convert-hf-to-gguf.py 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  14. import numpy as np
  15. import torch
  16. if TYPE_CHECKING:
  17. from torch import Tensor
  18. if 'NO_LOCAL_GGUF' not in os.environ:
  19. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  20. import gguf
  21. from convert import LlamaHfVocab
  22. logger = logging.getLogger("hf-to-gguf")
  23. ###### MODEL DEFINITIONS ######
  24. class SentencePieceTokenTypes(IntEnum):
  25. NORMAL = 1
  26. UNKNOWN = 2
  27. CONTROL = 3
  28. USER_DEFINED = 4
  29. UNUSED = 5
  30. BYTE = 6
  31. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  32. class Model:
  33. _model_classes: dict[str, type[Model]] = {}
  34. dir_model: Path
  35. ftype: int
  36. is_big_endian: bool
  37. endianess: gguf.GGUFEndian
  38. use_temp_file: bool
  39. lazy: bool
  40. part_names: list[str]
  41. is_safetensors: bool
  42. hparams: dict[str, Any]
  43. block_count: int
  44. tensor_map: gguf.TensorNameMap
  45. tensor_names: set[str] | None
  46. fname_out: Path
  47. gguf_writer: gguf.GGUFWriter
  48. # subclasses should define this!
  49. model_arch: gguf.MODEL_ARCH
  50. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
  51. if type(self) is Model:
  52. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  53. self.dir_model = dir_model
  54. self.ftype = ftype
  55. self.is_big_endian = is_big_endian
  56. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  57. self.use_temp_file = use_temp_file
  58. self.lazy = not eager
  59. self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
  60. self.is_safetensors = len(self.part_names) > 0
  61. if not self.is_safetensors:
  62. self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
  63. self.hparams = Model.load_hparams(self.dir_model)
  64. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  65. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  66. self.tensor_names = None
  67. if self.ftype == gguf.LlamaFileType.GUESSED:
  68. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  69. _, first_tensor = next(self.get_tensors())
  70. if first_tensor.dtype == torch.float16:
  71. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  72. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  73. else:
  74. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  75. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  76. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  77. ftype_lw: str = ftype_up.lower()
  78. # allow templating the file name with the output ftype, useful with the "auto" ftype
  79. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  80. self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  81. @classmethod
  82. def __init_subclass__(cls):
  83. # can't use an abstract property, because overriding it without type errors
  84. # would require using decorated functions instead of simply defining the property
  85. if "model_arch" not in cls.__dict__:
  86. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  87. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  88. key = next((k for k in keys if k in self.hparams), None)
  89. if key is not None:
  90. return self.hparams[key]
  91. if optional:
  92. return None
  93. raise KeyError(f"could not find any of: {keys}")
  94. def set_vocab(self):
  95. self._set_vocab_gpt2()
  96. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  97. tensor_names_from_parts: set[str] = set()
  98. if len(self.part_names) > 1:
  99. self.tensor_names = set()
  100. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  101. index_name += ".index.json"
  102. logger.info(f"gguf: loading model weight map from '{index_name}'")
  103. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  104. index: dict[str, Any] = json.load(f)
  105. weight_map = index.get("weight_map")
  106. if weight_map is None or not isinstance(weight_map, dict):
  107. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  108. self.tensor_names.update(weight_map.keys())
  109. else:
  110. self.tensor_names = tensor_names_from_parts
  111. for part_name in self.part_names:
  112. logger.info(f"gguf: loading model part '{part_name}'")
  113. ctx: ContextManager[Any]
  114. if self.is_safetensors:
  115. from safetensors import safe_open
  116. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  117. else:
  118. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  119. with ctx as model_part:
  120. tensor_names_from_parts.update(model_part.keys())
  121. for name in model_part.keys():
  122. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  123. if self.lazy:
  124. data = LazyTorchTensor.from_eager(data)
  125. yield name, data
  126. # only verify tensor name presence; it doesn't matter if they are not in the right files
  127. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  128. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  129. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  130. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  131. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  132. name: str = gguf.TENSOR_NAMES[key]
  133. if "{bid}" in name:
  134. assert bid is not None
  135. name = name.format(bid=bid)
  136. return name + suffix
  137. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  138. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  139. return False
  140. key_name: str = gguf.TENSOR_NAMES[key]
  141. if "{bid}" in key_name:
  142. if bid is None:
  143. return False
  144. key_name = key_name.format(bid=bid)
  145. else:
  146. if bid is not None:
  147. return False
  148. return name == (key_name + suffix)
  149. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  150. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  151. if new_name is None:
  152. raise ValueError(f"Can not map tensor {name!r}")
  153. return new_name
  154. def set_gguf_parameters(self):
  155. self.gguf_writer.add_name(self.dir_model.name)
  156. self.gguf_writer.add_block_count(self.block_count)
  157. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  158. self.gguf_writer.add_context_length(n_ctx)
  159. logger.info(f"gguf: context length = {n_ctx}")
  160. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  161. self.gguf_writer.add_embedding_length(n_embd)
  162. logger.info(f"gguf: embedding length = {n_embd}")
  163. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  164. self.gguf_writer.add_feed_forward_length(n_ff)
  165. logger.info(f"gguf: feed forward length = {n_ff}")
  166. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  167. self.gguf_writer.add_head_count(n_head)
  168. logger.info(f"gguf: head count = {n_head}")
  169. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  170. self.gguf_writer.add_head_count_kv(n_head_kv)
  171. logger.info(f"gguf: key-value head count = {n_head_kv}")
  172. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  173. self.gguf_writer.add_rope_freq_base(rope_theta)
  174. logger.info(f"gguf: rope theta = {rope_theta}")
  175. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  176. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  177. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  178. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  179. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  180. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  181. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  182. self.gguf_writer.add_expert_count(n_experts)
  183. logger.info(f"gguf: expert count = {n_experts}")
  184. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  185. self.gguf_writer.add_expert_used_count(n_experts_used)
  186. logger.info(f"gguf: experts used count = {n_experts_used}")
  187. self.gguf_writer.add_file_type(self.ftype)
  188. logger.info(f"gguf: file type = {self.ftype}")
  189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  190. del bid # unused
  191. return [(self.map_tensor_name(name), data_torch)]
  192. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  193. del name, new_name, bid, n_dims # unused
  194. return False
  195. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  196. del name, new_name, bid, n_dims # unused
  197. return False
  198. def write_tensors(self):
  199. # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
  200. def np_fp32_to_bf16(n: np.ndarray):
  201. # force nan to quiet
  202. n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
  203. # flush subnormals to zero
  204. n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
  205. # round to nearest even
  206. n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
  207. return n.astype(np.int16)
  208. # Doing this row-wise is much, much faster than element-wise, hence the signature
  209. v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)")
  210. if self.lazy:
  211. # TODO: find a way to implicitly wrap np.vectorize functions
  212. # NOTE: the type is changed to reflect otypes passed to np.vectorize above
  213. v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16)
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in self.get_tensors():
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  230. data: np.ndarray = data # type hint
  231. n_dims = len(data.shape)
  232. data_dtype = data.dtype
  233. data_qtype: gguf.GGMLQuantizationType | None = None
  234. # when both are True, f32 should win
  235. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  236. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  237. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  238. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  239. extra_f32 = any(cond for cond in (
  240. extra_f32,
  241. n_dims == 1,
  242. new_name.endswith("_norm.weight"),
  243. ))
  244. # Some tensor types are always in float32
  245. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  246. gguf.MODEL_TENSOR.FFN_GATE_INP,
  247. gguf.MODEL_TENSOR.POS_EMBD,
  248. gguf.MODEL_TENSOR.TOKEN_TYPES,
  249. ))
  250. # if f16 desired, convert any float32 2-dim weight tensors to float16
  251. extra_f16 = any(cond for cond in (
  252. extra_f16,
  253. (name.endswith(".weight") and n_dims >= 2),
  254. ))
  255. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  256. if self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  257. if data_dtype != np.float16:
  258. data = data.astype(np.float16)
  259. data_qtype = gguf.GGMLQuantizationType.F16
  260. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  261. if data_dtype != np.float32:
  262. data = data.astype(np.float32)
  263. data = v_fp32_to_bf16(data.view(np.int32))
  264. assert data.dtype == np.int16
  265. data_qtype = gguf.GGMLQuantizationType.BF16
  266. else: # by default, convert to float32
  267. if data_dtype != np.float32:
  268. data = data.astype(np.float32)
  269. data_qtype = gguf.GGMLQuantizationType.F32
  270. assert data_qtype is not None
  271. # reverse shape to make it similar to the internal ggml dimension order
  272. shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
  273. # n_dims is implicit in the shape
  274. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  275. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  276. def write(self):
  277. self.write_tensors()
  278. self.gguf_writer.write_header_to_file()
  279. self.gguf_writer.write_kv_data_to_file()
  280. self.gguf_writer.write_tensors_to_file(progress=True)
  281. self.gguf_writer.close()
  282. def write_vocab(self):
  283. self.gguf_writer.write_header_to_file()
  284. self.gguf_writer.write_kv_data_to_file()
  285. self.gguf_writer.close()
  286. @staticmethod
  287. def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
  288. part_names: list[str] = []
  289. for filename in os.listdir(dir_model):
  290. if filename.endswith(suffix):
  291. part_names.append(filename)
  292. part_names.sort()
  293. return part_names
  294. @staticmethod
  295. def load_hparams(dir_model: Path):
  296. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  297. return json.load(f)
  298. @classmethod
  299. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  300. assert names
  301. def func(modelcls: AnyModel) -> AnyModel:
  302. for name in names:
  303. cls._model_classes[name] = modelcls
  304. return modelcls
  305. return func
  306. @classmethod
  307. def from_model_architecture(cls, arch: str) -> type[Model]:
  308. try:
  309. return cls._model_classes[arch]
  310. except KeyError:
  311. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  312. # used for GPT-2 BPE and WordPiece vocabs
  313. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  314. tokens: list[str] = []
  315. toktypes: list[int] = []
  316. from transformers import AutoTokenizer
  317. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  318. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  319. assert max(tokenizer.vocab.values()) < vocab_size
  320. tokpre = self.get_vocab_base_pre(tokenizer)
  321. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  322. added_vocab = tokenizer.get_added_vocab()
  323. for i in range(vocab_size):
  324. if i not in reverse_vocab:
  325. tokens.append(f"[PAD{i}]")
  326. toktypes.append(gguf.TokenType.USER_DEFINED)
  327. elif reverse_vocab[i] in added_vocab:
  328. tokens.append(reverse_vocab[i])
  329. if tokenizer.added_tokens_decoder[i].special:
  330. toktypes.append(gguf.TokenType.CONTROL)
  331. else:
  332. toktypes.append(gguf.TokenType.USER_DEFINED)
  333. else:
  334. tokens.append(reverse_vocab[i])
  335. toktypes.append(gguf.TokenType.NORMAL)
  336. return tokens, toktypes, tokpre
  337. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  338. # do not modify it manually!
  339. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  340. def get_vocab_base_pre(self, tokenizer) -> str:
  341. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  342. # is specific for the BPE pre-tokenizer used by the model
  343. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  344. # use in llama.cpp to implement the same pre-tokenizer
  345. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  346. chktok = tokenizer.encode(chktxt)
  347. chkhsh = sha256(str(chktok).encode()).hexdigest()
  348. logger.debug(f"chktok: {chktok}")
  349. logger.debug(f"chkhsh: {chkhsh}")
  350. res = None
  351. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  352. # or pull the latest version of the model from Huggingface
  353. # don't edit the hashes manually!
  354. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  355. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  356. res = "llama-bpe"
  357. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  358. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  359. res = "deepseek-llm"
  360. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  361. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  362. res = "deepseek-coder"
  363. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  364. # ref: https://huggingface.co/tiiuae/falcon-7b
  365. res = "falcon"
  366. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  367. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  368. res = "bert-bge"
  369. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  370. # ref: https://huggingface.co/mosaicml/mpt-7b
  371. res = "mpt"
  372. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  373. # ref: https://huggingface.co/bigcode/starcoder2-3b
  374. res = "starcoder"
  375. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  376. # ref: https://huggingface.co/openai-community/gpt2
  377. res = "gpt-2"
  378. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  379. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  380. res = "refact"
  381. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  382. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  383. res = "command-r"
  384. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  385. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  386. res = "qwen2"
  387. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  388. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  389. res = "olmo"
  390. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  391. # ref: https://huggingface.co/databricks/dbrx-base
  392. res = "dbrx"
  393. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  394. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  395. res = "jina-en"
  396. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  397. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  398. res = "jina-es"
  399. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  400. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  401. res = "jina-de"
  402. if res is None:
  403. logger.warning("\n")
  404. logger.warning("**************************************************************************************")
  405. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  406. logger.warning("** There are 2 possible reasons for this:")
  407. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  408. logger.warning("** - the pre-tokenization config has changed upstream")
  409. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  410. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  411. logger.warning("**")
  412. logger.warning(f"** chkhsh: {chkhsh}")
  413. logger.warning("**************************************************************************************")
  414. logger.warning("\n")
  415. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  416. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  417. logger.debug(f"chkhsh: {chkhsh}")
  418. return res
  419. def _set_vocab_gpt2(self) -> None:
  420. tokens, toktypes, tokpre = self.get_vocab_base()
  421. self.gguf_writer.add_tokenizer_model("gpt2")
  422. self.gguf_writer.add_tokenizer_pre(tokpre)
  423. self.gguf_writer.add_token_list(tokens)
  424. self.gguf_writer.add_token_types(toktypes)
  425. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  426. special_vocab.add_to_gguf(self.gguf_writer)
  427. def _set_vocab_qwen(self):
  428. dir_model = self.dir_model
  429. hparams = self.hparams
  430. tokens: list[str] = []
  431. toktypes: list[int] = []
  432. from transformers import AutoTokenizer
  433. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  434. vocab_size = hparams["vocab_size"]
  435. assert max(tokenizer.get_vocab().values()) < vocab_size
  436. tokpre = self.get_vocab_base_pre(tokenizer)
  437. merges = []
  438. vocab = {}
  439. mergeable_ranks = tokenizer.mergeable_ranks
  440. for token, rank in mergeable_ranks.items():
  441. vocab[QwenModel.token_bytes_to_string(token)] = rank
  442. if len(token) == 1:
  443. continue
  444. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  445. assert len(merged) == 2
  446. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  447. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  448. added_vocab = tokenizer.special_tokens
  449. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  450. for i in range(vocab_size):
  451. if i not in reverse_vocab:
  452. tokens.append(f"[PAD{i}]")
  453. toktypes.append(gguf.TokenType.USER_DEFINED)
  454. elif reverse_vocab[i] in added_vocab:
  455. tokens.append(reverse_vocab[i])
  456. toktypes.append(gguf.TokenType.CONTROL)
  457. else:
  458. tokens.append(reverse_vocab[i])
  459. toktypes.append(gguf.TokenType.NORMAL)
  460. self.gguf_writer.add_tokenizer_model("gpt2")
  461. self.gguf_writer.add_tokenizer_pre(tokpre)
  462. self.gguf_writer.add_token_list(tokens)
  463. self.gguf_writer.add_token_types(toktypes)
  464. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  465. special_vocab.merges = merges
  466. # only add special tokens when they were not already loaded from config.json
  467. if len(special_vocab.special_token_ids) == 0:
  468. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  469. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  470. # this one is usually not in config.json anyway
  471. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  472. special_vocab.add_to_gguf(self.gguf_writer)
  473. def _set_vocab_sentencepiece(self):
  474. from sentencepiece import SentencePieceProcessor
  475. tokenizer_path = self.dir_model / 'tokenizer.model'
  476. tokens: list[bytes] = []
  477. scores: list[float] = []
  478. toktypes: list[int] = []
  479. if not tokenizer_path.is_file():
  480. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  481. tokenizer = SentencePieceProcessor()
  482. tokenizer.LoadFromFile(str(tokenizer_path))
  483. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  484. for token_id in range(tokenizer.vocab_size()):
  485. piece = tokenizer.IdToPiece(token_id)
  486. text = piece.encode("utf-8")
  487. score = tokenizer.GetScore(token_id)
  488. toktype = SentencePieceTokenTypes.NORMAL
  489. if tokenizer.IsUnknown(token_id):
  490. toktype = SentencePieceTokenTypes.UNKNOWN
  491. elif tokenizer.IsControl(token_id):
  492. toktype = SentencePieceTokenTypes.CONTROL
  493. elif tokenizer.IsUnused(token_id):
  494. toktype = SentencePieceTokenTypes.UNUSED
  495. elif tokenizer.IsByte(token_id):
  496. toktype = SentencePieceTokenTypes.BYTE
  497. tokens.append(text)
  498. scores.append(score)
  499. toktypes.append(toktype)
  500. added_tokens_file = self.dir_model / 'added_tokens.json'
  501. if added_tokens_file.is_file():
  502. with open(added_tokens_file, "r", encoding="utf-8") as f:
  503. added_tokens_json = json.load(f)
  504. for key in added_tokens_json:
  505. key = key.encode("utf-8")
  506. if key not in tokens:
  507. tokens.append(key)
  508. scores.append(-1000.0)
  509. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  510. if vocab_size > len(tokens):
  511. pad_count = vocab_size - len(tokens)
  512. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  513. for i in range(1, pad_count + 1):
  514. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  515. scores.append(-1000.0)
  516. toktypes.append(SentencePieceTokenTypes.UNUSED)
  517. assert len(tokens) == vocab_size
  518. self.gguf_writer.add_tokenizer_model("llama")
  519. self.gguf_writer.add_tokenizer_pre("default")
  520. self.gguf_writer.add_token_list(tokens)
  521. self.gguf_writer.add_token_scores(scores)
  522. self.gguf_writer.add_token_types(toktypes)
  523. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  524. special_vocab.add_to_gguf(self.gguf_writer)
  525. def _set_vocab_llama_hf(self):
  526. vocab = LlamaHfVocab(self.dir_model)
  527. tokens = []
  528. scores = []
  529. toktypes = []
  530. for text, score, toktype in vocab.all_tokens():
  531. tokens.append(text)
  532. scores.append(score)
  533. toktypes.append(toktype)
  534. assert len(tokens) == vocab.vocab_size
  535. self.gguf_writer.add_tokenizer_model("llama")
  536. self.gguf_writer.add_tokenizer_pre("default")
  537. self.gguf_writer.add_token_list(tokens)
  538. self.gguf_writer.add_token_scores(scores)
  539. self.gguf_writer.add_token_types(toktypes)
  540. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  541. special_vocab.add_to_gguf(self.gguf_writer)
  542. @Model.register("GPTNeoXForCausalLM")
  543. class GPTNeoXModel(Model):
  544. model_arch = gguf.MODEL_ARCH.GPTNEOX
  545. def set_gguf_parameters(self):
  546. block_count = self.hparams["num_hidden_layers"]
  547. self.gguf_writer.add_name(self.dir_model.name)
  548. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  549. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  550. self.gguf_writer.add_block_count(block_count)
  551. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  552. self.gguf_writer.add_rope_dimension_count(
  553. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  554. )
  555. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  556. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  557. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  558. @Model.register("BloomForCausalLM")
  559. class BloomModel(Model):
  560. model_arch = gguf.MODEL_ARCH.BLOOM
  561. def set_gguf_parameters(self):
  562. self.gguf_writer.add_name("Bloom")
  563. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  564. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  565. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  566. self.gguf_writer.add_embedding_length(n_embed)
  567. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  568. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  569. self.gguf_writer.add_head_count(n_head)
  570. self.gguf_writer.add_head_count_kv(n_head)
  571. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  572. self.gguf_writer.add_file_type(self.ftype)
  573. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  574. del bid # unused
  575. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  576. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  577. name = re.sub(r'transformer\.', '', name)
  578. tensors: list[tuple[str, Tensor]] = []
  579. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  580. # Map bloom-style qkv_linear to gpt-style qkv_linear
  581. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  582. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  583. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  584. data_torch = torch.cat(
  585. (
  586. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  587. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  588. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  589. ),
  590. dim=0,
  591. )
  592. logger.info("re-format attention.linear_qkv.weight")
  593. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  594. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  595. data_torch = torch.cat(
  596. (
  597. qkv_bias[:, 0, :].reshape((n_embed,)),
  598. qkv_bias[:, 1, :].reshape((n_embed,)),
  599. qkv_bias[:, 2, :].reshape((n_embed,)),
  600. ),
  601. dim=0,
  602. )
  603. logger.info("re-format attention.linear_qkv.bias")
  604. tensors.append((self.map_tensor_name(name), data_torch))
  605. if name == "word_embeddings.weight":
  606. assert self.tensor_names is not None
  607. # TODO: tie them at runtime, don't duplicate in the model file
  608. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  609. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  610. return tensors
  611. @Model.register("MPTForCausalLM")
  612. class MPTModel(Model):
  613. model_arch = gguf.MODEL_ARCH.MPT
  614. def set_vocab(self):
  615. try:
  616. self._set_vocab_gpt2()
  617. except Exception:
  618. # Fallback for SEA-LION model
  619. self._set_vocab_sentencepiece()
  620. self.gguf_writer.add_add_bos_token(False)
  621. self.gguf_writer.add_pad_token_id(3)
  622. self.gguf_writer.add_eos_token_id(1)
  623. self.gguf_writer.add_unk_token_id(0)
  624. def set_gguf_parameters(self):
  625. block_count = self.hparams["n_layers"]
  626. self.gguf_writer.add_name(self.dir_model.name)
  627. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  628. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  629. self.gguf_writer.add_block_count(block_count)
  630. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  631. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  632. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  633. self.gguf_writer.add_head_count_kv(kv_n_heads)
  634. self.gguf_writer.add_layer_norm_eps(1e-5)
  635. if self.hparams["attn_config"]["clip_qkv"] is not None:
  636. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  637. if self.hparams["attn_config"]["alibi"]:
  638. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  639. else:
  640. self.gguf_writer.add_max_alibi_bias(0.0)
  641. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  642. del bid # unused
  643. if "scales" in name:
  644. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  645. new_name = new_name.replace("scales", "act.scales")
  646. else:
  647. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  648. return [(new_name, data_torch)]
  649. @Model.register("OrionForCausalLM")
  650. class OrionModel(Model):
  651. model_arch = gguf.MODEL_ARCH.ORION
  652. def set_vocab(self):
  653. self._set_vocab_sentencepiece()
  654. def set_gguf_parameters(self):
  655. block_count = self.hparams["num_hidden_layers"]
  656. head_count = self.hparams["num_attention_heads"]
  657. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  658. hf_repo = self.hparams.get("_name_or_path", "")
  659. ctx_length = 0
  660. if "max_sequence_length" in self.hparams:
  661. ctx_length = self.hparams["max_sequence_length"]
  662. elif "max_position_embeddings" in self.hparams:
  663. ctx_length = self.hparams["max_position_embeddings"]
  664. elif "model_max_length" in self.hparams:
  665. ctx_length = self.hparams["model_max_length"]
  666. else:
  667. raise ValueError("gguf: can not find ctx length parameter.")
  668. self.gguf_writer.add_file_type(self.ftype)
  669. self.gguf_writer.add_name(self.dir_model.name)
  670. self.gguf_writer.add_source_hf_repo(hf_repo)
  671. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  672. self.gguf_writer.add_context_length(ctx_length)
  673. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  674. self.gguf_writer.add_block_count(block_count)
  675. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  676. self.gguf_writer.add_head_count(head_count)
  677. self.gguf_writer.add_head_count_kv(head_count_kv)
  678. # note: config provides rms norm but it is actually layer norm
  679. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  680. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  681. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  682. class BaichuanModel(Model):
  683. model_arch = gguf.MODEL_ARCH.BAICHUAN
  684. def set_vocab(self):
  685. self._set_vocab_sentencepiece()
  686. def set_gguf_parameters(self):
  687. block_count = self.hparams["num_hidden_layers"]
  688. head_count = self.hparams["num_attention_heads"]
  689. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  690. hf_repo = self.hparams.get("_name_or_path", "")
  691. ctx_length = 0
  692. if "max_sequence_length" in self.hparams:
  693. ctx_length = self.hparams["max_sequence_length"]
  694. elif "max_position_embeddings" in self.hparams:
  695. ctx_length = self.hparams["max_position_embeddings"]
  696. elif "model_max_length" in self.hparams:
  697. ctx_length = self.hparams["model_max_length"]
  698. else:
  699. raise ValueError("gguf: can not find ctx length parameter.")
  700. self.gguf_writer.add_name(self.dir_model.name)
  701. self.gguf_writer.add_source_hf_repo(hf_repo)
  702. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  703. self.gguf_writer.add_context_length(ctx_length)
  704. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  705. self.gguf_writer.add_block_count(block_count)
  706. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  707. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  708. self.gguf_writer.add_head_count(head_count)
  709. self.gguf_writer.add_head_count_kv(head_count_kv)
  710. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  711. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  712. if self.hparams["rope_scaling"].get("type") == "linear":
  713. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  714. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  715. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  716. head_count = self.hparams["num_attention_heads"]
  717. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  718. tensors: list[tuple[str, Tensor]] = []
  719. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  720. logger.info(f"Unpacking and permuting layer {bid}")
  721. tensors = [
  722. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  723. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  724. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  725. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  726. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  727. self._reverse_hf_part(data_torch, 2)),
  728. ]
  729. else:
  730. tensors = [(self.map_tensor_name(name), data_torch)]
  731. return tensors
  732. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  733. if n_kv_head is not None and n_head != n_kv_head:
  734. n_head //= n_kv_head
  735. return (
  736. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  737. .swapaxes(1, 2)
  738. .reshape(weights.shape)
  739. )
  740. def _reverse_hf_permute_part(
  741. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  742. ) -> Tensor:
  743. r = weights.shape[0] // 3
  744. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  745. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  746. r = weights.shape[0] // 3
  747. return weights[r * n_part:r * n_part + r, ...]
  748. @Model.register("XverseForCausalLM")
  749. class XverseModel(Model):
  750. model_arch = gguf.MODEL_ARCH.XVERSE
  751. def set_vocab(self):
  752. assert (self.dir_model / "tokenizer.json").is_file()
  753. dir_model = self.dir_model
  754. hparams = self.hparams
  755. tokens: list[bytes] = []
  756. toktypes: list[int] = []
  757. from transformers import AutoTokenizer
  758. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  759. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  760. assert max(tokenizer.vocab.values()) < vocab_size
  761. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  762. added_vocab = tokenizer.get_added_vocab()
  763. for token_id in range(vocab_size):
  764. token_text = reverse_vocab[token_id].encode('utf-8')
  765. # replace "\x00" to string with length > 0
  766. if token_text == b"\x00":
  767. toktype = gguf.TokenType.BYTE # special
  768. token_text = f"<{token_text}>".encode('utf-8')
  769. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  770. toktype = gguf.TokenType.BYTE # special
  771. elif reverse_vocab[token_id] in added_vocab:
  772. if tokenizer.added_tokens_decoder[token_id].special:
  773. toktype = gguf.TokenType.CONTROL
  774. else:
  775. toktype = gguf.TokenType.USER_DEFINED
  776. else:
  777. toktype = gguf.TokenType.NORMAL
  778. tokens.append(token_text)
  779. toktypes.append(toktype)
  780. self.gguf_writer.add_tokenizer_model("llama")
  781. self.gguf_writer.add_tokenizer_pre("default")
  782. self.gguf_writer.add_token_list(tokens)
  783. self.gguf_writer.add_token_types(toktypes)
  784. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  785. special_vocab.add_to_gguf(self.gguf_writer)
  786. def set_gguf_parameters(self):
  787. block_count = self.hparams["num_hidden_layers"]
  788. head_count = self.hparams["num_attention_heads"]
  789. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  790. hf_repo = self.hparams.get("_name_or_path", "")
  791. ctx_length = 0
  792. if "max_sequence_length" in self.hparams:
  793. ctx_length = self.hparams["max_sequence_length"]
  794. elif "max_position_embeddings" in self.hparams:
  795. ctx_length = self.hparams["max_position_embeddings"]
  796. elif "model_max_length" in self.hparams:
  797. ctx_length = self.hparams["model_max_length"]
  798. else:
  799. raise ValueError("gguf: can not find ctx length parameter.")
  800. self.gguf_writer.add_name(self.dir_model.name)
  801. self.gguf_writer.add_source_hf_repo(hf_repo)
  802. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  803. self.gguf_writer.add_context_length(ctx_length)
  804. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  805. self.gguf_writer.add_block_count(block_count)
  806. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  807. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  808. self.gguf_writer.add_head_count(head_count)
  809. self.gguf_writer.add_head_count_kv(head_count_kv)
  810. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  811. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  812. if self.hparams["rope_scaling"].get("type") == "linear":
  813. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  814. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  816. del bid # unused
  817. head_count = self.hparams["num_attention_heads"]
  818. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  819. # HF models permute some of the tensors, so we need to undo that
  820. if name.endswith("q_proj.weight"):
  821. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  822. if name.endswith("k_proj.weight"):
  823. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  824. return [(self.map_tensor_name(name), data_torch)]
  825. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  826. if n_kv_head is not None and n_head != n_kv_head:
  827. n_head //= n_kv_head
  828. return (
  829. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  830. .swapaxes(1, 2)
  831. .reshape(weights.shape)
  832. )
  833. @Model.register("FalconForCausalLM", "RWForCausalLM")
  834. class FalconModel(Model):
  835. model_arch = gguf.MODEL_ARCH.FALCON
  836. def set_gguf_parameters(self):
  837. block_count = self.hparams.get("num_hidden_layers")
  838. if block_count is None:
  839. block_count = self.hparams["n_layer"] # old name
  840. n_head = self.hparams.get("num_attention_heads")
  841. if n_head is None:
  842. n_head = self.hparams["n_head"] # old name
  843. n_head_kv = self.hparams.get("num_kv_heads")
  844. if n_head_kv is None:
  845. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  846. self.gguf_writer.add_name("Falcon")
  847. self.gguf_writer.add_context_length(2048) # not in config.json
  848. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  849. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  850. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  851. self.gguf_writer.add_block_count(block_count)
  852. self.gguf_writer.add_head_count(n_head)
  853. self.gguf_writer.add_head_count_kv(n_head_kv)
  854. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  855. self.gguf_writer.add_file_type(self.ftype)
  856. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  857. del bid # unused
  858. # QKV tensor transform
  859. # The original query_key_value tensor contains n_head_kv "kv groups",
  860. # each consisting of n_head/n_head_kv query weights followed by one key
  861. # and one value weight (shared by all query heads in the kv group).
  862. # This layout makes it a big pain to work with in GGML.
  863. # So we rearrange them here,, so that we have n_head query weights
  864. # followed by n_head_kv key weights followed by n_head_kv value weights,
  865. # in contiguous fashion.
  866. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  867. if "query_key_value" in name:
  868. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  869. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  870. head_dim = self.hparams["hidden_size"] // n_head
  871. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  872. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  873. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  874. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  875. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  876. return [(self.map_tensor_name(name), data_torch)]
  877. @Model.register("GPTBigCodeForCausalLM")
  878. class StarCoderModel(Model):
  879. model_arch = gguf.MODEL_ARCH.STARCODER
  880. def set_gguf_parameters(self):
  881. block_count = self.hparams["n_layer"]
  882. self.gguf_writer.add_name("StarCoder")
  883. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  884. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  885. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  886. self.gguf_writer.add_block_count(block_count)
  887. self.gguf_writer.add_head_count(self.hparams["n_head"])
  888. self.gguf_writer.add_head_count_kv(1)
  889. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  890. self.gguf_writer.add_file_type(self.ftype)
  891. @Model.register("GPTRefactForCausalLM")
  892. class RefactModel(Model):
  893. model_arch = gguf.MODEL_ARCH.REFACT
  894. def set_vocab(self):
  895. super().set_vocab()
  896. # TODO: how to determine special FIM tokens automatically?
  897. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  898. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  899. special_vocab._set_special_token("prefix", 1)
  900. special_vocab._set_special_token("suffix", 3)
  901. special_vocab._set_special_token("middle", 2)
  902. special_vocab._set_special_token("fsep", 4) # is this correct?
  903. special_vocab.add_to_gguf(self.gguf_writer)
  904. def set_gguf_parameters(self):
  905. hidden_dim = self.hparams["n_embd"]
  906. inner_dim = 4 * hidden_dim
  907. hidden_dim = int(2 * inner_dim / 3)
  908. multiple_of = 256
  909. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  910. block_count = self.hparams["n_layer"]
  911. self.gguf_writer.add_name("Refact")
  912. # refact uses Alibi. So this is from config.json which might be used by training.
  913. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  914. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  915. self.gguf_writer.add_feed_forward_length(ff_dim)
  916. self.gguf_writer.add_block_count(block_count)
  917. self.gguf_writer.add_head_count(self.hparams["n_head"])
  918. self.gguf_writer.add_head_count_kv(1)
  919. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  920. self.gguf_writer.add_file_type(self.ftype)
  921. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  922. hidden_dim = self.hparams["n_embd"]
  923. inner_dim = 4 * hidden_dim
  924. hidden_dim = int(2 * inner_dim / 3)
  925. multiple_of = 256
  926. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  927. n_head = self.hparams["n_head"]
  928. n_head_kv = 1
  929. head_dim = self.hparams["n_embd"] // n_head
  930. tensors: list[tuple[str, Tensor]] = []
  931. if bid is not None:
  932. if name == f"transformer.h.{bid}.attn.kv.weight":
  933. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  934. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  935. elif name == f"transformer.h.{bid}.attn.q.weight":
  936. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  937. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  938. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  939. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  940. if len(tensors) == 0:
  941. tensors.append((self.map_tensor_name(name), data_torch))
  942. return tensors
  943. @Model.register("PersimmonForCausalLM")
  944. class PersimmonModel(Model):
  945. model_arch = gguf.MODEL_ARCH.PERSIMMON
  946. def set_gguf_parameters(self):
  947. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  948. head_count = self.hparams["num_attention_heads"]
  949. head_count_kv = head_count
  950. hidden_size = self.hparams["hidden_size"]
  951. self.gguf_writer.add_name('persimmon-8b-chat')
  952. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  953. self.gguf_writer.add_embedding_length(hidden_size)
  954. self.gguf_writer.add_block_count(block_count)
  955. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  956. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  957. # than the head size?
  958. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  959. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  960. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  961. self.gguf_writer.add_head_count(head_count)
  962. self.gguf_writer.add_head_count_kv(head_count_kv)
  963. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  964. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  965. def set_vocab(self):
  966. self._set_vocab_sentencepiece()
  967. # self.gguf_writer.add_bos_token_id(71013)
  968. # self.gguf_writer.add_eos_token_id(71013)
  969. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  970. del name, new_name, bid, n_dims # unused
  971. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  972. return True
  973. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  974. class StableLMModel(Model):
  975. model_arch = gguf.MODEL_ARCH.STABLELM
  976. def set_vocab(self):
  977. if (self.dir_model / "tokenizer.json").is_file():
  978. self._set_vocab_gpt2()
  979. else:
  980. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  981. self._set_vocab_qwen()
  982. def set_gguf_parameters(self):
  983. hparams = self.hparams
  984. block_count = hparams["num_hidden_layers"]
  985. self.gguf_writer.add_name(self.dir_model.name)
  986. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  987. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  988. self.gguf_writer.add_block_count(block_count)
  989. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  990. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  991. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  992. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  993. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  994. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  995. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  996. _q_norms: list[dict[str, Tensor]] | None = None
  997. _k_norms: list[dict[str, Tensor]] | None = None
  998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  999. n_head = self.hparams["num_attention_heads"]
  1000. n_kv_head = self.hparams["num_key_value_heads"]
  1001. if name.find("q_layernorm.norms") != -1:
  1002. assert bid is not None
  1003. if self._q_norms is None:
  1004. self._q_norms = [{} for _ in range(self.block_count)]
  1005. self._q_norms[bid][name] = data_torch
  1006. if len(self._q_norms[bid]) >= n_head:
  1007. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1008. else:
  1009. return []
  1010. if name.find("k_layernorm.norms") != -1:
  1011. assert bid is not None
  1012. if self._k_norms is None:
  1013. self._k_norms = [{} for _ in range(self.block_count)]
  1014. self._k_norms[bid][name] = data_torch
  1015. if len(self._k_norms[bid]) >= n_kv_head:
  1016. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1017. else:
  1018. return []
  1019. return [(self.map_tensor_name(name), data_torch)]
  1020. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1021. datas: list[Tensor] = []
  1022. # extract the norms in order
  1023. for xid in range(n_head):
  1024. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1025. datas.append(norms[ename])
  1026. del norms[ename]
  1027. data_torch = torch.stack(datas, dim=0)
  1028. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1029. new_name = self.map_tensor_name(merged_name)
  1030. return [(new_name, data_torch)]
  1031. def write_tensors(self):
  1032. super().write_tensors()
  1033. if self._q_norms is not None or self._k_norms is not None:
  1034. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1035. norms = (
  1036. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1037. ) + (
  1038. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1039. )
  1040. if len(norms) > 0:
  1041. raise ValueError(f"Unprocessed norms: {norms}")
  1042. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1043. class LlamaModel(Model):
  1044. model_arch = gguf.MODEL_ARCH.LLAMA
  1045. def set_vocab(self):
  1046. try:
  1047. self. _set_vocab_sentencepiece()
  1048. except FileNotFoundError:
  1049. try:
  1050. self._set_vocab_llama_hf()
  1051. except (FileNotFoundError, TypeError):
  1052. # Llama 3
  1053. self._set_vocab_gpt2()
  1054. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1055. if self.hparams.get("vocab_size", 32000) == 32016:
  1056. special_vocab = gguf.SpecialVocab(
  1057. self.dir_model, load_merges=False,
  1058. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1059. )
  1060. special_vocab._set_special_token("prefix", 32007)
  1061. special_vocab._set_special_token("suffix", 32008)
  1062. special_vocab._set_special_token("middle", 32009)
  1063. special_vocab._set_special_token("eot", 32010)
  1064. special_vocab.add_to_gguf(self.gguf_writer)
  1065. def set_gguf_parameters(self):
  1066. super().set_gguf_parameters()
  1067. hparams = self.hparams
  1068. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1069. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1070. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1071. if self.hparams["rope_scaling"].get("type") == "linear":
  1072. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1073. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1074. @staticmethod
  1075. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1076. if n_head_kv is not None and n_head != n_head_kv:
  1077. n_head = n_head_kv
  1078. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1079. .swapaxes(1, 2)
  1080. .reshape(weights.shape))
  1081. _experts: list[dict[str, Tensor]] | None = None
  1082. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1083. n_head = self.hparams["num_attention_heads"]
  1084. n_kv_head = self.hparams.get("num_key_value_heads")
  1085. if name.endswith("q_proj.weight"):
  1086. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1087. if name.endswith("k_proj.weight"):
  1088. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1089. # process the experts separately
  1090. if name.find("block_sparse_moe.experts") != -1:
  1091. n_experts = self.hparams["num_local_experts"]
  1092. assert bid is not None
  1093. if self._experts is None:
  1094. self._experts = [{} for _ in range(self.block_count)]
  1095. self._experts[bid][name] = data_torch
  1096. if len(self._experts[bid]) >= n_experts * 3:
  1097. tensors: list[tuple[str, Tensor]] = []
  1098. # merge the experts into a single 3d tensor
  1099. for wid in ["w1", "w2", "w3"]:
  1100. datas: list[Tensor] = []
  1101. for xid in range(n_experts):
  1102. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1103. datas.append(self._experts[bid][ename])
  1104. del self._experts[bid][ename]
  1105. data_torch = torch.stack(datas, dim=0)
  1106. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1107. new_name = self.map_tensor_name(merged_name)
  1108. tensors.append((new_name, data_torch))
  1109. return tensors
  1110. else:
  1111. return []
  1112. return [(self.map_tensor_name(name), data_torch)]
  1113. def write_tensors(self):
  1114. super().write_tensors()
  1115. if self._experts is not None:
  1116. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1117. experts = [k for d in self._experts for k in d.keys()]
  1118. if len(experts) > 0:
  1119. raise ValueError(f"Unprocessed experts: {experts}")
  1120. @Model.register("GrokForCausalLM")
  1121. class GrokModel(Model):
  1122. model_arch = gguf.MODEL_ARCH.GROK
  1123. def set_vocab(self):
  1124. self._set_vocab_sentencepiece()
  1125. def __init__(self, *args, **kwargs):
  1126. super().__init__(*args, **kwargs)
  1127. def set_gguf_parameters(self):
  1128. super().set_gguf_parameters()
  1129. self.gguf_writer.add_name("Grok")
  1130. _experts: list[dict[str, Tensor]] | None = None
  1131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1132. # process the experts separately
  1133. if name.find(".moe.") != -1:
  1134. n_experts = self.hparams["num_local_experts"]
  1135. assert bid is not None
  1136. if self._experts is None:
  1137. self._experts = [{} for _ in range(self.block_count)]
  1138. self._experts[bid][name] = data_torch
  1139. if len(self._experts[bid]) >= n_experts * 3:
  1140. tensors: list[tuple[str, Tensor]] = []
  1141. # merge the experts into a single 3d tensor
  1142. for wid in ["linear", "linear_1", "linear_v"]:
  1143. datas: list[Tensor] = []
  1144. for xid in range(n_experts):
  1145. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1146. datas.append(self._experts[bid][ename])
  1147. del self._experts[bid][ename]
  1148. data_torch = torch.stack(datas, dim=0)
  1149. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1150. new_name = self.map_tensor_name(merged_name)
  1151. tensors.append((new_name, data_torch))
  1152. return tensors
  1153. else:
  1154. return []
  1155. return [(self.map_tensor_name(name), data_torch)]
  1156. @Model.register("DbrxForCausalLM")
  1157. class DbrxModel(Model):
  1158. model_arch = gguf.MODEL_ARCH.DBRX
  1159. def set_gguf_parameters(self):
  1160. ffn_config = self.hparams["ffn_config"]
  1161. attn_config = self.hparams["attn_config"]
  1162. self.gguf_writer.add_name(self.hparams["model_type"])
  1163. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1164. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1165. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1166. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1167. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1168. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1169. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1170. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1171. self.gguf_writer.add_file_type(self.ftype)
  1172. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1173. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1174. self.gguf_writer.add_layer_norm_eps(1e-5)
  1175. self.gguf_writer.add_file_type(self.ftype)
  1176. logger.info(f"gguf: file type = {self.ftype}")
  1177. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1178. del bid # unused
  1179. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1180. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1181. n_embd = self.hparams["d_model"]
  1182. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1183. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1184. # But llama.cpp moe graph works differently
  1185. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1186. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1187. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1188. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1189. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1190. experts = False
  1191. for exp_tensor_name in exp_tensor_names.keys():
  1192. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1193. experts = True
  1194. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1195. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1196. data_torch = data_torch.permute(*permute_tensor)
  1197. break
  1198. # map tensor names
  1199. # In MoE models the ffn tensors are typically most of the model weights,
  1200. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1201. # Every other model has the weight names ending in .weight,
  1202. # let's assume that is the convention which is not the case for dbrx:
  1203. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1204. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1205. return [(new_name, data_torch)]
  1206. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1207. del name, new_name, bid # unused
  1208. return n_dims > 1
  1209. @Model.register("MiniCPMForCausalLM")
  1210. class MiniCPMModel(Model):
  1211. model_arch = gguf.MODEL_ARCH.MINICPM
  1212. def set_gguf_parameters(self):
  1213. block_count = self.hparams["num_hidden_layers"]
  1214. self.gguf_writer.add_name("MiniCPM")
  1215. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1216. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1217. self.gguf_writer.add_block_count(block_count)
  1218. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1219. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1220. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1221. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1222. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1223. self.gguf_writer.add_file_type(self.ftype)
  1224. def set_vocab(self):
  1225. self._set_vocab_llama_hf()
  1226. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1227. if n_kv_head is not None and n_head != n_kv_head:
  1228. n_head //= n_kv_head
  1229. return (
  1230. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1231. .swapaxes(1, 2)
  1232. .reshape(weights.shape)
  1233. )
  1234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1235. del bid # unused
  1236. n_head = self.hparams["num_attention_heads"]
  1237. n_kv_head = self.hparams.get("num_key_value_heads")
  1238. # HF models permute some of the tensors, so we need to undo that
  1239. if name.endswith(("q_proj.weight")):
  1240. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1241. if name.endswith(("k_proj.weight")):
  1242. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1243. return [(self.map_tensor_name(name), data_torch)]
  1244. @Model.register("QWenLMHeadModel")
  1245. class QwenModel(Model):
  1246. model_arch = gguf.MODEL_ARCH.QWEN
  1247. @staticmethod
  1248. def token_bytes_to_string(b):
  1249. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1250. byte_encoder = bytes_to_unicode()
  1251. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1252. @staticmethod
  1253. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1254. parts = [bytes([b]) for b in token]
  1255. while True:
  1256. min_idx = None
  1257. min_rank = None
  1258. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1259. rank = mergeable_ranks.get(pair[0] + pair[1])
  1260. if rank is not None and (min_rank is None or rank < min_rank):
  1261. min_idx = i
  1262. min_rank = rank
  1263. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1264. break
  1265. assert min_idx is not None
  1266. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1267. return parts
  1268. def set_vocab(self):
  1269. self._set_vocab_qwen()
  1270. def set_gguf_parameters(self):
  1271. self.gguf_writer.add_name("Qwen")
  1272. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1273. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1274. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1275. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1276. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1277. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1278. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1279. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1280. @Model.register("Qwen2ForCausalLM")
  1281. class Qwen2Model(Model):
  1282. model_arch = gguf.MODEL_ARCH.QWEN2
  1283. def set_vocab(self):
  1284. try:
  1285. self._set_vocab_sentencepiece()
  1286. except FileNotFoundError:
  1287. self._set_vocab_gpt2()
  1288. @Model.register("Qwen2MoeForCausalLM")
  1289. class Qwen2MoeModel(Model):
  1290. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1291. def set_gguf_parameters(self):
  1292. super().set_gguf_parameters()
  1293. if (n_experts := self.hparams.get("num_experts")) is not None:
  1294. self.gguf_writer.add_expert_count(n_experts)
  1295. _experts: list[dict[str, Tensor]] | None = None
  1296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1297. # process the experts separately
  1298. if name.find("experts") != -1:
  1299. n_experts = self.hparams["num_experts"]
  1300. assert bid is not None
  1301. if self._experts is None:
  1302. self._experts = [{} for _ in range(self.block_count)]
  1303. self._experts[bid][name] = data_torch
  1304. if len(self._experts[bid]) >= n_experts * 3:
  1305. tensors: list[tuple[str, Tensor]] = []
  1306. # merge the experts into a single 3d tensor
  1307. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1308. datas: list[Tensor] = []
  1309. for xid in range(n_experts):
  1310. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1311. datas.append(self._experts[bid][ename])
  1312. del self._experts[bid][ename]
  1313. data_torch = torch.stack(datas, dim=0)
  1314. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1315. new_name = self.map_tensor_name(merged_name)
  1316. tensors.append((new_name, data_torch))
  1317. return tensors
  1318. else:
  1319. return []
  1320. return [(self.map_tensor_name(name), data_torch)]
  1321. def write_tensors(self):
  1322. super().write_tensors()
  1323. if self._experts is not None:
  1324. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1325. experts = [k for d in self._experts for k in d.keys()]
  1326. if len(experts) > 0:
  1327. raise ValueError(f"Unprocessed experts: {experts}")
  1328. @Model.register("GPT2LMHeadModel")
  1329. class GPT2Model(Model):
  1330. model_arch = gguf.MODEL_ARCH.GPT2
  1331. def set_gguf_parameters(self):
  1332. self.gguf_writer.add_name(self.dir_model.name)
  1333. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1334. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1335. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1336. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1337. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1338. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1339. self.gguf_writer.add_file_type(self.ftype)
  1340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1341. del bid # unused
  1342. tensors: list[tuple[str, Tensor]] = []
  1343. # we don't need these
  1344. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1345. return tensors
  1346. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1347. data_torch = data_torch.transpose(1, 0)
  1348. new_name = self.map_tensor_name(name)
  1349. tensors.append((new_name, data_torch))
  1350. # note: GPT2 output is tied to (same as) wte in original model
  1351. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1352. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1353. return tensors
  1354. @Model.register("PhiForCausalLM")
  1355. class Phi2Model(Model):
  1356. model_arch = gguf.MODEL_ARCH.PHI2
  1357. def set_gguf_parameters(self):
  1358. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1359. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1360. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1361. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1362. self.gguf_writer.add_name("Phi2")
  1363. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1364. self.gguf_writer.add_embedding_length(n_embd)
  1365. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1366. self.gguf_writer.add_block_count(block_count)
  1367. self.gguf_writer.add_head_count(n_head)
  1368. self.gguf_writer.add_head_count_kv(n_head)
  1369. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1370. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1371. self.gguf_writer.add_file_type(self.ftype)
  1372. self.gguf_writer.add_add_bos_token(False)
  1373. @Model.register("Phi3ForCausalLM")
  1374. class Phi3MiniModel(Model):
  1375. model_arch = gguf.MODEL_ARCH.PHI3
  1376. def set_vocab(self):
  1377. from sentencepiece import SentencePieceProcessor
  1378. tokenizer_path = self.dir_model / 'tokenizer.model'
  1379. if not tokenizer_path.is_file():
  1380. raise ValueError(f'Error: Missing {tokenizer_path}')
  1381. tokenizer = SentencePieceProcessor()
  1382. tokenizer.LoadFromFile(str(tokenizer_path))
  1383. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1384. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1385. scores: list[float] = [-10000.0] * vocab_size
  1386. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1387. for token_id in range(tokenizer.vocab_size()):
  1388. piece = tokenizer.IdToPiece(token_id)
  1389. text = piece.encode("utf-8")
  1390. score = tokenizer.GetScore(token_id)
  1391. toktype = SentencePieceTokenTypes.NORMAL
  1392. if tokenizer.IsUnknown(token_id):
  1393. toktype = SentencePieceTokenTypes.UNKNOWN
  1394. elif tokenizer.IsControl(token_id):
  1395. toktype = SentencePieceTokenTypes.CONTROL
  1396. elif tokenizer.IsUnused(token_id):
  1397. toktype = SentencePieceTokenTypes.UNUSED
  1398. elif tokenizer.IsByte(token_id):
  1399. toktype = SentencePieceTokenTypes.BYTE
  1400. tokens[token_id] = text
  1401. scores[token_id] = score
  1402. toktypes[token_id] = toktype
  1403. added_tokens_file = self.dir_model / 'added_tokens.json'
  1404. if added_tokens_file.is_file():
  1405. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1406. added_tokens_json = json.load(f)
  1407. for key in added_tokens_json:
  1408. token_id = added_tokens_json[key]
  1409. if (token_id >= vocab_size):
  1410. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1411. continue
  1412. tokens[token_id] = key.encode("utf-8")
  1413. scores[token_id] = -1000.0
  1414. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1415. self.gguf_writer.add_tokenizer_model("llama")
  1416. self.gguf_writer.add_tokenizer_pre("default")
  1417. self.gguf_writer.add_token_list(tokens)
  1418. self.gguf_writer.add_token_scores(scores)
  1419. self.gguf_writer.add_token_types(toktypes)
  1420. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1421. special_vocab.add_to_gguf(self.gguf_writer)
  1422. def set_gguf_parameters(self):
  1423. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1424. rot_pct = 1.0
  1425. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1426. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1427. rms_eps = self.find_hparam(["rms_norm_eps"])
  1428. self.gguf_writer.add_name("Phi3")
  1429. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1430. self.gguf_writer.add_embedding_length(n_embd)
  1431. self.gguf_writer.add_feed_forward_length(8192)
  1432. self.gguf_writer.add_block_count(block_count)
  1433. self.gguf_writer.add_head_count(n_head)
  1434. self.gguf_writer.add_head_count_kv(n_head)
  1435. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1436. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1437. self.gguf_writer.add_file_type(self.ftype)
  1438. @Model.register("PlamoForCausalLM")
  1439. class PlamoModel(Model):
  1440. model_arch = gguf.MODEL_ARCH.PLAMO
  1441. def set_vocab(self):
  1442. self._set_vocab_sentencepiece()
  1443. def set_gguf_parameters(self):
  1444. hparams = self.hparams
  1445. block_count = hparams["num_hidden_layers"]
  1446. self.gguf_writer.add_name("PLaMo")
  1447. self.gguf_writer.add_context_length(4096) # not in config.json
  1448. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1449. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1450. self.gguf_writer.add_block_count(block_count)
  1451. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1452. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1453. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1454. def shuffle_attn_q_weight(self, data_torch):
  1455. assert data_torch.size() == (5120, 5120)
  1456. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1457. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1458. data_torch = torch.reshape(data_torch, (5120, 5120))
  1459. return data_torch
  1460. def shuffle_attn_output_weight(self, data_torch):
  1461. assert data_torch.size() == (5120, 5120)
  1462. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1463. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1464. data_torch = torch.reshape(data_torch, (5120, 5120))
  1465. return data_torch
  1466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1467. del bid # unused
  1468. new_name = self.map_tensor_name(name)
  1469. # shuffle for broadcasting of gqa in ggml_mul_mat
  1470. if new_name.endswith("attn_q.weight"):
  1471. data_torch = self.shuffle_attn_q_weight(data_torch)
  1472. elif new_name.endswith("attn_output.weight"):
  1473. data_torch = self.shuffle_attn_output_weight(data_torch)
  1474. return [(new_name, data_torch)]
  1475. @Model.register("CodeShellForCausalLM")
  1476. class CodeShellModel(Model):
  1477. model_arch = gguf.MODEL_ARCH.CODESHELL
  1478. def set_gguf_parameters(self):
  1479. block_count = self.hparams["n_layer"]
  1480. self.gguf_writer.add_name("CodeShell")
  1481. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1482. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1483. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1484. self.gguf_writer.add_block_count(block_count)
  1485. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1486. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1487. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1488. self.gguf_writer.add_file_type(self.ftype)
  1489. self.gguf_writer.add_rope_freq_base(10000.0)
  1490. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1491. self.gguf_writer.add_rope_scaling_factor(1.0)
  1492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1493. del bid # unused
  1494. new_name = self.map_tensor_name(name)
  1495. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1496. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1497. assert self.tensor_names is not None
  1498. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1499. # copy tok_embd.weight to output.weight
  1500. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1501. return tensors
  1502. @Model.register("InternLM2ForCausalLM")
  1503. class InternLM2Model(Model):
  1504. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1505. def set_vocab(self):
  1506. # (TODO): Is there a better way?
  1507. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1508. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1509. # recognized as an empty string in C++.
  1510. from sentencepiece import SentencePieceProcessor
  1511. from sentencepiece import sentencepiece_model_pb2 as model
  1512. tokenizer_path = self.dir_model / 'tokenizer.model'
  1513. tokens: list[bytes] = []
  1514. scores: list[float] = []
  1515. toktypes: list[int] = []
  1516. if not tokenizer_path.is_file():
  1517. logger.error(f'Error: Missing {tokenizer_path}')
  1518. sys.exit(1)
  1519. sentencepiece_model = model.ModelProto()
  1520. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1521. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1522. tokenizer = SentencePieceProcessor()
  1523. tokenizer.LoadFromFile(str(tokenizer_path))
  1524. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1525. for token_id in range(vocab_size):
  1526. piece = tokenizer.IdToPiece(token_id)
  1527. text = piece.encode("utf-8")
  1528. score = tokenizer.GetScore(token_id)
  1529. if text == b"\x00":
  1530. # (TODO): fixme
  1531. # Hack here and replace the \x00 characters.
  1532. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1533. text = "🐉".encode("utf-8")
  1534. toktype = SentencePieceTokenTypes.NORMAL
  1535. if tokenizer.IsUnknown(token_id):
  1536. toktype = SentencePieceTokenTypes.UNKNOWN
  1537. elif tokenizer.IsControl(token_id):
  1538. toktype = SentencePieceTokenTypes.CONTROL
  1539. elif tokenizer.IsUnused(token_id):
  1540. toktype = SentencePieceTokenTypes.UNUSED
  1541. elif tokenizer.IsByte(token_id):
  1542. toktype = SentencePieceTokenTypes.BYTE
  1543. tokens.append(text)
  1544. scores.append(score)
  1545. toktypes.append(toktype)
  1546. added_tokens_file = self.dir_model / 'added_tokens.json'
  1547. if added_tokens_file.is_file():
  1548. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1549. added_tokens_json = json.load(f)
  1550. for key in added_tokens_json:
  1551. tokens.append(key.encode("utf-8"))
  1552. scores.append(-1000.0)
  1553. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1554. self.gguf_writer.add_tokenizer_model("llama")
  1555. self.gguf_writer.add_tokenizer_pre("default")
  1556. self.gguf_writer.add_token_list(tokens)
  1557. self.gguf_writer.add_token_scores(scores)
  1558. self.gguf_writer.add_token_types(toktypes)
  1559. self.gguf_writer.add_add_space_prefix(add_prefix)
  1560. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1561. old_eos = special_vocab.special_token_ids["eos"]
  1562. if "chat" in os.path.basename(self.dir_model.absolute()):
  1563. # For the chat model, we replace the eos with '<|im_end|>'.
  1564. # TODO: this is a hack, should be fixed
  1565. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1566. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1567. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1568. in chat mode so that the conversation can end normally.")
  1569. special_vocab.add_to_gguf(self.gguf_writer)
  1570. def _try_get_sft_eos(self, tokenizer):
  1571. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1572. im_end_list = tokenizer.Encode('<|im_end|>')
  1573. eos_token = None
  1574. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1575. if len(unused_145_list) == 1:
  1576. eos_token = unused_145_list[0]
  1577. if len(im_end_list) == 1:
  1578. eos_token = im_end_list[0]
  1579. assert eos_token
  1580. return eos_token
  1581. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1582. if n_head_kv is not None and n_head != n_head_kv:
  1583. n_head = n_head_kv
  1584. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1585. .swapaxes(1, 2)
  1586. .reshape(weights.shape))
  1587. def set_gguf_parameters(self):
  1588. self.gguf_writer.add_name("InternLM2")
  1589. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1590. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1591. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1592. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1593. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1594. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1595. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1596. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1598. num_heads = self.hparams["num_attention_heads"]
  1599. num_kv_heads = self.hparams["num_key_value_heads"]
  1600. hidden_size = self.hparams["hidden_size"]
  1601. q_per_kv = num_heads // num_kv_heads
  1602. head_dim = hidden_size // num_heads
  1603. num_groups = num_heads // q_per_kv
  1604. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1605. if re.match(qkv_pattern, name):
  1606. bid = re.findall(qkv_pattern, name)[0]
  1607. qkv = data_torch
  1608. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1609. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1610. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1611. # The model weights of q and k equire additional reshape.
  1612. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1613. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1614. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1615. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1616. # v = rearrange(v, " o g n i -> o (g n i)").T
  1617. v = v.reshape((v.shape[0], -1)).T
  1618. return [
  1619. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1620. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1621. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1622. ]
  1623. else:
  1624. return [(self.map_tensor_name(name), data_torch)]
  1625. @Model.register("BertModel", "CamembertModel")
  1626. class BertModel(Model):
  1627. model_arch = gguf.MODEL_ARCH.BERT
  1628. def __init__(self, *args, **kwargs):
  1629. super().__init__(*args, **kwargs)
  1630. self.vocab_size = None
  1631. def set_gguf_parameters(self):
  1632. super().set_gguf_parameters()
  1633. self.gguf_writer.add_causal_attention(False)
  1634. # get pooling path
  1635. pooling_path = None
  1636. module_path = self.dir_model / "modules.json"
  1637. if module_path.is_file():
  1638. with open(module_path, encoding="utf-8") as f:
  1639. modules = json.load(f)
  1640. for mod in modules:
  1641. if mod["type"] == "sentence_transformers.models.Pooling":
  1642. pooling_path = mod["path"]
  1643. break
  1644. # get pooling type
  1645. if pooling_path is not None:
  1646. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1647. pooling = json.load(f)
  1648. if pooling["pooling_mode_mean_tokens"]:
  1649. pooling_type = gguf.PoolingType.MEAN
  1650. elif pooling["pooling_mode_cls_token"]:
  1651. pooling_type = gguf.PoolingType.CLS
  1652. else:
  1653. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1654. self.gguf_writer.add_pooling_type(pooling_type)
  1655. def set_vocab(self):
  1656. tokens, toktypes, tokpre = self.get_vocab_base()
  1657. self.vocab_size = len(tokens)
  1658. # we need this to validate the size of the token_type embeddings
  1659. # though currently we are passing all zeros to the token_type embeddings
  1660. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1661. # convert to phantom space vocab
  1662. def phantom(tok):
  1663. if tok.startswith("[") and tok.endswith("]"):
  1664. return tok
  1665. if tok.startswith("##"):
  1666. return tok[2:]
  1667. return "\u2581" + tok
  1668. tokens = list(map(phantom, tokens))
  1669. # add vocab to gguf
  1670. self.gguf_writer.add_tokenizer_model("bert")
  1671. self.gguf_writer.add_tokenizer_pre(tokpre)
  1672. self.gguf_writer.add_token_list(tokens)
  1673. self.gguf_writer.add_token_types(toktypes)
  1674. # handle special tokens
  1675. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1676. special_vocab.add_to_gguf(self.gguf_writer)
  1677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1678. del bid # unused
  1679. # we are only using BERT for embeddings so we don't need the pooling layer
  1680. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1681. return [] # we don't need these
  1682. return [(self.map_tensor_name(name), data_torch)]
  1683. @Model.register("NomicBertModel")
  1684. class NomicBertModel(BertModel):
  1685. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1686. def __init__(self, *args, **kwargs):
  1687. super().__init__(*args, **kwargs)
  1688. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1689. self.hparams["n_ctx"] = 2048
  1690. # SwigLU activation
  1691. assert self.hparams["activation_function"] == "swiglu"
  1692. # this doesn't do anything in the HF version
  1693. assert self.hparams["causal"] is False
  1694. # no bias tensors
  1695. assert self.hparams["qkv_proj_bias"] is False
  1696. assert self.hparams["mlp_fc1_bias"] is False
  1697. assert self.hparams["mlp_fc2_bias"] is False
  1698. # norm at end of layer
  1699. assert self.hparams["prenorm"] is False
  1700. # standard RoPE
  1701. assert self.hparams["rotary_emb_fraction"] == 1.0
  1702. assert self.hparams["rotary_emb_interleaved"] is False
  1703. assert self.hparams["rotary_emb_scale_base"] is None
  1704. def set_gguf_parameters(self):
  1705. super().set_gguf_parameters()
  1706. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1707. @Model.register("GemmaForCausalLM")
  1708. class GemmaModel(Model):
  1709. model_arch = gguf.MODEL_ARCH.GEMMA
  1710. def set_vocab(self):
  1711. self._set_vocab_sentencepiece()
  1712. # TODO: these special tokens should be exported only for the CodeGemma family
  1713. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1714. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1715. special_vocab._set_special_token("prefix", 67)
  1716. special_vocab._set_special_token("suffix", 69)
  1717. special_vocab._set_special_token("middle", 68)
  1718. special_vocab._set_special_token("fsep", 70)
  1719. special_vocab._set_special_token("eot", 107)
  1720. special_vocab.add_to_gguf(self.gguf_writer)
  1721. def set_gguf_parameters(self):
  1722. hparams = self.hparams
  1723. block_count = hparams["num_hidden_layers"]
  1724. self.gguf_writer.add_name(self.dir_model.name)
  1725. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1726. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1727. self.gguf_writer.add_block_count(block_count)
  1728. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1729. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1730. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1731. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1732. self.gguf_writer.add_key_length(hparams["head_dim"])
  1733. self.gguf_writer.add_value_length(hparams["head_dim"])
  1734. self.gguf_writer.add_file_type(self.ftype)
  1735. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1736. del bid # unused
  1737. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1738. # To prevent errors, skip loading lm_head.weight.
  1739. if name == "lm_head.weight":
  1740. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1741. return []
  1742. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1743. if name.endswith("norm.weight"):
  1744. data_torch = data_torch + 1
  1745. return [(self.map_tensor_name(name), data_torch)]
  1746. @Model.register("Starcoder2ForCausalLM")
  1747. class StarCoder2Model(Model):
  1748. model_arch = gguf.MODEL_ARCH.STARCODER2
  1749. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1750. class MambaModel(Model):
  1751. model_arch = gguf.MODEL_ARCH.MAMBA
  1752. def set_vocab(self):
  1753. vocab_size = self.hparams["vocab_size"]
  1754. # Round vocab size to next multiple of 8
  1755. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1756. # pad using ceiling division
  1757. # ref: https://stackoverflow.com/a/17511341/22827863
  1758. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1759. self.hparams["vocab_size"] = vocab_size
  1760. if (self.dir_model / "tokenizer.json").is_file():
  1761. self._set_vocab_gpt2()
  1762. elif (self.dir_model / "tokenizer.model").is_file():
  1763. self._set_vocab_sentencepiece()
  1764. else:
  1765. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1766. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1767. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1768. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1769. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1770. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1771. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1772. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1773. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1774. assert field
  1775. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1776. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1777. assert field
  1778. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1779. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1780. assert field
  1781. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1782. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1783. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1784. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1785. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1786. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1787. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1788. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1789. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1790. def set_gguf_parameters(self):
  1791. d_model = self.find_hparam(["hidden_size", "d_model"])
  1792. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1793. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1794. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1795. # ceiling division
  1796. # ref: https://stackoverflow.com/a/17511341/22827863
  1797. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1798. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1799. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1800. # Fail early for models which don't have a block expansion factor of 2
  1801. assert d_inner == 2 * d_model
  1802. self.gguf_writer.add_name(self.dir_model.name)
  1803. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1804. self.gguf_writer.add_embedding_length(d_model)
  1805. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1806. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1807. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1808. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1809. self.gguf_writer.add_ssm_inner_size(d_inner)
  1810. self.gguf_writer.add_ssm_state_size(d_state)
  1811. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1812. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1813. self.gguf_writer.add_file_type(self.ftype)
  1814. _tok_embd = None
  1815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1816. del bid # unused
  1817. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1818. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1819. new_name = self.map_tensor_name(name)
  1820. if name.endswith(".A_log"):
  1821. logger.debug("A_log --> A ==> " + new_name)
  1822. data_torch = -torch.exp(data_torch)
  1823. # assuming token_embd.weight is seen before output.weight
  1824. if self._tok_embd is not None and new_name == output_name:
  1825. if torch.equal(self._tok_embd, data_torch):
  1826. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1827. return []
  1828. elif new_name == tok_embd_name:
  1829. self._tok_embd = data_torch
  1830. return [(new_name, data_torch)]
  1831. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1832. del n_dims # unused
  1833. return bid is not None and new_name in (
  1834. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1835. gguf.MODEL_TENSOR.SSM_CONV1D,
  1836. gguf.MODEL_TENSOR.SSM_X,
  1837. gguf.MODEL_TENSOR.SSM_DT,
  1838. gguf.MODEL_TENSOR.SSM_A,
  1839. gguf.MODEL_TENSOR.SSM_D,
  1840. ]
  1841. )
  1842. @Model.register("CohereForCausalLM")
  1843. class CommandR2Model(Model):
  1844. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1845. def __init__(self, *args, **kwargs):
  1846. super().__init__(*args, **kwargs)
  1847. # max_position_embeddings = 8192 in config.json but model was actually
  1848. # trained on 128k context length
  1849. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1850. def set_gguf_parameters(self):
  1851. super().set_gguf_parameters()
  1852. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1853. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1854. @Model.register("OlmoForCausalLM")
  1855. @Model.register("OLMoForCausalLM")
  1856. class OlmoModel(Model):
  1857. model_arch = gguf.MODEL_ARCH.OLMO
  1858. def set_gguf_parameters(self):
  1859. super().set_gguf_parameters()
  1860. self.gguf_writer.add_layer_norm_eps(1e-5)
  1861. clip_qkv = self.hparams.get("clip_qkv")
  1862. if clip_qkv is not None:
  1863. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1864. # Same as super class, but permuting q_proj, k_proj
  1865. # Copied from: LlamaModel
  1866. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1867. del bid # unused
  1868. n_head = self.hparams["num_attention_heads"]
  1869. n_kv_head = self.hparams.get("num_key_value_heads")
  1870. if name.endswith("q_proj.weight"):
  1871. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1872. if name.endswith("k_proj.weight"):
  1873. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1874. return [(self.map_tensor_name(name), data_torch)]
  1875. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1876. class JinaBertV2Model(BertModel):
  1877. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1878. def __init__(self, *args, **kwargs):
  1879. super().__init__(*args, **kwargs)
  1880. self.intermediate_size = self.hparams["intermediate_size"]
  1881. def get_tensors(self):
  1882. for name, data in super().get_tensors():
  1883. if 'gated_layers' in name:
  1884. d1 = data[:self.intermediate_size, :]
  1885. name1 = name.replace('gated_layers', 'gated_layers_w')
  1886. d2 = data[self.intermediate_size:, :]
  1887. name2 = name.replace('gated_layers', 'gated_layers_v')
  1888. yield name1, d1
  1889. yield name2, d2
  1890. continue
  1891. yield name, data
  1892. def set_vocab(self, *args, **kwargs):
  1893. tokenizer_class = 'BertTokenizer'
  1894. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1895. tokenizer_class = json.load(f)['tokenizer_class']
  1896. if tokenizer_class == 'BertTokenizer':
  1897. super().set_vocab()
  1898. elif tokenizer_class == 'RobertaTokenizer':
  1899. self._set_vocab_gpt2()
  1900. self.gguf_writer.add_token_type_count(2)
  1901. else:
  1902. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1903. self.gguf_writer.add_add_bos_token(True)
  1904. self.gguf_writer.add_add_eos_token(True)
  1905. ###### CONVERSION LOGIC ######
  1906. # tree of lazy tensors
  1907. class LazyTorchTensor(gguf.LazyBase):
  1908. _tensor_type = torch.Tensor
  1909. # to keep the type-checker happy
  1910. dtype: torch.dtype
  1911. shape: torch.Size
  1912. # only used when converting a torch.Tensor to a np.ndarray
  1913. _dtype_map: dict[torch.dtype, type] = {
  1914. torch.float16: np.float16,
  1915. torch.float32: np.float32,
  1916. }
  1917. def numpy(self) -> gguf.LazyNumpyTensor:
  1918. dtype = self._dtype_map[self.dtype]
  1919. return gguf.LazyNumpyTensor(
  1920. meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)),
  1921. lazy=self._lazy,
  1922. args=(self,),
  1923. func=(lambda s: s[0].numpy())
  1924. )
  1925. @classmethod
  1926. def eager_to_meta(cls, t: Tensor) -> Tensor:
  1927. if t.is_meta:
  1928. return t
  1929. return t.detach().to("meta")
  1930. @classmethod
  1931. def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor:
  1932. m = m.detach()
  1933. if not m.is_meta:
  1934. m = m.to("meta")
  1935. m.dtype = dtype
  1936. return m
  1937. @classmethod
  1938. def __torch_function__(cls, func, types, args=(), kwargs=None):
  1939. del types # unused
  1940. if kwargs is None:
  1941. kwargs = {}
  1942. if func is torch.Tensor.numpy:
  1943. return args[0].numpy()
  1944. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  1945. def parse_args() -> argparse.Namespace:
  1946. parser = argparse.ArgumentParser(
  1947. description="Convert a huggingface model to a GGML compatible file")
  1948. parser.add_argument(
  1949. "--vocab-only", action="store_true",
  1950. help="extract only the vocab",
  1951. )
  1952. parser.add_argument(
  1953. "--awq-path", type=Path, default=None,
  1954. help="Path to scale awq cache file",
  1955. )
  1956. parser.add_argument(
  1957. "--outfile", type=Path,
  1958. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  1959. )
  1960. parser.add_argument(
  1961. "--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16",
  1962. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  1963. )
  1964. parser.add_argument(
  1965. "--bigendian", action="store_true",
  1966. help="model is executed on big endian machine",
  1967. )
  1968. parser.add_argument(
  1969. "model", type=Path,
  1970. help="directory containing model file",
  1971. )
  1972. parser.add_argument(
  1973. "--use-temp-file", action="store_true",
  1974. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  1975. )
  1976. parser.add_argument(
  1977. "--no-lazy", action="store_true",
  1978. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  1979. )
  1980. parser.add_argument(
  1981. "--model-name", type=str, default=None,
  1982. help="name of the model",
  1983. )
  1984. parser.add_argument(
  1985. "--verbose", action="store_true",
  1986. help="increase output verbosity",
  1987. )
  1988. return parser.parse_args()
  1989. def main() -> None:
  1990. args = parse_args()
  1991. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  1992. dir_model = args.model
  1993. if args.awq_path:
  1994. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1995. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1996. tmp_model_path = args.model / "weighted_model"
  1997. dir_model = tmp_model_path
  1998. if tmp_model_path.is_dir():
  1999. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2000. else:
  2001. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2002. logger.info("Saving new weighted model ...")
  2003. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2004. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2005. if not dir_model.is_dir():
  2006. logger.error(f'Error: {args.model} is not a directory')
  2007. sys.exit(1)
  2008. ftype_map: dict[str, gguf.LlamaFileType] = {
  2009. "f32": gguf.LlamaFileType.ALL_F32,
  2010. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2011. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2012. "auto": gguf.LlamaFileType.GUESSED,
  2013. }
  2014. if args.outfile is not None:
  2015. fname_out = args.outfile
  2016. else:
  2017. # output in the same directory as the model by default
  2018. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2019. logger.info(f"Loading model: {dir_model.name}")
  2020. hparams = Model.load_hparams(dir_model)
  2021. with torch.inference_mode():
  2022. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2023. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
  2024. logger.info("Set model parameters")
  2025. model_instance.set_gguf_parameters()
  2026. logger.info("Set model tokenizer")
  2027. model_instance.set_vocab()
  2028. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2029. if args.vocab_only:
  2030. logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
  2031. model_instance.write_vocab()
  2032. else:
  2033. logger.info(f"Exporting model to '{model_instance.fname_out}'")
  2034. model_instance.write()
  2035. logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
  2036. if __name__ == '__main__':
  2037. main()