test-backend-ops.cpp 265 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  121. std::vector<float> tv;
  122. tv.reserve(ggml_nelements(t));
  123. std::vector<uint8_t> buf(ggml_nbytes(t));
  124. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  125. const auto * tt = ggml_get_type_traits(t->type);
  126. size_t bs = ggml_blck_size(t->type);
  127. std::vector<float> vq(ggml_blck_size(t->type));
  128. bool quantized = ggml_is_quantized(t->type);
  129. // access elements by index to avoid gaps in views
  130. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  131. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  132. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  133. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  134. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  135. if (t->type == GGML_TYPE_F16) {
  136. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  137. } else if (t->type == GGML_TYPE_BF16) {
  138. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  139. } else if (t->type == GGML_TYPE_F32) {
  140. tv.push_back(*(float *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I64) {
  142. tv.push_back((float)*(int64_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I32) {
  144. tv.push_back((float)*(int32_t *) &buf[i]);
  145. } else if (t->type == GGML_TYPE_I16) {
  146. tv.push_back((float)*(int16_t *) &buf[i]);
  147. } else if (t->type == GGML_TYPE_I8) {
  148. tv.push_back((float)*(int8_t *) &buf[i]);
  149. } else if (quantized) {
  150. tt->to_float(&buf[i], vq.data(), bs);
  151. tv.insert(tv.end(), vq.begin(), vq.end());
  152. } else {
  153. GGML_ABORT("fatal error");
  154. }
  155. }
  156. }
  157. }
  158. }
  159. return tv;
  160. }
  161. // normalized mean squared error = mse(a, b) / mse(a, 0)
  162. static double nmse(const float * a, const float * b, size_t n) {
  163. double mse_a_b = 0.0;
  164. double mse_a_0 = 0.0;
  165. for (size_t i = 0; i < n; i++) {
  166. float a_i = a[i];
  167. float b_i = b[i];
  168. mse_a_b += (a_i - b_i) * (a_i - b_i);
  169. mse_a_0 += a_i * a_i;
  170. }
  171. return mse_a_b / mse_a_0;
  172. }
  173. // maximum absolute asymmetry between a and b
  174. // asymmetry: (a - b) / (a + b)
  175. // This is more stable than relative error if one of the values fluctuates towards zero.
  176. // n: number of values to compare.
  177. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  178. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  179. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  180. double sum = 0.0f;
  181. size_t nvalid = 0;
  182. for (size_t i = 0; i < n; i++) {
  183. if (!expected_vals.empty()) {
  184. bool matches_any = false;
  185. for (const float & ev : expected_vals) {
  186. if (fabsf(a[i] - ev) < 1e-3f) {
  187. matches_any = true;
  188. break;
  189. }
  190. }
  191. if (!matches_any) {
  192. continue;
  193. }
  194. }
  195. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  196. sum += fabsf(asymm);
  197. nvalid++;
  198. }
  199. return sum/nvalid;
  200. }
  201. // utils for printing the variables of the test cases
  202. template<typename T>
  203. static std::string var_to_str(const T & x) {
  204. return std::to_string(x);
  205. }
  206. template<typename T, size_t N>
  207. static std::string var_to_str(const T (&x)[N]) {
  208. std::string s = "[";
  209. for (size_t i = 0; i < N; i++) {
  210. if (i > 0) {
  211. s += ",";
  212. }
  213. s += var_to_str(x[i]);
  214. }
  215. s += "]";
  216. return s;
  217. }
  218. template<typename T, size_t N>
  219. static std::string var_to_str(const std::array<T, N> & x) {
  220. std::string s = "[";
  221. for (size_t i = 0; i < N; i++) {
  222. if (i > 0) {
  223. s += ",";
  224. }
  225. s += var_to_str(x[i]);
  226. }
  227. s += "]";
  228. return s;
  229. }
  230. static std::string var_to_str(ggml_type type) {
  231. return ggml_type_name(type);
  232. }
  233. static std::string var_to_str(ggml_prec prec) {
  234. return prec == GGML_PREC_F32 ? "f32" : "def";
  235. }
  236. static std::string var_to_str(ggml_op_pool pool) {
  237. switch (pool) {
  238. case GGML_OP_POOL_AVG: return "avg";
  239. case GGML_OP_POOL_MAX: return "max";
  240. default: return std::to_string(pool);
  241. }
  242. }
  243. static std::string var_to_str(ggml_scale_mode mode) {
  244. switch (mode) {
  245. case GGML_SCALE_MODE_NEAREST: return "nearest";
  246. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  247. default: return std::to_string(mode);
  248. }
  249. }
  250. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  251. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  252. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  253. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  254. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  255. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  256. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  257. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  258. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  259. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  260. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  261. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  262. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  263. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  264. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  265. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  266. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  267. #ifdef GGML_USE_SYCL
  268. static bool inline _isinf(float f) {
  269. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  270. }
  271. #else
  272. static bool inline _isinf(float f) { return std::isinf(f); }
  273. #endif
  274. // accept FLT_MAX as infinity
  275. static bool isinf_or_max(float f) {
  276. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  277. }
  278. static bool ggml_is_view_op(enum ggml_op op) {
  279. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  280. }
  281. enum test_mode {
  282. MODE_TEST,
  283. MODE_PERF,
  284. MODE_GRAD,
  285. MODE_SUPPORT,
  286. };
  287. // Output format support similar to llama-bench
  288. enum output_formats { CONSOLE, SQL, CSV };
  289. static const char * output_format_str(output_formats format) {
  290. switch (format) {
  291. case CONSOLE:
  292. return "console";
  293. case SQL:
  294. return "sql";
  295. case CSV:
  296. return "csv";
  297. default:
  298. GGML_ABORT("invalid output format");
  299. }
  300. }
  301. static bool output_format_from_str(const std::string & s, output_formats & format) {
  302. if (s == "console") {
  303. format = CONSOLE;
  304. } else if (s == "sql") {
  305. format = SQL;
  306. } else if (s == "csv") {
  307. format = CSV;
  308. } else {
  309. return false;
  310. }
  311. return true;
  312. }
  313. // Test result structure for SQL output
  314. struct test_result {
  315. std::string test_time;
  316. std::string build_commit;
  317. std::string backend_name;
  318. std::string op_name;
  319. std::string op_params;
  320. std::string test_mode;
  321. bool supported;
  322. bool passed;
  323. std::string error_message;
  324. double time_us;
  325. double flops;
  326. double bandwidth_gb_s;
  327. size_t memory_kb;
  328. int n_runs;
  329. std::string device_description;
  330. std::string backend_reg_name;
  331. test_result() {
  332. // Initialize with default values
  333. time_us = 0.0;
  334. flops = 0.0;
  335. bandwidth_gb_s = 0.0;
  336. memory_kb = 0;
  337. n_runs = 0;
  338. supported = false;
  339. passed = false;
  340. // Set test time
  341. time_t t = time(NULL);
  342. char buf[32];
  343. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  344. test_time = buf;
  345. // Set build info
  346. build_commit = ggml_commit();
  347. }
  348. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  349. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  350. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  351. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  352. backend_name(backend_name),
  353. op_name(op_name),
  354. op_params(op_params),
  355. test_mode(test_mode),
  356. supported(supported),
  357. passed(passed),
  358. error_message(error_message),
  359. time_us(time_us),
  360. flops(flops),
  361. bandwidth_gb_s(bandwidth_gb_s),
  362. memory_kb(memory_kb),
  363. n_runs(n_runs),
  364. device_description(device_description),
  365. backend_reg_name(backend_reg_name) {
  366. // Set test time
  367. time_t t = time(NULL);
  368. char buf[32];
  369. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  370. test_time = buf;
  371. // Set build info
  372. build_commit = ggml_commit();
  373. }
  374. static const std::vector<std::string> & get_fields() {
  375. static const std::vector<std::string> fields = {
  376. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  377. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  378. "device_description", "backend_reg_name"
  379. };
  380. return fields;
  381. }
  382. enum field_type { STRING, BOOL, INT, FLOAT };
  383. static field_type get_field_type(const std::string & field) {
  384. if (field == "supported" || field == "passed") {
  385. return BOOL;
  386. }
  387. if (field == "memory_kb" || field == "n_runs") {
  388. return INT;
  389. }
  390. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  391. return FLOAT;
  392. }
  393. return STRING;
  394. }
  395. std::vector<std::string> get_values() const {
  396. return { test_time,
  397. build_commit,
  398. backend_name,
  399. op_name,
  400. op_params,
  401. test_mode,
  402. std::to_string(supported),
  403. std::to_string(passed),
  404. error_message,
  405. std::to_string(time_us),
  406. std::to_string(flops),
  407. std::to_string(bandwidth_gb_s),
  408. std::to_string(memory_kb),
  409. std::to_string(n_runs),
  410. device_description,
  411. backend_reg_name };
  412. }
  413. };
  414. // Printer classes for different output formats
  415. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  416. struct test_operation_info {
  417. std::string op_name;
  418. std::string op_params;
  419. std::string backend_name;
  420. test_status_t status = test_status_t::OK;
  421. std::string failure_reason;
  422. // Additional information fields that were previously in separate structs
  423. std::string error_component;
  424. std::string error_details;
  425. // Gradient info
  426. int64_t gradient_index = -1;
  427. std::string gradient_param_name;
  428. float gradient_value = 0.0f;
  429. // MAA error info
  430. double maa_error = 0.0;
  431. double maa_threshold = 0.0;
  432. // Flags for different types of information
  433. bool has_error = false;
  434. bool has_gradient_info = false;
  435. bool has_maa_error = false;
  436. bool is_compare_failure = false;
  437. bool is_large_tensor_skip = false;
  438. test_operation_info() = default;
  439. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  440. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  441. op_name(op_name),
  442. op_params(op_params),
  443. backend_name(backend_name),
  444. status(status),
  445. failure_reason(failure_reason) {}
  446. // Set error information
  447. void set_error(const std::string & component, const std::string & details) {
  448. has_error = true;
  449. error_component = component;
  450. error_details = details;
  451. if (status == test_status_t::OK) {
  452. status = test_status_t::FAIL;
  453. }
  454. }
  455. // Set gradient information
  456. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  457. has_gradient_info = true;
  458. gradient_index = index;
  459. gradient_param_name = param_name;
  460. gradient_value = value;
  461. if (status == test_status_t::OK) {
  462. status = test_status_t::FAIL;
  463. }
  464. }
  465. // Set MAA error information
  466. void set_maa_error(double error, double threshold) {
  467. has_maa_error = true;
  468. maa_error = error;
  469. maa_threshold = threshold;
  470. if (status == test_status_t::OK) {
  471. status = test_status_t::FAIL;
  472. }
  473. }
  474. // Set compare failure
  475. void set_compare_failure() {
  476. is_compare_failure = true;
  477. if (status == test_status_t::OK) {
  478. status = test_status_t::FAIL;
  479. }
  480. }
  481. // Set large tensor skip
  482. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  483. };
  484. struct test_summary_info {
  485. size_t tests_passed;
  486. size_t tests_total;
  487. bool is_backend_summary = false; // true for backend summary, false for test summary
  488. test_summary_info() = default;
  489. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  490. tests_passed(tests_passed),
  491. tests_total(tests_total),
  492. is_backend_summary(is_backend_summary) {}
  493. };
  494. struct testing_start_info {
  495. size_t device_count;
  496. testing_start_info() = default;
  497. testing_start_info(size_t device_count) : device_count(device_count) {}
  498. };
  499. struct backend_init_info {
  500. size_t device_index;
  501. size_t total_devices;
  502. std::string device_name;
  503. bool skipped = false;
  504. std::string skip_reason;
  505. std::string description;
  506. size_t memory_total_mb = 0;
  507. size_t memory_free_mb = 0;
  508. bool has_memory_info = false;
  509. backend_init_info() = default;
  510. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  511. const std::string & skip_reason = "", const std::string & description = "",
  512. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  513. device_index(device_index),
  514. total_devices(total_devices),
  515. device_name(device_name),
  516. skipped(skipped),
  517. skip_reason(skip_reason),
  518. description(description),
  519. memory_total_mb(memory_total_mb),
  520. memory_free_mb(memory_free_mb),
  521. has_memory_info(has_memory_info) {}
  522. };
  523. struct backend_status_info {
  524. std::string backend_name;
  525. test_status_t status;
  526. backend_status_info() = default;
  527. backend_status_info(const std::string & backend_name, test_status_t status) :
  528. backend_name(backend_name),
  529. status(status) {}
  530. };
  531. struct overall_summary_info {
  532. size_t backends_passed;
  533. size_t backends_total;
  534. bool all_passed;
  535. overall_summary_info() = default;
  536. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  537. backends_passed(backends_passed),
  538. backends_total(backends_total),
  539. all_passed(all_passed) {}
  540. };
  541. struct printer {
  542. virtual ~printer() {}
  543. FILE * fout = stdout;
  544. virtual void print_header() {}
  545. virtual void print_test_result(const test_result & result) = 0;
  546. virtual void print_footer() {}
  547. virtual void print_operation(const test_operation_info & info) { (void) info; }
  548. virtual void print_summary(const test_summary_info & info) { (void) info; }
  549. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  550. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  551. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  552. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  553. };
  554. struct console_printer : public printer {
  555. void print_test_result(const test_result & result) override {
  556. if (result.test_mode == "test") {
  557. print_test_console(result);
  558. } else if (result.test_mode == "perf") {
  559. print_perf_console(result);
  560. } else if (result.test_mode == "support") {
  561. print_support_console(result);
  562. }
  563. }
  564. void print_operation(const test_operation_info & info) override {
  565. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  566. fflush(stdout);
  567. // Handle large tensor skip first
  568. if (info.is_large_tensor_skip) {
  569. printf("skipping large tensors for speed \n");
  570. return;
  571. }
  572. // Handle not supported status
  573. if (info.status == test_status_t::NOT_SUPPORTED) {
  574. if (!info.failure_reason.empty()) {
  575. printf("not supported [%s]\n", info.failure_reason.c_str());
  576. } else {
  577. printf("not supported [%s]\n", info.backend_name.c_str());
  578. }
  579. return;
  580. }
  581. // Handle errors and additional information
  582. if (info.has_error) {
  583. if (info.error_component == "allocation") {
  584. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  585. } else if (info.error_component == "backend") {
  586. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  587. } else {
  588. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  589. }
  590. }
  591. // Handle gradient info
  592. if (info.has_gradient_info) {
  593. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  594. info.gradient_param_name.c_str(), info.gradient_value);
  595. }
  596. // Handle MAA error
  597. if (info.has_maa_error) {
  598. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  599. }
  600. // Handle compare failure
  601. if (info.is_compare_failure) {
  602. printf("compare failed ");
  603. }
  604. // Print final status
  605. if (info.status == test_status_t::OK) {
  606. printf("\033[1;32mOK\033[0m\n");
  607. } else {
  608. printf("\033[1;31mFAIL\033[0m\n");
  609. }
  610. }
  611. void print_summary(const test_summary_info & info) override {
  612. if (info.is_backend_summary) {
  613. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  614. } else {
  615. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  616. }
  617. }
  618. void print_backend_status(const backend_status_info & info) override {
  619. printf(" Backend %s: ", info.backend_name.c_str());
  620. if (info.status == test_status_t::OK) {
  621. printf("\033[1;32mOK\033[0m\n");
  622. } else {
  623. printf("\033[1;31mFAIL\033[0m\n");
  624. }
  625. }
  626. void print_testing_start(const testing_start_info & info) override {
  627. printf("Testing %zu devices\n\n", info.device_count);
  628. }
  629. void print_backend_init(const backend_init_info & info) override {
  630. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  631. if (info.skipped) {
  632. printf(" %s\n", info.skip_reason.c_str());
  633. return;
  634. }
  635. if (!info.description.empty()) {
  636. printf(" Device description: %s\n", info.description.c_str());
  637. }
  638. if (info.has_memory_info) {
  639. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  640. }
  641. printf("\n");
  642. }
  643. void print_overall_summary(const overall_summary_info & info) override {
  644. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  645. if (info.all_passed) {
  646. printf("\033[1;32mOK\033[0m\n");
  647. } else {
  648. printf("\033[1;31mFAIL\033[0m\n");
  649. }
  650. }
  651. private:
  652. void print_test_console(const test_result & result) {
  653. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  654. fflush(stdout);
  655. if (!result.supported) {
  656. printf("not supported [%s] ", result.backend_name.c_str());
  657. printf("\n");
  658. return;
  659. }
  660. if (result.passed) {
  661. printf("\033[1;32mOK\033[0m\n");
  662. } else {
  663. printf("\033[1;31mFAIL\033[0m\n");
  664. }
  665. }
  666. void print_perf_console(const test_result & result) {
  667. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  668. fflush(stdout);
  669. if (!result.supported) {
  670. printf("not supported\n");
  671. return;
  672. }
  673. // align while also leaving some margin for variations in parameters
  674. int align = 8;
  675. int last = (len + align - 1) / align * align;
  676. if (last - len < 5) {
  677. last += align;
  678. }
  679. printf("%*s", last - len, "");
  680. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  681. if (result.flops > 0) {
  682. auto format_flops = [](double flops) -> std::string {
  683. char buf[256];
  684. if (flops >= 1e12) {
  685. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  686. } else if (flops >= 1e9) {
  687. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  688. } else if (flops >= 1e6) {
  689. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  690. } else {
  691. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  692. }
  693. return buf;
  694. };
  695. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  696. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  697. format_flops(result.flops).c_str());
  698. } else {
  699. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  700. }
  701. printf("\n");
  702. }
  703. void print_support_console(const test_result & result) {
  704. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  705. fflush(stdout);
  706. if (result.supported) {
  707. printf("\033[1;32mSUPPORTED\033[0m\n");
  708. } else {
  709. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  710. }
  711. }
  712. };
  713. struct sql_printer : public printer {
  714. static std::string get_sql_field_type(const std::string & field) {
  715. switch (test_result::get_field_type(field)) {
  716. case test_result::STRING:
  717. return "TEXT";
  718. case test_result::BOOL:
  719. case test_result::INT:
  720. return "INTEGER";
  721. case test_result::FLOAT:
  722. return "REAL";
  723. default:
  724. GGML_ABORT("invalid field type");
  725. }
  726. }
  727. void print_header() override {
  728. std::vector<std::string> fields = test_result::get_fields();
  729. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  730. for (size_t i = 0; i < fields.size(); i++) {
  731. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  732. i < fields.size() - 1 ? "," : "");
  733. }
  734. fprintf(fout, ");\n\n");
  735. }
  736. void print_test_result(const test_result & result) override {
  737. fprintf(fout, "INSERT INTO test_backend_ops (");
  738. std::vector<std::string> fields = test_result::get_fields();
  739. for (size_t i = 0; i < fields.size(); i++) {
  740. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  741. }
  742. fprintf(fout, ") VALUES (");
  743. std::vector<std::string> values = result.get_values();
  744. for (size_t i = 0; i < values.size(); i++) {
  745. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  746. }
  747. fprintf(fout, ");\n");
  748. }
  749. };
  750. struct csv_printer : public printer {
  751. void print_header() override {
  752. std::vector<std::string> fields = test_result::get_fields();
  753. std::vector<std::string> fields_csv = get_fields_csv();
  754. for (size_t i = 0; i < fields.size(); i++) {
  755. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  756. continue;
  757. }
  758. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  759. }
  760. printf("\n");
  761. }
  762. void print_test_result(const test_result & result) override {
  763. std::vector<std::string> values = result.get_values();
  764. std::vector<std::string> fields = test_result::get_fields();
  765. std::vector<std::string> fields_csv = get_fields_csv();
  766. for (size_t i = 0; i < values.size(); i++) {
  767. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  768. continue;
  769. }
  770. // Escape quotes and wrap in quotes for CSV
  771. std::string escaped_value = values[i];
  772. size_t pos = 0;
  773. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  774. escaped_value.replace(pos, 1, "\"\"");
  775. pos += 2;
  776. }
  777. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  778. }
  779. printf("\n");
  780. }
  781. static std::vector<std::string> get_fields_csv() {
  782. return {
  783. "op_name",
  784. "op_params",
  785. "supported",
  786. "error_message",
  787. "test_mode",
  788. "backend_reg_name",
  789. "backend_name",
  790. };
  791. }
  792. };
  793. static std::unique_ptr<printer> create_printer(output_formats format) {
  794. switch (format) {
  795. case CONSOLE:
  796. return std::make_unique<console_printer>();
  797. case SQL:
  798. return std::make_unique<sql_printer>();
  799. case CSV:
  800. return std::make_unique<csv_printer>();
  801. }
  802. GGML_ABORT("invalid output format");
  803. }
  804. struct test_case {
  805. virtual ~test_case() {}
  806. virtual std::string op_desc(ggml_tensor * t) {
  807. return ggml_op_desc(t);
  808. }
  809. virtual std::string vars() {
  810. return "";
  811. }
  812. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  813. virtual double max_nmse_err() {
  814. return 1e-7;
  815. }
  816. virtual double max_maa_err() {
  817. return 1e-4;
  818. }
  819. virtual float grad_eps() {
  820. return 1e-1f;
  821. }
  822. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  823. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  824. virtual bool grad_precise() {
  825. return false;
  826. }
  827. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  828. virtual int64_t grad_nmax() {
  829. return 10000;
  830. }
  831. // No effect if empty.
  832. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  833. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  834. virtual std::vector<float> grad_expect() {
  835. return {};
  836. }
  837. virtual void initialize_tensors(ggml_context * ctx) {
  838. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  839. init_tensor_uniform(t);
  840. }
  841. }
  842. virtual size_t op_size(ggml_tensor * t) {
  843. size_t size = ggml_nbytes(t);
  844. // add source tensors
  845. for (int i = 0; i < GGML_MAX_SRC; i++) {
  846. if (t->src[i] != NULL) {
  847. size += ggml_nbytes(t->src[i]);
  848. }
  849. }
  850. return size;
  851. }
  852. virtual uint64_t op_flops(ggml_tensor * t) {
  853. GGML_UNUSED(t);
  854. return 0;
  855. }
  856. virtual bool run_whole_graph() { return false; }
  857. ggml_cgraph * gf = nullptr;
  858. ggml_cgraph * gb = nullptr;
  859. static const int sentinel_size = 1024;
  860. test_mode mode;
  861. std::vector<ggml_tensor *> sentinels;
  862. void add_sentinel(ggml_context * ctx) {
  863. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  864. return;
  865. }
  866. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  867. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  868. sentinels.push_back(sentinel);
  869. }
  870. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  871. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  872. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  873. add_sentinel(ctx);
  874. return t;
  875. }
  876. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  877. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  878. add_sentinel(ctx);
  879. return t;
  880. }
  881. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  882. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  883. add_sentinel(ctx);
  884. return t;
  885. }
  886. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  887. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  888. add_sentinel(ctx);
  889. return t;
  890. }
  891. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  892. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  893. add_sentinel(ctx);
  894. return t;
  895. }
  896. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  897. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  898. if (op_names_filter) {
  899. const auto op_name = op_desc(op);
  900. const auto op_full_name = op_name + "(" + vars() + ")";
  901. std::string_view filter(op_names_filter);
  902. while (!filter.empty()) {
  903. auto comma_pos = filter.find_first_of(',');
  904. const auto lparen_pos = filter.find_first_of('(');
  905. if (lparen_pos < comma_pos) {
  906. auto rparen_pos = filter.find_first_of(')');
  907. comma_pos = filter.find_first_of(',', rparen_pos);
  908. const auto op_filter = filter.substr(0, comma_pos);
  909. if (op_filter == op_full_name) {
  910. return true;
  911. }
  912. } else {
  913. const auto op_filter = filter.substr(0, comma_pos);
  914. if (op_filter == op_name) {
  915. return true;
  916. }
  917. }
  918. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  919. }
  920. return false;
  921. } else {
  922. return true;
  923. }
  924. }
  925. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_names_filter, printer * output_printer) {
  926. mode = MODE_TEST;
  927. ggml_init_params params = {
  928. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  929. /* .mem_base = */ NULL,
  930. /* .no_alloc = */ true,
  931. };
  932. ggml_context * ctx = ggml_init(params);
  933. GGML_ASSERT(ctx);
  934. gf = ggml_new_graph(ctx);
  935. // pre-graph sentinel
  936. add_sentinel(ctx);
  937. ggml_tensor * out = build_graph(ctx);
  938. std::string current_op_name = op_desc(out);
  939. if (!matches_filter(out, op_names_filter)) {
  940. //printf(" %s: skipping\n", op_desc(out).c_str());
  941. ggml_free(ctx);
  942. return true;
  943. }
  944. // check if the backends support the ops
  945. bool supported = true;
  946. for (ggml_backend_t backend : {backend1, backend2}) {
  947. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  948. if (!ggml_backend_supports_op(backend, t)) {
  949. supported = false;
  950. break;
  951. }
  952. }
  953. }
  954. if (!supported) {
  955. // Create test result for unsupported operation
  956. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  957. false, false, "not supported");
  958. if (output_printer) {
  959. output_printer->print_test_result(result);
  960. }
  961. ggml_free(ctx);
  962. return true;
  963. }
  964. // post-graph sentinel
  965. add_sentinel(ctx);
  966. // allocate
  967. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  968. if (buf == NULL) {
  969. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  970. ggml_free(ctx);
  971. return false;
  972. }
  973. // build graph
  974. ggml_build_forward_expand(gf, out);
  975. // add sentinels as graph nodes so that they are checked in the callback
  976. for (ggml_tensor * sentinel : sentinels) {
  977. ggml_graph_add_node(gf, sentinel);
  978. }
  979. // randomize tensors
  980. initialize_tensors(ctx);
  981. // compare
  982. struct callback_userdata {
  983. bool ok;
  984. double max_err;
  985. ggml_backend_t backend1;
  986. ggml_backend_t backend2;
  987. };
  988. callback_userdata ud {
  989. true,
  990. max_nmse_err(),
  991. backend1,
  992. backend2
  993. };
  994. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  995. callback_userdata * ud = (callback_userdata *) user_data;
  996. const char * bn1 = ggml_backend_name(ud->backend1);
  997. const char * bn2 = ggml_backend_name(ud->backend2);
  998. if (t1->op == GGML_OP_NONE) {
  999. // sentinels must be unchanged
  1000. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1001. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1002. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1003. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1004. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1005. printf("sentinel mismatch: %s ", t1->name);
  1006. ud->ok = false;
  1007. return true;
  1008. }
  1009. }
  1010. std::vector<float> f1 = tensor_to_float(t1);
  1011. std::vector<float> f2 = tensor_to_float(t2);
  1012. for (size_t i = 0; i < f1.size(); i++) {
  1013. // check for nans
  1014. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1015. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1016. ud->ok = false;
  1017. return true;
  1018. }
  1019. // check for infs: both must be inf of the same sign, or both must be finite
  1020. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1021. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1022. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1023. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1024. ud->ok = false;
  1025. return true;
  1026. }
  1027. } else {
  1028. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1029. ud->ok = false;
  1030. return true;
  1031. }
  1032. }
  1033. }
  1034. double err = nmse(f1.data(), f2.data(), f1.size());
  1035. if (err > ud->max_err) {
  1036. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1037. //for (int i = 0; i < (int) f1.size(); i++) {
  1038. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1039. //}
  1040. //printf("\n");
  1041. //exit(1);
  1042. ud->ok = false;
  1043. }
  1044. return true;
  1045. GGML_UNUSED(index);
  1046. };
  1047. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1048. ggml_backend_buffer_free(buf);
  1049. ggml_free(ctx);
  1050. // Create test result
  1051. bool test_passed = ud.ok && cmp_ok;
  1052. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1053. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1054. error_msg);
  1055. if (output_printer) {
  1056. output_printer->print_test_result(result);
  1057. }
  1058. return test_passed;
  1059. }
  1060. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1061. mode = MODE_PERF;
  1062. static const size_t graph_nodes = 8192;
  1063. ggml_init_params params = {
  1064. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1065. /* .mem_base = */ NULL,
  1066. /* .no_alloc = */ true,
  1067. };
  1068. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1069. GGML_ASSERT(ctx);
  1070. ggml_tensor * out = build_graph(ctx.get());
  1071. std::string current_op_name = op_desc(out);
  1072. if (!matches_filter(out, op_names_filter)) {
  1073. //printf(" %s: skipping\n", op_desc(out).c_str());
  1074. return true;
  1075. }
  1076. if (!ggml_backend_supports_op(backend, out)) {
  1077. // Create test result for unsupported performance test
  1078. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1079. "not supported");
  1080. output_printer->print_test_result(result);
  1081. return true;
  1082. }
  1083. // allocate
  1084. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1085. if (buf == NULL) {
  1086. printf("failed to allocate tensors\n");
  1087. return false;
  1088. }
  1089. // randomize tensors
  1090. initialize_tensors(ctx.get());
  1091. // build graph
  1092. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1093. ggml_build_forward_expand(gf, out);
  1094. // warmup run
  1095. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1096. if (status != GGML_STATUS_SUCCESS) {
  1097. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1098. return false;
  1099. }
  1100. // determine number of runs
  1101. int n_runs;
  1102. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1103. if (op_flops(out) > 0) {
  1104. // based on flops
  1105. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1106. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1107. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1108. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1109. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1110. } else {
  1111. // based on memory size
  1112. const size_t GB = 1ULL << 30;
  1113. const size_t target_size_cpu = 8 * GB;
  1114. const size_t target_size_gpu = 32 * GB;
  1115. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1116. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1117. }
  1118. // duplicate the op
  1119. for (int i = 1; i < n_runs; i++) {
  1120. ggml_graph_add_node(gf, out);
  1121. }
  1122. // calculate memory
  1123. size_t mem = n_runs * op_size(out);
  1124. auto tensor_op_size = [](ggml_tensor * t) {
  1125. size_t size = ggml_nbytes(t);
  1126. // add source tensors
  1127. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1128. if (t->src[i] != NULL) {
  1129. size += ggml_nbytes(t->src[i]);
  1130. }
  1131. }
  1132. return size;
  1133. };
  1134. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1135. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1136. continue;
  1137. }
  1138. mem += tensor_op_size(ggml_graph_node(gf, i));
  1139. }
  1140. // run
  1141. int64_t total_time_us = 0;
  1142. int64_t total_mem = 0;
  1143. int total_runs = 0;
  1144. do {
  1145. int64_t start_time = ggml_time_us();
  1146. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1147. if (status != GGML_STATUS_SUCCESS) {
  1148. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1149. return false;
  1150. }
  1151. int64_t end_time = ggml_time_us();
  1152. total_time_us += end_time - start_time;
  1153. total_mem += mem;
  1154. total_runs += n_runs;
  1155. } while (total_time_us < 1000*1000); // run for at least 1 second
  1156. // Create test result
  1157. double avg_time_us = (double) total_time_us / total_runs;
  1158. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1159. double calculated_bandwidth =
  1160. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1161. size_t calculated_memory_kb = op_size(out) / 1024;
  1162. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1163. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1164. if (output_printer) {
  1165. output_printer->print_test_result(result);
  1166. }
  1167. return true;
  1168. }
  1169. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1170. mode = MODE_SUPPORT;
  1171. static const size_t graph_nodes = 8192;
  1172. ggml_init_params params = {
  1173. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1174. /* .mem_base = */ NULL,
  1175. /* .no_alloc = */ true,
  1176. };
  1177. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1178. GGML_ASSERT(ctx);
  1179. ggml_tensor * out = build_graph(ctx.get());
  1180. std::string current_op_name = op_desc(out);
  1181. if (!matches_filter(out, op_names_filter)) {
  1182. return true;
  1183. }
  1184. bool supported = ggml_backend_supports_op(backend, out);
  1185. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1186. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1187. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1188. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1189. output_printer->print_test_result(result);
  1190. return true;
  1191. }
  1192. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1193. mode = MODE_GRAD;
  1194. const std::vector<float> expect = grad_expect();
  1195. ggml_init_params params = {
  1196. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1197. /* .mem_base = */ NULL,
  1198. /* .no_alloc = */ true,
  1199. };
  1200. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1201. GGML_ASSERT(ctx);
  1202. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1203. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1204. ggml_tensor * out = build_graph(ctx.get());
  1205. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1206. return true;
  1207. }
  1208. if (out->type != GGML_TYPE_F32) {
  1209. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1210. test_status_t::NOT_SUPPORTED,
  1211. out->name + std::string("->type != FP32")));
  1212. return true;
  1213. }
  1214. // Print operation info first
  1215. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1216. // check if the backend supports the ops
  1217. bool supported = true;
  1218. bool any_params = false;
  1219. std::string failure_reason;
  1220. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1221. if (!ggml_backend_supports_op(backend, t)) {
  1222. supported = false;
  1223. failure_reason = ggml_backend_name(backend);
  1224. break;
  1225. }
  1226. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1227. any_params = true;
  1228. if (t->type != GGML_TYPE_F32) {
  1229. supported = false;
  1230. failure_reason = std::string(t->name) + "->type != FP32";
  1231. break;
  1232. }
  1233. }
  1234. }
  1235. if (!any_params) {
  1236. supported = false;
  1237. failure_reason = op_desc(out);
  1238. }
  1239. if (!supported) {
  1240. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1241. test_status_t::NOT_SUPPORTED, failure_reason));
  1242. return true;
  1243. }
  1244. int64_t ngrads = 0;
  1245. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1246. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1247. ngrads += ggml_nelements(t);
  1248. }
  1249. }
  1250. if (ngrads > grad_nmax()) {
  1251. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1252. info.set_large_tensor_skip();
  1253. output_printer->print_operation(info);
  1254. return true;
  1255. }
  1256. if (!ggml_is_scalar(out)) {
  1257. out = ggml_sum(ctx.get(), out);
  1258. ggml_set_name(out, "sum_of_out");
  1259. }
  1260. ggml_set_loss(out);
  1261. ggml_build_forward_expand(gf, out);
  1262. ggml_graph_cpy(gf, gb);
  1263. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1264. if (expect.size() != 1 || expect[0] != 0.0f) {
  1265. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1266. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1267. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1268. }
  1269. }
  1270. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1271. if (!ggml_backend_supports_op(backend, t)) {
  1272. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1273. test_status_t::NOT_SUPPORTED,
  1274. ggml_backend_name(backend)));
  1275. supported = false;
  1276. break;
  1277. }
  1278. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1279. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1280. test_status_t::NOT_SUPPORTED,
  1281. std::string(t->name) + "->type != FP32"));
  1282. supported = false;
  1283. break;
  1284. }
  1285. }
  1286. if (!supported) {
  1287. return true;
  1288. }
  1289. // allocate
  1290. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1291. if (buf == NULL) {
  1292. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1293. info.set_error("allocation", "");
  1294. output_printer->print_operation(info);
  1295. return false;
  1296. }
  1297. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1298. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1299. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1300. if (status != GGML_STATUS_SUCCESS) {
  1301. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1302. return false;
  1303. }
  1304. status = ggml_backend_graph_compute(backend, gb);
  1305. if (status != GGML_STATUS_SUCCESS) {
  1306. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1307. return false;
  1308. }
  1309. bool ok = true;
  1310. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1311. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1312. continue;
  1313. }
  1314. const char * bn = ggml_backend_name(backend);
  1315. const int64_t ne = ggml_nelements(t);
  1316. std::vector<float> ga;
  1317. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1318. if (grad) {
  1319. ga = tensor_to_float(grad);
  1320. } else {
  1321. ga.resize(ne); // default value is 0.0f
  1322. }
  1323. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1324. // check for nans
  1325. if (!std::isfinite(ga[i])) {
  1326. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1327. info.set_gradient_info(i, bn, ga[i]);
  1328. output_printer->print_operation(info);
  1329. ok = false;
  1330. break;
  1331. }
  1332. }
  1333. if (!ok) {
  1334. break;
  1335. }
  1336. std::vector<float> gn(ne); // gradient numeric
  1337. GGML_ASSERT(ga.size() == gn.size());
  1338. std::vector<float> x0 = tensor_to_float(t); // original t data
  1339. GGML_ASSERT(ggml_is_scalar(out));
  1340. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1341. const float eps = grad_eps();
  1342. for (int64_t i = 0; i < ne; ++i) {
  1343. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1344. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1345. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1346. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1347. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1348. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1349. status = ggml_backend_graph_compute(backend, gf);
  1350. if (status != GGML_STATUS_SUCCESS) {
  1351. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1352. return false;
  1353. }
  1354. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1355. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1356. status = ggml_backend_graph_compute(backend, gf);
  1357. if (status != GGML_STATUS_SUCCESS) {
  1358. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1359. return false;
  1360. }
  1361. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1362. if (grad_precise()) {
  1363. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1364. status = ggml_backend_graph_compute(backend, gf);
  1365. if (status != GGML_STATUS_SUCCESS) {
  1366. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1367. return false;
  1368. }
  1369. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1370. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1371. status = ggml_backend_graph_compute(backend, gf);
  1372. if (status != GGML_STATUS_SUCCESS) {
  1373. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1374. return false;
  1375. }
  1376. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1377. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1378. } else {
  1379. gn[i] = (fu - fd) / (2.0f*eps);
  1380. }
  1381. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1382. }
  1383. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1384. if (err > max_maa_err()) {
  1385. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1386. info.set_maa_error(err, max_maa_err());
  1387. output_printer->print_operation(info);
  1388. ok = false;
  1389. break;
  1390. }
  1391. if (!ok) {
  1392. break;
  1393. }
  1394. }
  1395. // Create final test result
  1396. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1397. if (!ok) {
  1398. final_info.set_compare_failure();
  1399. }
  1400. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1401. output_printer->print_operation(final_info);
  1402. if (ok) {
  1403. return true;
  1404. }
  1405. return false;
  1406. }
  1407. };
  1408. // ###################################
  1409. // ## Section 2: GGML Op Defintions ##
  1410. // ###################################
  1411. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1412. // GGML_OP_EXAMPLE
  1413. struct test_example : public test_case {
  1414. // Always define these 2 or variants thereof:
  1415. const ggml_type type; // The type of the input tensors.
  1416. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1417. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1418. // Or they may need additional parameters.
  1419. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1420. // In most cases these are just the properties of the struct that you defined above.
  1421. // This is needed for info prints.
  1422. std::string vars() override {
  1423. return VARS_TO_STR2(type, ne);
  1424. }
  1425. // Define a constructor for the struct.
  1426. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1427. // and just use initializer lists.
  1428. test_example(ggml_type type = GGML_TYPE_F32,
  1429. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1430. : type(type), ne(ne) {}
  1431. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1432. ggml_tensor * build_graph(ggml_context * ctx) override {
  1433. // Step 1: create input tensors that don't depend on any other tensors:
  1434. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1435. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1436. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1437. ggml_set_name(b, "b");
  1438. // Step 2: use the op that you want to test in the GGML compute graph.
  1439. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1440. ggml_set_name(out, "out");
  1441. // Step 3: return the output tensor.
  1442. return out;
  1443. }
  1444. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1445. // immediately after you create the tensors.
  1446. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1447. };
  1448. // GGML_OP_UNARY
  1449. struct test_unary : public test_case {
  1450. const ggml_unary_op op;
  1451. const ggml_type type;
  1452. const std::array<int64_t, 4> ne_a;
  1453. int v; // view (1 : non-contiguous a)
  1454. std::string vars() override {
  1455. return VARS_TO_STR3(type, ne_a, v);
  1456. }
  1457. test_unary(ggml_unary_op op,
  1458. ggml_type type = GGML_TYPE_F32,
  1459. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1460. int v = 0)
  1461. : op(op), type(type), ne_a(ne_a), v(v) {}
  1462. ggml_tensor * build_graph(ggml_context * ctx) override {
  1463. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1464. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1465. ggml_tensor * a;
  1466. if (v & 1) {
  1467. auto ne = ne_a; ne[0] *= 3;
  1468. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1469. if (grad_supported) {
  1470. ggml_set_param(a);
  1471. }
  1472. ggml_set_name(a, "a");
  1473. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1474. ggml_set_name(a, "view_of_a");
  1475. } else {
  1476. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1477. if (grad_supported) {
  1478. ggml_set_param(a);
  1479. }
  1480. ggml_set_name(a, "a");
  1481. }
  1482. ggml_tensor * out = ggml_unary(ctx, a, op);
  1483. ggml_set_name(out, "out");
  1484. return out;
  1485. }
  1486. void initialize_tensors(ggml_context * ctx) override {
  1487. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1488. // test extended range of values to check for NaNs in GELU
  1489. init_tensor_uniform(t, -150.f, 150.f);
  1490. }
  1491. }
  1492. float grad_eps() override {
  1493. return 15.0f;
  1494. }
  1495. std::vector<float> grad_expect() override {
  1496. if (op == GGML_UNARY_OP_ABS) {
  1497. return {-1.0f, 1.0f};
  1498. }
  1499. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1500. return {0.0f};
  1501. }
  1502. if (op == GGML_UNARY_OP_RELU) {
  1503. return {0.0f, 1.0f};
  1504. }
  1505. return {};
  1506. }
  1507. };
  1508. // GGML_OP_GLU
  1509. struct test_glu : public test_case {
  1510. const ggml_glu_op op;
  1511. const ggml_type type;
  1512. const std::array<int64_t, 4> ne_a;
  1513. int v; // view (1 : non-contiguous a)
  1514. bool swapped;
  1515. std::string vars() override {
  1516. return VARS_TO_STR4(type, ne_a, v, swapped);
  1517. }
  1518. test_glu(ggml_glu_op op,
  1519. ggml_type type = GGML_TYPE_F32,
  1520. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1521. int v = 0,
  1522. bool swapped = false)
  1523. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1524. ggml_tensor * build_graph(ggml_context * ctx) override {
  1525. ggml_tensor * a;
  1526. if (v & 1) {
  1527. auto ne = ne_a; ne[0] *= 3;
  1528. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1529. ggml_set_name(a, "a");
  1530. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1531. ggml_set_name(a, "view_of_a");
  1532. } else {
  1533. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1534. ggml_set_name(a, "a");
  1535. }
  1536. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1537. ggml_set_name(out, "out");
  1538. return out;
  1539. }
  1540. void initialize_tensors(ggml_context * ctx) override {
  1541. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1542. // test extended range of values to check for NaNs in GELU
  1543. init_tensor_uniform(t, -150.f, 150.f);
  1544. }
  1545. }
  1546. };
  1547. struct test_glu_split : public test_case {
  1548. const ggml_glu_op op;
  1549. const ggml_type type;
  1550. const std::array<int64_t, 4> ne_a;
  1551. int v; // view (1 : non-contiguous a)
  1552. std::string vars() override {
  1553. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1554. }
  1555. test_glu_split(ggml_glu_op op,
  1556. ggml_type type = GGML_TYPE_F32,
  1557. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1558. int v = 0)
  1559. : op(op), type(type), ne_a(ne_a), v(v) {}
  1560. ggml_tensor * build_graph(ggml_context * ctx) override {
  1561. ggml_tensor * a;
  1562. ggml_tensor * b;
  1563. if (v & 1) {
  1564. auto ne = ne_a; ne[0] *= 3;
  1565. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1566. ggml_set_param(a);
  1567. ggml_set_name(a, "a");
  1568. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1569. ggml_set_name(a, "view_of_a");
  1570. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1571. ggml_set_param(b);
  1572. ggml_set_name(b, "b");
  1573. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1574. ggml_set_name(a, "view_of_b");
  1575. } else {
  1576. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1577. ggml_set_param(a);
  1578. ggml_set_name(a, "a");
  1579. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1580. ggml_set_param(b);
  1581. ggml_set_name(b, "b");
  1582. }
  1583. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1584. ggml_set_name(out, "out");
  1585. return out;
  1586. }
  1587. void initialize_tensors(ggml_context * ctx) override {
  1588. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1589. // test extended range of values to check for NaNs in GELU
  1590. init_tensor_uniform(t, -150.f, 150.f);
  1591. }
  1592. }
  1593. };
  1594. struct test_swiglu_oai : public test_case {
  1595. const ggml_type type;
  1596. const std::array<int64_t, 4> ne_a;
  1597. int v; // view (1 : non-contiguous a)
  1598. float alpha;
  1599. float limit;
  1600. std::string vars() override {
  1601. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1602. }
  1603. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1604. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1605. int v = 0,
  1606. float alpha = 1.702f,
  1607. float limit = 7.0f)
  1608. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1609. ggml_tensor * build_graph(ggml_context * ctx) override {
  1610. ggml_tensor * a;
  1611. ggml_tensor * b;
  1612. if (v & 1) {
  1613. auto ne = ne_a; ne[0] *= 3;
  1614. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1615. ggml_set_param(a);
  1616. ggml_set_name(a, "a");
  1617. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1618. ggml_set_name(a, "view_of_a");
  1619. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1620. ggml_set_param(b);
  1621. ggml_set_name(b, "b");
  1622. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1623. ggml_set_name(a, "view_of_b");
  1624. } else {
  1625. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1626. ggml_set_param(a);
  1627. ggml_set_name(a, "a");
  1628. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1629. ggml_set_param(b);
  1630. ggml_set_name(b, "b");
  1631. }
  1632. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1633. ggml_set_name(out, "out");
  1634. return out;
  1635. }
  1636. void initialize_tensors(ggml_context * ctx) override {
  1637. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1638. // test extended range of values to check for NaNs in GELU
  1639. init_tensor_uniform(t, -150.f, 150.f);
  1640. }
  1641. }
  1642. };
  1643. // GGML_OP_GET_ROWS
  1644. struct test_get_rows : public test_case {
  1645. const ggml_type type;
  1646. const int n; // cols
  1647. const int m; // rows
  1648. const int r; // rows to get
  1649. const int be1; // batch size
  1650. const int be2; // batch size
  1651. const bool v; // view (non-contiguous src1)
  1652. std::string vars() override {
  1653. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1654. }
  1655. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1656. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1657. ggml_tensor * build_graph(ggml_context * ctx) override {
  1658. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1659. ggml_set_name(in, "in");
  1660. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1661. ggml_set_name(rows, "rows");
  1662. if (v) {
  1663. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1664. ggml_set_name(rows, "view_of_rows");
  1665. }
  1666. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1667. if (grad_supported) {
  1668. ggml_set_param(in);
  1669. // rows is a constant input -> no gradients
  1670. }
  1671. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1672. ggml_set_name(out, "out");
  1673. return out;
  1674. }
  1675. void initialize_tensors(ggml_context * ctx) override {
  1676. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1677. if (t->type == GGML_TYPE_I32) {
  1678. if (ggml_is_view_op(t->op)) { continue; }
  1679. // rows
  1680. std::vector<int> data(r*be1*be2);
  1681. for (int i = 0; i < r*be1*be2; i++) {
  1682. data[i] = rand() % m;
  1683. }
  1684. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1685. } else {
  1686. init_tensor_uniform(t);
  1687. }
  1688. }
  1689. }
  1690. };
  1691. // GGML_OP_GET_ROWS_BACK
  1692. struct test_get_rows_back : public test_case {
  1693. const ggml_type type;
  1694. const int n; // cols
  1695. const int m; // rows
  1696. const int r; // rows to get
  1697. const int b; // batch size
  1698. const bool v; // view (non-contiguous src1)
  1699. std::string vars() override {
  1700. return VARS_TO_STR6(type, n, m, r, b, v);
  1701. }
  1702. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1703. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1704. ggml_tensor * build_graph(ggml_context * ctx) override {
  1705. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1706. ggml_set_name(in_forward, "in_forward");
  1707. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1708. ggml_set_name(rows, "rows");
  1709. if (v) {
  1710. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1711. ggml_set_name(rows, "view_of_rows");
  1712. }
  1713. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1714. ggml_set_name(grad, "grad");
  1715. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1716. ggml_set_name(out, "out");
  1717. return out;
  1718. }
  1719. void initialize_tensors(ggml_context * ctx) override {
  1720. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1721. if (t->type == GGML_TYPE_I32) {
  1722. if (ggml_is_view_op(t->op)) { continue; }
  1723. // rows
  1724. std::vector<int> data(r*b);
  1725. for (int i = 0; i < r*b; i++) {
  1726. data[i] = rand() % m;
  1727. }
  1728. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1729. } else {
  1730. init_tensor_uniform(t);
  1731. }
  1732. }
  1733. }
  1734. };
  1735. // GGML_OP_SET_ROWS
  1736. struct test_set_rows : public test_case {
  1737. const ggml_type type;
  1738. const std::array<int64_t, 4> ne;
  1739. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1740. const int r; // rows to set
  1741. const bool v; // view (non-contiguous src1)
  1742. std::string vars() override {
  1743. return VARS_TO_STR5(type, ne, nr23, r, v);
  1744. }
  1745. test_set_rows(ggml_type type,
  1746. std::array<int64_t, 4> ne,
  1747. std::array<int, 2> nr23,
  1748. int r, bool v = false)
  1749. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1750. ggml_tensor * build_graph(ggml_context * ctx) override {
  1751. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1752. ggml_set_name(dst, "dst");
  1753. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1754. ggml_set_name(src, "src");
  1755. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1756. ggml_set_name(row_idxs, "row_idxs");
  1757. if (v) {
  1758. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1759. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1760. ggml_set_name(row_idxs, "view_of_rows");
  1761. }
  1762. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1763. ggml_set_name(out, "out");
  1764. return out;
  1765. }
  1766. void initialize_tensors(ggml_context * ctx) override {
  1767. std::random_device rd;
  1768. std::default_random_engine rng(rd());
  1769. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1770. if (t->type == GGML_TYPE_I64) {
  1771. if (ggml_is_view_op(t->op)) {
  1772. continue;
  1773. }
  1774. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1775. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1776. // generate a shuffled subset of row indices
  1777. std::vector<int64_t> data(ne[1]);
  1778. for (int i = 0; i < ne[1]; i++) {
  1779. data[i] = i;
  1780. }
  1781. std::shuffle(data.begin(), data.end(), rng);
  1782. data.resize(t->ne[0]);
  1783. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1784. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1785. }
  1786. }
  1787. } else {
  1788. init_tensor_uniform(t);
  1789. }
  1790. }
  1791. }
  1792. };
  1793. // GGML_OP_ARGMAX
  1794. struct test_argmax : public test_case {
  1795. const ggml_type type;
  1796. const std::array<int64_t, 4> ne;
  1797. std::string vars() override {
  1798. return VARS_TO_STR2(type, ne);
  1799. }
  1800. test_argmax(ggml_type type = GGML_TYPE_F32,
  1801. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1802. : type(type), ne(ne) {}
  1803. ggml_tensor * build_graph(ggml_context * ctx) override {
  1804. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1805. ggml_set_name(a, "a");
  1806. ggml_tensor * out = ggml_argmax(ctx, a);
  1807. ggml_set_name(out, "out");
  1808. return out;
  1809. }
  1810. void initialize_tensors(ggml_context * ctx) override {
  1811. std::random_device rd;
  1812. std::default_random_engine rng(rd());
  1813. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1814. if (t->type == GGML_TYPE_F32) {
  1815. // initialize with unique values to avoid ties
  1816. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1817. std::vector<float> data(t->ne[0]);
  1818. for (int i = 0; i < t->ne[0]; i++) {
  1819. data[i] = i;
  1820. }
  1821. std::shuffle(data.begin(), data.end(), rng);
  1822. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1823. }
  1824. } else {
  1825. init_tensor_uniform(t);
  1826. }
  1827. }
  1828. }
  1829. double max_nmse_err() override {
  1830. return 0.0;
  1831. }
  1832. };
  1833. // GGML_OP_COUNT_EQUAL
  1834. struct test_count_equal : public test_case {
  1835. const ggml_type type;
  1836. const std::array<int64_t, 4> ne;
  1837. std::string vars() override {
  1838. return VARS_TO_STR2(type, ne);
  1839. }
  1840. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1841. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1842. : type(type), ne(ne) {}
  1843. ggml_tensor * build_graph(ggml_context * ctx) override {
  1844. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1845. ggml_set_name(a, "a");
  1846. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1847. ggml_set_name(a_argmax, "a_argmax");
  1848. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1849. ggml_set_name(b, "b");
  1850. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1851. ggml_set_name(b_argmax, "b_argmax");
  1852. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1853. ggml_set_name(out, "out");
  1854. return out;
  1855. }
  1856. double max_nmse_err() override {
  1857. return 0.0;
  1858. }
  1859. void initialize_tensors(ggml_context * ctx) override {
  1860. std::random_device rd;
  1861. std::default_random_engine rng(rd());
  1862. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1863. if (t->type == GGML_TYPE_F32) {
  1864. // initialize with unique values to avoid ties
  1865. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1866. std::vector<float> data(t->ne[0]);
  1867. for (int i = 0; i < t->ne[0]; i++) {
  1868. data[i] = i;
  1869. }
  1870. std::shuffle(data.begin(), data.end(), rng);
  1871. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1872. }
  1873. } else {
  1874. init_tensor_uniform(t);
  1875. }
  1876. }
  1877. }
  1878. };
  1879. // GGML_OP_REPEAT
  1880. struct test_repeat : public test_case {
  1881. const ggml_type type;
  1882. const std::array<int64_t, 4> ne;
  1883. const std::array<int, 4> nr;
  1884. std::string vars() override {
  1885. return VARS_TO_STR3(type, ne, nr);
  1886. }
  1887. size_t op_size(ggml_tensor * t) override {
  1888. return ggml_nbytes(t) * 2;
  1889. }
  1890. test_repeat(ggml_type type = GGML_TYPE_F32,
  1891. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1892. std::array<int, 4> nr = {2, 2, 2, 2})
  1893. : type(type), ne(ne), nr(nr) {}
  1894. ggml_tensor * build_graph(ggml_context * ctx) override {
  1895. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1896. ggml_set_name(target, "target");
  1897. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1898. ggml_set_param(src);
  1899. ggml_set_name(src, "src");
  1900. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1901. ggml_set_name(out, "out");
  1902. return out;
  1903. }
  1904. };
  1905. // GGML_OP_REPEAT_BACK
  1906. struct test_repeat_back : public test_case {
  1907. const ggml_type type;
  1908. const std::array<int64_t, 4> ne;
  1909. const std::array<int, 4> nr;
  1910. const bool v; // whether src is a noncontiguous view
  1911. std::string vars() override {
  1912. return VARS_TO_STR4(type, ne, nr, v);
  1913. }
  1914. size_t op_size(ggml_tensor * t) override {
  1915. return ggml_nbytes(t) * 2;
  1916. }
  1917. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1918. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1919. std::array<int, 4> nr = {2, 2, 2, 2},
  1920. bool v = false)
  1921. : type(type), ne(ne), nr(nr), v(v) {}
  1922. ggml_tensor * build_graph(ggml_context * ctx) override {
  1923. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1924. ggml_set_name(src, "src");
  1925. if (v) {
  1926. GGML_ASSERT(ne[0] % 2 == 0);
  1927. GGML_ASSERT(ne[1] % 2 == 0);
  1928. GGML_ASSERT(ne[2] % 2 == 0);
  1929. GGML_ASSERT(ne[3] % 2 == 0);
  1930. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1931. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1932. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1933. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1934. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1935. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1936. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1937. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1938. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1939. }
  1940. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1941. ggml_set_name(target, "target");
  1942. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1943. ggml_set_name(out, "out");
  1944. return out;
  1945. }
  1946. };
  1947. // GGML_OP_DUP
  1948. struct test_dup : public test_case {
  1949. const ggml_type type;
  1950. const std::array<int64_t, 4> ne;
  1951. const std::array<int64_t, 4> permute;
  1952. bool _use_permute;
  1953. std::string vars() override {
  1954. std::string v = VARS_TO_STR2(type, ne);
  1955. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1956. return v;
  1957. }
  1958. test_dup(ggml_type type = GGML_TYPE_F32,
  1959. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1960. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1961. : type(type), ne(ne), permute(permute),
  1962. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1963. ggml_tensor * build_graph(ggml_context * ctx) override {
  1964. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1965. ggml_set_param(src);
  1966. ggml_set_name(src, "src");
  1967. if (_use_permute) {
  1968. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1969. ggml_set_name(src, "src_permuted");
  1970. }
  1971. ggml_tensor * out = ggml_dup(ctx, src);
  1972. ggml_set_name(out, "out");
  1973. return out;
  1974. }
  1975. };
  1976. // GGML_OP_SET
  1977. struct test_set : public test_case {
  1978. const ggml_type type_src;
  1979. const ggml_type type_dst;
  1980. const std::array<int64_t, 4> ne;
  1981. const int dim;
  1982. std::string vars() override {
  1983. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1984. }
  1985. size_t op_size(ggml_tensor * t) override {
  1986. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1987. }
  1988. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1989. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1990. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1991. ggml_tensor * build_graph(ggml_context * ctx) override {
  1992. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1993. ggml_set_param(src);
  1994. ggml_set_name(src, "src");
  1995. auto ne_dst = ne;
  1996. for (int i = 0; i < dim; ++i) {
  1997. ne_dst[i] *= 2;
  1998. }
  1999. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2000. ggml_set_param(dst);
  2001. ggml_set_name(dst, "dst");
  2002. size_t offset = 0;
  2003. for (int i = 0; i < dim; ++i) {
  2004. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2005. }
  2006. ggml_tensor * out = ggml_set(ctx, dst, src,
  2007. // The backward pass requires setting a contiguous region:
  2008. src->nb[1], src->nb[2], src->nb[3], offset);
  2009. ggml_set_name(out, "out");
  2010. return out;
  2011. }
  2012. };
  2013. // GGML_OP_CPY
  2014. struct test_cpy : public test_case {
  2015. const ggml_type type_src;
  2016. const ggml_type type_dst;
  2017. const std::array<int64_t, 4> ne;
  2018. const std::array<int64_t, 4> permute_src;
  2019. const std::array<int64_t, 4> permute_dst;
  2020. bool _src_use_permute;
  2021. bool _dst_use_permute;
  2022. std::string vars() override {
  2023. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  2024. }
  2025. double max_nmse_err() override {
  2026. return 1e-6;
  2027. }
  2028. size_t op_size(ggml_tensor * t) override {
  2029. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2030. }
  2031. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2032. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2033. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2034. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  2035. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2036. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2037. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  2038. ggml_tensor * build_graph(ggml_context * ctx) override {
  2039. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2040. ggml_set_param(src);
  2041. ggml_set_name(src, "src");
  2042. if (_src_use_permute) {
  2043. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2044. ggml_set_name(src, "src_permuted");
  2045. }
  2046. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2047. ggml_set_name(dst, "dst");
  2048. if (_dst_use_permute) {
  2049. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2050. ggml_set_name(dst, "dst_permuted");
  2051. }
  2052. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2053. ggml_set_name(out, "out");
  2054. return out;
  2055. }
  2056. void initialize_tensors(ggml_context * ctx) override {
  2057. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2058. // test extended range of values to check if casting between f32 and i32 is consistent
  2059. init_tensor_uniform(t, -150.f, 150.f);
  2060. }
  2061. }
  2062. };
  2063. // GGML_OP_CONT
  2064. struct test_cont : public test_case {
  2065. const ggml_type type;
  2066. const std::array<int64_t, 4> ne;
  2067. std::string vars() override {
  2068. return VARS_TO_STR2(type, ne);
  2069. }
  2070. test_cont(ggml_type type = GGML_TYPE_F32,
  2071. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2072. : type(type), ne(ne) {}
  2073. ggml_tensor * build_graph(ggml_context * ctx) override {
  2074. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2075. ggml_set_param(src);
  2076. ggml_set_name(src, "src");
  2077. src = ggml_transpose(ctx, src);
  2078. ggml_set_name(src, "src_transposed");
  2079. ggml_tensor * out = ggml_cont(ctx, src);
  2080. ggml_set_name(out, "out");
  2081. return out;
  2082. }
  2083. };
  2084. // GGML_OP_ADD
  2085. // GGML_OP_SUB
  2086. // GGML_OP_MUL
  2087. // GGML_OP_DIV
  2088. struct test_bin_bcast : public test_case {
  2089. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2090. op_t op;
  2091. const ggml_type type;
  2092. const std::array<int64_t, 4> ne;
  2093. const std::array<int, 4> nr;
  2094. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2095. bool run_whole_graph() override { return true; }
  2096. std::string vars() override {
  2097. return VARS_TO_STR4(type, ne, nr, nf);
  2098. }
  2099. size_t op_size(ggml_tensor * t) override {
  2100. return ggml_nbytes(t) * 3;
  2101. }
  2102. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2103. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2104. std::array<int, 4> nr = {1, 2, 1, 1},
  2105. int nf = 1)
  2106. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2107. ggml_tensor * build_graph(ggml_context * ctx) override {
  2108. GGML_ASSERT(nf <= 16);
  2109. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2110. ggml_set_name(a, "a");
  2111. ggml_tensor * b[16];
  2112. for (int i = 0; i < nf; ++i) {
  2113. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2114. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2115. }
  2116. // The backward pass supports broadcasting only for GGML_ADD:
  2117. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2118. if (grad_supported) {
  2119. ggml_set_param(a);
  2120. ggml_set_param(b[0]);
  2121. }
  2122. ggml_tensor * out = a;
  2123. for (int i = 0; i < nf; ++i) {
  2124. out = op(ctx, out, b[i]);
  2125. }
  2126. ggml_set_name(out, "out");
  2127. return out;
  2128. }
  2129. void initialize_tensors(ggml_context * ctx) override {
  2130. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2131. if (op == ggml_mul || op == ggml_div) {
  2132. // MUL and DIV have numerical issues around zero:
  2133. init_tensor_uniform(t, 0.9f, 1.1f);
  2134. } else {
  2135. init_tensor_uniform(t);
  2136. }
  2137. }
  2138. }
  2139. float grad_eps() override {
  2140. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2141. }
  2142. bool grad_precise() override {
  2143. return op == ggml_div;
  2144. }
  2145. double max_maa_err() override {
  2146. return op == ggml_add ? 1e-4 : 1e-3;
  2147. }
  2148. };
  2149. // GGML_OP_ADD_ID
  2150. struct test_add_id : public test_case {
  2151. const ggml_type type_a;
  2152. const ggml_type type_b;
  2153. const int64_t n_embd;
  2154. const int64_t n_experts;
  2155. const int64_t n_experts_used;
  2156. const int64_t n_token;
  2157. std::string vars() override {
  2158. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2159. }
  2160. size_t op_size(ggml_tensor * t) override {
  2161. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2162. }
  2163. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2164. ggml_type type_b = GGML_TYPE_F32,
  2165. int64_t n_embd = 128,
  2166. int64_t n_experts = 16,
  2167. int64_t n_experts_used = 8,
  2168. int64_t n_token = 10)
  2169. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2170. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2171. ggml_tensor * build_graph(ggml_context * ctx) override {
  2172. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2173. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2174. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2175. if (n_experts_used != n_experts) {
  2176. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2177. ggml_set_name(ids, "view_of_ids");
  2178. }
  2179. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2180. ggml_set_name(out, "out");
  2181. return out;
  2182. }
  2183. void initialize_tensors(ggml_context * ctx) override {
  2184. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2185. if (t->type == GGML_TYPE_I32) {
  2186. if (ggml_is_view_op(t->op)) { continue; }
  2187. std::random_device rd;
  2188. std::default_random_engine rng(rd());
  2189. // ids
  2190. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2191. std::vector<int32_t> data(t->ne[0]);
  2192. for (int i = 0; i < t->ne[0]; i++) {
  2193. data[i] = i % n_experts;
  2194. }
  2195. std::shuffle(data.begin(), data.end(), rng);
  2196. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2197. }
  2198. } else {
  2199. init_tensor_uniform(t);
  2200. }
  2201. }
  2202. }
  2203. };
  2204. // GGML_OP_ADD1
  2205. struct test_add1 : public test_case {
  2206. const ggml_type type;
  2207. const std::array<int64_t, 4> ne;
  2208. std::string vars() override {
  2209. return VARS_TO_STR2(type, ne);
  2210. }
  2211. test_add1(ggml_type type = GGML_TYPE_F32,
  2212. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2213. : type(type), ne(ne) {}
  2214. ggml_tensor * build_graph(ggml_context * ctx) override {
  2215. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2216. ggml_set_param(a);
  2217. ggml_set_name(a, "a");
  2218. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2219. // ggml_set_param(b); // TODO: implement
  2220. ggml_set_name(b, "b");
  2221. ggml_tensor * out = ggml_add1(ctx, a, b);
  2222. ggml_set_name(out, "out");
  2223. return out;
  2224. }
  2225. float grad_eps() override {
  2226. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2227. }
  2228. };
  2229. // GGML_OP_SCALE
  2230. struct test_scale : public test_case {
  2231. const ggml_type type;
  2232. const std::array<int64_t, 4> ne;
  2233. float scale;
  2234. float bias;
  2235. std::string vars() override {
  2236. return VARS_TO_STR4(type, ne, scale, bias);
  2237. }
  2238. test_scale(ggml_type type = GGML_TYPE_F32,
  2239. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2240. float scale = 2.0f,
  2241. float bias = 0.0f)
  2242. : type(type), ne(ne), scale(scale), bias(bias) {}
  2243. ggml_tensor * build_graph(ggml_context * ctx) override {
  2244. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2245. ggml_set_param(a);
  2246. ggml_set_name(a, "a");
  2247. ggml_tensor * out = ggml_scale_bias(ctx, a, scale, bias);
  2248. ggml_set_name(out, "out");
  2249. return out;
  2250. }
  2251. };
  2252. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2253. struct test_softcap : public test_case {
  2254. const ggml_type type;
  2255. const std::array<int64_t, 4> ne;
  2256. float softcap;
  2257. std::string op_desc(ggml_tensor * t) override {
  2258. GGML_UNUSED(t);
  2259. return "SOFTCAP";
  2260. }
  2261. bool run_whole_graph() override { return true; }
  2262. std::string vars() override {
  2263. return VARS_TO_STR3(type, ne, softcap);
  2264. }
  2265. test_softcap(ggml_type type = GGML_TYPE_F32,
  2266. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2267. float softcap = 30.0f)
  2268. : type(type), ne(ne), softcap(softcap) {}
  2269. ggml_tensor * build_graph(ggml_context * ctx) override {
  2270. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2271. ggml_set_param(a);
  2272. ggml_set_name(a, "a");
  2273. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2274. ggml_set_name(out, "out");
  2275. return out;
  2276. }
  2277. };
  2278. // GGML_OP_SILU_BACK
  2279. struct test_silu_back : public test_case {
  2280. const ggml_type type;
  2281. const std::array<int64_t, 4> ne;
  2282. float eps;
  2283. std::string vars() override {
  2284. return VARS_TO_STR3(type, ne, eps);
  2285. }
  2286. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2287. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2288. float eps = 1e-6f)
  2289. : type(type), ne(ne), eps(eps) {}
  2290. ggml_tensor * build_graph(ggml_context * ctx) override {
  2291. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2292. ggml_set_name(a, "a");
  2293. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2294. ggml_set_name(grad, "grad");
  2295. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2296. ggml_set_name(out, "out");
  2297. return out;
  2298. }
  2299. bool grad_precise() override {
  2300. return true;
  2301. }
  2302. };
  2303. // GGML_OP_NORM
  2304. struct test_norm : public test_case {
  2305. const ggml_type type;
  2306. const std::array<int64_t, 4> ne;
  2307. const bool v; // whether a is a non-contiguous view
  2308. const float eps;
  2309. std::string vars() override {
  2310. return VARS_TO_STR4(type, ne, v, eps);
  2311. }
  2312. test_norm(ggml_type type = GGML_TYPE_F32,
  2313. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2314. bool v = false,
  2315. float eps = 1e-6f)
  2316. : type(type), ne(ne), v(v), eps(eps) {}
  2317. ggml_tensor * build_graph(ggml_context * ctx) override {
  2318. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2319. ggml_set_name(a, "a");
  2320. if (v) {
  2321. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2322. ggml_set_name(a, "view of a");
  2323. }
  2324. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2325. ggml_set_name(out, "out");
  2326. return out;
  2327. }
  2328. };
  2329. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2330. struct test_norm_mul_add : public test_case {
  2331. const ggml_type type;
  2332. const std::array<int64_t, 4> ne;
  2333. float eps;
  2334. const bool broadcast;
  2335. std::string op_desc(ggml_tensor * t) override {
  2336. GGML_UNUSED(t);
  2337. return "NORM_MUL_ADD";
  2338. }
  2339. bool run_whole_graph() override { return true; }
  2340. std::string vars() override {
  2341. return VARS_TO_STR4(type, ne, eps, broadcast);
  2342. }
  2343. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2344. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2345. float eps = 1e-5f,
  2346. bool broadcast = false)
  2347. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2348. ggml_tensor * build_graph(ggml_context * ctx) override {
  2349. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2350. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2351. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2352. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2353. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2354. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2355. // Use a, w and b early to avoid OP_NONE in graph
  2356. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2357. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2358. ggml_tensor * m = ggml_mul(ctx, n, w);
  2359. ggml_tensor * out = ggml_add(ctx, m, b);
  2360. ggml_set_name(out, "out");
  2361. return out;
  2362. }
  2363. };
  2364. // GGML_OP_RMS_NORM
  2365. struct test_rms_norm : public test_case {
  2366. const ggml_type type;
  2367. const std::array<int64_t, 4> ne;
  2368. const bool v; // whether a is a non-contiguous view
  2369. const float eps;
  2370. std::string vars() override {
  2371. return VARS_TO_STR4(type, ne, v, eps);
  2372. }
  2373. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2374. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2375. bool v = false,
  2376. float eps = 1e-6f)
  2377. : type(type), ne(ne), v(v), eps(eps) {}
  2378. ggml_tensor * build_graph(ggml_context * ctx) override {
  2379. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2380. ggml_set_param(a);
  2381. ggml_set_name(a, "a");
  2382. if (v) {
  2383. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2384. ggml_set_name(a, "view of a");
  2385. }
  2386. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  2387. ggml_set_name(out, "out");
  2388. return out;
  2389. }
  2390. void initialize_tensors(ggml_context * ctx) override {
  2391. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2392. init_tensor_uniform(t, -10.f, 10.f);
  2393. }
  2394. }
  2395. float grad_eps() override {
  2396. return 1.0f;
  2397. }
  2398. bool grad_precise() override {
  2399. return true;
  2400. }
  2401. };
  2402. // GGML_OP_RMS_NORM_BACK
  2403. struct test_rms_norm_back : public test_case {
  2404. const ggml_type type;
  2405. const std::array<int64_t, 4> ne;
  2406. const float eps;
  2407. std::string vars() override {
  2408. return VARS_TO_STR3(type, ne, eps);
  2409. }
  2410. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2411. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2412. float eps = 1e-6f)
  2413. : type(type), ne(ne), eps(eps) {}
  2414. ggml_tensor * build_graph(ggml_context * ctx) override {
  2415. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2416. ggml_set_name(a, "a");
  2417. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2418. ggml_set_name(b, "b");
  2419. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2420. ggml_set_name(out, "out");
  2421. return out;
  2422. }
  2423. void initialize_tensors(ggml_context * ctx) override {
  2424. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2425. init_tensor_uniform(t, -10.f, 10.f);
  2426. }
  2427. }
  2428. };
  2429. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2430. struct test_rms_norm_mul_add : public test_case {
  2431. const ggml_type type;
  2432. const std::array<int64_t, 4> ne;
  2433. const float eps;
  2434. const bool broadcast;
  2435. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2436. std::string op_desc(ggml_tensor * t) override {
  2437. GGML_UNUSED(t);
  2438. return "RMS_NORM_MUL_ADD";
  2439. }
  2440. bool run_whole_graph() override { return true; }
  2441. std::string vars() override {
  2442. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2443. }
  2444. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2445. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2446. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2447. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2448. ggml_tensor * build_graph(ggml_context * ctx) override {
  2449. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2450. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2451. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2452. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2453. ggml_set_param(a);
  2454. ggml_set_name(a, "a");
  2455. ggml_set_param(b);
  2456. ggml_set_name(b, "b");
  2457. ggml_set_param(c);
  2458. ggml_set_name(c, "c");
  2459. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2460. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2461. if (multi_add) {
  2462. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2463. }
  2464. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2465. ggml_set_name(out, "out");
  2466. return out;
  2467. }
  2468. void initialize_tensors(ggml_context * ctx) override {
  2469. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2470. init_tensor_uniform(t, -10.f, 10.f);
  2471. }
  2472. }
  2473. float grad_eps() override {
  2474. return 1.0f;
  2475. }
  2476. bool grad_precise() override {
  2477. return true;
  2478. }
  2479. };
  2480. // GGML_OP_SSM_CONV
  2481. struct test_ssm_conv : public test_case {
  2482. const ggml_type type;
  2483. const std::array<int64_t, 4> ne_a;
  2484. const std::array<int64_t, 4> ne_b;
  2485. std::string vars() override {
  2486. return VARS_TO_STR3(type, ne_a, ne_b);
  2487. }
  2488. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2489. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2490. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2491. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2492. ggml_tensor * build_graph(ggml_context * ctx) override {
  2493. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2494. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2495. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2496. return out;
  2497. }
  2498. };
  2499. // GGML_OP_SSM_SCAN
  2500. struct test_ssm_scan : public test_case {
  2501. const ggml_type type;
  2502. const int64_t d_state;
  2503. const int64_t head_dim;
  2504. const int64_t n_head;
  2505. const int64_t n_group;
  2506. const int64_t n_seq_tokens;
  2507. const int64_t n_seqs;
  2508. std::string vars() override {
  2509. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2510. }
  2511. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2512. int64_t d_state = 32,
  2513. int64_t head_dim = 1, // non-zero for Mamba-2
  2514. int64_t n_head = 32,
  2515. int64_t n_group = 1,
  2516. int64_t n_seq_tokens = 32,
  2517. int64_t n_seqs = 32)
  2518. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2519. ggml_tensor * build_graph(ggml_context * ctx) override {
  2520. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2521. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2522. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2523. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2524. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2525. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2526. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2527. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2528. return out;
  2529. }
  2530. // similar to test_mul_mat_id
  2531. void initialize_tensors(ggml_context * ctx) override {
  2532. std::random_device rd;
  2533. std::default_random_engine rng(rd());
  2534. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2535. if (t->type == GGML_TYPE_I32) {
  2536. if (ggml_is_view_op(t->op)) { continue; }
  2537. // ids
  2538. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2539. std::vector<int32_t> data(t->ne[0]);
  2540. for (int i = 0; i < t->ne[0]; i++) {
  2541. data[i] = i;
  2542. }
  2543. std::shuffle(data.begin(), data.end(), rng);
  2544. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2545. }
  2546. } else {
  2547. init_tensor_uniform(t);
  2548. }
  2549. }
  2550. }
  2551. };
  2552. // GGML_OP_RWKV_WKV6
  2553. struct test_rwkv_wkv6 : public test_case {
  2554. const ggml_type type;
  2555. const int64_t head_count;
  2556. const int64_t head_size;
  2557. const int64_t n_seq_tokens;
  2558. const int64_t n_seqs;
  2559. std::string vars() override {
  2560. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2561. }
  2562. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2563. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2564. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2565. ggml_tensor * build_graph(ggml_context * ctx) override {
  2566. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2567. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2568. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2569. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2570. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2571. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2572. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2573. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2574. return out;
  2575. }
  2576. };
  2577. // GGML_OP_GATED_LINEAR_ATTN
  2578. struct test_gla : public test_case {
  2579. const ggml_type type;
  2580. const int64_t head_count;
  2581. const int64_t head_size;
  2582. const int64_t n_seq_tokens;
  2583. const int64_t n_seqs;
  2584. std::string vars() override {
  2585. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2586. }
  2587. test_gla(ggml_type type = GGML_TYPE_F32,
  2588. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2589. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2590. ggml_tensor * build_graph(ggml_context * ctx) override {
  2591. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2592. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2593. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2594. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2595. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2596. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2597. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2598. return out;
  2599. }
  2600. };
  2601. // GGML_OP_RWKV_WKV7
  2602. struct test_rwkv_wkv7 : public test_case {
  2603. const ggml_type type;
  2604. const int64_t head_count;
  2605. const int64_t head_size;
  2606. const int64_t n_seq_tokens;
  2607. const int64_t n_seqs;
  2608. std::string vars() override {
  2609. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2610. }
  2611. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2612. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2613. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2614. ggml_tensor * build_graph(ggml_context * ctx) override {
  2615. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2616. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2617. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2618. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2619. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2620. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2621. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2622. // Outputs may become NaN with long seqlen without these normalization
  2623. a = ggml_l2_norm(ctx, a, 1e-7F);
  2624. b = ggml_l2_norm(ctx, b, 1e-7F);
  2625. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2626. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2627. return out;
  2628. }
  2629. };
  2630. // GGML_OP_MUL_MAT
  2631. struct test_mul_mat : public test_case {
  2632. const ggml_type type_a;
  2633. const ggml_type type_b;
  2634. const int64_t m;
  2635. const int64_t n;
  2636. const int64_t k;
  2637. const std::array<int64_t, 2> bs; // dims 3 and 4
  2638. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2639. const std::array<int64_t, 4> per; // permutation of dimensions
  2640. const bool v; // whether a and b are non-contiguous views
  2641. const uint32_t o; // number of outputs
  2642. std::string vars() override {
  2643. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, v, o);
  2644. }
  2645. double max_nmse_err() override {
  2646. return 5e-4;
  2647. }
  2648. int64_t grad_nmax() override {
  2649. return 20000;
  2650. }
  2651. uint64_t op_flops(ggml_tensor * t) override {
  2652. GGML_UNUSED(t);
  2653. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2654. }
  2655. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2656. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2657. std::array<int64_t, 2> bs = {10, 10},
  2658. std::array<int64_t, 2> nr = {2, 2},
  2659. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2660. bool v = false, uint32_t o = 1)
  2661. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v), o(o) {}
  2662. ggml_tensor * build_graph(ggml_context * ctx) override {
  2663. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2664. ggml_tensor * a;
  2665. ggml_tensor * b;
  2666. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2667. if (npermuted > 0) {
  2668. GGML_ASSERT(npermuted == 2);
  2669. GGML_ASSERT(!v); // not handled
  2670. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2671. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2672. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2673. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2674. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2675. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2676. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2677. if (!ggml_is_quantized(type_a)) {
  2678. if (bs[1] == 1 && nr[1] == 1) {
  2679. ggml_set_param(a);
  2680. }
  2681. ggml_set_param(b);
  2682. }
  2683. ggml_set_name(a, "a");
  2684. ggml_set_name(b, "b");
  2685. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2686. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2687. ggml_set_name(a, "a_permuted");
  2688. ggml_set_name(b, "b_permuted");
  2689. } else {
  2690. if (v) {
  2691. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2692. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2693. if (!ggml_is_quantized(type_a)) {
  2694. if (bs[1] == 1 && nr[1] == 1) {
  2695. ggml_set_param(a);
  2696. }
  2697. ggml_set_param(b);
  2698. }
  2699. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2700. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2701. } else {
  2702. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2703. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2704. if (!ggml_is_quantized(type_a)) {
  2705. if (bs[1] == 1 && nr[1] == 1) {
  2706. ggml_set_param(a);
  2707. }
  2708. ggml_set_param(b);
  2709. }
  2710. }
  2711. ggml_set_name(a, "a");
  2712. ggml_set_name(b, "b");
  2713. }
  2714. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2715. ggml_set_name(out, "out");
  2716. for (uint32_t i = 1; i < o; ++i) {
  2717. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2718. ggml_set_name(out2, "out2");
  2719. out = ggml_add(ctx, out, out2);
  2720. }
  2721. return out;
  2722. }
  2723. bool run_whole_graph() override { return o > 1; }
  2724. std::string op_desc(ggml_tensor * t) override {
  2725. GGML_UNUSED(t);
  2726. return ggml_op_name(GGML_OP_MUL_MAT);
  2727. }
  2728. };
  2729. // GGML_OP_MUL_MAT_ID
  2730. struct test_mul_mat_id : public test_case {
  2731. const ggml_type type_a;
  2732. const ggml_type type_b;
  2733. const int n_mats;
  2734. const int n_used;
  2735. const bool b; // broadcast b matrix
  2736. const int64_t m;
  2737. const int64_t n;
  2738. const int64_t k;
  2739. const uint32_t o; // number of outputs
  2740. std::string vars() override {
  2741. return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
  2742. }
  2743. double max_nmse_err() override {
  2744. return 5e-4;
  2745. }
  2746. uint64_t op_flops(ggml_tensor * t) override {
  2747. GGML_UNUSED(t);
  2748. return 2 * m * k * n * n_used;
  2749. }
  2750. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2751. int n_mats = 8, int n_used = 2, bool b = false,
  2752. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
  2753. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2754. m(m), n(n), k(k), o(o) {
  2755. GGML_ASSERT(n_used <= n_mats);
  2756. }
  2757. ggml_tensor * build_graph(ggml_context * ctx) override {
  2758. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2759. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2760. ggml_set_name(as, "as");
  2761. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2762. ggml_set_name(ids, "ids");
  2763. if (n_used != n_mats) {
  2764. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2765. ggml_set_name(ids, "view_of_ids");
  2766. }
  2767. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2768. ggml_set_name(b, "b");
  2769. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2770. ggml_set_name(out, "out");
  2771. for (uint32_t i = 1; i < o; ++i) {
  2772. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2773. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  2774. ggml_set_name(out2, "out2");
  2775. out = ggml_add(ctx, out, out2);
  2776. }
  2777. return out;
  2778. }
  2779. void initialize_tensors(ggml_context * ctx) override {
  2780. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2781. if (t->type == GGML_TYPE_I32) {
  2782. if (ggml_is_view_op(t->op)) { continue; }
  2783. std::random_device rd;
  2784. std::default_random_engine rng(rd());
  2785. // ids
  2786. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2787. std::vector<int32_t> data(t->ne[0]);
  2788. for (int i = 0; i < t->ne[0]; i++) {
  2789. data[i] = i % n_mats;
  2790. }
  2791. std::shuffle(data.begin(), data.end(), rng);
  2792. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2793. }
  2794. } else {
  2795. init_tensor_uniform(t);
  2796. }
  2797. }
  2798. }
  2799. bool run_whole_graph() override { return o > 1; }
  2800. std::string op_desc(ggml_tensor * t) override {
  2801. GGML_UNUSED(t);
  2802. return ggml_op_name(GGML_OP_MUL_MAT_ID);
  2803. }
  2804. };
  2805. // GGML_OP_OUT_PROD
  2806. struct test_out_prod : public test_case {
  2807. const ggml_type type_a;
  2808. const ggml_type type_b;
  2809. const int64_t m;
  2810. const int64_t n;
  2811. const int64_t k;
  2812. const std::array<int64_t, 2> bs; // dims 3 and 4
  2813. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2814. const bool trans_b;
  2815. std::string vars() override {
  2816. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2817. }
  2818. double max_nmse_err() override {
  2819. return 5e-4;
  2820. }
  2821. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2822. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2823. std::array<int64_t, 2> bs = {10, 10},
  2824. std::array<int64_t, 2> nr = {2, 2},
  2825. bool trans_b = false)
  2826. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2827. ggml_tensor * build_graph(ggml_context * ctx) override {
  2828. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2829. ggml_set_name(a, "a");
  2830. ggml_tensor * b;
  2831. if (trans_b) {
  2832. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2833. b = ggml_transpose(ctx, b);
  2834. } else {
  2835. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2836. }
  2837. ggml_set_name(b, "b");
  2838. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2839. ggml_set_name(out, "out");
  2840. return out;
  2841. }
  2842. };
  2843. // GGML_OP_SQR
  2844. struct test_sqr : public test_case {
  2845. const ggml_type type;
  2846. const std::array<int64_t, 4> ne;
  2847. std::string vars() override {
  2848. return VARS_TO_STR2(type, ne);
  2849. }
  2850. test_sqr(ggml_type type = GGML_TYPE_F32,
  2851. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2852. : type(type), ne(ne) {}
  2853. ggml_tensor * build_graph(ggml_context * ctx) override {
  2854. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2855. ggml_set_param(a);
  2856. ggml_set_name(a, "a");
  2857. ggml_tensor * out = ggml_sqr(ctx, a);
  2858. ggml_set_name(out, "out");
  2859. return out;
  2860. }
  2861. float grad_eps() override {
  2862. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2863. }
  2864. };
  2865. // GGML_OP_SQRT
  2866. struct test_sqrt : public test_case {
  2867. const ggml_type type;
  2868. const std::array<int64_t, 4> ne;
  2869. std::string vars() override {
  2870. return VARS_TO_STR2(type, ne);
  2871. }
  2872. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2873. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2874. : type(type), ne(ne) {}
  2875. ggml_tensor * build_graph(ggml_context * ctx) override {
  2876. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2877. ggml_set_param(a);
  2878. ggml_set_name(a, "a");
  2879. ggml_tensor * out = ggml_sqrt(ctx, a);
  2880. ggml_set_name(out, "out");
  2881. return out;
  2882. }
  2883. void initialize_tensors(ggml_context * ctx) override {
  2884. // fill with positive values
  2885. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2886. init_tensor_uniform(t, 50.0f, 100.0f);
  2887. }
  2888. }
  2889. float grad_eps() override {
  2890. return 20.0f;
  2891. }
  2892. bool grad_precise() override {
  2893. return true;
  2894. }
  2895. };
  2896. // GGML_OP_LOG
  2897. struct test_log : public test_case {
  2898. const ggml_type type;
  2899. const std::array<int64_t, 4> ne;
  2900. std::string vars() override {
  2901. return VARS_TO_STR2(type, ne);
  2902. }
  2903. test_log(ggml_type type = GGML_TYPE_F32,
  2904. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2905. : type(type), ne(ne) {}
  2906. ggml_tensor * build_graph(ggml_context * ctx) override {
  2907. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2908. ggml_set_param(a);
  2909. ggml_set_name(a, "a");
  2910. ggml_tensor * out = ggml_log(ctx, a);
  2911. ggml_set_name(out, "out");
  2912. return out;
  2913. }
  2914. void initialize_tensors(ggml_context * ctx) override {
  2915. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2916. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2917. init_tensor_uniform(t, 0.9f, 1.1f);
  2918. }
  2919. }
  2920. bool grad_precise() override {
  2921. return true;
  2922. }
  2923. };
  2924. // GGML_OP_SIN
  2925. struct test_sin : public test_case {
  2926. const ggml_type type;
  2927. const std::array<int64_t, 4> ne;
  2928. std::string vars() override {
  2929. return VARS_TO_STR2(type, ne);
  2930. }
  2931. test_sin(ggml_type type = GGML_TYPE_F32,
  2932. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2933. : type(type), ne(ne) {}
  2934. ggml_tensor * build_graph(ggml_context * ctx) override {
  2935. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2936. ggml_set_param(a);
  2937. ggml_set_name(a, "a");
  2938. ggml_tensor * out = ggml_sin(ctx, a);
  2939. ggml_set_name(out, "out");
  2940. return out;
  2941. }
  2942. void initialize_tensors(ggml_context * ctx) override {
  2943. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2944. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2945. }
  2946. }
  2947. double max_maa_err() override {
  2948. return 1e-3;
  2949. }
  2950. float grad_eps() override {
  2951. return 0.2f;
  2952. }
  2953. bool grad_precise() override {
  2954. return true;
  2955. }
  2956. };
  2957. // GGML_OP_COS
  2958. struct test_cos : public test_case {
  2959. const ggml_type type;
  2960. const std::array<int64_t, 4> ne;
  2961. std::string vars() override {
  2962. return VARS_TO_STR2(type, ne);
  2963. }
  2964. test_cos(ggml_type type = GGML_TYPE_F32,
  2965. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2966. : type(type), ne(ne) {}
  2967. ggml_tensor * build_graph(ggml_context * ctx) override {
  2968. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2969. ggml_set_param(a);
  2970. ggml_set_name(a, "a");
  2971. ggml_tensor * out = ggml_cos(ctx, a);
  2972. ggml_set_name(out, "out");
  2973. return out;
  2974. }
  2975. void initialize_tensors(ggml_context * ctx) override {
  2976. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2977. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2978. }
  2979. }
  2980. double max_maa_err() override {
  2981. return 1e-3;
  2982. }
  2983. float grad_eps() override {
  2984. return 0.2f;
  2985. }
  2986. bool grad_precise() override {
  2987. return true;
  2988. }
  2989. };
  2990. // GGML_OP_CLAMP
  2991. struct test_clamp : public test_case {
  2992. const ggml_type type;
  2993. const std::array<int64_t, 4> ne;
  2994. float min;
  2995. float max;
  2996. std::string vars() override {
  2997. return VARS_TO_STR4(type, ne, min, max);
  2998. }
  2999. test_clamp(ggml_type type = GGML_TYPE_F32,
  3000. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3001. float min = -0.5f, float max = 0.5f)
  3002. : type(type), ne(ne), min(min), max(max) {}
  3003. ggml_tensor * build_graph(ggml_context * ctx) override {
  3004. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3005. ggml_set_name(a, "a");
  3006. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3007. ggml_set_name(out, "out");
  3008. return out;
  3009. }
  3010. float grad_eps() override {
  3011. return 1e-2f;
  3012. }
  3013. std::vector<float> grad_expect() override {
  3014. return {0.0f, 1.0f};
  3015. }
  3016. };
  3017. // GGML_OP_DIAG_MASK_INF
  3018. struct test_diag_mask_inf : public test_case {
  3019. const ggml_type type;
  3020. const std::array<int64_t, 4> ne;
  3021. const int n_past;
  3022. std::string vars() override {
  3023. return VARS_TO_STR3(type, ne, n_past);
  3024. }
  3025. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3026. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3027. int n_past = 5)
  3028. : type(type), ne(ne), n_past(n_past) {}
  3029. ggml_tensor * build_graph(ggml_context * ctx) override {
  3030. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3031. ggml_set_param(a);
  3032. ggml_set_name(a, "a");
  3033. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3034. ggml_set_name(out, "out");
  3035. return out;
  3036. }
  3037. };
  3038. // GGML_OP_SOFT_MAX
  3039. struct test_soft_max : public test_case {
  3040. const ggml_type type;
  3041. const std::array<int64_t, 4> ne;
  3042. const bool mask;
  3043. const bool sinks;
  3044. const ggml_type m_prec;
  3045. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3046. const float scale;
  3047. const float max_bias;
  3048. std::string vars() override {
  3049. return VARS_TO_STR8(type, ne, mask, sinks, m_prec, nr23, scale, max_bias);
  3050. }
  3051. // the 1024 test with bias occasionally fails:
  3052. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3053. virtual double max_nmse_err() override {
  3054. return 1e-6;
  3055. }
  3056. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3057. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3058. bool mask = false,
  3059. bool sinks = false,
  3060. ggml_type m_prec = GGML_TYPE_F32,
  3061. std::array<int64_t, 2> nr23 = {1, 1},
  3062. float scale = 1.0f,
  3063. float max_bias = 0.0f)
  3064. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  3065. ggml_tensor * build_graph(ggml_context * ctx) override {
  3066. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3067. ggml_set_param(a);
  3068. ggml_set_name(a, "a");
  3069. ggml_tensor * mask = nullptr;
  3070. if (this->mask) {
  3071. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3072. ggml_set_name(mask, "mask");
  3073. }
  3074. ggml_tensor * sinks = nullptr;
  3075. if (this->sinks) {
  3076. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3077. ggml_set_name(sinks, "sinks");
  3078. }
  3079. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3080. ggml_soft_max_add_sinks(out, sinks);
  3081. ggml_set_name(out, "out");
  3082. return out;
  3083. }
  3084. bool grad_precise() override {
  3085. return true;
  3086. }
  3087. };
  3088. // GGML_OP_SOFT_MAX_BACK
  3089. struct test_soft_max_back : public test_case {
  3090. const ggml_type type;
  3091. const std::array<int64_t, 4> ne;
  3092. const float scale;
  3093. const float max_bias;
  3094. std::string vars() override {
  3095. return VARS_TO_STR4(type, ne, scale, max_bias);
  3096. }
  3097. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3098. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3099. float scale = 1.0f,
  3100. float max_bias = 0.0f)
  3101. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3102. ggml_tensor * build_graph(ggml_context * ctx) override {
  3103. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3104. ggml_set_name(a, "a");
  3105. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3106. ggml_set_name(a, "a");
  3107. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3108. ggml_set_name(out, "out");
  3109. return out;
  3110. }
  3111. };
  3112. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3113. struct test_rope : public test_case {
  3114. const ggml_type type;
  3115. const std::array<int64_t, 4> ne_a;
  3116. int n_dims;
  3117. int mode;
  3118. int n_ctx; // used to generate positions
  3119. float fs; // freq_scale
  3120. float ef; // ext_factor
  3121. float af; // attn_factor
  3122. bool ff;
  3123. int v; // view (1 : non-contiguous a)
  3124. bool forward;
  3125. std::string vars() override {
  3126. // forward can be inferred from the op, does not need to be printed
  3127. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  3128. }
  3129. test_rope(ggml_type type = GGML_TYPE_F32,
  3130. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3131. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  3132. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  3133. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  3134. ggml_tensor * build_graph(ggml_context * ctx) override {
  3135. ggml_tensor * a;
  3136. if (v & 1) {
  3137. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3138. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3139. if (forward) {
  3140. ggml_set_param(a);
  3141. }
  3142. ggml_set_name(a, "a");
  3143. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3144. ggml_set_name(a, "view_of_a");
  3145. } else {
  3146. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3147. if (forward) {
  3148. ggml_set_param(a);
  3149. }
  3150. ggml_set_name(a, "a");
  3151. }
  3152. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3153. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3154. ggml_tensor * pos;
  3155. if (is_mrope || is_vision) {
  3156. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3157. } else {
  3158. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3159. }
  3160. ggml_set_name(pos, "pos");
  3161. ggml_tensor * freq = nullptr;
  3162. if (ff) {
  3163. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3164. ggml_set_name(freq, "freq");
  3165. }
  3166. ggml_tensor * out;
  3167. if (is_mrope) {
  3168. if (is_vision) {
  3169. GGML_ASSERT(n_dims/4 > 0);
  3170. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3171. if (forward) {
  3172. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3173. } else {
  3174. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3175. }
  3176. } else {
  3177. GGML_ASSERT(n_dims/3 > 0);
  3178. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3179. if (forward) {
  3180. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3181. } else {
  3182. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3183. }
  3184. }
  3185. } else {
  3186. if (forward) {
  3187. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3188. } else {
  3189. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3190. }
  3191. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3192. }
  3193. ggml_set_name(out, "out");
  3194. return out;
  3195. }
  3196. void initialize_tensors(ggml_context * ctx) override {
  3197. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3198. if (t->type == GGML_TYPE_I32) {
  3199. // pos
  3200. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3201. std::vector<int> data(num_pos_ids);
  3202. for (int i = 0; i < num_pos_ids; i++) {
  3203. data[i] = rand() % n_ctx;
  3204. }
  3205. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3206. } else {
  3207. if (t->ne[0] == n_dims/2) {
  3208. // frequency factors in the range [0.9f, 1.1f]
  3209. init_tensor_uniform(t, 0.9f, 1.1f);
  3210. } else {
  3211. init_tensor_uniform(t);
  3212. }
  3213. }
  3214. }
  3215. }
  3216. double max_maa_err() override {
  3217. return 1e-3;
  3218. }
  3219. bool grad_precise() override {
  3220. return true;
  3221. }
  3222. };
  3223. // GGML_OP_POOL2D
  3224. struct test_pool2d : public test_case {
  3225. enum ggml_op_pool pool_type;
  3226. const ggml_type type_input;
  3227. const std::array<int64_t, 4> ne_input;
  3228. // kernel size
  3229. const int k0;
  3230. const int k1;
  3231. // stride
  3232. const int s0;
  3233. const int s1;
  3234. // padding
  3235. const int p0;
  3236. const int p1;
  3237. std::string vars() override {
  3238. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3239. }
  3240. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3241. ggml_type type_input = GGML_TYPE_F32,
  3242. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3243. int k0 = 3, int k1 = 3,
  3244. int s0 = 1, int s1 = 1,
  3245. int p0 = 1, int p1 = 1)
  3246. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3247. ggml_tensor * build_graph(ggml_context * ctx) override {
  3248. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3249. ggml_set_param(input);
  3250. ggml_set_name(input, "input");
  3251. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3252. ggml_set_name(out, "out");
  3253. return out;
  3254. }
  3255. };
  3256. // GGML_OP_CONV_TRANSPOSE_1D
  3257. struct test_conv_transpose_1d : public test_case {
  3258. const std::array<int64_t, 4> ne_input;
  3259. const std::array<int64_t, 4> ne_kernel;
  3260. const int s0; // stride
  3261. const int p0; // padding
  3262. const int d0; // dilation
  3263. std::string vars() override {
  3264. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3265. }
  3266. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3267. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3268. int s0 = 1, int p0 = 0, int d0 = 1)
  3269. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3270. ggml_tensor * build_graph(ggml_context * ctx) override {
  3271. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3272. ggml_set_name(input, "input");
  3273. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3274. ggml_set_name(kernel, "kernel");
  3275. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3276. ggml_set_name(out, "out");
  3277. return out;
  3278. }
  3279. };
  3280. // GGML_OP_CONV_TRANSPOSE_2D
  3281. struct test_conv_transpose_2d : public test_case {
  3282. const std::array<int64_t, 4> ne_input;
  3283. const std::array<int64_t, 4> ne_kernel;
  3284. const int stride;
  3285. std::string vars() override {
  3286. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3287. }
  3288. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3289. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3290. int stride = 1)
  3291. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3292. ggml_tensor * build_graph(ggml_context * ctx) override {
  3293. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3294. ggml_set_name(input, "input");
  3295. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3296. ggml_set_name(kernel, "kernel");
  3297. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3298. ggml_set_name(out, "out");
  3299. return out;
  3300. }
  3301. };
  3302. // GGML_OP_IM2COL
  3303. struct test_im2col : public test_case {
  3304. const ggml_type type_input;
  3305. const ggml_type type_kernel;
  3306. const ggml_type dst_type;
  3307. const std::array<int64_t, 4> ne_input;
  3308. const std::array<int64_t, 4> ne_kernel;
  3309. // stride
  3310. const int s0;
  3311. const int s1;
  3312. // padding
  3313. const int p0;
  3314. const int p1;
  3315. // dilation
  3316. const int d0;
  3317. const int d1;
  3318. // mode
  3319. const bool is_2D;
  3320. std::string vars() override {
  3321. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3322. }
  3323. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3324. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3325. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3326. int s0 = 1, int s1 = 1,
  3327. int p0 = 1, int p1 = 1,
  3328. int d0 = 1, int d1 = 1,
  3329. bool is_2D = true)
  3330. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3331. ggml_tensor * build_graph(ggml_context * ctx) override {
  3332. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3333. ggml_set_param(input);
  3334. ggml_set_name(input, "input");
  3335. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3336. ggml_set_name(kernel, "kernel");
  3337. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3338. ggml_set_name(out, "out");
  3339. return out;
  3340. }
  3341. };
  3342. // GGML_OP_IM2COL_3D
  3343. struct test_im2col_3d : public test_case {
  3344. const ggml_type type_input;
  3345. const ggml_type type_kernel;
  3346. const ggml_type dst_type;
  3347. const std::array<int64_t, 4> ne_input;
  3348. const std::array<int64_t, 4> ne_kernel;
  3349. // stride
  3350. const int s0;
  3351. const int s1;
  3352. const int s2;
  3353. // padding
  3354. const int p0;
  3355. const int p1;
  3356. const int p2;
  3357. // dilation
  3358. const int d0;
  3359. const int d1;
  3360. const int d2;
  3361. const int64_t IC;
  3362. const bool v;
  3363. std::string vars() override {
  3364. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3365. }
  3366. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3367. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3368. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3369. int64_t IC = 3,
  3370. int s0 = 1, int s1 = 1, int s2 = 1,
  3371. int p0 = 1, int p1 = 1, int p2 = 1,
  3372. int d0 = 1, int d1 = 1, int d2 = 1,
  3373. bool v = false)
  3374. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3375. ggml_tensor * build_graph(ggml_context * ctx) override {
  3376. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3377. ggml_set_param(input);
  3378. ggml_set_name(input, "input");
  3379. if (v) {
  3380. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3381. ggml_set_name(input, "view_of_input");
  3382. }
  3383. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3384. ggml_set_name(kernel, "kernel");
  3385. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3386. ggml_set_name(out, "out");
  3387. return out;
  3388. }
  3389. };
  3390. // CONV_2D
  3391. struct test_conv_2d : public test_case {
  3392. const std::array<int64_t, 4> ne_input;
  3393. const std::array<int64_t, 4> ne_kernel;
  3394. const ggml_type type_kernel;
  3395. const int stride0;
  3396. const int stride1;
  3397. const int padding0;
  3398. const int padding1;
  3399. const int dilation0;
  3400. const int dilation1;
  3401. // Whether the inputs are contiguous in the channel dim or the width dim
  3402. const bool cwhn;
  3403. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3404. // uses ggml_conv_2d:
  3405. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3406. // CONV_2D graph will be built, while
  3407. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3408. // IM2COL -> MUL_MM graph will be built.
  3409. std::string vars() override {
  3410. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3411. }
  3412. double max_nmse_err() override {
  3413. return 5e-4;
  3414. }
  3415. uint64_t op_flops(ggml_tensor * t) override {
  3416. GGML_UNUSED(t);
  3417. // Just counting matmul costs:
  3418. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3419. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3420. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3421. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3422. };
  3423. int64_t W = ne_input[0];
  3424. int64_t H = ne_input[1];
  3425. int64_t KW = ne_kernel[0];
  3426. int64_t KH = ne_kernel[1];
  3427. int64_t Cin = ne_kernel[2];
  3428. int64_t Cout = ne_kernel[3];
  3429. int64_t N = ne_input[3];
  3430. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3431. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3432. int64_t K = Cout;
  3433. int64_t CRS = Cin * KH * KW;
  3434. int64_t NPQ = N * OH * OW;
  3435. return K * NPQ * (2 * CRS - 1);
  3436. }
  3437. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3438. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3439. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3440. ne_input(ne_input),
  3441. ne_kernel(ne_kernel),
  3442. type_kernel(type_kernel),
  3443. stride0(stride0),
  3444. stride1(stride1),
  3445. padding0(padding0),
  3446. padding1(padding1),
  3447. dilation0(dilation0),
  3448. dilation1(dilation1),
  3449. cwhn(cwhn) {}
  3450. ggml_tensor * build_graph(ggml_context * ctx) override {
  3451. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3452. ggml_set_name(input, "input");
  3453. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3454. ggml_set_name(kernel, "kernel");
  3455. if (cwhn) {
  3456. // change memory layout to channel-most-contiguous (CWHN),
  3457. // then permute it back so NE matches the original input
  3458. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3459. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3460. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3461. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3462. }
  3463. ggml_tensor * out =
  3464. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3465. ggml_set_name(out, "out");
  3466. return out;
  3467. }
  3468. };
  3469. // GGML_OP_CONV_2D_DW
  3470. struct test_conv_2d_dw : public test_case {
  3471. const std::array<int64_t, 4> ne_input;
  3472. const std::array<int64_t, 4> ne_kernel;
  3473. const int stride;
  3474. const int padding;
  3475. const int dilation;
  3476. const bool cwhn;
  3477. std::string vars() override {
  3478. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3479. }
  3480. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3481. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3482. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3483. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3484. ggml_tensor * build_graph(ggml_context * ctx) override {
  3485. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3486. ggml_set_name(input, "input");
  3487. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3488. ggml_set_name(kernel, "kernel");
  3489. if (cwhn) {
  3490. // change memory layout to channel-most-contiguous (CWHN),
  3491. // then permute it back so NE matches the original input
  3492. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3493. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3494. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3495. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3496. }
  3497. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3498. ctx, kernel, input,
  3499. stride, stride, padding, padding, dilation, dilation);
  3500. ggml_set_name(out, "out");
  3501. return out;
  3502. }
  3503. };
  3504. // GGML_OP_CONV_3D
  3505. struct test_conv_3d : public test_case {
  3506. // Logical 5D dimensions
  3507. const int64_t N, IC, ID, IH, IW;
  3508. const int64_t OC, KD, KH, KW;
  3509. // Conv params
  3510. const int s0, s1, s2;
  3511. const int p0, p1, p2;
  3512. const int d0, d1, d2;
  3513. // Types
  3514. const ggml_type type_kernel;
  3515. std::string op_desc(ggml_tensor * t) override {
  3516. GGML_UNUSED(t);
  3517. return "CONV_3D";
  3518. }
  3519. std::string vars() override {
  3520. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3521. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3522. }
  3523. double max_nmse_err() override {
  3524. return 5e-4;
  3525. }
  3526. uint64_t op_flops(ggml_tensor * t) override {
  3527. GGML_UNUSED(t);
  3528. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3529. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3530. };
  3531. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3532. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3533. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3534. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3535. }
  3536. test_conv_3d(
  3537. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3538. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3539. int s0, int s1, int s2,
  3540. int p0, int p1, int p2,
  3541. int d0, int d1, int d2,
  3542. ggml_type type_kernel
  3543. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3544. OC(OC), KD(KD), KH(KH), KW(KW),
  3545. s0(s0), s1(s1), s2(s2),
  3546. p0(p0), p1(p1), p2(p2),
  3547. d0(d0), d1(d1), d2(d2),
  3548. type_kernel(type_kernel) {}
  3549. ggml_tensor * build_graph(ggml_context * ctx) override {
  3550. // GGML input tensor is packed as [W, H, D, C*N]
  3551. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3552. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3553. ggml_set_name(input, "input");
  3554. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3555. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3556. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3557. ggml_set_name(kernel, "kernel");
  3558. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3559. ggml_set_name(out, "out");
  3560. return out;
  3561. }
  3562. };
  3563. // GGML_OP_CONCAT
  3564. struct test_concat : public test_case {
  3565. const ggml_type type;
  3566. const std::array<int64_t, 4> ne_a;
  3567. const int64_t ne_b_d;
  3568. const int dim;
  3569. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3570. std::string vars() override {
  3571. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3572. }
  3573. test_concat(ggml_type type = GGML_TYPE_F32,
  3574. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3575. int64_t ne_b_d = 5,
  3576. int dim = 2, int v = 0)
  3577. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3578. ggml_tensor * build_graph(ggml_context * ctx) override {
  3579. auto ne_b = ne_a;
  3580. ne_b[dim] = ne_b_d;
  3581. ggml_tensor * a;
  3582. if (v & 1) {
  3583. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3584. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3585. ggml_set_name(a, "a");
  3586. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3587. ggml_set_name(a, "view_of_a");
  3588. } else {
  3589. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3590. ggml_set_name(a, "a");
  3591. }
  3592. ggml_tensor * b;
  3593. if (v & 2) {
  3594. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3595. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3596. ggml_set_name(b, "b");
  3597. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3598. ggml_set_name(b, "view_of_b");
  3599. } else {
  3600. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3601. ggml_set_name(b, "b");
  3602. }
  3603. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3604. ggml_set_name(out, "out");
  3605. return out;
  3606. }
  3607. };
  3608. // GGML_OP_ARGSORT
  3609. struct test_argsort : public test_case {
  3610. const ggml_type type;
  3611. const std::array<int64_t, 4> ne;
  3612. ggml_sort_order order;
  3613. std::string vars() override {
  3614. return VARS_TO_STR3(type, ne, order);
  3615. }
  3616. test_argsort(ggml_type type = GGML_TYPE_F32,
  3617. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3618. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3619. : type(type), ne(ne), order(order) {}
  3620. ggml_tensor * build_graph(ggml_context * ctx) override {
  3621. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3622. ggml_set_name(a, "a");
  3623. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3624. ggml_set_name(out, "out");
  3625. return out;
  3626. }
  3627. void initialize_tensors(ggml_context * ctx) override {
  3628. std::random_device rd;
  3629. std::default_random_engine rng(rd());
  3630. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3631. if (t->type == GGML_TYPE_I32) {
  3632. // indices
  3633. std::vector<int> data(ggml_nelements(t));
  3634. for (int i = 0; i < ggml_nelements(t); i++) {
  3635. data[i] = rand();
  3636. }
  3637. std::shuffle(data.begin(), data.end(), rng);
  3638. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3639. } else if (t->type == GGML_TYPE_F32) {
  3640. // initialize with unique values to avoid ties
  3641. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3642. std::vector<float> data(t->ne[0]);
  3643. for (int i = 0; i < t->ne[0]; i++) {
  3644. data[i] = i;
  3645. }
  3646. std::shuffle(data.begin(), data.end(), rng);
  3647. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3648. }
  3649. } else {
  3650. GGML_ABORT("fatal error");
  3651. }
  3652. }
  3653. }
  3654. };
  3655. // GGML_OP_SUM
  3656. struct test_sum : public test_case {
  3657. const ggml_type type;
  3658. const std::array<int64_t, 4> ne;
  3659. std::string vars() override {
  3660. return VARS_TO_STR2(type, ne);
  3661. }
  3662. test_sum(ggml_type type = GGML_TYPE_F32,
  3663. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3664. : type(type), ne(ne) {}
  3665. ggml_tensor * build_graph(ggml_context * ctx) override {
  3666. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3667. ggml_set_param(a);
  3668. ggml_set_name(a, "a");
  3669. ggml_tensor * out = ggml_sum(ctx, a);
  3670. ggml_set_name(out, "out");
  3671. return out;
  3672. }
  3673. float grad_eps() override {
  3674. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3675. }
  3676. };
  3677. // GGML_OP_SUM_ROWS
  3678. struct test_sum_rows : public test_case {
  3679. const ggml_type type;
  3680. const std::array<int64_t, 4> ne;
  3681. const bool permute;
  3682. const bool slice;
  3683. std::string vars() override {
  3684. return VARS_TO_STR4(type, ne, permute, slice);
  3685. }
  3686. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3687. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3688. bool permute = false, bool slice = false)
  3689. : type(type), ne(ne), permute(permute), slice(slice) {}
  3690. ggml_tensor * build_graph(ggml_context * ctx) override {
  3691. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3692. ggml_set_param(a);
  3693. ggml_set_name(a, "a");
  3694. if (slice) {
  3695. a = ggml_view_4d(ctx, a,
  3696. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  3697. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  3698. }
  3699. if (permute) {
  3700. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  3701. }
  3702. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3703. ggml_set_name(out, "out");
  3704. return out;
  3705. }
  3706. };
  3707. // GGML_OP_MEAN
  3708. struct test_mean : public test_case {
  3709. const ggml_type type;
  3710. const std::array<int64_t, 4> ne;
  3711. std::string vars() override {
  3712. return VARS_TO_STR2(type, ne);
  3713. }
  3714. test_mean(ggml_type type = GGML_TYPE_F32,
  3715. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3716. : type(type), ne(ne) {}
  3717. ggml_tensor * build_graph(ggml_context * ctx) override {
  3718. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3719. ggml_set_param(a);
  3720. ggml_set_name(a, "a");
  3721. ggml_tensor * out = ggml_mean(ctx, a);
  3722. ggml_set_name(out, "out");
  3723. return out;
  3724. }
  3725. float grad_eps() override {
  3726. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3727. }
  3728. };
  3729. // GGML_OP_UPSCALE
  3730. struct test_upscale : public test_case {
  3731. const ggml_type type;
  3732. const std::array<int64_t, 4> ne;
  3733. const int32_t scale_factor;
  3734. const bool transpose;
  3735. const ggml_scale_mode mode;
  3736. std::string vars() override {
  3737. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3738. }
  3739. test_upscale(ggml_type type = GGML_TYPE_F32,
  3740. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3741. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3742. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3743. ggml_tensor * build_graph(ggml_context * ctx) override {
  3744. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3745. ggml_set_name(a, "a");
  3746. if (transpose) {
  3747. a = ggml_transpose(ctx, a);
  3748. ggml_set_name(a, "a_transposed");
  3749. }
  3750. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3751. ggml_set_name(out, "out");
  3752. return out;
  3753. }
  3754. };
  3755. // GGML_OP_UPSCALE (via ggml_interpolate)
  3756. struct test_interpolate : public test_case {
  3757. const ggml_type type;
  3758. const std::array<int64_t, 4> ne;
  3759. const std::array<int64_t, 4> ne_tgt;
  3760. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3761. std::string vars() override {
  3762. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3763. }
  3764. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3765. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3766. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3767. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3768. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3769. ggml_tensor * build_graph(ggml_context * ctx) override {
  3770. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3771. ggml_set_name(a, "a");
  3772. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3773. ggml_set_name(out, "out");
  3774. return out;
  3775. }
  3776. };
  3777. // GGML_OP_GROUP_NORM
  3778. struct test_group_norm : public test_case {
  3779. const ggml_type type;
  3780. const std::array<int64_t, 4> ne;
  3781. const int32_t num_groups;
  3782. const float eps;
  3783. std::string vars() override {
  3784. return VARS_TO_STR4(type, ne, num_groups, eps);
  3785. }
  3786. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3787. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3788. int32_t num_groups = 32,
  3789. float eps = 1e-6f)
  3790. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3791. ggml_tensor * build_graph(ggml_context * ctx) override {
  3792. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3793. ggml_set_name(a, "a");
  3794. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3795. ggml_set_name(out, "out");
  3796. return out;
  3797. }
  3798. };
  3799. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  3800. struct test_group_norm_mul_add : public test_case {
  3801. const ggml_type type;
  3802. const std::array<int64_t, 4> ne;
  3803. int num_groups;
  3804. float eps;
  3805. std::string op_desc(ggml_tensor * t) override {
  3806. GGML_UNUSED(t);
  3807. return "GROUP_NORM_MUL_ADD";
  3808. }
  3809. bool run_whole_graph() override { return true; }
  3810. std::string vars() override {
  3811. return VARS_TO_STR4(type, ne, num_groups, eps);
  3812. }
  3813. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  3814. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  3815. int num_groups = 4,
  3816. float eps = 1e-5f)
  3817. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3818. ggml_tensor * build_graph(ggml_context * ctx) override {
  3819. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3820. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  3821. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3822. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  3823. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  3824. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  3825. ggml_tensor * m = ggml_mul(ctx, n, w);
  3826. ggml_tensor * out = ggml_add(ctx, m, b);
  3827. ggml_set_name(out, "out");
  3828. return out;
  3829. }
  3830. };
  3831. // GGML_OP_L2_NORM
  3832. struct test_l2_norm : public test_case {
  3833. const ggml_type type;
  3834. const std::array<int64_t, 4> ne;
  3835. const float eps;
  3836. std::string vars() override {
  3837. return VARS_TO_STR2(type, ne);
  3838. }
  3839. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  3840. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3841. float eps = 1e-12f)
  3842. : type(type), ne(ne), eps(eps) {}
  3843. ggml_tensor * build_graph(ggml_context * ctx) override {
  3844. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3845. ggml_set_name(a, "a");
  3846. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  3847. ggml_set_name(out, "out");
  3848. return out;
  3849. }
  3850. };
  3851. // GGML_OP_ACC
  3852. struct test_acc : public test_case {
  3853. const ggml_type type;
  3854. const std::array<int64_t, 4> ne_a;
  3855. const std::array<int64_t, 4> ne_b;
  3856. std::string vars() override {
  3857. return VARS_TO_STR3(type, ne_a, ne_b);
  3858. }
  3859. test_acc(ggml_type type = GGML_TYPE_F32,
  3860. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  3861. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  3862. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  3863. ggml_tensor * build_graph(ggml_context * ctx) override {
  3864. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3865. ggml_set_param(a);
  3866. ggml_set_name(a, "a");
  3867. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3868. ggml_set_param(b);
  3869. ggml_set_name(b, "b");
  3870. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  3871. ggml_set_name(out, "out");
  3872. return out;
  3873. }
  3874. };
  3875. // GGML_OP_PAD
  3876. struct test_pad : public test_case {
  3877. const ggml_type type;
  3878. const std::array<int64_t, 4> ne_a;
  3879. const int pad_0;
  3880. const int pad_1;
  3881. std::string vars() override {
  3882. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3883. }
  3884. test_pad(ggml_type type = GGML_TYPE_F32,
  3885. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  3886. int pad_0 = 1, int pad_1 = 1)
  3887. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3888. ggml_tensor * build_graph(ggml_context * ctx) override {
  3889. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3890. ggml_set_name(a, "a");
  3891. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  3892. ggml_set_name(out, "out");
  3893. return out;
  3894. }
  3895. };
  3896. struct test_pad_ext : public test_case {
  3897. const ggml_type type;
  3898. const std::array<int64_t, 4> ne_a;
  3899. const int lp0;
  3900. const int rp0;
  3901. const int lp1;
  3902. const int rp1;
  3903. const int lp2;
  3904. const int rp2;
  3905. const int lp3;
  3906. const int rp3;
  3907. const bool v;
  3908. std::string vars() override {
  3909. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  3910. }
  3911. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  3912. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  3913. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  3914. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  3915. bool v = false)
  3916. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  3917. ggml_tensor * build_graph(ggml_context * ctx) override {
  3918. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3919. ggml_set_name(a, "a");
  3920. if (v) {
  3921. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  3922. ggml_set_name(a, "view of a");
  3923. }
  3924. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  3925. ggml_set_name(out, "out");
  3926. return out;
  3927. }
  3928. };
  3929. // GGML_OP_PAD_REFLECT_1D
  3930. struct test_pad_reflect_1d : public test_case {
  3931. const ggml_type type;
  3932. const std::array<int64_t, 4> ne_a;
  3933. const int pad_0;
  3934. const int pad_1;
  3935. std::string vars() override {
  3936. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3937. }
  3938. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  3939. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  3940. int pad_0 = 10, int pad_1 = 9)
  3941. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3942. ggml_tensor * build_graph(ggml_context * ctx) override {
  3943. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  3944. ggml_set_name(a, "a");
  3945. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  3946. ggml_set_name(out, "out");
  3947. return out;
  3948. }
  3949. };
  3950. // GGML_OP_ROLL
  3951. struct test_roll : public test_case {
  3952. const int shift0;
  3953. const int shift1;
  3954. const int shift3;
  3955. const int shift4;
  3956. std::string vars() override {
  3957. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  3958. }
  3959. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  3960. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  3961. ggml_tensor * build_graph(ggml_context * ctx) override {
  3962. int64_t ne[4] = {10, 5, 4, 3};
  3963. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3964. ggml_set_name(a, "a");
  3965. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  3966. ggml_set_name(out, "out");
  3967. return out;
  3968. }
  3969. };
  3970. // GGML_OP_ARANGE
  3971. struct test_arange : public test_case {
  3972. const ggml_type type;
  3973. const float start;
  3974. const float stop;
  3975. const float step;
  3976. std::string vars() override {
  3977. return VARS_TO_STR4(type, start, stop, step);
  3978. }
  3979. test_arange(ggml_type type = GGML_TYPE_F32,
  3980. float start = 0.f, float stop = 10.f, float step = 1.f)
  3981. : type(type), start(start), stop(stop), step(step) {}
  3982. ggml_tensor * build_graph(ggml_context * ctx) override {
  3983. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  3984. ggml_set_name(out, "out");
  3985. return out;
  3986. }
  3987. };
  3988. // GGML_OP_TIMESTEP_EMBEDDING
  3989. struct test_timestep_embedding : public test_case {
  3990. const ggml_type type;
  3991. const std::array<int64_t, 4> ne_a;
  3992. const int dim;
  3993. const int max_period;
  3994. std::string vars() override {
  3995. return VARS_TO_STR4(type, ne_a, dim, max_period);
  3996. }
  3997. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  3998. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  3999. int dim = 320, int max_period=10000)
  4000. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4001. ggml_tensor * build_graph(ggml_context * ctx) override {
  4002. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4003. ggml_set_name(a, "a");
  4004. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4005. ggml_set_name(out, "out");
  4006. return out;
  4007. }
  4008. };
  4009. // GGML_OP_LEAKY_RELU
  4010. struct test_leaky_relu : public test_case {
  4011. const ggml_type type;
  4012. const std::array<int64_t, 4> ne_a;
  4013. const float negative_slope;
  4014. std::string vars() override {
  4015. return VARS_TO_STR3(type, ne_a, negative_slope);
  4016. }
  4017. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4018. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4019. float negative_slope = 0.1f)
  4020. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4021. ggml_tensor * build_graph(ggml_context * ctx) override {
  4022. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4023. ggml_set_name(a, "a");
  4024. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4025. ggml_set_name(out, "out");
  4026. return out;
  4027. }
  4028. };
  4029. // GGML_OP_FLASH_ATTN_EXT
  4030. struct test_flash_attn_ext : public test_case {
  4031. const int64_t hsk; // K head size
  4032. const int64_t hsv; // V head size
  4033. const int64_t nh; // num heads
  4034. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4035. const int64_t kv; // kv size
  4036. const int64_t nb; // batch size
  4037. const bool mask; // use mask
  4038. const bool sinks; // use sinks
  4039. const float max_bias; // ALiBi
  4040. const float logit_softcap; // Gemma 2
  4041. const ggml_prec prec;
  4042. const ggml_type type_KV;
  4043. std::array<int32_t, 4> permute;
  4044. std::string vars() override {
  4045. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4046. }
  4047. double max_nmse_err() override {
  4048. return 5e-4;
  4049. }
  4050. uint64_t op_flops(ggml_tensor * t) override {
  4051. GGML_UNUSED(t);
  4052. // Just counting matmul costs:
  4053. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4054. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4055. }
  4056. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4057. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4058. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4059. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4060. ggml_tensor * build_graph(ggml_context * ctx) override {
  4061. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4062. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4063. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4064. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4065. int64_t ne_perm[4];
  4066. for (int i = 0; i < 4; ++i) {
  4067. ne_perm[permute[i]] = ne[i];
  4068. }
  4069. ggml_tensor * t;
  4070. if (is_view) {
  4071. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4072. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4073. } else {
  4074. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4075. }
  4076. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4077. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4078. }
  4079. return t;
  4080. };
  4081. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4082. ggml_set_name(q, "q");
  4083. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4084. ggml_set_name(k, "k");
  4085. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4086. ggml_set_name(v, "v");
  4087. ggml_tensor * m = nullptr;
  4088. if (mask) {
  4089. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4090. ggml_set_name(m, "m");
  4091. }
  4092. ggml_tensor * s = nullptr;
  4093. if (sinks) {
  4094. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4095. ggml_set_name(s, "s");
  4096. }
  4097. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4098. ggml_flash_attn_ext_add_sinks(out, s);
  4099. ggml_flash_attn_ext_set_prec (out, prec);
  4100. ggml_set_name(out, "out");
  4101. return out;
  4102. }
  4103. void initialize_tensors(ggml_context * ctx) override {
  4104. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4105. if (strcmp(t->name, "s") == 0) {
  4106. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4107. init_tensor_uniform(t, -10.0f, 10.0f);
  4108. } else {
  4109. init_tensor_uniform(t);
  4110. }
  4111. }
  4112. }
  4113. bool grad_precise() override {
  4114. return true;
  4115. }
  4116. };
  4117. // GGML_OP_CROSS_ENTROPY_LOSS
  4118. struct test_cross_entropy_loss : public test_case {
  4119. const ggml_type type;
  4120. const std::array<int64_t, 4> ne;
  4121. std::string vars() override {
  4122. return VARS_TO_STR2(type, ne);
  4123. }
  4124. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4125. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4126. : type(type), ne(ne) {}
  4127. ggml_tensor * build_graph(ggml_context * ctx) override {
  4128. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4129. ggml_set_param(logits);
  4130. ggml_set_name(logits, "logits");
  4131. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4132. // The labels are assumed to be constant -> no gradients.
  4133. ggml_set_name(labels, "labels");
  4134. // Ensure labels add up to 1:
  4135. labels = ggml_soft_max(ctx, labels);
  4136. ggml_set_name(labels, "labels_normalized");
  4137. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4138. ggml_set_name(out, "out");
  4139. return out;
  4140. }
  4141. void initialize_tensors(ggml_context * ctx) override {
  4142. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4143. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4144. init_tensor_uniform(t, -100.0f, 100.0f);
  4145. }
  4146. }
  4147. float grad_eps() override {
  4148. return 1.0f;
  4149. }
  4150. bool grad_precise() override {
  4151. return true;
  4152. }
  4153. };
  4154. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4155. struct test_cross_entropy_loss_back : public test_case {
  4156. const ggml_type type;
  4157. const std::array<int64_t, 4> ne;
  4158. std::string vars() override {
  4159. return VARS_TO_STR2(type, ne);
  4160. }
  4161. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4162. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4163. : type(type), ne(ne) {}
  4164. ggml_tensor * build_graph(ggml_context * ctx) override {
  4165. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4166. ggml_set_name(grad, "grad");
  4167. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4168. ggml_set_name(logits, "logits");
  4169. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4170. ggml_set_name(labels, "labels");
  4171. // Ensure labels add up to 1:
  4172. labels = ggml_soft_max(ctx, labels);
  4173. ggml_set_name(labels, "labels_normalized");
  4174. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4175. ggml_set_name(out, "out");
  4176. return out;
  4177. }
  4178. };
  4179. // GGML_OP_OPT_STEP_ADAMW
  4180. struct test_opt_step_adamw : public test_case {
  4181. const ggml_type type;
  4182. const std::array<int64_t, 4> ne;
  4183. std::string vars() override {
  4184. return VARS_TO_STR2(type, ne);
  4185. }
  4186. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4187. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4188. : type(type), ne(ne) {}
  4189. ggml_tensor * build_graph(ggml_context * ctx) override {
  4190. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4191. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4192. ggml_set_name(a, "a");
  4193. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4194. ggml_set_name(grad, "grad");
  4195. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4196. ggml_set_name(grad_m, "grad_m");
  4197. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4198. ggml_set_name(grad_v, "grad_v");
  4199. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4200. ggml_set_name(adamw_params, "adamw_params");
  4201. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4202. ggml_set_name(out, "out");
  4203. return out;
  4204. }
  4205. void initialize_tensors(ggml_context * ctx) override {
  4206. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4207. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4208. }
  4209. }
  4210. bool grad_precise() override {
  4211. return true;
  4212. }
  4213. };
  4214. struct test_opt_step_sgd : public test_case {
  4215. const ggml_type type;
  4216. const std::array<int64_t, 4> ne;
  4217. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4218. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4219. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4220. : type(type), ne(ne) {}
  4221. ggml_tensor * build_graph(ggml_context * ctx) override {
  4222. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4223. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4224. ggml_set_name(a, "a");
  4225. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4226. ggml_set_name(grad, "grad");
  4227. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4228. ggml_set_name(sgd_params, "sgd_params");
  4229. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4230. ggml_set_name(out, "out");
  4231. return out;
  4232. }
  4233. void initialize_tensors(ggml_context * ctx) override {
  4234. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4235. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4236. }
  4237. }
  4238. bool grad_precise() override {
  4239. return true;
  4240. }
  4241. };
  4242. enum llm_norm_type {
  4243. LLM_NORM,
  4244. LLM_NORM_RMS,
  4245. };
  4246. struct llama_hparams {
  4247. uint32_t n_vocab;
  4248. uint32_t n_embd;
  4249. uint32_t n_head;
  4250. uint32_t n_head_kv;
  4251. static constexpr uint32_t n_layer = 1;
  4252. uint32_t n_rot;
  4253. uint32_t n_embd_head; // dimension of values (d_v)
  4254. uint32_t n_ff;
  4255. float f_norm_eps;
  4256. float f_norm_rms_eps;
  4257. // cparams
  4258. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4259. static constexpr uint32_t n_ctx_orig = n_ctx;
  4260. // batch
  4261. int32_t n_tokens;
  4262. // llm_build_context
  4263. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4264. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4265. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4266. return n_embd_head * n_head_kv;
  4267. }
  4268. };
  4269. // LLM base class
  4270. struct test_llm : public test_case {
  4271. llama_hparams hp;
  4272. protected:
  4273. test_llm(llama_hparams hp)
  4274. : hp(std::move(hp)) {
  4275. }
  4276. public:
  4277. struct ggml_tensor * llm_build_norm(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * cur,
  4280. struct ggml_tensor * mw,
  4281. struct ggml_tensor * mb,
  4282. llm_norm_type type) {
  4283. switch (type) {
  4284. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4285. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4286. }
  4287. cur = ggml_mul(ctx, cur, mw);
  4288. if (mb) {
  4289. cur = ggml_add(ctx, cur, mb);
  4290. }
  4291. return cur;
  4292. }
  4293. void llm_build_kv_store(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * k_l,
  4296. struct ggml_tensor * v_l,
  4297. struct ggml_tensor * k_cur,
  4298. struct ggml_tensor * v_cur) {
  4299. // compute the transposed [n_tokens, n_embd] V matrix
  4300. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4301. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4302. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4303. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4304. ( hp.n_ctx)*ggml_element_size(v_l),
  4305. (hp.kv_head)*ggml_element_size(v_l));
  4306. // important: storing RoPE-ed version of K in the KV cache!
  4307. ggml_cpy(ctx, k_cur, k_cache_view);
  4308. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4309. }
  4310. struct ggml_tensor * llm_build_kqv(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * k_l,
  4313. struct ggml_tensor * v_l,
  4314. struct ggml_tensor * q_cur,
  4315. struct ggml_tensor * kq_mask,
  4316. float kq_scale) {
  4317. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4318. struct ggml_tensor * k =
  4319. ggml_view_3d(ctx, k_l,
  4320. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4321. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4322. ggml_row_size(k_l->type, hp.n_embd_head),
  4323. 0);
  4324. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4325. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4326. // split cached v into n_head heads
  4327. struct ggml_tensor * v =
  4328. ggml_view_3d(ctx, v_l,
  4329. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4330. ggml_element_size(v_l)*hp.n_ctx,
  4331. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4332. 0);
  4333. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4334. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4335. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4336. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4337. cur = ggml_mul_mat(ctx, wo, cur);
  4338. return cur;
  4339. }
  4340. void initialize_tensors(ggml_context * ctx) override {
  4341. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4342. if (t->type == GGML_TYPE_I32) {
  4343. // pos
  4344. std::vector<int> data(hp.n_tokens);
  4345. for (int i = 0; i < hp.n_tokens; i++) {
  4346. data[i] = rand() % hp.n_ctx;
  4347. }
  4348. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4349. } else {
  4350. init_tensor_uniform(t);
  4351. }
  4352. }
  4353. }
  4354. };
  4355. // Llama
  4356. struct test_llama : public test_llm {
  4357. static constexpr float freq_base = 10000.0f;
  4358. static constexpr float freq_scale = 1.0f;
  4359. static constexpr float ext_factor = 0.0f;
  4360. static constexpr float attn_factor = 1.0f;
  4361. static constexpr float beta_fast = 32.0f;
  4362. static constexpr float beta_slow = 1.0f;
  4363. bool fused;
  4364. std::string op_desc(ggml_tensor * t) override {
  4365. GGML_UNUSED(t);
  4366. return "LLAMA";
  4367. }
  4368. std::string vars() override {
  4369. auto n_tokens = hp.n_tokens;
  4370. return VARS_TO_STR1(n_tokens);
  4371. }
  4372. double max_nmse_err() override {
  4373. return 2e-3;
  4374. }
  4375. bool run_whole_graph() override { return fused; }
  4376. test_llama(int n_tokens = 1, bool fused = false)
  4377. : test_llm({
  4378. /*n_vocab =*/ 32000,
  4379. /*n_embd =*/ 3200,
  4380. /*n_head =*/ 32,
  4381. /*n_head_kv =*/ 32,
  4382. /*n_rot =*/ 100,
  4383. /*n_embd_head =*/ 100,
  4384. /*n_ff =*/ 8640,
  4385. /*f_norm_eps =*/ 0.f,
  4386. /*f_norm_rms_eps =*/ 1e-5f,
  4387. /*n_tokens =*/ n_tokens,
  4388. })
  4389. , fused(fused)
  4390. {
  4391. }
  4392. ggml_tensor * build_graph(ggml_context * ctx) override {
  4393. struct ggml_tensor * cur;
  4394. struct ggml_tensor * inpL;
  4395. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4396. // inp_pos - contains the positions
  4397. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4398. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4399. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4400. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4401. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4402. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4403. struct ggml_tensor * inpSA = inpL;
  4404. // norm
  4405. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4406. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4407. // self-attention
  4408. {
  4409. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4410. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4411. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4412. // compute Q and K and RoPE them
  4413. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4414. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4415. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4416. Qcur = ggml_rope_ext(
  4417. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4418. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4419. ext_factor, attn_factor, beta_fast, beta_slow
  4420. );
  4421. Kcur = ggml_rope_ext(
  4422. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4423. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4424. ext_factor, attn_factor, beta_fast, beta_slow
  4425. );
  4426. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4427. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4428. }
  4429. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4430. // feed-forward network
  4431. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4432. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4433. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4434. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4435. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4436. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4437. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4438. cur = ggml_silu(ctx, cur);
  4439. cur = ggml_mul(ctx, cur, tmp);
  4440. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4441. cur = ggml_add(ctx, cur, ffn_inp);
  4442. // input for next layer
  4443. inpL = cur;
  4444. }
  4445. cur = inpL;
  4446. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4447. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4448. // lm_head
  4449. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4450. cur = ggml_mul_mat(ctx, output, cur);
  4451. return cur;
  4452. }
  4453. };
  4454. // Falcon
  4455. struct test_falcon : public test_llm {
  4456. static constexpr float freq_base = 10000.0f;
  4457. static constexpr float freq_scale = 1.0f;
  4458. static constexpr float ext_factor = 0.0f;
  4459. static constexpr float attn_factor = 1.0f;
  4460. static constexpr float beta_fast = 32.0f;
  4461. static constexpr float beta_slow = 1.0f;
  4462. std::string op_desc(ggml_tensor * t) override {
  4463. GGML_UNUSED(t);
  4464. return "FALCON";
  4465. }
  4466. std::string vars() override {
  4467. auto n_tokens = hp.n_tokens;
  4468. return VARS_TO_STR1(n_tokens);
  4469. }
  4470. double max_nmse_err() override {
  4471. return 2e-3;
  4472. }
  4473. test_falcon(int n_tokens = 1)
  4474. : test_llm({
  4475. /*n_vocab =*/ 32000,
  4476. /*n_embd =*/ 3200,
  4477. /*n_head =*/ 50,
  4478. /*n_head_kv =*/ 1,
  4479. /*n_rot =*/ 64,
  4480. /*n_embd_head =*/ 64,
  4481. /*n_ff =*/ 8640,
  4482. /*f_norm_eps =*/ 1e-5f,
  4483. /*f_norm_rms_eps =*/ 0.f,
  4484. /*n_tokens =*/ n_tokens,
  4485. }) {
  4486. }
  4487. ggml_tensor * build_graph(ggml_context * ctx) override {
  4488. struct ggml_tensor * cur;
  4489. struct ggml_tensor * inpL;
  4490. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4491. // inp_pos - contains the positions
  4492. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4493. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4494. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4495. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4496. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4497. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4498. // norm
  4499. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4500. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4501. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4502. // self-attention
  4503. {
  4504. cur = attn_norm;
  4505. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  4506. cur = ggml_mul_mat(ctx, wqkv, cur);
  4507. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  4508. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  4509. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  4510. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  4511. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  4512. // using mode = 2 for neox mode
  4513. Qcur = ggml_rope_ext(
  4514. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4515. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4516. );
  4517. Kcur = ggml_rope_ext(
  4518. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4519. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4520. );
  4521. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4522. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4523. }
  4524. struct ggml_tensor * ffn_inp = cur;
  4525. // feed forward
  4526. {
  4527. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4528. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4529. cur = attn_norm;
  4530. cur = ggml_mul_mat(ctx, ffn_up, cur);
  4531. cur = ggml_gelu(ctx, cur);
  4532. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4533. }
  4534. cur = ggml_add(ctx, cur, ffn_inp);
  4535. cur = ggml_add(ctx, cur, inpL);
  4536. // input for next layer
  4537. inpL = cur;
  4538. }
  4539. cur = inpL;
  4540. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4541. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4542. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  4543. // lm_head
  4544. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  4545. cur = ggml_mul_mat(ctx, output, cur);
  4546. return cur;
  4547. }
  4548. };
  4549. // ###########################################
  4550. // ## Section 3: GGML Op Test Instantiation ##
  4551. // ###########################################
  4552. static const ggml_type all_types[] = {
  4553. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  4554. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  4555. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4556. GGML_TYPE_Q8_0,
  4557. GGML_TYPE_MXFP4,
  4558. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4559. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  4560. GGML_TYPE_Q6_K,
  4561. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4562. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4563. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4564. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4565. };
  4566. static const ggml_type base_types[] = {
  4567. GGML_TYPE_F32, GGML_TYPE_F16,
  4568. GGML_TYPE_Q8_0, // for I8MM tests
  4569. GGML_TYPE_Q4_0,
  4570. GGML_TYPE_Q4_1, // for I8MM tests
  4571. GGML_TYPE_Q4_K,
  4572. GGML_TYPE_MXFP4, // TODO: or "other"
  4573. GGML_TYPE_IQ2_XXS
  4574. };
  4575. static const ggml_type other_types[] = {
  4576. GGML_TYPE_Q4_1,
  4577. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4578. GGML_TYPE_Q8_0,
  4579. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4580. GGML_TYPE_Q5_K,
  4581. GGML_TYPE_Q6_K,
  4582. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4583. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4584. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4585. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4586. GGML_TYPE_BF16,
  4587. };
  4588. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  4589. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  4590. std::vector<std::unique_ptr<test_case>> test_cases;
  4591. std::default_random_engine rng(0);
  4592. // unary ops
  4593. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4594. for (int v : {0, 1}) {
  4595. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  4596. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  4597. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  4598. }
  4599. }
  4600. }
  4601. // glu ops
  4602. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4603. for (int v : {0, 1}) {
  4604. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  4605. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  4606. // SWIGLU_OAI is handled separately
  4607. continue;
  4608. }
  4609. for (bool swapped : {false, true}) {
  4610. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  4611. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  4612. }
  4613. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  4614. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  4615. }
  4616. }
  4617. }
  4618. for (int v : {0, 1}) {
  4619. for (float alpha : {.5f, 1.702f}) {
  4620. for (float limit : {2.0f, 7.0f}) {
  4621. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  4622. }
  4623. }
  4624. }
  4625. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  4626. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  4627. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  4628. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  4629. }
  4630. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  4631. for (ggml_type type : all_types) {
  4632. for (int b : {1, 7}) {
  4633. for (bool v : {false, true}) {
  4634. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  4635. }
  4636. }
  4637. }
  4638. for (int b : {1, 7}) {
  4639. for (bool v : {false, true}) {
  4640. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  4641. }
  4642. }
  4643. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4644. for (ggml_type type : all_types) {
  4645. for (bool v : {false, true}) {
  4646. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  4647. }
  4648. }
  4649. for (bool v : {false, true}) {
  4650. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  4651. }
  4652. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  4653. for (ggml_type type : all_types) {
  4654. for (int b : {1, 7}) {
  4655. for (bool v : {false, true}) {
  4656. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  4657. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  4658. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  4659. if (ggml_blck_size(type) == 1) {
  4660. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  4661. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  4662. }
  4663. }
  4664. }
  4665. }
  4666. for (ggml_type type_input : {GGML_TYPE_F32}) {
  4667. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  4668. for (int k0 : {1, 3}) {
  4669. for (int k1 : {1, 3}) {
  4670. for (int s0 : {1, 2}) {
  4671. for (int s1 : {1, 2}) {
  4672. for (int p0 : {0, 1}) {
  4673. for (int p1 : {0, 1}) {
  4674. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  4675. }
  4676. }
  4677. }
  4678. }
  4679. }
  4680. }
  4681. }
  4682. }
  4683. // im2col 1D
  4684. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4685. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4686. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4687. for (int s0 : {1, 3}) {
  4688. for (int p0 : {0, 3}) {
  4689. for (int d0 : {1, 3}) {
  4690. test_cases.emplace_back(new test_im2col(
  4691. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  4692. s0, 0, p0, 0, d0, 0, false));
  4693. }
  4694. }
  4695. }
  4696. // im2col 2D
  4697. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4698. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4699. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4700. for (int s0 : {1, 3}) {
  4701. for (int s1 : {1, 3}) {
  4702. for (int p0 : {0, 3}) {
  4703. for (int p1 : {0, 3}) {
  4704. for (int d0 : {1, 3}) {
  4705. for (int d1 : {1, 3}) {
  4706. test_cases.emplace_back(new test_im2col(
  4707. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  4708. s0, s1, p0, p1, d0, d1, true));
  4709. }
  4710. }
  4711. }
  4712. }
  4713. }
  4714. }
  4715. // extra tests for im2col 2D
  4716. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4717. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4718. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4719. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4720. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4721. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4722. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4723. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4724. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  4725. // im2col 3D
  4726. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4727. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4728. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4729. for (int s0 : {1, 3}) {
  4730. for (int s1 : {1, 3}) {
  4731. for (int s2 : {1, 3}) {
  4732. for (int p0 : {0, 3}) {
  4733. for (int p1 : {0, 3}) {
  4734. for (int p2 : {0, 3}) {
  4735. for (int d0 : {1, 3}) {
  4736. for (int d1 : {1, 3}) {
  4737. for (int d2 : {1, 3}) {
  4738. for (int IC : {1, 3}) {
  4739. for (bool v : {false, true}) {
  4740. test_cases.emplace_back(new test_im2col_3d(
  4741. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  4742. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  4743. }
  4744. }
  4745. }
  4746. }
  4747. }
  4748. }
  4749. }
  4750. }
  4751. }
  4752. }
  4753. }
  4754. // Conv_2D test cases
  4755. #ifdef DETAILED_TESTS
  4756. // Probably we do not have enough time to execute these in the pipeline.
  4757. uint32_t iwh_idx = 0;
  4758. uint32_t kwh_idx = 1;
  4759. uint32_t Cout_idx = 2;
  4760. uint32_t Cin_idx = 3;
  4761. uint32_t B_idx = 4;
  4762. std::vector<std::array<int, 5>> cases = {
  4763. //{IWH, KWH, Cout, Cin, B}
  4764. // K=CRS=NPQ=4096 conv_2d matmul performance
  4765. {19, 4, 4096, 256, 16},
  4766. // K=128, CRS=128, NPQ=4096
  4767. { 19, 4, 128, 8, 16},
  4768. // K=130, CRS=128, NPQ=4096
  4769. { 19, 4, 130, 8, 16},
  4770. // Edge case: K x CRS is small
  4771. { 19, 2, 4, 4, 16},
  4772. // A ConvNet's first layer
  4773. { 224, 3, 8, 3, 1 },
  4774. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  4775. { 224, 2, 8, 1, 1 },
  4776. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  4777. { 224, 2, 8, 1, 8 },
  4778. // A middle layer of a ConvNet
  4779. { 58, 3, 64, 32, 1 },
  4780. // A middle layer of a ConvNet, several images in the batch
  4781. { 58, 3, 64, 32, 8 },
  4782. // A deep layer of a ConvNet, several images in the batch
  4783. { 16, 3, 256, 128, 8 }
  4784. };
  4785. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4786. for (auto act_case : cases) {
  4787. test_cases.emplace_back(new test_conv_2d(
  4788. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  4789. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  4790. kernel_type, 1, 1, 0, 0, 1, 1, false));
  4791. }
  4792. }
  4793. #endif
  4794. // CONV_2D:
  4795. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4796. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4797. };
  4798. //uint32_t s0 = 3;
  4799. uint32_t s1 = 5;
  4800. uint32_t p0 = 5;
  4801. //uint32_t p1 = 2;
  4802. uint32_t d0 = 2;
  4803. uint32_t d1 = 4;
  4804. for (uint32_t s0 : { 1, 3 }) {
  4805. for (uint32_t p1 : { 2, 5 }) {
  4806. for (uint32_t Cin : { 1, 25 }) {
  4807. for (uint32_t Cout : { 1, 12 }) {
  4808. for (uint32_t KH : { 1, 2, 3, 11 }) {
  4809. for (uint32_t KW : { 1, 2, 3, 11 }) {
  4810. for (uint32_t H : { 1, 133 }) {
  4811. for (uint32_t W : { 1, 141 }) {
  4812. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  4813. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  4814. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4815. test_cases.emplace_back(new test_conv_2d(
  4816. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  4817. }
  4818. }
  4819. }
  4820. }
  4821. }
  4822. }
  4823. }
  4824. }
  4825. }
  4826. }
  4827. // sycl backend will limit task global_range < MAX_INT
  4828. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  4829. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4830. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4831. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4832. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4833. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  4834. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  4835. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  4836. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  4837. // CONV_3D
  4838. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4839. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4840. };
  4841. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4842. for (int N : {1, 2}) {
  4843. for (int IC : {1, 3}) {
  4844. for (int OC : {1, 4}) {
  4845. for (int s0 : {1, 2}) {
  4846. for (int p1 : {0, 1}) {
  4847. for (int d2 : {1, 2}) {
  4848. int64_t IW = 20, IH = 22, ID = 18;
  4849. int64_t KW = 3, KH = 3, KD = 3;
  4850. int s1 = s0, s2 = s0;
  4851. int p0 = p1, p2 = p1;
  4852. int d0 = d2, d1 = d2;
  4853. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  4854. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  4855. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  4856. continue;
  4857. }
  4858. test_cases.emplace_back(new test_conv_3d(
  4859. N, IC, ID, IH, IW,
  4860. OC, KD, KH, KW,
  4861. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  4862. kernel_type));
  4863. // Asymmetric kernel and params
  4864. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  4865. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  4866. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  4867. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  4868. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  4869. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  4870. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  4871. continue;
  4872. }
  4873. test_cases.emplace_back(new test_conv_3d(
  4874. N, IC, ID, IH, IW,
  4875. OC, asym_KD, asym_KH, asym_KW,
  4876. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  4877. kernel_type));
  4878. }
  4879. }
  4880. }
  4881. }
  4882. }
  4883. }
  4884. // Case with kernel size 1
  4885. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  4886. }
  4887. for(uint32_t Cout : {1, 9}){
  4888. for(uint32_t Cin : {1, 7}){
  4889. for(uint32_t K : {1, 3, 1337}){
  4890. for(uint32_t L : {1, 2, 13}){
  4891. for(uint32_t s0: {1, 2, 3}){
  4892. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  4893. }
  4894. }
  4895. }
  4896. }
  4897. }
  4898. test_cases.emplace_back(new test_conv_transpose_1d());
  4899. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  4900. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  4901. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  4902. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  4903. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  4904. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  4905. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  4906. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  4907. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  4908. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  4909. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  4910. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  4911. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  4912. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  4913. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4914. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  4915. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  4916. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  4917. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  4918. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  4919. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4920. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  4921. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  4922. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4923. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4924. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4925. }
  4926. for (bool view : {false, true}) {
  4927. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  4928. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  4929. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  4930. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  4931. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  4932. }
  4933. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  4934. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  4935. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  4936. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  4937. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  4938. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  4939. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  4940. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  4941. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  4942. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  4943. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4944. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  4945. }
  4946. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4947. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  4948. }
  4949. // same-type copy
  4950. for (ggml_type type : all_types) {
  4951. const auto nk = ggml_blck_size(type);
  4952. for (int k = 1; k < 4; ++k) {
  4953. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  4954. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  4955. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  4956. }
  4957. }
  4958. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4959. for (ggml_type type_dst : all_types) {
  4960. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4961. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4962. }
  4963. }
  4964. for (ggml_type type_src : all_types) {
  4965. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  4966. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4967. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4968. }
  4969. }
  4970. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4971. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4972. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  4973. }
  4974. }
  4975. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  4976. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  4977. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  4978. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  4979. test_cases.emplace_back(new test_cont());
  4980. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  4981. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  4982. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  4983. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  4984. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  4985. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  4986. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  4987. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  4988. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  4989. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  4990. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  4991. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  4992. }
  4993. };
  4994. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4995. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  4996. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  4997. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  4998. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  4999. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5000. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5001. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5002. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5003. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5004. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5005. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5006. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5007. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5008. // test case for k_bin_bcast_unravel in CUDA backend
  5009. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5010. // stable diffusion
  5011. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5012. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5013. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5014. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5015. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5016. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5017. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5018. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5019. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5020. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5021. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5022. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5023. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5024. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5025. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5026. }
  5027. // single in-place tests, especially important for WebGPU backend since kernels for in-place vs. not are different
  5028. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5029. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5030. // fusion
  5031. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5032. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5033. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5034. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5035. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5036. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5037. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5038. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5039. test_cases.emplace_back(new test_add1());
  5040. test_cases.emplace_back(new test_scale());
  5041. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5042. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5043. test_cases.emplace_back(new test_silu_back());
  5044. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5045. for (bool v : {false, true}) {
  5046. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5047. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5048. }
  5049. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5050. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5051. }
  5052. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5053. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5054. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5055. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5056. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5057. }
  5058. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5059. for (bool multi_add : {false, true}) {
  5060. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5061. }
  5062. }
  5063. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5064. for (int64_t d_conv : {3, 4}) {
  5065. for (int64_t d_inner: {1024, 1536, 2048}) {
  5066. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5067. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5068. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5069. }
  5070. }
  5071. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5072. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5073. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5074. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5075. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5076. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5077. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5078. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5079. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5080. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5081. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5082. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5083. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5084. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5085. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5086. for (ggml_type type_a : all_types) {
  5087. for (int i = 1; i < 10; ++i) {
  5088. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5089. }
  5090. }
  5091. #if 1
  5092. for (ggml_type type_a : base_types) {
  5093. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5094. std::vector<int> ks = { 256 };
  5095. if (ggml_blck_size(type_a) == 1) {
  5096. ks.push_back(4);
  5097. }
  5098. for (auto k : ks) {
  5099. // test cases without permutation
  5100. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5101. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5102. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5103. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5104. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5105. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5106. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5107. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5108. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5109. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5110. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5111. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5112. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5113. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5114. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5115. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5116. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5117. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5118. // test cases with permutation
  5119. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5120. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5121. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5122. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5123. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5124. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5125. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5126. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5127. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5128. }
  5129. // test cases with large ne00/ne10 to cover stream-k fixup
  5130. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5131. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5132. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5133. }
  5134. }
  5135. for (ggml_type type_a : other_types) {
  5136. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5137. if (ggml_blck_size(type_a) != 256) {
  5138. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5139. }
  5140. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5141. }
  5142. }
  5143. #else
  5144. // m = a rows
  5145. // n = b rows
  5146. // k = cols
  5147. std::uniform_int_distribution<> dist_m(1, 128);
  5148. std::uniform_int_distribution<> dist_n(16, 128);
  5149. std::uniform_int_distribution<> dist_k(1, 16);
  5150. for (int i = 0; i < 1000; i++) {
  5151. for (ggml_type type_a : all_types) {
  5152. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5153. int m = dist_m(rng);
  5154. int n = dist_n(rng);
  5155. int k = dist_k(rng) * ggml_blck_size(type_a);
  5156. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5157. }
  5158. }
  5159. }
  5160. #endif
  5161. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5162. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5163. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5164. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5165. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5166. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5167. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5168. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5169. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, true, 3));
  5170. for (auto bs2 : {1,3}) {
  5171. for (auto bs : {1,2,4,8}) {
  5172. for (auto nr : {1,4}) {
  5173. for (uint32_t m = 0; m < 2; ++m) {
  5174. for (uint32_t k = 0; k < 2; ++k) {
  5175. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5176. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5177. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  5178. }
  5179. }
  5180. }
  5181. }
  5182. }
  5183. }
  5184. // sycl backend will limit task global_range < MAX_INT
  5185. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5186. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5187. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5188. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5189. // test large experts*tokens
  5190. for (bool b : {false, true}) {
  5191. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5192. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5193. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5194. }
  5195. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5196. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5197. for (ggml_type type_a : base_types) {
  5198. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5199. for (int n_mats : {4, 8}) {
  5200. for (int n_used : {1, 2, 4}) {
  5201. for (bool b : {false, true}) {
  5202. for (int n : {1, 4, 5, 32, 129}) {
  5203. int m = 512;
  5204. int k = 256;
  5205. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5206. }
  5207. }
  5208. }
  5209. }
  5210. }
  5211. }
  5212. for (ggml_type type_a : other_types) {
  5213. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5214. for (int n_mats : {4}) {
  5215. for (int n_used : {2}) {
  5216. for (bool b : {false}) {
  5217. for (int n : {1, 32}) {
  5218. int m = 512;
  5219. int k = 256;
  5220. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5221. }
  5222. }
  5223. }
  5224. }
  5225. }
  5226. }
  5227. for (ggml_type type_a : base_types) {
  5228. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5229. for (int n : {1, 16}) {
  5230. for (int k : {1, 16}) {
  5231. for (int bs2 : {1, 3}) {
  5232. for (int bs3 : {1, 3}) {
  5233. for (int nr2 : {1, 2}) {
  5234. for (int nr3 : {1, 2}) {
  5235. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5236. }
  5237. }
  5238. }
  5239. }
  5240. }
  5241. }
  5242. }
  5243. }
  5244. // add_id
  5245. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5246. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5247. for (int n_mats : {4, 8}) {
  5248. for (int n_used : {1, 2, 4}) {
  5249. for (int n_embd : {32, 129}) {
  5250. for (int n_token : {1, 32, 129}) {
  5251. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5252. }
  5253. }
  5254. }
  5255. }
  5256. }
  5257. }
  5258. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5259. test_cases.emplace_back(new test_sqr (type));
  5260. test_cases.emplace_back(new test_sqrt (type));
  5261. test_cases.emplace_back(new test_log (type));
  5262. test_cases.emplace_back(new test_sin (type));
  5263. test_cases.emplace_back(new test_cos (type));
  5264. test_cases.emplace_back(new test_clamp (type));
  5265. test_cases.emplace_back(new test_leaky_relu(type));
  5266. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5267. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5268. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5269. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5270. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5271. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5272. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5273. }
  5274. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5275. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5276. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5277. #if 0
  5278. std::uniform_int_distribution<> dist_ne1(1, 50);
  5279. int exponent = 1;
  5280. while (exponent < (1 << 17)) {
  5281. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5282. for (int n = 0; n < 10; ++n) {
  5283. int64_t ne0 = dist_ne0(rng);
  5284. int64_t ne1 = dist_ne1(rng);
  5285. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5286. }
  5287. exponent <<= 1;
  5288. }
  5289. #endif
  5290. for (bool mask : {false, true}) {
  5291. for (bool sinks : {false, true}) {
  5292. for (float max_bias : {0.0f, 8.0f}) {
  5293. if (!mask && max_bias > 0.0f) continue;
  5294. for (float scale : {1.0f, 0.1f}) {
  5295. for (int64_t ne0 : {16, 1024}) {
  5296. for (int64_t ne1 : {16, 1024}) {
  5297. if (mask) {
  5298. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5299. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5300. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5301. if (ne0 <= 32 && ne1 <= 32) {
  5302. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5303. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5304. }
  5305. }
  5306. } else {
  5307. /* The precision of mask here doesn't matter as boolean mask is false */
  5308. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5309. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5310. }
  5311. }
  5312. }
  5313. }
  5314. }
  5315. }
  5316. }
  5317. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5318. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5319. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5320. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5321. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5322. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5323. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5324. for (float max_bias : {0.0f, 8.0f}) {
  5325. for (float scale : {1.0f, 0.1f}) {
  5326. for (int64_t ne0 : {16, 1024}) {
  5327. for (int64_t ne1 : {16, 1024}) {
  5328. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5329. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5330. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5331. }
  5332. }
  5333. }
  5334. }
  5335. for (bool fw : {true, false}) { // fw == forward
  5336. bool all = true;
  5337. for (float fs : { 1.0f, 1.4245f }) {
  5338. for (float ef : { 0.0f, 0.7465f }) {
  5339. for (float af : { 1.0f, 1.4245f }) {
  5340. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5341. for (bool ff : {false, true}) { // freq_factors
  5342. for (float v : { 0, 1 }) {
  5343. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  5344. if (all) {
  5345. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  5346. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  5347. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  5348. }
  5349. if (all) {
  5350. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5351. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5352. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5353. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 0, 512, fs, ef, af, ff, v, fw));
  5354. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  5355. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  5356. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  5357. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5358. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5359. }
  5360. if (all) {
  5361. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  5362. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  5363. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5364. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5365. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  5366. }
  5367. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5368. }
  5369. }
  5370. all = false;
  5371. }
  5372. }
  5373. }
  5374. }
  5375. }
  5376. for (int v : { 0, 1, 2, 3 }) {
  5377. for (int dim : { 0, 1, 2, 3, }) {
  5378. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  5379. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  5380. }
  5381. }
  5382. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  5383. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  5384. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  5385. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  5386. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  5387. }
  5388. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  5389. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  5390. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  5391. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5392. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5393. }
  5394. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5395. test_cases.emplace_back(new test_sum());
  5396. test_cases.emplace_back(new test_sum_rows());
  5397. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  5398. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  5399. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  5400. test_cases.emplace_back(new test_mean());
  5401. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5402. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5403. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5404. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5405. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5406. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5407. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5408. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5409. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  5410. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  5411. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5412. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  5413. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5414. test_cases.emplace_back(new test_acc());
  5415. test_cases.emplace_back(new test_pad());
  5416. test_cases.emplace_back(new test_pad_ext());
  5417. test_cases.emplace_back(new test_pad_reflect_1d());
  5418. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  5419. test_cases.emplace_back(new test_roll());
  5420. test_cases.emplace_back(new test_arange());
  5421. test_cases.emplace_back(new test_timestep_embedding());
  5422. test_cases.emplace_back(new test_leaky_relu());
  5423. for (bool v : {false, true}) {
  5424. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  5425. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  5426. }
  5427. for (int hsk : { 40, 64, 80, 96, 128, 192, 256, 576 }) {
  5428. for (int hsv : { 40, 64, 80, 96, 128, 192, 256, 512 }) {
  5429. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  5430. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  5431. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  5432. for (bool mask : { true, false } ) {
  5433. for (bool sinks : { true, false } ) {
  5434. for (float max_bias : { 0.0f, 8.0f }) {
  5435. if (!mask && max_bias > 0.0f) continue;
  5436. for (float logit_softcap : {0.0f, 10.0f}) {
  5437. if (hsk != 128 && logit_softcap != 0.0f) continue;
  5438. for (int nh : { 4, }) {
  5439. for (int nr3 : { 1, 3, }) {
  5440. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  5441. for (int nr2 : { 1, 4, 16 }) {
  5442. if (nr2 == 16 && hsk != 128) continue;
  5443. for (int kv : { 512, 1024, }) {
  5444. if (nr2 != 1 && kv != 512) continue;
  5445. for (int nb : { 1, 3, 32, 35, }) {
  5446. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  5447. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  5448. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  5449. test_cases.emplace_back(new test_flash_attn_ext(
  5450. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  5451. // run fewer test cases permuted
  5452. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  5453. test_cases.emplace_back(new test_flash_attn_ext(
  5454. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  5455. }
  5456. }
  5457. }
  5458. }
  5459. }
  5460. }
  5461. }
  5462. }
  5463. }
  5464. }
  5465. }
  5466. }
  5467. }
  5468. }
  5469. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  5470. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  5471. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  5472. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  5473. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  5474. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  5475. #if 0
  5476. // these tests are disabled to save execution time, sbut they can be handy for debugging
  5477. test_cases.emplace_back(new test_llama(2, true));
  5478. test_cases.emplace_back(new test_llama(1));
  5479. test_cases.emplace_back(new test_llama(2));
  5480. test_cases.emplace_back(new test_falcon(1));
  5481. test_cases.emplace_back(new test_falcon(2));
  5482. #endif
  5483. return test_cases;
  5484. }
  5485. // Test cases for performance evaluation: should be representative of real-world use cases
  5486. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  5487. std::vector<std::unique_ptr<test_case>> test_cases;
  5488. // Conv2d: K=CRS=NPQ=4096 matmul performance
  5489. uint32_t iwh_idx = 0;
  5490. uint32_t kwh_idx = 1;
  5491. uint32_t Cout_idx = 2;
  5492. uint32_t Cin_idx = 3;
  5493. uint32_t B_idx = 4;
  5494. std::vector<std::array<int, 5>> cases = {
  5495. //{IWH, KWH, Cout, Cin, B}
  5496. // K=CRS=NPQ=4096 conv2d matmul performance
  5497. {19, 4, 4096, 256, 16},
  5498. // K=128, CRS=128, NPQ=4096
  5499. { 19, 4, 128, 8, 16},
  5500. // K=130, CRS=128, NPQ=4096
  5501. { 19, 4, 130, 8, 16},
  5502. // Edge case: K x CRS is small
  5503. { 19, 2, 4, 4, 16},
  5504. // A ConvNet's first layer
  5505. { 224, 3, 8, 3, 1 },
  5506. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5507. { 224, 2, 8, 1, 1 },
  5508. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5509. { 224, 2, 8, 1, 8 },
  5510. // A middle layer of a ConvNet
  5511. { 58, 3, 64, 32, 1 },
  5512. // A middle layer of a ConvNet, several images in the batch
  5513. { 58, 3, 64, 32, 8 },
  5514. // A deep layer of a ConvNet, several images in the batch
  5515. { 16, 3, 512, 128, 8 },
  5516. };
  5517. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5518. for (auto act_case : cases) {
  5519. // Direct CONV_2D
  5520. test_cases.emplace_back(new test_conv_2d(
  5521. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5522. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5523. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5524. }
  5525. }
  5526. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  5527. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  5528. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  5529. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  5530. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  5531. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  5532. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  5533. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5534. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5535. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5536. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5537. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5538. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5539. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5540. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5541. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  5542. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5543. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  5544. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  5545. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  5546. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  5547. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  5548. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  5549. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  5550. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  5551. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  5552. for (ggml_type type_a : all_types) {
  5553. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5554. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  5555. }
  5556. }
  5557. }
  5558. // qwen3-30b-a3b
  5559. for (int bs : {1, 4, 8, 512}) {
  5560. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  5561. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5562. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  5563. }
  5564. }
  5565. }
  5566. // gpt-oss-20b
  5567. for (int bs : {1, 4, 8, 512}) {
  5568. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  5569. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5570. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  5571. }
  5572. }
  5573. }
  5574. for (int K : {3, 5}) {
  5575. for (int IC : {256, 2560}) {
  5576. for (int IW_IH : {32, 64, 256}) {
  5577. if (IC == 2560 && IW_IH == 256) {
  5578. // too big
  5579. continue;
  5580. }
  5581. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  5582. }
  5583. }
  5584. }
  5585. for (int kv : { 4096, 8192, 16384, }) {
  5586. for (int hs : { 64, 128, }) {
  5587. for (int nr : { 1, 4, }) {
  5588. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  5589. }
  5590. }
  5591. }
  5592. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  5593. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  5594. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  5595. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  5596. for (int n_token : {1, 512}) {
  5597. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  5598. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  5599. }
  5600. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  5601. { 8192, 1, 1, 1 },
  5602. { 8192, 8192, 1, 1 },
  5603. { 128, 8192, 1, 1 },
  5604. };
  5605. for (auto it: reduce_rows_cases){
  5606. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  5607. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  5608. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  5609. }
  5610. return test_cases;
  5611. }
  5612. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  5613. printer * output_printer) {
  5614. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  5615. if (params_filter == nullptr) {
  5616. return;
  5617. }
  5618. std::regex params_filter_regex(params_filter);
  5619. for (auto it = test_cases.begin(); it != test_cases.end();) {
  5620. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  5621. it = test_cases.erase(it);
  5622. continue;
  5623. }
  5624. it++;
  5625. }
  5626. };
  5627. if (mode == MODE_TEST) {
  5628. auto test_cases = make_test_cases_eval();
  5629. filter_test_cases(test_cases, params_filter);
  5630. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  5631. if (backend_cpu == NULL) {
  5632. test_operation_info info("", "", "CPU");
  5633. info.set_error("backend", "Failed to initialize CPU backend");
  5634. output_printer->print_operation(info);
  5635. return false;
  5636. }
  5637. size_t n_ok = 0;
  5638. for (auto & test : test_cases) {
  5639. if (test->eval(backend, backend_cpu, op_names_filter, output_printer)) {
  5640. n_ok++;
  5641. }
  5642. }
  5643. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5644. ggml_backend_free(backend_cpu);
  5645. return n_ok == test_cases.size();
  5646. }
  5647. if (mode == MODE_GRAD) {
  5648. auto test_cases = make_test_cases_eval();
  5649. filter_test_cases(test_cases, params_filter);
  5650. size_t n_ok = 0;
  5651. for (auto & test : test_cases) {
  5652. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  5653. n_ok++;
  5654. }
  5655. }
  5656. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5657. return n_ok == test_cases.size();
  5658. }
  5659. if (mode == MODE_PERF) {
  5660. auto test_cases = make_test_cases_perf();
  5661. filter_test_cases(test_cases, params_filter);
  5662. for (auto & test : test_cases) {
  5663. test->eval_perf(backend, op_names_filter, output_printer);
  5664. }
  5665. return true;
  5666. }
  5667. if (mode == MODE_SUPPORT) {
  5668. auto test_cases = make_test_cases_eval();
  5669. filter_test_cases(test_cases, params_filter);
  5670. for (auto & test : test_cases) {
  5671. test->eval_support(backend, op_names_filter, output_printer);
  5672. }
  5673. return true;
  5674. }
  5675. GGML_ABORT("fatal error");
  5676. }
  5677. static void list_all_ops() {
  5678. printf("GGML operations:\n");
  5679. std::set<std::string> all_ops;
  5680. for (int i = 1; i < GGML_OP_COUNT; i++) {
  5681. all_ops.insert(ggml_op_name((enum ggml_op)i));
  5682. }
  5683. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  5684. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  5685. }
  5686. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  5687. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  5688. }
  5689. for (const auto & op : all_ops) {
  5690. printf(" %s\n", op.c_str());
  5691. }
  5692. printf("\nTotal: %zu operations\n", all_ops.size());
  5693. }
  5694. static void show_test_coverage() {
  5695. std::set<std::string> all_ops;
  5696. for (int i = 1; i < GGML_OP_COUNT; i++) {
  5697. auto op = (enum ggml_op)i;
  5698. if (op == GGML_OP_VIEW ||
  5699. op == GGML_OP_RESHAPE ||
  5700. op == GGML_OP_PERMUTE ||
  5701. op == GGML_OP_TRANSPOSE ||
  5702. op == GGML_OP_CONT ||
  5703. op == GGML_OP_GLU ||
  5704. op == GGML_OP_UNARY) {
  5705. continue;
  5706. }
  5707. all_ops.insert(ggml_op_name(op));
  5708. }
  5709. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  5710. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  5711. }
  5712. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  5713. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  5714. }
  5715. auto test_cases = make_test_cases_eval();
  5716. std::set<std::string> tested_ops;
  5717. ggml_init_params params = {
  5718. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  5719. /* .mem_base = */ NULL,
  5720. /* .no_alloc = */ true,
  5721. };
  5722. for (auto & test_case : test_cases) {
  5723. ggml_context * ctx = ggml_init(params);
  5724. if (ctx) {
  5725. test_case->mode = MODE_TEST;
  5726. ggml_tensor * out = test_case->build_graph(ctx);
  5727. if (out && out->op != GGML_OP_NONE) {
  5728. if (out->op == GGML_OP_UNARY) {
  5729. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  5730. } else if (out->op == GGML_OP_GLU) {
  5731. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  5732. } else {
  5733. tested_ops.insert(ggml_op_name(out->op));
  5734. }
  5735. }
  5736. ggml_free(ctx);
  5737. }
  5738. }
  5739. std::set<std::string> covered_ops;
  5740. std::set<std::string> uncovered_ops;
  5741. for (const auto & op : all_ops) {
  5742. if (tested_ops.count(op) > 0) {
  5743. covered_ops.insert(op);
  5744. } else {
  5745. uncovered_ops.insert(op);
  5746. }
  5747. }
  5748. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  5749. for (const auto & op : covered_ops) {
  5750. printf(" ✓ %s\n", op.c_str());
  5751. }
  5752. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  5753. for (const auto & op : uncovered_ops) {
  5754. printf(" ✗ %s\n", op.c_str());
  5755. }
  5756. printf("\nCoverage Summary:\n");
  5757. printf(" Total operations: %zu\n", all_ops.size());
  5758. printf(" Tested operations: %zu\n", covered_ops.size());
  5759. printf(" Untested operations: %zu\n", uncovered_ops.size());
  5760. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  5761. }
  5762. static void usage(char ** argv) {
  5763. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  5764. printf(" valid modes:\n");
  5765. printf(" - test (default, compare with CPU backend for correctness)\n");
  5766. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  5767. printf(" - perf (performance evaluation)\n");
  5768. printf(" - support (probe backend operation support)\n");
  5769. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  5770. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  5771. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  5772. printf(" --list-ops lists all available GGML operations\n");
  5773. printf(" --show-coverage shows test coverage\n");
  5774. }
  5775. int main(int argc, char ** argv) {
  5776. test_mode mode = MODE_TEST;
  5777. output_formats output_format = CONSOLE;
  5778. const char * op_names_filter = nullptr;
  5779. const char * backend_filter = nullptr;
  5780. const char * params_filter = nullptr;
  5781. for (int i = 1; i < argc; i++) {
  5782. if (strcmp(argv[i], "test") == 0) {
  5783. mode = MODE_TEST;
  5784. } else if (strcmp(argv[i], "perf") == 0) {
  5785. mode = MODE_PERF;
  5786. } else if (strcmp(argv[i], "grad") == 0) {
  5787. mode = MODE_GRAD;
  5788. } else if (strcmp(argv[i], "support") == 0) {
  5789. mode = MODE_SUPPORT;
  5790. } else if (strcmp(argv[i], "-o") == 0) {
  5791. if (i + 1 < argc) {
  5792. op_names_filter = argv[++i];
  5793. } else {
  5794. usage(argv);
  5795. return 1;
  5796. }
  5797. } else if (strcmp(argv[i], "-b") == 0) {
  5798. if (i + 1 < argc) {
  5799. backend_filter = argv[++i];
  5800. } else {
  5801. usage(argv);
  5802. return 1;
  5803. }
  5804. } else if (strcmp(argv[i], "-p") == 0) {
  5805. if (i + 1 < argc) {
  5806. params_filter = argv[++i];
  5807. } else {
  5808. usage(argv);
  5809. return 1;
  5810. }
  5811. } else if (strcmp(argv[i], "--output") == 0) {
  5812. if (i + 1 < argc) {
  5813. if (!output_format_from_str(argv[++i], output_format)) {
  5814. usage(argv);
  5815. return 1;
  5816. }
  5817. } else {
  5818. usage(argv);
  5819. return 1;
  5820. }
  5821. } else if (strcmp(argv[i], "--list-ops") == 0) {
  5822. list_all_ops();
  5823. return 0;
  5824. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  5825. show_test_coverage();
  5826. return 0;
  5827. } else {
  5828. usage(argv);
  5829. return 1;
  5830. }
  5831. }
  5832. // load and enumerate backends
  5833. ggml_backend_load_all();
  5834. // Create printer for output format
  5835. std::unique_ptr<printer> output_printer = create_printer(output_format);
  5836. if (output_printer) {
  5837. output_printer->print_header();
  5838. }
  5839. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  5840. size_t n_ok = 0;
  5841. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  5842. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  5843. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  5844. output_printer->print_backend_init(
  5845. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  5846. n_ok++;
  5847. continue;
  5848. }
  5849. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  5850. output_printer->print_backend_init(backend_init_info(
  5851. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  5852. n_ok++;
  5853. continue;
  5854. }
  5855. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  5856. GGML_ASSERT(backend != NULL);
  5857. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  5858. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  5859. if (ggml_backend_set_n_threads_fn) {
  5860. // TODO: better value for n_threads
  5861. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  5862. }
  5863. size_t free, total; // NOLINT
  5864. ggml_backend_dev_memory(dev, &free, &total);
  5865. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  5866. false, "", ggml_backend_dev_description(dev),
  5867. total / 1024 / 1024, free / 1024 / 1024, true));
  5868. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  5869. if (ok) {
  5870. n_ok++;
  5871. }
  5872. output_printer->print_backend_status(
  5873. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  5874. ggml_backend_free(backend);
  5875. }
  5876. ggml_quantize_free();
  5877. if (output_printer) {
  5878. output_printer->print_footer();
  5879. }
  5880. output_printer->print_overall_summary(
  5881. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  5882. if (n_ok != ggml_backend_dev_count()) {
  5883. return 1;
  5884. }
  5885. return 0;
  5886. }