llama-bench.cpp 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUDA
  108. int count = ggml_backend_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case NONE: return "none";
  137. case CSV: return "csv";
  138. case JSON: return "json";
  139. case MARKDOWN: return "md";
  140. case SQL: return "sql";
  141. default: GGML_ASSERT(!"invalid output format");
  142. }
  143. }
  144. static bool output_format_from_str(const std::string & s, output_formats & format) {
  145. if (s == "none") {
  146. format = NONE;
  147. } else if (s == "csv") {
  148. format = CSV;
  149. } else if (s == "json") {
  150. format = JSON;
  151. } else if (s == "md") {
  152. format = MARKDOWN;
  153. } else if (s == "sql") {
  154. format = SQL;
  155. } else {
  156. return false;
  157. }
  158. return true;
  159. }
  160. static const char * split_mode_str(llama_split_mode mode) {
  161. switch (mode) {
  162. case LLAMA_SPLIT_MODE_NONE: return "none";
  163. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  164. case LLAMA_SPLIT_MODE_ROW: return "row";
  165. default: GGML_ASSERT(!"invalid split mode");
  166. }
  167. }
  168. static std::string pair_str(const std::pair<int, int> & p) {
  169. static char buf[32];
  170. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  171. return buf;
  172. }
  173. struct cmd_params {
  174. std::vector<std::string> model;
  175. std::vector<int> n_prompt;
  176. std::vector<int> n_gen;
  177. std::vector<std::pair<int, int>> n_pg;
  178. std::vector<int> n_batch;
  179. std::vector<int> n_ubatch;
  180. std::vector<ggml_type> type_k;
  181. std::vector<ggml_type> type_v;
  182. std::vector<int> n_threads;
  183. std::vector<int> n_gpu_layers;
  184. std::vector<std::string> rpc_servers;
  185. std::vector<llama_split_mode> split_mode;
  186. std::vector<int> main_gpu;
  187. std::vector<bool> no_kv_offload;
  188. std::vector<bool> flash_attn;
  189. std::vector<std::vector<float>> tensor_split;
  190. std::vector<bool> use_mmap;
  191. std::vector<bool> embeddings;
  192. ggml_numa_strategy numa;
  193. int reps;
  194. bool verbose;
  195. output_formats output_format;
  196. output_formats output_format_stderr;
  197. };
  198. static const cmd_params cmd_params_defaults = {
  199. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  200. /* n_prompt */ {512},
  201. /* n_gen */ {128},
  202. /* n_pg */ {},
  203. /* n_batch */ {2048},
  204. /* n_ubatch */ {512},
  205. /* type_k */ {GGML_TYPE_F16},
  206. /* type_v */ {GGML_TYPE_F16},
  207. /* n_threads */ {cpu_get_num_math()},
  208. /* n_gpu_layers */ {99},
  209. /* rpc_servers */ {""},
  210. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  211. /* main_gpu */ {0},
  212. /* no_kv_offload */ {false},
  213. /* flash_attn */ {false},
  214. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  215. /* use_mmap */ {true},
  216. /* embeddings */ {false},
  217. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  218. /* reps */ 5,
  219. /* verbose */ false,
  220. /* output_format */ MARKDOWN,
  221. /* output_format_stderr */ NONE,
  222. };
  223. static void print_usage(int /* argc */, char ** argv) {
  224. printf("usage: %s [options]\n", argv[0]);
  225. printf("\n");
  226. printf("options:\n");
  227. printf(" -h, --help\n");
  228. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  229. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  230. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  231. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  232. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  233. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  234. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  235. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  236. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  237. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  238. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  239. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  240. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  241. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  242. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  243. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  244. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  245. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  246. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  247. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  248. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  249. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  250. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  251. printf("\n");
  252. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  253. }
  254. static ggml_type ggml_type_from_name(const std::string & s) {
  255. if (s == "f16") {
  256. return GGML_TYPE_F16;
  257. }
  258. if (s == "q8_0") {
  259. return GGML_TYPE_Q8_0;
  260. }
  261. if (s == "q4_0") {
  262. return GGML_TYPE_Q4_0;
  263. }
  264. if (s == "q4_1") {
  265. return GGML_TYPE_Q4_1;
  266. }
  267. if (s == "q5_0") {
  268. return GGML_TYPE_Q5_0;
  269. }
  270. if (s == "q5_1") {
  271. return GGML_TYPE_Q5_1;
  272. }
  273. if (s == "iq4_nl") {
  274. return GGML_TYPE_IQ4_NL;
  275. }
  276. return GGML_TYPE_COUNT;
  277. }
  278. static cmd_params parse_cmd_params(int argc, char ** argv) {
  279. cmd_params params;
  280. std::string arg;
  281. bool invalid_param = false;
  282. const std::string arg_prefix = "--";
  283. const char split_delim = ',';
  284. params.verbose = cmd_params_defaults.verbose;
  285. params.output_format = cmd_params_defaults.output_format;
  286. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  287. params.reps = cmd_params_defaults.reps;
  288. for (int i = 1; i < argc; i++) {
  289. arg = argv[i];
  290. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  291. std::replace(arg.begin(), arg.end(), '_', '-');
  292. }
  293. if (arg == "-h" || arg == "--help") {
  294. print_usage(argc, argv);
  295. exit(0);
  296. } else if (arg == "-m" || arg == "--model") {
  297. if (++i >= argc) {
  298. invalid_param = true;
  299. break;
  300. }
  301. auto p = split<std::string>(argv[i], split_delim);
  302. params.model.insert(params.model.end(), p.begin(), p.end());
  303. } else if (arg == "-p" || arg == "--n-prompt") {
  304. if (++i >= argc) {
  305. invalid_param = true;
  306. break;
  307. }
  308. auto p = split<int>(argv[i], split_delim);
  309. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  310. } else if (arg == "-n" || arg == "--n-gen") {
  311. if (++i >= argc) {
  312. invalid_param = true;
  313. break;
  314. }
  315. auto p = split<int>(argv[i], split_delim);
  316. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  317. } else if (arg == "-pg") {
  318. if (++i >= argc) {
  319. invalid_param = true;
  320. break;
  321. }
  322. auto p = split<std::string>(argv[i], ',');
  323. if (p.size() != 2) {
  324. invalid_param = true;
  325. break;
  326. }
  327. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  328. } else if (arg == "-b" || arg == "--batch-size") {
  329. if (++i >= argc) {
  330. invalid_param = true;
  331. break;
  332. }
  333. auto p = split<int>(argv[i], split_delim);
  334. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  335. } else if (arg == "-ub" || arg == "--ubatch-size") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. break;
  339. }
  340. auto p = split<int>(argv[i], split_delim);
  341. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  342. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  343. if (++i >= argc) {
  344. invalid_param = true;
  345. break;
  346. }
  347. auto p = split<std::string>(argv[i], split_delim);
  348. std::vector<ggml_type> types;
  349. for (const auto & t : p) {
  350. ggml_type gt = ggml_type_from_name(t);
  351. if (gt == GGML_TYPE_COUNT) {
  352. invalid_param = true;
  353. break;
  354. }
  355. types.push_back(gt);
  356. }
  357. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  358. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  359. if (++i >= argc) {
  360. invalid_param = true;
  361. break;
  362. }
  363. auto p = split<std::string>(argv[i], split_delim);
  364. std::vector<ggml_type> types;
  365. for (const auto & t : p) {
  366. ggml_type gt = ggml_type_from_name(t);
  367. if (gt == GGML_TYPE_COUNT) {
  368. invalid_param = true;
  369. break;
  370. }
  371. types.push_back(gt);
  372. }
  373. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  374. } else if (arg == "-t" || arg == "--threads") {
  375. if (++i >= argc) {
  376. invalid_param = true;
  377. break;
  378. }
  379. auto p = split<int>(argv[i], split_delim);
  380. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  381. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. break;
  385. }
  386. auto p = split<int>(argv[i], split_delim);
  387. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  388. } else if (arg == "-rpc" || arg == "--rpc") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. params.rpc_servers.push_back(argv[i]);
  394. } else if (arg == "-sm" || arg == "--split-mode") {
  395. if (++i >= argc) {
  396. invalid_param = true;
  397. break;
  398. }
  399. auto p = split<std::string>(argv[i], split_delim);
  400. std::vector<llama_split_mode> modes;
  401. for (const auto & m : p) {
  402. llama_split_mode mode;
  403. if (m == "none") {
  404. mode = LLAMA_SPLIT_MODE_NONE;
  405. } else if (m == "layer") {
  406. mode = LLAMA_SPLIT_MODE_LAYER;
  407. } else if (m == "row") {
  408. mode = LLAMA_SPLIT_MODE_ROW;
  409. } else {
  410. invalid_param = true;
  411. break;
  412. }
  413. modes.push_back(mode);
  414. }
  415. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  416. } else if (arg == "-mg" || arg == "--main-gpu") {
  417. if (++i >= argc) {
  418. invalid_param = true;
  419. break;
  420. }
  421. params.main_gpu = split<int>(argv[i], split_delim);
  422. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  423. if (++i >= argc) {
  424. invalid_param = true;
  425. break;
  426. }
  427. auto p = split<bool>(argv[i], split_delim);
  428. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  429. } else if (arg == "--numa") {
  430. if (++i >= argc) {
  431. invalid_param = true;
  432. break;
  433. } else {
  434. std::string value(argv[i]);
  435. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  436. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  437. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  438. else { invalid_param = true; break; }
  439. }
  440. } else if (arg == "-fa" || arg == "--flash-attn") {
  441. if (++i >= argc) {
  442. invalid_param = true;
  443. break;
  444. }
  445. auto p = split<bool>(argv[i], split_delim);
  446. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  447. } else if (arg == "-mmp" || arg == "--mmap") {
  448. if (++i >= argc) {
  449. invalid_param = true;
  450. break;
  451. }
  452. auto p = split<bool>(argv[i], split_delim);
  453. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  454. } else if (arg == "-embd" || arg == "--embeddings") {
  455. if (++i >= argc) {
  456. invalid_param = true;
  457. break;
  458. }
  459. auto p = split<bool>(argv[i], split_delim);
  460. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  461. } else if (arg == "-ts" || arg == "--tensor-split") {
  462. if (++i >= argc) {
  463. invalid_param = true;
  464. break;
  465. }
  466. for (auto ts : split<std::string>(argv[i], split_delim)) {
  467. // split string by ; and /
  468. const std::regex regex{R"([;/]+)"};
  469. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  470. std::vector<std::string> split_arg{it, {}};
  471. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  472. std::vector<float> tensor_split(llama_max_devices());
  473. for (size_t i = 0; i < llama_max_devices(); ++i) {
  474. if (i < split_arg.size()) {
  475. tensor_split[i] = std::stof(split_arg[i]);
  476. } else {
  477. tensor_split[i] = 0.0f;
  478. }
  479. }
  480. params.tensor_split.push_back(tensor_split);
  481. }
  482. } else if (arg == "-r" || arg == "--repetitions") {
  483. if (++i >= argc) {
  484. invalid_param = true;
  485. break;
  486. }
  487. params.reps = std::stoi(argv[i]);
  488. } else if (arg == "-o" || arg == "--output") {
  489. if (++i >= argc) {
  490. invalid_param = true;
  491. break;
  492. }
  493. invalid_param = !output_format_from_str(argv[i], params.output_format);
  494. } else if (arg == "-oe" || arg == "--output-err") {
  495. if (++i >= argc) {
  496. invalid_param = true;
  497. break;
  498. }
  499. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  500. } else if (arg == "-v" || arg == "--verbose") {
  501. params.verbose = true;
  502. } else {
  503. invalid_param = true;
  504. break;
  505. }
  506. }
  507. if (invalid_param) {
  508. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  509. print_usage(argc, argv);
  510. exit(1);
  511. }
  512. // set defaults
  513. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  514. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  515. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  516. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  517. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  518. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  519. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  520. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  521. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  522. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  523. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  524. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  525. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  526. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  527. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  528. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  529. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  530. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  531. return params;
  532. }
  533. struct cmd_params_instance {
  534. std::string model;
  535. int n_prompt;
  536. int n_gen;
  537. int n_batch;
  538. int n_ubatch;
  539. ggml_type type_k;
  540. ggml_type type_v;
  541. int n_threads;
  542. int n_gpu_layers;
  543. std::string rpc_servers;
  544. llama_split_mode split_mode;
  545. int main_gpu;
  546. bool no_kv_offload;
  547. bool flash_attn;
  548. std::vector<float> tensor_split;
  549. bool use_mmap;
  550. bool embeddings;
  551. llama_model_params to_llama_mparams() const {
  552. llama_model_params mparams = llama_model_default_params();
  553. mparams.n_gpu_layers = n_gpu_layers;
  554. if (!rpc_servers.empty()) {
  555. mparams.rpc_servers = rpc_servers.c_str();
  556. }
  557. mparams.split_mode = split_mode;
  558. mparams.main_gpu = main_gpu;
  559. mparams.tensor_split = tensor_split.data();
  560. mparams.use_mmap = use_mmap;
  561. return mparams;
  562. }
  563. bool equal_mparams(const cmd_params_instance & other) const {
  564. return model == other.model &&
  565. n_gpu_layers == other.n_gpu_layers &&
  566. rpc_servers == other.rpc_servers &&
  567. split_mode == other.split_mode &&
  568. main_gpu == other.main_gpu &&
  569. use_mmap == other.use_mmap &&
  570. tensor_split == other.tensor_split;
  571. }
  572. llama_context_params to_llama_cparams() const {
  573. llama_context_params cparams = llama_context_default_params();
  574. cparams.n_ctx = n_prompt + n_gen;
  575. cparams.n_batch = n_batch;
  576. cparams.n_ubatch = n_ubatch;
  577. cparams.type_k = type_k;
  578. cparams.type_v = type_v;
  579. cparams.offload_kqv = !no_kv_offload;
  580. cparams.flash_attn = flash_attn;
  581. cparams.embeddings = embeddings;
  582. return cparams;
  583. }
  584. };
  585. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  586. std::vector<cmd_params_instance> instances;
  587. // this ordering minimizes the number of times that each model needs to be reloaded
  588. for (const auto & m : params.model)
  589. for (const auto & nl : params.n_gpu_layers)
  590. for (const auto & rpc : params.rpc_servers)
  591. for (const auto & sm : params.split_mode)
  592. for (const auto & mg : params.main_gpu)
  593. for (const auto & ts : params.tensor_split)
  594. for (const auto & mmp : params.use_mmap)
  595. for (const auto & embd : params.embeddings)
  596. for (const auto & nb : params.n_batch)
  597. for (const auto & nub : params.n_ubatch)
  598. for (const auto & tk : params.type_k)
  599. for (const auto & tv : params.type_v)
  600. for (const auto & nkvo : params.no_kv_offload)
  601. for (const auto & fa : params.flash_attn)
  602. for (const auto & nt : params.n_threads) {
  603. for (const auto & n_prompt : params.n_prompt) {
  604. if (n_prompt == 0) {
  605. continue;
  606. }
  607. cmd_params_instance instance = {
  608. /* .model = */ m,
  609. /* .n_prompt = */ n_prompt,
  610. /* .n_gen = */ 0,
  611. /* .n_batch = */ nb,
  612. /* .n_ubatch = */ nub,
  613. /* .type_k = */ tk,
  614. /* .type_v = */ tv,
  615. /* .n_threads = */ nt,
  616. /* .n_gpu_layers = */ nl,
  617. /* .rpc_servers = */ rpc,
  618. /* .split_mode = */ sm,
  619. /* .main_gpu = */ mg,
  620. /* .no_kv_offload= */ nkvo,
  621. /* .flash_attn = */ fa,
  622. /* .tensor_split = */ ts,
  623. /* .use_mmap = */ mmp,
  624. /* .embeddings = */ embd,
  625. };
  626. instances.push_back(instance);
  627. }
  628. for (const auto & n_gen : params.n_gen) {
  629. if (n_gen == 0) {
  630. continue;
  631. }
  632. cmd_params_instance instance = {
  633. /* .model = */ m,
  634. /* .n_prompt = */ 0,
  635. /* .n_gen = */ n_gen,
  636. /* .n_batch = */ nb,
  637. /* .n_ubatch = */ nub,
  638. /* .type_k = */ tk,
  639. /* .type_v = */ tv,
  640. /* .n_threads = */ nt,
  641. /* .n_gpu_layers = */ nl,
  642. /* .rpc_servers = */ rpc,
  643. /* .split_mode = */ sm,
  644. /* .main_gpu = */ mg,
  645. /* .no_kv_offload= */ nkvo,
  646. /* .flash_attn = */ fa,
  647. /* .tensor_split = */ ts,
  648. /* .use_mmap = */ mmp,
  649. /* .embeddings = */ embd,
  650. };
  651. instances.push_back(instance);
  652. }
  653. for (const auto & n_pg : params.n_pg) {
  654. if (n_pg.first == 0 && n_pg.second == 0) {
  655. continue;
  656. }
  657. cmd_params_instance instance = {
  658. /* .model = */ m,
  659. /* .n_prompt = */ n_pg.first,
  660. /* .n_gen = */ n_pg.second,
  661. /* .n_batch = */ nb,
  662. /* .n_ubatch = */ nub,
  663. /* .type_k = */ tk,
  664. /* .type_v = */ tv,
  665. /* .n_threads = */ nt,
  666. /* .n_gpu_layers = */ nl,
  667. /* .rpc_servers = */ rpc,
  668. /* .split_mode = */ sm,
  669. /* .main_gpu = */ mg,
  670. /* .no_kv_offload= */ nkvo,
  671. /* .flash_attn = */ fa,
  672. /* .tensor_split = */ ts,
  673. /* .use_mmap = */ mmp,
  674. /* .embeddings = */ embd,
  675. };
  676. instances.push_back(instance);
  677. }
  678. }
  679. return instances;
  680. }
  681. struct test {
  682. static const std::string build_commit;
  683. static const int build_number;
  684. static const bool cuda;
  685. static const bool opencl;
  686. static const bool vulkan;
  687. static const bool kompute;
  688. static const bool metal;
  689. static const bool sycl;
  690. static const bool rpc;
  691. static const bool gpu_blas;
  692. static const bool blas;
  693. static const std::string cpu_info;
  694. static const std::string gpu_info;
  695. std::string model_filename;
  696. std::string model_type;
  697. uint64_t model_size;
  698. uint64_t model_n_params;
  699. int n_batch;
  700. int n_ubatch;
  701. int n_threads;
  702. ggml_type type_k;
  703. ggml_type type_v;
  704. int n_gpu_layers;
  705. llama_split_mode split_mode;
  706. int main_gpu;
  707. bool no_kv_offload;
  708. bool flash_attn;
  709. std::vector<float> tensor_split;
  710. bool use_mmap;
  711. bool embeddings;
  712. int n_prompt;
  713. int n_gen;
  714. std::string test_time;
  715. std::vector<uint64_t> samples_ns;
  716. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  717. model_filename = inst.model;
  718. char buf[128];
  719. llama_model_desc(lmodel, buf, sizeof(buf));
  720. model_type = buf;
  721. model_size = llama_model_size(lmodel);
  722. model_n_params = llama_model_n_params(lmodel);
  723. n_batch = inst.n_batch;
  724. n_ubatch = inst.n_ubatch;
  725. n_threads = inst.n_threads;
  726. type_k = inst.type_k;
  727. type_v = inst.type_v;
  728. n_gpu_layers = inst.n_gpu_layers;
  729. split_mode = inst.split_mode;
  730. main_gpu = inst.main_gpu;
  731. no_kv_offload = inst.no_kv_offload;
  732. flash_attn = inst.flash_attn;
  733. tensor_split = inst.tensor_split;
  734. use_mmap = inst.use_mmap;
  735. embeddings = inst.embeddings;
  736. n_prompt = inst.n_prompt;
  737. n_gen = inst.n_gen;
  738. // RFC 3339 date-time format
  739. time_t t = time(NULL);
  740. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  741. test_time = buf;
  742. (void) ctx;
  743. }
  744. uint64_t avg_ns() const {
  745. return ::avg(samples_ns);
  746. }
  747. uint64_t stdev_ns() const {
  748. return ::stdev(samples_ns);
  749. }
  750. std::vector<double> get_ts() const {
  751. int n_tokens = n_prompt + n_gen;
  752. std::vector<double> ts;
  753. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  754. return ts;
  755. }
  756. double avg_ts() const {
  757. return ::avg(get_ts());
  758. }
  759. double stdev_ts() const {
  760. return ::stdev(get_ts());
  761. }
  762. static std::string get_backend() {
  763. if (cuda) {
  764. return GGML_CUDA_NAME;
  765. }
  766. if (opencl) {
  767. return "OpenCL";
  768. }
  769. if (vulkan) {
  770. return "Vulkan";
  771. }
  772. if (kompute) {
  773. return "Kompute";
  774. }
  775. if (metal) {
  776. return "Metal";
  777. }
  778. if (sycl) {
  779. return GGML_SYCL_NAME;
  780. }
  781. if (rpc) {
  782. return "RPC";
  783. }
  784. if (gpu_blas) {
  785. return "GPU BLAS";
  786. }
  787. if (blas) {
  788. return "BLAS";
  789. }
  790. return "CPU";
  791. }
  792. static const std::vector<std::string> & get_fields() {
  793. static const std::vector<std::string> fields = {
  794. "build_commit", "build_number",
  795. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  796. "cpu_info", "gpu_info",
  797. "model_filename", "model_type", "model_size", "model_n_params",
  798. "n_batch", "n_ubatch",
  799. "n_threads", "type_k", "type_v",
  800. "n_gpu_layers", "split_mode",
  801. "main_gpu", "no_kv_offload", "flash_attn",
  802. "tensor_split", "use_mmap", "embeddings",
  803. "n_prompt", "n_gen", "test_time",
  804. "avg_ns", "stddev_ns",
  805. "avg_ts", "stddev_ts"
  806. };
  807. return fields;
  808. }
  809. enum field_type {STRING, BOOL, INT, FLOAT};
  810. static field_type get_field_type(const std::string & field) {
  811. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  812. field == "n_threads" ||
  813. field == "model_size" || field == "model_n_params" ||
  814. field == "n_gpu_layers" || field == "main_gpu" ||
  815. field == "n_prompt" || field == "n_gen" ||
  816. field == "avg_ns" || field == "stddev_ns") {
  817. return INT;
  818. }
  819. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  820. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  821. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  822. return BOOL;
  823. }
  824. if (field == "avg_ts" || field == "stddev_ts") {
  825. return FLOAT;
  826. }
  827. return STRING;
  828. }
  829. std::vector<std::string> get_values() const {
  830. std::string tensor_split_str;
  831. int max_nonzero = 0;
  832. for (size_t i = 0; i < llama_max_devices(); i++) {
  833. if (tensor_split[i] > 0) {
  834. max_nonzero = i;
  835. }
  836. }
  837. for (int i = 0; i <= max_nonzero; i++) {
  838. char buf[32];
  839. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  840. tensor_split_str += buf;
  841. if (i < max_nonzero) {
  842. tensor_split_str += "/";
  843. }
  844. }
  845. std::vector<std::string> values = {
  846. build_commit, std::to_string(build_number),
  847. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  848. std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
  849. cpu_info, gpu_info,
  850. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  851. std::to_string(n_batch), std::to_string(n_ubatch),
  852. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  853. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  854. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  855. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  856. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  857. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  858. std::to_string(avg_ts()), std::to_string(stdev_ts())
  859. };
  860. return values;
  861. }
  862. std::map<std::string, std::string> get_map() const {
  863. std::map<std::string, std::string> map;
  864. auto fields = get_fields();
  865. auto values = get_values();
  866. std::transform(fields.begin(), fields.end(), values.begin(),
  867. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  868. return map;
  869. }
  870. };
  871. const std::string test::build_commit = LLAMA_COMMIT;
  872. const int test::build_number = LLAMA_BUILD_NUMBER;
  873. const bool test::cuda = !!ggml_cpu_has_cuda();
  874. const bool test::opencl = !!ggml_cpu_has_clblast();
  875. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  876. const bool test::kompute = !!ggml_cpu_has_kompute();
  877. const bool test::metal = !!ggml_cpu_has_metal();
  878. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  879. const bool test::blas = !!ggml_cpu_has_blas();
  880. const bool test::sycl = !!ggml_cpu_has_sycl();
  881. const bool test::rpc = !!ggml_cpu_has_rpc();
  882. const std::string test::cpu_info = get_cpu_info();
  883. const std::string test::gpu_info = get_gpu_info();
  884. struct printer {
  885. virtual ~printer() {}
  886. FILE * fout;
  887. virtual void print_header(const cmd_params & params) { (void) params; }
  888. virtual void print_test(const test & t) = 0;
  889. virtual void print_footer() { }
  890. };
  891. struct csv_printer : public printer {
  892. static std::string escape_csv(const std::string & field) {
  893. std::string escaped = "\"";
  894. for (auto c : field) {
  895. if (c == '"') {
  896. escaped += "\"";
  897. }
  898. escaped += c;
  899. }
  900. escaped += "\"";
  901. return escaped;
  902. }
  903. void print_header(const cmd_params & params) override {
  904. std::vector<std::string> fields = test::get_fields();
  905. fprintf(fout, "%s\n", join(fields, ",").c_str());
  906. (void) params;
  907. }
  908. void print_test(const test & t) override {
  909. std::vector<std::string> values = t.get_values();
  910. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  911. fprintf(fout, "%s\n", join(values, ",").c_str());
  912. }
  913. };
  914. struct json_printer : public printer {
  915. bool first = true;
  916. static std::string escape_json(const std::string & value) {
  917. std::string escaped;
  918. for (auto c : value) {
  919. if (c == '"') {
  920. escaped += "\\\"";
  921. } else if (c == '\\') {
  922. escaped += "\\\\";
  923. } else if (c <= 0x1f) {
  924. char buf[8];
  925. snprintf(buf, sizeof(buf), "\\u%04x", c);
  926. escaped += buf;
  927. } else {
  928. escaped += c;
  929. }
  930. }
  931. return escaped;
  932. }
  933. static std::string format_value(const std::string & field, const std::string & value) {
  934. switch (test::get_field_type(field)) {
  935. case test::STRING:
  936. return "\"" + escape_json(value) + "\"";
  937. case test::BOOL:
  938. return value == "0" ? "false" : "true";
  939. default:
  940. return value;
  941. }
  942. }
  943. void print_header(const cmd_params & params) override {
  944. fprintf(fout, "[\n");
  945. (void) params;
  946. }
  947. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  948. assert(fields.size() == values.size());
  949. for (size_t i = 0; i < fields.size(); i++) {
  950. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  951. }
  952. }
  953. void print_test(const test & t) override {
  954. if (first) {
  955. first = false;
  956. } else {
  957. fprintf(fout, ",\n");
  958. }
  959. fprintf(fout, " {\n");
  960. print_fields(test::get_fields(), t.get_values());
  961. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  962. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  963. fprintf(fout, " }");
  964. fflush(fout);
  965. }
  966. void print_footer() override {
  967. fprintf(fout, "\n]\n");
  968. }
  969. };
  970. struct markdown_printer : public printer {
  971. std::vector<std::string> fields;
  972. static int get_field_width(const std::string & field) {
  973. if (field == "model") {
  974. return -30;
  975. }
  976. if (field == "t/s") {
  977. return 16;
  978. }
  979. if (field == "size" || field == "params") {
  980. return 10;
  981. }
  982. if (field == "n_gpu_layers") {
  983. return 3;
  984. }
  985. if (field == "test") {
  986. return 13;
  987. }
  988. int width = std::max((int)field.length(), 10);
  989. if (test::get_field_type(field) == test::STRING) {
  990. return -width;
  991. }
  992. return width;
  993. }
  994. static std::string get_field_display_name(const std::string & field) {
  995. if (field == "n_gpu_layers") {
  996. return "ngl";
  997. }
  998. if (field == "split_mode") {
  999. return "sm";
  1000. }
  1001. if (field == "n_threads") {
  1002. return "threads";
  1003. }
  1004. if (field == "no_kv_offload") {
  1005. return "nkvo";
  1006. }
  1007. if (field == "flash_attn") {
  1008. return "fa";
  1009. }
  1010. if (field == "use_mmap") {
  1011. return "mmap";
  1012. }
  1013. if (field == "embeddings") {
  1014. return "embd";
  1015. }
  1016. if (field == "tensor_split") {
  1017. return "ts";
  1018. }
  1019. return field;
  1020. }
  1021. void print_header(const cmd_params & params) override {
  1022. // select fields to print
  1023. fields.emplace_back("model");
  1024. fields.emplace_back("size");
  1025. fields.emplace_back("params");
  1026. fields.emplace_back("backend");
  1027. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1028. if (!is_cpu_backend) {
  1029. fields.emplace_back("n_gpu_layers");
  1030. }
  1031. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1032. fields.emplace_back("n_threads");
  1033. }
  1034. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1035. fields.emplace_back("n_batch");
  1036. }
  1037. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1038. fields.emplace_back("n_ubatch");
  1039. }
  1040. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1041. fields.emplace_back("type_k");
  1042. }
  1043. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1044. fields.emplace_back("type_v");
  1045. }
  1046. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1047. fields.emplace_back("main_gpu");
  1048. }
  1049. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1050. fields.emplace_back("split_mode");
  1051. }
  1052. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1053. fields.emplace_back("no_kv_offload");
  1054. }
  1055. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1056. fields.emplace_back("flash_attn");
  1057. }
  1058. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1059. fields.emplace_back("tensor_split");
  1060. }
  1061. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1062. fields.emplace_back("use_mmap");
  1063. }
  1064. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1065. fields.emplace_back("embeddings");
  1066. }
  1067. fields.emplace_back("test");
  1068. fields.emplace_back("t/s");
  1069. fprintf(fout, "|");
  1070. for (const auto & field : fields) {
  1071. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1072. }
  1073. fprintf(fout, "\n");
  1074. fprintf(fout, "|");
  1075. for (const auto & field : fields) {
  1076. int width = get_field_width(field);
  1077. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1078. }
  1079. fprintf(fout, "\n");
  1080. }
  1081. void print_test(const test & t) override {
  1082. std::map<std::string, std::string> vmap = t.get_map();
  1083. fprintf(fout, "|");
  1084. for (const auto & field : fields) {
  1085. std::string value;
  1086. char buf[128];
  1087. if (field == "model") {
  1088. value = t.model_type;
  1089. } else if (field == "size") {
  1090. if (t.model_size < 1024*1024*1024) {
  1091. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1092. } else {
  1093. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1094. }
  1095. value = buf;
  1096. } else if (field == "params") {
  1097. if (t.model_n_params < 1000*1000*1000) {
  1098. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1099. } else {
  1100. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1101. }
  1102. value = buf;
  1103. } else if (field == "backend") {
  1104. value = test::get_backend();
  1105. } else if (field == "test") {
  1106. if (t.n_prompt > 0 && t.n_gen == 0) {
  1107. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1108. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1109. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1110. } else {
  1111. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1112. }
  1113. value = buf;
  1114. } else if (field == "t/s") {
  1115. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1116. value = buf;
  1117. } else if (vmap.find(field) != vmap.end()) {
  1118. value = vmap.at(field);
  1119. } else {
  1120. assert(false);
  1121. exit(1);
  1122. }
  1123. int width = get_field_width(field);
  1124. if (field == "t/s") {
  1125. // HACK: the utf-8 character is 2 bytes
  1126. width += 1;
  1127. }
  1128. fprintf(fout, " %*s |", width, value.c_str());
  1129. }
  1130. fprintf(fout, "\n");
  1131. }
  1132. void print_footer() override {
  1133. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1134. }
  1135. };
  1136. struct sql_printer : public printer {
  1137. static std::string get_sql_field_type(const std::string & field) {
  1138. switch (test::get_field_type(field)) {
  1139. case test::STRING:
  1140. return "TEXT";
  1141. case test::BOOL:
  1142. case test::INT:
  1143. return "INTEGER";
  1144. case test::FLOAT:
  1145. return "REAL";
  1146. default:
  1147. assert(false);
  1148. exit(1);
  1149. }
  1150. }
  1151. void print_header(const cmd_params & params) override {
  1152. std::vector<std::string> fields = test::get_fields();
  1153. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1154. for (size_t i = 0; i < fields.size(); i++) {
  1155. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1156. }
  1157. fprintf(fout, ");\n");
  1158. fprintf(fout, "\n");
  1159. (void) params;
  1160. }
  1161. void print_test(const test & t) override {
  1162. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1163. fprintf(fout, "VALUES (");
  1164. std::vector<std::string> values = t.get_values();
  1165. for (size_t i = 0; i < values.size(); i++) {
  1166. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1167. }
  1168. fprintf(fout, ");\n");
  1169. }
  1170. };
  1171. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1172. llama_set_n_threads(ctx, n_threads, n_threads);
  1173. const llama_model * model = llama_get_model(ctx);
  1174. const int32_t n_vocab = llama_n_vocab(model);
  1175. std::vector<llama_token> tokens(n_batch);
  1176. int n_processed = 0;
  1177. while (n_processed < n_prompt) {
  1178. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1179. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1180. for (int i = 1; i < n_tokens; i++) {
  1181. tokens[i] = std::rand() % n_vocab;
  1182. }
  1183. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1184. n_processed += n_tokens;
  1185. }
  1186. llama_synchronize(ctx);
  1187. }
  1188. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1189. llama_set_n_threads(ctx, n_threads, n_threads);
  1190. const llama_model * model = llama_get_model(ctx);
  1191. const int32_t n_vocab = llama_n_vocab(model);
  1192. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1193. for (int i = 0; i < n_gen; i++) {
  1194. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1195. llama_synchronize(ctx);
  1196. token = std::rand() % n_vocab;
  1197. }
  1198. }
  1199. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1200. (void) level;
  1201. (void) text;
  1202. (void) user_data;
  1203. }
  1204. static std::unique_ptr<printer> create_printer(output_formats format) {
  1205. switch (format) {
  1206. case NONE:
  1207. return nullptr;
  1208. case CSV:
  1209. return std::unique_ptr<printer>(new csv_printer());
  1210. case JSON:
  1211. return std::unique_ptr<printer>(new json_printer());
  1212. case MARKDOWN:
  1213. return std::unique_ptr<printer>(new markdown_printer());
  1214. case SQL:
  1215. return std::unique_ptr<printer>(new sql_printer());
  1216. }
  1217. GGML_ASSERT(false);
  1218. }
  1219. int main(int argc, char ** argv) {
  1220. // try to set locale for unicode characters in markdown
  1221. setlocale(LC_CTYPE, ".UTF-8");
  1222. #if !defined(NDEBUG)
  1223. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1224. #endif
  1225. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1226. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1227. #endif
  1228. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1229. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1230. #endif
  1231. cmd_params params = parse_cmd_params(argc, argv);
  1232. // initialize llama.cpp
  1233. if (!params.verbose) {
  1234. llama_log_set(llama_null_log_callback, NULL);
  1235. }
  1236. llama_backend_init();
  1237. llama_numa_init(params.numa);
  1238. // initialize printer
  1239. std::unique_ptr<printer> p = create_printer(params.output_format);
  1240. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1241. if (p) {
  1242. p->fout = stdout;
  1243. p->print_header(params);
  1244. }
  1245. if (p_err) {
  1246. p_err->fout = stderr;
  1247. p_err->print_header(params);
  1248. }
  1249. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1250. llama_model * lmodel = nullptr;
  1251. const cmd_params_instance * prev_inst = nullptr;
  1252. for (const auto & inst : params_instances) {
  1253. // keep the same model between tests when possible
  1254. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1255. if (lmodel) {
  1256. llama_free_model(lmodel);
  1257. }
  1258. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1259. if (lmodel == NULL) {
  1260. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1261. return 1;
  1262. }
  1263. prev_inst = &inst;
  1264. }
  1265. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1266. if (ctx == NULL) {
  1267. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1268. llama_free_model(lmodel);
  1269. return 1;
  1270. }
  1271. test t(inst, lmodel, ctx);
  1272. llama_kv_cache_clear(ctx);
  1273. // warmup run
  1274. if (t.n_prompt > 0) {
  1275. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1276. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1277. }
  1278. if (t.n_gen > 0) {
  1279. test_gen(ctx, 1, 0, t.n_threads);
  1280. }
  1281. for (int i = 0; i < params.reps; i++) {
  1282. llama_kv_cache_clear(ctx);
  1283. uint64_t t_start = get_time_ns();
  1284. if (t.n_prompt > 0) {
  1285. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1286. }
  1287. if (t.n_gen > 0) {
  1288. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1289. }
  1290. uint64_t t_ns = get_time_ns() - t_start;
  1291. t.samples_ns.push_back(t_ns);
  1292. }
  1293. if (p) {
  1294. p->print_test(t);
  1295. fflush(p->fout);
  1296. }
  1297. if (p_err) {
  1298. p_err->print_test(t);
  1299. fflush(p_err->fout);
  1300. }
  1301. llama_print_timings(ctx);
  1302. llama_free(ctx);
  1303. }
  1304. llama_free_model(lmodel);
  1305. if (p) {
  1306. p->print_footer();
  1307. }
  1308. if (p_err) {
  1309. p_err->print_footer();
  1310. }
  1311. llama_backend_free();
  1312. return 0;
  1313. }