745. if (p[i] == -INFINITY) {
  6746. p[i] = 0.0f;
  6747. } else {
  6748. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6749. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6750. memcpy(&scvt, &s, sizeof(scvt));
  6751. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6752. sum += (ggml_float)val;
  6753. p[i] = val;
  6754. }
  6755. }
  6756. assert(sum > 0.0);
  6757. sum = 1.0/sum;
  6758. ggml_vec_scale_f32(nc, p, sum);
  6759. #ifndef NDEBUG
  6760. for (int i = 0; i < nc; ++i) {
  6761. assert(!isnan(p[i]));
  6762. assert(!isinf(p[i]));
  6763. }
  6764. #endif
  6765. }
  6766. }
  6767. static void ggml_compute_forward_soft_max(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * src0,
  6770. struct ggml_tensor * dst) {
  6771. switch (src0->type) {
  6772. case GGML_TYPE_F32:
  6773. {
  6774. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6775. } break;
  6776. default:
  6777. {
  6778. GGML_ASSERT(false);
  6779. } break;
  6780. }
  6781. }
  6782. // ggml_compute_forward_alibi
  6783. static void ggml_compute_forward_alibi_f32(
  6784. const struct ggml_compute_params * params,
  6785. const struct ggml_tensor * src0,
  6786. const struct ggml_tensor * src1,
  6787. struct ggml_tensor * dst) {
  6788. assert(params->ith == 0);
  6789. assert(src1->type == GGML_TYPE_I32);
  6790. assert(ggml_nelements(src1) == 2);
  6791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6792. return;
  6793. }
  6794. const int n_past = ((int32_t *) src1->data)[0];
  6795. const int n_head = ((int32_t *) src1->data)[1];
  6796. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  6797. const int ne1 = src0->ne[1]; // seq_len_without_past
  6798. //const int ne2 = src0->ne[2]; // n_head -> this is k
  6799. //const int ne3 = src0->ne[3]; // 1 -> bsz
  6800. const int n = ggml_nrows(src0);
  6801. const int ne2_ne3 = n/ne1; // ne2*ne3
  6802. const int nb0 = src0->nb[0];
  6803. const int nb1 = src0->nb[1];
  6804. const int nb2 = src0->nb[2];
  6805. //const int nb3 = src0->nb[3];
  6806. assert(nb0 == sizeof(float));
  6807. assert(ne1 + n_past == ne0); (void) n_past;
  6808. // add alibi to src0 (KQ_scaled)
  6809. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  6810. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  6811. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  6812. for (int i = 0; i < ne0; i++) {
  6813. for (int j = 0; j < ne1; j++) {
  6814. for (int k = 0; k < ne2_ne3; k++) {
  6815. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  6816. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  6817. // TODO: k*nb2 or k*nb3
  6818. float m_k;
  6819. if (k < n_heads_log2_floor) {
  6820. m_k = powf(m0, k + 1);
  6821. } else {
  6822. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  6823. }
  6824. pdst[0] = (j+1) * m_k + src[0];
  6825. }
  6826. }
  6827. }
  6828. }
  6829. static void ggml_compute_forward_alibi_f16(
  6830. const struct ggml_compute_params * params,
  6831. const struct ggml_tensor * src0,
  6832. const struct ggml_tensor * src1,
  6833. struct ggml_tensor * dst) {
  6834. assert(params->ith == 0);
  6835. assert(src1->type == GGML_TYPE_I32);
  6836. assert(ggml_nelements(src1) == 2);
  6837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6838. return;
  6839. }
  6840. const int n_past = ((int32_t *) src1->data)[0];
  6841. const int n_head = ((int32_t *) src1->data)[1];
  6842. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  6843. const int ne1 = src0->ne[1]; // seq_len_without_past
  6844. //const int ne2 = src0->ne[2]; // n_head -> this is k
  6845. //const int ne3 = src0->ne[3]; // 1 -> bsz
  6846. const int n = ggml_nrows(src0);
  6847. const int ne2_ne3 = n/ne1; // ne2*ne3
  6848. const int nb0 = src0->nb[0];
  6849. const int nb1 = src0->nb[1];
  6850. const int nb2 = src0->nb[2];
  6851. //const int nb3 = src0->nb[3];
  6852. assert(nb0 == sizeof(ggml_fp16_t));
  6853. assert(ne1 + n_past == ne0); (void) n_past;
  6854. // add alibi to src0 (KQ_scaled)
  6855. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  6856. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  6857. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  6858. for (int i = 0; i < ne0; i++) {
  6859. for (int j = 0; j < ne1; j++) {
  6860. for (int k = 0; k < ne2_ne3; k++) {
  6861. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  6862. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  6863. // TODO: k*nb2 or k*nb3
  6864. float m_k;
  6865. if (k < n_heads_log2_floor) {
  6866. m_k = powf(m0, k + 1);
  6867. } else {
  6868. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  6869. }
  6870. // we return F32
  6871. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  6872. }
  6873. }
  6874. }
  6875. }
  6876. static void ggml_compute_forward_alibi(
  6877. const struct ggml_compute_params * params,
  6878. const struct ggml_tensor * src0,
  6879. const struct ggml_tensor * src1,
  6880. struct ggml_tensor * dst) {
  6881. switch (src0->type) {
  6882. case GGML_TYPE_F16:
  6883. {
  6884. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  6885. } break;
  6886. case GGML_TYPE_F32:
  6887. {
  6888. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  6889. } break;
  6890. case GGML_TYPE_Q4_0:
  6891. case GGML_TYPE_Q4_1:
  6892. case GGML_TYPE_Q5_0:
  6893. case GGML_TYPE_Q5_1:
  6894. case GGML_TYPE_Q8_0:
  6895. case GGML_TYPE_Q8_1:
  6896. case GGML_TYPE_I8:
  6897. case GGML_TYPE_I16:
  6898. case GGML_TYPE_I32:
  6899. case GGML_TYPE_COUNT:
  6900. {
  6901. GGML_ASSERT(false);
  6902. } break;
  6903. }
  6904. }
  6905. // ggml_compute_forward_rope
  6906. static void ggml_compute_forward_rope_f32(
  6907. const struct ggml_compute_params * params,
  6908. const struct ggml_tensor * src0,
  6909. const struct ggml_tensor * src1,
  6910. struct ggml_tensor * dst) {
  6911. assert(src1->type == GGML_TYPE_I32);
  6912. assert(ggml_nelements(src1) == 3);
  6913. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6914. return;
  6915. }
  6916. const int n_past = ((int32_t *) src1->data)[0];
  6917. const int n_dims = ((int32_t *) src1->data)[1];
  6918. const int mode = ((int32_t *) src1->data)[2];
  6919. //const int64_t ne0 = src0->ne[0];
  6920. const int64_t ne1 = src0->ne[1];
  6921. const int64_t ne2 = src0->ne[2];
  6922. const int64_t ne3 = src0->ne[3];
  6923. const int nb0 = src0->nb[0];
  6924. const int nb1 = src0->nb[1];
  6925. const int nb2 = src0->nb[2];
  6926. const int nb3 = src0->nb[3];
  6927. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6928. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6929. assert(nb0 == sizeof(float));
  6930. const int ith = params->ith;
  6931. const int nth = params->nth;
  6932. const int nr = ggml_nrows(src0);
  6933. // rows per thread
  6934. const int dr = (nr + nth - 1)/nth;
  6935. // row range for this thread
  6936. const int ir0 = dr*ith;
  6937. const int ir1 = MIN(ir0 + dr, nr);
  6938. // row index used to determine which thread to use
  6939. int ir = 0;
  6940. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6941. const bool is_neox = mode & 2;
  6942. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6943. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6944. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  6945. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6946. if (ir++ < ir0) continue;
  6947. if (ir > ir1) break;
  6948. float theta = (float)p;
  6949. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6950. const float cos_theta = cosf(theta);
  6951. const float sin_theta = sinf(theta);
  6952. theta *= theta_scale;
  6953. if (!is_neox) {
  6954. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6955. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6956. const float x0 = src[0];
  6957. const float x1 = src[1];
  6958. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6959. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6960. } else {
  6961. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  6962. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  6963. const float x0 = src[0];
  6964. const float x1 = src[n_dims/2];
  6965. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6966. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  6967. }
  6968. }
  6969. }
  6970. }
  6971. }
  6972. }
  6973. static void ggml_compute_forward_rope_f16(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. const struct ggml_tensor * src1,
  6977. struct ggml_tensor * dst) {
  6978. assert(src1->type == GGML_TYPE_I32);
  6979. assert(ggml_nelements(src1) == 3);
  6980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6981. return;
  6982. }
  6983. const int n_past = ((int32_t *) src1->data)[0];
  6984. const int n_dims = ((int32_t *) src1->data)[1];
  6985. const int mode = ((int32_t *) src1->data)[2];
  6986. //const int64_t ne0 = src0->ne[0];
  6987. const int64_t ne1 = src0->ne[1];
  6988. const int64_t ne2 = src0->ne[2];
  6989. const int64_t ne3 = src0->ne[3];
  6990. const int nb0 = src0->nb[0];
  6991. const int nb1 = src0->nb[1];
  6992. const int nb2 = src0->nb[2];
  6993. const int nb3 = src0->nb[3];
  6994. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6995. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6996. assert(nb0 == sizeof(ggml_fp16_t));
  6997. const int ith = params->ith;
  6998. const int nth = params->nth;
  6999. const int nr = ggml_nrows(src0);
  7000. // rows per thread
  7001. const int dr = (nr + nth - 1)/nth;
  7002. // row range for this thread
  7003. const int ir0 = dr*ith;
  7004. const int ir1 = MIN(ir0 + dr, nr);
  7005. // row index used to determine which thread to use
  7006. int ir = 0;
  7007. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7008. const bool is_neox = mode & 2;
  7009. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7010. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7011. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7012. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7013. if (ir++ < ir0) continue;
  7014. if (ir > ir1) break;
  7015. float theta = (float)p;
  7016. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7017. const float cos_theta = cosf(theta);
  7018. const float sin_theta = sinf(theta);
  7019. theta *= theta_scale;
  7020. if (!is_neox) {
  7021. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7022. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7023. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7024. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7025. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7026. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7027. } else {
  7028. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7029. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7030. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7031. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7032. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7033. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7034. }
  7035. }
  7036. }
  7037. }
  7038. }
  7039. }
  7040. static void ggml_compute_forward_rope(
  7041. const struct ggml_compute_params * params,
  7042. const struct ggml_tensor * src0,
  7043. const struct ggml_tensor * src1,
  7044. struct ggml_tensor * dst) {
  7045. switch (src0->type) {
  7046. case GGML_TYPE_F16:
  7047. {
  7048. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7049. } break;
  7050. case GGML_TYPE_F32:
  7051. {
  7052. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7053. } break;
  7054. default:
  7055. {
  7056. GGML_ASSERT(false);
  7057. } break;
  7058. }
  7059. }
  7060. // ggml_compute_forward_conv_1d_1s
  7061. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7062. const struct ggml_compute_params * params,
  7063. const struct ggml_tensor * src0,
  7064. const struct ggml_tensor * src1,
  7065. struct ggml_tensor * dst) {
  7066. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7067. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7068. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7069. int64_t t0 = ggml_perf_time_us();
  7070. UNUSED(t0);
  7071. const int64_t ne00 = src0->ne[0];
  7072. const int64_t ne01 = src0->ne[1];
  7073. const int64_t ne02 = src0->ne[2];
  7074. //const int64_t ne03 = src0->ne[3];
  7075. const int64_t ne10 = src1->ne[0];
  7076. const int64_t ne11 = src1->ne[1];
  7077. //const int64_t ne12 = src1->ne[2];
  7078. //const int64_t ne13 = src1->ne[3];
  7079. //const int64_t ne0 = dst->ne[0];
  7080. //const int64_t ne1 = dst->ne[1];
  7081. //const int64_t ne2 = dst->ne[2];
  7082. //const int64_t ne3 = dst->ne[3];
  7083. //const int64_t ne = ne0*ne1*ne2*ne3;
  7084. const int nb00 = src0->nb[0];
  7085. const int nb01 = src0->nb[1];
  7086. const int nb02 = src0->nb[2];
  7087. //const int nb03 = src0->nb[3];
  7088. const int nb10 = src1->nb[0];
  7089. const int nb11 = src1->nb[1];
  7090. //const int nb12 = src1->nb[2];
  7091. //const int nb13 = src1->nb[3];
  7092. //const int nb0 = dst->nb[0];
  7093. const int nb1 = dst->nb[1];
  7094. //const int nb2 = dst->nb[2];
  7095. //const int nb3 = dst->nb[3];
  7096. const int ith = params->ith;
  7097. const int nth = params->nth;
  7098. const int nk = ne00;
  7099. const int nh = nk/2;
  7100. const int ew0 = ggml_up32(ne01);
  7101. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7102. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7103. GGML_ASSERT(nb10 == sizeof(float));
  7104. if (params->type == GGML_TASK_INIT) {
  7105. // TODO: fix this memset (wsize is overestimated)
  7106. memset(params->wdata, 0, params->wsize);
  7107. // prepare kernel data (src0)
  7108. {
  7109. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7110. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7112. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7113. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7114. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7115. dst_data[i00*ew0 + i01] = src[i00];
  7116. }
  7117. }
  7118. }
  7119. }
  7120. // prepare source data (src1)
  7121. {
  7122. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7123. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7124. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7125. ggml_fp16_t * dst_data = wdata;
  7126. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7127. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7128. }
  7129. }
  7130. }
  7131. return;
  7132. }
  7133. if (params->type == GGML_TASK_FINALIZE) {
  7134. return;
  7135. }
  7136. // total rows in dst
  7137. const int nr = ne02;
  7138. // rows per thread
  7139. const int dr = (nr + nth - 1)/nth;
  7140. // row range for this thread
  7141. const int ir0 = dr*ith;
  7142. const int ir1 = MIN(ir0 + dr, nr);
  7143. for (int i1 = ir0; i1 < ir1; i1++) {
  7144. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7145. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7146. dst_data[i0] = 0;
  7147. for (int k = -nh; k <= nh; k++) {
  7148. float v = 0.0f;
  7149. ggml_vec_dot_f16(ew0, &v,
  7150. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7151. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7152. dst_data[i0] += v;
  7153. }
  7154. }
  7155. }
  7156. }
  7157. static void ggml_compute_forward_conv_1d_1s_f32(
  7158. const struct ggml_compute_params * params,
  7159. const struct ggml_tensor * src0,
  7160. const struct ggml_tensor * src1,
  7161. struct ggml_tensor * dst) {
  7162. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7163. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7164. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7165. int64_t t0 = ggml_perf_time_us();
  7166. UNUSED(t0);
  7167. const int64_t ne00 = src0->ne[0];
  7168. const int64_t ne01 = src0->ne[1];
  7169. const int64_t ne02 = src0->ne[2];
  7170. //const int64_t ne03 = src0->ne[3];
  7171. const int64_t ne10 = src1->ne[0];
  7172. const int64_t ne11 = src1->ne[1];
  7173. //const int64_t ne12 = src1->ne[2];
  7174. //const int64_t ne13 = src1->ne[3];
  7175. //const int64_t ne0 = dst->ne[0];
  7176. //const int64_t ne1 = dst->ne[1];
  7177. //const int64_t ne2 = dst->ne[2];
  7178. //const int64_t ne3 = dst->ne[3];
  7179. //const int64_t ne = ne0*ne1*ne2*ne3;
  7180. const int nb00 = src0->nb[0];
  7181. const int nb01 = src0->nb[1];
  7182. const int nb02 = src0->nb[2];
  7183. //const int nb03 = src0->nb[3];
  7184. const int nb10 = src1->nb[0];
  7185. const int nb11 = src1->nb[1];
  7186. //const int nb12 = src1->nb[2];
  7187. //const int nb13 = src1->nb[3];
  7188. //const int nb0 = dst->nb[0];
  7189. const int nb1 = dst->nb[1];
  7190. //const int nb2 = dst->nb[2];
  7191. //const int nb3 = dst->nb[3];
  7192. const int ith = params->ith;
  7193. const int nth = params->nth;
  7194. const int nk = ne00;
  7195. const int nh = nk/2;
  7196. const int ew0 = ggml_up32(ne01);
  7197. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7198. GGML_ASSERT(nb00 == sizeof(float));
  7199. GGML_ASSERT(nb10 == sizeof(float));
  7200. if (params->type == GGML_TASK_INIT) {
  7201. // TODO: fix this memset (wsize is overestimated)
  7202. memset(params->wdata, 0, params->wsize);
  7203. // prepare kernel data (src0)
  7204. {
  7205. float * const wdata = (float *) params->wdata + 0;
  7206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7207. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7208. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7209. float * dst_data = wdata + i02*ew0*ne00;
  7210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7211. dst_data[i00*ew0 + i01] = src[i00];
  7212. }
  7213. }
  7214. }
  7215. }
  7216. // prepare source data (src1)
  7217. {
  7218. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7219. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7220. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7221. float * dst_data = wdata;
  7222. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7223. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7224. }
  7225. }
  7226. }
  7227. return;
  7228. }
  7229. if (params->type == GGML_TASK_FINALIZE) {
  7230. return;
  7231. }
  7232. // total rows in dst
  7233. const int nr = ne02;
  7234. // rows per thread
  7235. const int dr = (nr + nth - 1)/nth;
  7236. // row range for this thread
  7237. const int ir0 = dr*ith;
  7238. const int ir1 = MIN(ir0 + dr, nr);
  7239. for (int i1 = ir0; i1 < ir1; i1++) {
  7240. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7241. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7242. dst_data[i0] = 0;
  7243. for (int k = -nh; k <= nh; k++) {
  7244. float v = 0.0f;
  7245. ggml_vec_dot_f32(ew0, &v,
  7246. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7247. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7248. dst_data[i0] += v;
  7249. }
  7250. }
  7251. }
  7252. }
  7253. static void ggml_compute_forward_conv_1d_1s(
  7254. const struct ggml_compute_params * params,
  7255. const struct ggml_tensor * src0,
  7256. const struct ggml_tensor * src1,
  7257. struct ggml_tensor * dst) {
  7258. switch (src0->type) {
  7259. case GGML_TYPE_F16:
  7260. {
  7261. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7262. } break;
  7263. case GGML_TYPE_F32:
  7264. {
  7265. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7266. } break;
  7267. default:
  7268. {
  7269. GGML_ASSERT(false);
  7270. } break;
  7271. }
  7272. }
  7273. // ggml_compute_forward_conv_1d_2s
  7274. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7275. const struct ggml_compute_params * params,
  7276. const struct ggml_tensor * src0,
  7277. const struct ggml_tensor * src1,
  7278. struct ggml_tensor * dst) {
  7279. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7280. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7281. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7282. int64_t t0 = ggml_perf_time_us();
  7283. UNUSED(t0);
  7284. const int64_t ne00 = src0->ne[0];
  7285. const int64_t ne01 = src0->ne[1];
  7286. const int64_t ne02 = src0->ne[2];
  7287. //const int64_t ne03 = src0->ne[3];
  7288. const int64_t ne10 = src1->ne[0];
  7289. const int64_t ne11 = src1->ne[1];
  7290. //const int64_t ne12 = src1->ne[2];
  7291. //const int64_t ne13 = src1->ne[3];
  7292. //const int64_t ne0 = dst->ne[0];
  7293. //const int64_t ne1 = dst->ne[1];
  7294. //const int64_t ne2 = dst->ne[2];
  7295. //const int64_t ne3 = dst->ne[3];
  7296. //const int64_t ne = ne0*ne1*ne2*ne3;
  7297. const int nb00 = src0->nb[0];
  7298. const int nb01 = src0->nb[1];
  7299. const int nb02 = src0->nb[2];
  7300. //const int nb03 = src0->nb[3];
  7301. const int nb10 = src1->nb[0];
  7302. const int nb11 = src1->nb[1];
  7303. //const int nb12 = src1->nb[2];
  7304. //const int nb13 = src1->nb[3];
  7305. //const int nb0 = dst->nb[0];
  7306. const int nb1 = dst->nb[1];
  7307. //const int nb2 = dst->nb[2];
  7308. //const int nb3 = dst->nb[3];
  7309. const int ith = params->ith;
  7310. const int nth = params->nth;
  7311. const int nk = ne00;
  7312. const int nh = nk/2;
  7313. const int ew0 = ggml_up32(ne01);
  7314. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7315. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7316. GGML_ASSERT(nb10 == sizeof(float));
  7317. if (params->type == GGML_TASK_INIT) {
  7318. // TODO: fix this memset (wsize is overestimated)
  7319. memset(params->wdata, 0, params->wsize);
  7320. // prepare kernel data (src0)
  7321. {
  7322. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7323. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7324. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7325. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7326. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7327. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7328. dst_data[i00*ew0 + i01] = src[i00];
  7329. }
  7330. }
  7331. }
  7332. }
  7333. // prepare source data (src1)
  7334. {
  7335. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7336. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7337. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7338. ggml_fp16_t * dst_data = wdata;
  7339. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7340. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7341. }
  7342. }
  7343. }
  7344. return;
  7345. }
  7346. if (params->type == GGML_TASK_FINALIZE) {
  7347. return;
  7348. }
  7349. // total rows in dst
  7350. const int nr = ne02;
  7351. // rows per thread
  7352. const int dr = (nr + nth - 1)/nth;
  7353. // row range for this thread
  7354. const int ir0 = dr*ith;
  7355. const int ir1 = MIN(ir0 + dr, nr);
  7356. for (int i1 = ir0; i1 < ir1; i1++) {
  7357. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7358. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7359. dst_data[i0/2] = 0;
  7360. for (int k = -nh; k <= nh; k++) {
  7361. float v = 0.0f;
  7362. ggml_vec_dot_f16(ew0, &v,
  7363. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7364. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7365. dst_data[i0/2] += v;
  7366. }
  7367. }
  7368. }
  7369. }
  7370. static void ggml_compute_forward_conv_1d_2s_f32(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. const struct ggml_tensor * src1,
  7374. struct ggml_tensor * dst) {
  7375. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7376. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7377. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7378. int64_t t0 = ggml_perf_time_us();
  7379. UNUSED(t0);
  7380. const int64_t ne00 = src0->ne[0];
  7381. const int64_t ne01 = src0->ne[1];
  7382. const int64_t ne02 = src0->ne[2];
  7383. //const int64_t ne03 = src0->ne[3];
  7384. const int64_t ne10 = src1->ne[0];
  7385. const int64_t ne11 = src1->ne[1];
  7386. //const int64_t ne12 = src1->ne[2];
  7387. //const int64_t ne13 = src1->ne[3];
  7388. //const int64_t ne0 = dst->ne[0];
  7389. //const int64_t ne1 = dst->ne[1];
  7390. //const int64_t ne2 = dst->ne[2];
  7391. //const int64_t ne3 = dst->ne[3];
  7392. //const int64_t ne = ne0*ne1*ne2*ne3;
  7393. const int nb00 = src0->nb[0];
  7394. const int nb01 = src0->nb[1];
  7395. const int nb02 = src0->nb[2];
  7396. //const int nb03 = src0->nb[3];
  7397. const int nb10 = src1->nb[0];
  7398. const int nb11 = src1->nb[1];
  7399. //const int nb12 = src1->nb[2];
  7400. //const int nb13 = src1->nb[3];
  7401. //const int nb0 = dst->nb[0];
  7402. const int nb1 = dst->nb[1];
  7403. //const int nb2 = dst->nb[2];
  7404. //const int nb3 = dst->nb[3];
  7405. const int ith = params->ith;
  7406. const int nth = params->nth;
  7407. const int nk = ne00;
  7408. const int nh = nk/2;
  7409. const int ew0 = ggml_up32(ne01);
  7410. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7411. GGML_ASSERT(nb00 == sizeof(float));
  7412. GGML_ASSERT(nb10 == sizeof(float));
  7413. if (params->type == GGML_TASK_INIT) {
  7414. // TODO: fix this memset (wsize is overestimated)
  7415. memset(params->wdata, 0, params->wsize);
  7416. // prepare kernel data (src0)
  7417. {
  7418. float * const wdata = (float *) params->wdata + 0;
  7419. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7420. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7421. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7422. float * dst_data = wdata + i02*ew0*ne00;
  7423. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7424. dst_data[i00*ew0 + i01] = src[i00];
  7425. }
  7426. }
  7427. }
  7428. }
  7429. // prepare source data (src1)
  7430. {
  7431. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7432. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7433. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7434. float * dst_data = wdata;
  7435. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7436. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7437. }
  7438. }
  7439. }
  7440. return;
  7441. }
  7442. if (params->type == GGML_TASK_FINALIZE) {
  7443. return;
  7444. }
  7445. // total rows in dst
  7446. const int nr = ne02;
  7447. // rows per thread
  7448. const int dr = (nr + nth - 1)/nth;
  7449. // row range for this thread
  7450. const int ir0 = dr*ith;
  7451. const int ir1 = MIN(ir0 + dr, nr);
  7452. for (int i1 = ir0; i1 < ir1; i1++) {
  7453. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7454. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7455. dst_data[i0/2] = 0;
  7456. for (int k = -nh; k <= nh; k++) {
  7457. float v = 0.0f;
  7458. ggml_vec_dot_f32(ew0, &v,
  7459. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7460. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7461. dst_data[i0/2] += v;
  7462. }
  7463. }
  7464. }
  7465. }
  7466. static void ggml_compute_forward_conv_1d_2s(
  7467. const struct ggml_compute_params * params,
  7468. const struct ggml_tensor * src0,
  7469. const struct ggml_tensor * src1,
  7470. struct ggml_tensor * dst) {
  7471. switch (src0->type) {
  7472. case GGML_TYPE_F16:
  7473. {
  7474. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7475. } break;
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. // ggml_compute_forward_flash_attn
  7487. static void ggml_compute_forward_flash_attn_f32(
  7488. const struct ggml_compute_params * params,
  7489. const struct ggml_tensor * q,
  7490. const struct ggml_tensor * k,
  7491. const struct ggml_tensor * v,
  7492. const bool masked,
  7493. struct ggml_tensor * dst) {
  7494. int64_t t0 = ggml_perf_time_us();
  7495. UNUSED(t0);
  7496. const int64_t neq0 = q->ne[0];
  7497. const int64_t neq1 = q->ne[1];
  7498. const int64_t neq2 = q->ne[2];
  7499. const int64_t neq3 = q->ne[3];
  7500. const int64_t nek0 = k->ne[0];
  7501. const int64_t nek1 = k->ne[1];
  7502. //const int64_t nek2 = k->ne[2];
  7503. //const int64_t nek3 = k->ne[3];
  7504. //const int64_t nev0 = v->ne[0];
  7505. const int64_t nev1 = v->ne[1];
  7506. //const int64_t nev2 = v->ne[2];
  7507. //const int64_t nev3 = v->ne[3];
  7508. const int64_t ne0 = dst->ne[0];
  7509. const int64_t ne1 = dst->ne[1];
  7510. //const int64_t ne2 = dst->ne[2];
  7511. //const int64_t ne3 = dst->ne[3];
  7512. const int nbk0 = k->nb[0];
  7513. const int nbk1 = k->nb[1];
  7514. const int nbk2 = k->nb[2];
  7515. const int nbk3 = k->nb[3];
  7516. const int nbq0 = q->nb[0];
  7517. const int nbq1 = q->nb[1];
  7518. const int nbq2 = q->nb[2];
  7519. const int nbq3 = q->nb[3];
  7520. const int nbv0 = v->nb[0];
  7521. const int nbv1 = v->nb[1];
  7522. const int nbv2 = v->nb[2];
  7523. const int nbv3 = v->nb[3];
  7524. const int nb0 = dst->nb[0];
  7525. const int nb1 = dst->nb[1];
  7526. const int nb2 = dst->nb[2];
  7527. const int nb3 = dst->nb[3];
  7528. const int ith = params->ith;
  7529. const int nth = params->nth;
  7530. const int64_t D = neq0;
  7531. const int64_t N = neq1;
  7532. const int64_t P = nek1 - N;
  7533. const int64_t M = P + N;
  7534. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7535. GGML_ASSERT(ne0 == D);
  7536. GGML_ASSERT(ne1 == N);
  7537. GGML_ASSERT(P >= 0);
  7538. GGML_ASSERT(nbq0 == sizeof(float));
  7539. GGML_ASSERT(nbk0 == sizeof(float));
  7540. GGML_ASSERT(nbv0 == sizeof(float));
  7541. GGML_ASSERT(neq0 == D);
  7542. GGML_ASSERT(nek0 == D);
  7543. GGML_ASSERT(nev1 == D);
  7544. GGML_ASSERT(neq1 == N);
  7545. GGML_ASSERT(nek1 == N + P);
  7546. GGML_ASSERT(nev1 == D);
  7547. // dst cannot be transposed or permuted
  7548. GGML_ASSERT(nb0 == sizeof(float));
  7549. GGML_ASSERT(nb0 <= nb1);
  7550. GGML_ASSERT(nb1 <= nb2);
  7551. GGML_ASSERT(nb2 <= nb3);
  7552. if (params->type == GGML_TASK_INIT) {
  7553. return;
  7554. }
  7555. if (params->type == GGML_TASK_FINALIZE) {
  7556. return;
  7557. }
  7558. // parallelize by q rows using ggml_vec_dot_f32
  7559. // total rows in q
  7560. const int nr = neq1*neq2*neq3;
  7561. // rows per thread
  7562. const int dr = (nr + nth - 1)/nth;
  7563. // row range for this thread
  7564. const int ir0 = dr*ith;
  7565. const int ir1 = MIN(ir0 + dr, nr);
  7566. const float scale = 1.0f/sqrtf(D);
  7567. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7568. for (int ir = ir0; ir < ir1; ++ir) {
  7569. // q indices
  7570. const int iq3 = ir/(neq2*neq1);
  7571. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7572. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7573. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7574. for (int i = M; i < Mup; ++i) {
  7575. S[i] = -INFINITY;
  7576. }
  7577. for (int64_t ic = 0; ic < nek1; ++ic) {
  7578. // k indices
  7579. const int ik3 = iq3;
  7580. const int ik2 = iq2;
  7581. const int ik1 = ic;
  7582. // S indices
  7583. const int i1 = ik1;
  7584. ggml_vec_dot_f32(neq0,
  7585. S + i1,
  7586. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7587. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7588. }
  7589. // scale
  7590. ggml_vec_scale_f32(nek1, S, scale);
  7591. if (masked) {
  7592. for (int64_t i = P; i < M; i++) {
  7593. if (i > P + iq1) {
  7594. S[i] = -INFINITY;
  7595. }
  7596. }
  7597. }
  7598. // softmax
  7599. {
  7600. float max = -INFINITY;
  7601. ggml_vec_max_f32(M, &max, S);
  7602. ggml_float sum = 0.0;
  7603. {
  7604. #ifdef GGML_SOFT_MAX_ACCELERATE
  7605. max = -max;
  7606. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7607. vvexpf(S, S, &Mup);
  7608. ggml_vec_sum_f32(Mup, &sum, S);
  7609. #else
  7610. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7611. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7612. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7613. float * SS = S + i;
  7614. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7615. if (SS[j] == -INFINITY) {
  7616. SS[j] = 0.0f;
  7617. } else {
  7618. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7619. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7620. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7621. sump[j] += (ggml_float)val;
  7622. SS[j] = val;
  7623. }
  7624. }
  7625. }
  7626. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7627. sum += sump[i];
  7628. }
  7629. #endif
  7630. }
  7631. assert(sum > 0.0);
  7632. sum = 1.0/sum;
  7633. ggml_vec_scale_f32(M, S, sum);
  7634. #ifndef NDEBUG
  7635. for (int i = 0; i < M; ++i) {
  7636. assert(!isnan(S[i]));
  7637. assert(!isinf(S[i]));
  7638. }
  7639. #endif
  7640. }
  7641. for (int64_t ic = 0; ic < nev1; ++ic) {
  7642. // dst indices
  7643. const int i1 = iq1;
  7644. const int i2 = iq2;
  7645. const int i3 = iq3;
  7646. ggml_vec_dot_f32(nek1,
  7647. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7648. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7649. S);
  7650. }
  7651. }
  7652. }
  7653. static void ggml_compute_forward_flash_attn_f16(
  7654. const struct ggml_compute_params * params,
  7655. const struct ggml_tensor * q,
  7656. const struct ggml_tensor * k,
  7657. const struct ggml_tensor * v,
  7658. const bool masked,
  7659. struct ggml_tensor * dst) {
  7660. int64_t t0 = ggml_perf_time_us();
  7661. UNUSED(t0);
  7662. const int64_t neq0 = q->ne[0];
  7663. const int64_t neq1 = q->ne[1];
  7664. const int64_t neq2 = q->ne[2];
  7665. const int64_t neq3 = q->ne[3];
  7666. const int64_t nek0 = k->ne[0];
  7667. const int64_t nek1 = k->ne[1];
  7668. //const int64_t nek2 = k->ne[2];
  7669. //const int64_t nek3 = k->ne[3];
  7670. //const int64_t nev0 = v->ne[0];
  7671. const int64_t nev1 = v->ne[1];
  7672. //const int64_t nev2 = v->ne[2];
  7673. //const int64_t nev3 = v->ne[3];
  7674. const int64_t ne0 = dst->ne[0];
  7675. const int64_t ne1 = dst->ne[1];
  7676. //const int64_t ne2 = dst->ne[2];
  7677. //const int64_t ne3 = dst->ne[3];
  7678. const int nbk0 = k->nb[0];
  7679. const int nbk1 = k->nb[1];
  7680. const int nbk2 = k->nb[2];
  7681. const int nbk3 = k->nb[3];
  7682. const int nbq0 = q->nb[0];
  7683. const int nbq1 = q->nb[1];
  7684. const int nbq2 = q->nb[2];
  7685. const int nbq3 = q->nb[3];
  7686. const int nbv0 = v->nb[0];
  7687. const int nbv1 = v->nb[1];
  7688. const int nbv2 = v->nb[2];
  7689. const int nbv3 = v->nb[3];
  7690. const int nb0 = dst->nb[0];
  7691. const int nb1 = dst->nb[1];
  7692. const int nb2 = dst->nb[2];
  7693. const int nb3 = dst->nb[3];
  7694. const int ith = params->ith;
  7695. const int nth = params->nth;
  7696. const int64_t D = neq0;
  7697. const int64_t N = neq1;
  7698. const int64_t P = nek1 - N;
  7699. const int64_t M = P + N;
  7700. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7701. GGML_ASSERT(ne0 == D);
  7702. GGML_ASSERT(ne1 == N);
  7703. GGML_ASSERT(P >= 0);
  7704. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7705. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7706. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7707. GGML_ASSERT(neq0 == D);
  7708. GGML_ASSERT(nek0 == D);
  7709. GGML_ASSERT(nev1 == D);
  7710. GGML_ASSERT(neq1 == N);
  7711. GGML_ASSERT(nek1 == N + P);
  7712. GGML_ASSERT(nev1 == D);
  7713. // dst cannot be transposed or permuted
  7714. GGML_ASSERT(nb0 == sizeof(float));
  7715. GGML_ASSERT(nb0 <= nb1);
  7716. GGML_ASSERT(nb1 <= nb2);
  7717. GGML_ASSERT(nb2 <= nb3);
  7718. if (params->type == GGML_TASK_INIT) {
  7719. return;
  7720. }
  7721. if (params->type == GGML_TASK_FINALIZE) {
  7722. return;
  7723. }
  7724. // parallelize by q rows using ggml_vec_dot_f32
  7725. // total rows in q
  7726. const int nr = neq1*neq2*neq3;
  7727. // rows per thread
  7728. const int dr = (nr + nth - 1)/nth;
  7729. // row range for this thread
  7730. const int ir0 = dr*ith;
  7731. const int ir1 = MIN(ir0 + dr, nr);
  7732. const float scale = 1.0f/sqrtf(D);
  7733. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7734. for (int ir = ir0; ir < ir1; ++ir) {
  7735. // q indices
  7736. const int iq3 = ir/(neq2*neq1);
  7737. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7738. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7739. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7740. for (int i = M; i < Mup; ++i) {
  7741. S[i] = -INFINITY;
  7742. }
  7743. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7744. for (int64_t ic = 0; ic < nek1; ++ic) {
  7745. // k indices
  7746. const int ik3 = iq3;
  7747. const int ik2 = iq2;
  7748. const int ik1 = ic;
  7749. // S indices
  7750. const int i1 = ik1;
  7751. ggml_vec_dot_f16(neq0,
  7752. S + i1,
  7753. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7754. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7755. }
  7756. } else {
  7757. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7758. // k indices
  7759. const int ik3 = iq3;
  7760. const int ik2 = iq2;
  7761. const int ik1 = ic;
  7762. // S indices
  7763. const int i1 = ik1;
  7764. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7765. S + i1,
  7766. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7767. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7768. }
  7769. }
  7770. // scale
  7771. ggml_vec_scale_f32(nek1, S, scale);
  7772. if (masked) {
  7773. for (int64_t i = P; i < M; i++) {
  7774. if (i > P + iq1) {
  7775. S[i] = -INFINITY;
  7776. }
  7777. }
  7778. }
  7779. // softmax
  7780. {
  7781. float max = -INFINITY;
  7782. ggml_vec_max_f32(M, &max, S);
  7783. ggml_float sum = 0.0;
  7784. {
  7785. #ifdef GGML_SOFT_MAX_ACCELERATE
  7786. max = -max;
  7787. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7788. vvexpf(S, S, &Mup);
  7789. ggml_vec_sum_f32(Mup, &sum, S);
  7790. #else
  7791. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7792. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7793. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7794. float * SS = S + i;
  7795. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7796. if (SS[j] == -INFINITY) {
  7797. SS[j] = 0.0f;
  7798. } else {
  7799. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7800. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7801. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7802. sump[j] += (ggml_float)val;
  7803. SS[j] = val;
  7804. }
  7805. }
  7806. }
  7807. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7808. sum += sump[i];
  7809. }
  7810. #endif
  7811. }
  7812. assert(sum > 0.0);
  7813. sum = 1.0/sum;
  7814. ggml_vec_scale_f32(M, S, sum);
  7815. #ifndef NDEBUG
  7816. for (int i = 0; i < M; ++i) {
  7817. assert(!isnan(S[i]));
  7818. assert(!isinf(S[i]));
  7819. }
  7820. #endif
  7821. }
  7822. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7823. for (int64_t i = 0; i < M; i++) {
  7824. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7825. }
  7826. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7827. for (int64_t ic = 0; ic < nev1; ++ic) {
  7828. // dst indices
  7829. const int i1 = iq1;
  7830. const int i2 = iq2;
  7831. const int i3 = iq3;
  7832. ggml_vec_dot_f16(nek1,
  7833. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7834. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7835. S16);
  7836. }
  7837. } else {
  7838. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7839. // dst indices
  7840. const int i1 = iq1;
  7841. const int i2 = iq2;
  7842. const int i3 = iq3;
  7843. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7844. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7845. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7846. S16);
  7847. }
  7848. }
  7849. }
  7850. }
  7851. static void ggml_compute_forward_flash_attn(
  7852. const struct ggml_compute_params * params,
  7853. const struct ggml_tensor * q,
  7854. const struct ggml_tensor * k,
  7855. const struct ggml_tensor * v,
  7856. const bool masked,
  7857. struct ggml_tensor * dst) {
  7858. switch (q->type) {
  7859. case GGML_TYPE_F16:
  7860. {
  7861. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7862. } break;
  7863. case GGML_TYPE_F32:
  7864. {
  7865. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7866. } break;
  7867. default:
  7868. {
  7869. GGML_ASSERT(false);
  7870. } break;
  7871. }
  7872. }
  7873. // ggml_compute_forward_flash_ff
  7874. static void ggml_compute_forward_flash_ff_f16(
  7875. const struct ggml_compute_params * params,
  7876. const struct ggml_tensor * a, // F16
  7877. const struct ggml_tensor * b0, // F16 fc_w
  7878. const struct ggml_tensor * b1, // F32 fc_b
  7879. const struct ggml_tensor * c0, // F16 proj_w
  7880. const struct ggml_tensor * c1, // F32 proj_b
  7881. struct ggml_tensor * dst) {
  7882. int64_t t0 = ggml_perf_time_us();
  7883. UNUSED(t0);
  7884. const int64_t nea0 = a->ne[0];
  7885. const int64_t nea1 = a->ne[1];
  7886. const int64_t nea2 = a->ne[2];
  7887. const int64_t nea3 = a->ne[3];
  7888. const int64_t neb00 = b0->ne[0];
  7889. const int64_t neb01 = b0->ne[1];
  7890. //const int64_t neb02 = b0->ne[2];
  7891. //const int64_t neb03 = b0->ne[3];
  7892. const int64_t neb10 = b1->ne[0];
  7893. const int64_t neb11 = b1->ne[1];
  7894. //const int64_t neb12 = b1->ne[2];
  7895. //const int64_t neb13 = b1->ne[3];
  7896. const int64_t nec00 = c0->ne[0];
  7897. const int64_t nec01 = c0->ne[1];
  7898. //const int64_t nec02 = c0->ne[2];
  7899. //const int64_t nec03 = c0->ne[3];
  7900. const int64_t nec10 = c1->ne[0];
  7901. const int64_t nec11 = c1->ne[1];
  7902. //const int64_t nec12 = c1->ne[2];
  7903. //const int64_t nec13 = c1->ne[3];
  7904. const int64_t ne0 = dst->ne[0];
  7905. const int64_t ne1 = dst->ne[1];
  7906. const int64_t ne2 = dst->ne[2];
  7907. //const int64_t ne3 = dst->ne[3];
  7908. const int nba0 = a->nb[0];
  7909. const int nba1 = a->nb[1];
  7910. const int nba2 = a->nb[2];
  7911. const int nba3 = a->nb[3];
  7912. const int nbb00 = b0->nb[0];
  7913. const int nbb01 = b0->nb[1];
  7914. const int nbb02 = b0->nb[2];
  7915. const int nbb03 = b0->nb[3];
  7916. const int nbb10 = b1->nb[0];
  7917. //const int nbb11 = b1->nb[1];
  7918. //const int nbb12 = b1->nb[2];
  7919. //const int nbb13 = b1->nb[3];
  7920. const int nbc00 = c0->nb[0];
  7921. const int nbc01 = c0->nb[1];
  7922. const int nbc02 = c0->nb[2];
  7923. const int nbc03 = c0->nb[3];
  7924. const int nbc10 = c1->nb[0];
  7925. //const int nbc11 = c1->nb[1];
  7926. //const int nbc12 = c1->nb[2];
  7927. //const int nbc13 = c1->nb[3];
  7928. const int nb0 = dst->nb[0];
  7929. const int nb1 = dst->nb[1];
  7930. const int nb2 = dst->nb[2];
  7931. const int nb3 = dst->nb[3];
  7932. const int ith = params->ith;
  7933. const int nth = params->nth;
  7934. const int64_t D = nea0;
  7935. //const int64_t N = nea1;
  7936. const int64_t M = neb01;
  7937. GGML_ASSERT(ne0 == nea0);
  7938. GGML_ASSERT(ne1 == nea1);
  7939. GGML_ASSERT(ne2 == nea2);
  7940. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7941. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7942. GGML_ASSERT(nbb10 == sizeof(float));
  7943. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7944. GGML_ASSERT(nbc10 == sizeof(float));
  7945. GGML_ASSERT(neb00 == D);
  7946. GGML_ASSERT(neb01 == M);
  7947. GGML_ASSERT(neb10 == M);
  7948. GGML_ASSERT(neb11 == 1);
  7949. GGML_ASSERT(nec00 == M);
  7950. GGML_ASSERT(nec01 == D);
  7951. GGML_ASSERT(nec10 == D);
  7952. GGML_ASSERT(nec11 == 1);
  7953. // dst cannot be transposed or permuted
  7954. GGML_ASSERT(nb0 == sizeof(float));
  7955. GGML_ASSERT(nb0 <= nb1);
  7956. GGML_ASSERT(nb1 <= nb2);
  7957. GGML_ASSERT(nb2 <= nb3);
  7958. if (params->type == GGML_TASK_INIT) {
  7959. return;
  7960. }
  7961. if (params->type == GGML_TASK_FINALIZE) {
  7962. return;
  7963. }
  7964. // parallelize by a rows using ggml_vec_dot_f32
  7965. // total rows in a
  7966. const int nr = nea1*nea2*nea3;
  7967. // rows per thread
  7968. const int dr = (nr + nth - 1)/nth;
  7969. // row range for this thread
  7970. const int ir0 = dr*ith;
  7971. const int ir1 = MIN(ir0 + dr, nr);
  7972. for (int ir = ir0; ir < ir1; ++ir) {
  7973. // a indices
  7974. const int ia3 = ir/(nea2*nea1);
  7975. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7976. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7977. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7978. for (int64_t ic = 0; ic < neb01; ++ic) {
  7979. // b0 indices
  7980. const int ib03 = ia3;
  7981. const int ib02 = ia2;
  7982. const int ib01 = ic;
  7983. // S indices
  7984. const int i1 = ib01;
  7985. ggml_vec_dot_f16(nea0,
  7986. S + i1,
  7987. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7988. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7989. }
  7990. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7991. //ggml_vec_gelu_f32(neb01, S, S);
  7992. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7993. for (int64_t i = 0; i < M; i++) {
  7994. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7995. }
  7996. ggml_vec_gelu_f16(neb01, S16, S16);
  7997. {
  7998. // dst indices
  7999. const int i1 = ia1;
  8000. const int i2 = ia2;
  8001. const int i3 = ia3;
  8002. for (int64_t ic = 0; ic < nec01; ++ic) {
  8003. ggml_vec_dot_f16(neb01,
  8004. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8005. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8006. S16);
  8007. }
  8008. ggml_vec_add_f32(nec01,
  8009. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8010. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8011. (float *) c1->data);
  8012. }
  8013. }
  8014. }
  8015. static void ggml_compute_forward_flash_ff(
  8016. const struct ggml_compute_params * params,
  8017. const struct ggml_tensor * a,
  8018. const struct ggml_tensor * b0,
  8019. const struct ggml_tensor * b1,
  8020. const struct ggml_tensor * c0,
  8021. const struct ggml_tensor * c1,
  8022. struct ggml_tensor * dst) {
  8023. switch (b0->type) {
  8024. case GGML_TYPE_F16:
  8025. {
  8026. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8027. } break;
  8028. case GGML_TYPE_F32:
  8029. {
  8030. GGML_ASSERT(false); // TODO
  8031. } break;
  8032. default:
  8033. {
  8034. GGML_ASSERT(false);
  8035. } break;
  8036. }
  8037. }
  8038. // ggml_compute_forward_map_unary
  8039. static void ggml_compute_forward_map_unary_f32(
  8040. const struct ggml_compute_params * params,
  8041. const struct ggml_tensor * src0,
  8042. struct ggml_tensor * dst,
  8043. const ggml_unary_op_f32_t fun) {
  8044. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8046. return;
  8047. }
  8048. const int n = ggml_nrows(src0);
  8049. const int nc = src0->ne[0];
  8050. assert( dst->nb[0] == sizeof(float));
  8051. assert(src0->nb[0] == sizeof(float));
  8052. for (int i = 0; i < n; i++) {
  8053. fun(nc,
  8054. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8055. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8056. }
  8057. }
  8058. static void ggml_compute_forward_map_unary(
  8059. const struct ggml_compute_params * params,
  8060. const struct ggml_tensor * src0,
  8061. struct ggml_tensor * dst,
  8062. const ggml_unary_op_f32_t fun) {
  8063. switch (src0->type) {
  8064. case GGML_TYPE_F32:
  8065. {
  8066. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8067. } break;
  8068. default:
  8069. {
  8070. GGML_ASSERT(false);
  8071. } break;
  8072. }
  8073. }
  8074. // ggml_compute_forward_map_binary
  8075. static void ggml_compute_forward_map_binary_f32(
  8076. const struct ggml_compute_params * params,
  8077. const struct ggml_tensor * src0,
  8078. const struct ggml_tensor * src1,
  8079. struct ggml_tensor * dst,
  8080. const ggml_binary_op_f32_t fun) {
  8081. assert(params->ith == 0);
  8082. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8084. return;
  8085. }
  8086. const int n = ggml_nrows(src0);
  8087. const int nc = src0->ne[0];
  8088. assert( dst->nb[0] == sizeof(float));
  8089. assert(src0->nb[0] == sizeof(float));
  8090. assert(src1->nb[0] == sizeof(float));
  8091. for (int i = 0; i < n; i++) {
  8092. fun(nc,
  8093. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8094. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8095. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8096. }
  8097. }
  8098. static void ggml_compute_forward_map_binary(
  8099. const struct ggml_compute_params * params,
  8100. const struct ggml_tensor * src0,
  8101. const struct ggml_tensor * src1,
  8102. struct ggml_tensor * dst,
  8103. const ggml_binary_op_f32_t fun) {
  8104. switch (src0->type) {
  8105. case GGML_TYPE_F32:
  8106. {
  8107. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8108. } break;
  8109. default:
  8110. {
  8111. GGML_ASSERT(false);
  8112. } break;
  8113. }
  8114. }
  8115. /////////////////////////////////
  8116. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8117. GGML_ASSERT(params);
  8118. switch (tensor->op) {
  8119. case GGML_OP_DUP:
  8120. {
  8121. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8122. } break;
  8123. case GGML_OP_ADD:
  8124. {
  8125. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8126. } break;
  8127. case GGML_OP_SUB:
  8128. {
  8129. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8130. } break;
  8131. case GGML_OP_MUL:
  8132. {
  8133. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8134. } break;
  8135. case GGML_OP_DIV:
  8136. {
  8137. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8138. } break;
  8139. case GGML_OP_SQR:
  8140. {
  8141. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8142. } break;
  8143. case GGML_OP_SQRT:
  8144. {
  8145. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8146. } break;
  8147. case GGML_OP_SUM:
  8148. {
  8149. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8150. } break;
  8151. case GGML_OP_MEAN:
  8152. {
  8153. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8154. } break;
  8155. case GGML_OP_REPEAT:
  8156. {
  8157. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8158. } break;
  8159. case GGML_OP_ABS:
  8160. {
  8161. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8162. } break;
  8163. case GGML_OP_SGN:
  8164. {
  8165. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8166. } break;
  8167. case GGML_OP_NEG:
  8168. {
  8169. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8170. } break;
  8171. case GGML_OP_STEP:
  8172. {
  8173. ggml_compute_forward_step(params, tensor->src0, tensor);
  8174. } break;
  8175. case GGML_OP_RELU:
  8176. {
  8177. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8178. } break;
  8179. case GGML_OP_GELU:
  8180. {
  8181. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8182. } break;
  8183. case GGML_OP_SILU:
  8184. {
  8185. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8186. } break;
  8187. case GGML_OP_NORM:
  8188. {
  8189. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8190. } break;
  8191. case GGML_OP_RMS_NORM:
  8192. {
  8193. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8194. } break;
  8195. case GGML_OP_MUL_MAT:
  8196. {
  8197. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8198. } break;
  8199. case GGML_OP_SCALE:
  8200. {
  8201. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8202. } break;
  8203. case GGML_OP_CPY:
  8204. {
  8205. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8206. } break;
  8207. case GGML_OP_CONT:
  8208. {
  8209. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8210. } break;
  8211. case GGML_OP_RESHAPE:
  8212. {
  8213. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8214. } break;
  8215. case GGML_OP_VIEW:
  8216. {
  8217. ggml_compute_forward_view(params, tensor->src0);
  8218. } break;
  8219. case GGML_OP_PERMUTE:
  8220. {
  8221. ggml_compute_forward_permute(params, tensor->src0);
  8222. } break;
  8223. case GGML_OP_TRANSPOSE:
  8224. {
  8225. ggml_compute_forward_transpose(params, tensor->src0);
  8226. } break;
  8227. case GGML_OP_GET_ROWS:
  8228. {
  8229. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8230. } break;
  8231. case GGML_OP_DIAG_MASK_INF:
  8232. {
  8233. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8234. } break;
  8235. case GGML_OP_SOFT_MAX:
  8236. {
  8237. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8238. } break;
  8239. case GGML_OP_ROPE:
  8240. {
  8241. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8242. } break;
  8243. case GGML_OP_ALIBI:
  8244. {
  8245. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8246. } break;
  8247. case GGML_OP_CONV_1D_1S:
  8248. {
  8249. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8250. } break;
  8251. case GGML_OP_CONV_1D_2S:
  8252. {
  8253. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8254. } break;
  8255. case GGML_OP_FLASH_ATTN:
  8256. {
  8257. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8258. GGML_ASSERT(t == 0 || t == 1);
  8259. bool masked = t != 0;
  8260. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8261. } break;
  8262. case GGML_OP_FLASH_FF:
  8263. {
  8264. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8265. } break;
  8266. case GGML_OP_MAP_UNARY:
  8267. {
  8268. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8269. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8270. }
  8271. break;
  8272. case GGML_OP_MAP_BINARY:
  8273. {
  8274. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8275. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8276. }
  8277. break;
  8278. case GGML_OP_NONE:
  8279. {
  8280. // nop
  8281. } break;
  8282. case GGML_OP_COUNT:
  8283. {
  8284. GGML_ASSERT(false);
  8285. } break;
  8286. }
  8287. }
  8288. ////////////////////////////////////////////////////////////////////////////////
  8289. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8290. struct ggml_tensor * src0 = tensor->src0;
  8291. struct ggml_tensor * src1 = tensor->src1;
  8292. switch (tensor->op) {
  8293. case GGML_OP_DUP:
  8294. {
  8295. if (src0->grad) {
  8296. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8297. }
  8298. } break;
  8299. case GGML_OP_ADD:
  8300. {
  8301. if (src0->grad) {
  8302. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8303. }
  8304. if (src1->grad) {
  8305. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8306. }
  8307. } break;
  8308. case GGML_OP_SUB:
  8309. {
  8310. if (src0->grad) {
  8311. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8312. }
  8313. if (src1->grad) {
  8314. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8315. }
  8316. } break;
  8317. case GGML_OP_MUL:
  8318. {
  8319. if (src0->grad) {
  8320. src0->grad =
  8321. ggml_add_impl(ctx,
  8322. src0->grad,
  8323. ggml_mul(ctx, src1, tensor->grad),
  8324. inplace);
  8325. }
  8326. if (src1->grad) {
  8327. src1->grad =
  8328. ggml_add_impl(ctx,
  8329. src1->grad,
  8330. ggml_mul(ctx, src0, tensor->grad),
  8331. inplace);
  8332. }
  8333. } break;
  8334. case GGML_OP_DIV:
  8335. {
  8336. if (src0->grad) {
  8337. src0->grad =
  8338. ggml_add_impl(ctx,
  8339. src0->grad,
  8340. ggml_div(ctx, tensor->grad, src1),
  8341. inplace);
  8342. }
  8343. if (src1->grad) {
  8344. src1->grad =
  8345. ggml_sub_impl(ctx,
  8346. src1->grad,
  8347. ggml_mul(ctx,
  8348. tensor->grad,
  8349. ggml_div(ctx, tensor, src1)),
  8350. inplace);
  8351. }
  8352. } break;
  8353. case GGML_OP_SQR:
  8354. {
  8355. if (src0->grad) {
  8356. src0->grad =
  8357. ggml_add_impl(ctx,
  8358. src0->grad,
  8359. ggml_mul(ctx,
  8360. ggml_mul(ctx, src0, tensor->grad),
  8361. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8362. inplace);
  8363. }
  8364. } break;
  8365. case GGML_OP_SQRT:
  8366. {
  8367. if (src0->grad) {
  8368. src0->grad =
  8369. ggml_add_impl(ctx,
  8370. src0->grad,
  8371. ggml_div(ctx,
  8372. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8373. tensor),
  8374. inplace);
  8375. }
  8376. } break;
  8377. case GGML_OP_SUM:
  8378. {
  8379. if (src0->grad) {
  8380. src0->grad =
  8381. ggml_add_impl(ctx,
  8382. src0->grad,
  8383. ggml_repeat(ctx, tensor->grad, src0->grad),
  8384. inplace);
  8385. }
  8386. } break;
  8387. case GGML_OP_MEAN:
  8388. {
  8389. GGML_ASSERT(false); // TODO: implement
  8390. } break;
  8391. case GGML_OP_REPEAT:
  8392. {
  8393. if (src0->grad) {
  8394. src0->grad =
  8395. ggml_add_impl(ctx,
  8396. src0->grad,
  8397. ggml_sum(ctx, tensor->grad),
  8398. inplace);
  8399. }
  8400. } break;
  8401. case GGML_OP_ABS:
  8402. {
  8403. if (src0->grad) {
  8404. src0->grad =
  8405. ggml_add_impl(ctx,
  8406. src0->grad,
  8407. ggml_mul(ctx,
  8408. ggml_sgn(ctx, src0),
  8409. tensor->grad),
  8410. inplace);
  8411. }
  8412. } break;
  8413. case GGML_OP_SGN:
  8414. {
  8415. if (src0->grad) {
  8416. // noop
  8417. }
  8418. } break;
  8419. case GGML_OP_NEG:
  8420. {
  8421. if (src0->grad) {
  8422. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8423. }
  8424. } break;
  8425. case GGML_OP_STEP:
  8426. {
  8427. if (src0->grad) {
  8428. // noop
  8429. }
  8430. } break;
  8431. case GGML_OP_RELU:
  8432. {
  8433. if (src0->grad) {
  8434. src0->grad = ggml_sub_impl(ctx,
  8435. src0->grad,
  8436. ggml_mul(ctx,
  8437. ggml_step(ctx, src0),
  8438. tensor->grad),
  8439. inplace);
  8440. }
  8441. } break;
  8442. case GGML_OP_GELU:
  8443. {
  8444. GGML_ASSERT(false); // TODO: not implemented
  8445. } break;
  8446. case GGML_OP_ALIBI:
  8447. {
  8448. GGML_ASSERT(false); // TODO: not implemented
  8449. } break;
  8450. case GGML_OP_SILU:
  8451. {
  8452. GGML_ASSERT(false); // TODO: not implemented
  8453. } break;
  8454. case GGML_OP_NORM:
  8455. {
  8456. GGML_ASSERT(false); // TODO: not implemented
  8457. } break;
  8458. case GGML_OP_RMS_NORM:
  8459. {
  8460. GGML_ASSERT(false); // TODO: not implemented
  8461. } break;
  8462. case GGML_OP_MUL_MAT:
  8463. {
  8464. if (src0->grad) {
  8465. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8466. GGML_ASSERT(false);
  8467. }
  8468. if (src1->grad) {
  8469. src1->grad =
  8470. ggml_add_impl(ctx,
  8471. src1->grad,
  8472. ggml_mul_mat(ctx,
  8473. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8474. tensor->grad),
  8475. inplace);
  8476. }
  8477. } break;
  8478. case GGML_OP_SCALE:
  8479. {
  8480. GGML_ASSERT(false); // TODO: not implemented
  8481. } break;
  8482. case GGML_OP_CPY:
  8483. {
  8484. GGML_ASSERT(false); // TODO: not implemented
  8485. } break;
  8486. case GGML_OP_CONT:
  8487. {
  8488. GGML_ASSERT(false); // TODO: not implemented
  8489. } break;
  8490. case GGML_OP_RESHAPE:
  8491. {
  8492. GGML_ASSERT(false); // TODO: not implemented
  8493. } break;
  8494. case GGML_OP_VIEW:
  8495. {
  8496. GGML_ASSERT(false); // not supported
  8497. } break;
  8498. case GGML_OP_PERMUTE:
  8499. {
  8500. GGML_ASSERT(false); // TODO: not implemented
  8501. } break;
  8502. case GGML_OP_TRANSPOSE:
  8503. {
  8504. GGML_ASSERT(false); // TODO: not implemented
  8505. } break;
  8506. case GGML_OP_GET_ROWS:
  8507. {
  8508. GGML_ASSERT(false); // TODO: not implemented
  8509. } break;
  8510. case GGML_OP_DIAG_MASK_INF:
  8511. {
  8512. GGML_ASSERT(false); // TODO: not implemented
  8513. } break;
  8514. case GGML_OP_SOFT_MAX:
  8515. {
  8516. GGML_ASSERT(false); // TODO: not implemented
  8517. } break;
  8518. case GGML_OP_ROPE:
  8519. {
  8520. GGML_ASSERT(false); // TODO: not implemented
  8521. } break;
  8522. case GGML_OP_CONV_1D_1S:
  8523. {
  8524. GGML_ASSERT(false); // TODO: not implemented
  8525. } break;
  8526. case GGML_OP_CONV_1D_2S:
  8527. {
  8528. GGML_ASSERT(false); // TODO: not implemented
  8529. } break;
  8530. case GGML_OP_FLASH_ATTN:
  8531. {
  8532. GGML_ASSERT(false); // not supported
  8533. } break;
  8534. case GGML_OP_FLASH_FF:
  8535. {
  8536. GGML_ASSERT(false); // not supported
  8537. } break;
  8538. case GGML_OP_MAP_UNARY:
  8539. case GGML_OP_MAP_BINARY:
  8540. {
  8541. GGML_ASSERT(false); // not supported
  8542. } break;
  8543. case GGML_OP_NONE:
  8544. {
  8545. // nop
  8546. } break;
  8547. case GGML_OP_COUNT:
  8548. {
  8549. GGML_ASSERT(false);
  8550. } break;
  8551. }
  8552. }
  8553. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8554. if (node->grad == NULL) {
  8555. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8556. // it can also happen during forward pass, if the user performs computations with constants
  8557. if (node->op != GGML_OP_NONE) {
  8558. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8559. }
  8560. }
  8561. // check if already visited
  8562. for (int i = 0; i < cgraph->n_nodes; i++) {
  8563. if (cgraph->nodes[i] == node) {
  8564. return;
  8565. }
  8566. }
  8567. for (int i = 0; i < cgraph->n_leafs; i++) {
  8568. if (cgraph->leafs[i] == node) {
  8569. return;
  8570. }
  8571. }
  8572. if (node->src0) {
  8573. ggml_visit_parents(cgraph, node->src0);
  8574. }
  8575. if (node->src1) {
  8576. ggml_visit_parents(cgraph, node->src1);
  8577. }
  8578. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8579. if (node->opt[i]) {
  8580. ggml_visit_parents(cgraph, node->opt[i]);
  8581. }
  8582. }
  8583. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8584. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8585. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8586. cgraph->leafs[cgraph->n_leafs] = node;
  8587. cgraph->n_leafs++;
  8588. } else {
  8589. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8590. cgraph->nodes[cgraph->n_nodes] = node;
  8591. cgraph->grads[cgraph->n_nodes] = node->grad;
  8592. cgraph->n_nodes++;
  8593. }
  8594. }
  8595. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8596. if (!expand) {
  8597. cgraph->n_nodes = 0;
  8598. cgraph->n_leafs = 0;
  8599. }
  8600. const int n0 = cgraph->n_nodes;
  8601. UNUSED(n0);
  8602. ggml_visit_parents(cgraph, tensor);
  8603. const int n_new = cgraph->n_nodes - n0;
  8604. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8605. if (n_new > 0) {
  8606. // the last added node should always be starting point
  8607. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8608. }
  8609. }
  8610. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8611. ggml_build_forward_impl(cgraph, tensor, true);
  8612. }
  8613. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8614. struct ggml_cgraph result = {
  8615. /*.n_nodes =*/ 0,
  8616. /*.n_leafs =*/ 0,
  8617. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8618. /*.work_size =*/ 0,
  8619. /*.work =*/ NULL,
  8620. /*.nodes =*/ { NULL },
  8621. /*.grads =*/ { NULL },
  8622. /*.leafs =*/ { NULL },
  8623. /*.perf_runs =*/ 0,
  8624. /*.perf_cycles =*/ 0,
  8625. /*.perf_time_us =*/ 0,
  8626. };
  8627. ggml_build_forward_impl(&result, tensor, false);
  8628. return result;
  8629. }
  8630. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8631. struct ggml_cgraph result = *gf;
  8632. GGML_ASSERT(gf->n_nodes > 0);
  8633. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8634. if (keep) {
  8635. for (int i = 0; i < gf->n_nodes; i++) {
  8636. struct ggml_tensor * node = gf->nodes[i];
  8637. if (node->grad) {
  8638. node->grad = ggml_dup_tensor(ctx, node);
  8639. gf->grads[i] = node->grad;
  8640. }
  8641. }
  8642. }
  8643. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8644. struct ggml_tensor * node = gf->nodes[i];
  8645. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8646. if (node->grad) {
  8647. ggml_compute_backward(ctx, node, keep);
  8648. }
  8649. }
  8650. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8651. struct ggml_tensor * node = gf->nodes[i];
  8652. if (node->is_param) {
  8653. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8654. ggml_build_forward_impl(&result, node->grad, true);
  8655. }
  8656. }
  8657. return result;
  8658. }
  8659. //
  8660. // thread data
  8661. //
  8662. // synchronization is done via busy loops
  8663. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8664. //
  8665. #ifdef __APPLE__
  8666. //#include <os/lock.h>
  8667. //
  8668. //typedef os_unfair_lock ggml_lock_t;
  8669. //
  8670. //#define ggml_lock_init(x) UNUSED(x)
  8671. //#define ggml_lock_destroy(x) UNUSED(x)
  8672. //#define ggml_lock_lock os_unfair_lock_lock
  8673. //#define ggml_lock_unlock os_unfair_lock_unlock
  8674. //
  8675. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8676. typedef int ggml_lock_t;
  8677. #define ggml_lock_init(x) UNUSED(x)
  8678. #define ggml_lock_destroy(x) UNUSED(x)
  8679. #define ggml_lock_lock(x) UNUSED(x)
  8680. #define ggml_lock_unlock(x) UNUSED(x)
  8681. #define GGML_LOCK_INITIALIZER 0
  8682. typedef pthread_t ggml_thread_t;
  8683. #define ggml_thread_create pthread_create
  8684. #define ggml_thread_join pthread_join
  8685. #else
  8686. //typedef pthread_spinlock_t ggml_lock_t;
  8687. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8688. //#define ggml_lock_destroy pthread_spin_destroy
  8689. //#define ggml_lock_lock pthread_spin_lock
  8690. //#define ggml_lock_unlock pthread_spin_unlock
  8691. typedef int ggml_lock_t;
  8692. #define ggml_lock_init(x) UNUSED(x)
  8693. #define ggml_lock_destroy(x) UNUSED(x)
  8694. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  8695. #define ggml_lock_lock(x) _mm_pause()
  8696. #else
  8697. #define ggml_lock_lock(x) UNUSED(x)
  8698. #endif
  8699. #define ggml_lock_unlock(x) UNUSED(x)
  8700. #define GGML_LOCK_INITIALIZER 0
  8701. typedef pthread_t ggml_thread_t;
  8702. #define ggml_thread_create pthread_create
  8703. #define ggml_thread_join pthread_join
  8704. #endif
  8705. struct ggml_compute_state_shared {
  8706. ggml_lock_t spin;
  8707. int n_threads;
  8708. // synchronization primitives
  8709. atomic_int n_ready;
  8710. atomic_bool has_work;
  8711. atomic_bool stop; // stop all threads
  8712. };
  8713. struct ggml_compute_state {
  8714. ggml_thread_t thrd;
  8715. struct ggml_compute_params params;
  8716. struct ggml_tensor * node;
  8717. struct ggml_compute_state_shared * shared;
  8718. };
  8719. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8720. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8721. const int n_threads = state->shared->n_threads;
  8722. while (true) {
  8723. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8724. atomic_store(&state->shared->has_work, false);
  8725. } else {
  8726. while (atomic_load(&state->shared->has_work)) {
  8727. if (atomic_load(&state->shared->stop)) {
  8728. return 0;
  8729. }
  8730. ggml_lock_lock (&state->shared->spin);
  8731. ggml_lock_unlock(&state->shared->spin);
  8732. }
  8733. }
  8734. atomic_fetch_sub(&state->shared->n_ready, 1);
  8735. // wait for work
  8736. while (!atomic_load(&state->shared->has_work)) {
  8737. if (atomic_load(&state->shared->stop)) {
  8738. return 0;
  8739. }
  8740. ggml_lock_lock (&state->shared->spin);
  8741. ggml_lock_unlock(&state->shared->spin);
  8742. }
  8743. // check if we should stop
  8744. if (atomic_load(&state->shared->stop)) {
  8745. break;
  8746. }
  8747. if (state->node) {
  8748. if (state->params.ith < state->params.nth) {
  8749. ggml_compute_forward(&state->params, state->node);
  8750. }
  8751. state->node = NULL;
  8752. } else {
  8753. break;
  8754. }
  8755. }
  8756. return 0;
  8757. }
  8758. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8759. const int n_threads = cgraph->n_threads;
  8760. struct ggml_compute_state_shared state_shared = {
  8761. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8762. /*.n_threads =*/ n_threads,
  8763. /*.n_ready =*/ 0,
  8764. /*.has_work =*/ false,
  8765. /*.stop =*/ false,
  8766. };
  8767. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8768. // create thread pool
  8769. if (n_threads > 1) {
  8770. ggml_lock_init(&state_shared.spin);
  8771. atomic_store(&state_shared.has_work, true);
  8772. for (int j = 0; j < n_threads - 1; j++) {
  8773. workers[j] = (struct ggml_compute_state) {
  8774. .thrd = 0,
  8775. .params = {
  8776. .type = GGML_TASK_COMPUTE,
  8777. .ith = j + 1,
  8778. .nth = n_threads,
  8779. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8780. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8781. },
  8782. .node = NULL,
  8783. .shared = &state_shared,
  8784. };
  8785. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8786. GGML_ASSERT(rc == 0);
  8787. UNUSED(rc);
  8788. }
  8789. }
  8790. // initialize tasks + work buffer
  8791. {
  8792. size_t work_size = 0;
  8793. // thread scheduling for the different operations
  8794. for (int i = 0; i < cgraph->n_nodes; i++) {
  8795. struct ggml_tensor * node = cgraph->nodes[i];
  8796. switch (node->op) {
  8797. case GGML_OP_CPY:
  8798. case GGML_OP_DUP:
  8799. {
  8800. node->n_tasks = n_threads;
  8801. size_t cur = 0;
  8802. if (ggml_is_quantized(node->type)) {
  8803. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8804. }
  8805. work_size = MAX(work_size, cur);
  8806. } break;
  8807. case GGML_OP_ADD:
  8808. {
  8809. node->n_tasks = n_threads;
  8810. size_t cur = 0;
  8811. if (ggml_is_quantized(node->src0->type)) {
  8812. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8813. }
  8814. work_size = MAX(work_size, cur);
  8815. } break;
  8816. case GGML_OP_SUB:
  8817. case GGML_OP_MUL:
  8818. case GGML_OP_DIV:
  8819. case GGML_OP_SQR:
  8820. case GGML_OP_SQRT:
  8821. case GGML_OP_SUM:
  8822. case GGML_OP_MEAN:
  8823. case GGML_OP_REPEAT:
  8824. case GGML_OP_ABS:
  8825. case GGML_OP_SGN:
  8826. case GGML_OP_NEG:
  8827. case GGML_OP_STEP:
  8828. case GGML_OP_RELU:
  8829. {
  8830. node->n_tasks = 1;
  8831. } break;
  8832. case GGML_OP_GELU:
  8833. {
  8834. node->n_tasks = n_threads;
  8835. } break;
  8836. case GGML_OP_SILU:
  8837. {
  8838. node->n_tasks = n_threads;
  8839. } break;
  8840. case GGML_OP_NORM:
  8841. case GGML_OP_RMS_NORM:
  8842. {
  8843. node->n_tasks = n_threads;
  8844. } break;
  8845. case GGML_OP_MUL_MAT:
  8846. {
  8847. node->n_tasks = n_threads;
  8848. // TODO: use different scheduling for different matrix sizes
  8849. //const int nr0 = ggml_nrows(node->src0);
  8850. //const int nr1 = ggml_nrows(node->src1);
  8851. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8852. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8853. size_t cur = 0;
  8854. #if defined(GGML_USE_CUBLAS)
  8855. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  8856. node->n_tasks = 1; // TODO: this actually is doing nothing
  8857. // the threads are still spinning
  8858. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  8859. }
  8860. else
  8861. #endif
  8862. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8863. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8864. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8865. node->n_tasks = 1; // TODO: this actually is doing nothing
  8866. // the threads are still spinning
  8867. // here we need memory just for single 2D matrix from src0
  8868. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8869. } else {
  8870. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8871. }
  8872. #else
  8873. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8874. #endif
  8875. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8876. cur = 0;
  8877. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8878. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8879. node->n_tasks = 1;
  8880. }
  8881. #endif
  8882. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8883. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8884. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8885. node->n_tasks = 1;
  8886. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8887. } else
  8888. #endif
  8889. {
  8890. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  8891. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  8892. }
  8893. } else {
  8894. GGML_ASSERT(false);
  8895. }
  8896. work_size = MAX(work_size, cur);
  8897. } break;
  8898. case GGML_OP_SCALE:
  8899. {
  8900. node->n_tasks = n_threads;
  8901. } break;
  8902. case GGML_OP_CONT:
  8903. case GGML_OP_RESHAPE:
  8904. case GGML_OP_VIEW:
  8905. case GGML_OP_PERMUTE:
  8906. case GGML_OP_TRANSPOSE:
  8907. case GGML_OP_GET_ROWS:
  8908. case GGML_OP_DIAG_MASK_INF:
  8909. {
  8910. node->n_tasks = 1;
  8911. } break;
  8912. case GGML_OP_SOFT_MAX:
  8913. {
  8914. node->n_tasks = n_threads;
  8915. } break;
  8916. case GGML_OP_ROPE:
  8917. {
  8918. node->n_tasks = n_threads;
  8919. } break;
  8920. case GGML_OP_ALIBI:
  8921. {
  8922. node->n_tasks = 1; //TODO
  8923. } break;
  8924. case GGML_OP_CONV_1D_1S:
  8925. case GGML_OP_CONV_1D_2S:
  8926. {
  8927. node->n_tasks = n_threads;
  8928. GGML_ASSERT(node->src0->ne[3] == 1);
  8929. GGML_ASSERT(node->src1->ne[2] == 1);
  8930. GGML_ASSERT(node->src1->ne[3] == 1);
  8931. size_t cur = 0;
  8932. const int nk = node->src0->ne[0];
  8933. if (node->src0->type == GGML_TYPE_F16 &&
  8934. node->src1->type == GGML_TYPE_F32) {
  8935. cur = sizeof(ggml_fp16_t)*(
  8936. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8937. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8938. );
  8939. } else if (node->src0->type == GGML_TYPE_F32 &&
  8940. node->src1->type == GGML_TYPE_F32) {
  8941. cur = sizeof(float)*(
  8942. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8943. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8944. );
  8945. } else {
  8946. GGML_ASSERT(false);
  8947. }
  8948. work_size = MAX(work_size, cur);
  8949. } break;
  8950. case GGML_OP_FLASH_ATTN:
  8951. {
  8952. node->n_tasks = n_threads;
  8953. size_t cur = 0;
  8954. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8955. if (node->src1->type == GGML_TYPE_F32) {
  8956. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8957. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8958. }
  8959. if (node->src1->type == GGML_TYPE_F16) {
  8960. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8961. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8962. }
  8963. work_size = MAX(work_size, cur);
  8964. } break;
  8965. case GGML_OP_FLASH_FF:
  8966. {
  8967. node->n_tasks = n_threads;
  8968. size_t cur = 0;
  8969. if (node->src1->type == GGML_TYPE_F32) {
  8970. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8971. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8972. }
  8973. if (node->src1->type == GGML_TYPE_F16) {
  8974. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8975. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8976. }
  8977. work_size = MAX(work_size, cur);
  8978. } break;
  8979. case GGML_OP_MAP_UNARY:
  8980. case GGML_OP_MAP_BINARY:
  8981. {
  8982. node->n_tasks = 1;
  8983. } break;
  8984. case GGML_OP_NONE:
  8985. {
  8986. node->n_tasks = 1;
  8987. } break;
  8988. case GGML_OP_COUNT:
  8989. {
  8990. GGML_ASSERT(false);
  8991. } break;
  8992. }
  8993. }
  8994. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8995. GGML_ASSERT(false); // TODO: better handling
  8996. }
  8997. if (work_size > 0 && cgraph->work == NULL) {
  8998. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8999. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9000. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9001. }
  9002. }
  9003. const int64_t perf_start_cycles = ggml_perf_cycles();
  9004. const int64_t perf_start_time_us = ggml_perf_time_us();
  9005. for (int i = 0; i < cgraph->n_nodes; i++) {
  9006. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9007. struct ggml_tensor * node = cgraph->nodes[i];
  9008. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9009. //if (node->grad == NULL && node->perf_runs > 0) {
  9010. // continue;
  9011. //}
  9012. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9013. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9014. // INIT
  9015. struct ggml_compute_params params = {
  9016. /*.type =*/ GGML_TASK_INIT,
  9017. /*.ith =*/ 0,
  9018. /*.nth =*/ node->n_tasks,
  9019. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9020. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9021. };
  9022. ggml_compute_forward(&params, node);
  9023. // COMPUTE
  9024. if (node->n_tasks > 1) {
  9025. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9026. atomic_store(&state_shared.has_work, false);
  9027. }
  9028. while (atomic_load(&state_shared.has_work)) {
  9029. ggml_lock_lock (&state_shared.spin);
  9030. ggml_lock_unlock(&state_shared.spin);
  9031. }
  9032. // launch thread pool
  9033. for (int j = 0; j < n_threads - 1; j++) {
  9034. workers[j].params = (struct ggml_compute_params) {
  9035. .type = GGML_TASK_COMPUTE,
  9036. .ith = j + 1,
  9037. .nth = node->n_tasks,
  9038. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9039. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9040. };
  9041. workers[j].node = node;
  9042. }
  9043. atomic_fetch_sub(&state_shared.n_ready, 1);
  9044. while (atomic_load(&state_shared.n_ready) > 0) {
  9045. ggml_lock_lock (&state_shared.spin);
  9046. ggml_lock_unlock(&state_shared.spin);
  9047. }
  9048. atomic_store(&state_shared.has_work, true);
  9049. }
  9050. params.type = GGML_TASK_COMPUTE;
  9051. ggml_compute_forward(&params, node);
  9052. // wait for thread pool
  9053. if (node->n_tasks > 1) {
  9054. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9055. atomic_store(&state_shared.has_work, false);
  9056. }
  9057. while (atomic_load(&state_shared.has_work)) {
  9058. ggml_lock_lock (&state_shared.spin);
  9059. ggml_lock_unlock(&state_shared.spin);
  9060. }
  9061. atomic_fetch_sub(&state_shared.n_ready, 1);
  9062. while (atomic_load(&state_shared.n_ready) != 0) {
  9063. ggml_lock_lock (&state_shared.spin);
  9064. ggml_lock_unlock(&state_shared.spin);
  9065. }
  9066. }
  9067. // FINALIZE
  9068. if (node->n_tasks > 1) {
  9069. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9070. atomic_store(&state_shared.has_work, false);
  9071. }
  9072. while (atomic_load(&state_shared.has_work)) {
  9073. ggml_lock_lock (&state_shared.spin);
  9074. ggml_lock_unlock(&state_shared.spin);
  9075. }
  9076. // launch thread pool
  9077. for (int j = 0; j < n_threads - 1; j++) {
  9078. workers[j].params = (struct ggml_compute_params) {
  9079. .type = GGML_TASK_FINALIZE,
  9080. .ith = j + 1,
  9081. .nth = node->n_tasks,
  9082. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9083. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9084. };
  9085. workers[j].node = node;
  9086. }
  9087. atomic_fetch_sub(&state_shared.n_ready, 1);
  9088. while (atomic_load(&state_shared.n_ready) > 0) {
  9089. ggml_lock_lock (&state_shared.spin);
  9090. ggml_lock_unlock(&state_shared.spin);
  9091. }
  9092. atomic_store(&state_shared.has_work, true);
  9093. }
  9094. params.type = GGML_TASK_FINALIZE;
  9095. ggml_compute_forward(&params, node);
  9096. // wait for thread pool
  9097. if (node->n_tasks > 1) {
  9098. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9099. atomic_store(&state_shared.has_work, false);
  9100. }
  9101. while (atomic_load(&state_shared.has_work)) {
  9102. ggml_lock_lock (&state_shared.spin);
  9103. ggml_lock_unlock(&state_shared.spin);
  9104. }
  9105. atomic_fetch_sub(&state_shared.n_ready, 1);
  9106. while (atomic_load(&state_shared.n_ready) != 0) {
  9107. ggml_lock_lock (&state_shared.spin);
  9108. ggml_lock_unlock(&state_shared.spin);
  9109. }
  9110. }
  9111. // performance stats (node)
  9112. {
  9113. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9114. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9115. node->perf_runs++;
  9116. node->perf_cycles += perf_cycles_cur;
  9117. node->perf_time_us += perf_time_us_cur;
  9118. }
  9119. }
  9120. // join thread pool
  9121. if (n_threads > 1) {
  9122. atomic_store(&state_shared.stop, true);
  9123. atomic_store(&state_shared.has_work, true);
  9124. for (int j = 0; j < n_threads - 1; j++) {
  9125. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9126. GGML_ASSERT(rc == 0);
  9127. UNUSED(rc);
  9128. }
  9129. ggml_lock_destroy(&state_shared.spin);
  9130. }
  9131. // performance stats (graph)
  9132. {
  9133. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9134. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9135. cgraph->perf_runs++;
  9136. cgraph->perf_cycles += perf_cycles_cur;
  9137. cgraph->perf_time_us += perf_time_us_cur;
  9138. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9139. __func__, cgraph->perf_runs,
  9140. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9141. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9142. (double) perf_time_us_cur / 1000.0,
  9143. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9144. }
  9145. }
  9146. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9147. for (int i = 0; i < cgraph->n_nodes; i++) {
  9148. struct ggml_tensor * grad = cgraph->grads[i];
  9149. if (grad) {
  9150. ggml_set_zero(grad);
  9151. }
  9152. }
  9153. }
  9154. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9155. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9156. GGML_PRINT("=== GRAPH ===\n");
  9157. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9158. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9159. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9160. for (int i = 0; i < cgraph->n_nodes; i++) {
  9161. struct ggml_tensor * node = cgraph->nodes[i];
  9162. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9163. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9164. i,
  9165. node->ne[0], node->ne[1], node->ne[2],
  9166. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9167. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9168. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9169. (double) node->perf_time_us / 1000.0,
  9170. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9171. }
  9172. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9173. for (int i = 0; i < cgraph->n_leafs; i++) {
  9174. struct ggml_tensor * node = cgraph->leafs[i];
  9175. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9176. i,
  9177. node->ne[0], node->ne[1],
  9178. GGML_OP_LABEL[node->op]);
  9179. }
  9180. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9181. if (perf_total_per_op_us[i] == 0) {
  9182. continue;
  9183. }
  9184. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9185. }
  9186. GGML_PRINT("========================================\n");
  9187. }
  9188. // check if node is part of the graph
  9189. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9190. if (cgraph == NULL) {
  9191. return true;
  9192. }
  9193. for (int i = 0; i < cgraph->n_nodes; i++) {
  9194. if (cgraph->nodes[i] == node) {
  9195. return true;
  9196. }
  9197. }
  9198. return false;
  9199. }
  9200. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9201. for (int i = 0; i < cgraph->n_nodes; i++) {
  9202. struct ggml_tensor * parent = cgraph->nodes[i];
  9203. if (parent->grad == node) {
  9204. return parent;
  9205. }
  9206. }
  9207. return NULL;
  9208. }
  9209. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9210. char color[16];
  9211. FILE * fp = fopen(filename, "w");
  9212. GGML_ASSERT(fp);
  9213. fprintf(fp, "digraph G {\n");
  9214. fprintf(fp, " newrank = true;\n");
  9215. fprintf(fp, " rankdir = LR;\n");
  9216. for (int i = 0; i < gb->n_nodes; i++) {
  9217. struct ggml_tensor * node = gb->nodes[i];
  9218. if (ggml_graph_get_parent(gb, node) != NULL) {
  9219. continue;
  9220. }
  9221. if (node->is_param) {
  9222. snprintf(color, sizeof(color), "yellow");
  9223. } else if (node->grad) {
  9224. if (ggml_graph_find(gf, node)) {
  9225. snprintf(color, sizeof(color), "green");
  9226. } else {
  9227. snprintf(color, sizeof(color), "lightblue");
  9228. }
  9229. } else {
  9230. snprintf(color, sizeof(color), "white");
  9231. }
  9232. fprintf(fp, " \"%p\" [ "
  9233. "style = filled; fillcolor = %s; shape = record; "
  9234. "label=\"",
  9235. (void *) node, color);
  9236. if (strlen(node->name) > 0) {
  9237. fprintf(fp, "%s |", node->name);
  9238. }
  9239. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9240. i, node->ne[0], node->ne[1],
  9241. GGML_OP_SYMBOL[node->op]);
  9242. if (node->grad) {
  9243. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9244. } else {
  9245. fprintf(fp, "\"; ]\n");
  9246. }
  9247. }
  9248. for (int i = 0; i < gb->n_leafs; i++) {
  9249. struct ggml_tensor * node = gb->leafs[i];
  9250. snprintf(color, sizeof(color), "pink");
  9251. fprintf(fp, " \"%p\" [ "
  9252. "style = filled; fillcolor = %s; shape = record; "
  9253. "label=\"<x>",
  9254. (void *) node, color);
  9255. if (strlen(node->name) > 0) {
  9256. fprintf(fp, "%s | ", node->name);
  9257. }
  9258. if (ggml_nelements(node) == 1) {
  9259. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  9260. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  9261. }
  9262. else {
  9263. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  9264. }
  9265. }
  9266. else {
  9267. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  9268. }
  9269. fprintf(fp, "\"; ]\n");
  9270. }
  9271. for (int i = 0; i < gb->n_nodes; i++) {
  9272. struct ggml_tensor * node = gb->nodes[i];
  9273. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9274. if (node->src0) {
  9275. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9276. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9277. parent0 ? (void *) parent0 : (void *) node->src0,
  9278. parent0 ? "g" : "x",
  9279. parent ? (void *) parent : (void *) node,
  9280. parent ? "g" : "x",
  9281. parent ? "empty" : "vee",
  9282. parent ? "dashed" : "solid");
  9283. }
  9284. if (node->src1) {
  9285. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9286. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9287. parent1 ? (void *) parent1 : (void *) node->src1,
  9288. parent1 ? "g" : "x",
  9289. parent ? (void *) parent : (void *) node,
  9290. parent ? "g" : "x",
  9291. parent ? "empty" : "vee",
  9292. parent ? "dashed" : "solid");
  9293. }
  9294. }
  9295. for (int i = 0; i < gb->n_leafs; i++) {
  9296. struct ggml_tensor * node = gb->leafs[i];
  9297. if (node->src0) {
  9298. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9299. (void *) node->src0, "x",
  9300. (void *) node, "x");
  9301. }
  9302. if (node->src1) {
  9303. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9304. (void *) node->src1, "x",
  9305. (void *) node, "x");
  9306. }
  9307. }
  9308. fprintf(fp, "}\n");
  9309. fclose(fp);
  9310. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9311. }
  9312. ////////////////////////////////////////////////////////////////////////////////
  9313. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9314. int i = 0;
  9315. for (int p = 0; p < np; ++p) {
  9316. const int64_t ne = ggml_nelements(ps[p]) ;
  9317. // TODO: add function to set tensor from array
  9318. for (int64_t j = 0; j < ne; ++j) {
  9319. ggml_set_f32_1d(ps[p], j, x[i++]);
  9320. }
  9321. }
  9322. }
  9323. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9324. int i = 0;
  9325. for (int p = 0; p < np; ++p) {
  9326. const int64_t ne = ggml_nelements(ps[p]) ;
  9327. // TODO: add function to get all elements at once
  9328. for (int64_t j = 0; j < ne; ++j) {
  9329. x[i++] = ggml_get_f32_1d(ps[p], j);
  9330. }
  9331. }
  9332. }
  9333. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9334. int i = 0;
  9335. for (int p = 0; p < np; ++p) {
  9336. const int64_t ne = ggml_nelements(ps[p]) ;
  9337. // TODO: add function to get all elements at once
  9338. for (int64_t j = 0; j < ne; ++j) {
  9339. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9340. }
  9341. }
  9342. }
  9343. //
  9344. // ADAM
  9345. //
  9346. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9347. //
  9348. static enum ggml_opt_result ggml_opt_adam(
  9349. struct ggml_context * ctx,
  9350. struct ggml_opt_params params,
  9351. struct ggml_tensor * f,
  9352. struct ggml_cgraph * gf,
  9353. struct ggml_cgraph * gb) {
  9354. GGML_ASSERT(ggml_is_scalar(f));
  9355. gf->n_threads = params.n_threads;
  9356. gb->n_threads = params.n_threads;
  9357. // these will store the parameters we want to optimize
  9358. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9359. int np = 0;
  9360. int nx = 0;
  9361. for (int i = 0; i < gf->n_nodes; ++i) {
  9362. if (gf->nodes[i]->is_param) {
  9363. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9364. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9365. ps[np++] = gf->nodes[i];
  9366. nx += ggml_nelements(gf->nodes[i]);
  9367. }
  9368. }
  9369. // constants
  9370. const float alpha = params.adam.alpha;
  9371. const float beta1 = params.adam.beta1;
  9372. const float beta2 = params.adam.beta2;
  9373. const float eps = params.adam.eps;
  9374. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9375. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9376. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9377. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9378. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9379. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9380. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9381. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9382. // initialize
  9383. ggml_vec_set_f32(nx, m, 0.0f);
  9384. ggml_vec_set_f32(nx, v, 0.0f);
  9385. // update view
  9386. ggml_opt_get_params(np, ps, x);
  9387. // compute the function value
  9388. ggml_graph_reset (gf);
  9389. ggml_set_f32 (f->grad, 1.0f);
  9390. ggml_graph_compute(ctx, gb);
  9391. float fx_prev = ggml_get_f32_1d(f, 0);
  9392. if (pf) {
  9393. pf[0] = fx_prev;
  9394. }
  9395. int n_no_improvement = 0;
  9396. float fx_best = fx_prev;
  9397. // run the optimizer
  9398. for (int t = 0; t < params.adam.n_iter; ++t) {
  9399. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9400. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9401. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9402. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9403. for (int i = 0; i < np; ++i) {
  9404. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9405. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9406. }
  9407. const int64_t t_start_wall = ggml_time_us();
  9408. const int64_t t_start_cpu = ggml_cycles();
  9409. UNUSED(t_start_wall);
  9410. UNUSED(t_start_cpu);
  9411. {
  9412. // update the gradient
  9413. ggml_opt_get_grad(np, ps, g1);
  9414. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9415. ggml_vec_scale_f32(nx, m, beta1);
  9416. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9417. // g2 = g1^2
  9418. ggml_vec_sqr_f32 (nx, g2, g1);
  9419. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9420. ggml_vec_scale_f32(nx, v, beta2);
  9421. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9422. // m^hat = m_t / (1 - beta1^t)
  9423. // v^hat = v_t / (1 - beta2^t)
  9424. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9425. ggml_vec_cpy_f32 (nx, mh, m);
  9426. ggml_vec_cpy_f32 (nx, vh, v);
  9427. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9428. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9429. ggml_vec_sqrt_f32 (nx, vh, vh);
  9430. ggml_vec_acc1_f32 (nx, vh, eps);
  9431. ggml_vec_div_f32 (nx, mh, mh, vh);
  9432. ggml_vec_sub_f32 (nx, x, x, mh);
  9433. // update the parameters
  9434. ggml_opt_set_params(np, ps, x);
  9435. }
  9436. ggml_graph_reset (gf);
  9437. ggml_set_f32 (f->grad, 1.0f);
  9438. ggml_graph_compute(ctx, gb);
  9439. const float fx = ggml_get_f32_1d(f, 0);
  9440. // check convergence
  9441. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9442. GGML_PRINT_DEBUG("converged\n");
  9443. return GGML_OPT_OK;
  9444. }
  9445. // delta-based convergence test
  9446. if (pf != NULL) {
  9447. // need at least params.past iterations to start checking for convergence
  9448. if (params.past <= t) {
  9449. const float rate = (pf[t%params.past] - fx)/fx;
  9450. if (fabsf(rate) < params.delta) {
  9451. return GGML_OPT_OK;
  9452. }
  9453. }
  9454. pf[t%params.past] = fx;
  9455. }
  9456. // check for improvement
  9457. if (params.max_no_improvement > 0) {
  9458. if (fx_best > fx) {
  9459. fx_best = fx;
  9460. n_no_improvement = 0;
  9461. } else {
  9462. ++n_no_improvement;
  9463. if (n_no_improvement >= params.max_no_improvement) {
  9464. return GGML_OPT_OK;
  9465. }
  9466. }
  9467. }
  9468. fx_prev = fx;
  9469. {
  9470. const int64_t t_end_cpu = ggml_cycles();
  9471. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9472. UNUSED(t_end_cpu);
  9473. const int64_t t_end_wall = ggml_time_us();
  9474. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9475. UNUSED(t_end_wall);
  9476. }
  9477. }
  9478. return GGML_OPT_DID_NOT_CONVERGE;
  9479. }
  9480. //
  9481. // L-BFGS
  9482. //
  9483. // the L-BFGS implementation below is based on the following implementation:
  9484. //
  9485. // https://github.com/chokkan/liblbfgs
  9486. //
  9487. struct ggml_lbfgs_iteration_data {
  9488. float alpha;
  9489. float ys;
  9490. float * s;
  9491. float * y;
  9492. };
  9493. static enum ggml_opt_result linesearch_backtracking(
  9494. struct ggml_context * ctx,
  9495. const struct ggml_opt_params * params,
  9496. int nx,
  9497. float * x,
  9498. float * fx,
  9499. float * g,
  9500. float * d,
  9501. float * step,
  9502. const float * xp,
  9503. struct ggml_tensor * f,
  9504. struct ggml_cgraph * gf,
  9505. struct ggml_cgraph * gb,
  9506. const int np,
  9507. struct ggml_tensor * ps[]) {
  9508. int count = 0;
  9509. float width = 0.0f;
  9510. float dg = 0.0f;
  9511. float finit = 0.0f;
  9512. float dginit = 0.0f;
  9513. float dgtest = 0.0f;
  9514. const float dec = 0.5f;
  9515. const float inc = 2.1f;
  9516. if (*step <= 0.f) {
  9517. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9518. }
  9519. // compute the initial gradient in the search direction
  9520. ggml_vec_dot_f32(nx, &dginit, g, d);
  9521. // make sure that d points to a descent direction
  9522. if (0 < dginit) {
  9523. return GGML_LINESEARCH_FAIL;
  9524. }
  9525. // initialize local variables
  9526. finit = *fx;
  9527. dgtest = params->lbfgs.ftol*dginit;
  9528. while (true) {
  9529. ggml_vec_cpy_f32(nx, x, xp);
  9530. ggml_vec_mad_f32(nx, x, d, *step);
  9531. // evaluate the function and gradient values
  9532. {
  9533. ggml_opt_set_params(np, ps, x);
  9534. ggml_graph_reset (gf);
  9535. ggml_set_f32 (f->grad, 1.0f);
  9536. ggml_graph_compute(ctx, gb);
  9537. ggml_opt_get_grad(np, ps, g);
  9538. *fx = ggml_get_f32_1d(f, 0);
  9539. }
  9540. ++count;
  9541. if (*fx > finit + (*step)*dgtest) {
  9542. width = dec;
  9543. } else {
  9544. // Armijo condition is satisfied
  9545. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9546. return count;
  9547. }
  9548. ggml_vec_dot_f32(nx, &dg, g, d);
  9549. // check the Wolfe condition
  9550. if (dg < params->lbfgs.wolfe * dginit) {
  9551. width = inc;
  9552. } else {
  9553. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9554. // regular Wolfe conditions
  9555. return count;
  9556. }
  9557. if(dg > -params->lbfgs.wolfe*dginit) {
  9558. width = dec;
  9559. } else {
  9560. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9561. return count;
  9562. }
  9563. return count;
  9564. }
  9565. }
  9566. if (*step < params->lbfgs.min_step) {
  9567. return GGML_LINESEARCH_MINIMUM_STEP;
  9568. }
  9569. if (*step > params->lbfgs.max_step) {
  9570. return GGML_LINESEARCH_MAXIMUM_STEP;
  9571. }
  9572. if (params->lbfgs.max_linesearch <= count) {
  9573. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9574. }
  9575. (*step) *= width;
  9576. }
  9577. return GGML_LINESEARCH_FAIL;
  9578. }
  9579. static enum ggml_opt_result ggml_opt_lbfgs(
  9580. struct ggml_context * ctx,
  9581. struct ggml_opt_params params,
  9582. struct ggml_tensor * f,
  9583. struct ggml_cgraph * gf,
  9584. struct ggml_cgraph * gb) {
  9585. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9586. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9587. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9588. return GGML_OPT_INVALID_WOLFE;
  9589. }
  9590. }
  9591. gf->n_threads = params.n_threads;
  9592. gb->n_threads = params.n_threads;
  9593. const int m = params.lbfgs.m;
  9594. // these will store the parameters we want to optimize
  9595. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9596. int np = 0;
  9597. int nx = 0;
  9598. for (int i = 0; i < gf->n_nodes; ++i) {
  9599. if (gf->nodes[i]->is_param) {
  9600. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9601. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9602. ps[np++] = gf->nodes[i];
  9603. nx += ggml_nelements(gf->nodes[i]);
  9604. }
  9605. }
  9606. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9607. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9608. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9609. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9610. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9611. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9612. float fx = 0.0f; // cost function value
  9613. float xnorm = 0.0f; // ||x||
  9614. float gnorm = 0.0f; // ||g||
  9615. float step = 0.0f;
  9616. // initialize x from the graph nodes
  9617. ggml_opt_get_params(np, ps, x);
  9618. // the L-BFGS memory
  9619. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9620. for (int i = 0; i < m; ++i) {
  9621. lm[i].alpha = 0.0f;
  9622. lm[i].ys = 0.0f;
  9623. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9624. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9625. }
  9626. // evaluate the function value and its gradient
  9627. {
  9628. ggml_opt_set_params(np, ps, x);
  9629. ggml_graph_reset (gf);
  9630. ggml_set_f32 (f->grad, 1.0f);
  9631. ggml_graph_compute(ctx, gb);
  9632. ggml_opt_get_grad(np, ps, g);
  9633. fx = ggml_get_f32_1d(f, 0);
  9634. }
  9635. if (pf) {
  9636. pf[0] = fx;
  9637. }
  9638. float fx_best = fx;
  9639. // search direction = -gradient
  9640. ggml_vec_neg_f32(nx, d, g);
  9641. // ||x||, ||g||
  9642. ggml_vec_norm_f32(nx, &xnorm, x);
  9643. ggml_vec_norm_f32(nx, &gnorm, g);
  9644. if (xnorm < 1.0f) {
  9645. xnorm = 1.0f;
  9646. }
  9647. // already optimized
  9648. if (gnorm/xnorm <= params.lbfgs.eps) {
  9649. return GGML_OPT_OK;
  9650. }
  9651. // initial step
  9652. ggml_vec_norm_inv_f32(nx, &step, d);
  9653. int j = 0;
  9654. int k = 1;
  9655. int ls = 0;
  9656. int end = 0;
  9657. int bound = 0;
  9658. int n_no_improvement = 0;
  9659. float ys = 0.0f;
  9660. float yy = 0.0f;
  9661. float beta = 0.0f;
  9662. while (true) {
  9663. // store the current position and gradient vectors
  9664. ggml_vec_cpy_f32(nx, xp, x);
  9665. ggml_vec_cpy_f32(nx, gp, g);
  9666. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9667. if (ls < 0) {
  9668. // linesearch failed - go back to the previous point and return
  9669. ggml_vec_cpy_f32(nx, x, xp);
  9670. ggml_vec_cpy_f32(nx, g, gp);
  9671. return ls;
  9672. }
  9673. ggml_vec_norm_f32(nx, &xnorm, x);
  9674. ggml_vec_norm_f32(nx, &gnorm, g);
  9675. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9676. if (xnorm < 1.0f) {
  9677. xnorm = 1.0f;
  9678. }
  9679. if (gnorm/xnorm <= params.lbfgs.eps) {
  9680. // converged
  9681. return GGML_OPT_OK;
  9682. }
  9683. // delta-based convergence test
  9684. if (pf != NULL) {
  9685. // need at least params.past iterations to start checking for convergence
  9686. if (params.past <= k) {
  9687. const float rate = (pf[k%params.past] - fx)/fx;
  9688. if (fabsf(rate) < params.delta) {
  9689. return GGML_OPT_OK;
  9690. }
  9691. }
  9692. pf[k%params.past] = fx;
  9693. }
  9694. // check for improvement
  9695. if (params.max_no_improvement > 0) {
  9696. if (fx < fx_best) {
  9697. fx_best = fx;
  9698. n_no_improvement = 0;
  9699. } else {
  9700. n_no_improvement++;
  9701. if (n_no_improvement >= params.max_no_improvement) {
  9702. return GGML_OPT_OK;
  9703. }
  9704. }
  9705. }
  9706. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9707. // reached the maximum number of iterations
  9708. return GGML_OPT_DID_NOT_CONVERGE;
  9709. }
  9710. // update vectors s and y:
  9711. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9712. // y_{k+1} = g_{k+1} - g_{k}.
  9713. //
  9714. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9715. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9716. // compute scalars ys and yy:
  9717. // ys = y^t \cdot s -> 1 / \rho.
  9718. // yy = y^t \cdot y.
  9719. //
  9720. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9721. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9722. lm[end].ys = ys;
  9723. // find new search direction
  9724. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9725. bound = (m <= k) ? m : k;
  9726. k++;
  9727. end = (end + 1)%m;
  9728. // initialize search direction with -g
  9729. ggml_vec_neg_f32(nx, d, g);
  9730. j = end;
  9731. for (int i = 0; i < bound; ++i) {
  9732. j = (j + m - 1) % m;
  9733. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9734. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9735. lm[j].alpha /= lm[j].ys;
  9736. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9737. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9738. }
  9739. ggml_vec_scale_f32(nx, d, ys/yy);
  9740. for (int i = 0; i < bound; ++i) {
  9741. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9742. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9743. beta /= lm[j].ys;
  9744. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9745. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9746. j = (j + 1)%m;
  9747. }
  9748. step = 1.0;
  9749. }
  9750. return GGML_OPT_DID_NOT_CONVERGE;
  9751. }
  9752. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9753. struct ggml_opt_params result;
  9754. switch (type) {
  9755. case GGML_OPT_ADAM:
  9756. {
  9757. result = (struct ggml_opt_params) {
  9758. .type = GGML_OPT_ADAM,
  9759. .n_threads = 1,
  9760. .past = 0,
  9761. .delta = 1e-5f,
  9762. .max_no_improvement = 100,
  9763. .print_forward_graph = true,
  9764. .print_backward_graph = true,
  9765. .adam = {
  9766. .n_iter = 10000,
  9767. .alpha = 0.001f,
  9768. .beta1 = 0.9f,
  9769. .beta2 = 0.999f,
  9770. .eps = 1e-8f,
  9771. .eps_f = 1e-5f,
  9772. .eps_g = 1e-3f,
  9773. },
  9774. };
  9775. } break;
  9776. case GGML_OPT_LBFGS:
  9777. {
  9778. result = (struct ggml_opt_params) {
  9779. .type = GGML_OPT_LBFGS,
  9780. .n_threads = 1,
  9781. .past = 0,
  9782. .delta = 1e-5f,
  9783. .max_no_improvement = 0,
  9784. .print_forward_graph = true,
  9785. .print_backward_graph = true,
  9786. .lbfgs = {
  9787. .m = 6,
  9788. .n_iter = 100,
  9789. .max_linesearch = 20,
  9790. .eps = 1e-5f,
  9791. .ftol = 1e-4f,
  9792. .wolfe = 0.9f,
  9793. .min_step = 1e-20f,
  9794. .max_step = 1e+20f,
  9795. .linesearch = GGML_LINESEARCH_DEFAULT,
  9796. },
  9797. };
  9798. } break;
  9799. }
  9800. return result;
  9801. }
  9802. enum ggml_opt_result ggml_opt(
  9803. struct ggml_context * ctx,
  9804. struct ggml_opt_params params,
  9805. struct ggml_tensor * f) {
  9806. bool free_ctx = false;
  9807. if (ctx == NULL) {
  9808. struct ggml_init_params params_ctx = {
  9809. .mem_size = 16*1024*1024,
  9810. .mem_buffer = NULL,
  9811. .no_alloc = false,
  9812. };
  9813. ctx = ggml_init(params_ctx);
  9814. if (ctx == NULL) {
  9815. return GGML_OPT_NO_CONTEXT;
  9816. }
  9817. free_ctx = true;
  9818. }
  9819. enum ggml_opt_result result = GGML_OPT_OK;
  9820. // build forward + backward compute graphs
  9821. struct ggml_cgraph gf = ggml_build_forward (f);
  9822. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9823. switch (params.type) {
  9824. case GGML_OPT_ADAM:
  9825. {
  9826. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9827. } break;
  9828. case GGML_OPT_LBFGS:
  9829. {
  9830. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9831. } break;
  9832. }
  9833. if (params.print_forward_graph) {
  9834. ggml_graph_print (&gf);
  9835. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9836. }
  9837. if (params.print_backward_graph) {
  9838. ggml_graph_print (&gb);
  9839. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9840. }
  9841. if (free_ctx) {
  9842. ggml_free(ctx);
  9843. }
  9844. return result;
  9845. }
  9846. ////////////////////////////////////////////////////////////////////////////////
  9847. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9848. assert(k % QK4_0 == 0);
  9849. const int nb = k / QK4_0;
  9850. for (int b = 0; b < n; b += k) {
  9851. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  9852. quantize_row_q4_0_reference(src + b, y, k);
  9853. for (int i = 0; i < nb; i++) {
  9854. for (int j = 0; j < QK4_0; j += 2) {
  9855. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  9856. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  9857. hist[vi0]++;
  9858. hist[vi1]++;
  9859. }
  9860. }
  9861. }
  9862. return (n/QK4_0*sizeof(block_q4_0));
  9863. }
  9864. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9865. assert(k % QK4_1 == 0);
  9866. const int nb = k / QK4_1;
  9867. for (int b = 0; b < n; b += k) {
  9868. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  9869. quantize_row_q4_1_reference(src + b, y, k);
  9870. for (int i = 0; i < nb; i++) {
  9871. for (int j = 0; j < QK4_1; j += 2) {
  9872. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  9873. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  9874. hist[vi0]++;
  9875. hist[vi1]++;
  9876. }
  9877. }
  9878. }
  9879. return (n/QK4_1*sizeof(block_q4_1));
  9880. }
  9881. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9882. assert(k % QK5_0 == 0);
  9883. const int nb = k / QK5_0;
  9884. for (int b = 0; b < n; b += k) {
  9885. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  9886. quantize_row_q5_0_reference(src + b, y, k);
  9887. for (int i = 0; i < nb; i++) {
  9888. uint32_t qh;
  9889. memcpy(&qh, &y[i].qh, sizeof(qh));
  9890. for (int j = 0; j < QK5_0; j += 2) {
  9891. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  9892. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  9893. // cast to 16 bins
  9894. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  9895. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  9896. hist[vi0]++;
  9897. hist[vi1]++;
  9898. }
  9899. }
  9900. }
  9901. return (n/QK5_0*sizeof(block_q5_0));
  9902. }
  9903. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9904. assert(k % QK5_1 == 0);
  9905. const int nb = k / QK5_1;
  9906. for (int b = 0; b < n; b += k) {
  9907. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  9908. quantize_row_q5_1_reference(src + b, y, k);
  9909. for (int i = 0; i < nb; i++) {
  9910. uint32_t qh;
  9911. memcpy(&qh, &y[i].qh, sizeof(qh));
  9912. for (int j = 0; j < QK5_1; j += 2) {
  9913. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  9914. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  9915. // cast to 16 bins
  9916. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  9917. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  9918. hist[vi0]++;
  9919. hist[vi1]++;
  9920. }
  9921. }
  9922. }
  9923. return (n/QK5_1*sizeof(block_q5_1));
  9924. }
  9925. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9926. assert(k % QK8_0 == 0);
  9927. const int nb = k / QK8_0;
  9928. for (int b = 0; b < n; b += k) {
  9929. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  9930. quantize_row_q8_0_reference(src + b, y, k);
  9931. for (int i = 0; i < nb; i++) {
  9932. for (int j = 0; j < QK8_0; ++j) {
  9933. const int8_t vi = y[i].qs[j];
  9934. hist[vi/16 + 8]++;
  9935. }
  9936. }
  9937. }
  9938. return (n/QK8_0*sizeof(block_q8_0));
  9939. }
  9940. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9941. size_t result = 0;
  9942. switch (type) {
  9943. case GGML_TYPE_Q4_0:
  9944. {
  9945. GGML_ASSERT(start % QK4_0 == 0);
  9946. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9947. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9948. } break;
  9949. case GGML_TYPE_Q4_1:
  9950. {
  9951. GGML_ASSERT(start % QK4_1 == 0);
  9952. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9953. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9954. } break;
  9955. case GGML_TYPE_Q5_0:
  9956. {
  9957. GGML_ASSERT(start % QK5_0 == 0);
  9958. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  9959. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  9960. } break;
  9961. case GGML_TYPE_Q5_1:
  9962. {
  9963. GGML_ASSERT(start % QK5_1 == 0);
  9964. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  9965. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  9966. } break;
  9967. case GGML_TYPE_Q8_0:
  9968. {
  9969. GGML_ASSERT(start % QK8_0 == 0);
  9970. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  9971. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  9972. } break;
  9973. default:
  9974. assert(false);
  9975. }
  9976. return result;
  9977. }
  9978. ////////////////////////////////////////////////////////////////////////////////
  9979. int ggml_cpu_has_avx(void) {
  9980. #if defined(__AVX__)
  9981. return 1;
  9982. #else
  9983. return 0;
  9984. #endif
  9985. }
  9986. int ggml_cpu_has_avx2(void) {
  9987. #if defined(__AVX2__)
  9988. return 1;
  9989. #else
  9990. return 0;
  9991. #endif
  9992. }
  9993. int ggml_cpu_has_avx512(void) {
  9994. #if defined(__AVX512F__)
  9995. return 1;
  9996. #else
  9997. return 0;
  9998. #endif
  9999. }
  10000. int ggml_cpu_has_avx512_vbmi(void) {
  10001. #if defined(__AVX512VBMI__)
  10002. return 1;
  10003. #else
  10004. return 0;
  10005. #endif
  10006. }
  10007. int ggml_cpu_has_avx512_vnni(void) {
  10008. #if defined(__AVX512VNNI__)
  10009. return 1;
  10010. #else
  10011. return 0;
  10012. #endif
  10013. }
  10014. int ggml_cpu_has_fma(void) {
  10015. #if defined(__FMA__)
  10016. return 1;
  10017. #else
  10018. return 0;
  10019. #endif
  10020. }
  10021. int ggml_cpu_has_neon(void) {
  10022. #if defined(__ARM_NEON)
  10023. return 1;
  10024. #else
  10025. return 0;
  10026. #endif
  10027. }
  10028. int ggml_cpu_has_arm_fma(void) {
  10029. #if defined(__ARM_FEATURE_FMA)
  10030. return 1;
  10031. #else
  10032. return 0;
  10033. #endif
  10034. }
  10035. int ggml_cpu_has_f16c(void) {
  10036. #if defined(__F16C__)
  10037. return 1;
  10038. #else
  10039. return 0;
  10040. #endif
  10041. }
  10042. int ggml_cpu_has_fp16_va(void) {
  10043. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10044. return 1;
  10045. #else
  10046. return 0;
  10047. #endif
  10048. }
  10049. int ggml_cpu_has_wasm_simd(void) {
  10050. #if defined(__wasm_simd128__)
  10051. return 1;
  10052. #else
  10053. return 0;
  10054. #endif
  10055. }
  10056. int ggml_cpu_has_blas(void) {
  10057. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10058. return 1;
  10059. #else
  10060. return 0;
  10061. #endif
  10062. }
  10063. int ggml_cpu_has_cublas(void) {
  10064. #if defined(GGML_USE_CUBLAS)
  10065. return 1;
  10066. #else
  10067. return 0;
  10068. #endif
  10069. }
  10070. int ggml_cpu_has_clblast(void) {
  10071. #if defined(GGML_USE_CLBLAST)
  10072. return 1;
  10073. #else
  10074. return 0;
  10075. #endif
  10076. }
  10077. int ggml_cpu_has_gpublas(void) {
  10078. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10079. }
  10080. int ggml_cpu_has_sse3(void) {
  10081. #if defined(__SSE3__)
  10082. return 1;
  10083. #else
  10084. return 0;
  10085. #endif
  10086. }
  10087. int ggml_cpu_has_vsx(void) {
  10088. #if defined(__POWER9_VECTOR__)
  10089. return 1;
  10090. #else
  10091. return 0;
  10092. #endif
  10093. }
  10094. ////////////////////////////////////////////////////////////////////////////////