server.cpp 166 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. enum oaicompat_type {
  61. OAICOMPAT_TYPE_NONE,
  62. OAICOMPAT_TYPE_CHAT,
  63. OAICOMPAT_TYPE_COMPLETION,
  64. OAICOMPAT_TYPE_EMBEDDING,
  65. };
  66. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  67. enum error_type {
  68. ERROR_TYPE_INVALID_REQUEST,
  69. ERROR_TYPE_AUTHENTICATION,
  70. ERROR_TYPE_SERVER,
  71. ERROR_TYPE_NOT_FOUND,
  72. ERROR_TYPE_PERMISSION,
  73. ERROR_TYPE_UNAVAILABLE, // custom error
  74. ERROR_TYPE_NOT_SUPPORTED, // custom error
  75. };
  76. struct slot_params {
  77. bool stream = true;
  78. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  79. bool return_tokens = false;
  80. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  81. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  82. int32_t n_predict = -1; // new tokens to predict
  83. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  84. int64_t t_max_prompt_ms = -1; // TODO: implement
  85. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  86. std::vector<common_lora_adapter_container> lora;
  87. std::vector<std::string> antiprompt;
  88. std::vector<std::string> response_fields;
  89. bool timings_per_token = false;
  90. bool post_sampling_probs = false;
  91. bool ignore_eos = false;
  92. struct common_params_sampling sampling;
  93. struct common_params_speculative speculative;
  94. // OAI-compat fields
  95. bool verbose = false;
  96. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  97. std::string oaicompat_model;
  98. std::string oaicompat_cmpl_id;
  99. json to_json() const {
  100. std::vector<std::string> samplers;
  101. samplers.reserve(sampling.samplers.size());
  102. for (const auto & sampler : sampling.samplers) {
  103. samplers.emplace_back(common_sampler_type_to_str(sampler));
  104. }
  105. json lora = json::array();
  106. for (size_t i = 0; i < this->lora.size(); ++i) {
  107. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  108. }
  109. return json {
  110. {"n_predict", n_predict}, // Server configured n_predict
  111. {"seed", sampling.seed},
  112. {"temperature", sampling.temp},
  113. {"dynatemp_range", sampling.dynatemp_range},
  114. {"dynatemp_exponent", sampling.dynatemp_exponent},
  115. {"top_k", sampling.top_k},
  116. {"top_p", sampling.top_p},
  117. {"min_p", sampling.min_p},
  118. {"xtc_probability", sampling.xtc_probability},
  119. {"xtc_threshold", sampling.xtc_threshold},
  120. {"typical_p", sampling.typ_p},
  121. {"repeat_last_n", sampling.penalty_last_n},
  122. {"repeat_penalty", sampling.penalty_repeat},
  123. {"presence_penalty", sampling.penalty_present},
  124. {"frequency_penalty", sampling.penalty_freq},
  125. {"dry_multiplier", sampling.dry_multiplier},
  126. {"dry_base", sampling.dry_base},
  127. {"dry_allowed_length", sampling.dry_allowed_length},
  128. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  129. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  130. {"mirostat", sampling.mirostat},
  131. {"mirostat_tau", sampling.mirostat_tau},
  132. {"mirostat_eta", sampling.mirostat_eta},
  133. {"stop", antiprompt},
  134. {"max_tokens", n_predict}, // User configured n_predict
  135. {"n_keep", n_keep},
  136. {"n_discard", n_discard},
  137. {"ignore_eos", sampling.ignore_eos},
  138. {"stream", stream},
  139. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  140. {"n_probs", sampling.n_probs},
  141. {"min_keep", sampling.min_keep},
  142. {"grammar", sampling.grammar},
  143. {"samplers", samplers},
  144. {"speculative.n_max", speculative.n_max},
  145. {"speculative.n_min", speculative.n_min},
  146. {"speculative.p_min", speculative.p_min},
  147. {"timings_per_token", timings_per_token},
  148. {"post_sampling_probs", post_sampling_probs},
  149. {"lora", lora},
  150. };
  151. }
  152. };
  153. struct server_task {
  154. int id = -1; // to be filled by server_queue
  155. int index = -1; // used when there are multiple prompts (batch request)
  156. server_task_type type;
  157. // used by SERVER_TASK_TYPE_CANCEL
  158. int id_target = -1;
  159. // used by SERVER_TASK_TYPE_INFERENCE
  160. slot_params params;
  161. llama_tokens prompt_tokens;
  162. int id_selected_slot = -1;
  163. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  164. struct slot_action {
  165. int slot_id;
  166. std::string filename;
  167. std::string filepath;
  168. };
  169. slot_action slot_action;
  170. // used by SERVER_TASK_TYPE_METRICS
  171. bool metrics_reset_bucket = false;
  172. // used by SERVER_TASK_TYPE_SET_LORA
  173. std::vector<common_lora_adapter_container> set_lora;
  174. server_task(server_task_type type) : type(type) {}
  175. static slot_params params_from_json_cmpl(
  176. const llama_model * model,
  177. const llama_context * ctx,
  178. const common_params & params_base,
  179. const std::vector<common_lora_adapter_container> & lora_base,
  180. const json & data) {
  181. slot_params params;
  182. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  183. slot_params defaults;
  184. defaults.sampling = params_base.sampling;
  185. defaults.speculative = params_base.speculative;
  186. // enabling this will output extra debug information in the HTTP responses from the server
  187. params.verbose = params_base.verbosity > 9;
  188. params.timings_per_token = json_value(data, "timings_per_token", false);
  189. params.stream = json_value(data, "stream", false);
  190. params.cache_prompt = json_value(data, "cache_prompt", true);
  191. params.return_tokens = json_value(data, "return_tokens", false);
  192. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  193. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  194. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  195. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  196. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  197. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  198. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  199. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  200. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  201. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  202. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  203. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  204. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  205. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  206. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  207. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  208. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  209. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  210. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  211. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  212. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  213. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  214. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  215. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  216. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  217. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  218. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  219. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  220. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  221. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  222. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  223. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  224. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  225. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  226. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  227. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  228. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  229. if (data.contains("lora")) {
  230. if (data.at("lora").is_array()) {
  231. params.lora = parse_lora_request(lora_base, data.at("lora"));
  232. } else {
  233. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  234. }
  235. } else {
  236. params.lora = lora_base;
  237. }
  238. // TODO: add more sanity checks for the input parameters
  239. if (params.sampling.penalty_last_n < -1) {
  240. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  241. }
  242. if (params.sampling.dry_penalty_last_n < -1) {
  243. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  244. }
  245. if (params.sampling.penalty_last_n == -1) {
  246. // note: should be the slot's context and not the full context, but it's ok
  247. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  248. }
  249. if (params.sampling.dry_penalty_last_n == -1) {
  250. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  251. }
  252. if (params.sampling.dry_base < 1.0f) {
  253. params.sampling.dry_base = defaults.sampling.dry_base;
  254. }
  255. // sequence breakers for DRY
  256. {
  257. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  258. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  259. if (data.contains("dry_sequence_breakers")) {
  260. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  261. if (params.sampling.dry_sequence_breakers.empty()) {
  262. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  263. }
  264. }
  265. }
  266. // process "json_schema" and "grammar"
  267. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  268. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  269. }
  270. if (data.contains("json_schema") && !data.contains("grammar")) {
  271. try {
  272. auto schema = json_value(data, "json_schema", json::object());
  273. params.sampling.grammar = json_schema_to_grammar(schema);
  274. } catch (const std::exception & e) {
  275. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  276. }
  277. } else {
  278. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  279. }
  280. {
  281. params.sampling.logit_bias.clear();
  282. params.ignore_eos = json_value(data, "ignore_eos", false);
  283. const auto & logit_bias = data.find("logit_bias");
  284. if (logit_bias != data.end() && logit_bias->is_array()) {
  285. const int n_vocab = llama_n_vocab(model);
  286. for (const auto & el : *logit_bias) {
  287. // TODO: we may want to throw errors here, in case "el" is incorrect
  288. if (el.is_array() && el.size() == 2) {
  289. float bias;
  290. if (el[1].is_number()) {
  291. bias = el[1].get<float>();
  292. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  293. bias = -INFINITY;
  294. } else {
  295. continue;
  296. }
  297. if (el[0].is_number_integer()) {
  298. llama_token tok = el[0].get<llama_token>();
  299. if (tok >= 0 && tok < n_vocab) {
  300. params.sampling.logit_bias.push_back({tok, bias});
  301. }
  302. } else if (el[0].is_string()) {
  303. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  304. for (auto tok : toks) {
  305. params.sampling.logit_bias.push_back({tok, bias});
  306. }
  307. }
  308. }
  309. }
  310. }
  311. }
  312. {
  313. params.antiprompt.clear();
  314. const auto & stop = data.find("stop");
  315. if (stop != data.end() && stop->is_array()) {
  316. for (const auto & word : *stop) {
  317. if (!word.empty()) {
  318. params.antiprompt.push_back(word);
  319. }
  320. }
  321. }
  322. }
  323. {
  324. const auto & samplers = data.find("samplers");
  325. if (samplers != data.end()) {
  326. if (samplers->is_array()) {
  327. std::vector<std::string> sampler_names;
  328. for (const auto & name : *samplers) {
  329. if (name.is_string()) {
  330. sampler_names.emplace_back(name);
  331. }
  332. }
  333. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  334. } else if (samplers->is_string()){
  335. std::string sampler_string;
  336. for (const auto & name : *samplers) {
  337. sampler_string += name;
  338. }
  339. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  340. }
  341. } else {
  342. params.sampling.samplers = defaults.sampling.samplers;
  343. }
  344. }
  345. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  346. params.oaicompat_model = json_value(data, "model", model_name);
  347. return params;
  348. }
  349. // utility function
  350. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  351. std::unordered_set<int> ids(tasks.size());
  352. for (size_t i = 0; i < tasks.size(); i++) {
  353. ids.insert(tasks[i].id);
  354. }
  355. return ids;
  356. }
  357. };
  358. struct result_timings {
  359. int32_t prompt_n = -1;
  360. double prompt_ms;
  361. double prompt_per_token_ms;
  362. double prompt_per_second;
  363. int32_t predicted_n = -1;
  364. double predicted_ms;
  365. double predicted_per_token_ms;
  366. double predicted_per_second;
  367. json to_json() const {
  368. return {
  369. {"prompt_n", prompt_n},
  370. {"prompt_ms", prompt_ms},
  371. {"prompt_per_token_ms", prompt_per_token_ms},
  372. {"prompt_per_second", prompt_per_second},
  373. {"predicted_n", predicted_n},
  374. {"predicted_ms", predicted_ms},
  375. {"predicted_per_token_ms", predicted_per_token_ms},
  376. {"predicted_per_second", predicted_per_second},
  377. };
  378. }
  379. };
  380. struct server_task_result {
  381. int id = -1;
  382. int id_slot = -1;
  383. virtual bool is_error() {
  384. // only used by server_task_result_error
  385. return false;
  386. }
  387. virtual bool is_stop() {
  388. // only used by server_task_result_cmpl_*
  389. return false;
  390. }
  391. virtual int get_index() {
  392. return -1;
  393. }
  394. virtual json to_json() = 0;
  395. virtual ~server_task_result() = default;
  396. };
  397. // using shared_ptr for polymorphism of server_task_result
  398. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  399. inline std::string stop_type_to_str(stop_type type) {
  400. switch (type) {
  401. case STOP_TYPE_EOS: return "eos";
  402. case STOP_TYPE_WORD: return "word";
  403. case STOP_TYPE_LIMIT: return "limit";
  404. default: return "none";
  405. }
  406. }
  407. struct completion_token_output {
  408. llama_token tok;
  409. float prob;
  410. std::string text_to_send;
  411. struct prob_info {
  412. llama_token tok;
  413. std::string txt;
  414. float prob;
  415. };
  416. std::vector<prob_info> probs;
  417. json to_json(bool post_sampling_probs) const {
  418. json probs_for_token = json::array();
  419. for (const auto & p : probs) {
  420. std::string txt(p.txt);
  421. txt.resize(validate_utf8(txt));
  422. probs_for_token.push_back(json {
  423. {"id", p.tok},
  424. {"token", txt},
  425. {"bytes", str_to_bytes(p.txt)},
  426. {
  427. post_sampling_probs ? "prob" : "logprob",
  428. post_sampling_probs ? p.prob : logarithm(p.prob)
  429. },
  430. });
  431. }
  432. return probs_for_token;
  433. }
  434. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  435. json out = json::array();
  436. for (const auto & p : probs) {
  437. std::string txt(p.text_to_send);
  438. txt.resize(validate_utf8(txt));
  439. out.push_back(json {
  440. {"id", p.tok},
  441. {"token", txt},
  442. {"bytes", str_to_bytes(p.text_to_send)},
  443. {
  444. post_sampling_probs ? "prob" : "logprob",
  445. post_sampling_probs ? p.prob : logarithm(p.prob)
  446. },
  447. {
  448. post_sampling_probs ? "top_probs" : "top_logprobs",
  449. p.to_json(post_sampling_probs)
  450. },
  451. });
  452. }
  453. return out;
  454. }
  455. static float logarithm(float x) {
  456. // nlohmann::json converts -inf to null, so we need to prevent that
  457. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  458. }
  459. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  460. std::vector<unsigned char> bytes;
  461. for (unsigned char c : str) {
  462. bytes.push_back(c);
  463. }
  464. return bytes;
  465. }
  466. };
  467. struct server_task_result_cmpl_final : server_task_result {
  468. int index = 0;
  469. std::string content;
  470. llama_tokens tokens;
  471. bool stream;
  472. result_timings timings;
  473. std::string prompt;
  474. bool truncated;
  475. int32_t n_decoded;
  476. int32_t n_prompt_tokens;
  477. int32_t n_tokens_cached;
  478. bool has_new_line;
  479. std::string stopping_word;
  480. stop_type stop = STOP_TYPE_NONE;
  481. bool post_sampling_probs;
  482. std::vector<completion_token_output> probs_output;
  483. std::vector<std::string> response_fields;
  484. slot_params generation_params;
  485. // OAI-compat fields
  486. bool verbose = false;
  487. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  488. std::string oaicompat_model;
  489. std::string oaicompat_cmpl_id;
  490. virtual int get_index() override {
  491. return index;
  492. }
  493. virtual bool is_stop() override {
  494. return true; // in stream mode, final responses are considered stop
  495. }
  496. virtual json to_json() override {
  497. switch (oaicompat) {
  498. case OAICOMPAT_TYPE_NONE:
  499. return to_json_non_oaicompat();
  500. case OAICOMPAT_TYPE_COMPLETION:
  501. return to_json_oaicompat();
  502. case OAICOMPAT_TYPE_CHAT:
  503. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  504. default:
  505. GGML_ASSERT(false && "Invalid oaicompat_type");
  506. }
  507. }
  508. json to_json_non_oaicompat() {
  509. json res = json {
  510. {"index", index},
  511. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  512. {"tokens", stream ? llama_tokens {} : tokens},
  513. {"id_slot", id_slot},
  514. {"stop", true},
  515. {"model", oaicompat_model},
  516. {"tokens_predicted", n_decoded},
  517. {"tokens_evaluated", n_prompt_tokens},
  518. {"generation_settings", generation_params.to_json()},
  519. {"prompt", prompt},
  520. {"has_new_line", has_new_line},
  521. {"truncated", truncated},
  522. {"stop_type", stop_type_to_str(stop)},
  523. {"stopping_word", stopping_word},
  524. {"tokens_cached", n_tokens_cached},
  525. {"timings", timings.to_json()},
  526. };
  527. if (!stream && !probs_output.empty()) {
  528. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  529. }
  530. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  531. }
  532. json to_json_oaicompat() {
  533. std::time_t t = std::time(0);
  534. json logprobs = json(nullptr); // OAI default to null
  535. if (!stream && probs_output.size() > 0) {
  536. logprobs = json{
  537. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  538. };
  539. }
  540. json finish_reason = "length";
  541. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  542. finish_reason = "stop";
  543. }
  544. json res = json {
  545. {"choices", json::array({
  546. json{
  547. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  548. {"index", index},
  549. {"logprobs", logprobs},
  550. {"finish_reason", finish_reason},
  551. }
  552. })},
  553. {"created", t},
  554. {"model", oaicompat_model},
  555. {"system_fingerprint", build_info},
  556. {"object", "text_completion"},
  557. {"usage", json {
  558. {"completion_tokens", n_decoded},
  559. {"prompt_tokens", n_prompt_tokens},
  560. {"total_tokens", n_decoded + n_prompt_tokens}
  561. }},
  562. {"id", oaicompat_cmpl_id}
  563. };
  564. // extra fields for debugging purposes
  565. if (verbose) {
  566. res["__verbose"] = to_json_non_oaicompat();
  567. }
  568. if (timings.prompt_n >= 0) {
  569. res.push_back({"timings", timings.to_json()});
  570. }
  571. return res;
  572. }
  573. json to_json_oaicompat_chat() {
  574. std::string finish_reason = "length";
  575. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  576. finish_reason = "stop";
  577. }
  578. json choice = json{
  579. {"finish_reason", finish_reason},
  580. {"index", 0},
  581. {"message", json {
  582. {"content", content},
  583. {"role", "assistant"}
  584. }
  585. }};
  586. if (!stream && probs_output.size() > 0) {
  587. choice["logprobs"] = json{
  588. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  589. };
  590. }
  591. std::time_t t = std::time(0);
  592. json res = json {
  593. {"choices", json::array({choice})},
  594. {"created", t},
  595. {"model", oaicompat_model},
  596. {"system_fingerprint", build_info},
  597. {"object", "chat.completion"},
  598. {"usage", json {
  599. {"completion_tokens", n_decoded},
  600. {"prompt_tokens", n_prompt_tokens},
  601. {"total_tokens", n_decoded + n_prompt_tokens}
  602. }},
  603. {"id", oaicompat_cmpl_id}
  604. };
  605. // extra fields for debugging purposes
  606. if (verbose) {
  607. res["__verbose"] = to_json_non_oaicompat();
  608. }
  609. if (timings.prompt_n >= 0) {
  610. res.push_back({"timings", timings.to_json()});
  611. }
  612. return res;
  613. }
  614. json to_json_oaicompat_chat_stream() {
  615. std::time_t t = std::time(0);
  616. std::string finish_reason = "length";
  617. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  618. finish_reason = "stop";
  619. }
  620. json choice = json{
  621. {"finish_reason", finish_reason},
  622. {"index", 0},
  623. {"delta", json::object()}
  624. };
  625. json ret = json {
  626. {"choices", json::array({choice})},
  627. {"created", t},
  628. {"id", oaicompat_cmpl_id},
  629. {"model", oaicompat_model},
  630. {"system_fingerprint", build_info},
  631. {"object", "chat.completion.chunk"},
  632. {"usage", json {
  633. {"completion_tokens", n_decoded},
  634. {"prompt_tokens", n_prompt_tokens},
  635. {"total_tokens", n_decoded + n_prompt_tokens},
  636. }},
  637. };
  638. if (timings.prompt_n >= 0) {
  639. ret.push_back({"timings", timings.to_json()});
  640. }
  641. return ret;
  642. }
  643. };
  644. struct server_task_result_cmpl_partial : server_task_result {
  645. int index = 0;
  646. std::string content;
  647. llama_tokens tokens;
  648. int32_t n_decoded;
  649. int32_t n_prompt_tokens;
  650. bool post_sampling_probs;
  651. completion_token_output prob_output;
  652. result_timings timings;
  653. // OAI-compat fields
  654. bool verbose = false;
  655. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  656. std::string oaicompat_model;
  657. std::string oaicompat_cmpl_id;
  658. virtual int get_index() override {
  659. return index;
  660. }
  661. virtual bool is_stop() override {
  662. return false; // in stream mode, partial responses are not considered stop
  663. }
  664. virtual json to_json() override {
  665. switch (oaicompat) {
  666. case OAICOMPAT_TYPE_NONE:
  667. return to_json_non_oaicompat();
  668. case OAICOMPAT_TYPE_COMPLETION:
  669. return to_json_oaicompat();
  670. case OAICOMPAT_TYPE_CHAT:
  671. return to_json_oaicompat_chat();
  672. default:
  673. GGML_ASSERT(false && "Invalid oaicompat_type");
  674. }
  675. }
  676. json to_json_non_oaicompat() {
  677. // non-OAI-compat JSON
  678. json res = json {
  679. {"index", index},
  680. {"content", content},
  681. {"tokens", tokens},
  682. {"stop", false},
  683. {"id_slot", id_slot},
  684. {"tokens_predicted", n_decoded},
  685. {"tokens_evaluated", n_prompt_tokens},
  686. };
  687. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  688. if (timings.prompt_n > 0) {
  689. res.push_back({"timings", timings.to_json()});
  690. }
  691. if (!prob_output.probs.empty()) {
  692. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  693. }
  694. return res;
  695. }
  696. json to_json_oaicompat() {
  697. std::time_t t = std::time(0);
  698. json logprobs = json(nullptr); // OAI default to null
  699. if (prob_output.probs.size() > 0) {
  700. logprobs = json{
  701. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  702. };
  703. }
  704. json res = json {
  705. {"choices", json::array({
  706. json{
  707. {"text", content},
  708. {"index", index},
  709. {"logprobs", logprobs},
  710. {"finish_reason", nullptr},
  711. }
  712. })},
  713. {"created", t},
  714. {"model", oaicompat_model},
  715. {"system_fingerprint", build_info},
  716. {"object", "text_completion"},
  717. {"id", oaicompat_cmpl_id}
  718. };
  719. // extra fields for debugging purposes
  720. if (verbose) {
  721. res["__verbose"] = to_json_non_oaicompat();
  722. }
  723. if (timings.prompt_n >= 0) {
  724. res.push_back({"timings", timings.to_json()});
  725. }
  726. return res;
  727. }
  728. json to_json_oaicompat_chat() {
  729. bool first = n_decoded == 0;
  730. std::time_t t = std::time(0);
  731. json choices;
  732. if (first) {
  733. if (content.empty()) {
  734. choices = json::array({json{{"finish_reason", nullptr},
  735. {"index", 0},
  736. {"delta", json{{"role", "assistant"}}}}});
  737. } else {
  738. // We have to send this as two updates to conform to openai behavior
  739. json initial_ret = json{{"choices", json::array({json{
  740. {"finish_reason", nullptr},
  741. {"index", 0},
  742. {"delta", json{
  743. {"role", "assistant"}
  744. }}}})},
  745. {"created", t},
  746. {"id", oaicompat_cmpl_id},
  747. {"model", oaicompat_model},
  748. {"object", "chat.completion.chunk"}};
  749. json second_ret = json{
  750. {"choices", json::array({json{{"finish_reason", nullptr},
  751. {"index", 0},
  752. {"delta", json {
  753. {"content", content}}}
  754. }})},
  755. {"created", t},
  756. {"id", oaicompat_cmpl_id},
  757. {"model", oaicompat_model},
  758. {"object", "chat.completion.chunk"}};
  759. return std::vector<json>({initial_ret, second_ret});
  760. }
  761. } else {
  762. choices = json::array({json{
  763. {"finish_reason", nullptr},
  764. {"index", 0},
  765. {"delta",
  766. json {
  767. {"content", content},
  768. }},
  769. }});
  770. }
  771. GGML_ASSERT(choices.size() >= 1);
  772. if (prob_output.probs.size() > 0) {
  773. choices[0]["logprobs"] = json{
  774. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  775. };
  776. }
  777. json ret = json {
  778. {"choices", choices},
  779. {"created", t},
  780. {"id", oaicompat_cmpl_id},
  781. {"model", oaicompat_model},
  782. {"system_fingerprint", build_info},
  783. {"object", "chat.completion.chunk"}
  784. };
  785. if (timings.prompt_n >= 0) {
  786. ret.push_back({"timings", timings.to_json()});
  787. }
  788. return std::vector<json>({ret});
  789. }
  790. };
  791. struct server_task_result_embd : server_task_result {
  792. int index = 0;
  793. std::vector<std::vector<float>> embedding;
  794. int32_t n_tokens;
  795. // OAI-compat fields
  796. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  797. virtual int get_index() override {
  798. return index;
  799. }
  800. virtual json to_json() override {
  801. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  802. ? to_json_oaicompat()
  803. : to_json_non_oaicompat();
  804. }
  805. json to_json_non_oaicompat() {
  806. return json {
  807. {"index", index},
  808. {"embedding", embedding},
  809. };
  810. }
  811. json to_json_oaicompat() {
  812. return json {
  813. {"index", index},
  814. {"embedding", embedding[0]},
  815. {"tokens_evaluated", n_tokens},
  816. };
  817. }
  818. };
  819. struct server_task_result_rerank : server_task_result {
  820. int index = 0;
  821. float score = -1e6;
  822. int32_t n_tokens;
  823. virtual int get_index() override {
  824. return index;
  825. }
  826. virtual json to_json() override {
  827. return json {
  828. {"index", index},
  829. {"score", score},
  830. {"tokens_evaluated", n_tokens},
  831. };
  832. }
  833. };
  834. // this function maybe used outside of server_task_result_error
  835. static json format_error_response(const std::string & message, const enum error_type type) {
  836. std::string type_str;
  837. int code = 500;
  838. switch (type) {
  839. case ERROR_TYPE_INVALID_REQUEST:
  840. type_str = "invalid_request_error";
  841. code = 400;
  842. break;
  843. case ERROR_TYPE_AUTHENTICATION:
  844. type_str = "authentication_error";
  845. code = 401;
  846. break;
  847. case ERROR_TYPE_NOT_FOUND:
  848. type_str = "not_found_error";
  849. code = 404;
  850. break;
  851. case ERROR_TYPE_SERVER:
  852. type_str = "server_error";
  853. code = 500;
  854. break;
  855. case ERROR_TYPE_PERMISSION:
  856. type_str = "permission_error";
  857. code = 403;
  858. break;
  859. case ERROR_TYPE_NOT_SUPPORTED:
  860. type_str = "not_supported_error";
  861. code = 501;
  862. break;
  863. case ERROR_TYPE_UNAVAILABLE:
  864. type_str = "unavailable_error";
  865. code = 503;
  866. break;
  867. }
  868. return json {
  869. {"code", code},
  870. {"message", message},
  871. {"type", type_str},
  872. };
  873. }
  874. struct server_task_result_error : server_task_result {
  875. int index = 0;
  876. error_type err_type = ERROR_TYPE_SERVER;
  877. std::string err_msg;
  878. virtual bool is_error() override {
  879. return true;
  880. }
  881. virtual json to_json() override {
  882. return format_error_response(err_msg, err_type);
  883. }
  884. };
  885. struct server_task_result_metrics : server_task_result {
  886. int n_idle_slots;
  887. int n_processing_slots;
  888. int n_tasks_deferred;
  889. int64_t t_start;
  890. int32_t kv_cache_tokens_count;
  891. int32_t kv_cache_used_cells;
  892. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  893. uint64_t n_prompt_tokens_processed_total = 0;
  894. uint64_t t_prompt_processing_total = 0;
  895. uint64_t n_tokens_predicted_total = 0;
  896. uint64_t t_tokens_generation_total = 0;
  897. uint64_t n_prompt_tokens_processed = 0;
  898. uint64_t t_prompt_processing = 0;
  899. uint64_t n_tokens_predicted = 0;
  900. uint64_t t_tokens_generation = 0;
  901. uint64_t n_decode_total = 0;
  902. uint64_t n_busy_slots_total = 0;
  903. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  904. // therefore, we use json to temporarily store the slot.to_json() result
  905. json slots_data = json::array();
  906. virtual json to_json() override {
  907. return json {
  908. { "idle", n_idle_slots },
  909. { "processing", n_processing_slots },
  910. { "deferred", n_tasks_deferred },
  911. { "t_start", t_start },
  912. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  913. { "t_tokens_generation_total", t_tokens_generation_total },
  914. { "n_tokens_predicted_total", n_tokens_predicted_total },
  915. { "t_prompt_processing_total", t_prompt_processing_total },
  916. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  917. { "t_prompt_processing", t_prompt_processing },
  918. { "n_tokens_predicted", n_tokens_predicted },
  919. { "t_tokens_generation", t_tokens_generation },
  920. { "n_decode_total", n_decode_total },
  921. { "n_busy_slots_total", n_busy_slots_total },
  922. { "kv_cache_tokens_count", kv_cache_tokens_count },
  923. { "kv_cache_used_cells", kv_cache_used_cells },
  924. { "slots", slots_data },
  925. };
  926. }
  927. };
  928. struct server_task_result_slot_save_load : server_task_result {
  929. std::string filename;
  930. bool is_save; // true = save, false = load
  931. size_t n_tokens;
  932. size_t n_bytes;
  933. double t_ms;
  934. virtual json to_json() override {
  935. if (is_save) {
  936. return json {
  937. { "id_slot", id_slot },
  938. { "filename", filename },
  939. { "n_saved", n_tokens },
  940. { "n_written", n_bytes },
  941. { "timings", {
  942. { "save_ms", t_ms }
  943. }},
  944. };
  945. } else {
  946. return json {
  947. { "id_slot", id_slot },
  948. { "filename", filename },
  949. { "n_restored", n_tokens },
  950. { "n_read", n_bytes },
  951. { "timings", {
  952. { "restore_ms", t_ms }
  953. }},
  954. };
  955. }
  956. }
  957. };
  958. struct server_task_result_slot_erase : server_task_result {
  959. size_t n_erased;
  960. virtual json to_json() override {
  961. return json {
  962. { "id_slot", id_slot },
  963. { "n_erased", n_erased },
  964. };
  965. }
  966. };
  967. struct server_task_result_apply_lora : server_task_result {
  968. virtual json to_json() override {
  969. return json {{ "success", true }};
  970. }
  971. };
  972. struct server_slot {
  973. int id;
  974. int id_task = -1;
  975. // only used for completion/embedding/infill/rerank
  976. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  977. llama_batch batch_spec = {};
  978. llama_context * ctx = nullptr;
  979. llama_context * ctx_dft = nullptr;
  980. common_speculative * spec = nullptr;
  981. std::vector<common_lora_adapter_container> lora;
  982. // the index relative to completion multi-task request
  983. size_t index = 0;
  984. struct slot_params params;
  985. slot_state state = SLOT_STATE_IDLE;
  986. // used to determine the slot that has been used the longest
  987. int64_t t_last_used = -1;
  988. // generation props
  989. int32_t n_ctx = 0; // context size per slot
  990. int32_t n_past = 0;
  991. int32_t n_decoded = 0;
  992. int32_t n_remaining = -1;
  993. int32_t i_batch = -1;
  994. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  995. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  996. int32_t n_prompt_tokens = 0;
  997. int32_t n_prompt_tokens_processed = 0;
  998. // input prompt tokens
  999. llama_tokens prompt_tokens;
  1000. size_t last_nl_pos = 0;
  1001. std::string generated_text;
  1002. llama_tokens generated_tokens;
  1003. llama_tokens cache_tokens;
  1004. std::vector<completion_token_output> generated_token_probs;
  1005. bool has_next_token = true;
  1006. bool has_new_line = false;
  1007. bool truncated = false;
  1008. stop_type stop;
  1009. std::string stopping_word;
  1010. // sampling
  1011. json json_schema;
  1012. struct common_sampler * smpl = nullptr;
  1013. llama_token sampled;
  1014. // stats
  1015. size_t n_sent_text = 0; // number of sent text character
  1016. int64_t t_start_process_prompt;
  1017. int64_t t_start_generation;
  1018. double t_prompt_processing; // ms
  1019. double t_token_generation; // ms
  1020. std::function<void(int)> callback_on_release;
  1021. void reset() {
  1022. SLT_DBG(*this, "%s", "\n");
  1023. n_prompt_tokens = 0;
  1024. last_nl_pos = 0;
  1025. generated_text = "";
  1026. has_new_line = false;
  1027. truncated = false;
  1028. stop = STOP_TYPE_NONE;
  1029. stopping_word = "";
  1030. n_past = 0;
  1031. n_sent_text = 0;
  1032. task_type = SERVER_TASK_TYPE_COMPLETION;
  1033. generated_tokens.clear();
  1034. generated_token_probs.clear();
  1035. }
  1036. bool is_non_causal() const {
  1037. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1038. }
  1039. bool can_batch_with(server_slot & other_slot) {
  1040. return is_non_causal() == other_slot.is_non_causal()
  1041. && are_lora_equal(lora, other_slot.lora);
  1042. }
  1043. bool has_budget(const common_params & global_params) {
  1044. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1045. return true; // limitless
  1046. }
  1047. n_remaining = -1;
  1048. if (params.n_predict != -1) {
  1049. n_remaining = params.n_predict - n_decoded;
  1050. } else if (global_params.n_predict != -1) {
  1051. n_remaining = global_params.n_predict - n_decoded;
  1052. }
  1053. return n_remaining > 0; // no budget
  1054. }
  1055. bool is_processing() const {
  1056. return state != SLOT_STATE_IDLE;
  1057. }
  1058. bool can_speculate() const {
  1059. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1060. }
  1061. void add_token(const completion_token_output & token) {
  1062. if (!is_processing()) {
  1063. SLT_WRN(*this, "%s", "slot is not processing\n");
  1064. return;
  1065. }
  1066. generated_token_probs.push_back(token);
  1067. }
  1068. void release() {
  1069. if (is_processing()) {
  1070. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1071. t_last_used = ggml_time_us();
  1072. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1073. state = SLOT_STATE_IDLE;
  1074. callback_on_release(id);
  1075. }
  1076. }
  1077. result_timings get_timings() const {
  1078. result_timings timings;
  1079. timings.prompt_n = n_prompt_tokens_processed;
  1080. timings.prompt_ms = t_prompt_processing;
  1081. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1082. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1083. timings.predicted_n = n_decoded;
  1084. timings.predicted_ms = t_token_generation;
  1085. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1086. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1087. return timings;
  1088. }
  1089. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1090. size_t stop_pos = std::string::npos;
  1091. for (const std::string & word : params.antiprompt) {
  1092. size_t pos;
  1093. if (is_full_stop) {
  1094. const size_t tmp = word.size() + last_token_size;
  1095. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1096. pos = text.find(word, from_pos);
  1097. } else {
  1098. // otherwise, partial stop
  1099. pos = find_partial_stop_string(word, text);
  1100. }
  1101. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1102. if (is_full_stop) {
  1103. stop = STOP_TYPE_WORD;
  1104. stopping_word = word;
  1105. has_next_token = false;
  1106. }
  1107. stop_pos = pos;
  1108. }
  1109. }
  1110. return stop_pos;
  1111. }
  1112. void print_timings() const {
  1113. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1114. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1115. const double t_gen = t_token_generation / n_decoded;
  1116. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1117. SLT_INF(*this,
  1118. "\n"
  1119. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1120. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1121. " total time = %10.2f ms / %5d tokens\n",
  1122. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1123. t_token_generation, n_decoded, t_gen, n_gen_second,
  1124. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1125. }
  1126. json to_json() const {
  1127. return json {
  1128. {"id", id},
  1129. {"id_task", id_task},
  1130. {"n_ctx", n_ctx},
  1131. {"speculative", can_speculate()},
  1132. {"is_processing", is_processing()},
  1133. {"non_causal", is_non_causal()},
  1134. {"params", params.to_json()},
  1135. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1136. {"next_token",
  1137. {
  1138. {"has_next_token", has_next_token},
  1139. {"has_new_line", has_new_line},
  1140. {"n_remain", n_remaining},
  1141. {"n_decoded", n_decoded},
  1142. {"stopping_word", stopping_word},
  1143. }
  1144. },
  1145. };
  1146. }
  1147. };
  1148. struct server_metrics {
  1149. int64_t t_start = 0;
  1150. uint64_t n_prompt_tokens_processed_total = 0;
  1151. uint64_t t_prompt_processing_total = 0;
  1152. uint64_t n_tokens_predicted_total = 0;
  1153. uint64_t t_tokens_generation_total = 0;
  1154. uint64_t n_prompt_tokens_processed = 0;
  1155. uint64_t t_prompt_processing = 0;
  1156. uint64_t n_tokens_predicted = 0;
  1157. uint64_t t_tokens_generation = 0;
  1158. uint64_t n_decode_total = 0;
  1159. uint64_t n_busy_slots_total = 0;
  1160. void init() {
  1161. t_start = ggml_time_us();
  1162. }
  1163. void on_prompt_eval(const server_slot & slot) {
  1164. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1165. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1166. t_prompt_processing += slot.t_prompt_processing;
  1167. t_prompt_processing_total += slot.t_prompt_processing;
  1168. }
  1169. void on_prediction(const server_slot & slot) {
  1170. n_tokens_predicted_total += slot.n_decoded;
  1171. n_tokens_predicted += slot.n_decoded;
  1172. t_tokens_generation += slot.t_token_generation;
  1173. t_tokens_generation_total += slot.t_token_generation;
  1174. }
  1175. void on_decoded(const std::vector<server_slot> & slots) {
  1176. n_decode_total++;
  1177. for (const auto & slot : slots) {
  1178. if (slot.is_processing()) {
  1179. n_busy_slots_total++;
  1180. }
  1181. }
  1182. }
  1183. void reset_bucket() {
  1184. n_prompt_tokens_processed = 0;
  1185. t_prompt_processing = 0;
  1186. n_tokens_predicted = 0;
  1187. t_tokens_generation = 0;
  1188. }
  1189. };
  1190. struct server_queue {
  1191. int id = 0;
  1192. bool running;
  1193. // queues
  1194. std::deque<server_task> queue_tasks;
  1195. std::deque<server_task> queue_tasks_deferred;
  1196. std::mutex mutex_tasks;
  1197. std::condition_variable condition_tasks;
  1198. // callback functions
  1199. std::function<void(server_task)> callback_new_task;
  1200. std::function<void(void)> callback_update_slots;
  1201. // Add a new task to the end of the queue
  1202. int post(server_task task, bool front = false) {
  1203. std::unique_lock<std::mutex> lock(mutex_tasks);
  1204. GGML_ASSERT(task.id != -1);
  1205. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1206. if (front) {
  1207. queue_tasks.push_front(std::move(task));
  1208. } else {
  1209. queue_tasks.push_back(std::move(task));
  1210. }
  1211. condition_tasks.notify_one();
  1212. return task.id;
  1213. }
  1214. // multi-task version of post()
  1215. int post(std::vector<server_task> & tasks, bool front = false) {
  1216. std::unique_lock<std::mutex> lock(mutex_tasks);
  1217. for (auto & task : tasks) {
  1218. if (task.id == -1) {
  1219. task.id = id++;
  1220. }
  1221. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1222. if (front) {
  1223. queue_tasks.push_front(std::move(task));
  1224. } else {
  1225. queue_tasks.push_back(std::move(task));
  1226. }
  1227. }
  1228. condition_tasks.notify_one();
  1229. return 0;
  1230. }
  1231. // Add a new task, but defer until one slot is available
  1232. void defer(server_task task) {
  1233. std::unique_lock<std::mutex> lock(mutex_tasks);
  1234. QUE_DBG("defer task, id = %d\n", task.id);
  1235. queue_tasks_deferred.push_back(std::move(task));
  1236. condition_tasks.notify_one();
  1237. }
  1238. // Get the next id for creating a new task
  1239. int get_new_id() {
  1240. std::unique_lock<std::mutex> lock(mutex_tasks);
  1241. int new_id = id++;
  1242. return new_id;
  1243. }
  1244. // Register function to process a new task
  1245. void on_new_task(std::function<void(server_task)> callback) {
  1246. callback_new_task = std::move(callback);
  1247. }
  1248. // Register the function to be called when all slots data is ready to be processed
  1249. void on_update_slots(std::function<void(void)> callback) {
  1250. callback_update_slots = std::move(callback);
  1251. }
  1252. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1253. void pop_deferred_task() {
  1254. std::unique_lock<std::mutex> lock(mutex_tasks);
  1255. if (!queue_tasks_deferred.empty()) {
  1256. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1257. queue_tasks_deferred.pop_front();
  1258. }
  1259. condition_tasks.notify_one();
  1260. }
  1261. // end the start_loop routine
  1262. void terminate() {
  1263. std::unique_lock<std::mutex> lock(mutex_tasks);
  1264. running = false;
  1265. condition_tasks.notify_all();
  1266. }
  1267. /**
  1268. * Main loop consists of these steps:
  1269. * - Wait until a new task arrives
  1270. * - Process the task (i.e. maybe copy data into slot)
  1271. * - Check if multitask is finished
  1272. * - Update all slots
  1273. */
  1274. void start_loop() {
  1275. running = true;
  1276. while (true) {
  1277. QUE_DBG("%s", "processing new tasks\n");
  1278. while (true) {
  1279. std::unique_lock<std::mutex> lock(mutex_tasks);
  1280. if (queue_tasks.empty()) {
  1281. lock.unlock();
  1282. break;
  1283. }
  1284. server_task task = queue_tasks.front();
  1285. queue_tasks.pop_front();
  1286. lock.unlock();
  1287. QUE_DBG("processing task, id = %d\n", task.id);
  1288. callback_new_task(std::move(task));
  1289. }
  1290. // all tasks in the current loop is processed, slots data is now ready
  1291. QUE_DBG("%s", "update slots\n");
  1292. callback_update_slots();
  1293. QUE_DBG("%s", "waiting for new tasks\n");
  1294. {
  1295. std::unique_lock<std::mutex> lock(mutex_tasks);
  1296. if (queue_tasks.empty()) {
  1297. if (!running) {
  1298. QUE_DBG("%s", "terminate\n");
  1299. return;
  1300. }
  1301. condition_tasks.wait(lock, [&]{
  1302. return (!queue_tasks.empty() || !running);
  1303. });
  1304. }
  1305. }
  1306. }
  1307. }
  1308. };
  1309. struct server_response {
  1310. // for keeping track of all tasks waiting for the result
  1311. std::unordered_set<int> waiting_task_ids;
  1312. // the main result queue (using ptr for polymorphism)
  1313. std::vector<server_task_result_ptr> queue_results;
  1314. std::mutex mutex_results;
  1315. std::condition_variable condition_results;
  1316. // add the id_task to the list of tasks waiting for response
  1317. void add_waiting_task_id(int id_task) {
  1318. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1319. std::unique_lock<std::mutex> lock(mutex_results);
  1320. waiting_task_ids.insert(id_task);
  1321. }
  1322. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1323. std::unique_lock<std::mutex> lock(mutex_results);
  1324. for (const auto & task : tasks) {
  1325. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1326. waiting_task_ids.insert(task.id);
  1327. }
  1328. }
  1329. // when the request is finished, we can remove task associated with it
  1330. void remove_waiting_task_id(int id_task) {
  1331. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1332. std::unique_lock<std::mutex> lock(mutex_results);
  1333. waiting_task_ids.erase(id_task);
  1334. }
  1335. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1336. std::unique_lock<std::mutex> lock(mutex_results);
  1337. for (const auto & id_task : id_tasks) {
  1338. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1339. waiting_task_ids.erase(id_task);
  1340. }
  1341. }
  1342. // This function blocks the thread until there is a response for one of the id_tasks
  1343. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1344. while (true) {
  1345. std::unique_lock<std::mutex> lock(mutex_results);
  1346. condition_results.wait(lock, [&]{
  1347. return !queue_results.empty();
  1348. });
  1349. for (int i = 0; i < (int) queue_results.size(); i++) {
  1350. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1351. server_task_result_ptr res = std::move(queue_results[i]);
  1352. queue_results.erase(queue_results.begin() + i);
  1353. return res;
  1354. }
  1355. }
  1356. }
  1357. // should never reach here
  1358. }
  1359. // single-task version of recv()
  1360. server_task_result_ptr recv(int id_task) {
  1361. std::unordered_set<int> id_tasks = {id_task};
  1362. return recv(id_tasks);
  1363. }
  1364. // Send a new result to a waiting id_task
  1365. void send(server_task_result_ptr && result) {
  1366. SRV_DBG("sending result for task id = %d\n", result->id);
  1367. std::unique_lock<std::mutex> lock(mutex_results);
  1368. for (const auto & id_task : waiting_task_ids) {
  1369. if (result->id == id_task) {
  1370. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1371. queue_results.emplace_back(std::move(result));
  1372. condition_results.notify_all();
  1373. return;
  1374. }
  1375. }
  1376. }
  1377. };
  1378. struct server_context {
  1379. common_params params_base;
  1380. llama_model * model = nullptr;
  1381. llama_context * ctx = nullptr;
  1382. std::vector<common_lora_adapter_container> lora;
  1383. llama_model * model_dft = nullptr;
  1384. llama_context_params cparams_dft;
  1385. llama_batch batch = {};
  1386. bool clean_kv_cache = true;
  1387. bool add_bos_token = true;
  1388. bool has_eos_token = false;
  1389. int32_t n_ctx; // total context for all clients / slots
  1390. // slots / clients
  1391. std::vector<server_slot> slots;
  1392. json default_generation_settings_for_props;
  1393. server_queue queue_tasks;
  1394. server_response queue_results;
  1395. server_metrics metrics;
  1396. // Necessary similarity of prompt for slot selection
  1397. float slot_prompt_similarity = 0.0f;
  1398. ~server_context() {
  1399. if (ctx) {
  1400. llama_free(ctx);
  1401. ctx = nullptr;
  1402. }
  1403. if (model) {
  1404. llama_free_model(model);
  1405. model = nullptr;
  1406. }
  1407. if (model_dft) {
  1408. llama_free_model(model_dft);
  1409. model_dft = nullptr;
  1410. }
  1411. // Clear any sampling context
  1412. for (server_slot & slot : slots) {
  1413. common_sampler_free(slot.smpl);
  1414. slot.smpl = nullptr;
  1415. llama_free(slot.ctx_dft);
  1416. slot.ctx_dft = nullptr;
  1417. common_speculative_free(slot.spec);
  1418. slot.spec = nullptr;
  1419. llama_batch_free(slot.batch_spec);
  1420. }
  1421. llama_batch_free(batch);
  1422. }
  1423. bool load_model(const common_params & params) {
  1424. SRV_INF("loading model '%s'\n", params.model.c_str());
  1425. params_base = params;
  1426. common_init_result llama_init = common_init_from_params(params_base);
  1427. model = llama_init.model;
  1428. ctx = llama_init.context;
  1429. lora = llama_init.lora_adapters;
  1430. if (model == nullptr) {
  1431. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1432. return false;
  1433. }
  1434. n_ctx = llama_n_ctx(ctx);
  1435. add_bos_token = llama_add_bos_token(model);
  1436. has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
  1437. if (!params_base.speculative.model.empty()) {
  1438. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1439. auto params_dft = params_base;
  1440. params_dft.devices = params_base.speculative.devices;
  1441. params_dft.model = params_base.speculative.model;
  1442. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1443. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1444. params_dft.n_parallel = 1;
  1445. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1446. model_dft = llama_init_dft.model;
  1447. if (model_dft == nullptr) {
  1448. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1449. return false;
  1450. }
  1451. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1452. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1453. llama_free (llama_init_dft.context);
  1454. llama_free_model(llama_init_dft.model);
  1455. return false;
  1456. }
  1457. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1458. cparams_dft = common_context_params_to_llama(params_dft);
  1459. cparams_dft.n_batch = n_ctx_dft;
  1460. // force F16 KV cache for the draft model for extra performance
  1461. cparams_dft.type_k = GGML_TYPE_F16;
  1462. cparams_dft.type_v = GGML_TYPE_F16;
  1463. // the context is not needed - we will create one for each slot
  1464. llama_free(llama_init_dft.context);
  1465. }
  1466. return true;
  1467. }
  1468. bool validate_builtin_chat_template() const {
  1469. llama_chat_message chat[] = {{"user", "test"}};
  1470. int32_t chat_res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
  1471. return chat_res > 0;
  1472. }
  1473. void init() {
  1474. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1475. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1476. for (int i = 0; i < params_base.n_parallel; i++) {
  1477. server_slot slot;
  1478. slot.id = i;
  1479. slot.ctx = ctx;
  1480. slot.n_ctx = n_ctx_slot;
  1481. slot.n_predict = params_base.n_predict;
  1482. if (model_dft) {
  1483. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1484. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1485. if (slot.ctx_dft == nullptr) {
  1486. SRV_ERR("%s", "failed to create draft context\n");
  1487. return;
  1488. }
  1489. slot.spec = common_speculative_init(slot.ctx_dft);
  1490. if (slot.spec == nullptr) {
  1491. SRV_ERR("%s", "failed to create speculator\n");
  1492. return;
  1493. }
  1494. }
  1495. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1496. slot.params.sampling = params_base.sampling;
  1497. slot.callback_on_release = [this](int) {
  1498. queue_tasks.pop_deferred_task();
  1499. };
  1500. slot.reset();
  1501. slots.push_back(slot);
  1502. }
  1503. default_generation_settings_for_props = slots[0].to_json();
  1504. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1505. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1506. {
  1507. const int32_t n_batch = llama_n_batch(ctx);
  1508. // only a single seq_id per token is needed
  1509. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1510. }
  1511. metrics.init();
  1512. }
  1513. server_slot * get_slot_by_id(int id) {
  1514. for (server_slot & slot : slots) {
  1515. if (slot.id == id) {
  1516. return &slot;
  1517. }
  1518. }
  1519. return nullptr;
  1520. }
  1521. server_slot * get_available_slot(const server_task & task) {
  1522. server_slot * ret = nullptr;
  1523. // find the slot that has at least n% prompt similarity
  1524. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1525. int lcs_len = 0;
  1526. float similarity = 0;
  1527. for (server_slot & slot : slots) {
  1528. // skip the slot if it is not available
  1529. if (slot.is_processing()) {
  1530. continue;
  1531. }
  1532. // skip the slot if it does not contains cached tokens
  1533. if (slot.cache_tokens.empty()) {
  1534. continue;
  1535. }
  1536. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1537. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1538. // fraction of the common subsequence length compared to the current slot's prompt length
  1539. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1540. // select the current slot if the criteria match
  1541. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1542. lcs_len = cur_lcs_len;
  1543. similarity = cur_similarity;
  1544. ret = &slot;
  1545. }
  1546. }
  1547. if (ret != nullptr) {
  1548. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1549. }
  1550. }
  1551. // find the slot that has been least recently used
  1552. if (ret == nullptr) {
  1553. int64_t t_last = ggml_time_us();
  1554. for (server_slot & slot : slots) {
  1555. // skip the slot if it is not available
  1556. if (slot.is_processing()) {
  1557. continue;
  1558. }
  1559. // select the current slot if the criteria match
  1560. if (slot.t_last_used < t_last) {
  1561. t_last = slot.t_last_used;
  1562. ret = &slot;
  1563. }
  1564. }
  1565. if (ret != nullptr) {
  1566. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1567. }
  1568. }
  1569. return ret;
  1570. }
  1571. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1572. slot.reset();
  1573. slot.id_task = task.id;
  1574. slot.index = task.index;
  1575. slot.task_type = task.type;
  1576. slot.params = std::move(task.params);
  1577. slot.prompt_tokens = std::move(task.prompt_tokens);
  1578. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1579. // if lora is changed, we cannot reuse cached tokens
  1580. slot.cache_tokens.clear();
  1581. slot.lora = std::move(task.params.lora);
  1582. }
  1583. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1584. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1585. // Might be better to reject the request with a 400 ?
  1586. slot.params.n_predict = slot.n_predict;
  1587. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1588. }
  1589. if (slot.params.ignore_eos && has_eos_token) {
  1590. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1591. }
  1592. {
  1593. if (slot.smpl != nullptr) {
  1594. common_sampler_free(slot.smpl);
  1595. }
  1596. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1597. if (slot.smpl == nullptr) {
  1598. // for now, the only error that may happen here is invalid grammar
  1599. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1600. return false;
  1601. }
  1602. }
  1603. if (slot.ctx_dft) {
  1604. llama_batch_free(slot.batch_spec);
  1605. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1606. }
  1607. slot.state = SLOT_STATE_STARTED;
  1608. SLT_INF(slot, "%s", "processing task\n");
  1609. return true;
  1610. }
  1611. void kv_cache_clear() {
  1612. SRV_DBG("%s", "clearing KV cache\n");
  1613. // clear the entire KV cache
  1614. llama_kv_cache_clear(ctx);
  1615. clean_kv_cache = false;
  1616. }
  1617. bool process_token(completion_token_output & result, server_slot & slot) {
  1618. // remember which tokens were sampled - used for repetition penalties during sampling
  1619. const std::string token_str = result.text_to_send;
  1620. slot.sampled = result.tok;
  1621. slot.generated_text += token_str;
  1622. if (slot.params.return_tokens) {
  1623. slot.generated_tokens.push_back(result.tok);
  1624. }
  1625. slot.has_next_token = true;
  1626. // check if there is incomplete UTF-8 character at the end
  1627. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1628. // search stop word and delete it
  1629. if (!incomplete) {
  1630. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1631. const std::string str_test = slot.generated_text.substr(pos);
  1632. bool send_text = true;
  1633. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1634. if (stop_pos != std::string::npos) {
  1635. slot.generated_text.erase(
  1636. slot.generated_text.begin() + pos + stop_pos,
  1637. slot.generated_text.end());
  1638. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1639. } else if (slot.has_next_token) {
  1640. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1641. send_text = stop_pos == std::string::npos;
  1642. }
  1643. // check if there is any token to predict
  1644. if (send_text) {
  1645. // no send the stop word in the response
  1646. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1647. slot.n_sent_text += result.text_to_send.size();
  1648. // add the token to slot queue and cache
  1649. } else {
  1650. result.text_to_send = "";
  1651. }
  1652. slot.add_token(result);
  1653. if (slot.params.stream) {
  1654. send_partial_response(slot, result);
  1655. }
  1656. }
  1657. if (incomplete) {
  1658. slot.has_next_token = true;
  1659. }
  1660. // check the limits
  1661. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1662. slot.stop = STOP_TYPE_LIMIT;
  1663. slot.has_next_token = false;
  1664. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1665. }
  1666. if (slot.has_new_line) {
  1667. // if we have already seen a new line, we stop after a certain time limit
  1668. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1669. slot.stop = STOP_TYPE_LIMIT;
  1670. slot.has_next_token = false;
  1671. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1672. }
  1673. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1674. if (slot.params.n_indent > 0) {
  1675. // check the current indentation
  1676. // TODO: improve by not doing it more than once for each new line
  1677. if (slot.last_nl_pos > 0) {
  1678. size_t pos = slot.last_nl_pos;
  1679. int n_indent = 0;
  1680. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1681. n_indent++;
  1682. pos++;
  1683. }
  1684. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1685. slot.stop = STOP_TYPE_LIMIT;
  1686. slot.has_next_token = false;
  1687. // cut the last line
  1688. slot.generated_text.erase(pos, std::string::npos);
  1689. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1690. }
  1691. }
  1692. // find the next new line
  1693. {
  1694. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1695. if (pos != std::string::npos) {
  1696. slot.last_nl_pos = pos + 1;
  1697. }
  1698. }
  1699. }
  1700. }
  1701. // check if there is a new line in the generated text
  1702. if (result.text_to_send.find('\n') != std::string::npos) {
  1703. slot.has_new_line = true;
  1704. }
  1705. // if context shift is disabled, we stop when it reaches the context limit
  1706. if (slot.n_past >= slot.n_ctx) {
  1707. slot.truncated = true;
  1708. slot.stop = STOP_TYPE_LIMIT;
  1709. slot.has_next_token = false;
  1710. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1711. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1712. }
  1713. if (llama_token_is_eog(model, result.tok)) {
  1714. slot.stop = STOP_TYPE_EOS;
  1715. slot.has_next_token = false;
  1716. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1717. }
  1718. const auto n_ctx_train = llama_n_ctx_train(model);
  1719. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1720. slot.truncated = true;
  1721. slot.stop = STOP_TYPE_LIMIT;
  1722. slot.has_next_token = false; // stop prediction
  1723. SLT_WRN(slot,
  1724. "n_predict (%d) is set for infinite generation. "
  1725. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1726. slot.params.n_predict, n_ctx_train);
  1727. }
  1728. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1729. return slot.has_next_token; // continue
  1730. }
  1731. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1732. size_t n_probs = slot.params.sampling.n_probs;
  1733. size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
  1734. if (post_sampling) {
  1735. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1736. const size_t max_probs = cur_p->size;
  1737. // set probability for sampled token
  1738. for (size_t i = 0; i < max_probs; i++) {
  1739. if (cur_p->data[i].id == result.tok) {
  1740. result.prob = cur_p->data[i].p;
  1741. break;
  1742. }
  1743. }
  1744. // set probability for top n_probs tokens
  1745. result.probs.reserve(max_probs);
  1746. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1747. result.probs.push_back({
  1748. cur_p->data[i].id,
  1749. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1750. cur_p->data[i].p
  1751. });
  1752. }
  1753. } else {
  1754. // TODO: optimize this with min-p optimization
  1755. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1756. // set probability for sampled token
  1757. for (size_t i = 0; i < n_vocab; i++) {
  1758. // set probability for sampled token
  1759. if (cur[i].id == result.tok) {
  1760. result.prob = cur[i].p;
  1761. break;
  1762. }
  1763. }
  1764. // set probability for top n_probs tokens
  1765. result.probs.reserve(n_probs);
  1766. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1767. result.probs.push_back({
  1768. cur[i].id,
  1769. common_detokenize(ctx, {cur[i].id}, special),
  1770. cur[i].p
  1771. });
  1772. }
  1773. }
  1774. }
  1775. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1776. send_error(task.id, error, type);
  1777. }
  1778. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1779. send_error(slot.id_task, error, type);
  1780. }
  1781. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1782. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1783. auto res = std::make_unique<server_task_result_error>();
  1784. res->id = id_task;
  1785. res->err_type = type;
  1786. res->err_msg = error;
  1787. queue_results.send(std::move(res));
  1788. }
  1789. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1790. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1791. res->id = slot.id_task;
  1792. res->index = slot.index;
  1793. res->content = tkn.text_to_send;
  1794. res->tokens = { tkn.tok };
  1795. res->n_decoded = slot.n_decoded;
  1796. res->n_prompt_tokens = slot.n_prompt_tokens;
  1797. res->post_sampling_probs = slot.params.post_sampling_probs;
  1798. res->verbose = slot.params.verbose;
  1799. res->oaicompat = slot.params.oaicompat;
  1800. res->oaicompat_model = slot.params.oaicompat_model;
  1801. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1802. // populate res.probs_output
  1803. if (slot.params.sampling.n_probs > 0) {
  1804. res->prob_output = tkn; // copy the token probs
  1805. }
  1806. // populate timings if this is final response or timings_per_token is enabled
  1807. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1808. res->timings = slot.get_timings();
  1809. }
  1810. queue_results.send(std::move(res));
  1811. }
  1812. void send_final_response(server_slot & slot) {
  1813. auto res = std::make_unique<server_task_result_cmpl_final>();
  1814. res->id = slot.id_task;
  1815. res->id_slot = slot.id;
  1816. res->index = slot.index;
  1817. res->content = slot.generated_text;
  1818. res->tokens = slot.generated_tokens;
  1819. res->timings = slot.get_timings();
  1820. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1821. res->response_fields = slot.params.response_fields;
  1822. res->truncated = slot.truncated;
  1823. res->n_decoded = slot.n_decoded;
  1824. res->n_prompt_tokens = slot.n_prompt_tokens;
  1825. res->n_tokens_cached = slot.n_past;
  1826. res->has_new_line = slot.has_new_line;
  1827. res->stopping_word = slot.stopping_word;
  1828. res->stop = slot.stop;
  1829. res->post_sampling_probs = slot.params.post_sampling_probs;
  1830. res->verbose = slot.params.verbose;
  1831. res->stream = slot.params.stream;
  1832. res->oaicompat = slot.params.oaicompat;
  1833. res->oaicompat_model = slot.params.oaicompat_model;
  1834. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1835. // populate res.probs_output
  1836. if (slot.params.sampling.n_probs > 0) {
  1837. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1838. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1839. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1840. res->probs_output = std::vector<completion_token_output>(
  1841. slot.generated_token_probs.begin(),
  1842. slot.generated_token_probs.end() - safe_offset);
  1843. } else {
  1844. res->probs_output = std::vector<completion_token_output>(
  1845. slot.generated_token_probs.begin(),
  1846. slot.generated_token_probs.end());
  1847. }
  1848. }
  1849. res->generation_params = slot.params; // copy the parameters
  1850. queue_results.send(std::move(res));
  1851. }
  1852. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1853. auto res = std::make_unique<server_task_result_embd>();
  1854. res->id = slot.id_task;
  1855. res->index = slot.index;
  1856. res->n_tokens = slot.n_prompt_tokens;
  1857. res->oaicompat = slot.params.oaicompat;
  1858. const int n_embd = llama_n_embd(model);
  1859. std::vector<float> embd_res(n_embd, 0.0f);
  1860. for (int i = 0; i < batch.n_tokens; ++i) {
  1861. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1862. continue;
  1863. }
  1864. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1865. if (embd == NULL) {
  1866. embd = llama_get_embeddings_ith(ctx, i);
  1867. }
  1868. if (embd == NULL) {
  1869. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1870. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1871. continue;
  1872. }
  1873. // normalize only when there is pooling
  1874. // TODO: configurable
  1875. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1876. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1877. res->embedding.push_back(embd_res);
  1878. } else {
  1879. res->embedding.push_back({ embd, embd + n_embd });
  1880. }
  1881. }
  1882. SLT_DBG(slot, "%s", "sending embeddings\n");
  1883. queue_results.send(std::move(res));
  1884. }
  1885. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1886. auto res = std::make_unique<server_task_result_rerank>();
  1887. res->id = slot.id_task;
  1888. res->index = slot.index;
  1889. res->n_tokens = slot.n_prompt_tokens;
  1890. for (int i = 0; i < batch.n_tokens; ++i) {
  1891. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1892. continue;
  1893. }
  1894. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1895. if (embd == NULL) {
  1896. embd = llama_get_embeddings_ith(ctx, i);
  1897. }
  1898. if (embd == NULL) {
  1899. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1900. res->score = -1e6;
  1901. continue;
  1902. }
  1903. res->score = embd[0];
  1904. }
  1905. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1906. queue_results.send(std::move(res));
  1907. }
  1908. //
  1909. // Functions to create new task(s) and receive result(s)
  1910. //
  1911. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1912. std::vector<server_task> cancel_tasks;
  1913. cancel_tasks.reserve(id_tasks.size());
  1914. for (const auto & id_task : id_tasks) {
  1915. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1916. server_task task(SERVER_TASK_TYPE_CANCEL);
  1917. task.id_target = id_task;
  1918. cancel_tasks.push_back(task);
  1919. queue_results.remove_waiting_task_id(id_task);
  1920. }
  1921. // push to beginning of the queue, so it has highest priority
  1922. queue_tasks.post(cancel_tasks, true);
  1923. }
  1924. // receive the results from task(s)
  1925. void receive_multi_results(
  1926. const std::unordered_set<int> & id_tasks,
  1927. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1928. const std::function<void(json)> & error_handler) {
  1929. std::vector<server_task_result_ptr> results(id_tasks.size());
  1930. for (size_t i = 0; i < id_tasks.size(); i++) {
  1931. server_task_result_ptr result = queue_results.recv(id_tasks);
  1932. if (result->is_error()) {
  1933. error_handler(result->to_json());
  1934. cancel_tasks(id_tasks);
  1935. return;
  1936. }
  1937. GGML_ASSERT(
  1938. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1939. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1940. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1941. );
  1942. const size_t idx = result->get_index();
  1943. GGML_ASSERT(idx < results.size() && "index out of range");
  1944. results[idx] = std::move(result);
  1945. }
  1946. result_handler(results);
  1947. }
  1948. // receive the results from task(s), in stream mode
  1949. void receive_cmpl_results_stream(
  1950. const std::unordered_set<int> & id_tasks,
  1951. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1952. const std::function<void(json)> & error_handler) {
  1953. size_t n_finished = 0;
  1954. while (true) {
  1955. server_task_result_ptr result = queue_results.recv(id_tasks);
  1956. if (result->is_error()) {
  1957. error_handler(result->to_json());
  1958. cancel_tasks(id_tasks);
  1959. return;
  1960. }
  1961. GGML_ASSERT(
  1962. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1963. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1964. );
  1965. if (!result_handler(result)) {
  1966. cancel_tasks(id_tasks);
  1967. break;
  1968. }
  1969. if (result->is_stop()) {
  1970. if (++n_finished == id_tasks.size()) {
  1971. break;
  1972. }
  1973. }
  1974. }
  1975. }
  1976. //
  1977. // Functions to process the task
  1978. //
  1979. void process_single_task(server_task task) {
  1980. switch (task.type) {
  1981. case SERVER_TASK_TYPE_COMPLETION:
  1982. case SERVER_TASK_TYPE_INFILL:
  1983. case SERVER_TASK_TYPE_EMBEDDING:
  1984. case SERVER_TASK_TYPE_RERANK:
  1985. {
  1986. const int id_slot = task.id_selected_slot;
  1987. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1988. if (slot == nullptr) {
  1989. // if no slot is available, we defer this task for processing later
  1990. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1991. queue_tasks.defer(task);
  1992. break;
  1993. }
  1994. if (slot->is_processing()) {
  1995. // if requested slot is unavailable, we defer this task for processing later
  1996. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1997. queue_tasks.defer(task);
  1998. break;
  1999. }
  2000. if (!launch_slot_with_task(*slot, task)) {
  2001. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2002. break;
  2003. }
  2004. } break;
  2005. case SERVER_TASK_TYPE_CANCEL:
  2006. {
  2007. // release slot linked with the task id
  2008. for (auto & slot : slots) {
  2009. if (slot.id_task == task.id_target) {
  2010. slot.release();
  2011. break;
  2012. }
  2013. }
  2014. } break;
  2015. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2016. {
  2017. // do nothing
  2018. } break;
  2019. case SERVER_TASK_TYPE_METRICS:
  2020. {
  2021. json slots_data = json::array();
  2022. int n_idle_slots = 0;
  2023. int n_processing_slots = 0;
  2024. for (server_slot & slot : slots) {
  2025. json slot_data = slot.to_json();
  2026. if (slot.is_processing()) {
  2027. n_processing_slots++;
  2028. } else {
  2029. n_idle_slots++;
  2030. }
  2031. slots_data.push_back(slot_data);
  2032. }
  2033. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2034. auto res = std::make_unique<server_task_result_metrics>();
  2035. res->id = task.id;
  2036. res->slots_data = std::move(slots_data);
  2037. res->n_idle_slots = n_idle_slots;
  2038. res->n_processing_slots = n_processing_slots;
  2039. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2040. res->t_start = metrics.t_start;
  2041. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2042. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2043. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2044. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2045. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2046. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2047. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2048. res->t_prompt_processing = metrics.t_prompt_processing;
  2049. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2050. res->t_tokens_generation = metrics.t_tokens_generation;
  2051. res->n_decode_total = metrics.n_decode_total;
  2052. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2053. if (task.metrics_reset_bucket) {
  2054. metrics.reset_bucket();
  2055. }
  2056. queue_results.send(std::move(res));
  2057. } break;
  2058. case SERVER_TASK_TYPE_SLOT_SAVE:
  2059. {
  2060. int id_slot = task.slot_action.slot_id;
  2061. server_slot * slot = get_slot_by_id(id_slot);
  2062. if (slot == nullptr) {
  2063. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2064. break;
  2065. }
  2066. if (slot->is_processing()) {
  2067. // if requested slot is unavailable, we defer this task for processing later
  2068. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2069. queue_tasks.defer(task);
  2070. break;
  2071. }
  2072. const size_t token_count = slot->cache_tokens.size();
  2073. const int64_t t_start = ggml_time_us();
  2074. std::string filename = task.slot_action.filename;
  2075. std::string filepath = task.slot_action.filepath;
  2076. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2077. const int64_t t_end = ggml_time_us();
  2078. const double t_save_ms = (t_end - t_start) / 1000.0;
  2079. auto res = std::make_unique<server_task_result_slot_save_load>();
  2080. res->id = task.id;
  2081. res->id_slot = id_slot;
  2082. res->filename = filename;
  2083. res->is_save = true;
  2084. res->n_tokens = token_count;
  2085. res->n_bytes = nwrite;
  2086. res->t_ms = t_save_ms;
  2087. queue_results.send(std::move(res));
  2088. } break;
  2089. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2090. {
  2091. int id_slot = task.slot_action.slot_id;
  2092. server_slot * slot = get_slot_by_id(id_slot);
  2093. if (slot == nullptr) {
  2094. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2095. break;
  2096. }
  2097. if (slot->is_processing()) {
  2098. // if requested slot is unavailable, we defer this task for processing later
  2099. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2100. queue_tasks.defer(task);
  2101. break;
  2102. }
  2103. const int64_t t_start = ggml_time_us();
  2104. std::string filename = task.slot_action.filename;
  2105. std::string filepath = task.slot_action.filepath;
  2106. slot->cache_tokens.resize(slot->n_ctx);
  2107. size_t token_count = 0;
  2108. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2109. if (nread == 0) {
  2110. slot->cache_tokens.resize(0);
  2111. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2112. break;
  2113. }
  2114. slot->cache_tokens.resize(token_count);
  2115. const int64_t t_end = ggml_time_us();
  2116. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2117. auto res = std::make_unique<server_task_result_slot_save_load>();
  2118. res->id = task.id;
  2119. res->id_slot = id_slot;
  2120. res->filename = filename;
  2121. res->is_save = false;
  2122. res->n_tokens = token_count;
  2123. res->n_bytes = nread;
  2124. res->t_ms = t_restore_ms;
  2125. queue_results.send(std::move(res));
  2126. } break;
  2127. case SERVER_TASK_TYPE_SLOT_ERASE:
  2128. {
  2129. int id_slot = task.slot_action.slot_id;
  2130. server_slot * slot = get_slot_by_id(id_slot);
  2131. if (slot == nullptr) {
  2132. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2133. break;
  2134. }
  2135. if (slot->is_processing()) {
  2136. // if requested slot is unavailable, we defer this task for processing later
  2137. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2138. queue_tasks.defer(task);
  2139. break;
  2140. }
  2141. // Erase token cache
  2142. const size_t n_erased = slot->cache_tokens.size();
  2143. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2144. slot->cache_tokens.clear();
  2145. auto res = std::make_unique<server_task_result_slot_erase>();
  2146. res->id = task.id;
  2147. res->id_slot = id_slot;
  2148. res->n_erased = n_erased;
  2149. queue_results.send(std::move(res));
  2150. } break;
  2151. case SERVER_TASK_TYPE_SET_LORA:
  2152. {
  2153. lora = std::move(task.set_lora);
  2154. auto res = std::make_unique<server_task_result_apply_lora>();
  2155. res->id = task.id;
  2156. queue_results.send(std::move(res));
  2157. } break;
  2158. }
  2159. }
  2160. void update_slots() {
  2161. // check if all slots are idle
  2162. {
  2163. bool all_idle = true;
  2164. for (auto & slot : slots) {
  2165. if (slot.is_processing()) {
  2166. all_idle = false;
  2167. break;
  2168. }
  2169. }
  2170. if (all_idle) {
  2171. SRV_INF("%s", "all slots are idle\n");
  2172. if (clean_kv_cache) {
  2173. kv_cache_clear();
  2174. }
  2175. return;
  2176. }
  2177. }
  2178. {
  2179. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2180. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2181. task.id = queue_tasks.get_new_id();
  2182. queue_tasks.post(task);
  2183. }
  2184. // apply context-shift if needed
  2185. // TODO: simplify and improve
  2186. for (server_slot & slot : slots) {
  2187. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2188. if (!params_base.ctx_shift) {
  2189. // this check is redundant (for good)
  2190. // we should never get here, because generation should already stopped in process_token()
  2191. slot.release();
  2192. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2193. continue;
  2194. }
  2195. // Shift context
  2196. const int n_keep = slot.params.n_keep + add_bos_token;
  2197. const int n_left = slot.n_past - n_keep;
  2198. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2199. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2200. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2201. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2202. if (slot.params.cache_prompt) {
  2203. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2204. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2205. }
  2206. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2207. }
  2208. slot.n_past -= n_discard;
  2209. slot.truncated = true;
  2210. }
  2211. }
  2212. // start populating the batch for this iteration
  2213. common_batch_clear(batch);
  2214. // track if given slot can be batched with slots already in the batch
  2215. server_slot * slot_batched = nullptr;
  2216. // frist, add sampled tokens from any ongoing sequences
  2217. for (auto & slot : slots) {
  2218. if (slot.state != SLOT_STATE_GENERATING) {
  2219. continue;
  2220. }
  2221. // check if we can batch this slot with the previous one
  2222. if (!slot_batched) {
  2223. slot_batched = &slot;
  2224. } else if (!slot_batched->can_batch_with(slot)) {
  2225. continue;
  2226. }
  2227. slot.i_batch = batch.n_tokens;
  2228. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2229. slot.n_past += 1;
  2230. if (slot.params.cache_prompt) {
  2231. slot.cache_tokens.push_back(slot.sampled);
  2232. }
  2233. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2234. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2235. }
  2236. // process in chunks of params.n_batch
  2237. int32_t n_batch = llama_n_batch(ctx);
  2238. int32_t n_ubatch = llama_n_ubatch(ctx);
  2239. // next, batch any pending prompts without exceeding n_batch
  2240. if (params_base.cont_batching || batch.n_tokens == 0) {
  2241. for (auto & slot : slots) {
  2242. // check if we can batch this slot with the previous one
  2243. if (slot.is_processing()) {
  2244. if (!slot_batched) {
  2245. slot_batched = &slot;
  2246. } else if (!slot_batched->can_batch_with(slot)) {
  2247. continue;
  2248. }
  2249. }
  2250. // this slot still has a prompt to be processed
  2251. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2252. auto & prompt_tokens = slot.prompt_tokens;
  2253. // TODO: maybe move branch to outside of this loop in the future
  2254. if (slot.state == SLOT_STATE_STARTED) {
  2255. slot.t_start_process_prompt = ggml_time_us();
  2256. slot.t_start_generation = 0;
  2257. slot.n_past = 0;
  2258. slot.n_prompt_tokens = prompt_tokens.size();
  2259. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2260. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2261. // print prompt tokens (for debugging)
  2262. if (1) {
  2263. // first 16 tokens (avoid flooding logs)
  2264. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2265. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2266. }
  2267. } else {
  2268. // all
  2269. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2270. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2271. }
  2272. }
  2273. // empty prompt passed -> release the slot and send empty response
  2274. if (prompt_tokens.empty()) {
  2275. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2276. slot.release();
  2277. slot.print_timings();
  2278. send_final_response(slot);
  2279. continue;
  2280. }
  2281. if (slot.is_non_causal()) {
  2282. if (slot.n_prompt_tokens > n_ubatch) {
  2283. slot.release();
  2284. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2285. continue;
  2286. }
  2287. if (slot.n_prompt_tokens > slot.n_ctx) {
  2288. slot.release();
  2289. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2290. continue;
  2291. }
  2292. } else {
  2293. if (!params_base.ctx_shift) {
  2294. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2295. // TODO: there should be a separate parameter that control prompt truncation
  2296. // context shift should be applied only during the generation phase
  2297. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2298. slot.release();
  2299. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2300. continue;
  2301. }
  2302. }
  2303. if (slot.params.n_keep < 0) {
  2304. slot.params.n_keep = slot.n_prompt_tokens;
  2305. }
  2306. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2307. // if input prompt is too big, truncate it
  2308. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2309. const int n_left = slot.n_ctx - slot.params.n_keep;
  2310. const int n_block_size = n_left / 2;
  2311. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2312. llama_tokens new_tokens(
  2313. prompt_tokens.begin(),
  2314. prompt_tokens.begin() + slot.params.n_keep);
  2315. new_tokens.insert(
  2316. new_tokens.end(),
  2317. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2318. prompt_tokens.end());
  2319. prompt_tokens = std::move(new_tokens);
  2320. slot.truncated = true;
  2321. slot.n_prompt_tokens = prompt_tokens.size();
  2322. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2323. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2324. }
  2325. if (slot.params.cache_prompt) {
  2326. // reuse any previously computed tokens that are common with the new prompt
  2327. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2328. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2329. if (params_base.n_cache_reuse > 0) {
  2330. size_t head_c = slot.n_past; // cache
  2331. size_t head_p = slot.n_past; // current prompt
  2332. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2333. while (head_c < slot.cache_tokens.size() &&
  2334. head_p < prompt_tokens.size()) {
  2335. size_t n_match = 0;
  2336. while (head_c + n_match < slot.cache_tokens.size() &&
  2337. head_p + n_match < prompt_tokens.size() &&
  2338. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2339. n_match++;
  2340. }
  2341. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2342. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2343. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2344. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2345. //}
  2346. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2347. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2348. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2349. for (size_t i = 0; i < n_match; i++) {
  2350. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2351. slot.n_past++;
  2352. }
  2353. head_c += n_match;
  2354. head_p += n_match;
  2355. } else {
  2356. head_c += 1;
  2357. }
  2358. }
  2359. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2360. }
  2361. }
  2362. }
  2363. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2364. // we have to evaluate at least 1 token to generate logits.
  2365. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2366. slot.n_past--;
  2367. }
  2368. slot.n_prompt_tokens_processed = 0;
  2369. }
  2370. // non-causal tasks require to fit the entire prompt in the physical batch
  2371. if (slot.is_non_causal()) {
  2372. // cannot fit the prompt in the current batch - will try next iter
  2373. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2374. continue;
  2375. }
  2376. }
  2377. // keep only the common part
  2378. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2379. // could not partially delete (likely using a non-Transformer model)
  2380. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2381. // there is no common part left
  2382. slot.n_past = 0;
  2383. }
  2384. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2385. // remove the non-common part from the cache
  2386. slot.cache_tokens.resize(slot.n_past);
  2387. // add prompt tokens for processing in the current batch
  2388. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2389. // without pooling, we want to output the embeddings for all the tokens in the batch
  2390. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2391. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2392. if (slot.params.cache_prompt) {
  2393. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2394. }
  2395. slot.n_prompt_tokens_processed++;
  2396. slot.n_past++;
  2397. }
  2398. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2399. // entire prompt has been processed
  2400. if (slot.n_past == slot.n_prompt_tokens) {
  2401. slot.state = SLOT_STATE_DONE_PROMPT;
  2402. GGML_ASSERT(batch.n_tokens > 0);
  2403. common_sampler_reset(slot.smpl);
  2404. // Process all prompt tokens through sampler system
  2405. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2406. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2407. }
  2408. // extract the logits only for the last token
  2409. batch.logits[batch.n_tokens - 1] = true;
  2410. slot.n_decoded = 0;
  2411. slot.i_batch = batch.n_tokens - 1;
  2412. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2413. }
  2414. }
  2415. if (batch.n_tokens >= n_batch) {
  2416. break;
  2417. }
  2418. }
  2419. }
  2420. if (batch.n_tokens == 0) {
  2421. SRV_WRN("%s", "no tokens to decode\n");
  2422. return;
  2423. }
  2424. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2425. if (slot_batched) {
  2426. // make sure we're in the right embedding mode
  2427. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2428. // apply lora, only need to do it once per batch
  2429. common_lora_adapters_apply(ctx, slot_batched->lora);
  2430. }
  2431. // process the created batch of tokens
  2432. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2433. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2434. llama_batch batch_view = {
  2435. n_tokens,
  2436. batch.token + i,
  2437. nullptr,
  2438. batch.pos + i,
  2439. batch.n_seq_id + i,
  2440. batch.seq_id + i,
  2441. batch.logits + i,
  2442. };
  2443. const int ret = llama_decode(ctx, batch_view);
  2444. metrics.on_decoded(slots);
  2445. if (ret != 0) {
  2446. if (n_batch == 1 || ret < 0) {
  2447. // if you get here, it means the KV cache is full - try increasing it via the context size
  2448. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2449. for (auto & slot : slots) {
  2450. slot.release();
  2451. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2452. }
  2453. break; // break loop of n_batch
  2454. }
  2455. // retry with half the batch size to try to find a free slot in the KV cache
  2456. n_batch /= 2;
  2457. i -= n_batch;
  2458. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2459. continue; // continue loop of n_batch
  2460. }
  2461. for (auto & slot : slots) {
  2462. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2463. continue; // continue loop of slots
  2464. }
  2465. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2466. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2467. // prompt evaluated for embedding
  2468. send_embedding(slot, batch_view);
  2469. slot.release();
  2470. slot.i_batch = -1;
  2471. continue; // continue loop of slots
  2472. }
  2473. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2474. send_rerank(slot, batch_view);
  2475. slot.release();
  2476. slot.i_batch = -1;
  2477. continue; // continue loop of slots
  2478. }
  2479. // prompt evaluated for next-token prediction
  2480. slot.state = SLOT_STATE_GENERATING;
  2481. } else if (slot.state != SLOT_STATE_GENERATING) {
  2482. continue; // continue loop of slots
  2483. }
  2484. const int tok_idx = slot.i_batch - i;
  2485. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2486. slot.i_batch = -1;
  2487. common_sampler_accept(slot.smpl, id, true);
  2488. slot.n_decoded += 1;
  2489. const int64_t t_current = ggml_time_us();
  2490. if (slot.n_decoded == 1) {
  2491. slot.t_start_generation = t_current;
  2492. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2493. metrics.on_prompt_eval(slot);
  2494. }
  2495. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2496. completion_token_output result;
  2497. result.tok = id;
  2498. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2499. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2500. if (slot.params.sampling.n_probs > 0) {
  2501. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2502. }
  2503. if (!process_token(result, slot)) {
  2504. // release slot because of stop condition
  2505. slot.release();
  2506. slot.print_timings();
  2507. send_final_response(slot);
  2508. metrics.on_prediction(slot);
  2509. continue;
  2510. }
  2511. }
  2512. // do speculative decoding
  2513. for (auto & slot : slots) {
  2514. if (!slot.is_processing() || !slot.can_speculate()) {
  2515. continue;
  2516. }
  2517. if (slot.state != SLOT_STATE_GENERATING) {
  2518. continue;
  2519. }
  2520. // determine the max draft that fits the current slot state
  2521. int n_draft_max = slot.params.speculative.n_max;
  2522. // note: n_past is not yet increased for the `id` token sampled above
  2523. // also, need to leave space for 1 extra token to allow context shifts
  2524. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2525. if (slot.n_remaining > 0) {
  2526. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2527. }
  2528. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2529. if (n_draft_max < slot.params.speculative.n_min) {
  2530. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2531. continue;
  2532. }
  2533. llama_token id = slot.sampled;
  2534. struct common_speculative_params params_spec;
  2535. params_spec.n_draft = n_draft_max;
  2536. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2537. params_spec.p_min = slot.params.speculative.p_min;
  2538. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2539. // ignore small drafts
  2540. if (slot.params.speculative.n_min > (int) draft.size()) {
  2541. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2542. continue;
  2543. }
  2544. // construct the speculation batch
  2545. common_batch_clear(slot.batch_spec);
  2546. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2547. for (size_t i = 0; i < draft.size(); ++i) {
  2548. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2549. }
  2550. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2551. llama_decode(ctx, slot.batch_spec);
  2552. // the accepted tokens from the speculation
  2553. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2554. slot.n_past += ids.size();
  2555. slot.n_decoded += ids.size();
  2556. slot.cache_tokens.push_back(id);
  2557. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2558. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2559. for (size_t i = 0; i < ids.size(); ++i) {
  2560. completion_token_output result;
  2561. result.tok = ids[i];
  2562. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2563. result.prob = 1.0f; // set later
  2564. // TODO: set result.probs
  2565. if (!process_token(result, slot)) {
  2566. // release slot because of stop condition
  2567. slot.release();
  2568. slot.print_timings();
  2569. send_final_response(slot);
  2570. metrics.on_prediction(slot);
  2571. break;
  2572. }
  2573. }
  2574. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2575. }
  2576. }
  2577. SRV_DBG("%s", "run slots completed\n");
  2578. }
  2579. json model_meta() const {
  2580. return json {
  2581. {"vocab_type", llama_vocab_type (model)},
  2582. {"n_vocab", llama_n_vocab (model)},
  2583. {"n_ctx_train", llama_n_ctx_train (model)},
  2584. {"n_embd", llama_n_embd (model)},
  2585. {"n_params", llama_model_n_params(model)},
  2586. {"size", llama_model_size (model)},
  2587. };
  2588. }
  2589. };
  2590. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2591. // skip GH copilot requests when using default port
  2592. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2593. return;
  2594. }
  2595. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2596. LOG_DBG("request: %s\n", req.body.c_str());
  2597. LOG_DBG("response: %s\n", res.body.c_str());
  2598. }
  2599. std::function<void(int)> shutdown_handler;
  2600. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2601. inline void signal_handler(int signal) {
  2602. if (is_terminating.test_and_set()) {
  2603. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2604. // this is for better developer experience, we can remove when the server is stable enough
  2605. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2606. exit(1);
  2607. }
  2608. shutdown_handler(signal);
  2609. }
  2610. int main(int argc, char ** argv) {
  2611. // own arguments required by this example
  2612. common_params params;
  2613. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2614. return 1;
  2615. }
  2616. common_init();
  2617. // struct that contains llama context and inference
  2618. server_context ctx_server;
  2619. llama_backend_init();
  2620. llama_numa_init(params.numa);
  2621. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2622. LOG_INF("\n");
  2623. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2624. LOG_INF("\n");
  2625. std::unique_ptr<httplib::Server> svr;
  2626. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2627. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2628. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2629. svr.reset(
  2630. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2631. );
  2632. } else {
  2633. LOG_INF("Running without SSL\n");
  2634. svr.reset(new httplib::Server());
  2635. }
  2636. #else
  2637. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2638. LOG_ERR("Server is built without SSL support\n");
  2639. return 1;
  2640. }
  2641. svr.reset(new httplib::Server());
  2642. #endif
  2643. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2644. svr->set_default_headers({{"Server", "llama.cpp"}});
  2645. svr->set_logger(log_server_request);
  2646. auto res_error = [](httplib::Response & res, const json & error_data) {
  2647. json final_response {{"error", error_data}};
  2648. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2649. res.status = json_value(error_data, "code", 500);
  2650. };
  2651. auto res_ok = [](httplib::Response & res, const json & data) {
  2652. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2653. res.status = 200;
  2654. };
  2655. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2656. std::string message;
  2657. try {
  2658. std::rethrow_exception(ep);
  2659. } catch (const std::exception & e) {
  2660. message = e.what();
  2661. } catch (...) {
  2662. message = "Unknown Exception";
  2663. }
  2664. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2665. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2666. res_error(res, formatted_error);
  2667. });
  2668. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2669. if (res.status == 404) {
  2670. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2671. }
  2672. // for other error codes, we skip processing here because it's already done by res_error()
  2673. });
  2674. // set timeouts and change hostname and port
  2675. svr->set_read_timeout (params.timeout_read);
  2676. svr->set_write_timeout(params.timeout_write);
  2677. std::unordered_map<std::string, std::string> log_data;
  2678. log_data["hostname"] = params.hostname;
  2679. log_data["port"] = std::to_string(params.port);
  2680. if (params.api_keys.size() == 1) {
  2681. auto key = params.api_keys[0];
  2682. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2683. } else if (params.api_keys.size() > 1) {
  2684. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2685. }
  2686. // Necessary similarity of prompt for slot selection
  2687. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2688. //
  2689. // Middlewares
  2690. //
  2691. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2692. static const std::unordered_set<std::string> public_endpoints = {
  2693. "/health",
  2694. "/models",
  2695. "/v1/models",
  2696. };
  2697. // If API key is not set, skip validation
  2698. if (params.api_keys.empty()) {
  2699. return true;
  2700. }
  2701. // If path is public or is static file, skip validation
  2702. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2703. return true;
  2704. }
  2705. // Check for API key in the header
  2706. auto auth_header = req.get_header_value("Authorization");
  2707. std::string prefix = "Bearer ";
  2708. if (auth_header.substr(0, prefix.size()) == prefix) {
  2709. std::string received_api_key = auth_header.substr(prefix.size());
  2710. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2711. return true; // API key is valid
  2712. }
  2713. }
  2714. // API key is invalid or not provided
  2715. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2716. LOG_WRN("Unauthorized: Invalid API Key\n");
  2717. return false;
  2718. };
  2719. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2720. server_state current_state = state.load();
  2721. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2722. auto tmp = string_split<std::string>(req.path, '.');
  2723. if (req.path == "/" || tmp.back() == "html") {
  2724. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2725. res.status = 503;
  2726. } else {
  2727. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2728. }
  2729. return false;
  2730. }
  2731. return true;
  2732. };
  2733. // register server middlewares
  2734. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2735. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2736. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2737. if (req.method == "OPTIONS") {
  2738. res.set_header("Access-Control-Allow-Credentials", "true");
  2739. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2740. res.set_header("Access-Control-Allow-Headers", "*");
  2741. res.set_content("", "text/html"); // blank response, no data
  2742. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2743. }
  2744. if (!middleware_server_state(req, res)) {
  2745. return httplib::Server::HandlerResponse::Handled;
  2746. }
  2747. if (!middleware_validate_api_key(req, res)) {
  2748. return httplib::Server::HandlerResponse::Handled;
  2749. }
  2750. return httplib::Server::HandlerResponse::Unhandled;
  2751. });
  2752. //
  2753. // Route handlers (or controllers)
  2754. //
  2755. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2756. // error and loading states are handled by middleware
  2757. json health = {{"status", "ok"}};
  2758. res_ok(res, health);
  2759. };
  2760. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2761. if (!params.endpoint_slots) {
  2762. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2763. return;
  2764. }
  2765. // request slots data using task queue
  2766. server_task task(SERVER_TASK_TYPE_METRICS);
  2767. task.id = ctx_server.queue_tasks.get_new_id();
  2768. ctx_server.queue_results.add_waiting_task_id(task.id);
  2769. ctx_server.queue_tasks.post(task, true); // high-priority task
  2770. // get the result
  2771. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2772. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2773. if (result->is_error()) {
  2774. res_error(res, result->to_json());
  2775. return;
  2776. }
  2777. // TODO: get rid of this dynamic_cast
  2778. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2779. GGML_ASSERT(res_metrics != nullptr);
  2780. // optionally return "fail_on_no_slot" error
  2781. if (req.has_param("fail_on_no_slot")) {
  2782. if (res_metrics->n_idle_slots == 0) {
  2783. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2784. return;
  2785. }
  2786. }
  2787. res_ok(res, res_metrics->slots_data);
  2788. };
  2789. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2790. if (!params.endpoint_metrics) {
  2791. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2792. return;
  2793. }
  2794. // request slots data using task queue
  2795. server_task task(SERVER_TASK_TYPE_METRICS);
  2796. task.id = ctx_server.queue_tasks.get_new_id();
  2797. task.metrics_reset_bucket = true;
  2798. ctx_server.queue_results.add_waiting_task_id(task.id);
  2799. ctx_server.queue_tasks.post(task, true); // high-priority task
  2800. // get the result
  2801. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2802. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2803. if (result->is_error()) {
  2804. res_error(res, result->to_json());
  2805. return;
  2806. }
  2807. // TODO: get rid of this dynamic_cast
  2808. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2809. GGML_ASSERT(res_metrics != nullptr);
  2810. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2811. json all_metrics_def = json {
  2812. {"counter", {{
  2813. {"name", "prompt_tokens_total"},
  2814. {"help", "Number of prompt tokens processed."},
  2815. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2816. }, {
  2817. {"name", "prompt_seconds_total"},
  2818. {"help", "Prompt process time"},
  2819. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2820. }, {
  2821. {"name", "tokens_predicted_total"},
  2822. {"help", "Number of generation tokens processed."},
  2823. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2824. }, {
  2825. {"name", "tokens_predicted_seconds_total"},
  2826. {"help", "Predict process time"},
  2827. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2828. }, {
  2829. {"name", "n_decode_total"},
  2830. {"help", "Total number of llama_decode() calls"},
  2831. {"value", res_metrics->n_decode_total}
  2832. }, {
  2833. {"name", "n_busy_slots_per_decode"},
  2834. {"help", "Average number of busy slots per llama_decode() call"},
  2835. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2836. }}},
  2837. {"gauge", {{
  2838. {"name", "prompt_tokens_seconds"},
  2839. {"help", "Average prompt throughput in tokens/s."},
  2840. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2841. },{
  2842. {"name", "predicted_tokens_seconds"},
  2843. {"help", "Average generation throughput in tokens/s."},
  2844. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2845. },{
  2846. {"name", "kv_cache_usage_ratio"},
  2847. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2848. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2849. },{
  2850. {"name", "kv_cache_tokens"},
  2851. {"help", "KV-cache tokens."},
  2852. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2853. },{
  2854. {"name", "requests_processing"},
  2855. {"help", "Number of request processing."},
  2856. {"value", (uint64_t) res_metrics->n_processing_slots}
  2857. },{
  2858. {"name", "requests_deferred"},
  2859. {"help", "Number of request deferred."},
  2860. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2861. }}}
  2862. };
  2863. std::stringstream prometheus;
  2864. for (const auto & el : all_metrics_def.items()) {
  2865. const auto & type = el.key();
  2866. const auto & metrics_def = el.value();
  2867. for (const auto & metric_def : metrics_def) {
  2868. const std::string name = metric_def.at("name");
  2869. const std::string help = metric_def.at("help");
  2870. auto value = json_value(metric_def, "value", 0.);
  2871. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2872. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2873. << "llamacpp:" << name << " " << value << "\n";
  2874. }
  2875. }
  2876. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2877. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2878. res.status = 200; // HTTP OK
  2879. };
  2880. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2881. json request_data = json::parse(req.body);
  2882. std::string filename = request_data.at("filename");
  2883. if (!fs_validate_filename(filename)) {
  2884. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2885. return;
  2886. }
  2887. std::string filepath = params.slot_save_path + filename;
  2888. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2889. task.id = ctx_server.queue_tasks.get_new_id();
  2890. task.slot_action.slot_id = id_slot;
  2891. task.slot_action.filename = filename;
  2892. task.slot_action.filepath = filepath;
  2893. ctx_server.queue_results.add_waiting_task_id(task.id);
  2894. ctx_server.queue_tasks.post(task);
  2895. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2896. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2897. if (result->is_error()) {
  2898. res_error(res, result->to_json());
  2899. return;
  2900. }
  2901. res_ok(res, result->to_json());
  2902. };
  2903. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2904. json request_data = json::parse(req.body);
  2905. std::string filename = request_data.at("filename");
  2906. if (!fs_validate_filename(filename)) {
  2907. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2908. return;
  2909. }
  2910. std::string filepath = params.slot_save_path + filename;
  2911. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2912. task.id = ctx_server.queue_tasks.get_new_id();
  2913. task.slot_action.slot_id = id_slot;
  2914. task.slot_action.filename = filename;
  2915. task.slot_action.filepath = filepath;
  2916. ctx_server.queue_results.add_waiting_task_id(task.id);
  2917. ctx_server.queue_tasks.post(task);
  2918. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2919. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2920. if (result->is_error()) {
  2921. res_error(res, result->to_json());
  2922. return;
  2923. }
  2924. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2925. res_ok(res, result->to_json());
  2926. };
  2927. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2928. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2929. task.id = ctx_server.queue_tasks.get_new_id();
  2930. task.slot_action.slot_id = id_slot;
  2931. ctx_server.queue_results.add_waiting_task_id(task.id);
  2932. ctx_server.queue_tasks.post(task);
  2933. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2934. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2935. if (result->is_error()) {
  2936. res_error(res, result->to_json());
  2937. return;
  2938. }
  2939. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2940. res_ok(res, result->to_json());
  2941. };
  2942. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2943. if (params.slot_save_path.empty()) {
  2944. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2945. return;
  2946. }
  2947. std::string id_slot_str = req.path_params.at("id_slot");
  2948. int id_slot;
  2949. try {
  2950. id_slot = std::stoi(id_slot_str);
  2951. } catch (const std::exception &) {
  2952. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2953. return;
  2954. }
  2955. std::string action = req.get_param_value("action");
  2956. if (action == "save") {
  2957. handle_slots_save(req, res, id_slot);
  2958. } else if (action == "restore") {
  2959. handle_slots_restore(req, res, id_slot);
  2960. } else if (action == "erase") {
  2961. handle_slots_erase(req, res, id_slot);
  2962. } else {
  2963. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2964. }
  2965. };
  2966. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2967. // this endpoint is publicly available, please only return what is safe to be exposed
  2968. json data = {
  2969. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2970. { "total_slots", ctx_server.params_base.n_parallel },
  2971. { "model_path", ctx_server.params_base.model },
  2972. { "chat_template", common_get_builtin_chat_template(ctx_server.model) },
  2973. { "build_info", build_info },
  2974. };
  2975. res_ok(res, data);
  2976. };
  2977. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2978. if (!ctx_server.params_base.endpoint_props) {
  2979. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2980. return;
  2981. }
  2982. json data = json::parse(req.body);
  2983. // update any props here
  2984. res_ok(res, {{ "success", true }});
  2985. };
  2986. // handle completion-like requests (completion, chat, infill)
  2987. // we can optionally provide a custom format for partial results and final results
  2988. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  2989. server_task_type type,
  2990. json & data,
  2991. httplib::Response & res,
  2992. oaicompat_type oaicompat) {
  2993. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2994. if (ctx_server.params_base.embedding) {
  2995. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2996. return;
  2997. }
  2998. auto completion_id = gen_chatcmplid();
  2999. std::vector<server_task> tasks;
  3000. try {
  3001. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  3002. tasks.reserve(tokenized_prompts.size());
  3003. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3004. server_task task = server_task(type);
  3005. task.id = ctx_server.queue_tasks.get_new_id();
  3006. task.index = i;
  3007. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3008. task.params = server_task::params_from_json_cmpl(
  3009. ctx_server.model,
  3010. ctx_server.ctx,
  3011. ctx_server.params_base,
  3012. ctx_server.lora,
  3013. data);
  3014. task.id_selected_slot = json_value(data, "id_slot", -1);
  3015. // OAI-compat
  3016. task.params.oaicompat = oaicompat;
  3017. task.params.oaicompat_cmpl_id = completion_id;
  3018. // oaicompat_model is already populated by params_from_json_cmpl
  3019. tasks.push_back(task);
  3020. }
  3021. } catch (const std::exception & e) {
  3022. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3023. return;
  3024. }
  3025. ctx_server.queue_results.add_waiting_tasks(tasks);
  3026. ctx_server.queue_tasks.post(tasks);
  3027. bool stream = json_value(data, "stream", false);
  3028. const auto task_ids = server_task::get_list_id(tasks);
  3029. if (!stream) {
  3030. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3031. if (results.size() == 1) {
  3032. // single result
  3033. res_ok(res, results[0]->to_json());
  3034. } else {
  3035. // multiple results (multitask)
  3036. json arr = json::array();
  3037. for (auto & res : results) {
  3038. arr.push_back(res->to_json());
  3039. }
  3040. res_ok(res, arr);
  3041. }
  3042. }, [&](const json & error_data) {
  3043. res_error(res, error_data);
  3044. });
  3045. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3046. } else {
  3047. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3048. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3049. json res_json = result->to_json();
  3050. if (res_json.is_array()) {
  3051. for (const auto & res : res_json) {
  3052. if (!server_sent_event(sink, "data", res)) {
  3053. return false;
  3054. }
  3055. }
  3056. return true;
  3057. } else {
  3058. return server_sent_event(sink, "data", res_json);
  3059. }
  3060. }, [&](const json & error_data) {
  3061. server_sent_event(sink, "error", error_data);
  3062. });
  3063. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3064. static const std::string ev_done = "data: [DONE]\n\n";
  3065. sink.write(ev_done.data(), ev_done.size());
  3066. }
  3067. sink.done();
  3068. return false;
  3069. };
  3070. auto on_complete = [task_ids, &ctx_server] (bool) {
  3071. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3072. };
  3073. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3074. }
  3075. };
  3076. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3077. json data = json::parse(req.body);
  3078. return handle_completions_impl(
  3079. SERVER_TASK_TYPE_COMPLETION,
  3080. data,
  3081. res,
  3082. OAICOMPAT_TYPE_NONE);
  3083. };
  3084. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3085. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3086. return handle_completions_impl(
  3087. SERVER_TASK_TYPE_COMPLETION,
  3088. data,
  3089. res,
  3090. OAICOMPAT_TYPE_COMPLETION);
  3091. };
  3092. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3093. // check model compatibility
  3094. std::string err;
  3095. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3096. err += "prefix token is missing. ";
  3097. }
  3098. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3099. err += "suffix token is missing. ";
  3100. }
  3101. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3102. err += "middle token is missing. ";
  3103. }
  3104. if (!err.empty()) {
  3105. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3106. return;
  3107. }
  3108. json data = json::parse(req.body);
  3109. // validate input
  3110. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3111. // prompt is optional
  3112. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3113. }
  3114. if (!data.contains("input_prefix")) {
  3115. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3116. }
  3117. if (!data.contains("input_suffix")) {
  3118. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3119. }
  3120. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3121. // input_extra is optional
  3122. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3123. return;
  3124. }
  3125. json input_extra = json_value(data, "input_extra", json::array());
  3126. for (const auto & chunk : input_extra) {
  3127. // { "text": string, "filename": string }
  3128. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3129. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3130. return;
  3131. }
  3132. // filename is optional
  3133. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3134. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3135. return;
  3136. }
  3137. }
  3138. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3139. std::string prompt = json_value(data, "prompt", std::string());
  3140. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3141. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3142. data["prompt"] = format_infill(
  3143. ctx_server.ctx,
  3144. data.at("input_prefix"),
  3145. data.at("input_suffix"),
  3146. data.at("input_extra"),
  3147. ctx_server.params_base.n_batch,
  3148. ctx_server.params_base.n_predict,
  3149. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3150. ctx_server.params_base.spm_infill,
  3151. tokenized_prompts[0]
  3152. );
  3153. return handle_completions_impl(
  3154. SERVER_TASK_TYPE_INFILL,
  3155. data,
  3156. res,
  3157. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3158. };
  3159. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3160. if (ctx_server.params_base.embedding) {
  3161. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3162. return;
  3163. }
  3164. json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  3165. return handle_completions_impl(
  3166. SERVER_TASK_TYPE_COMPLETION,
  3167. data,
  3168. res,
  3169. OAICOMPAT_TYPE_CHAT);
  3170. };
  3171. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3172. json models = {
  3173. {"object", "list"},
  3174. {"data", {
  3175. {
  3176. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3177. {"object", "model"},
  3178. {"created", std::time(0)},
  3179. {"owned_by", "llamacpp"},
  3180. {"meta", ctx_server.model_meta()}
  3181. },
  3182. }}
  3183. };
  3184. res_ok(res, models);
  3185. };
  3186. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3187. const json body = json::parse(req.body);
  3188. json tokens_response = json::array();
  3189. if (body.count("content") != 0) {
  3190. const bool add_special = json_value(body, "add_special", false);
  3191. const bool with_pieces = json_value(body, "with_pieces", false);
  3192. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  3193. if (with_pieces) {
  3194. for (const auto& token : tokens) {
  3195. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3196. json piece_json;
  3197. // Check if the piece is valid UTF-8
  3198. if (is_valid_utf8(piece)) {
  3199. piece_json = piece;
  3200. } else {
  3201. // If not valid UTF-8, store as array of byte values
  3202. piece_json = json::array();
  3203. for (unsigned char c : piece) {
  3204. piece_json.push_back(static_cast<int>(c));
  3205. }
  3206. }
  3207. tokens_response.push_back({
  3208. {"id", token},
  3209. {"piece", piece_json}
  3210. });
  3211. }
  3212. } else {
  3213. tokens_response = tokens;
  3214. }
  3215. }
  3216. const json data = format_tokenizer_response(tokens_response);
  3217. res_ok(res, data);
  3218. };
  3219. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3220. const json body = json::parse(req.body);
  3221. std::string content;
  3222. if (body.count("tokens") != 0) {
  3223. const llama_tokens tokens = body.at("tokens");
  3224. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3225. }
  3226. const json data = format_detokenized_response(content);
  3227. res_ok(res, data);
  3228. };
  3229. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3230. const json body = json::parse(req.body);
  3231. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3232. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3233. return;
  3234. }
  3235. // for the shape of input/content, see tokenize_input_prompts()
  3236. json prompt;
  3237. if (body.count("input") != 0) {
  3238. prompt = body.at("input");
  3239. } else if (body.contains("content")) {
  3240. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3241. prompt = body.at("content");
  3242. } else {
  3243. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3244. return;
  3245. }
  3246. bool use_base64 = false;
  3247. if (body.count("encoding_format") != 0) {
  3248. const std::string& format = body.at("encoding_format");
  3249. if (format == "base64") {
  3250. use_base64 = true;
  3251. } else if (format != "float") {
  3252. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3253. return;
  3254. }
  3255. }
  3256. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3257. for (const auto & tokens : tokenized_prompts) {
  3258. // this check is necessary for models that do not add BOS token to the input
  3259. if (tokens.empty()) {
  3260. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3261. return;
  3262. }
  3263. }
  3264. // create and queue the task
  3265. json responses = json::array();
  3266. bool error = false;
  3267. {
  3268. std::vector<server_task> tasks;
  3269. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3270. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3271. task.id = ctx_server.queue_tasks.get_new_id();
  3272. task.index = i;
  3273. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3274. // OAI-compat
  3275. task.params.oaicompat = oaicompat;
  3276. tasks.push_back(task);
  3277. }
  3278. ctx_server.queue_results.add_waiting_tasks(tasks);
  3279. ctx_server.queue_tasks.post(tasks);
  3280. // get the result
  3281. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3282. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3283. for (auto & res : results) {
  3284. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3285. responses.push_back(res->to_json());
  3286. }
  3287. }, [&](const json & error_data) {
  3288. res_error(res, error_data);
  3289. error = true;
  3290. });
  3291. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3292. }
  3293. if (error) {
  3294. return;
  3295. }
  3296. // write JSON response
  3297. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3298. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3299. : json(responses);
  3300. res_ok(res, root);
  3301. };
  3302. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3303. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3304. };
  3305. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3306. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3307. };
  3308. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3309. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3310. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3311. return;
  3312. }
  3313. const json body = json::parse(req.body);
  3314. // TODO: implement
  3315. //int top_n = 1;
  3316. //if (body.count("top_n") != 1) {
  3317. // top_n = body.at("top_n");
  3318. //} else {
  3319. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3320. // return;
  3321. //}
  3322. json query;
  3323. if (body.count("query") == 1) {
  3324. query = body.at("query");
  3325. if (!query.is_string()) {
  3326. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3327. return;
  3328. }
  3329. } else {
  3330. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3331. return;
  3332. }
  3333. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3334. if (documents.empty()) {
  3335. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3336. return;
  3337. }
  3338. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3339. // create and queue the task
  3340. json responses = json::array();
  3341. bool error = false;
  3342. {
  3343. std::vector<server_task> tasks;
  3344. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3345. tasks.reserve(tokenized_docs.size());
  3346. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3347. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3348. task.id = ctx_server.queue_tasks.get_new_id();
  3349. task.index = i;
  3350. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3351. tasks.push_back(task);
  3352. }
  3353. ctx_server.queue_results.add_waiting_tasks(tasks);
  3354. ctx_server.queue_tasks.post(tasks);
  3355. // get the result
  3356. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3357. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3358. for (auto & res : results) {
  3359. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3360. responses.push_back(res->to_json());
  3361. }
  3362. }, [&](const json & error_data) {
  3363. res_error(res, error_data);
  3364. error = true;
  3365. });
  3366. }
  3367. if (error) {
  3368. return;
  3369. }
  3370. // write JSON response
  3371. json root = format_response_rerank(body, responses);
  3372. res_ok(res, root);
  3373. };
  3374. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3375. json result = json::array();
  3376. for (size_t i = 0; i < ctx_server.lora.size(); ++i) {
  3377. auto & lora = ctx_server.lora[i];
  3378. result.push_back({
  3379. {"id", i},
  3380. {"path", lora.path},
  3381. {"scale", lora.scale},
  3382. });
  3383. }
  3384. res_ok(res, result);
  3385. res.status = 200; // HTTP OK
  3386. };
  3387. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3388. const json body = json::parse(req.body);
  3389. if (!body.is_array()) {
  3390. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3391. return;
  3392. }
  3393. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3394. task.id = ctx_server.queue_tasks.get_new_id();
  3395. task.set_lora = parse_lora_request(ctx_server.lora, body);
  3396. ctx_server.queue_results.add_waiting_task_id(task.id);
  3397. ctx_server.queue_tasks.post(task);
  3398. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3399. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3400. if (result->is_error()) {
  3401. res_error(res, result->to_json());
  3402. return;
  3403. }
  3404. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3405. res_ok(res, result->to_json());
  3406. };
  3407. //
  3408. // Router
  3409. //
  3410. if (!params.webui) {
  3411. LOG_INF("Web UI is disabled\n");
  3412. } else {
  3413. // register static assets routes
  3414. if (!params.public_path.empty()) {
  3415. // Set the base directory for serving static files
  3416. bool is_found = svr->set_mount_point("/", params.public_path);
  3417. if (!is_found) {
  3418. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3419. return 1;
  3420. }
  3421. } else {
  3422. // using embedded static index.html
  3423. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3424. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3425. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3426. } else {
  3427. res.set_header("Content-Encoding", "gzip");
  3428. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3429. }
  3430. return false;
  3431. });
  3432. }
  3433. }
  3434. // register API routes
  3435. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3436. svr->Get ("/metrics", handle_metrics);
  3437. svr->Get ("/props", handle_props);
  3438. svr->Post("/props", handle_props_change);
  3439. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3440. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3441. svr->Post("/completion", handle_completions); // legacy
  3442. svr->Post("/completions", handle_completions);
  3443. svr->Post("/v1/completions", handle_completions_oai);
  3444. svr->Post("/chat/completions", handle_chat_completions);
  3445. svr->Post("/v1/chat/completions", handle_chat_completions);
  3446. svr->Post("/infill", handle_infill);
  3447. svr->Post("/embedding", handle_embeddings); // legacy
  3448. svr->Post("/embeddings", handle_embeddings);
  3449. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3450. svr->Post("/rerank", handle_rerank);
  3451. svr->Post("/reranking", handle_rerank);
  3452. svr->Post("/v1/rerank", handle_rerank);
  3453. svr->Post("/v1/reranking", handle_rerank);
  3454. svr->Post("/tokenize", handle_tokenize);
  3455. svr->Post("/detokenize", handle_detokenize);
  3456. // LoRA adapters hotswap
  3457. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3458. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3459. // Save & load slots
  3460. svr->Get ("/slots", handle_slots);
  3461. svr->Post("/slots/:id_slot", handle_slots_action);
  3462. //
  3463. // Start the server
  3464. //
  3465. if (params.n_threads_http < 1) {
  3466. // +2 threads for monitoring endpoints
  3467. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3468. }
  3469. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3470. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3471. // clean up function, to be called before exit
  3472. auto clean_up = [&svr]() {
  3473. svr->stop();
  3474. llama_backend_free();
  3475. };
  3476. // bind HTTP listen port
  3477. bool was_bound = false;
  3478. if (params.port == 0) {
  3479. int bound_port = svr->bind_to_any_port(params.hostname);
  3480. if ((was_bound = (bound_port >= 0))) {
  3481. params.port = bound_port;
  3482. }
  3483. } else {
  3484. was_bound = svr->bind_to_port(params.hostname, params.port);
  3485. }
  3486. if (!was_bound) {
  3487. //LOG_ERROR("couldn't bind HTTP server socket", {
  3488. // {"hostname", params.hostname},
  3489. // {"port", params.port},
  3490. //});
  3491. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3492. clean_up();
  3493. return 1;
  3494. }
  3495. // run the HTTP server in a thread
  3496. std::thread t([&]() { svr->listen_after_bind(); });
  3497. svr->wait_until_ready();
  3498. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3499. // load the model
  3500. LOG_INF("%s: loading model\n", __func__);
  3501. if (!ctx_server.load_model(params)) {
  3502. clean_up();
  3503. t.join();
  3504. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3505. return 1;
  3506. }
  3507. ctx_server.init();
  3508. state.store(SERVER_STATE_READY);
  3509. LOG_INF("%s: model loaded\n", __func__);
  3510. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3511. if (params.chat_template.empty()) {
  3512. if (!ctx_server.validate_builtin_chat_template()) {
  3513. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3514. params.chat_template = "chatml";
  3515. }
  3516. }
  3517. // print sample chat example to make it clear which template is used
  3518. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3519. params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
  3520. common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3521. ctx_server.queue_tasks.on_new_task(std::bind(
  3522. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3523. ctx_server.queue_tasks.on_update_slots(std::bind(
  3524. &server_context::update_slots, &ctx_server));
  3525. shutdown_handler = [&](int) {
  3526. ctx_server.queue_tasks.terminate();
  3527. };
  3528. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3529. ctx_server.queue_tasks.start_loop();
  3530. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3531. struct sigaction sigint_action;
  3532. sigint_action.sa_handler = signal_handler;
  3533. sigemptyset (&sigint_action.sa_mask);
  3534. sigint_action.sa_flags = 0;
  3535. sigaction(SIGINT, &sigint_action, NULL);
  3536. sigaction(SIGTERM, &sigint_action, NULL);
  3537. #elif defined (_WIN32)
  3538. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3539. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3540. };
  3541. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3542. #endif
  3543. clean_up();
  3544. t.join();
  3545. return 0;
  3546. }