llama.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include <stddef.h>
  4. #include <stdint.h>
  5. #include <stdbool.h>
  6. #ifdef LLAMA_SHARED
  7. # if defined(_WIN32) && !defined(__MINGW32__)
  8. # ifdef LLAMA_BUILD
  9. # define LLAMA_API __declspec(dllexport)
  10. # else
  11. # define LLAMA_API __declspec(dllimport)
  12. # endif
  13. # else
  14. # define LLAMA_API __attribute__ ((visibility ("default")))
  15. # endif
  16. #else
  17. # define LLAMA_API
  18. #endif
  19. #define LLAMA_FILE_VERSION 2
  20. #define LLAMA_FILE_MAGIC 'ggjt'
  21. #define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
  22. #define LLAMA_SESSION_MAGIC 'ggsn'
  23. #define LLAMA_SESSION_VERSION 1
  24. #ifdef __cplusplus
  25. extern "C" {
  26. #endif
  27. //
  28. // C interface
  29. //
  30. // TODO: show sample usage
  31. //
  32. struct llama_context;
  33. typedef int llama_token;
  34. typedef struct llama_token_data {
  35. llama_token id; // token id
  36. float logit; // log-odds of the token
  37. float p; // probability of the token
  38. } llama_token_data;
  39. typedef struct llama_token_data_array {
  40. llama_token_data * data;
  41. size_t size;
  42. bool sorted;
  43. } llama_token_data_array;
  44. typedef void (*llama_progress_callback)(float progress, void *ctx);
  45. struct llama_context_params {
  46. int n_ctx; // text context
  47. int n_parts; // -1 for default
  48. int seed; // RNG seed, -1 for random
  49. bool f16_kv; // use fp16 for KV cache
  50. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  51. bool vocab_only; // only load the vocabulary, no weights
  52. bool use_mmap; // use mmap if possible
  53. bool use_mlock; // force system to keep model in RAM
  54. bool embedding; // embedding mode only
  55. // called with a progress value between 0 and 1, pass NULL to disable
  56. llama_progress_callback progress_callback;
  57. // context pointer passed to the progress callback
  58. void * progress_callback_user_data;
  59. };
  60. // model file types
  61. enum llama_ftype {
  62. LLAMA_FTYPE_ALL_F32 = 0,
  63. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  64. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  65. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  66. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  67. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  68. // LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
  69. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  70. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  71. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  72. };
  73. LLAMA_API struct llama_context_params llama_context_default_params();
  74. LLAMA_API bool llama_mmap_supported();
  75. LLAMA_API bool llama_mlock_supported();
  76. // Various functions for loading a ggml llama model.
  77. // Allocate (almost) all memory needed for the model.
  78. // Return NULL on failure
  79. LLAMA_API struct llama_context * llama_init_from_file(
  80. const char * path_model,
  81. struct llama_context_params params);
  82. // Frees all allocated memory
  83. LLAMA_API void llama_free(struct llama_context * ctx);
  84. // TODO: not great API - very likely to change
  85. // Returns 0 on success
  86. // nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
  87. LLAMA_API int llama_model_quantize(
  88. const char * fname_inp,
  89. const char * fname_out,
  90. enum llama_ftype ftype,
  91. int nthread);
  92. // Apply a LoRA adapter to a loaded model
  93. // path_base_model is the path to a higher quality model to use as a base for
  94. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  95. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  96. // will be applied on top of the previous one
  97. // Returns 0 on success
  98. LLAMA_API int llama_apply_lora_from_file(
  99. struct llama_context * ctx,
  100. const char * path_lora,
  101. const char * path_base_model,
  102. int n_threads);
  103. // Returns the number of tokens in the KV cache
  104. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  105. // Sets the current rng seed.
  106. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
  107. // Returns the maximum size in bytes of the state (rng, logits, embedding
  108. // and kv_cache) - will often be smaller after compacting tokens
  109. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  110. // Copies the state to the specified destination address.
  111. // Destination needs to have allocated enough memory.
  112. // Returns the number of bytes copied
  113. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  114. // Set the state reading from the specified address
  115. // Returns the number of bytes read
  116. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
  117. // Save/load session file
  118. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  119. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  120. // Run the llama inference to obtain the logits and probabilities for the next token.
  121. // tokens + n_tokens is the provided batch of new tokens to process
  122. // n_past is the number of tokens to use from previous eval calls
  123. // Returns 0 on success
  124. LLAMA_API int llama_eval(
  125. struct llama_context * ctx,
  126. const llama_token * tokens,
  127. int n_tokens,
  128. int n_past,
  129. int n_threads);
  130. // Convert the provided text into tokens.
  131. // The tokens pointer must be large enough to hold the resulting tokens.
  132. // Returns the number of tokens on success, no more than n_max_tokens
  133. // Returns a negative number on failure - the number of tokens that would have been returned
  134. // TODO: not sure if correct
  135. LLAMA_API int llama_tokenize(
  136. struct llama_context * ctx,
  137. const char * text,
  138. llama_token * tokens,
  139. int n_max_tokens,
  140. bool add_bos);
  141. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  142. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  143. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  144. // Token logits obtained from the last call to llama_eval()
  145. // The logits for the last token are stored in the last row
  146. // Can be mutated in order to change the probabilities of the next token
  147. // Rows: n_tokens
  148. // Cols: n_vocab
  149. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  150. // Get the embeddings for the input
  151. // shape: [n_embd] (1-dimensional)
  152. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  153. // Token Id -> String. Uses the vocabulary in the provided context
  154. LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
  155. // Special tokens
  156. LLAMA_API llama_token llama_token_bos();
  157. LLAMA_API llama_token llama_token_eos();
  158. LLAMA_API llama_token llama_token_nl();
  159. // Sampling functions
  160. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  161. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  162. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  163. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  164. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  165. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  166. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  167. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  168. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  169. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  170. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  171. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  172. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  173. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  174. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  175. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  176. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  177. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  178. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  179. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  180. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  181. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  182. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  183. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  184. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  185. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  186. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  187. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  188. /// @details Selects the token with the highest probability.
  189. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  190. /// @details Randomly selects a token from the candidates based on their probabilities.
  191. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  192. // Performance information
  193. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  194. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  195. // Print system information
  196. LLAMA_API const char * llama_print_system_info(void);
  197. #ifdef __cplusplus
  198. }
  199. #endif
  200. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  201. #ifdef LLAMA_API_INTERNAL
  202. #include <vector>
  203. #include <string>
  204. struct ggml_tensor;
  205. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  206. #endif
  207. #endif // LLAMA_H