ggml.c 382 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. // horizontally add 8 floats
  377. static inline float hsum_float_8(const __m256 x) {
  378. __m128 res = _mm256_extractf128_ps(x, 1);
  379. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  380. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  381. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  382. return _mm_cvtss_f32(res);
  383. }
  384. // horizontally add 8 int32_t
  385. static inline int hsum_i32_8(const __m256i a) {
  386. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  387. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  388. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  389. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  390. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  391. }
  392. // horizontally add 4 int32_t
  393. static inline int hsum_i32_4(const __m128i a) {
  394. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  395. const __m128i sum64 = _mm_add_epi32(hi64, a);
  396. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  397. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  398. }
  399. #if __AVX2__ || __AVX512F__
  400. // Unpack 32 4-bit fields into 32 bytes
  401. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  402. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  403. {
  404. // Load 16 bytes from memory
  405. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  406. // Expand bytes into uint16_t values
  407. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  408. // Unpack values into individual bytes
  409. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  410. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  411. __m256i low = _mm256_and_si256( lowMask, bytes );
  412. high = _mm256_slli_epi16( high, 4 );
  413. bytes = _mm256_or_si256( low, high );
  414. return bytes;
  415. }
  416. // add int16_t pairwise and return as float vector
  417. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  418. const __m256i ones = _mm256_set1_epi16(1);
  419. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  420. return _mm256_cvtepi32_ps(summed_pairs);
  421. }
  422. // multiply int8_t, add results pairwise twice and return as float vector
  423. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  424. // Get absolute values of x vectors
  425. const __m256i ax = _mm256_sign_epi8(x, x);
  426. // Sign the values of the y vectors
  427. const __m256i sy = _mm256_sign_epi8(y, x);
  428. // Perform multiplication and create 16-bit values
  429. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  430. return sum_i16_pairs_float(dot);
  431. }
  432. static inline __m128i packNibbles( __m256i bytes )
  433. {
  434. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  435. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  436. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  437. __m256i low = _mm256_and_si256( lowByte, bytes );
  438. high = _mm256_srli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. // Compress uint16_t lanes into bytes
  441. __m128i r0 = _mm256_castsi256_si128( bytes );
  442. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  443. return _mm_packus_epi16( r0, r1 );
  444. }
  445. #else
  446. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  447. {
  448. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  449. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  450. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  451. __m128i low = _mm_and_si128( lowByte, bytes1 );
  452. high = _mm_srli_epi16( high, 4 );
  453. bytes1 = _mm_or_si128( low, high );
  454. high = _mm_andnot_si128( lowByte, bytes2 );
  455. low = _mm_and_si128( lowByte, bytes2 );
  456. high = _mm_srli_epi16( high, 4 );
  457. bytes2 = _mm_or_si128( low, high );
  458. return _mm_packus_epi16( bytes1, bytes2);
  459. }
  460. #endif
  461. #endif // __AVX__ || __AVX2__ || __AVX512F__
  462. #if __ARM_NEON
  463. #if !defined(__aarch64__)
  464. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  465. return
  466. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  467. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  468. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  469. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  470. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  471. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  472. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  473. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  474. }
  475. inline static int16_t vaddvq_s8(int8x16_t v) {
  476. return
  477. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  478. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  479. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  480. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  481. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  482. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  483. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  484. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  485. }
  486. inline static int32_t vaddvq_s16(int16x8_t v) {
  487. return
  488. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  489. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  490. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  491. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  492. }
  493. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  494. return
  495. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  496. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  497. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  498. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  499. }
  500. inline static int32_t vaddvq_s32(int32x4_t v) {
  501. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  502. }
  503. inline static float vaddvq_f32(float32x4_t v) {
  504. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  505. }
  506. float vminvq_f32(float32x4_t v) {
  507. return
  508. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  509. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  510. }
  511. float vmaxvq_f32(float32x4_t v) {
  512. return
  513. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  514. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  515. }
  516. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  517. return vget_low_s8(vcombine_s8(a, b));
  518. }
  519. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  520. return vget_high_s8(vcombine_s8(a, b));
  521. }
  522. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  523. return vget_low_u8(vcombine_u8(a, b));
  524. }
  525. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  526. return vget_high_u8(vcombine_u8(a, b));
  527. }
  528. #endif
  529. #endif
  530. #define QK4_0 32
  531. typedef struct {
  532. float d; // delta
  533. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  534. } block_q4_0;
  535. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  536. #define QK4_1 32
  537. typedef struct {
  538. float d; // delta
  539. float m; // min
  540. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  541. } block_q4_1;
  542. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  543. #define QK4_2 16
  544. typedef struct {
  545. ggml_fp16_t d; // delta
  546. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  547. } block_q4_2;
  548. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  549. #define QK4_3 16
  550. typedef struct {
  551. ggml_fp16_t d; // delta
  552. ggml_fp16_t m; // min
  553. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  554. } block_q4_3;
  555. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  556. #define QK8_0 32
  557. typedef struct {
  558. float d; // delta
  559. float s0; // d * sum(qs[i]) low
  560. float s1; // d * sum(qs[i]) high
  561. int8_t qs[QK8_0]; // quants
  562. } block_q8_0;
  563. static_assert(sizeof(block_q8_0) == 3*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  564. // reference implementation for deterministic creation of model files
  565. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  566. assert(k % QK4_0 == 0);
  567. const int nb = k / QK4_0;
  568. uint8_t pp[QK4_0/2];
  569. for (int i = 0; i < nb; i++) {
  570. float amax = 0.0f; // absolute max
  571. for (int l = 0; l < QK4_0; l++) {
  572. const float v = x[i*QK4_0 + l];
  573. amax = MAX(amax, fabsf(v));
  574. }
  575. const float d = amax / ((1 << 3) - 1);
  576. const float id = d ? 1.0f/d : 0.0f;
  577. y[i].d = d;
  578. for (int l = 0; l < QK4_0; l += 2) {
  579. const float v0 = x[i*QK4_0 + l + 0]*id;
  580. const float v1 = x[i*QK4_0 + l + 1]*id;
  581. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  582. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  583. assert(vi0 < 16);
  584. assert(vi1 < 16);
  585. pp[l/2] = vi0 | (vi1 << 4);
  586. }
  587. memcpy(y[i].qs, pp, sizeof(pp));
  588. }
  589. }
  590. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  591. assert(k % QK4_0 == 0);
  592. const int nb = k / QK4_0;
  593. block_q4_0 * restrict y = vy;
  594. #if defined(__POWER9_VECTOR__)
  595. const vector float v85 = vec_splats(8.5f);
  596. for (int i = 0; i < nb; i++) {
  597. float amax = 0.0f; // absolute max
  598. vector float srcv [8];
  599. vector float asrcv[8];
  600. vector float amaxv[8];
  601. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  602. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  603. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  604. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  605. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  606. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  607. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  608. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  609. amax = MAX(
  610. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  611. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  612. const float d = amax / ((1 << 3) - 1);
  613. const float id = d ? 1.0/d : 0.0;
  614. y[i].d = d;
  615. const vector float vid = vec_splats(id);
  616. uint8_t * restrict pb = y[i].qs;
  617. for (int l = 0; l < 8; l++) {
  618. const vector float vf = vec_madd(srcv[l], vid, v85);
  619. const vector signed int vi = vec_signed(vf);
  620. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  621. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  622. }
  623. }
  624. #elif __ARM_NEON
  625. for (int i = 0; i < nb; i++) {
  626. float32x4_t srcv [8];
  627. float32x4_t asrcv[8];
  628. float32x4_t amaxv[8];
  629. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  630. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  631. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  632. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  633. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  634. const float amax = vmaxvq_f32(amaxv[0]);
  635. const float d = amax / ((1 << 3) - 1);
  636. const float id = d ? 1.0f/d : 0.0f;
  637. y[i].d = d;
  638. for (int l = 0; l < 8; l++) {
  639. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  640. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  641. const int32x4_t vi = vcvtq_s32_f32(vf);
  642. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  643. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  644. }
  645. }
  646. #elif defined(__AVX2__)
  647. for (int i = 0; i < nb; i++) {
  648. // Load elements into 4 AVX vectors
  649. __m256 v0 = _mm256_loadu_ps( x );
  650. __m256 v1 = _mm256_loadu_ps( x + 8 );
  651. __m256 v2 = _mm256_loadu_ps( x + 16 );
  652. __m256 v3 = _mm256_loadu_ps( x + 24 );
  653. x += 32;
  654. // Compute max(abs(e)) for the block
  655. const __m256 signBit = _mm256_set1_ps( -0.0f );
  656. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  657. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  658. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  659. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  660. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  661. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  662. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  663. const float maxScalar = _mm_cvtss_f32( max4 );
  664. // Quantize these floats
  665. const float d = maxScalar / 7.0f;
  666. y[i].d = d;
  667. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  668. const __m256 mul = _mm256_set1_ps( id );
  669. // Apply the multiplier
  670. v0 = _mm256_mul_ps( v0, mul );
  671. v1 = _mm256_mul_ps( v1, mul );
  672. v2 = _mm256_mul_ps( v2, mul );
  673. v3 = _mm256_mul_ps( v3, mul );
  674. // Round to nearest integer
  675. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  676. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  677. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  678. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  679. // Convert floats to integers
  680. __m256i i0 = _mm256_cvtps_epi32( v0 );
  681. __m256i i1 = _mm256_cvtps_epi32( v1 );
  682. __m256i i2 = _mm256_cvtps_epi32( v2 );
  683. __m256i i3 = _mm256_cvtps_epi32( v3 );
  684. // Convert int32 to int16
  685. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  686. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  687. // Convert int16 to int8
  688. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  689. // We got our precious signed bytes, but the order is now wrong
  690. // These AVX2 pack instructions process 16-byte pieces independently
  691. // The following instruction is fixing the order
  692. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  693. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  694. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  695. const __m256i off = _mm256_set1_epi8( 8 );
  696. i0 = _mm256_add_epi8( i0, off );
  697. // Compress the vector into 4 bit/value, and store
  698. __m128i res = packNibbles( i0 );
  699. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  700. }
  701. #elif defined(__AVX__)
  702. for (int i = 0; i < nb; i++) {
  703. // Load elements into 4 AVX vectors
  704. __m256 v0 = _mm256_loadu_ps( x );
  705. __m256 v1 = _mm256_loadu_ps( x + 8 );
  706. __m256 v2 = _mm256_loadu_ps( x + 16 );
  707. __m256 v3 = _mm256_loadu_ps( x + 24 );
  708. x += 32;
  709. // Compute max(abs(e)) for the block
  710. const __m256 signBit = _mm256_set1_ps( -0.0f );
  711. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  712. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  713. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  714. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  715. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  716. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  717. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  718. const float maxScalar = _mm_cvtss_f32( max4 );
  719. // Quantize these floats
  720. const float d = maxScalar / 7.0f;
  721. y[i].d = d;
  722. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  723. const __m256 mul = _mm256_set1_ps( id );
  724. // Apply the multiplier
  725. v0 = _mm256_mul_ps( v0, mul );
  726. v1 = _mm256_mul_ps( v1, mul );
  727. v2 = _mm256_mul_ps( v2, mul );
  728. v3 = _mm256_mul_ps( v3, mul );
  729. // Round to nearest integer
  730. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  731. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  732. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  733. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  734. // Convert floats to integers
  735. __m256i i0 = _mm256_cvtps_epi32( v0 );
  736. __m256i i1 = _mm256_cvtps_epi32( v1 );
  737. __m256i i2 = _mm256_cvtps_epi32( v2 );
  738. __m256i i3 = _mm256_cvtps_epi32( v3 );
  739. // Since we don't have in AVX some necessary functions,
  740. // we split the registers in half and call AVX2 analogs from SSE
  741. __m128i ni0 = _mm256_castsi256_si128( i0 );
  742. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  743. __m128i ni2 = _mm256_castsi256_si128( i1 );
  744. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  745. __m128i ni4 = _mm256_castsi256_si128( i2 );
  746. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  747. __m128i ni6 = _mm256_castsi256_si128( i3 );
  748. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  749. // Convert int32 to int16
  750. ni0 = _mm_packs_epi32( ni0, ni1 );
  751. ni2 = _mm_packs_epi32( ni2, ni3 );
  752. ni4 = _mm_packs_epi32( ni4, ni5 );
  753. ni6 = _mm_packs_epi32( ni6, ni7 );
  754. // Convert int16 to int8
  755. ni0 = _mm_packs_epi16( ni0, ni2 );
  756. ni4 = _mm_packs_epi16( ni4, ni6 );
  757. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  758. const __m128i off = _mm_set1_epi8( 8);
  759. ni0 = _mm_add_epi8( ni0, off );
  760. ni4 = _mm_add_epi8( ni4, off );
  761. // Compress the vector into 4 bit/value, and store
  762. __m128i res = packNibbles( ni0, ni4 );
  763. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  764. }
  765. #elif defined(__wasm_simd128__)
  766. for (int i = 0; i < nb; i++) {
  767. float amax = 0.0f; // absolute max
  768. v128_t srcv [8];
  769. v128_t asrcv[8];
  770. v128_t amaxv[8];
  771. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  772. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  773. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  774. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  775. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  776. amax = MAX(
  777. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  778. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  779. const float d = amax / ((1 << 3) - 1);
  780. const float id = d ? 1.0/d : 0.0;
  781. y[i].d = d;
  782. for (int l = 0; l < 8; l++) {
  783. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  784. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  785. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  786. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  787. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  788. }
  789. }
  790. #else
  791. // scalar
  792. quantize_row_q4_0_reference(x, y, k);
  793. #endif
  794. }
  795. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  796. assert(k % QK4_1 == 0);
  797. const int nb = k / QK4_1;
  798. block_q4_1 * restrict y = vy;
  799. uint8_t pp[QK4_1/2];
  800. for (int i = 0; i < nb; i++) {
  801. float min = FLT_MAX;
  802. float max = -FLT_MAX;
  803. for (int l = 0; l < QK4_1; l++) {
  804. const float v = x[i*QK4_1 + l];
  805. if (v < min) min = v;
  806. if (v > max) max = v;
  807. }
  808. const float d = (max - min) / ((1 << 4) - 1);
  809. const float id = d ? 1.0f/d : 0.0f;
  810. y[i].d = d;
  811. y[i].m = min;
  812. for (int l = 0; l < QK4_1; l += 2) {
  813. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  814. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  815. const uint8_t vi0 = roundf(v0);
  816. const uint8_t vi1 = roundf(v1);
  817. assert(vi0 < 16);
  818. assert(vi1 < 16);
  819. pp[l/2] = vi0 | (vi1 << 4);
  820. }
  821. memcpy(y[i].qs, pp, sizeof(pp));
  822. }
  823. }
  824. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  825. assert(k % QK4_1 == 0);
  826. const int nb = k / QK4_1;
  827. block_q4_1 * restrict y = vy;
  828. #if defined(__AVX2__)
  829. for (int i = 0; i < nb; i++) {
  830. // Load elements into 4 AVX vectors
  831. __m256 v0 = _mm256_loadu_ps( x );
  832. __m256 v1 = _mm256_loadu_ps( x + 8 );
  833. __m256 v2 = _mm256_loadu_ps( x + 16 );
  834. __m256 v3 = _mm256_loadu_ps( x + 24 );
  835. x += 32;
  836. // Compute max for the block
  837. __m256 vmax;
  838. vmax = _mm256_max_ps( v0, v1 );
  839. vmax = _mm256_max_ps( vmax, v2 );
  840. vmax = _mm256_max_ps( vmax, v3 );
  841. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  842. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  843. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  844. const float maxScalar = _mm_cvtss_f32( max4 );
  845. // Compute min for the block
  846. __m256 vmin;
  847. vmin = _mm256_min_ps( v0, v1 );
  848. vmin = _mm256_min_ps( vmin, v2 );
  849. vmin = _mm256_min_ps( vmin, v3 );
  850. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  851. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  852. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  853. const float minScalar = _mm_cvtss_f32( min4 );
  854. // Quantize these floats
  855. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  856. const float id = d ? 1.0f/d : 0.0f;
  857. y[i].m = minScalar;
  858. y[i].d = d;
  859. // x = (x-min)*id
  860. const __m256 mul = _mm256_set1_ps( id );
  861. const __m256 off = _mm256_set1_ps( minScalar );
  862. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  863. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  864. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  865. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  866. // Round to nearest integer
  867. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  868. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  869. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  870. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  871. // Convert floats to integers
  872. __m256i i0 = _mm256_cvtps_epi32( v0 );
  873. __m256i i1 = _mm256_cvtps_epi32( v1 );
  874. __m256i i2 = _mm256_cvtps_epi32( v2 );
  875. __m256i i3 = _mm256_cvtps_epi32( v3 );
  876. // Convert int32 to int16
  877. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  878. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  879. // Convert int16 to int8
  880. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  881. // We got our precious signed bytes, but the order is now wrong
  882. // These AVX2 pack instructions process 16-byte pieces independently
  883. // The following instruction is fixing the order
  884. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  885. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  886. // Compress the vector into 4 bit/value, and store
  887. __m128i res = packNibbles( i0 );
  888. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  889. }
  890. #elif __ARM_NEON
  891. for (int i = 0; i < nb; i++) {
  892. float32x4_t srcv[8];
  893. float32x4_t minv[8];
  894. float32x4_t maxv[8];
  895. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  896. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  897. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  898. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  899. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  900. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  901. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  902. const float min = vminvq_f32(minv[0]);
  903. const float max = vmaxvq_f32(maxv[0]);
  904. const float d = (max - min) / ((1 << 4) - 1);
  905. const float id = d ? 1.0f/d : 0.0f;
  906. y[i].d = d;
  907. y[i].m = min;
  908. const float32x4_t minv0 = vdupq_n_f32(min);
  909. for (int l = 0; l < 8; l++) {
  910. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  911. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  912. const int32x4_t vi = vcvtq_s32_f32(vf);
  913. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  914. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  915. }
  916. }
  917. #else
  918. // scalar
  919. quantize_row_q4_1_reference(x, vy, k);
  920. #endif
  921. }
  922. // reference implementation for deterministic creation of model files
  923. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  924. assert(k % QK4_2 == 0);
  925. const int nb = k / QK4_2;
  926. for (int i = 0; i < nb; i++) {
  927. float amax = 0.0f; // absolute max
  928. for (int l = 0; l < QK4_2; l++) {
  929. const float v = x[i*QK4_2 + l];
  930. amax = MAX(amax, fabsf(v));
  931. }
  932. const float d = amax / ((1 << 3) - 1);
  933. const float id = d ? 1.0f/d : 0.0f;
  934. y[i].d = GGML_FP32_TO_FP16(d);
  935. for (int l = 0; l < QK4_2; l += 2) {
  936. const float v0 = x[i*QK4_2 + l + 0]*id;
  937. const float v1 = x[i*QK4_2 + l + 1]*id;
  938. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  939. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  940. assert(vi0 < 16);
  941. assert(vi1 < 16);
  942. y[i].qs[l/2] = vi0 | (vi1 << 4);
  943. }
  944. }
  945. }
  946. static inline int nearest_int(float fval) {
  947. assert(fval <= 4194303.f);
  948. float val = fval + 12582912.f;
  949. int i; memcpy(&i, &val, sizeof(int));
  950. return (i & 0x007fffff) - 0x00400000;
  951. }
  952. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  953. const float * restrict candidates, int8_t * restrict L) {
  954. assert (nmin >= INT8_MIN);
  955. assert (nmax <= INT8_MAX);
  956. float amax = 0;
  957. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  958. if (!amax) { // all zero
  959. for (int i=0; i<n; ++i) L[i] = 0;
  960. return 1.f;
  961. }
  962. float best = 0, bestScale = 0;
  963. for (int si=0; si<nCandidates; ++si) {
  964. float iscale = candidates[si]/amax;
  965. float sumlxP = 0; int suml2P = 0;
  966. float sumlxM = 0; int suml2M = 0;
  967. for (int i=0; i<n; ++i) {
  968. int l = nearest_int(iscale*X[i]);
  969. int lp = MAX(nmin, MIN(nmax, +l));
  970. int lm = MAX(nmin, MIN(nmax, -l));
  971. sumlxP += X[i]*lp; suml2P += lp*lp;
  972. sumlxM += X[i]*lm; suml2M += lm*lm;
  973. }
  974. float sumlxP2 = sumlxP*sumlxP;
  975. float sumlxM2 = sumlxM*sumlxM;
  976. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  977. if (sumlxP2 > best*suml2P) {
  978. best = sumlxP2/suml2P; bestScale = iscale;
  979. }
  980. } else {
  981. if (sumlxM2 > best*suml2M) {
  982. best = sumlxM2/suml2M; bestScale = -iscale;
  983. }
  984. }
  985. }
  986. float sumlx = 0; int suml2 = 0;
  987. for (int i=0; i<n; ++i) {
  988. int l = nearest_int(bestScale*X[i]);
  989. l = MAX(nmin, MIN(nmax, l));
  990. sumlx += X[i]*l; suml2 += l*l;
  991. L[i] = l;
  992. }
  993. float scale = sumlx/suml2;
  994. return scale;
  995. }
  996. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  997. #define CANDIDATE_COUNT 8
  998. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  999. assert(k % QK4_2 == 0);
  1000. int8_t L[QK4_2];
  1001. const int nb = k / QK4_2;
  1002. for (int i = 0; i < nb; i++) {
  1003. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  1004. y[i].d = GGML_FP32_TO_FP16(scale);
  1005. for (int l = 0; l < QK4_2; l += 2) {
  1006. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  1007. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  1008. assert(vi0 < 16);
  1009. assert(vi1 < 16);
  1010. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1011. }
  1012. x += QK4_2;
  1013. }
  1014. }
  1015. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1016. assert(k % QK4_2 == 0);
  1017. block_q4_2 * restrict y = vy;
  1018. //quantize_row_q4_2_reference(x, y, k);
  1019. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1020. quantize_row_q4_2_rmse(x, y, k);
  1021. }
  1022. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1023. assert(k % QK4_3 == 0);
  1024. const int nb = k / QK4_3;
  1025. for (int i = 0; i < nb; i++) {
  1026. float min = FLT_MAX;
  1027. float max = -FLT_MAX;
  1028. for (int l = 0; l < QK4_3; l++) {
  1029. const float v = x[i*QK4_3 + l];
  1030. if (v < min) min = v;
  1031. if (v > max) max = v;
  1032. }
  1033. const float d = (max - min) / ((1 << 4) - 1);
  1034. const float id = d ? 1.0f/d : 0.0f;
  1035. y[i].d = GGML_FP32_TO_FP16(d);
  1036. y[i].m = GGML_FP32_TO_FP16(min);
  1037. for (int l = 0; l < QK4_3; l += 2) {
  1038. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1039. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1040. const uint8_t vi0 = (int) (v0 + 0.5f);
  1041. const uint8_t vi1 = (int) (v1 + 0.5f);
  1042. assert(vi0 < 16);
  1043. assert(vi1 < 16);
  1044. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1045. }
  1046. }
  1047. }
  1048. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1049. assert(k % QK4_3 == 0);
  1050. block_q4_3 * restrict y = vy;
  1051. quantize_row_q4_3_reference(x, y, k);
  1052. }
  1053. // reference implementation for deterministic creation of model files
  1054. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1055. assert(k % QK8_0 == 0);
  1056. const int nb = k / QK8_0;
  1057. for (int i = 0; i < nb; i++) {
  1058. float amax = 0.0f; // absolute max
  1059. for (int l = 0; l < QK8_0; l++) {
  1060. const float v = x[i*QK8_0 + l];
  1061. amax = MAX(amax, fabsf(v));
  1062. }
  1063. const float d = amax / ((1 << 7) - 1);
  1064. const float id = d ? 1.0f/d : 0.0f;
  1065. y[i].d = d;
  1066. int sum0 = 0;
  1067. int sum1 = 0;
  1068. for (int l = 0; l < QK8_0/2; ++l) {
  1069. const float v0 = x[i*QK8_0 + l]*id;
  1070. const float v1 = x[i*QK8_0 + QK8_0/2 + l]*id;
  1071. y[i].qs[ l] = roundf(v0);
  1072. y[i].qs[QK8_0/2 + l] = roundf(v1);
  1073. sum0 += y[i].qs[ l];
  1074. sum1 += y[i].qs[QK8_0/2 + l];
  1075. }
  1076. y[i].s0 = d * sum0;
  1077. y[i].s1 = d * sum1;
  1078. }
  1079. }
  1080. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1081. assert(k % QK8_0 == 0);
  1082. const int nb = k / QK8_0;
  1083. block_q8_0 * restrict y = vy;
  1084. #if defined(__ARM_NEON)
  1085. for (int i = 0; i < nb; i++) {
  1086. float32x4_t srcv [8];
  1087. float32x4_t asrcv[8];
  1088. float32x4_t amaxv[8];
  1089. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1090. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1091. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1092. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1093. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1094. const float amax = vmaxvq_f32(amaxv[0]);
  1095. const float d = amax / ((1 << 7) - 1);
  1096. const float id = d ? 1.0f/d : 0.0f;
  1097. y[i].d = d;
  1098. int32x4_t accv0 = vdupq_n_s32(0);
  1099. int32x4_t accv1 = vdupq_n_s32(0);
  1100. // low half
  1101. for (int l = 0; l < 4; l++) {
  1102. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1103. const int32x4_t vi = vcvtnq_s32_f32(v);
  1104. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1105. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1106. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1107. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1108. accv0 = vaddq_s32(accv0, vi);
  1109. }
  1110. // high half
  1111. for (int l = 4; l < 8; l++) {
  1112. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1113. const int32x4_t vi = vcvtnq_s32_f32(v);
  1114. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1115. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1116. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1117. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1118. accv1 = vaddq_s32(accv1, vi);
  1119. }
  1120. const int32_t sum0 = vaddvq_s32(accv0);
  1121. const int32_t sum1 = vaddvq_s32(accv1);
  1122. y[i].s0 = d * sum0;
  1123. y[i].s1 = d * sum1;
  1124. }
  1125. #elif defined(__AVX2__) || defined(__AVX__)
  1126. for (int i = 0; i < nb; i++) {
  1127. // Load elements into 4 AVX vectors
  1128. __m256 v0 = _mm256_loadu_ps( x );
  1129. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1130. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1131. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1132. x += 32;
  1133. // Compute max(abs(e)) for the block
  1134. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1135. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1136. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1137. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1138. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1139. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1140. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1141. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1142. const float maxScalar = _mm_cvtss_f32( max4 );
  1143. // Quantize these floats
  1144. const float d = maxScalar / 127.f;
  1145. y[i].d = d;
  1146. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1147. const __m256 mul = _mm256_set1_ps( id );
  1148. // Apply the multiplier
  1149. v0 = _mm256_mul_ps( v0, mul );
  1150. v1 = _mm256_mul_ps( v1, mul );
  1151. v2 = _mm256_mul_ps( v2, mul );
  1152. v3 = _mm256_mul_ps( v3, mul );
  1153. // Round to nearest integer
  1154. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1155. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1156. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1157. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1158. // Convert floats to integers
  1159. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1160. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1161. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1162. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1163. #if defined(__AVX2__)
  1164. // Compute the sum of the quants and set y[i].s
  1165. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1166. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1167. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1168. // Convert int32 to int16
  1169. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1170. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1171. // Convert int16 to int8
  1172. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1173. // We got our precious signed bytes, but the order is now wrong
  1174. // These AVX2 pack instructions process 16-byte pieces independently
  1175. // The following instruction is fixing the order
  1176. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1177. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1178. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1179. #else
  1180. // Since we don't have in AVX some necessary functions,
  1181. // we split the registers in half and call AVX2 analogs from SSE
  1182. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1183. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1184. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1185. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1186. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1187. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1188. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1189. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1190. // Compute the sum of the quants and set y[i].s
  1191. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1192. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1193. y[i].s0 = d * hsum_i32_4(s0);
  1194. y[i].s1 = d * hsum_i32_4(s1);
  1195. // Convert int32 to int16
  1196. ni0 = _mm_packs_epi32( ni0, ni1 );
  1197. ni2 = _mm_packs_epi32( ni2, ni3 );
  1198. ni4 = _mm_packs_epi32( ni4, ni5 );
  1199. ni6 = _mm_packs_epi32( ni6, ni7 );
  1200. // Convert int16 to int8
  1201. ni0 = _mm_packs_epi16( ni0, ni2 );
  1202. ni4 = _mm_packs_epi16( ni4, ni6 );
  1203. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1204. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1205. #endif
  1206. }
  1207. #else
  1208. // scalar
  1209. quantize_row_q8_0_reference(x, y, k);
  1210. #endif
  1211. }
  1212. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1213. assert(k % QK4_0 == 0);
  1214. const int nb = k / QK4_0;
  1215. const block_q4_0 * restrict x = vx;
  1216. #if defined(__AVX2__)
  1217. for (int i = 0; i < nb; i++) {
  1218. // scale factor
  1219. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1220. const uint8_t * restrict pp = x[i].qs;
  1221. for (int l = 0; l < QK4_0; l += 32) {
  1222. // Load 32x4-bit integers into 32x8-bit integers
  1223. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1224. // Subtract 8 from the integers
  1225. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1226. // Convert to 16-bit int
  1227. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1228. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1229. // Convert to 32-bit int -> float 32
  1230. const __m256 vf[4] = {
  1231. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1232. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1233. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1234. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1235. };
  1236. // Scale and store
  1237. for (int j = 0; j < 4; j++) {
  1238. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1239. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1240. }
  1241. }
  1242. }
  1243. #elif defined(__ARM_NEON)
  1244. for (int i = 0; i < nb; i++) {
  1245. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1246. const uint8_t * restrict pp = x[i].qs;
  1247. for (int l = 0; l < QK4_0; l += 16) {
  1248. // Load 16x4-bit integers into 8x8-bit integers
  1249. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1250. // Expand 4-bit qs to 8-bit bytes
  1251. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1252. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1253. // Convert to signed 8-bit integers
  1254. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1255. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1256. // Subtract 8 from each byte
  1257. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1258. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1259. // Interleave and combine
  1260. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1261. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1262. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1263. // convert to 2x int16x8_t
  1264. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1265. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1266. // convert to 4x float32x4_t
  1267. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1268. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1269. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1270. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1271. // Multiply by d
  1272. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1273. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1274. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1275. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1276. // Store
  1277. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1278. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1279. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1280. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1281. }
  1282. }
  1283. #else
  1284. // scalar
  1285. for (int i = 0; i < nb; i++) {
  1286. const float d = x[i].d;
  1287. const uint8_t * restrict pp = x[i].qs;
  1288. for (int l = 0; l < QK4_0; l += 2) {
  1289. const uint8_t vi = pp[l/2];
  1290. const int8_t vi0 = vi & 0xf;
  1291. const int8_t vi1 = vi >> 4;
  1292. const float v0 = (vi0 - 8)*d;
  1293. const float v1 = (vi1 - 8)*d;
  1294. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1295. y[i*QK4_0 + l + 0] = v0;
  1296. y[i*QK4_0 + l + 1] = v1;
  1297. assert(!isnan(y[i*QK4_0 + l + 0]));
  1298. assert(!isnan(y[i*QK4_0 + l + 1]));
  1299. }
  1300. }
  1301. #endif
  1302. }
  1303. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1304. assert(k % QK4_1 == 0);
  1305. const int nb = k / QK4_1;
  1306. const block_q4_1 * restrict x = vx;
  1307. #if defined(__AVX2__)
  1308. for (int i = 0; i < nb; i++) {
  1309. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1310. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1311. const uint8_t * restrict pp = x[i].qs;
  1312. for (int l = 0; l < QK4_1; l += 32) {
  1313. // Load 32x4-bit integers into 32x8-bit integers
  1314. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1315. // Convert to 16-bit int
  1316. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1317. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1318. // Convert to 32-bit int -> float 32
  1319. const __m256 vf[4] = {
  1320. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1321. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1322. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1323. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1324. };
  1325. // Scale, add m and store
  1326. for (int j = 0; j < 4; j++) {
  1327. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1328. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1329. }
  1330. }
  1331. }
  1332. #elif defined(__ARM_NEON)
  1333. for (int i = 0; i < nb; i++) {
  1334. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1335. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1336. const uint8_t * restrict pp = x[i].qs;
  1337. for (int l = 0; l < QK4_1; l += 16) {
  1338. // Load 16x4-bit integers into 8x8-bit integers
  1339. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1340. // Expand 4-bit qs to 8-bit bytes
  1341. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1342. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1343. // Interleave and combine
  1344. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1345. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1346. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1347. // convert to 2x uint16x8_t
  1348. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1349. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1350. // convert to 4x float32x4_t
  1351. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1352. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1353. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1354. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1355. // multiply by d and add m
  1356. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1357. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1358. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1359. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1360. // Store
  1361. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1362. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1363. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1364. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1365. }
  1366. }
  1367. #else
  1368. for (int i = 0; i < nb; i++) {
  1369. const float d = x[i].d;
  1370. const float m = x[i].m;
  1371. const uint8_t * restrict pp = x[i].qs;
  1372. for (int l = 0; l < QK4_1; l += 2) {
  1373. const uint8_t vi = pp[l/2];
  1374. const int8_t vi0 = vi & 0xf;
  1375. const int8_t vi1 = vi >> 4;
  1376. const float v0 = vi0*d + m;
  1377. const float v1 = vi1*d + m;
  1378. y[i*QK4_1 + l + 0] = v0;
  1379. y[i*QK4_1 + l + 1] = v1;
  1380. assert(!isnan(y[i*QK4_1 + l + 0]));
  1381. assert(!isnan(y[i*QK4_1 + l + 1]));
  1382. }
  1383. }
  1384. #endif
  1385. }
  1386. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1387. assert(k % QK4_2 == 0);
  1388. const int nb = k / QK4_2;
  1389. const block_q4_2 * restrict x = vx;
  1390. for (int i = 0; i < nb; i++) {
  1391. const float d = GGML_FP16_TO_FP32(x[i].d);
  1392. const uint8_t * restrict pp = x[i].qs;
  1393. for (int l = 0; l < QK4_2; l += 2) {
  1394. const uint8_t vi = pp[l/2];
  1395. const int8_t vi0 = vi & 0xf;
  1396. const int8_t vi1 = vi >> 4;
  1397. const float v0 = (vi0 - 8)*d;
  1398. const float v1 = (vi1 - 8)*d;
  1399. y[i*QK4_2 + l + 0] = v0;
  1400. y[i*QK4_2 + l + 1] = v1;
  1401. assert(!isnan(y[i*QK4_2 + l + 0]));
  1402. assert(!isnan(y[i*QK4_2 + l + 1]));
  1403. }
  1404. }
  1405. }
  1406. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1407. assert(k % QK4_3 == 0);
  1408. const int nb = k / QK4_3;
  1409. const block_q4_3 * restrict x = vx;
  1410. for (int i = 0; i < nb; i++) {
  1411. const float d = GGML_FP16_TO_FP32(x[i].d);
  1412. const float m = GGML_FP16_TO_FP32(x[i].m);
  1413. const uint8_t * restrict pp = x[i].qs;
  1414. for (int l = 0; l < QK4_3; l += 2) {
  1415. const uint8_t vi = pp[l/2];
  1416. const int8_t vi0 = vi & 0xf;
  1417. const int8_t vi1 = vi >> 4;
  1418. const float v0 = vi0*d + m;
  1419. const float v1 = vi1*d + m;
  1420. y[i*QK4_3 + l + 0] = v0;
  1421. y[i*QK4_3 + l + 1] = v1;
  1422. assert(!isnan(y[i*QK4_3 + l + 0]));
  1423. assert(!isnan(y[i*QK4_3 + l + 1]));
  1424. }
  1425. }
  1426. }
  1427. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1428. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1429. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1430. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1431. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1432. [GGML_TYPE_Q4_0] = {
  1433. .dequantize_row_q = dequantize_row_q4_0,
  1434. .quantize_row_q = quantize_row_q4_0,
  1435. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1436. .quantize_row_q_dot = quantize_row_q8_0,
  1437. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1438. },
  1439. [GGML_TYPE_Q4_1] = {
  1440. .dequantize_row_q = dequantize_row_q4_1,
  1441. .quantize_row_q = quantize_row_q4_1,
  1442. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1443. .quantize_row_q_dot = quantize_row_q8_0,
  1444. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1445. },
  1446. [GGML_TYPE_Q4_2] = {
  1447. .dequantize_row_q = dequantize_row_q4_2,
  1448. .quantize_row_q = quantize_row_q4_2,
  1449. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1450. .quantize_row_q_dot = quantize_row_q8_0,
  1451. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1452. },
  1453. [GGML_TYPE_Q4_3] = {
  1454. .dequantize_row_q = dequantize_row_q4_3,
  1455. .quantize_row_q = quantize_row_q4_3,
  1456. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1457. .quantize_row_q_dot = quantize_row_q8_0,
  1458. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1459. },
  1460. [GGML_TYPE_Q8_0] = {
  1461. .dequantize_row_q = NULL, // TODO
  1462. .quantize_row_q = quantize_row_q8_0,
  1463. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1464. .quantize_row_q_dot = quantize_row_q8_0,
  1465. .vec_dot_q = NULL, // TODO
  1466. },
  1467. };
  1468. // For internal test use
  1469. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1470. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1471. return quantize_fns[i];
  1472. }
  1473. //
  1474. // simd mappings
  1475. //
  1476. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1477. // we then implement the fundamental computation operations below using only these macros
  1478. // adding support for new architectures requires to define the corresponding SIMD macros
  1479. //
  1480. // GGML_F32_STEP / GGML_F16_STEP
  1481. // number of elements to process in a single step
  1482. //
  1483. // GGML_F32_EPR / GGML_F16_EPR
  1484. // number of elements to fit in a single register
  1485. //
  1486. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1487. #define GGML_SIMD
  1488. // F32 NEON
  1489. #define GGML_F32_STEP 16
  1490. #define GGML_F32_EPR 4
  1491. #define GGML_F32x4 float32x4_t
  1492. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1493. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1494. #define GGML_F32x4_LOAD vld1q_f32
  1495. #define GGML_F32x4_STORE vst1q_f32
  1496. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1497. #define GGML_F32x4_ADD vaddq_f32
  1498. #define GGML_F32x4_MUL vmulq_f32
  1499. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1500. #define GGML_F32x4_REDUCE(res, x) \
  1501. { \
  1502. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1503. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1504. } \
  1505. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1506. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1507. } \
  1508. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1509. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1510. } \
  1511. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1512. }
  1513. #define GGML_F32_VEC GGML_F32x4
  1514. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1515. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1516. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1517. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1518. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1519. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1520. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1521. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1522. // F16 NEON
  1523. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1524. #define GGML_F16_STEP 32
  1525. #define GGML_F16_EPR 8
  1526. #define GGML_F16x8 float16x8_t
  1527. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1528. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1529. #define GGML_F16x8_LOAD vld1q_f16
  1530. #define GGML_F16x8_STORE vst1q_f16
  1531. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1532. #define GGML_F16x8_ADD vaddq_f16
  1533. #define GGML_F16x8_MUL vmulq_f16
  1534. #define GGML_F16x8_REDUCE(res, x) \
  1535. { \
  1536. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1537. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1538. } \
  1539. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1540. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1541. } \
  1542. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1543. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1544. } \
  1545. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1546. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1547. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1548. }
  1549. #define GGML_F16_VEC GGML_F16x8
  1550. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1551. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1552. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1553. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1554. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1555. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1556. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1557. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1558. #else
  1559. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1560. // and take advantage of the vcvt_ functions to convert to/from FP16
  1561. #define GGML_F16_STEP 16
  1562. #define GGML_F16_EPR 4
  1563. #define GGML_F32Cx4 float32x4_t
  1564. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1565. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1566. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1567. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1568. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1569. #define GGML_F32Cx4_ADD vaddq_f32
  1570. #define GGML_F32Cx4_MUL vmulq_f32
  1571. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1572. #define GGML_F16_VEC GGML_F32Cx4
  1573. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1574. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1575. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1576. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1577. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1578. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1579. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1580. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1581. #endif
  1582. #elif defined(__AVX__)
  1583. #define GGML_SIMD
  1584. // F32 AVX
  1585. #define GGML_F32_STEP 32
  1586. #define GGML_F32_EPR 8
  1587. #define GGML_F32x8 __m256
  1588. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1589. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1590. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1591. #define GGML_F32x8_STORE _mm256_storeu_ps
  1592. #if defined(__FMA__)
  1593. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1594. #else
  1595. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1596. #endif
  1597. #define GGML_F32x8_ADD _mm256_add_ps
  1598. #define GGML_F32x8_MUL _mm256_mul_ps
  1599. #define GGML_F32x8_REDUCE(res, x) \
  1600. { \
  1601. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1602. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1603. } \
  1604. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1605. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1606. } \
  1607. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1608. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1609. } \
  1610. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1611. _mm256_extractf128_ps(x[0], 1)); \
  1612. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1613. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1614. }
  1615. // TODO: is this optimal ?
  1616. #define GGML_F32_VEC GGML_F32x8
  1617. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1618. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1619. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1620. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1621. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1622. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1623. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1624. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1625. // F16 AVX
  1626. #define GGML_F16_STEP 32
  1627. #define GGML_F16_EPR 8
  1628. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1629. #define GGML_F32Cx8 __m256
  1630. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1631. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1632. #if defined(__F16C__)
  1633. // the _mm256_cvt intrinsics require F16C
  1634. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1635. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1636. #else
  1637. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1638. float tmp[8];
  1639. for (int i = 0; i < 8; i++)
  1640. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1641. return _mm256_loadu_ps(tmp);
  1642. }
  1643. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1644. float arr[8];
  1645. _mm256_storeu_ps(arr, y);
  1646. for (int i = 0; i < 8; i++)
  1647. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1648. }
  1649. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1650. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1651. #endif
  1652. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1653. #define GGML_F32Cx8_ADD _mm256_add_ps
  1654. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1655. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1656. #define GGML_F16_VEC GGML_F32Cx8
  1657. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1658. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1659. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1660. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1661. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1662. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1663. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1664. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1665. #elif defined(__POWER9_VECTOR__)
  1666. #define GGML_SIMD
  1667. // F32 POWER9
  1668. #define GGML_F32_STEP 32
  1669. #define GGML_F32_EPR 4
  1670. #define GGML_F32x4 vector float
  1671. #define GGML_F32x4_ZERO 0.0f
  1672. #define GGML_F32x4_SET1 vec_splats
  1673. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1674. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1675. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1676. #define GGML_F32x4_ADD vec_add
  1677. #define GGML_F32x4_MUL vec_mul
  1678. #define GGML_F32x4_REDUCE(res, x) \
  1679. { \
  1680. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1681. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1682. } \
  1683. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1684. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1685. } \
  1686. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1687. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1688. } \
  1689. res = vec_extract(x[0], 0) + \
  1690. vec_extract(x[0], 1) + \
  1691. vec_extract(x[0], 2) + \
  1692. vec_extract(x[0], 3); \
  1693. }
  1694. #define GGML_F32_VEC GGML_F32x4
  1695. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1696. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1697. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1698. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1699. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1700. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1701. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1702. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1703. // F16 POWER9
  1704. #define GGML_F16_STEP GGML_F32_STEP
  1705. #define GGML_F16_EPR GGML_F32_EPR
  1706. #define GGML_F16_VEC GGML_F32x4
  1707. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1708. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1709. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1710. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1711. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1712. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1713. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1714. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1715. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1716. #define GGML_F16_VEC_STORE(p, r, i) \
  1717. if (i & 0x1) \
  1718. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1719. r[i - GGML_ENDIAN_BYTE(0)]), \
  1720. 0, p - GGML_F16_EPR)
  1721. #elif defined(__wasm_simd128__)
  1722. #define GGML_SIMD
  1723. // F32 WASM
  1724. #define GGML_F32_STEP 16
  1725. #define GGML_F32_EPR 4
  1726. #define GGML_F32x4 v128_t
  1727. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1728. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1729. #define GGML_F32x4_LOAD wasm_v128_load
  1730. #define GGML_F32x4_STORE wasm_v128_store
  1731. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1732. #define GGML_F32x4_ADD wasm_f32x4_add
  1733. #define GGML_F32x4_MUL wasm_f32x4_mul
  1734. #define GGML_F32x4_REDUCE(res, x) \
  1735. { \
  1736. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1737. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1738. } \
  1739. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1740. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1741. } \
  1742. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1743. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1744. } \
  1745. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1746. wasm_f32x4_extract_lane(x[0], 1) + \
  1747. wasm_f32x4_extract_lane(x[0], 2) + \
  1748. wasm_f32x4_extract_lane(x[0], 3); \
  1749. }
  1750. #define GGML_F32_VEC GGML_F32x4
  1751. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1752. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1753. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1754. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1755. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1756. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1757. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1758. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1759. // F16 WASM
  1760. #define GGML_F16_STEP 16
  1761. #define GGML_F16_EPR 4
  1762. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1763. float tmp[4];
  1764. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1765. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1766. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1767. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1768. return wasm_v128_load(tmp);
  1769. }
  1770. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1771. float tmp[4];
  1772. wasm_v128_store(tmp, x);
  1773. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1774. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1775. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1776. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1777. }
  1778. #define GGML_F16x4 v128_t
  1779. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1780. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1781. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1782. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1783. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1784. #define GGML_F16x4_ADD wasm_f32x4_add
  1785. #define GGML_F16x4_MUL wasm_f32x4_mul
  1786. #define GGML_F16x4_REDUCE(res, x) \
  1787. { \
  1788. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1789. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1790. } \
  1791. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1792. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1793. } \
  1794. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1795. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1796. } \
  1797. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1798. wasm_f32x4_extract_lane(x[0], 1) + \
  1799. wasm_f32x4_extract_lane(x[0], 2) + \
  1800. wasm_f32x4_extract_lane(x[0], 3); \
  1801. }
  1802. #define GGML_F16_VEC GGML_F16x4
  1803. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1804. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1805. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1806. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1807. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1808. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1809. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1810. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1811. #elif defined(__SSE3__)
  1812. #define GGML_SIMD
  1813. // F32 SSE
  1814. #define GGML_F32_STEP 32
  1815. #define GGML_F32_EPR 4
  1816. #define GGML_F32x4 __m128
  1817. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1818. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1819. #define GGML_F32x4_LOAD _mm_loadu_ps
  1820. #define GGML_F32x4_STORE _mm_storeu_ps
  1821. #if defined(__FMA__)
  1822. // TODO: Does this work?
  1823. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1824. #else
  1825. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1826. #endif
  1827. #define GGML_F32x4_ADD _mm_add_ps
  1828. #define GGML_F32x4_MUL _mm_mul_ps
  1829. #define GGML_F32x4_REDUCE(res, x) \
  1830. { \
  1831. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1832. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1833. } \
  1834. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1835. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1836. } \
  1837. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1838. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1839. } \
  1840. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1841. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1842. }
  1843. // TODO: is this optimal ?
  1844. #define GGML_F32_VEC GGML_F32x4
  1845. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1846. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1847. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1848. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1849. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1850. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1851. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1852. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1853. // F16 SSE
  1854. #define GGML_F16_STEP 32
  1855. #define GGML_F16_EPR 4
  1856. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1857. float tmp[4];
  1858. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1859. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1860. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1861. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1862. return _mm_loadu_ps(tmp);
  1863. }
  1864. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1865. float arr[4];
  1866. _mm_storeu_ps(arr, y);
  1867. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1868. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1869. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1870. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1871. }
  1872. #define GGML_F32Cx4 __m128
  1873. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1874. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1875. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1876. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1877. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1878. #define GGML_F32Cx4_ADD _mm_add_ps
  1879. #define GGML_F32Cx4_MUL _mm_mul_ps
  1880. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1881. #define GGML_F16_VEC GGML_F32Cx4
  1882. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1883. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1884. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1886. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1887. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1888. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1889. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1890. #endif
  1891. // GGML_F32_ARR / GGML_F16_ARR
  1892. // number of registers to use per step
  1893. #ifdef GGML_SIMD
  1894. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1895. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1896. #endif
  1897. //
  1898. // fundamental operations
  1899. //
  1900. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1901. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1902. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1903. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1904. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1905. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1906. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1907. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1908. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1909. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1910. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1911. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1912. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1913. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1914. #ifdef GGML_SIMD
  1915. float sumf = 0.0f;
  1916. const int np = (n & ~(GGML_F32_STEP - 1));
  1917. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1918. GGML_F32_VEC ax[GGML_F32_ARR];
  1919. GGML_F32_VEC ay[GGML_F32_ARR];
  1920. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1921. for (int j = 0; j < GGML_F32_ARR; j++) {
  1922. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1923. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1924. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1925. }
  1926. }
  1927. // reduce sum0..sum3 to sum0
  1928. GGML_F32_VEC_REDUCE(sumf, sum);
  1929. // leftovers
  1930. for (int i = np; i < n; ++i) {
  1931. sumf += x[i]*y[i];
  1932. }
  1933. #else
  1934. // scalar
  1935. ggml_float sumf = 0.0;
  1936. for (int i = 0; i < n; ++i) {
  1937. sumf += (ggml_float)(x[i]*y[i]);
  1938. }
  1939. #endif
  1940. *s = sumf;
  1941. }
  1942. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1943. ggml_float sumf = 0.0;
  1944. #if defined(GGML_SIMD)
  1945. const int np = (n & ~(GGML_F16_STEP - 1));
  1946. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1947. GGML_F16_VEC ax[GGML_F16_ARR];
  1948. GGML_F16_VEC ay[GGML_F16_ARR];
  1949. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1950. for (int j = 0; j < GGML_F16_ARR; j++) {
  1951. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1952. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1953. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1954. }
  1955. }
  1956. // reduce sum0..sum3 to sum0
  1957. GGML_F16_VEC_REDUCE(sumf, sum);
  1958. // leftovers
  1959. for (int i = np; i < n; ++i) {
  1960. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1961. }
  1962. #else
  1963. for (int i = 0; i < n; ++i) {
  1964. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1965. }
  1966. #endif
  1967. *s = sumf;
  1968. }
  1969. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1970. const int nb = n / QK8_0;
  1971. assert(n % QK8_0 == 0);
  1972. assert(nb % 2 == 0);
  1973. const block_q4_0 * restrict x = vx;
  1974. const block_q8_0 * restrict y = vy;
  1975. #if defined(__ARM_NEON)
  1976. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1977. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1978. float sum8 = 0;
  1979. for (int i = 0; i < nb; i += 2) {
  1980. const block_q4_0 * restrict x0 = &x[i + 0];
  1981. const block_q4_0 * restrict x1 = &x[i + 1];
  1982. const block_q8_0 * restrict y0 = &y[i + 0];
  1983. const block_q8_0 * restrict y1 = &y[i + 1];
  1984. sum8 += x0->d * (y0->s0 + y0->s1) + x1->d * (y1->s0 + y1->s1);
  1985. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1986. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1987. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1988. // 4-bit -> 8-bit
  1989. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1990. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1991. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1992. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1993. // load y
  1994. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1995. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1996. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1997. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1998. // interleave
  1999. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2000. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2001. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2002. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2003. #if defined(__ARM_FEATURE_DOTPROD)
  2004. // dot product into int32x4_t
  2005. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2006. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2007. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2008. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2009. #else
  2010. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2011. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2012. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2013. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2014. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2015. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2016. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2017. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2018. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2019. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2020. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2021. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2022. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2023. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2024. #endif
  2025. }
  2026. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  2027. #elif defined(__AVX2__)
  2028. // Initialize accumulator with zeros
  2029. __m256 acc = _mm256_setzero_ps();
  2030. // Main loop
  2031. for (int i = 0; i < nb; ++i) {
  2032. /* Compute combined scale for the block */
  2033. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2034. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2035. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2036. const __m256i off = _mm256_set1_epi8( 8 );
  2037. bx = _mm256_sub_epi8( bx, off );
  2038. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2039. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2040. /* Multiply q with scale and accumulate */
  2041. acc = _mm256_fmadd_ps( d, q, acc );
  2042. }
  2043. *s = hsum_float_8(acc);
  2044. #elif defined(__AVX__)
  2045. // Initialize accumulator with zeros
  2046. __m256 acc = _mm256_setzero_ps();
  2047. // Main loop
  2048. for (int i = 0; i < nb; ++i) {
  2049. // Compute combined scale for the block
  2050. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2051. __m128i i32[2];
  2052. for (int j = 0; j < 2; ++j) {
  2053. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2054. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2055. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2056. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2057. const __m128i off = _mm_set1_epi8( 8 );
  2058. bx = _mm_sub_epi8( bx, off );
  2059. // Get absolute values of x vectors
  2060. const __m128i ax = _mm_sign_epi8(bx, bx);
  2061. // Sign the values of the y vectors
  2062. const __m128i sy = _mm_sign_epi8(by, bx);
  2063. // Perform multiplication and create 16-bit values
  2064. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2065. const __m128i ones = _mm_set1_epi16(1);
  2066. i32[j] = _mm_madd_epi16(ones, dot);
  2067. }
  2068. // Convert int32_t to float
  2069. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2070. // Apply the scale, and accumulate
  2071. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2072. }
  2073. *s = hsum_float_8(acc);
  2074. #else
  2075. // scalar
  2076. float sumf = 0.0;
  2077. for (int i = 0; i < nb; i++) {
  2078. const float d0 = x[i].d;
  2079. const float d1 = y[i].d;
  2080. const uint8_t * restrict p0 = x[i].qs;
  2081. const int8_t * restrict p1 = y[i].qs;
  2082. int sumi = 0;
  2083. for (int j = 0; j < QK8_0/2; j++) {
  2084. const uint8_t v0 = p0[j];
  2085. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2086. const int i1 = (int8_t) (v0 >> 4) - 8;
  2087. const int i2 = p1[2*j + 0];
  2088. const int i3 = p1[2*j + 1];
  2089. sumi += i0*i2 + i1*i3;
  2090. }
  2091. sumf += d0*d1*sumi;
  2092. }
  2093. *s = sumf;
  2094. #endif
  2095. }
  2096. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2097. const int nb = n / QK8_0;
  2098. assert(n % QK8_0 == 0);
  2099. assert(nb % 2 == 0);
  2100. const block_q4_1 * restrict x = vx;
  2101. const block_q8_0 * restrict y = vy;
  2102. // TODO: add AVX / WASM SIMD / etc
  2103. #if defined(__ARM_NEON)
  2104. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2105. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2106. float summs = 0;
  2107. for (int i = 0; i < nb; i += 2) {
  2108. const block_q4_1 * restrict x0 = &x[i + 0];
  2109. const block_q4_1 * restrict x1 = &x[i + 1];
  2110. const block_q8_0 * restrict y0 = &y[i + 0];
  2111. const block_q8_0 * restrict y1 = &y[i + 1];
  2112. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2113. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2114. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2115. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2116. // 4-bit -> 8-bit
  2117. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2118. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2119. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2120. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2121. // interleave
  2122. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2123. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2124. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2125. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2126. // load y
  2127. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2128. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2129. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2130. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2131. #if defined(__ARM_FEATURE_DOTPROD)
  2132. // dot product into int32x4_t
  2133. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2134. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2135. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2136. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2137. #else
  2138. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2139. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2140. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2141. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2142. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2143. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2144. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2145. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2146. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2147. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2148. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2149. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2150. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2151. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2152. #endif
  2153. }
  2154. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2155. #elif defined(__AVX2__)
  2156. // Initialize accumulator with zeros
  2157. __m256 acc = _mm256_setzero_ps();
  2158. float summs = 0;
  2159. // Main loop
  2160. for (int i = 0; i < nb; ++i) {
  2161. const float * d0 = &x[i].d;
  2162. const float * d1 = &y[i].d;
  2163. summs += x[i].m * (y[i].s0 + y[i].s1);
  2164. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2165. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2166. // Compute combined scales
  2167. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2168. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2169. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2170. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2171. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2172. // Accumulate d0*d1*x*y
  2173. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2174. }
  2175. *s = hsum_float_8(acc) + summs;
  2176. #else
  2177. // scalar
  2178. float sumf = 0.0;
  2179. for (int i = 0; i < nb; i++) {
  2180. const float d0 = x[i].d;
  2181. const float m0 = x[i].m;
  2182. const float d1 = y[i].d;
  2183. const uint8_t * restrict p0 = x[i].qs;
  2184. const int8_t * restrict p1 = y[i].qs;
  2185. // TODO: this is very slow ..
  2186. for (int j = 0; j < QK8_0/2; j++) {
  2187. const uint8_t v0 = p0[j];
  2188. const float f0 = d0*(v0 & 0xf) + m0;
  2189. const float f1 = d0*(v0 >> 4) + m0;
  2190. const float f2 = d1*p1[2*j + 0];
  2191. const float f3 = d1*p1[2*j + 1];
  2192. sumf += f0*f2 + f1*f3;
  2193. }
  2194. }
  2195. *s = sumf;
  2196. #endif
  2197. }
  2198. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2199. const int nb = n / QK8_0;
  2200. assert(n % QK8_0 == 0);
  2201. assert(nb % 2 == 0);
  2202. assert(QK8_0 == 2*QK4_2);
  2203. const block_q4_2 * restrict x = vx;
  2204. const block_q8_0 * restrict y = vy;
  2205. #if defined(__ARM_NEON)
  2206. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2207. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2208. for (int i = 0; i < nb; i += 2) {
  2209. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2210. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2211. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2212. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2213. const block_q8_0 * restrict y0 = &y[i + 0];
  2214. const block_q8_0 * restrict y1 = &y[i + 1];
  2215. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2216. const int8x16_t s8b = vdupq_n_s8(0x8);
  2217. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2218. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2219. // 4-bit -> 8-bit
  2220. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2221. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2222. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2223. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2224. // sub 8
  2225. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2226. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2227. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2228. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2229. // interleave
  2230. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2231. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2232. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2233. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2234. // load y
  2235. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2236. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2237. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2238. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2239. #if defined(__ARM_FEATURE_DOTPROD)
  2240. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2241. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2242. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2243. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2244. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2245. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2246. #else
  2247. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2248. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2249. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2250. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2251. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2252. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2253. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2254. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2255. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2256. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2257. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2258. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2259. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2260. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2261. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2262. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2263. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2264. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2265. #endif
  2266. }
  2267. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2268. #elif defined(__AVX2__)
  2269. // Initialize accumulator with zeros
  2270. __m256 acc = _mm256_setzero_ps();
  2271. // Main loop
  2272. for (int i = 0; i < nb; i++) {
  2273. /* Compute combined scale for the block */
  2274. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2275. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2276. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2277. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2278. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2279. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2280. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2281. const __m256i off = _mm256_set1_epi8(8);
  2282. bx = _mm256_sub_epi8(bx, off);
  2283. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2284. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2285. /* Multiply q with scale and accumulate */
  2286. acc = _mm256_fmadd_ps(d, q, acc);
  2287. }
  2288. *s = hsum_float_8(acc);
  2289. #else
  2290. // scalar
  2291. float sumf = 0.0;
  2292. for (int i = 0; i < nb; i++) {
  2293. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2294. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2295. const int8_t * restrict y0 = y[i].qs;
  2296. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2297. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2298. int sumi_0 = 0;
  2299. int sumi_1 = 0;
  2300. for (int j = 0; j < QK8_0/4; j++) {
  2301. const uint8_t v0 = x0[j];
  2302. const uint8_t v1 = x1[j];
  2303. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2304. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2305. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2306. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2307. const int i2_0 = y0[2*j + 0];
  2308. const int i3_0 = y0[2*j + 1];
  2309. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2310. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2311. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2312. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2313. }
  2314. sumf += (d0 * y[i].d) * sumi_0;
  2315. sumf += (d1 * y[i].d) * sumi_1;
  2316. }
  2317. *s = sumf;
  2318. #endif
  2319. }
  2320. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2321. const int nb = n / QK8_0;
  2322. assert(n % QK8_0 == 0);
  2323. assert(nb % 2 == 0);
  2324. assert(QK8_0 == 2*QK4_2);
  2325. const block_q4_3 * restrict x = vx;
  2326. const block_q8_0 * restrict y = vy;
  2327. #if defined(__ARM_NEON)
  2328. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2329. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2330. float summs0 = 0.0f;
  2331. float summs1 = 0.0f;
  2332. for (int i = 0; i < nb; ++i) {
  2333. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2334. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2335. const block_q8_0 * restrict y0 = &y[i + 0];
  2336. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2337. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2338. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2339. // 4-bit -> 8-bit
  2340. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0xf)));
  2341. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2342. // interleave
  2343. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2344. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2345. // load y
  2346. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2347. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2348. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2349. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2350. #if defined(__ARM_FEATURE_DOTPROD)
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2353. #else
  2354. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2355. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2356. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2357. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2358. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2359. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2360. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2361. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2362. #endif
  2363. }
  2364. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2365. #elif defined(__AVX2__)
  2366. // Initialize accumulator with zeros
  2367. __m256 acc = _mm256_setzero_ps();
  2368. // Main loop
  2369. for (int i = 0; i < nb; i++) {
  2370. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2371. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2372. const __m256 dx = _mm256_set_m128(d1, d0);
  2373. const __m128 m0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].m));
  2374. const __m128 m1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].m));
  2375. const __m256 mx = _mm256_set_m128(m1, m0);
  2376. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2377. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2378. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2379. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2380. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2381. const __m256i syi = _mm256_maddubs_epi16(_mm256_set1_epi8(1), by);
  2382. const __m256 syf = sum_i16_pairs_float(syi);
  2383. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2384. const __m256 sxy = _mm256_fmadd_ps(q, dx, _mm256_mul_ps(mx, syf));
  2385. acc = _mm256_fmadd_ps(sxy, dy, acc);
  2386. }
  2387. *s = hsum_float_8(acc);
  2388. #else
  2389. // scalar
  2390. float sumf = 0.0;
  2391. for (int i = 0; i < nb; i++) {
  2392. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2393. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2394. const int8_t * restrict y0 = y[i].qs;
  2395. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2396. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2397. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2398. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2399. int sxy_0 = 0;
  2400. int sxy_1 = 0;
  2401. for (int j = 0; j < QK8_0/4; j++) {
  2402. const uint8_t v0 = x0[j];
  2403. const uint8_t v1 = x1[j];
  2404. const int x0_0 = v0 & 0xf;
  2405. const int x1_0 = v0 >> 4;
  2406. const int x0_1 = v1 & 0xf;
  2407. const int x1_1 = v1 >> 4;
  2408. const int y0_0 = y0[2*j + 0];
  2409. const int y1_0 = y0[2*j + 1];
  2410. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2411. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2412. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2413. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2414. }
  2415. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2416. }
  2417. *s = sumf;
  2418. #endif
  2419. }
  2420. // compute GGML_VEC_DOT_UNROLL dot products at once
  2421. // xs - x row stride in bytes
  2422. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2423. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2424. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2425. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2426. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2427. }
  2428. #if defined(GGML_SIMD)
  2429. const int np = (n & ~(GGML_F16_STEP - 1));
  2430. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2431. GGML_F16_VEC ax[GGML_F16_ARR];
  2432. GGML_F16_VEC ay[GGML_F16_ARR];
  2433. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2434. for (int j = 0; j < GGML_F16_ARR; j++) {
  2435. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2436. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2437. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2438. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2439. }
  2440. }
  2441. }
  2442. // reduce sum0..sum3 to sum0
  2443. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2444. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2445. }
  2446. // leftovers
  2447. for (int i = np; i < n; ++i) {
  2448. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2449. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2450. }
  2451. }
  2452. #else
  2453. for (int i = 0; i < n; ++i) {
  2454. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2455. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2456. }
  2457. }
  2458. #endif
  2459. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2460. s[i] = sumf[i];
  2461. }
  2462. }
  2463. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2464. #if defined(GGML_SIMD)
  2465. const int np = (n & ~(GGML_F32_STEP - 1));
  2466. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2467. GGML_F32_VEC ax[GGML_F32_ARR];
  2468. GGML_F32_VEC ay[GGML_F32_ARR];
  2469. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2470. for (int j = 0; j < GGML_F32_ARR; j++) {
  2471. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2472. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2473. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2474. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2475. }
  2476. }
  2477. // leftovers
  2478. for (int i = np; i < n; ++i) {
  2479. y[i] += x[i]*v;
  2480. }
  2481. #else
  2482. // scalar
  2483. for (int i = 0; i < n; ++i) {
  2484. y[i] += x[i]*v;
  2485. }
  2486. #endif
  2487. }
  2488. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2489. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2490. #if defined(GGML_SIMD)
  2491. const int np = (n & ~(GGML_F32_STEP - 1));
  2492. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2493. GGML_F32_VEC ay[GGML_F32_ARR];
  2494. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2495. for (int j = 0; j < GGML_F32_ARR; j++) {
  2496. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2497. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2498. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2499. }
  2500. }
  2501. // leftovers
  2502. for (int i = np; i < n; ++i) {
  2503. y[i] *= v;
  2504. }
  2505. #else
  2506. // scalar
  2507. for (int i = 0; i < n; ++i) {
  2508. y[i] *= v;
  2509. }
  2510. #endif
  2511. }
  2512. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2513. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2514. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2515. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2516. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2517. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2518. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2519. static const float GELU_COEF_A = 0.044715f;
  2520. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2521. inline static float ggml_gelu_f32(float x) {
  2522. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2523. }
  2524. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2525. const uint16_t * i16 = (const uint16_t *) x;
  2526. for (int i = 0; i < n; ++i) {
  2527. y[i] = table_gelu_f16[i16[i]];
  2528. }
  2529. }
  2530. #ifdef GGML_GELU_FP16
  2531. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2532. uint16_t t;
  2533. for (int i = 0; i < n; ++i) {
  2534. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2535. memcpy(&t, &fp16, sizeof(uint16_t));
  2536. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2537. }
  2538. }
  2539. #else
  2540. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2541. for (int i = 0; i < n; ++i) {
  2542. y[i] = ggml_gelu_f32(x[i]);
  2543. }
  2544. }
  2545. #endif
  2546. // Sigmoid Linear Unit (SiLU) function
  2547. inline static float ggml_silu_f32(float x) {
  2548. return x/(1.0f + expf(-x));
  2549. }
  2550. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2551. const uint16_t * i16 = (const uint16_t *) x;
  2552. for (int i = 0; i < n; ++i) {
  2553. y[i] = table_silu_f16[i16[i]];
  2554. }
  2555. }
  2556. #ifdef GGML_SILU_FP16
  2557. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2558. uint16_t t;
  2559. for (int i = 0; i < n; ++i) {
  2560. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2561. memcpy(&t, &fp16, sizeof(uint16_t));
  2562. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2563. }
  2564. }
  2565. #else
  2566. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2567. for (int i = 0; i < n; ++i) {
  2568. y[i] = ggml_silu_f32(x[i]);
  2569. }
  2570. }
  2571. #endif
  2572. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2573. #ifndef GGML_USE_ACCELERATE
  2574. ggml_float sum = 0.0;
  2575. for (int i = 0; i < n; ++i) {
  2576. sum += (ggml_float)x[i];
  2577. }
  2578. *s = sum;
  2579. #else
  2580. vDSP_sve(x, 1, s, n);
  2581. #endif
  2582. }
  2583. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2584. #ifndef GGML_USE_ACCELERATE
  2585. float max = -INFINITY;
  2586. for (int i = 0; i < n; ++i) {
  2587. max = MAX(max, x[i]);
  2588. }
  2589. *s = max;
  2590. #else
  2591. vDSP_maxv(x, 1, s, n);
  2592. #endif
  2593. }
  2594. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2595. ggml_vec_norm_f32(n, s, x);
  2596. *s = 1.f/(*s);
  2597. }
  2598. //
  2599. // logging
  2600. //
  2601. #if (GGML_DEBUG >= 1)
  2602. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2603. #else
  2604. #define GGML_PRINT_DEBUG(...)
  2605. #endif
  2606. #if (GGML_DEBUG >= 5)
  2607. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2608. #else
  2609. #define GGML_PRINT_DEBUG_5(...)
  2610. #endif
  2611. #if (GGML_DEBUG >= 10)
  2612. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2613. #else
  2614. #define GGML_PRINT_DEBUG_10(...)
  2615. #endif
  2616. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2617. //
  2618. // data types
  2619. //
  2620. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2621. [GGML_TYPE_F32] = 1,
  2622. [GGML_TYPE_F16] = 1,
  2623. [GGML_TYPE_Q4_0] = QK4_0,
  2624. [GGML_TYPE_Q4_1] = QK4_1,
  2625. [GGML_TYPE_Q4_2] = QK4_2,
  2626. [GGML_TYPE_Q4_3] = QK4_3,
  2627. [GGML_TYPE_Q8_0] = QK8_0,
  2628. [GGML_TYPE_I8] = 1,
  2629. [GGML_TYPE_I16] = 1,
  2630. [GGML_TYPE_I32] = 1,
  2631. };
  2632. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2633. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2634. [GGML_TYPE_F32] = sizeof(float),
  2635. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2636. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2637. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2638. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2639. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2640. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2641. [GGML_TYPE_I8] = sizeof(int8_t),
  2642. [GGML_TYPE_I16] = sizeof(int16_t),
  2643. [GGML_TYPE_I32] = sizeof(int32_t),
  2644. };
  2645. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2646. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2647. [GGML_TYPE_F32] = "f32",
  2648. [GGML_TYPE_F16] = "f16",
  2649. [GGML_TYPE_Q4_0] = "q4_0",
  2650. [GGML_TYPE_Q4_1] = "q4_1",
  2651. [GGML_TYPE_Q4_2] = "q4_2",
  2652. [GGML_TYPE_Q4_3] = "q4_3",
  2653. [GGML_TYPE_Q8_0] = "q8_0",
  2654. [GGML_TYPE_I8] = "i8",
  2655. [GGML_TYPE_I16] = "i16",
  2656. [GGML_TYPE_I32] = "i32",
  2657. };
  2658. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2659. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2660. [GGML_TYPE_F32] = false,
  2661. [GGML_TYPE_F16] = false,
  2662. [GGML_TYPE_Q4_0] = true,
  2663. [GGML_TYPE_Q4_1] = true,
  2664. [GGML_TYPE_Q4_2] = true,
  2665. [GGML_TYPE_Q4_3] = true,
  2666. [GGML_TYPE_Q8_0] = true,
  2667. [GGML_TYPE_I8] = false,
  2668. [GGML_TYPE_I16] = false,
  2669. [GGML_TYPE_I32] = false,
  2670. };
  2671. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2672. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2673. "NONE",
  2674. "DUP",
  2675. "ADD",
  2676. "SUB",
  2677. "MUL",
  2678. "DIV",
  2679. "SQR",
  2680. "SQRT",
  2681. "SUM",
  2682. "MEAN",
  2683. "REPEAT",
  2684. "ABS",
  2685. "SGN",
  2686. "NEG",
  2687. "STEP",
  2688. "RELU",
  2689. "GELU",
  2690. "SILU",
  2691. "NORM",
  2692. "RMS_NORM",
  2693. "MUL_MAT",
  2694. "SCALE",
  2695. "CPY",
  2696. "CONT",
  2697. "RESHAPE",
  2698. "VIEW",
  2699. "PERMUTE",
  2700. "TRANSPOSE",
  2701. "GET_ROWS",
  2702. "DIAG_MASK_INF",
  2703. "SOFT_MAX",
  2704. "ROPE",
  2705. "CONV_1D_1S",
  2706. "CONV_1D_2S",
  2707. "FLASH_ATTN",
  2708. "FLASH_FF",
  2709. "MAP_UNARY",
  2710. "MAP_BINARY",
  2711. };
  2712. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2713. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2714. "none",
  2715. "x",
  2716. "x+y",
  2717. "x-y",
  2718. "x*y",
  2719. "x/y",
  2720. "x^2",
  2721. "√x",
  2722. "Σx",
  2723. "Σx/n",
  2724. "repeat(x)",
  2725. "abs(x)",
  2726. "sgn(x)",
  2727. "-x",
  2728. "step(x)",
  2729. "relu(x)",
  2730. "gelu(x)",
  2731. "silu(x)",
  2732. "norm(x)",
  2733. "rms_norm(x)",
  2734. "X*Y",
  2735. "x*v",
  2736. "x-\\>y",
  2737. "cont(x)",
  2738. "reshape(x)",
  2739. "view(x)",
  2740. "permute(x)",
  2741. "transpose(x)",
  2742. "get_rows(x)",
  2743. "diag_mask_inf(x)",
  2744. "soft_max(x)",
  2745. "rope(x)",
  2746. "conv_1d_1s(x)",
  2747. "conv_1d_2s(x)",
  2748. "flash_attn(x)",
  2749. "flash_ff(x)",
  2750. "f(x)",
  2751. "f(x,y)",
  2752. };
  2753. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2754. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2755. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2756. //
  2757. // ggml context
  2758. //
  2759. struct ggml_context {
  2760. size_t mem_size;
  2761. void * mem_buffer;
  2762. bool mem_buffer_owned;
  2763. bool no_alloc;
  2764. int n_objects;
  2765. struct ggml_object * objects_begin;
  2766. struct ggml_object * objects_end;
  2767. struct ggml_scratch scratch;
  2768. struct ggml_scratch scratch_save;
  2769. };
  2770. struct ggml_context_container {
  2771. bool used;
  2772. struct ggml_context context;
  2773. };
  2774. //
  2775. // compute types
  2776. //
  2777. enum ggml_task_type {
  2778. GGML_TASK_INIT = 0,
  2779. GGML_TASK_COMPUTE,
  2780. GGML_TASK_FINALIZE,
  2781. };
  2782. struct ggml_compute_params {
  2783. enum ggml_task_type type;
  2784. int ith, nth;
  2785. // work buffer for all threads
  2786. size_t wsize;
  2787. void * wdata;
  2788. };
  2789. //
  2790. // ggml state
  2791. //
  2792. struct ggml_state {
  2793. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2794. };
  2795. // global state
  2796. static struct ggml_state g_state;
  2797. static atomic_int g_state_barrier = 0;
  2798. // barrier via spin lock
  2799. inline static void ggml_critical_section_start(void) {
  2800. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2801. while (processing > 0) {
  2802. // wait for other threads to finish
  2803. atomic_fetch_sub(&g_state_barrier, 1);
  2804. sched_yield(); // TODO: reconsider this
  2805. processing = atomic_fetch_add(&g_state_barrier, 1);
  2806. }
  2807. }
  2808. // TODO: make this somehow automatically executed
  2809. // some sort of "sentry" mechanism
  2810. inline static void ggml_critical_section_end(void) {
  2811. atomic_fetch_sub(&g_state_barrier, 1);
  2812. }
  2813. ////////////////////////////////////////////////////////////////////////////////
  2814. void ggml_print_object(const struct ggml_object * obj) {
  2815. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2816. obj->offs, obj->size, (const void *) obj->next);
  2817. }
  2818. void ggml_print_objects(const struct ggml_context * ctx) {
  2819. struct ggml_object * obj = ctx->objects_begin;
  2820. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2821. while (obj != NULL) {
  2822. ggml_print_object(obj);
  2823. obj = obj->next;
  2824. }
  2825. GGML_PRINT("%s: --- end ---\n", __func__);
  2826. }
  2827. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2828. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2829. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2830. }
  2831. int ggml_nrows(const struct ggml_tensor * tensor) {
  2832. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2833. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2834. }
  2835. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2836. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2837. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2838. }
  2839. int ggml_blck_size(enum ggml_type type) {
  2840. return GGML_BLCK_SIZE[type];
  2841. }
  2842. size_t ggml_type_size(enum ggml_type type) {
  2843. return GGML_TYPE_SIZE[type];
  2844. }
  2845. float ggml_type_sizef(enum ggml_type type) {
  2846. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2847. }
  2848. const char * ggml_type_name(enum ggml_type type) {
  2849. return GGML_TYPE_NAME[type];
  2850. }
  2851. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2852. return GGML_TYPE_SIZE[tensor->type];
  2853. }
  2854. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2855. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2856. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2857. }
  2858. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2859. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2860. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2861. }
  2862. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2863. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2864. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2865. }
  2866. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2867. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2868. return
  2869. (t0->ne[0] == t1->ne[0]) &&
  2870. (t0->ne[2] == t1->ne[2]) &&
  2871. (t0->ne[3] == t1->ne[3]);
  2872. }
  2873. bool ggml_is_quantized(enum ggml_type type) {
  2874. return GGML_IS_QUANTIZED[type];
  2875. }
  2876. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2877. return tensor->nb[0] > tensor->nb[1];
  2878. }
  2879. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2880. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2881. return
  2882. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2883. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2884. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2885. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2886. }
  2887. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return
  2890. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2891. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2892. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2893. }
  2894. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2895. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2896. return
  2897. (t0->ne[0] == t1->ne[0] ) &&
  2898. (t0->ne[1] == t1->ne[1] ) &&
  2899. (t0->ne[2] == t1->ne[2] ) &&
  2900. (t0->ne[3] == t1->ne[3] );
  2901. }
  2902. // check if t1 can be represented as a repeatition of t0
  2903. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2904. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2905. return
  2906. (t1->ne[0]%t0->ne[0] == 0) &&
  2907. (t1->ne[1]%t0->ne[1] == 0) &&
  2908. (t1->ne[2]%t0->ne[2] == 0) &&
  2909. (t1->ne[3]%t0->ne[3] == 0);
  2910. }
  2911. static inline int ggml_up32(int n) {
  2912. return (n + 31) & ~31;
  2913. }
  2914. static inline int ggml_up64(int n) {
  2915. return (n + 63) & ~63;
  2916. }
  2917. static inline int ggml_up(int n, int m) {
  2918. // assert m is a power of 2
  2919. GGML_ASSERT((m & (m - 1)) == 0);
  2920. return (n + m - 1) & ~(m - 1);
  2921. }
  2922. // assert that pointer is aligned to GGML_MEM_ALIGN
  2923. #define ggml_assert_aligned(ptr) \
  2924. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2925. ////////////////////////////////////////////////////////////////////////////////
  2926. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2927. // make this function thread safe
  2928. ggml_critical_section_start();
  2929. static bool is_first_call = true;
  2930. if (is_first_call) {
  2931. // initialize time system (required on Windows)
  2932. ggml_time_init();
  2933. // initialize GELU, SILU and EXP F32 tables
  2934. {
  2935. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2936. ggml_fp16_t ii;
  2937. for (int i = 0; i < (1 << 16); ++i) {
  2938. uint16_t ui = i;
  2939. memcpy(&ii, &ui, sizeof(ii));
  2940. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2941. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2942. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2943. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2944. }
  2945. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2946. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2947. }
  2948. // initialize g_state
  2949. {
  2950. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2951. g_state = (struct ggml_state) {
  2952. /*.contexts =*/ { { 0 } },
  2953. };
  2954. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2955. g_state.contexts[i].used = false;
  2956. }
  2957. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2958. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2959. }
  2960. // initialize cuBLAS
  2961. #if defined(GGML_USE_CUBLAS)
  2962. ggml_init_cublas();
  2963. #endif
  2964. is_first_call = false;
  2965. }
  2966. // find non-used context in g_state
  2967. struct ggml_context * ctx = NULL;
  2968. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2969. if (!g_state.contexts[i].used) {
  2970. g_state.contexts[i].used = true;
  2971. ctx = &g_state.contexts[i].context;
  2972. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2973. break;
  2974. }
  2975. }
  2976. if (ctx == NULL) {
  2977. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2978. ggml_critical_section_end();
  2979. return NULL;
  2980. }
  2981. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2982. *ctx = (struct ggml_context) {
  2983. /*.mem_size =*/ mem_size,
  2984. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2985. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2986. /*.no_alloc =*/ params.no_alloc,
  2987. /*.n_objects =*/ 0,
  2988. /*.objects_begin =*/ NULL,
  2989. /*.objects_end =*/ NULL,
  2990. /*.scratch =*/ { 0, 0, NULL, },
  2991. /*.scratch_save =*/ { 0, 0, NULL, },
  2992. };
  2993. GGML_ASSERT(ctx->mem_buffer != NULL);
  2994. ggml_assert_aligned(ctx->mem_buffer);
  2995. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2996. ggml_critical_section_end();
  2997. return ctx;
  2998. }
  2999. void ggml_free(struct ggml_context * ctx) {
  3000. // make this function thread safe
  3001. ggml_critical_section_start();
  3002. bool found = false;
  3003. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3004. if (&g_state.contexts[i].context == ctx) {
  3005. g_state.contexts[i].used = false;
  3006. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3007. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3008. if (ctx->mem_buffer_owned) {
  3009. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3010. }
  3011. found = true;
  3012. break;
  3013. }
  3014. }
  3015. if (!found) {
  3016. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3017. }
  3018. ggml_critical_section_end();
  3019. }
  3020. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3021. return ctx->objects_end->offs + ctx->objects_end->size;
  3022. }
  3023. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3024. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3025. ctx->scratch = scratch;
  3026. return result;
  3027. }
  3028. ////////////////////////////////////////////////////////////////////////////////
  3029. struct ggml_tensor * ggml_new_tensor_impl(
  3030. struct ggml_context * ctx,
  3031. enum ggml_type type,
  3032. int n_dims,
  3033. const int64_t* ne,
  3034. void* data) {
  3035. // always insert objects at the end of the context's memory pool
  3036. struct ggml_object * obj_cur = ctx->objects_end;
  3037. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3038. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3039. const size_t cur_end = cur_offs + cur_size;
  3040. size_t size_needed = 0;
  3041. if (data == NULL && !ctx->no_alloc) {
  3042. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3043. for (int i = 1; i < n_dims; i++) {
  3044. size_needed *= ne[i];
  3045. }
  3046. // align to GGML_MEM_ALIGN
  3047. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3048. }
  3049. char * const mem_buffer = ctx->mem_buffer;
  3050. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3051. if (ctx->scratch.data == NULL || data != NULL) {
  3052. size_needed += sizeof(struct ggml_tensor);
  3053. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3054. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3055. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3056. assert(false);
  3057. return NULL;
  3058. }
  3059. *obj_new = (struct ggml_object) {
  3060. .offs = cur_end + GGML_OBJECT_SIZE,
  3061. .size = size_needed,
  3062. .next = NULL,
  3063. };
  3064. } else {
  3065. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3066. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3067. assert(false);
  3068. return NULL;
  3069. }
  3070. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3071. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3072. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3073. assert(false);
  3074. return NULL;
  3075. }
  3076. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3077. *obj_new = (struct ggml_object) {
  3078. .offs = cur_end + GGML_OBJECT_SIZE,
  3079. .size = sizeof(struct ggml_tensor),
  3080. .next = NULL,
  3081. };
  3082. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3083. ctx->scratch.offs += size_needed;
  3084. }
  3085. if (obj_cur != NULL) {
  3086. obj_cur->next = obj_new;
  3087. } else {
  3088. // this is the first object in this context
  3089. ctx->objects_begin = obj_new;
  3090. }
  3091. ctx->objects_end = obj_new;
  3092. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3093. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3094. ggml_assert_aligned(result);
  3095. *result = (struct ggml_tensor) {
  3096. /*.type =*/ type,
  3097. /*.n_dims =*/ n_dims,
  3098. /*.ne =*/ { 1, 1, 1, 1 },
  3099. /*.nb =*/ { 0, 0, 0, 0 },
  3100. /*.op =*/ GGML_OP_NONE,
  3101. /*.is_param =*/ false,
  3102. /*.grad =*/ NULL,
  3103. /*.src0 =*/ NULL,
  3104. /*.src1 =*/ NULL,
  3105. /*.opt =*/ { NULL },
  3106. /*.n_tasks =*/ 0,
  3107. /*.perf_runs =*/ 0,
  3108. /*.perf_cycles =*/ 0,
  3109. /*.perf_time_us =*/ 0,
  3110. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3111. /*.pad =*/ { 0 },
  3112. };
  3113. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3114. //ggml_assert_aligned(result->data);
  3115. for (int i = 0; i < n_dims; i++) {
  3116. result->ne[i] = ne[i];
  3117. }
  3118. result->nb[0] = GGML_TYPE_SIZE[type];
  3119. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3120. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3121. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3122. }
  3123. ctx->n_objects++;
  3124. return result;
  3125. }
  3126. struct ggml_tensor * ggml_new_tensor(
  3127. struct ggml_context * ctx,
  3128. enum ggml_type type,
  3129. int n_dims,
  3130. const int64_t * ne) {
  3131. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3132. }
  3133. struct ggml_tensor * ggml_new_tensor_1d(
  3134. struct ggml_context * ctx,
  3135. enum ggml_type type,
  3136. int64_t ne0) {
  3137. return ggml_new_tensor(ctx, type, 1, &ne0);
  3138. }
  3139. struct ggml_tensor * ggml_new_tensor_2d(
  3140. struct ggml_context * ctx,
  3141. enum ggml_type type,
  3142. int64_t ne0,
  3143. int64_t ne1) {
  3144. const int64_t ne[2] = { ne0, ne1 };
  3145. return ggml_new_tensor(ctx, type, 2, ne);
  3146. }
  3147. struct ggml_tensor * ggml_new_tensor_3d(
  3148. struct ggml_context * ctx,
  3149. enum ggml_type type,
  3150. int64_t ne0,
  3151. int64_t ne1,
  3152. int64_t ne2) {
  3153. const int64_t ne[3] = { ne0, ne1, ne2 };
  3154. return ggml_new_tensor(ctx, type, 3, ne);
  3155. }
  3156. struct ggml_tensor * ggml_new_tensor_4d(
  3157. struct ggml_context * ctx,
  3158. enum ggml_type type,
  3159. int64_t ne0,
  3160. int64_t ne1,
  3161. int64_t ne2,
  3162. int64_t ne3) {
  3163. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3164. return ggml_new_tensor(ctx, type, 4, ne);
  3165. }
  3166. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3167. ctx->scratch_save = ctx->scratch;
  3168. ctx->scratch.data = NULL;
  3169. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3170. ctx->scratch = ctx->scratch_save;
  3171. ggml_set_i32(result, value);
  3172. return result;
  3173. }
  3174. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3175. ctx->scratch_save = ctx->scratch;
  3176. ctx->scratch.data = NULL;
  3177. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3178. ctx->scratch = ctx->scratch_save;
  3179. ggml_set_f32(result, value);
  3180. return result;
  3181. }
  3182. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3183. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3184. }
  3185. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3186. memset(tensor->data, 0, ggml_nbytes(tensor));
  3187. return tensor;
  3188. }
  3189. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3190. const int n = ggml_nrows(tensor);
  3191. const int nc = tensor->ne[0];
  3192. const size_t n1 = tensor->nb[1];
  3193. char * const data = tensor->data;
  3194. switch (tensor->type) {
  3195. case GGML_TYPE_I8:
  3196. {
  3197. assert(tensor->nb[0] == sizeof(int8_t));
  3198. for (int i = 0; i < n; i++) {
  3199. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3200. }
  3201. } break;
  3202. case GGML_TYPE_I16:
  3203. {
  3204. assert(tensor->nb[0] == sizeof(int16_t));
  3205. for (int i = 0; i < n; i++) {
  3206. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3207. }
  3208. } break;
  3209. case GGML_TYPE_I32:
  3210. {
  3211. assert(tensor->nb[0] == sizeof(int32_t));
  3212. for (int i = 0; i < n; i++) {
  3213. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3214. }
  3215. } break;
  3216. case GGML_TYPE_F16:
  3217. {
  3218. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3219. for (int i = 0; i < n; i++) {
  3220. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3221. }
  3222. } break;
  3223. case GGML_TYPE_F32:
  3224. {
  3225. assert(tensor->nb[0] == sizeof(float));
  3226. for (int i = 0; i < n; i++) {
  3227. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3228. }
  3229. } break;
  3230. default:
  3231. {
  3232. GGML_ASSERT(false);
  3233. } break;
  3234. }
  3235. return tensor;
  3236. }
  3237. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3238. const int n = ggml_nrows(tensor);
  3239. const int nc = tensor->ne[0];
  3240. const size_t n1 = tensor->nb[1];
  3241. char * const data = tensor->data;
  3242. switch (tensor->type) {
  3243. case GGML_TYPE_I8:
  3244. {
  3245. assert(tensor->nb[0] == sizeof(int8_t));
  3246. for (int i = 0; i < n; i++) {
  3247. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3248. }
  3249. } break;
  3250. case GGML_TYPE_I16:
  3251. {
  3252. assert(tensor->nb[0] == sizeof(int16_t));
  3253. for (int i = 0; i < n; i++) {
  3254. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3255. }
  3256. } break;
  3257. case GGML_TYPE_I32:
  3258. {
  3259. assert(tensor->nb[0] == sizeof(int32_t));
  3260. for (int i = 0; i < n; i++) {
  3261. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3262. }
  3263. } break;
  3264. case GGML_TYPE_F16:
  3265. {
  3266. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3267. for (int i = 0; i < n; i++) {
  3268. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3269. }
  3270. } break;
  3271. case GGML_TYPE_F32:
  3272. {
  3273. assert(tensor->nb[0] == sizeof(float));
  3274. for (int i = 0; i < n; i++) {
  3275. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3276. }
  3277. } break;
  3278. default:
  3279. {
  3280. GGML_ASSERT(false);
  3281. } break;
  3282. }
  3283. return tensor;
  3284. }
  3285. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3286. switch (tensor->type) {
  3287. case GGML_TYPE_I8:
  3288. {
  3289. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3290. return ((int8_t *)(tensor->data))[i];
  3291. } break;
  3292. case GGML_TYPE_I16:
  3293. {
  3294. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3295. return ((int16_t *)(tensor->data))[i];
  3296. } break;
  3297. case GGML_TYPE_I32:
  3298. {
  3299. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3300. return ((int32_t *)(tensor->data))[i];
  3301. } break;
  3302. case GGML_TYPE_F16:
  3303. {
  3304. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3305. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3306. } break;
  3307. case GGML_TYPE_F32:
  3308. {
  3309. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3310. return ((float *)(tensor->data))[i];
  3311. } break;
  3312. default:
  3313. {
  3314. GGML_ASSERT(false);
  3315. } break;
  3316. }
  3317. return 0.0f;
  3318. }
  3319. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3320. switch (tensor->type) {
  3321. case GGML_TYPE_I8:
  3322. {
  3323. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3324. ((int8_t *)(tensor->data))[i] = value;
  3325. } break;
  3326. case GGML_TYPE_I16:
  3327. {
  3328. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3329. ((int16_t *)(tensor->data))[i] = value;
  3330. } break;
  3331. case GGML_TYPE_I32:
  3332. {
  3333. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3334. ((int32_t *)(tensor->data))[i] = value;
  3335. } break;
  3336. case GGML_TYPE_F16:
  3337. {
  3338. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3339. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3340. } break;
  3341. case GGML_TYPE_F32:
  3342. {
  3343. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3344. ((float *)(tensor->data))[i] = value;
  3345. } break;
  3346. default:
  3347. {
  3348. GGML_ASSERT(false);
  3349. } break;
  3350. }
  3351. }
  3352. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3353. switch (tensor->type) {
  3354. case GGML_TYPE_I8:
  3355. {
  3356. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3357. return ((int8_t *)(tensor->data))[i];
  3358. } break;
  3359. case GGML_TYPE_I16:
  3360. {
  3361. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3362. return ((int16_t *)(tensor->data))[i];
  3363. } break;
  3364. case GGML_TYPE_I32:
  3365. {
  3366. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3367. return ((int32_t *)(tensor->data))[i];
  3368. } break;
  3369. case GGML_TYPE_F16:
  3370. {
  3371. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3372. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3373. } break;
  3374. case GGML_TYPE_F32:
  3375. {
  3376. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3377. return ((float *)(tensor->data))[i];
  3378. } break;
  3379. default:
  3380. {
  3381. GGML_ASSERT(false);
  3382. } break;
  3383. }
  3384. return 0.0f;
  3385. }
  3386. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3387. switch (tensor->type) {
  3388. case GGML_TYPE_I8:
  3389. {
  3390. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3391. ((int8_t *)(tensor->data))[i] = value;
  3392. } break;
  3393. case GGML_TYPE_I16:
  3394. {
  3395. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3396. ((int16_t *)(tensor->data))[i] = value;
  3397. } break;
  3398. case GGML_TYPE_I32:
  3399. {
  3400. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3401. ((int32_t *)(tensor->data))[i] = value;
  3402. } break;
  3403. case GGML_TYPE_F16:
  3404. {
  3405. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3406. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3407. } break;
  3408. case GGML_TYPE_F32:
  3409. {
  3410. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3411. ((float *)(tensor->data))[i] = value;
  3412. } break;
  3413. default:
  3414. {
  3415. GGML_ASSERT(false);
  3416. } break;
  3417. }
  3418. }
  3419. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3420. return tensor->data;
  3421. }
  3422. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3423. assert(tensor->type == GGML_TYPE_F32);
  3424. return (float *)(tensor->data);
  3425. }
  3426. struct ggml_tensor * ggml_view_tensor(
  3427. struct ggml_context * ctx,
  3428. const struct ggml_tensor * src) {
  3429. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3430. result->nb[0] = src->nb[0];
  3431. result->nb[1] = src->nb[1];
  3432. result->nb[2] = src->nb[2];
  3433. result->nb[3] = src->nb[3];
  3434. return result;
  3435. }
  3436. ////////////////////////////////////////////////////////////////////////////////
  3437. // ggml_dup
  3438. struct ggml_tensor * ggml_dup_impl(
  3439. struct ggml_context * ctx,
  3440. struct ggml_tensor * a,
  3441. bool inplace) {
  3442. bool is_node = false;
  3443. if (!inplace && (a->grad)) {
  3444. is_node = true;
  3445. }
  3446. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3447. result->op = GGML_OP_DUP;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src0 = a;
  3450. result->src1 = NULL;
  3451. return result;
  3452. }
  3453. struct ggml_tensor * ggml_dup(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. return ggml_dup_impl(ctx, a, false);
  3457. }
  3458. struct ggml_tensor * ggml_dup_inplace(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a) {
  3461. return ggml_dup_impl(ctx, a, true);
  3462. }
  3463. // ggml_add
  3464. struct ggml_tensor * ggml_add_impl(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a,
  3467. struct ggml_tensor * b,
  3468. bool inplace) {
  3469. GGML_ASSERT(ggml_are_same_shape(a, b));
  3470. bool is_node = false;
  3471. if (!inplace && (a->grad || b->grad)) {
  3472. is_node = true;
  3473. }
  3474. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3475. result->op = GGML_OP_ADD;
  3476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3477. result->src0 = a;
  3478. result->src1 = b;
  3479. return result;
  3480. }
  3481. struct ggml_tensor * ggml_add(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a,
  3484. struct ggml_tensor * b) {
  3485. return ggml_add_impl(ctx, a, b, false);
  3486. }
  3487. struct ggml_tensor * ggml_add_inplace(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b) {
  3491. return ggml_add_impl(ctx, a, b, true);
  3492. }
  3493. // ggml_sub
  3494. struct ggml_tensor * ggml_sub_impl(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b,
  3498. bool inplace) {
  3499. GGML_ASSERT(ggml_are_same_shape(a, b));
  3500. bool is_node = false;
  3501. if (!inplace && (a->grad || b->grad)) {
  3502. is_node = true;
  3503. }
  3504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3505. result->op = GGML_OP_SUB;
  3506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3507. result->src0 = a;
  3508. result->src1 = b;
  3509. return result;
  3510. }
  3511. struct ggml_tensor * ggml_sub(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. struct ggml_tensor * b) {
  3515. return ggml_sub_impl(ctx, a, b, false);
  3516. }
  3517. struct ggml_tensor * ggml_sub_inplace(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a,
  3520. struct ggml_tensor * b) {
  3521. return ggml_sub_impl(ctx, a, b, true);
  3522. }
  3523. // ggml_mul
  3524. struct ggml_tensor * ggml_mul_impl(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b,
  3528. bool inplace) {
  3529. GGML_ASSERT(ggml_are_same_shape(a, b));
  3530. bool is_node = false;
  3531. if (!inplace && (a->grad || b->grad)) {
  3532. is_node = true;
  3533. }
  3534. if (inplace) {
  3535. GGML_ASSERT(is_node == false);
  3536. }
  3537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3538. result->op = GGML_OP_MUL;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = b;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_mul(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. struct ggml_tensor * b) {
  3548. return ggml_mul_impl(ctx, a, b, false);
  3549. }
  3550. struct ggml_tensor * ggml_mul_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b) {
  3554. return ggml_mul_impl(ctx, a, b, true);
  3555. }
  3556. // ggml_div
  3557. struct ggml_tensor * ggml_div_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. struct ggml_tensor * b,
  3561. bool inplace) {
  3562. GGML_ASSERT(ggml_are_same_shape(a, b));
  3563. bool is_node = false;
  3564. if (!inplace && (a->grad || b->grad)) {
  3565. is_node = true;
  3566. }
  3567. if (inplace) {
  3568. GGML_ASSERT(is_node == false);
  3569. }
  3570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3571. result->op = GGML_OP_DIV;
  3572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3573. result->src0 = a;
  3574. result->src1 = b;
  3575. return result;
  3576. }
  3577. struct ggml_tensor * ggml_div(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b) {
  3581. return ggml_div_impl(ctx, a, b, false);
  3582. }
  3583. struct ggml_tensor * ggml_div_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. struct ggml_tensor * b) {
  3587. return ggml_div_impl(ctx, a, b, true);
  3588. }
  3589. // ggml_sqr
  3590. struct ggml_tensor * ggml_sqr_impl(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. bool inplace) {
  3594. bool is_node = false;
  3595. if (!inplace && (a->grad)) {
  3596. is_node = true;
  3597. }
  3598. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3599. result->op = GGML_OP_SQR;
  3600. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3601. result->src0 = a;
  3602. result->src1 = NULL;
  3603. return result;
  3604. }
  3605. struct ggml_tensor * ggml_sqr(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a) {
  3608. return ggml_sqr_impl(ctx, a, false);
  3609. }
  3610. struct ggml_tensor * ggml_sqr_inplace(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a) {
  3613. return ggml_sqr_impl(ctx, a, true);
  3614. }
  3615. // ggml_sqrt
  3616. struct ggml_tensor * ggml_sqrt_impl(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. bool inplace) {
  3620. bool is_node = false;
  3621. if (!inplace && (a->grad)) {
  3622. is_node = true;
  3623. }
  3624. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3625. result->op = GGML_OP_SQRT;
  3626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3627. result->src0 = a;
  3628. result->src1 = NULL;
  3629. return result;
  3630. }
  3631. struct ggml_tensor * ggml_sqrt(
  3632. struct ggml_context * ctx,
  3633. struct ggml_tensor * a) {
  3634. return ggml_sqrt_impl(ctx, a, false);
  3635. }
  3636. struct ggml_tensor * ggml_sqrt_inplace(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a) {
  3639. return ggml_sqrt_impl(ctx, a, true);
  3640. }
  3641. // ggml_sum
  3642. struct ggml_tensor * ggml_sum(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a) {
  3645. bool is_node = false;
  3646. if (a->grad) {
  3647. is_node = true;
  3648. }
  3649. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3650. result->op = GGML_OP_SUM;
  3651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3652. result->src0 = a;
  3653. result->src1 = NULL;
  3654. return result;
  3655. }
  3656. // ggml_mean
  3657. struct ggml_tensor * ggml_mean(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a) {
  3660. bool is_node = false;
  3661. if (a->grad) {
  3662. GGML_ASSERT(false); // TODO: implement
  3663. is_node = true;
  3664. }
  3665. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3666. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3667. result->op = GGML_OP_MEAN;
  3668. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3669. result->src0 = a;
  3670. result->src1 = NULL;
  3671. return result;
  3672. }
  3673. // ggml_repeat
  3674. struct ggml_tensor * ggml_repeat(
  3675. struct ggml_context * ctx,
  3676. struct ggml_tensor * a,
  3677. struct ggml_tensor * b) {
  3678. GGML_ASSERT(ggml_can_repeat(a, b));
  3679. bool is_node = false;
  3680. if (a->grad) {
  3681. is_node = true;
  3682. }
  3683. if (ggml_are_same_shape(a, b) && !is_node) {
  3684. return a;
  3685. }
  3686. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3687. result->op = GGML_OP_REPEAT;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src0 = a;
  3690. result->src1 = b;
  3691. return result;
  3692. }
  3693. // ggml_abs
  3694. struct ggml_tensor * ggml_abs_impl(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. bool inplace) {
  3698. bool is_node = false;
  3699. if (!inplace && (a->grad)) {
  3700. is_node = true;
  3701. }
  3702. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3703. result->op = GGML_OP_ABS;
  3704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3705. result->src0 = a;
  3706. result->src1 = NULL;
  3707. return result;
  3708. }
  3709. struct ggml_tensor * ggml_abs(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a) {
  3712. return ggml_abs_impl(ctx, a, false);
  3713. }
  3714. struct ggml_tensor * ggml_abs_inplace(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a) {
  3717. return ggml_abs_impl(ctx, a, true);
  3718. }
  3719. // ggml_sgn
  3720. struct ggml_tensor * ggml_sgn_impl(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a,
  3723. bool inplace) {
  3724. bool is_node = false;
  3725. if (!inplace && (a->grad)) {
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3729. result->op = GGML_OP_SGN;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src0 = a;
  3732. result->src1 = NULL;
  3733. return result;
  3734. }
  3735. struct ggml_tensor * ggml_sgn(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a) {
  3738. return ggml_sgn_impl(ctx, a, false);
  3739. }
  3740. struct ggml_tensor * ggml_sgn_inplace(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a) {
  3743. return ggml_sgn_impl(ctx, a, true);
  3744. }
  3745. // ggml_neg
  3746. struct ggml_tensor * ggml_neg_impl(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. bool inplace) {
  3750. bool is_node = false;
  3751. if (!inplace && (a->grad)) {
  3752. is_node = true;
  3753. }
  3754. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3755. result->op = GGML_OP_NEG;
  3756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3757. result->src0 = a;
  3758. result->src1 = NULL;
  3759. return result;
  3760. }
  3761. struct ggml_tensor * ggml_neg(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. return ggml_neg_impl(ctx, a, false);
  3765. }
  3766. struct ggml_tensor * ggml_neg_inplace(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a) {
  3769. return ggml_neg_impl(ctx, a, true);
  3770. }
  3771. // ggml_step
  3772. struct ggml_tensor * ggml_step_impl(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. bool inplace) {
  3776. bool is_node = false;
  3777. if (!inplace && (a->grad)) {
  3778. is_node = true;
  3779. }
  3780. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3781. result->op = GGML_OP_STEP;
  3782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3783. result->src0 = a;
  3784. result->src1 = NULL;
  3785. return result;
  3786. }
  3787. struct ggml_tensor * ggml_step(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a) {
  3790. return ggml_step_impl(ctx, a, false);
  3791. }
  3792. struct ggml_tensor * ggml_step_inplace(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a) {
  3795. return ggml_step_impl(ctx, a, true);
  3796. }
  3797. // ggml_relu
  3798. struct ggml_tensor * ggml_relu_impl(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. bool inplace) {
  3802. bool is_node = false;
  3803. if (!inplace && (a->grad)) {
  3804. is_node = true;
  3805. }
  3806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3807. result->op = GGML_OP_RELU;
  3808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3809. result->src0 = a;
  3810. result->src1 = NULL;
  3811. return result;
  3812. }
  3813. struct ggml_tensor * ggml_relu(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a) {
  3816. return ggml_relu_impl(ctx, a, false);
  3817. }
  3818. struct ggml_tensor * ggml_relu_inplace(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a) {
  3821. return ggml_relu_impl(ctx, a, true);
  3822. }
  3823. // ggml_gelu
  3824. struct ggml_tensor * ggml_gelu_impl(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. bool inplace) {
  3828. bool is_node = false;
  3829. if (!inplace && (a->grad)) {
  3830. is_node = true;
  3831. }
  3832. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3833. result->op = GGML_OP_GELU;
  3834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3835. result->src0 = a;
  3836. result->src1 = NULL;
  3837. return result;
  3838. }
  3839. struct ggml_tensor * ggml_gelu(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a) {
  3842. return ggml_gelu_impl(ctx, a, false);
  3843. }
  3844. struct ggml_tensor * ggml_gelu_inplace(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a) {
  3847. return ggml_gelu_impl(ctx, a, true);
  3848. }
  3849. // ggml_silu
  3850. struct ggml_tensor * ggml_silu_impl(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. bool inplace) {
  3854. bool is_node = false;
  3855. if (!inplace && (a->grad)) {
  3856. is_node = true;
  3857. }
  3858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3859. result->op = GGML_OP_SILU;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src0 = a;
  3862. result->src1 = NULL;
  3863. return result;
  3864. }
  3865. struct ggml_tensor * ggml_silu(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. return ggml_silu_impl(ctx, a, false);
  3869. }
  3870. struct ggml_tensor * ggml_silu_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a) {
  3873. return ggml_silu_impl(ctx, a, true);
  3874. }
  3875. // ggml_norm
  3876. struct ggml_tensor * ggml_norm_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. bool inplace) {
  3880. bool is_node = false;
  3881. if (!inplace && (a->grad)) {
  3882. GGML_ASSERT(false); // TODO: implement backward
  3883. is_node = true;
  3884. }
  3885. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3886. result->op = GGML_OP_NORM;
  3887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3888. result->src0 = a;
  3889. result->src1 = NULL; // TODO: maybe store epsilon here?
  3890. return result;
  3891. }
  3892. struct ggml_tensor * ggml_norm(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a) {
  3895. return ggml_norm_impl(ctx, a, false);
  3896. }
  3897. struct ggml_tensor * ggml_norm_inplace(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a) {
  3900. return ggml_norm_impl(ctx, a, true);
  3901. }
  3902. struct ggml_tensor * ggml_rms_norm_impl(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. bool inplace) {
  3906. bool is_node = false;
  3907. if (!inplace && (a->grad)) {
  3908. GGML_ASSERT(false); // TODO: implement backward
  3909. is_node = true;
  3910. }
  3911. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3912. result->op = GGML_OP_RMS_NORM;
  3913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3914. result->src0 = a;
  3915. result->src1 = NULL; // TODO: maybe store epsilon here?
  3916. return result;
  3917. }
  3918. struct ggml_tensor * ggml_rms_norm(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a) {
  3921. return ggml_rms_norm_impl(ctx, a, false);
  3922. }
  3923. struct ggml_tensor * ggml_rms_norm_inplace(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a) {
  3926. return ggml_rms_norm_impl(ctx, a, true);
  3927. }
  3928. // ggml_mul_mat
  3929. struct ggml_tensor * ggml_mul_mat(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b) {
  3933. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3934. GGML_ASSERT(!ggml_is_transposed(a));
  3935. bool is_node = false;
  3936. if (a->grad || b->grad) {
  3937. is_node = true;
  3938. }
  3939. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3940. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3941. result->op = GGML_OP_MUL_MAT;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src0 = a;
  3944. result->src1 = b;
  3945. return result;
  3946. }
  3947. // ggml_scale
  3948. struct ggml_tensor * ggml_scale_impl(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. struct ggml_tensor * b,
  3952. bool inplace) {
  3953. GGML_ASSERT(ggml_is_scalar(b));
  3954. GGML_ASSERT(ggml_is_padded_1d(a));
  3955. bool is_node = false;
  3956. if (!inplace && (a->grad || b->grad)) {
  3957. GGML_ASSERT(false); // TODO: implement backward
  3958. is_node = true;
  3959. }
  3960. // TODO: when implement backward, fix this:
  3961. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3962. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3963. result->op = GGML_OP_SCALE;
  3964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3965. result->src0 = a;
  3966. result->src1 = b;
  3967. return result;
  3968. }
  3969. struct ggml_tensor * ggml_scale(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. struct ggml_tensor * b) {
  3973. return ggml_scale_impl(ctx, a, b, false);
  3974. }
  3975. struct ggml_tensor * ggml_scale_inplace(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_scale_impl(ctx, a, b, true);
  3980. }
  3981. // ggml_cpy
  3982. struct ggml_tensor * ggml_cpy_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. struct ggml_tensor * b,
  3986. bool inplace) {
  3987. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3988. bool is_node = false;
  3989. if (!inplace && (a->grad || b->grad)) {
  3990. GGML_ASSERT(false); // TODO: implement backward
  3991. is_node = true;
  3992. }
  3993. // make a view of the destination
  3994. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3995. result->op = GGML_OP_CPY;
  3996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3997. result->src0 = a;
  3998. result->src1 = b;
  3999. return result;
  4000. }
  4001. struct ggml_tensor * ggml_cpy(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. struct ggml_tensor * b) {
  4005. return ggml_cpy_impl(ctx, a, b, false);
  4006. }
  4007. struct ggml_tensor * ggml_cpy_inplace(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b) {
  4011. return ggml_cpy_impl(ctx, a, b, true);
  4012. }
  4013. // ggml_cont
  4014. struct ggml_tensor * ggml_cont_impl(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a,
  4017. bool inplace) {
  4018. bool is_node = false;
  4019. if (!inplace && a->grad) {
  4020. GGML_ASSERT(false); // TODO: implement backward
  4021. is_node = true;
  4022. }
  4023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4024. result->op = GGML_OP_CONT;
  4025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4026. result->src0 = a;
  4027. result->src1 = NULL;
  4028. return result;
  4029. }
  4030. struct ggml_tensor * ggml_cont(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_cont_impl(ctx, a, false);
  4034. }
  4035. struct ggml_tensor * ggml_cont_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a) {
  4038. return ggml_cont_impl(ctx, a, true);
  4039. }
  4040. // ggml_reshape
  4041. struct ggml_tensor * ggml_reshape(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. struct ggml_tensor * b) {
  4045. GGML_ASSERT(ggml_is_contiguous(a));
  4046. GGML_ASSERT(ggml_is_contiguous(b));
  4047. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4048. bool is_node = false;
  4049. if (a->grad || b->grad) {
  4050. GGML_ASSERT(false); // TODO: implement backward
  4051. is_node = true;
  4052. }
  4053. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4054. result->op = GGML_OP_RESHAPE;
  4055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4056. result->src0 = a;
  4057. result->src1 = NULL;
  4058. return result;
  4059. }
  4060. struct ggml_tensor * ggml_reshape_2d(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a,
  4063. int64_t ne0,
  4064. int64_t ne1) {
  4065. GGML_ASSERT(ggml_is_contiguous(a));
  4066. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4067. bool is_node = false;
  4068. if (a->grad) {
  4069. GGML_ASSERT(false); // TODO: implement backward
  4070. is_node = true;
  4071. }
  4072. const int64_t ne[2] = { ne0, ne1 };
  4073. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4074. result->op = GGML_OP_RESHAPE;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src0 = a;
  4077. result->src1 = NULL;
  4078. return result;
  4079. }
  4080. struct ggml_tensor * ggml_reshape_3d(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a,
  4083. int64_t ne0,
  4084. int64_t ne1,
  4085. int64_t ne2) {
  4086. GGML_ASSERT(ggml_is_contiguous(a));
  4087. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4088. bool is_node = false;
  4089. if (a->grad) {
  4090. GGML_ASSERT(false); // TODO: implement backward
  4091. is_node = true;
  4092. }
  4093. const int64_t ne[3] = { ne0, ne1, ne2 };
  4094. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4095. result->op = GGML_OP_RESHAPE;
  4096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4097. result->src0 = a;
  4098. result->src1 = NULL;
  4099. return result;
  4100. }
  4101. // ggml_view_1d
  4102. struct ggml_tensor * ggml_view_1d(
  4103. struct ggml_context * ctx,
  4104. struct ggml_tensor * a,
  4105. int64_t ne0,
  4106. size_t offset) {
  4107. if (a->grad) {
  4108. GGML_ASSERT(false); // gradient propagation is not supported
  4109. }
  4110. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4111. result->op = GGML_OP_VIEW;
  4112. result->grad = NULL;
  4113. result->src0 = a;
  4114. result->src1 = NULL; // TODO: maybe store the offset here?
  4115. return result;
  4116. }
  4117. // ggml_view_2d
  4118. struct ggml_tensor * ggml_view_2d(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. int64_t ne0,
  4122. int64_t ne1,
  4123. size_t nb1,
  4124. size_t offset) {
  4125. if (a->grad) {
  4126. GGML_ASSERT(false); // gradient propagation is not supported
  4127. }
  4128. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4129. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4130. result->nb[1] = nb1;
  4131. result->nb[2] = result->nb[1]*ne1;
  4132. result->nb[3] = result->nb[2];
  4133. result->op = GGML_OP_VIEW;
  4134. result->grad = NULL;
  4135. result->src0 = a;
  4136. result->src1 = NULL; // TODO: maybe store the offset here?
  4137. return result;
  4138. }
  4139. // ggml_view_3d
  4140. struct ggml_tensor * ggml_view_3d(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. int64_t ne0,
  4144. int64_t ne1,
  4145. int64_t ne2,
  4146. size_t nb1,
  4147. size_t nb2,
  4148. size_t offset) {
  4149. if (a->grad) {
  4150. GGML_ASSERT(false); // gradient propagation is not supported
  4151. }
  4152. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4153. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4154. result->nb[1] = nb1;
  4155. result->nb[2] = nb2;
  4156. result->nb[3] = result->nb[2]*ne2;
  4157. result->op = GGML_OP_VIEW;
  4158. result->grad = NULL;
  4159. result->src0 = a;
  4160. result->src1 = NULL; // TODO: maybe store the offset here?
  4161. return result;
  4162. }
  4163. // ggml_permute
  4164. struct ggml_tensor * ggml_permute(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. int axis0,
  4168. int axis1,
  4169. int axis2,
  4170. int axis3) {
  4171. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4172. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4173. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4174. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4175. GGML_ASSERT(axis0 != axis1);
  4176. GGML_ASSERT(axis0 != axis2);
  4177. GGML_ASSERT(axis0 != axis3);
  4178. GGML_ASSERT(axis1 != axis2);
  4179. GGML_ASSERT(axis1 != axis3);
  4180. GGML_ASSERT(axis2 != axis3);
  4181. bool is_node = false;
  4182. if (a->grad) {
  4183. GGML_ASSERT(false); // TODO: implement backward
  4184. is_node = true;
  4185. }
  4186. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4187. int ne[GGML_MAX_DIMS];
  4188. int nb[GGML_MAX_DIMS];
  4189. ne[axis0] = a->ne[0];
  4190. ne[axis1] = a->ne[1];
  4191. ne[axis2] = a->ne[2];
  4192. ne[axis3] = a->ne[3];
  4193. nb[axis0] = a->nb[0];
  4194. nb[axis1] = a->nb[1];
  4195. nb[axis2] = a->nb[2];
  4196. nb[axis3] = a->nb[3];
  4197. result->ne[0] = ne[0];
  4198. result->ne[1] = ne[1];
  4199. result->ne[2] = ne[2];
  4200. result->ne[3] = ne[3];
  4201. result->nb[0] = nb[0];
  4202. result->nb[1] = nb[1];
  4203. result->nb[2] = nb[2];
  4204. result->nb[3] = nb[3];
  4205. result->op = GGML_OP_PERMUTE;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src0 = a;
  4208. result->src1 = NULL; // TODO: maybe store the permutation here?
  4209. return result;
  4210. }
  4211. // ggml_transpose
  4212. struct ggml_tensor * ggml_transpose(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. bool is_node = false;
  4216. if (a->grad) {
  4217. GGML_ASSERT(false); // TODO: implement backward
  4218. is_node = true;
  4219. }
  4220. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4221. result->ne[0] = a->ne[1];
  4222. result->ne[1] = a->ne[0];
  4223. result->nb[0] = a->nb[1];
  4224. result->nb[1] = a->nb[0];
  4225. result->op = GGML_OP_TRANSPOSE;
  4226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4227. result->src0 = a;
  4228. result->src1 = NULL;
  4229. return result;
  4230. }
  4231. // ggml_get_rows
  4232. struct ggml_tensor * ggml_get_rows(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a,
  4235. struct ggml_tensor * b) {
  4236. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4237. bool is_node = false;
  4238. if (a->grad || b->grad) {
  4239. GGML_ASSERT(false); // TODO: implement backward
  4240. is_node = true;
  4241. }
  4242. // TODO: implement non F32 return
  4243. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4244. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4245. result->op = GGML_OP_GET_ROWS;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src0 = a;
  4248. result->src1 = b;
  4249. return result;
  4250. }
  4251. // ggml_diag_mask_inf
  4252. struct ggml_tensor * ggml_diag_mask_inf(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. int n_past) {
  4256. bool is_node = false;
  4257. if (a->grad) {
  4258. GGML_ASSERT(false); // TODO: implement backward
  4259. is_node = true;
  4260. }
  4261. // TODO: when implement backward, fix this:
  4262. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4263. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4264. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4265. result->op = GGML_OP_DIAG_MASK_INF;
  4266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4267. result->src0 = a;
  4268. result->src1 = b;
  4269. return result;
  4270. }
  4271. // ggml_soft_max
  4272. struct ggml_tensor * ggml_soft_max(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. bool is_node = false;
  4276. if (a->grad) {
  4277. GGML_ASSERT(false); // TODO: implement backward
  4278. is_node = true;
  4279. }
  4280. // TODO: when implement backward, fix this:
  4281. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4282. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4283. result->op = GGML_OP_SOFT_MAX;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src0 = a;
  4286. result->src1 = NULL;
  4287. return result;
  4288. }
  4289. // ggml_rope
  4290. struct ggml_tensor * ggml_rope(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. int n_past,
  4294. int n_dims,
  4295. int mode) {
  4296. GGML_ASSERT(n_past >= 0);
  4297. bool is_node = false;
  4298. if (a->grad) {
  4299. GGML_ASSERT(false); // TODO: implement backward
  4300. is_node = true;
  4301. }
  4302. // TODO: when implement backward, fix this:
  4303. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4304. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4305. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4306. ((int32_t *) b->data)[0] = n_past;
  4307. ((int32_t *) b->data)[1] = n_dims;
  4308. ((int32_t *) b->data)[2] = mode;
  4309. result->op = GGML_OP_ROPE;
  4310. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4311. result->src0 = a;
  4312. result->src1 = b;
  4313. return result;
  4314. }
  4315. // ggml_conv_1d_1s
  4316. struct ggml_tensor * ggml_conv_1d_1s(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. GGML_ASSERT(ggml_is_matrix(b));
  4321. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4322. GGML_ASSERT(a->ne[3] == 1);
  4323. bool is_node = false;
  4324. if (a->grad || b->grad) {
  4325. GGML_ASSERT(false); // TODO: implement backward
  4326. is_node = true;
  4327. }
  4328. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4329. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4330. result->op = GGML_OP_CONV_1D_1S;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src0 = a;
  4333. result->src1 = b;
  4334. return result;
  4335. }
  4336. // ggml_conv_1d_2s
  4337. struct ggml_tensor * ggml_conv_1d_2s(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b) {
  4341. GGML_ASSERT(ggml_is_matrix(b));
  4342. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4343. GGML_ASSERT(a->ne[3] == 1);
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. GGML_ASSERT(false); // TODO: implement backward
  4347. is_node = true;
  4348. }
  4349. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4350. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4351. result->op = GGML_OP_CONV_1D_2S;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src0 = a;
  4354. result->src1 = b;
  4355. return result;
  4356. }
  4357. // ggml_flash_attn
  4358. struct ggml_tensor * ggml_flash_attn(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * q,
  4361. struct ggml_tensor * k,
  4362. struct ggml_tensor * v,
  4363. bool masked) {
  4364. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4365. // TODO: check if vT can be multiplied by (k*qT)
  4366. bool is_node = false;
  4367. if (q->grad || k->grad || v->grad) {
  4368. GGML_ASSERT(false); // TODO: implement backward
  4369. is_node = true;
  4370. }
  4371. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4372. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4373. result->op = GGML_OP_FLASH_ATTN;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src0 = q;
  4376. result->src1 = k;
  4377. result->opt[0] = v;
  4378. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4379. return result;
  4380. }
  4381. // ggml_flash_ff
  4382. struct ggml_tensor * ggml_flash_ff(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b0,
  4386. struct ggml_tensor * b1,
  4387. struct ggml_tensor * c0,
  4388. struct ggml_tensor * c1) {
  4389. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4390. // TODO: more checks
  4391. bool is_node = false;
  4392. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4393. GGML_ASSERT(false); // TODO: implement backward
  4394. is_node = true;
  4395. }
  4396. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4397. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4398. result->op = GGML_OP_FLASH_FF;
  4399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4400. result->src0 = a;
  4401. result->src1 = b0;
  4402. result->opt[0] = b1;
  4403. result->opt[1] = c0;
  4404. result->opt[2] = c1;
  4405. return result;
  4406. }
  4407. // ggml_map_unary
  4408. struct ggml_tensor * ggml_map_unary_impl_f32(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. const ggml_unary_op_f32_t fun,
  4412. bool inplace) {
  4413. bool is_node = false;
  4414. if (!inplace && a->grad) {
  4415. is_node = true;
  4416. }
  4417. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4418. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4419. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4420. result->op = GGML_OP_MAP_UNARY;
  4421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4422. result->src0 = a;
  4423. result->opt[0] = addr_tensor;
  4424. return result;
  4425. }
  4426. struct ggml_tensor * ggml_map_unary_f32(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. const ggml_unary_op_f32_t fun) {
  4430. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4431. }
  4432. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. const ggml_unary_op_f32_t fun) {
  4436. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4437. }
  4438. // ggml_map_binary
  4439. struct ggml_tensor * ggml_map_binary_impl_f32(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * b,
  4443. const ggml_binary_op_f32_t fun,
  4444. bool inplace) {
  4445. GGML_ASSERT(ggml_are_same_shape(a, b));
  4446. bool is_node = false;
  4447. if (!inplace && (a->grad || b->grad)) {
  4448. is_node = true;
  4449. }
  4450. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4451. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4452. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4453. result->op = GGML_OP_MAP_BINARY;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src0 = a;
  4456. result->src1 = b;
  4457. result->opt[0] = addr_tensor;
  4458. return result;
  4459. }
  4460. struct ggml_tensor * ggml_map_binary_f32(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. struct ggml_tensor * b,
  4464. const ggml_binary_op_f32_t fun) {
  4465. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4466. }
  4467. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b,
  4471. const ggml_binary_op_f32_t fun) {
  4472. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4473. }
  4474. ////////////////////////////////////////////////////////////////////////////////
  4475. void ggml_set_param(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * tensor) {
  4478. tensor->is_param = true;
  4479. GGML_ASSERT(tensor->grad == NULL);
  4480. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4481. }
  4482. // ggml_compute_forward_dup
  4483. static void ggml_compute_forward_dup_f16(
  4484. const struct ggml_compute_params * params,
  4485. const struct ggml_tensor * src0,
  4486. struct ggml_tensor * dst) {
  4487. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4489. return;
  4490. }
  4491. const int64_t ne00 = src0->ne[0];
  4492. const int64_t ne01 = src0->ne[1];
  4493. const int64_t ne02 = src0->ne[2];
  4494. const int64_t ne03 = src0->ne[3];
  4495. const int64_t ne0 = dst->ne[0];
  4496. const int64_t ne1 = dst->ne[1];
  4497. const int64_t ne2 = dst->ne[2];
  4498. const int64_t ne3 = dst->ne[3];
  4499. const size_t nb00 = src0->nb[0];
  4500. const size_t nb01 = src0->nb[1];
  4501. const size_t nb02 = src0->nb[2];
  4502. const size_t nb03 = src0->nb[3];
  4503. const size_t nb0 = dst->nb[0];
  4504. const size_t nb1 = dst->nb[1];
  4505. const size_t nb2 = dst->nb[2];
  4506. const size_t nb3 = dst->nb[3];
  4507. const int ith = params->ith; // thread index
  4508. const int nth = params->nth; // number of threads
  4509. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4510. // parallelize by elements
  4511. const int ne = ggml_nelements(dst);
  4512. const int dr = (ne + nth - 1) / nth;
  4513. const int ie0 = dr * ith;
  4514. const int ie1 = MIN(ie0 + dr, ne);
  4515. memcpy(
  4516. ((char *) dst->data + ie0*nb0),
  4517. ((char *) src0->data + ie0*nb00),
  4518. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4519. return;
  4520. }
  4521. // parallelize by rows
  4522. const int nr = ne01;
  4523. // number of rows per thread
  4524. const int dr = (nr + nth - 1) / nth;
  4525. // row range for this thread
  4526. const int ir0 = dr * ith;
  4527. const int ir1 = MIN(ir0 + dr, nr);
  4528. if (src0->type == dst->type &&
  4529. ne00 == ne0 &&
  4530. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4531. // copy by rows
  4532. const size_t rs = ne00*nb00;
  4533. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4534. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4535. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4536. memcpy(
  4537. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4538. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4539. rs);
  4540. }
  4541. }
  4542. }
  4543. return;
  4544. }
  4545. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4546. if (ggml_is_contiguous(dst)) {
  4547. if (nb00 == sizeof(ggml_fp16_t)) {
  4548. if (dst->type == GGML_TYPE_F16) {
  4549. size_t id = 0;
  4550. const size_t rs = ne00 * nb00;
  4551. char * dst_ptr = (char *) dst->data;
  4552. for (int i03 = 0; i03 < ne03; i03++) {
  4553. for (int i02 = 0; i02 < ne02; i02++) {
  4554. id += rs * ir0;
  4555. for (int i01 = ir0; i01 < ir1; i01++) {
  4556. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4557. memcpy(dst_ptr + id, src0_ptr, rs);
  4558. id += rs;
  4559. }
  4560. id += rs * (ne01 - ir1);
  4561. }
  4562. }
  4563. } else if (dst->type == GGML_TYPE_F32) {
  4564. size_t id = 0;
  4565. float * dst_ptr = (float *) dst->data;
  4566. for (int i03 = 0; i03 < ne03; i03++) {
  4567. for (int i02 = 0; i02 < ne02; i02++) {
  4568. id += ne00 * ir0;
  4569. for (int i01 = ir0; i01 < ir1; i01++) {
  4570. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4571. for (int i00 = 0; i00 < ne00; i00++) {
  4572. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4573. id++;
  4574. }
  4575. }
  4576. id += ne00 * (ne01 - ir1);
  4577. }
  4578. }
  4579. } else if (ggml_is_quantized(dst->type)) {
  4580. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4581. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4582. size_t id = 0;
  4583. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4584. char * dst_ptr = (char *) dst->data;
  4585. for (int i03 = 0; i03 < ne03; i03++) {
  4586. for (int i02 = 0; i02 < ne02; i02++) {
  4587. id += rs * ir0;
  4588. for (int i01 = ir0; i01 < ir1; i01++) {
  4589. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4590. for (int i00 = 0; i00 < ne00; i00++) {
  4591. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4592. }
  4593. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4594. id += rs;
  4595. }
  4596. id += rs * (ne01 - ir1);
  4597. }
  4598. }
  4599. } else {
  4600. GGML_ASSERT(false); // TODO: implement
  4601. }
  4602. } else {
  4603. //printf("%s: this is not optimal - fix me\n", __func__);
  4604. if (dst->type == GGML_TYPE_F32) {
  4605. size_t id = 0;
  4606. float * dst_ptr = (float *) dst->data;
  4607. for (int i03 = 0; i03 < ne03; i03++) {
  4608. for (int i02 = 0; i02 < ne02; i02++) {
  4609. id += ne00 * ir0;
  4610. for (int i01 = ir0; i01 < ir1; i01++) {
  4611. for (int i00 = 0; i00 < ne00; i00++) {
  4612. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4613. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4614. id++;
  4615. }
  4616. }
  4617. id += ne00 * (ne01 - ir1);
  4618. }
  4619. }
  4620. } else if (dst->type == GGML_TYPE_F16) {
  4621. size_t id = 0;
  4622. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4623. for (int i03 = 0; i03 < ne03; i03++) {
  4624. for (int i02 = 0; i02 < ne02; i02++) {
  4625. id += ne00 * ir0;
  4626. for (int i01 = ir0; i01 < ir1; i01++) {
  4627. for (int i00 = 0; i00 < ne00; i00++) {
  4628. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4629. dst_ptr[id] = *src0_ptr;
  4630. id++;
  4631. }
  4632. }
  4633. id += ne00 * (ne01 - ir1);
  4634. }
  4635. }
  4636. } else {
  4637. GGML_ASSERT(false); // TODO: implement
  4638. }
  4639. }
  4640. return;
  4641. }
  4642. // dst counters
  4643. int64_t i10 = 0;
  4644. int64_t i11 = 0;
  4645. int64_t i12 = 0;
  4646. int64_t i13 = 0;
  4647. if (dst->type == GGML_TYPE_F16) {
  4648. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4649. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4650. i10 += ne00 * ir0;
  4651. while (i10 >= ne0) {
  4652. i10 -= ne0;
  4653. if (++i11 == ne1) {
  4654. i11 = 0;
  4655. if (++i12 == ne2) {
  4656. i12 = 0;
  4657. if (++i13 == ne3) {
  4658. i13 = 0;
  4659. }
  4660. }
  4661. }
  4662. }
  4663. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4664. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4665. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4666. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4667. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4668. if (++i10 == ne00) {
  4669. i10 = 0;
  4670. if (++i11 == ne01) {
  4671. i11 = 0;
  4672. if (++i12 == ne02) {
  4673. i12 = 0;
  4674. if (++i13 == ne03) {
  4675. i13 = 0;
  4676. }
  4677. }
  4678. }
  4679. }
  4680. }
  4681. }
  4682. i10 += ne00 * (ne01 - ir1);
  4683. while (i10 >= ne0) {
  4684. i10 -= ne0;
  4685. if (++i11 == ne1) {
  4686. i11 = 0;
  4687. if (++i12 == ne2) {
  4688. i12 = 0;
  4689. if (++i13 == ne3) {
  4690. i13 = 0;
  4691. }
  4692. }
  4693. }
  4694. }
  4695. }
  4696. }
  4697. } else if (dst->type == GGML_TYPE_F32) {
  4698. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4699. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4700. i10 += ne00 * ir0;
  4701. while (i10 >= ne0) {
  4702. i10 -= ne0;
  4703. if (++i11 == ne1) {
  4704. i11 = 0;
  4705. if (++i12 == ne2) {
  4706. i12 = 0;
  4707. if (++i13 == ne3) {
  4708. i13 = 0;
  4709. }
  4710. }
  4711. }
  4712. }
  4713. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4714. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4715. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4716. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4717. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4718. if (++i10 == ne0) {
  4719. i10 = 0;
  4720. if (++i11 == ne1) {
  4721. i11 = 0;
  4722. if (++i12 == ne2) {
  4723. i12 = 0;
  4724. if (++i13 == ne3) {
  4725. i13 = 0;
  4726. }
  4727. }
  4728. }
  4729. }
  4730. }
  4731. }
  4732. i10 += ne00 * (ne01 - ir1);
  4733. while (i10 >= ne0) {
  4734. i10 -= ne0;
  4735. if (++i11 == ne1) {
  4736. i11 = 0;
  4737. if (++i12 == ne2) {
  4738. i12 = 0;
  4739. if (++i13 == ne3) {
  4740. i13 = 0;
  4741. }
  4742. }
  4743. }
  4744. }
  4745. }
  4746. }
  4747. } else {
  4748. GGML_ASSERT(false); // TODO: implement
  4749. }
  4750. }
  4751. static void ggml_compute_forward_dup_f32(
  4752. const struct ggml_compute_params * params,
  4753. const struct ggml_tensor * src0,
  4754. struct ggml_tensor * dst) {
  4755. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4757. return;
  4758. }
  4759. const int64_t ne00 = src0->ne[0];
  4760. const int64_t ne01 = src0->ne[1];
  4761. const int64_t ne02 = src0->ne[2];
  4762. const int64_t ne03 = src0->ne[3];
  4763. const int64_t ne0 = dst->ne[0];
  4764. const int64_t ne1 = dst->ne[1];
  4765. const int64_t ne2 = dst->ne[2];
  4766. const int64_t ne3 = dst->ne[3];
  4767. const size_t nb00 = src0->nb[0];
  4768. const size_t nb01 = src0->nb[1];
  4769. const size_t nb02 = src0->nb[2];
  4770. const size_t nb03 = src0->nb[3];
  4771. const size_t nb0 = dst->nb[0];
  4772. const size_t nb1 = dst->nb[1];
  4773. const size_t nb2 = dst->nb[2];
  4774. const size_t nb3 = dst->nb[3];
  4775. const int ith = params->ith; // thread index
  4776. const int nth = params->nth; // number of threads
  4777. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4778. // parallelize by elements
  4779. const int ne = ggml_nelements(dst);
  4780. const int dr = (ne + nth - 1) / nth;
  4781. const int ie0 = dr * ith;
  4782. const int ie1 = MIN(ie0 + dr, ne);
  4783. memcpy(
  4784. ((char *) dst->data + ie0*nb0),
  4785. ((char *) src0->data + ie0*nb00),
  4786. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4787. return;
  4788. }
  4789. // parallelize by rows
  4790. const int nr = ne01;
  4791. // number of rows per thread
  4792. const int dr = (nr + nth - 1) / nth;
  4793. // row range for this thread
  4794. const int ir0 = dr * ith;
  4795. const int ir1 = MIN(ir0 + dr, nr);
  4796. if (src0->type == dst->type &&
  4797. ne00 == ne0 &&
  4798. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4799. // copy by rows
  4800. const size_t rs = ne00*nb00;
  4801. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4802. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4803. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4804. memcpy(
  4805. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4806. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4807. rs);
  4808. }
  4809. }
  4810. }
  4811. return;
  4812. }
  4813. if (ggml_is_contiguous(dst)) {
  4814. // TODO: simplify
  4815. if (nb00 == sizeof(float)) {
  4816. if (dst->type == GGML_TYPE_F32) {
  4817. size_t id = 0;
  4818. const size_t rs = ne00 * nb00;
  4819. char * dst_ptr = (char *) dst->data;
  4820. for (int i03 = 0; i03 < ne03; i03++) {
  4821. for (int i02 = 0; i02 < ne02; i02++) {
  4822. id += rs * ir0;
  4823. for (int i01 = ir0; i01 < ir1; i01++) {
  4824. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4825. memcpy(dst_ptr + id, src0_ptr, rs);
  4826. id += rs;
  4827. }
  4828. id += rs * (ne01 - ir1);
  4829. }
  4830. }
  4831. } else if (dst->type == GGML_TYPE_F16) {
  4832. size_t id = 0;
  4833. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4834. for (int i03 = 0; i03 < ne03; i03++) {
  4835. for (int i02 = 0; i02 < ne02; i02++) {
  4836. id += ne00 * ir0;
  4837. for (int i01 = ir0; i01 < ir1; i01++) {
  4838. for (int i00 = 0; i00 < ne00; i00++) {
  4839. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4840. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4841. id++;
  4842. }
  4843. }
  4844. id += ne00 * (ne01 - ir1);
  4845. }
  4846. }
  4847. } else if (ggml_is_quantized(dst->type)) {
  4848. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4849. size_t id = 0;
  4850. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4851. char * dst_ptr = (char *) dst->data;
  4852. for (int i03 = 0; i03 < ne03; i03++) {
  4853. for (int i02 = 0; i02 < ne02; i02++) {
  4854. id += rs * ir0;
  4855. for (int i01 = ir0; i01 < ir1; i01++) {
  4856. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4857. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4858. id += rs;
  4859. }
  4860. id += rs * (ne01 - ir1);
  4861. }
  4862. }
  4863. } else {
  4864. GGML_ASSERT(false); // TODO: implement
  4865. }
  4866. } else {
  4867. //printf("%s: this is not optimal - fix me\n", __func__);
  4868. if (dst->type == GGML_TYPE_F32) {
  4869. size_t id = 0;
  4870. float * dst_ptr = (float *) dst->data;
  4871. for (int i03 = 0; i03 < ne03; i03++) {
  4872. for (int i02 = 0; i02 < ne02; i02++) {
  4873. id += ne00 * ir0;
  4874. for (int i01 = ir0; i01 < ir1; i01++) {
  4875. for (int i00 = 0; i00 < ne00; i00++) {
  4876. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4877. dst_ptr[id] = *src0_ptr;
  4878. id++;
  4879. }
  4880. }
  4881. id += ne00 * (ne01 - ir1);
  4882. }
  4883. }
  4884. } else if (dst->type == GGML_TYPE_F16) {
  4885. size_t id = 0;
  4886. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4887. for (int i03 = 0; i03 < ne03; i03++) {
  4888. for (int i02 = 0; i02 < ne02; i02++) {
  4889. id += ne00 * ir0;
  4890. for (int i01 = ir0; i01 < ir1; i01++) {
  4891. for (int i00 = 0; i00 < ne00; i00++) {
  4892. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4893. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4894. id++;
  4895. }
  4896. }
  4897. id += ne00 * (ne01 - ir1);
  4898. }
  4899. }
  4900. } else {
  4901. GGML_ASSERT(false); // TODO: implement
  4902. }
  4903. }
  4904. return;
  4905. }
  4906. // dst counters
  4907. int64_t i10 = 0;
  4908. int64_t i11 = 0;
  4909. int64_t i12 = 0;
  4910. int64_t i13 = 0;
  4911. if (dst->type == GGML_TYPE_F32) {
  4912. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4913. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4914. i10 += ne00 * ir0;
  4915. while (i10 >= ne0) {
  4916. i10 -= ne0;
  4917. if (++i11 == ne1) {
  4918. i11 = 0;
  4919. if (++i12 == ne2) {
  4920. i12 = 0;
  4921. if (++i13 == ne3) {
  4922. i13 = 0;
  4923. }
  4924. }
  4925. }
  4926. }
  4927. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4928. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4929. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4930. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4931. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4932. if (++i10 == ne0) {
  4933. i10 = 0;
  4934. if (++i11 == ne1) {
  4935. i11 = 0;
  4936. if (++i12 == ne2) {
  4937. i12 = 0;
  4938. if (++i13 == ne3) {
  4939. i13 = 0;
  4940. }
  4941. }
  4942. }
  4943. }
  4944. }
  4945. }
  4946. i10 += ne00 * (ne01 - ir1);
  4947. while (i10 >= ne0) {
  4948. i10 -= ne0;
  4949. if (++i11 == ne1) {
  4950. i11 = 0;
  4951. if (++i12 == ne2) {
  4952. i12 = 0;
  4953. if (++i13 == ne3) {
  4954. i13 = 0;
  4955. }
  4956. }
  4957. }
  4958. }
  4959. }
  4960. }
  4961. } else if (dst->type == GGML_TYPE_F16) {
  4962. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4963. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4964. i10 += ne00 * ir0;
  4965. while (i10 >= ne0) {
  4966. i10 -= ne0;
  4967. if (++i11 == ne1) {
  4968. i11 = 0;
  4969. if (++i12 == ne2) {
  4970. i12 = 0;
  4971. if (++i13 == ne3) {
  4972. i13 = 0;
  4973. }
  4974. }
  4975. }
  4976. }
  4977. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4978. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4979. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4980. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4981. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4982. if (++i10 == ne0) {
  4983. i10 = 0;
  4984. if (++i11 == ne1) {
  4985. i11 = 0;
  4986. if (++i12 == ne2) {
  4987. i12 = 0;
  4988. if (++i13 == ne3) {
  4989. i13 = 0;
  4990. }
  4991. }
  4992. }
  4993. }
  4994. }
  4995. }
  4996. i10 += ne00 * (ne01 - ir1);
  4997. while (i10 >= ne0) {
  4998. i10 -= ne0;
  4999. if (++i11 == ne1) {
  5000. i11 = 0;
  5001. if (++i12 == ne2) {
  5002. i12 = 0;
  5003. if (++i13 == ne3) {
  5004. i13 = 0;
  5005. }
  5006. }
  5007. }
  5008. }
  5009. }
  5010. }
  5011. } else {
  5012. GGML_ASSERT(false); // TODO: implement
  5013. }
  5014. }
  5015. static void ggml_compute_forward_dup(
  5016. const struct ggml_compute_params * params,
  5017. const struct ggml_tensor * src0,
  5018. struct ggml_tensor * dst) {
  5019. switch (src0->type) {
  5020. case GGML_TYPE_F16:
  5021. {
  5022. ggml_compute_forward_dup_f16(params, src0, dst);
  5023. } break;
  5024. case GGML_TYPE_F32:
  5025. {
  5026. ggml_compute_forward_dup_f32(params, src0, dst);
  5027. } break;
  5028. default:
  5029. {
  5030. GGML_ASSERT(false);
  5031. } break;
  5032. }
  5033. }
  5034. // ggml_compute_forward_add
  5035. static void ggml_compute_forward_add_f32(
  5036. const struct ggml_compute_params * params,
  5037. const struct ggml_tensor * src0,
  5038. const struct ggml_tensor * src1,
  5039. struct ggml_tensor * dst) {
  5040. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5042. return;
  5043. }
  5044. const int ith = params->ith;
  5045. const int nth = params->nth;
  5046. const int n = ggml_nrows(src0);
  5047. const int nc = src0->ne[0];
  5048. const size_t nb00 = src0->nb[0];
  5049. const size_t nb01 = src0->nb[1];
  5050. const size_t nb10 = src1->nb[0];
  5051. const size_t nb11 = src1->nb[1];
  5052. const size_t nb0 = dst->nb[0];
  5053. const size_t nb1 = dst->nb[1];
  5054. GGML_ASSERT( nb0 == sizeof(float));
  5055. GGML_ASSERT(nb00 == sizeof(float));
  5056. if (nb10 == sizeof(float)) {
  5057. for (int j = ith; j < n; j += nth) {
  5058. #ifdef GGML_USE_ACCELERATE
  5059. vDSP_vadd(
  5060. (float *) ((char *) src0->data + j*nb01), 1,
  5061. (float *) ((char *) src1->data + j*nb11), 1,
  5062. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5063. #else
  5064. ggml_vec_add_f32(nc,
  5065. (float *) ((char *) dst->data + j*nb1),
  5066. (float *) ((char *) src0->data + j*nb01),
  5067. (float *) ((char *) src1->data + j*nb11));
  5068. #endif
  5069. }
  5070. } else {
  5071. // src1 is not contiguous
  5072. for (int j = ith; j < n; j += nth) {
  5073. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5074. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5075. for (int i = 0; i < nc; i++) {
  5076. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5077. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5078. }
  5079. }
  5080. }
  5081. }
  5082. static void ggml_compute_forward_add_f16_f32(
  5083. const struct ggml_compute_params * params,
  5084. const struct ggml_tensor * src0,
  5085. const struct ggml_tensor * src1,
  5086. struct ggml_tensor * dst) {
  5087. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5089. return;
  5090. }
  5091. const int ith = params->ith;
  5092. const int nth = params->nth;
  5093. const int n = ggml_nrows(src0);
  5094. const int nc = src0->ne[0];
  5095. const size_t nb00 = src0->nb[0];
  5096. const size_t nb01 = src0->nb[1];
  5097. const size_t nb10 = src1->nb[0];
  5098. const size_t nb11 = src1->nb[1];
  5099. const size_t nb0 = dst->nb[0];
  5100. const size_t nb1 = dst->nb[1];
  5101. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5102. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5103. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5104. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5105. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5106. if (nb10 == sizeof(float)) {
  5107. for (int j = ith; j < n; j += nth) {
  5108. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5109. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5110. for (int i = 0; i < nc; i++) {
  5111. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5112. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5113. }
  5114. }
  5115. }
  5116. else {
  5117. // src1 is not contiguous
  5118. GGML_ASSERT(false);
  5119. }
  5120. }
  5121. static void ggml_compute_forward_add_f16_f16(
  5122. const struct ggml_compute_params * params,
  5123. const struct ggml_tensor * src0,
  5124. const struct ggml_tensor * src1,
  5125. struct ggml_tensor * dst) {
  5126. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5128. return;
  5129. }
  5130. const int ith = params->ith;
  5131. const int nth = params->nth;
  5132. const int n = ggml_nrows(src0);
  5133. const int nc = src0->ne[0];
  5134. const size_t nb00 = src0->nb[0];
  5135. const size_t nb01 = src0->nb[1];
  5136. const size_t nb10 = src1->nb[0];
  5137. const size_t nb11 = src1->nb[1];
  5138. const size_t nb0 = dst->nb[0];
  5139. const size_t nb1 = dst->nb[1];
  5140. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5141. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5142. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5143. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5144. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5145. if (nb10 == sizeof(ggml_fp16_t)) {
  5146. for (int j = ith; j < n; j += nth) {
  5147. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5148. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5149. for (int i = 0; i < nc; i++) {
  5150. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5151. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5152. }
  5153. }
  5154. }
  5155. else {
  5156. // src1 is not contiguous
  5157. GGML_ASSERT(false);
  5158. }
  5159. }
  5160. static void ggml_compute_forward_add_q_f32(
  5161. const struct ggml_compute_params * params,
  5162. const struct ggml_tensor * src0,
  5163. const struct ggml_tensor * src1,
  5164. struct ggml_tensor * dst) {
  5165. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5166. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5167. return;
  5168. }
  5169. const int64_t ne00 = src0->ne[0];
  5170. const int64_t ne01 = src0->ne[1];
  5171. const int64_t ne02 = src0->ne[2];
  5172. const int64_t ne03 = src0->ne[3];
  5173. //const int64_t ne10 = src1->ne[0];
  5174. //const int64_t ne11 = src1->ne[1];
  5175. const int64_t ne12 = src1->ne[2];
  5176. const int64_t ne13 = src1->ne[3];
  5177. //const int64_t ne0 = dst->ne[0];
  5178. //const int64_t ne1 = dst->ne[1];
  5179. const int64_t ne2 = dst->ne[2];
  5180. const int64_t ne3 = dst->ne[3];
  5181. const int nb00 = src0->nb[0];
  5182. const int nb01 = src0->nb[1];
  5183. const int nb02 = src0->nb[2];
  5184. const int nb03 = src0->nb[3];
  5185. const int nb10 = src1->nb[0];
  5186. const int nb11 = src1->nb[1];
  5187. const int nb12 = src1->nb[2];
  5188. const int nb13 = src1->nb[3];
  5189. const int nb0 = dst->nb[0];
  5190. const int nb1 = dst->nb[1];
  5191. const int nb2 = dst->nb[2];
  5192. const int nb3 = dst->nb[3];
  5193. const int ith = params->ith;
  5194. const int nth = params->nth;
  5195. GGML_ASSERT(ne02 == ne12);
  5196. GGML_ASSERT(ne03 == ne13);
  5197. GGML_ASSERT(ne2 == ne12);
  5198. GGML_ASSERT(ne3 == ne13);
  5199. const enum ggml_type type = src0->type;
  5200. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5201. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5202. // we don't support permuted src0 or src1
  5203. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5204. GGML_ASSERT(nb10 == sizeof(float));
  5205. // dst cannot be transposed or permuted
  5206. GGML_ASSERT(nb0 <= nb1);
  5207. GGML_ASSERT(nb1 <= nb2);
  5208. GGML_ASSERT(nb2 <= nb3);
  5209. GGML_ASSERT(ggml_is_quantized(src0->type));
  5210. GGML_ASSERT(dst->type == src0->type);
  5211. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5212. // total rows in src0
  5213. const int nr = ne01*ne02*ne03;
  5214. // rows per thread
  5215. const int dr = (nr + nth - 1)/nth;
  5216. // row range for this thread
  5217. const int ir0 = dr*ith;
  5218. const int ir1 = MIN(ir0 + dr, nr);
  5219. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5220. for (int ir = ir0; ir < ir1; ++ir) {
  5221. // src0 indices
  5222. const int i03 = ir/(ne02*ne01);
  5223. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5224. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5225. // src1 and dst are same shape as src0 => same indices
  5226. const int i13 = i03;
  5227. const int i12 = i02;
  5228. const int i11 = i01;
  5229. const int i3 = i03;
  5230. const int i2 = i02;
  5231. const int i1 = i01;
  5232. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5233. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5234. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5235. assert(ne00 % 32 == 0);
  5236. // unquantize row from src0 to temp buffer
  5237. dequantize_row_q(src0_row, wdata, ne00);
  5238. // add src1
  5239. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5240. // quantize row to dst
  5241. quantize_row_q(wdata, dst_row, ne00);
  5242. }
  5243. }
  5244. static void ggml_compute_forward_add(
  5245. const struct ggml_compute_params * params,
  5246. const struct ggml_tensor * src0,
  5247. const struct ggml_tensor * src1,
  5248. struct ggml_tensor * dst) {
  5249. switch (src0->type) {
  5250. case GGML_TYPE_F32:
  5251. {
  5252. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5253. } break;
  5254. case GGML_TYPE_F16:
  5255. {
  5256. if (src1->type == GGML_TYPE_F16) {
  5257. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5258. }
  5259. else if (src1->type == GGML_TYPE_F32) {
  5260. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5261. }
  5262. else {
  5263. GGML_ASSERT(false);
  5264. }
  5265. } break;
  5266. case GGML_TYPE_Q4_0:
  5267. case GGML_TYPE_Q4_1:
  5268. case GGML_TYPE_Q4_2:
  5269. case GGML_TYPE_Q4_3:
  5270. {
  5271. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5272. } break;
  5273. default:
  5274. {
  5275. GGML_ASSERT(false);
  5276. } break;
  5277. }
  5278. }
  5279. // ggml_compute_forward_sub
  5280. static void ggml_compute_forward_sub_f32(
  5281. const struct ggml_compute_params * params,
  5282. const struct ggml_tensor * src0,
  5283. const struct ggml_tensor * src1,
  5284. struct ggml_tensor * dst) {
  5285. assert(params->ith == 0);
  5286. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5288. return;
  5289. }
  5290. const int n = ggml_nrows(src0);
  5291. const int nc = src0->ne[0];
  5292. assert( dst->nb[0] == sizeof(float));
  5293. assert(src0->nb[0] == sizeof(float));
  5294. assert(src1->nb[0] == sizeof(float));
  5295. for (int i = 0; i < n; i++) {
  5296. ggml_vec_sub_f32(nc,
  5297. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5298. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5299. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5300. }
  5301. }
  5302. static void ggml_compute_forward_sub(
  5303. const struct ggml_compute_params * params,
  5304. const struct ggml_tensor * src0,
  5305. const struct ggml_tensor * src1,
  5306. struct ggml_tensor * dst) {
  5307. switch (src0->type) {
  5308. case GGML_TYPE_F32:
  5309. {
  5310. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5311. } break;
  5312. default:
  5313. {
  5314. GGML_ASSERT(false);
  5315. } break;
  5316. }
  5317. }
  5318. // ggml_compute_forward_mul
  5319. static void ggml_compute_forward_mul_f32(
  5320. const struct ggml_compute_params * params,
  5321. const struct ggml_tensor * src0,
  5322. const struct ggml_tensor * src1,
  5323. struct ggml_tensor * dst) {
  5324. assert(params->ith == 0);
  5325. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5327. return;
  5328. }
  5329. const int n = ggml_nrows(src0);
  5330. const int nc = src0->ne[0];
  5331. assert( dst->nb[0] == sizeof(float));
  5332. assert(src0->nb[0] == sizeof(float));
  5333. assert(src1->nb[0] == sizeof(float));
  5334. for (int i = 0; i < n; i++) {
  5335. ggml_vec_mul_f32(nc,
  5336. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5337. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5338. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5339. }
  5340. }
  5341. static void ggml_compute_forward_mul(
  5342. const struct ggml_compute_params * params,
  5343. const struct ggml_tensor * src0,
  5344. const struct ggml_tensor * src1,
  5345. struct ggml_tensor * dst) {
  5346. switch (src0->type) {
  5347. case GGML_TYPE_F32:
  5348. {
  5349. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5350. } break;
  5351. default:
  5352. {
  5353. GGML_ASSERT(false);
  5354. } break;
  5355. }
  5356. }
  5357. // ggml_compute_forward_div
  5358. static void ggml_compute_forward_div_f32(
  5359. const struct ggml_compute_params * params,
  5360. const struct ggml_tensor * src0,
  5361. const struct ggml_tensor * src1,
  5362. struct ggml_tensor * dst) {
  5363. assert(params->ith == 0);
  5364. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5366. return;
  5367. }
  5368. const int n = ggml_nrows(src0);
  5369. const int nc = src0->ne[0];
  5370. assert( dst->nb[0] == sizeof(float));
  5371. assert(src0->nb[0] == sizeof(float));
  5372. assert(src1->nb[0] == sizeof(float));
  5373. for (int i = 0; i < n; i++) {
  5374. ggml_vec_div_f32(nc,
  5375. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5376. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5377. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5378. }
  5379. }
  5380. static void ggml_compute_forward_div(
  5381. const struct ggml_compute_params * params,
  5382. const struct ggml_tensor * src0,
  5383. const struct ggml_tensor * src1,
  5384. struct ggml_tensor * dst) {
  5385. switch (src0->type) {
  5386. case GGML_TYPE_F32:
  5387. {
  5388. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5389. } break;
  5390. default:
  5391. {
  5392. GGML_ASSERT(false);
  5393. } break;
  5394. }
  5395. }
  5396. // ggml_compute_forward_sqr
  5397. static void ggml_compute_forward_sqr_f32(
  5398. const struct ggml_compute_params * params,
  5399. const struct ggml_tensor * src0,
  5400. struct ggml_tensor * dst) {
  5401. assert(params->ith == 0);
  5402. assert(ggml_are_same_shape(src0, dst));
  5403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5404. return;
  5405. }
  5406. const int n = ggml_nrows(src0);
  5407. const int nc = src0->ne[0];
  5408. assert( dst->nb[0] == sizeof(float));
  5409. assert(src0->nb[0] == sizeof(float));
  5410. for (int i = 0; i < n; i++) {
  5411. ggml_vec_sqr_f32(nc,
  5412. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5413. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5414. }
  5415. }
  5416. static void ggml_compute_forward_sqr(
  5417. const struct ggml_compute_params * params,
  5418. const struct ggml_tensor * src0,
  5419. struct ggml_tensor * dst) {
  5420. switch (src0->type) {
  5421. case GGML_TYPE_F32:
  5422. {
  5423. ggml_compute_forward_sqr_f32(params, src0, dst);
  5424. } break;
  5425. default:
  5426. {
  5427. GGML_ASSERT(false);
  5428. } break;
  5429. }
  5430. }
  5431. // ggml_compute_forward_sqrt
  5432. static void ggml_compute_forward_sqrt_f32(
  5433. const struct ggml_compute_params * params,
  5434. const struct ggml_tensor * src0,
  5435. struct ggml_tensor * dst) {
  5436. assert(params->ith == 0);
  5437. assert(ggml_are_same_shape(src0, dst));
  5438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5439. return;
  5440. }
  5441. const int n = ggml_nrows(src0);
  5442. const int nc = src0->ne[0];
  5443. assert( dst->nb[0] == sizeof(float));
  5444. assert(src0->nb[0] == sizeof(float));
  5445. for (int i = 0; i < n; i++) {
  5446. ggml_vec_sqrt_f32(nc,
  5447. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5448. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5449. }
  5450. }
  5451. static void ggml_compute_forward_sqrt(
  5452. const struct ggml_compute_params * params,
  5453. const struct ggml_tensor * src0,
  5454. struct ggml_tensor * dst) {
  5455. switch (src0->type) {
  5456. case GGML_TYPE_F32:
  5457. {
  5458. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5459. } break;
  5460. default:
  5461. {
  5462. GGML_ASSERT(false);
  5463. } break;
  5464. }
  5465. }
  5466. // ggml_compute_forward_sum
  5467. static void ggml_compute_forward_sum_f32(
  5468. const struct ggml_compute_params * params,
  5469. const struct ggml_tensor * src0,
  5470. struct ggml_tensor * dst) {
  5471. assert(params->ith == 0);
  5472. assert(ggml_is_scalar(dst));
  5473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5474. return;
  5475. }
  5476. assert(ggml_is_scalar(dst));
  5477. assert(src0->nb[0] == sizeof(float));
  5478. const int64_t ne00 = src0->ne[0];
  5479. const int64_t ne01 = src0->ne[1];
  5480. const int64_t ne02 = src0->ne[2];
  5481. const int64_t ne03 = src0->ne[3];
  5482. const size_t nb01 = src0->nb[1];
  5483. const size_t nb02 = src0->nb[2];
  5484. const size_t nb03 = src0->nb[3];
  5485. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5487. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5488. ggml_vec_sum_f32(ne00,
  5489. (float *) (dst->data),
  5490. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5491. }
  5492. }
  5493. }
  5494. }
  5495. static void ggml_compute_forward_sum(
  5496. const struct ggml_compute_params * params,
  5497. const struct ggml_tensor * src0,
  5498. struct ggml_tensor * dst) {
  5499. switch (src0->type) {
  5500. case GGML_TYPE_F32:
  5501. {
  5502. ggml_compute_forward_sum_f32(params, src0, dst);
  5503. } break;
  5504. default:
  5505. {
  5506. GGML_ASSERT(false);
  5507. } break;
  5508. }
  5509. }
  5510. // ggml_compute_forward_mean
  5511. static void ggml_compute_forward_mean_f32(
  5512. const struct ggml_compute_params * params,
  5513. const struct ggml_tensor * src0,
  5514. struct ggml_tensor * dst) {
  5515. assert(params->ith == 0);
  5516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5517. return;
  5518. }
  5519. assert(src0->nb[0] == sizeof(float));
  5520. const int64_t ne00 = src0->ne[0];
  5521. const int64_t ne01 = src0->ne[1];
  5522. const int64_t ne02 = src0->ne[2];
  5523. const int64_t ne03 = src0->ne[3];
  5524. const size_t nb01 = src0->nb[1];
  5525. const size_t nb02 = src0->nb[2];
  5526. const size_t nb03 = src0->nb[3];
  5527. const int64_t ne0 = dst->ne[0];
  5528. const int64_t ne1 = dst->ne[1];
  5529. const int64_t ne2 = dst->ne[2];
  5530. const int64_t ne3 = dst->ne[3];
  5531. assert(ne0 == 1);
  5532. assert(ne1 == ne01);
  5533. assert(ne2 == ne02);
  5534. assert(ne3 == ne03);
  5535. UNUSED(ne0);
  5536. UNUSED(ne1);
  5537. UNUSED(ne2);
  5538. UNUSED(ne3);
  5539. const size_t nb1 = dst->nb[1];
  5540. const size_t nb2 = dst->nb[2];
  5541. const size_t nb3 = dst->nb[3];
  5542. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5543. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5544. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5545. ggml_vec_sum_f32(ne00,
  5546. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5547. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5548. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5549. }
  5550. }
  5551. }
  5552. }
  5553. static void ggml_compute_forward_mean(
  5554. const struct ggml_compute_params * params,
  5555. const struct ggml_tensor * src0,
  5556. struct ggml_tensor * dst) {
  5557. switch (src0->type) {
  5558. case GGML_TYPE_F32:
  5559. {
  5560. ggml_compute_forward_mean_f32(params, src0, dst);
  5561. } break;
  5562. default:
  5563. {
  5564. GGML_ASSERT(false);
  5565. } break;
  5566. }
  5567. }
  5568. // ggml_compute_forward_repeat
  5569. static void ggml_compute_forward_repeat_f32(
  5570. const struct ggml_compute_params * params,
  5571. const struct ggml_tensor * src0,
  5572. struct ggml_tensor * dst) {
  5573. assert(params->ith == 0);
  5574. assert(ggml_can_repeat(src0, dst));
  5575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5576. return;
  5577. }
  5578. // TODO: implement support for rank > 2 tensors
  5579. assert(src0->ne[2] == 1);
  5580. assert(src0->ne[3] == 1);
  5581. assert( dst->ne[2] == 1);
  5582. assert( dst->ne[3] == 1);
  5583. const int nc = dst->ne[0];
  5584. const int nr = dst->ne[1];
  5585. const int nc0 = src0->ne[0];
  5586. const int nr0 = src0->ne[1];
  5587. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5588. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5589. // TODO: support for transposed / permuted tensors
  5590. assert( dst->nb[0] == sizeof(float));
  5591. assert(src0->nb[0] == sizeof(float));
  5592. // TODO: maybe this is not optimal?
  5593. for (int i = 0; i < nrr; i++) {
  5594. for (int j = 0; j < ncr; j++) {
  5595. for (int k = 0; k < nr0; k++) {
  5596. ggml_vec_cpy_f32(nc0,
  5597. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5598. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5599. }
  5600. }
  5601. }
  5602. }
  5603. static void ggml_compute_forward_repeat(
  5604. const struct ggml_compute_params * params,
  5605. const struct ggml_tensor * src0,
  5606. struct ggml_tensor * dst) {
  5607. switch (src0->type) {
  5608. case GGML_TYPE_F32:
  5609. {
  5610. ggml_compute_forward_repeat_f32(params, src0, dst);
  5611. } break;
  5612. default:
  5613. {
  5614. GGML_ASSERT(false);
  5615. } break;
  5616. }
  5617. }
  5618. // ggml_compute_forward_abs
  5619. static void ggml_compute_forward_abs_f32(
  5620. const struct ggml_compute_params * params,
  5621. const struct ggml_tensor * src0,
  5622. struct ggml_tensor * dst) {
  5623. assert(params->ith == 0);
  5624. assert(ggml_are_same_shape(src0, dst));
  5625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5626. return;
  5627. }
  5628. const int n = ggml_nrows(src0);
  5629. const int nc = src0->ne[0];
  5630. assert(dst->nb[0] == sizeof(float));
  5631. assert(src0->nb[0] == sizeof(float));
  5632. for (int i = 0; i < n; i++) {
  5633. ggml_vec_abs_f32(nc,
  5634. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5635. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5636. }
  5637. }
  5638. static void ggml_compute_forward_abs(
  5639. const struct ggml_compute_params * params,
  5640. const struct ggml_tensor * src0,
  5641. struct ggml_tensor * dst) {
  5642. switch (src0->type) {
  5643. case GGML_TYPE_F32:
  5644. {
  5645. ggml_compute_forward_abs_f32(params, src0, dst);
  5646. } break;
  5647. default:
  5648. {
  5649. GGML_ASSERT(false);
  5650. } break;
  5651. }
  5652. }
  5653. // ggml_compute_forward_sgn
  5654. static void ggml_compute_forward_sgn_f32(
  5655. const struct ggml_compute_params * params,
  5656. const struct ggml_tensor * src0,
  5657. struct ggml_tensor * dst) {
  5658. assert(params->ith == 0);
  5659. assert(ggml_are_same_shape(src0, dst));
  5660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5661. return;
  5662. }
  5663. const int n = ggml_nrows(src0);
  5664. const int nc = src0->ne[0];
  5665. assert(dst->nb[0] == sizeof(float));
  5666. assert(src0->nb[0] == sizeof(float));
  5667. for (int i = 0; i < n; i++) {
  5668. ggml_vec_sgn_f32(nc,
  5669. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5670. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5671. }
  5672. }
  5673. static void ggml_compute_forward_sgn(
  5674. const struct ggml_compute_params * params,
  5675. const struct ggml_tensor * src0,
  5676. struct ggml_tensor * dst) {
  5677. switch (src0->type) {
  5678. case GGML_TYPE_F32:
  5679. {
  5680. ggml_compute_forward_sgn_f32(params, src0, dst);
  5681. } break;
  5682. default:
  5683. {
  5684. GGML_ASSERT(false);
  5685. } break;
  5686. }
  5687. }
  5688. // ggml_compute_forward_neg
  5689. static void ggml_compute_forward_neg_f32(
  5690. const struct ggml_compute_params * params,
  5691. const struct ggml_tensor * src0,
  5692. struct ggml_tensor * dst) {
  5693. assert(params->ith == 0);
  5694. assert(ggml_are_same_shape(src0, dst));
  5695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5696. return;
  5697. }
  5698. const int n = ggml_nrows(src0);
  5699. const int nc = src0->ne[0];
  5700. assert(dst->nb[0] == sizeof(float));
  5701. assert(src0->nb[0] == sizeof(float));
  5702. for (int i = 0; i < n; i++) {
  5703. ggml_vec_neg_f32(nc,
  5704. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5705. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5706. }
  5707. }
  5708. static void ggml_compute_forward_neg(
  5709. const struct ggml_compute_params * params,
  5710. const struct ggml_tensor * src0,
  5711. struct ggml_tensor * dst) {
  5712. switch (src0->type) {
  5713. case GGML_TYPE_F32:
  5714. {
  5715. ggml_compute_forward_neg_f32(params, src0, dst);
  5716. } break;
  5717. default:
  5718. {
  5719. GGML_ASSERT(false);
  5720. } break;
  5721. }
  5722. }
  5723. // ggml_compute_forward_step
  5724. static void ggml_compute_forward_step_f32(
  5725. const struct ggml_compute_params * params,
  5726. const struct ggml_tensor * src0,
  5727. struct ggml_tensor * dst) {
  5728. assert(params->ith == 0);
  5729. assert(ggml_are_same_shape(src0, dst));
  5730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5731. return;
  5732. }
  5733. const int n = ggml_nrows(src0);
  5734. const int nc = src0->ne[0];
  5735. assert(dst->nb[0] == sizeof(float));
  5736. assert(src0->nb[0] == sizeof(float));
  5737. for (int i = 0; i < n; i++) {
  5738. ggml_vec_step_f32(nc,
  5739. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5740. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5741. }
  5742. }
  5743. static void ggml_compute_forward_step(
  5744. const struct ggml_compute_params * params,
  5745. const struct ggml_tensor * src0,
  5746. struct ggml_tensor * dst) {
  5747. switch (src0->type) {
  5748. case GGML_TYPE_F32:
  5749. {
  5750. ggml_compute_forward_step_f32(params, src0, dst);
  5751. } break;
  5752. default:
  5753. {
  5754. GGML_ASSERT(false);
  5755. } break;
  5756. }
  5757. }
  5758. // ggml_compute_forward_relu
  5759. static void ggml_compute_forward_relu_f32(
  5760. const struct ggml_compute_params * params,
  5761. const struct ggml_tensor * src0,
  5762. struct ggml_tensor * dst) {
  5763. assert(params->ith == 0);
  5764. assert(ggml_are_same_shape(src0, dst));
  5765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5766. return;
  5767. }
  5768. const int n = ggml_nrows(src0);
  5769. const int nc = src0->ne[0];
  5770. assert(dst->nb[0] == sizeof(float));
  5771. assert(src0->nb[0] == sizeof(float));
  5772. for (int i = 0; i < n; i++) {
  5773. ggml_vec_relu_f32(nc,
  5774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5775. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5776. }
  5777. }
  5778. static void ggml_compute_forward_relu(
  5779. const struct ggml_compute_params * params,
  5780. const struct ggml_tensor * src0,
  5781. struct ggml_tensor * dst) {
  5782. switch (src0->type) {
  5783. case GGML_TYPE_F32:
  5784. {
  5785. ggml_compute_forward_relu_f32(params, src0, dst);
  5786. } break;
  5787. default:
  5788. {
  5789. GGML_ASSERT(false);
  5790. } break;
  5791. }
  5792. }
  5793. // ggml_compute_forward_gelu
  5794. static void ggml_compute_forward_gelu_f32(
  5795. const struct ggml_compute_params * params,
  5796. const struct ggml_tensor * src0,
  5797. struct ggml_tensor * dst) {
  5798. GGML_ASSERT(ggml_is_contiguous(src0));
  5799. GGML_ASSERT(ggml_is_contiguous(dst));
  5800. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5801. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5802. return;
  5803. }
  5804. const int ith = params->ith;
  5805. const int nth = params->nth;
  5806. const int nc = src0->ne[0];
  5807. const int nr = ggml_nrows(src0);
  5808. // rows per thread
  5809. const int dr = (nr + nth - 1)/nth;
  5810. // row range for this thread
  5811. const int ir0 = dr*ith;
  5812. const int ir1 = MIN(ir0 + dr, nr);
  5813. for (int i1 = ir0; i1 < ir1; i1++) {
  5814. ggml_vec_gelu_f32(nc,
  5815. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5816. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5817. #ifndef NDEBUG
  5818. for (int k = 0; k < nc; k++) {
  5819. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5820. UNUSED(x);
  5821. assert(!isnan(x));
  5822. assert(!isinf(x));
  5823. }
  5824. #endif
  5825. }
  5826. }
  5827. static void ggml_compute_forward_gelu(
  5828. const struct ggml_compute_params * params,
  5829. const struct ggml_tensor * src0,
  5830. struct ggml_tensor * dst) {
  5831. switch (src0->type) {
  5832. case GGML_TYPE_F32:
  5833. {
  5834. ggml_compute_forward_gelu_f32(params, src0, dst);
  5835. } break;
  5836. default:
  5837. {
  5838. GGML_ASSERT(false);
  5839. } break;
  5840. }
  5841. //printf("XXXXXXXX gelu\n");
  5842. }
  5843. // ggml_compute_forward_silu
  5844. static void ggml_compute_forward_silu_f32(
  5845. const struct ggml_compute_params * params,
  5846. const struct ggml_tensor * src0,
  5847. struct ggml_tensor * dst) {
  5848. GGML_ASSERT(ggml_is_contiguous(src0));
  5849. GGML_ASSERT(ggml_is_contiguous(dst));
  5850. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5852. return;
  5853. }
  5854. const int ith = params->ith;
  5855. const int nth = params->nth;
  5856. const int nc = src0->ne[0];
  5857. const int nr = ggml_nrows(src0);
  5858. // rows per thread
  5859. const int dr = (nr + nth - 1)/nth;
  5860. // row range for this thread
  5861. const int ir0 = dr*ith;
  5862. const int ir1 = MIN(ir0 + dr, nr);
  5863. for (int i1 = ir0; i1 < ir1; i1++) {
  5864. ggml_vec_silu_f32(nc,
  5865. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5866. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5867. #ifndef NDEBUG
  5868. for (int k = 0; k < nc; k++) {
  5869. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5870. UNUSED(x);
  5871. assert(!isnan(x));
  5872. assert(!isinf(x));
  5873. }
  5874. #endif
  5875. }
  5876. }
  5877. static void ggml_compute_forward_silu(
  5878. const struct ggml_compute_params * params,
  5879. const struct ggml_tensor * src0,
  5880. struct ggml_tensor * dst) {
  5881. switch (src0->type) {
  5882. case GGML_TYPE_F32:
  5883. {
  5884. ggml_compute_forward_silu_f32(params, src0, dst);
  5885. } break;
  5886. default:
  5887. {
  5888. GGML_ASSERT(false);
  5889. } break;
  5890. }
  5891. }
  5892. // ggml_compute_forward_norm
  5893. static void ggml_compute_forward_norm_f32(
  5894. const struct ggml_compute_params * params,
  5895. const struct ggml_tensor * src0,
  5896. struct ggml_tensor * dst) {
  5897. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5899. return;
  5900. }
  5901. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5902. const int ith = params->ith;
  5903. const int nth = params->nth;
  5904. const int64_t ne00 = src0->ne[0];
  5905. const int64_t ne01 = src0->ne[1];
  5906. const int64_t ne02 = src0->ne[2];
  5907. const int64_t ne03 = src0->ne[3];
  5908. const size_t nb01 = src0->nb[1];
  5909. const size_t nb02 = src0->nb[2];
  5910. const size_t nb03 = src0->nb[3];
  5911. const size_t nb1 = dst->nb[1];
  5912. const size_t nb2 = dst->nb[2];
  5913. const size_t nb3 = dst->nb[3];
  5914. const float eps = 1e-5f; // TODO: make this a parameter
  5915. // TODO: optimize
  5916. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5917. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5918. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5919. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5920. ggml_float sum = 0.0;
  5921. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5922. sum += (ggml_float)x[i00];
  5923. }
  5924. float mean = sum/ne00;
  5925. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5926. ggml_float sum2 = 0.0;
  5927. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5928. float v = x[i00] - mean;
  5929. y[i00] = v;
  5930. sum2 += (ggml_float)(v*v);
  5931. }
  5932. float variance = sum2/ne00;
  5933. const float scale = 1.0f/sqrtf(variance + eps);
  5934. ggml_vec_scale_f32(ne00, y, scale);
  5935. }
  5936. }
  5937. }
  5938. }
  5939. static void ggml_compute_forward_norm(
  5940. const struct ggml_compute_params * params,
  5941. const struct ggml_tensor * src0,
  5942. struct ggml_tensor * dst) {
  5943. switch (src0->type) {
  5944. case GGML_TYPE_F32:
  5945. {
  5946. ggml_compute_forward_norm_f32(params, src0, dst);
  5947. } break;
  5948. default:
  5949. {
  5950. GGML_ASSERT(false);
  5951. } break;
  5952. }
  5953. }
  5954. static void ggml_compute_forward_rms_norm_f32(
  5955. const struct ggml_compute_params * params,
  5956. const struct ggml_tensor * src0,
  5957. struct ggml_tensor * dst) {
  5958. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5960. return;
  5961. }
  5962. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5963. const int ith = params->ith;
  5964. const int nth = params->nth;
  5965. const int64_t ne00 = src0->ne[0];
  5966. const int64_t ne01 = src0->ne[1];
  5967. const int64_t ne02 = src0->ne[2];
  5968. const int64_t ne03 = src0->ne[3];
  5969. const size_t nb01 = src0->nb[1];
  5970. const size_t nb02 = src0->nb[2];
  5971. const size_t nb03 = src0->nb[3];
  5972. const size_t nb1 = dst->nb[1];
  5973. const size_t nb2 = dst->nb[2];
  5974. const size_t nb3 = dst->nb[3];
  5975. const float eps = 1e-6f; // TODO: make this a parameter
  5976. // TODO: optimize
  5977. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5978. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5979. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5980. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5981. ggml_float sum = 0.0;
  5982. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5983. sum += (ggml_float)(x[i00] * x[i00]);
  5984. }
  5985. float mean = sum/ne00;
  5986. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5987. memcpy(y, x, ne00 * sizeof(float));
  5988. // for (int i00 = 0; i00 < ne00; i00++) {
  5989. // y[i00] = x[i00];
  5990. // }
  5991. const float scale = 1.0f/sqrtf(mean + eps);
  5992. ggml_vec_scale_f32(ne00, y, scale);
  5993. }
  5994. }
  5995. }
  5996. }
  5997. static void ggml_compute_forward_rms_norm(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. struct ggml_tensor * dst) {
  6001. switch (src0->type) {
  6002. case GGML_TYPE_F32:
  6003. {
  6004. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6005. } break;
  6006. default:
  6007. {
  6008. GGML_ASSERT(false);
  6009. } break;
  6010. }
  6011. }
  6012. // ggml_compute_forward_mul_mat
  6013. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6014. // helper function to determine if it is better to use BLAS or not
  6015. // for large matrices, BLAS is faster
  6016. static bool ggml_compute_forward_mul_mat_use_blas(
  6017. const struct ggml_tensor * src0,
  6018. const struct ggml_tensor * src1,
  6019. struct ggml_tensor * dst) {
  6020. //const int64_t ne00 = src0->ne[0];
  6021. //const int64_t ne01 = src0->ne[1];
  6022. const int64_t ne10 = src1->ne[0];
  6023. const int64_t ne0 = dst->ne[0];
  6024. const int64_t ne1 = dst->ne[1];
  6025. // TODO: find the optimal values for these
  6026. if (ggml_is_contiguous(src0) &&
  6027. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6028. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6029. return true;
  6030. }
  6031. return false;
  6032. }
  6033. #endif
  6034. static void ggml_compute_forward_mul_mat_f32(
  6035. const struct ggml_compute_params * params,
  6036. const struct ggml_tensor * src0,
  6037. const struct ggml_tensor * src1,
  6038. struct ggml_tensor * dst) {
  6039. int64_t t0 = ggml_perf_time_us();
  6040. UNUSED(t0);
  6041. const int64_t ne00 = src0->ne[0];
  6042. const int64_t ne01 = src0->ne[1];
  6043. const int64_t ne02 = src0->ne[2];
  6044. const int64_t ne03 = src0->ne[3];
  6045. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6046. const int64_t ne10 = src1->ne[0];
  6047. #endif
  6048. const int64_t ne11 = src1->ne[1];
  6049. #ifndef NDEBUG
  6050. const int64_t ne12 = src1->ne[2];
  6051. const int64_t ne13 = src1->ne[3];
  6052. const int64_t ne0 = dst->ne[0];
  6053. const int64_t ne1 = dst->ne[1];
  6054. const int64_t ne2 = dst->ne[2];
  6055. const int64_t ne3 = dst->ne[3];
  6056. const int nb00 = src0->nb[0];
  6057. #endif
  6058. const int nb01 = src0->nb[1];
  6059. const int nb02 = src0->nb[2];
  6060. const int nb03 = src0->nb[3];
  6061. #ifndef NDEBUG
  6062. const int nb10 = src1->nb[0];
  6063. #endif
  6064. const int nb11 = src1->nb[1];
  6065. const int nb12 = src1->nb[2];
  6066. const int nb13 = src1->nb[3];
  6067. const int nb0 = dst->nb[0];
  6068. const int nb1 = dst->nb[1];
  6069. const int nb2 = dst->nb[2];
  6070. const int nb3 = dst->nb[3];
  6071. const int ith = params->ith;
  6072. const int nth = params->nth;
  6073. assert(ne02 == ne12);
  6074. assert(ne03 == ne13);
  6075. assert(ne2 == ne12);
  6076. assert(ne3 == ne13);
  6077. // we don't support permuted src0 or src1
  6078. assert(nb00 == sizeof(float));
  6079. assert(nb10 == sizeof(float));
  6080. // dst cannot be transposed or permuted
  6081. assert(nb0 == sizeof(float));
  6082. assert(nb0 <= nb1);
  6083. assert(nb1 <= nb2);
  6084. assert(nb2 <= nb3);
  6085. assert(ne0 == ne01);
  6086. assert(ne1 == ne11);
  6087. assert(ne2 == ne02);
  6088. assert(ne3 == ne03);
  6089. // nb01 >= nb00 - src0 is not transposed
  6090. // compute by src0 rows
  6091. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6092. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6093. if (params->ith != 0) {
  6094. return;
  6095. }
  6096. if (params->type == GGML_TASK_INIT) {
  6097. return;
  6098. }
  6099. if (params->type == GGML_TASK_FINALIZE) {
  6100. return;
  6101. }
  6102. #if defined(GGML_USE_CUBLAS)
  6103. const float alpha = 1.0f;
  6104. const float beta = 0.0f;
  6105. const int x_ne = ne01 * ne10;
  6106. const int y_ne = ne11 * ne10;
  6107. const int d_ne = ne11 * ne01;
  6108. size_t x_size, y_size, d_size;
  6109. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6110. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6111. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6112. #endif
  6113. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6114. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6115. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6116. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6117. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6118. #if defined(GGML_USE_CUBLAS)
  6119. // copy data to device
  6120. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6121. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6122. // compute
  6123. CUBLAS_CHECK(
  6124. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6125. ne01, ne11, ne10,
  6126. &alpha, d_X, ne00,
  6127. d_Y, ne10,
  6128. &beta, d_D, ne01));
  6129. // copy data to host
  6130. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6131. #else
  6132. // zT = y * xT
  6133. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6134. ne11, ne01, ne10,
  6135. 1.0f, y, ne10,
  6136. x, ne00,
  6137. 0.0f, d, ne01);
  6138. #endif
  6139. }
  6140. }
  6141. #if defined(GGML_USE_CUBLAS)
  6142. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6143. ggml_cuda_pool_free(d_X, x_size);
  6144. ggml_cuda_pool_free(d_Y, y_size);
  6145. ggml_cuda_pool_free(d_D, d_size);
  6146. #endif
  6147. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6148. return;
  6149. }
  6150. #endif
  6151. if (params->type == GGML_TASK_INIT) {
  6152. return;
  6153. }
  6154. if (params->type == GGML_TASK_FINALIZE) {
  6155. return;
  6156. }
  6157. // parallelize by src0 rows using ggml_vec_dot_f32
  6158. // total rows in src0
  6159. const int nr = ne01*ne02*ne03;
  6160. // rows per thread
  6161. const int dr = (nr + nth - 1)/nth;
  6162. // row range for this thread
  6163. const int ir0 = dr*ith;
  6164. const int ir1 = MIN(ir0 + dr, nr);
  6165. for (int ir = ir0; ir < ir1; ++ir) {
  6166. // src0 indices
  6167. const int i03 = ir/(ne02*ne01);
  6168. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6169. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6170. for (int64_t ic = 0; ic < ne11; ++ic) {
  6171. // src1 indices
  6172. const int i13 = i03;
  6173. const int i12 = i02;
  6174. const int i11 = ic;
  6175. // dst indices
  6176. const int i0 = i01;
  6177. const int i1 = i11;
  6178. const int i2 = i02;
  6179. const int i3 = i03;
  6180. ggml_vec_dot_f32(ne00,
  6181. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6182. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6183. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6184. }
  6185. }
  6186. //int64_t t1 = ggml_perf_time_us();
  6187. //static int64_t acc = 0;
  6188. //acc += t1 - t0;
  6189. //if (t1 - t0 > 10) {
  6190. // printf("\n");
  6191. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6192. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6193. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6194. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6195. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6196. //}
  6197. }
  6198. static void ggml_compute_forward_mul_mat_f16_f32(
  6199. const struct ggml_compute_params * params,
  6200. const struct ggml_tensor * src0,
  6201. const struct ggml_tensor * src1,
  6202. struct ggml_tensor * dst) {
  6203. int64_t t0 = ggml_perf_time_us();
  6204. UNUSED(t0);
  6205. const int64_t ne00 = src0->ne[0];
  6206. const int64_t ne01 = src0->ne[1];
  6207. const int64_t ne02 = src0->ne[2];
  6208. const int64_t ne03 = src0->ne[3];
  6209. const int64_t ne10 = src1->ne[0];
  6210. const int64_t ne11 = src1->ne[1];
  6211. const int64_t ne12 = src1->ne[2];
  6212. const int64_t ne13 = src1->ne[3];
  6213. const int64_t ne0 = dst->ne[0];
  6214. const int64_t ne1 = dst->ne[1];
  6215. const int64_t ne2 = dst->ne[2];
  6216. const int64_t ne3 = dst->ne[3];
  6217. //const int64_t ne = ne0*ne1*ne2*ne3;
  6218. const int nb00 = src0->nb[0];
  6219. const int nb01 = src0->nb[1];
  6220. const int nb02 = src0->nb[2];
  6221. const int nb03 = src0->nb[3];
  6222. const int nb10 = src1->nb[0];
  6223. const int nb11 = src1->nb[1];
  6224. const int nb12 = src1->nb[2];
  6225. const int nb13 = src1->nb[3];
  6226. const int nb0 = dst->nb[0];
  6227. const int nb1 = dst->nb[1];
  6228. const int nb2 = dst->nb[2];
  6229. const int nb3 = dst->nb[3];
  6230. const int ith = params->ith;
  6231. const int nth = params->nth;
  6232. GGML_ASSERT(ne02 == ne12);
  6233. GGML_ASSERT(ne03 == ne13);
  6234. GGML_ASSERT(ne2 == ne12);
  6235. GGML_ASSERT(ne3 == ne13);
  6236. // TODO: we don't support permuted src0
  6237. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6238. // dst cannot be transposed or permuted
  6239. GGML_ASSERT(nb0 == sizeof(float));
  6240. GGML_ASSERT(nb0 <= nb1);
  6241. GGML_ASSERT(nb1 <= nb2);
  6242. GGML_ASSERT(nb2 <= nb3);
  6243. GGML_ASSERT(ne0 == ne01);
  6244. GGML_ASSERT(ne1 == ne11);
  6245. GGML_ASSERT(ne2 == ne02);
  6246. GGML_ASSERT(ne3 == ne03);
  6247. // nb01 >= nb00 - src0 is not transposed
  6248. // compute by src0 rows
  6249. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6250. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6251. GGML_ASSERT(nb10 == sizeof(float));
  6252. if (params->ith != 0) {
  6253. return;
  6254. }
  6255. if (params->type == GGML_TASK_INIT) {
  6256. return;
  6257. }
  6258. if (params->type == GGML_TASK_FINALIZE) {
  6259. return;
  6260. }
  6261. #if defined(GGML_USE_CUBLAS)
  6262. ggml_fp16_t * const wdata = params->wdata;
  6263. const float alpha = 1.0f;
  6264. const float beta = 0.0f;
  6265. const int x_ne = ne01 * ne10;
  6266. const int y_ne = ne11 * ne10;
  6267. const int d_ne = ne11 * ne01;
  6268. size_t x_size, y_size, d_size;
  6269. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6270. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6271. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6272. #else
  6273. float * const wdata = params->wdata;
  6274. #endif
  6275. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6276. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6277. #if defined(GGML_USE_CUBLAS)
  6278. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6279. {
  6280. size_t id = 0;
  6281. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6282. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6283. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6284. }
  6285. }
  6286. }
  6287. #else
  6288. {
  6289. size_t id = 0;
  6290. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6291. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6292. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6293. }
  6294. }
  6295. }
  6296. #endif
  6297. #if defined(GGML_USE_CUBLAS)
  6298. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6299. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6300. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6301. // copy data to device
  6302. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6303. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6304. // compute
  6305. CUBLAS_CHECK(
  6306. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6307. ne01, ne11, ne10,
  6308. &alpha, d_X, CUDA_R_16F, ne00,
  6309. d_Y, CUDA_R_16F, ne10,
  6310. &beta, d_D, CUDA_R_32F, ne01,
  6311. CUBLAS_COMPUTE_32F,
  6312. CUBLAS_GEMM_DEFAULT));
  6313. // copy data to host
  6314. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6315. #else
  6316. const float * x = wdata;
  6317. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6318. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6319. // zT = y * xT
  6320. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6321. ne11, ne01, ne10,
  6322. 1.0f, y, ne10,
  6323. x, ne00,
  6324. 0.0f, d, ne01);
  6325. #endif
  6326. }
  6327. }
  6328. #if defined(GGML_USE_CUBLAS)
  6329. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6330. ggml_cuda_pool_free(d_X, x_size);
  6331. ggml_cuda_pool_free(d_Y, y_size);
  6332. ggml_cuda_pool_free(d_D, d_size);
  6333. #endif
  6334. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6335. return;
  6336. }
  6337. #endif
  6338. if (params->type == GGML_TASK_INIT) {
  6339. ggml_fp16_t * const wdata = params->wdata;
  6340. size_t id = 0;
  6341. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6342. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6343. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6344. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6345. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6346. }
  6347. }
  6348. }
  6349. }
  6350. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6351. return;
  6352. }
  6353. if (params->type == GGML_TASK_FINALIZE) {
  6354. return;
  6355. }
  6356. // fp16 -> half the size, so divide by 2
  6357. // TODO: do not support transposed src1
  6358. assert(nb10/2 == sizeof(ggml_fp16_t));
  6359. // parallelize by src0 rows using ggml_vec_dot_f16
  6360. // total rows in src0
  6361. const int nr = ne01*ne02*ne03;
  6362. // rows per thread
  6363. const int dr = (nr + nth - 1)/nth;
  6364. // row range for this thread
  6365. const int ir0 = dr*ith;
  6366. const int ir1 = MIN(ir0 + dr, nr);
  6367. ggml_fp16_t * wdata = params->wdata;
  6368. for (int ir = ir0; ir < ir1; ++ir) {
  6369. // src0 indices
  6370. const int i03 = ir/(ne02*ne01);
  6371. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6372. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6373. const int i13 = i03;
  6374. const int i12 = i02;
  6375. const int i0 = i01;
  6376. const int i2 = i02;
  6377. const int i3 = i03;
  6378. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6379. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6380. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6381. for (int64_t ic = 0; ic < ne11; ++ic) {
  6382. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6383. }
  6384. }
  6385. //int64_t t1 = ggml_time_us();
  6386. //static int64_t acc = 0;
  6387. //acc += t1 - t0;
  6388. //if (t1 - t0 > 10) {
  6389. // printf("\n");
  6390. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6391. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6392. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6393. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6394. //}
  6395. }
  6396. static void ggml_compute_forward_mul_mat_q_f32(
  6397. const struct ggml_compute_params * params,
  6398. const struct ggml_tensor * src0,
  6399. const struct ggml_tensor * src1,
  6400. struct ggml_tensor * dst) {
  6401. int64_t t0 = ggml_perf_time_us();
  6402. UNUSED(t0);
  6403. const int64_t ne00 = src0->ne[0];
  6404. const int64_t ne01 = src0->ne[1];
  6405. const int64_t ne02 = src0->ne[2];
  6406. const int64_t ne03 = src0->ne[3];
  6407. const int64_t ne10 = src1->ne[0];
  6408. const int64_t ne11 = src1->ne[1];
  6409. const int64_t ne12 = src1->ne[2];
  6410. const int64_t ne13 = src1->ne[3];
  6411. const int64_t ne0 = dst->ne[0];
  6412. const int64_t ne1 = dst->ne[1];
  6413. const int64_t ne2 = dst->ne[2];
  6414. const int64_t ne3 = dst->ne[3];
  6415. const int nb00 = src0->nb[0];
  6416. const int nb01 = src0->nb[1];
  6417. const int nb02 = src0->nb[2];
  6418. const int nb03 = src0->nb[3];
  6419. const int nb10 = src1->nb[0];
  6420. const int nb11 = src1->nb[1];
  6421. const int nb12 = src1->nb[2];
  6422. const int nb13 = src1->nb[3];
  6423. const int nb0 = dst->nb[0];
  6424. const int nb1 = dst->nb[1];
  6425. const int nb2 = dst->nb[2];
  6426. const int nb3 = dst->nb[3];
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. GGML_ASSERT(ne02 == ne12);
  6430. GGML_ASSERT(ne03 == ne13);
  6431. GGML_ASSERT(ne2 == ne12);
  6432. GGML_ASSERT(ne3 == ne13);
  6433. const enum ggml_type type = src0->type;
  6434. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6435. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6436. // we don't support permuted src0 or src1
  6437. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6438. GGML_ASSERT(nb10 == sizeof(float));
  6439. // dst cannot be transposed or permuted
  6440. GGML_ASSERT(nb0 == sizeof(float));
  6441. GGML_ASSERT(nb0 <= nb1);
  6442. GGML_ASSERT(nb1 <= nb2);
  6443. GGML_ASSERT(nb2 <= nb3);
  6444. GGML_ASSERT(ne0 == ne01);
  6445. GGML_ASSERT(ne1 == ne11);
  6446. GGML_ASSERT(ne2 == ne02);
  6447. GGML_ASSERT(ne3 == ne03);
  6448. // nb01 >= nb00 - src0 is not transposed
  6449. // compute by src0 rows
  6450. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6451. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6452. if (params->ith != 0) {
  6453. return;
  6454. }
  6455. if (params->type == GGML_TASK_INIT) {
  6456. return;
  6457. }
  6458. if (params->type == GGML_TASK_FINALIZE) {
  6459. return;
  6460. }
  6461. #if defined(GGML_USE_CUBLAS)
  6462. const float alpha = 1.0f;
  6463. const float beta = 0.0f;
  6464. const int x_ne = ne01 * ne10;
  6465. const int y_ne = ne11 * ne10;
  6466. const int d_ne = ne11 * ne01;
  6467. size_t x_size, y_size, d_size, q_size;
  6468. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6469. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6470. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6471. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6472. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6473. if (type == GGML_TYPE_Q4_0) {
  6474. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6475. }
  6476. else if (type == GGML_TYPE_Q4_1) {
  6477. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6478. }
  6479. else if (type == GGML_TYPE_Q4_2) {
  6480. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6481. }
  6482. else if (type == GGML_TYPE_Q4_3) {
  6483. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  6484. }
  6485. else {
  6486. GGML_ASSERT(false);
  6487. }
  6488. #else
  6489. float * const wdata = params->wdata;
  6490. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6491. #endif
  6492. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6493. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6494. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6495. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6496. #if defined(GGML_USE_CUBLAS)
  6497. // copy and dequantize on device
  6498. CUDA_CHECK(
  6499. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6500. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6501. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6502. CUDA_CHECK(cudaGetLastError());
  6503. #else
  6504. {
  6505. size_t id = 0;
  6506. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6507. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6508. id += ne00;
  6509. }
  6510. }
  6511. const float * x = wdata;
  6512. #endif
  6513. #if defined(GGML_USE_CUBLAS)
  6514. // copy data to device
  6515. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6516. // compute
  6517. CUBLAS_CHECK(
  6518. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6519. ne01, ne11, ne10,
  6520. &alpha, d_X, ne00,
  6521. d_Y, ne10,
  6522. &beta, d_D, ne01));
  6523. // copy data to host
  6524. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6525. #else
  6526. // zT = y * xT
  6527. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6528. ne11, ne01, ne10,
  6529. 1.0f, y, ne10,
  6530. x, ne00,
  6531. 0.0f, d, ne01);
  6532. #endif
  6533. }
  6534. }
  6535. #if defined(GGML_USE_CUBLAS)
  6536. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6537. ggml_cuda_pool_free(d_X, x_size);
  6538. ggml_cuda_pool_free(d_Y, y_size);
  6539. ggml_cuda_pool_free(d_D, d_size);
  6540. ggml_cuda_pool_free(d_Q, q_size);
  6541. #endif
  6542. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6543. return;
  6544. }
  6545. #endif
  6546. if (params->type == GGML_TASK_INIT) {
  6547. char * wdata = params->wdata;
  6548. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6549. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6550. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6551. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6552. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6553. wdata += row_size;
  6554. }
  6555. }
  6556. }
  6557. return;
  6558. }
  6559. if (params->type == GGML_TASK_FINALIZE) {
  6560. return;
  6561. }
  6562. // parallelize by src0 rows using ggml_vec_dot_q
  6563. // total rows in src0
  6564. const int nr = ne01*ne02*ne03;
  6565. // rows per thread
  6566. const int dr = (nr + nth - 1)/nth;
  6567. // row range for this thread
  6568. const int ir0 = dr*ith;
  6569. const int ir1 = MIN(ir0 + dr, nr);
  6570. void * wdata = params->wdata;
  6571. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6572. for (int ir = ir0; ir < ir1; ++ir) {
  6573. // src0 indices
  6574. const int i03 = ir/(ne02*ne01);
  6575. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6576. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6577. const int i13 = i03;
  6578. const int i12 = i02;
  6579. const int i0 = i01;
  6580. const int i2 = i02;
  6581. const int i3 = i03;
  6582. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6583. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6584. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6585. assert(ne00 % 32 == 0);
  6586. for (int64_t ic = 0; ic < ne11; ++ic) {
  6587. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6588. }
  6589. }
  6590. //int64_t t1 = ggml_time_us();
  6591. //static int64_t acc = 0;
  6592. //acc += t1 - t0;
  6593. //if (t1 - t0 > 10) {
  6594. // printf("\n");
  6595. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6596. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6597. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6598. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6599. //}
  6600. }
  6601. static void ggml_compute_forward_mul_mat(
  6602. const struct ggml_compute_params * params,
  6603. const struct ggml_tensor * src0,
  6604. const struct ggml_tensor * src1,
  6605. struct ggml_tensor * dst) {
  6606. switch (src0->type) {
  6607. case GGML_TYPE_Q4_0:
  6608. case GGML_TYPE_Q4_1:
  6609. case GGML_TYPE_Q4_2:
  6610. case GGML_TYPE_Q4_3:
  6611. case GGML_TYPE_Q8_0:
  6612. {
  6613. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6614. } break;
  6615. case GGML_TYPE_F16:
  6616. {
  6617. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6618. } break;
  6619. case GGML_TYPE_F32:
  6620. {
  6621. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6622. } break;
  6623. default:
  6624. {
  6625. GGML_ASSERT(false);
  6626. } break;
  6627. }
  6628. }
  6629. // ggml_compute_forward_scale
  6630. static void ggml_compute_forward_scale_f32(
  6631. const struct ggml_compute_params * params,
  6632. const struct ggml_tensor * src0,
  6633. const struct ggml_tensor * src1,
  6634. struct ggml_tensor * dst) {
  6635. GGML_ASSERT(ggml_is_contiguous(src0));
  6636. GGML_ASSERT(ggml_is_contiguous(dst));
  6637. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6638. GGML_ASSERT(ggml_is_scalar(src1));
  6639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6640. return;
  6641. }
  6642. // scale factor
  6643. const float v = *(float *) src1->data;
  6644. const int ith = params->ith;
  6645. const int nth = params->nth;
  6646. const int nc = src0->ne[0];
  6647. const int nr = ggml_nrows(src0);
  6648. // rows per thread
  6649. const int dr = (nr + nth - 1)/nth;
  6650. // row range for this thread
  6651. const int ir0 = dr*ith;
  6652. const int ir1 = MIN(ir0 + dr, nr);
  6653. for (int i1 = ir0; i1 < ir1; i1++) {
  6654. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6655. }
  6656. }
  6657. static void ggml_compute_forward_scale(
  6658. const struct ggml_compute_params * params,
  6659. const struct ggml_tensor * src0,
  6660. const struct ggml_tensor * src1,
  6661. struct ggml_tensor * dst) {
  6662. switch (src0->type) {
  6663. case GGML_TYPE_F32:
  6664. {
  6665. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6666. } break;
  6667. default:
  6668. {
  6669. GGML_ASSERT(false);
  6670. } break;
  6671. }
  6672. }
  6673. // ggml_compute_forward_cpy
  6674. static void ggml_compute_forward_cpy(
  6675. const struct ggml_compute_params * params,
  6676. const struct ggml_tensor * src0,
  6677. struct ggml_tensor * dst) {
  6678. ggml_compute_forward_dup(params, src0, dst);
  6679. }
  6680. // ggml_compute_forward_cont
  6681. static void ggml_compute_forward_cont(
  6682. const struct ggml_compute_params * params,
  6683. const struct ggml_tensor * src0,
  6684. struct ggml_tensor * dst) {
  6685. ggml_compute_forward_dup(params, src0, dst);
  6686. }
  6687. // ggml_compute_forward_reshape
  6688. static void ggml_compute_forward_reshape(
  6689. const struct ggml_compute_params * params,
  6690. const struct ggml_tensor * src0,
  6691. struct ggml_tensor * dst) {
  6692. // NOP
  6693. UNUSED(params);
  6694. UNUSED(src0);
  6695. UNUSED(dst);
  6696. }
  6697. // ggml_compute_forward_view
  6698. static void ggml_compute_forward_view(
  6699. const struct ggml_compute_params * params,
  6700. const struct ggml_tensor * src0) {
  6701. // NOP
  6702. UNUSED(params);
  6703. UNUSED(src0);
  6704. }
  6705. // ggml_compute_forward_permute
  6706. static void ggml_compute_forward_permute(
  6707. const struct ggml_compute_params * params,
  6708. const struct ggml_tensor * src0) {
  6709. // NOP
  6710. UNUSED(params);
  6711. UNUSED(src0);
  6712. }
  6713. // ggml_compute_forward_transpose
  6714. static void ggml_compute_forward_transpose(
  6715. const struct ggml_compute_params * params,
  6716. const struct ggml_tensor * src0) {
  6717. // NOP
  6718. UNUSED(params);
  6719. UNUSED(src0);
  6720. }
  6721. // ggml_compute_forward_get_rows
  6722. static void ggml_compute_forward_get_rows_q(
  6723. const struct ggml_compute_params * params,
  6724. const struct ggml_tensor * src0,
  6725. const struct ggml_tensor * src1,
  6726. struct ggml_tensor * dst) {
  6727. assert(params->ith == 0);
  6728. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6729. return;
  6730. }
  6731. const int nc = src0->ne[0];
  6732. const int nr = ggml_nelements(src1);
  6733. const enum ggml_type type = src0->type;
  6734. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6735. assert( dst->ne[0] == nc);
  6736. assert( dst->ne[1] == nr);
  6737. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6738. for (int i = 0; i < nr; ++i) {
  6739. const int r = ((int32_t *) src1->data)[i];
  6740. dequantize_row_q(
  6741. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6742. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6743. }
  6744. }
  6745. static void ggml_compute_forward_get_rows_f16(
  6746. const struct ggml_compute_params * params,
  6747. const struct ggml_tensor * src0,
  6748. const struct ggml_tensor * src1,
  6749. struct ggml_tensor * dst) {
  6750. assert(params->ith == 0);
  6751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6752. return;
  6753. }
  6754. const int nc = src0->ne[0];
  6755. const int nr = ggml_nelements(src1);
  6756. assert( dst->ne[0] == nc);
  6757. assert( dst->ne[1] == nr);
  6758. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6759. for (int i = 0; i < nr; ++i) {
  6760. const int r = ((int32_t *) src1->data)[i];
  6761. for (int j = 0; j < nc; ++j) {
  6762. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6763. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6764. }
  6765. }
  6766. }
  6767. static void ggml_compute_forward_get_rows_f32(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * src0,
  6770. const struct ggml_tensor * src1,
  6771. struct ggml_tensor * dst) {
  6772. assert(params->ith == 0);
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. const int nc = src0->ne[0];
  6777. const int nr = ggml_nelements(src1);
  6778. assert( dst->ne[0] == nc);
  6779. assert( dst->ne[1] == nr);
  6780. assert(src0->nb[0] == sizeof(float));
  6781. for (int i = 0; i < nr; ++i) {
  6782. const int r = ((int32_t *) src1->data)[i];
  6783. ggml_vec_cpy_f32(nc,
  6784. (float *) ((char *) dst->data + i*dst->nb[1]),
  6785. (float *) ((char *) src0->data + r*src0->nb[1]));
  6786. }
  6787. }
  6788. static void ggml_compute_forward_get_rows(
  6789. const struct ggml_compute_params * params,
  6790. const struct ggml_tensor * src0,
  6791. const struct ggml_tensor * src1,
  6792. struct ggml_tensor * dst) {
  6793. switch (src0->type) {
  6794. case GGML_TYPE_Q4_0:
  6795. case GGML_TYPE_Q4_1:
  6796. case GGML_TYPE_Q4_2:
  6797. case GGML_TYPE_Q4_3:
  6798. case GGML_TYPE_Q8_0:
  6799. {
  6800. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6801. } break;
  6802. case GGML_TYPE_F16:
  6803. {
  6804. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6805. } break;
  6806. case GGML_TYPE_F32:
  6807. {
  6808. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6809. } break;
  6810. default:
  6811. {
  6812. GGML_ASSERT(false);
  6813. } break;
  6814. }
  6815. //static bool first = true;
  6816. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6817. //if (first) {
  6818. // first = false;
  6819. //} else {
  6820. // for (int k = 0; k < dst->ne[1]; ++k) {
  6821. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6822. // for (int i = 0; i < 16; ++i) {
  6823. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6824. // }
  6825. // printf("\n");
  6826. // }
  6827. // printf("\n");
  6828. // }
  6829. // printf("\n");
  6830. // exit(0);
  6831. //}
  6832. }
  6833. // ggml_compute_forward_diag_mask_inf
  6834. static void ggml_compute_forward_diag_mask_inf_f32(
  6835. const struct ggml_compute_params * params,
  6836. const struct ggml_tensor * src0,
  6837. const struct ggml_tensor * src1,
  6838. struct ggml_tensor * dst) {
  6839. assert(params->ith == 0);
  6840. assert(src1->type == GGML_TYPE_I32);
  6841. assert(ggml_nelements(src1) == 1);
  6842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6843. return;
  6844. }
  6845. const int n_past = ((int32_t *) src1->data)[0];
  6846. // TODO: handle transposed/permuted matrices
  6847. const int n = ggml_nrows(src0);
  6848. const int nc = src0->ne[0];
  6849. const int nr = src0->ne[1];
  6850. const int nz = n/nr;
  6851. assert( dst->nb[0] == sizeof(float));
  6852. assert(src0->nb[0] == sizeof(float));
  6853. for (int k = 0; k < nz; k++) {
  6854. for (int j = 0; j < nr; j++) {
  6855. for (int i = n_past; i < nc; i++) {
  6856. if (i > n_past + j) {
  6857. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6858. }
  6859. }
  6860. }
  6861. }
  6862. }
  6863. static void ggml_compute_forward_diag_mask_inf(
  6864. const struct ggml_compute_params * params,
  6865. const struct ggml_tensor * src0,
  6866. const struct ggml_tensor * src1,
  6867. struct ggml_tensor * dst) {
  6868. switch (src0->type) {
  6869. case GGML_TYPE_F32:
  6870. {
  6871. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6872. } break;
  6873. default:
  6874. {
  6875. GGML_ASSERT(false);
  6876. } break;
  6877. }
  6878. }
  6879. // ggml_compute_forward_soft_max
  6880. static void ggml_compute_forward_soft_max_f32(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. struct ggml_tensor * dst) {
  6884. GGML_ASSERT(ggml_is_contiguous(src0));
  6885. GGML_ASSERT(ggml_is_contiguous(dst));
  6886. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6888. return;
  6889. }
  6890. // TODO: handle transposed/permuted matrices
  6891. const int ith = params->ith;
  6892. const int nth = params->nth;
  6893. const int nc = src0->ne[0];
  6894. const int nr = ggml_nrows(src0);
  6895. // rows per thread
  6896. const int dr = (nr + nth - 1)/nth;
  6897. // row range for this thread
  6898. const int ir0 = dr*ith;
  6899. const int ir1 = MIN(ir0 + dr, nr);
  6900. for (int i1 = ir0; i1 < ir1; i1++) {
  6901. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6902. #ifndef NDEBUG
  6903. for (int i = 0; i < nc; ++i) {
  6904. //printf("p[%d] = %f\n", i, p[i]);
  6905. assert(!isnan(p[i]));
  6906. }
  6907. #endif
  6908. float max = -INFINITY;
  6909. ggml_vec_max_f32(nc, &max, p);
  6910. ggml_float sum = 0.0;
  6911. uint16_t scvt;
  6912. for (int i = 0; i < nc; i++) {
  6913. if (p[i] == -INFINITY) {
  6914. p[i] = 0.0f;
  6915. } else {
  6916. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6917. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6918. memcpy(&scvt, &s, sizeof(scvt));
  6919. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6920. sum += (ggml_float)val;
  6921. p[i] = val;
  6922. }
  6923. }
  6924. assert(sum > 0.0);
  6925. sum = 1.0/sum;
  6926. ggml_vec_scale_f32(nc, p, sum);
  6927. #ifndef NDEBUG
  6928. for (int i = 0; i < nc; ++i) {
  6929. assert(!isnan(p[i]));
  6930. assert(!isinf(p[i]));
  6931. }
  6932. #endif
  6933. }
  6934. }
  6935. static void ggml_compute_forward_soft_max(
  6936. const struct ggml_compute_params * params,
  6937. const struct ggml_tensor * src0,
  6938. struct ggml_tensor * dst) {
  6939. switch (src0->type) {
  6940. case GGML_TYPE_F32:
  6941. {
  6942. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6943. } break;
  6944. default:
  6945. {
  6946. GGML_ASSERT(false);
  6947. } break;
  6948. }
  6949. }
  6950. // ggml_compute_forward_rope
  6951. static void ggml_compute_forward_rope_f32(
  6952. const struct ggml_compute_params * params,
  6953. const struct ggml_tensor * src0,
  6954. const struct ggml_tensor * src1,
  6955. struct ggml_tensor * dst) {
  6956. assert(src1->type == GGML_TYPE_I32);
  6957. assert(ggml_nelements(src1) == 3);
  6958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6959. return;
  6960. }
  6961. const int n_past = ((int32_t *) src1->data)[0];
  6962. const int n_dims = ((int32_t *) src1->data)[1];
  6963. const int mode = ((int32_t *) src1->data)[2];
  6964. //const int64_t ne0 = src0->ne[0];
  6965. const int64_t ne1 = src0->ne[1];
  6966. const int64_t ne2 = src0->ne[2];
  6967. const int64_t ne3 = src0->ne[3];
  6968. const int nb0 = src0->nb[0];
  6969. const int nb1 = src0->nb[1];
  6970. const int nb2 = src0->nb[2];
  6971. const int nb3 = src0->nb[3];
  6972. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6973. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6974. assert(nb0 == sizeof(float));
  6975. const int ith = params->ith;
  6976. const int nth = params->nth;
  6977. const int nr = ggml_nrows(src0);
  6978. // rows per thread
  6979. const int dr = (nr + nth - 1)/nth;
  6980. // row range for this thread
  6981. const int ir0 = dr*ith;
  6982. const int ir1 = MIN(ir0 + dr, nr);
  6983. // row index used to determine which thread to use
  6984. int ir = 0;
  6985. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6986. const bool is_neox = mode & 2;
  6987. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6988. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6989. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  6990. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6991. if (ir++ < ir0) continue;
  6992. if (ir > ir1) break;
  6993. float theta = (float)p;
  6994. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6995. const float cos_theta = cosf(theta);
  6996. const float sin_theta = sinf(theta);
  6997. theta *= theta_scale;
  6998. if (!is_neox) {
  6999. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7000. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7001. const float x0 = src[0];
  7002. const float x1 = src[1];
  7003. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7004. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7005. } else {
  7006. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7007. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7008. const float x0 = src[0];
  7009. const float x1 = src[n_dims/2];
  7010. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7011. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7012. }
  7013. }
  7014. }
  7015. }
  7016. }
  7017. }
  7018. static void ggml_compute_forward_rope_f16(
  7019. const struct ggml_compute_params * params,
  7020. const struct ggml_tensor * src0,
  7021. const struct ggml_tensor * src1,
  7022. struct ggml_tensor * dst) {
  7023. assert(src1->type == GGML_TYPE_I32);
  7024. assert(ggml_nelements(src1) == 3);
  7025. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7026. return;
  7027. }
  7028. const int n_past = ((int32_t *) src1->data)[0];
  7029. const int n_dims = ((int32_t *) src1->data)[1];
  7030. const int mode = ((int32_t *) src1->data)[2];
  7031. //const int64_t ne0 = src0->ne[0];
  7032. const int64_t ne1 = src0->ne[1];
  7033. const int64_t ne2 = src0->ne[2];
  7034. const int64_t ne3 = src0->ne[3];
  7035. const int nb0 = src0->nb[0];
  7036. const int nb1 = src0->nb[1];
  7037. const int nb2 = src0->nb[2];
  7038. const int nb3 = src0->nb[3];
  7039. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7040. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7041. assert(nb0 == sizeof(ggml_fp16_t));
  7042. const int ith = params->ith;
  7043. const int nth = params->nth;
  7044. const int nr = ggml_nrows(src0);
  7045. // rows per thread
  7046. const int dr = (nr + nth - 1)/nth;
  7047. // row range for this thread
  7048. const int ir0 = dr*ith;
  7049. const int ir1 = MIN(ir0 + dr, nr);
  7050. // row index used to determine which thread to use
  7051. int ir = 0;
  7052. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7053. const bool is_neox = mode & 2;
  7054. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7055. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7056. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7057. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7058. if (ir++ < ir0) continue;
  7059. if (ir > ir1) break;
  7060. float theta = (float)p;
  7061. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7062. const float cos_theta = cosf(theta);
  7063. const float sin_theta = sinf(theta);
  7064. theta *= theta_scale;
  7065. if (!is_neox) {
  7066. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7067. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7068. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7069. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7070. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7071. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7072. } else {
  7073. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7074. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7075. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7076. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7077. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7078. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7079. }
  7080. }
  7081. }
  7082. }
  7083. }
  7084. }
  7085. static void ggml_compute_forward_rope(
  7086. const struct ggml_compute_params * params,
  7087. const struct ggml_tensor * src0,
  7088. const struct ggml_tensor * src1,
  7089. struct ggml_tensor * dst) {
  7090. switch (src0->type) {
  7091. case GGML_TYPE_F16:
  7092. {
  7093. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7094. } break;
  7095. case GGML_TYPE_F32:
  7096. {
  7097. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7098. } break;
  7099. default:
  7100. {
  7101. GGML_ASSERT(false);
  7102. } break;
  7103. }
  7104. }
  7105. // ggml_compute_forward_conv_1d_1s
  7106. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7107. const struct ggml_compute_params * params,
  7108. const struct ggml_tensor * src0,
  7109. const struct ggml_tensor * src1,
  7110. struct ggml_tensor * dst) {
  7111. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7112. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7113. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7114. int64_t t0 = ggml_perf_time_us();
  7115. UNUSED(t0);
  7116. const int64_t ne00 = src0->ne[0];
  7117. const int64_t ne01 = src0->ne[1];
  7118. const int64_t ne02 = src0->ne[2];
  7119. //const int64_t ne03 = src0->ne[3];
  7120. const int64_t ne10 = src1->ne[0];
  7121. const int64_t ne11 = src1->ne[1];
  7122. //const int64_t ne12 = src1->ne[2];
  7123. //const int64_t ne13 = src1->ne[3];
  7124. //const int64_t ne0 = dst->ne[0];
  7125. //const int64_t ne1 = dst->ne[1];
  7126. //const int64_t ne2 = dst->ne[2];
  7127. //const int64_t ne3 = dst->ne[3];
  7128. //const int64_t ne = ne0*ne1*ne2*ne3;
  7129. const int nb00 = src0->nb[0];
  7130. const int nb01 = src0->nb[1];
  7131. const int nb02 = src0->nb[2];
  7132. //const int nb03 = src0->nb[3];
  7133. const int nb10 = src1->nb[0];
  7134. const int nb11 = src1->nb[1];
  7135. //const int nb12 = src1->nb[2];
  7136. //const int nb13 = src1->nb[3];
  7137. //const int nb0 = dst->nb[0];
  7138. const int nb1 = dst->nb[1];
  7139. //const int nb2 = dst->nb[2];
  7140. //const int nb3 = dst->nb[3];
  7141. const int ith = params->ith;
  7142. const int nth = params->nth;
  7143. const int nk = ne00;
  7144. const int nh = nk/2;
  7145. const int ew0 = ggml_up32(ne01);
  7146. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7147. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7148. GGML_ASSERT(nb10 == sizeof(float));
  7149. if (params->type == GGML_TASK_INIT) {
  7150. // TODO: fix this memset (wsize is overestimated)
  7151. memset(params->wdata, 0, params->wsize);
  7152. // prepare kernel data (src0)
  7153. {
  7154. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7155. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7156. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7157. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7158. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7159. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7160. dst_data[i00*ew0 + i01] = src[i00];
  7161. }
  7162. }
  7163. }
  7164. }
  7165. // prepare source data (src1)
  7166. {
  7167. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7168. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7169. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7170. ggml_fp16_t * dst_data = wdata;
  7171. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7172. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7173. }
  7174. }
  7175. }
  7176. return;
  7177. }
  7178. if (params->type == GGML_TASK_FINALIZE) {
  7179. return;
  7180. }
  7181. // total rows in dst
  7182. const int nr = ne02;
  7183. // rows per thread
  7184. const int dr = (nr + nth - 1)/nth;
  7185. // row range for this thread
  7186. const int ir0 = dr*ith;
  7187. const int ir1 = MIN(ir0 + dr, nr);
  7188. for (int i1 = ir0; i1 < ir1; i1++) {
  7189. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7190. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7191. dst_data[i0] = 0;
  7192. for (int k = -nh; k <= nh; k++) {
  7193. float v = 0.0f;
  7194. ggml_vec_dot_f16(ew0, &v,
  7195. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7196. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7197. dst_data[i0] += v;
  7198. }
  7199. }
  7200. }
  7201. }
  7202. static void ggml_compute_forward_conv_1d_1s_f32(
  7203. const struct ggml_compute_params * params,
  7204. const struct ggml_tensor * src0,
  7205. const struct ggml_tensor * src1,
  7206. struct ggml_tensor * dst) {
  7207. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7208. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7209. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7210. int64_t t0 = ggml_perf_time_us();
  7211. UNUSED(t0);
  7212. const int64_t ne00 = src0->ne[0];
  7213. const int64_t ne01 = src0->ne[1];
  7214. const int64_t ne02 = src0->ne[2];
  7215. //const int64_t ne03 = src0->ne[3];
  7216. const int64_t ne10 = src1->ne[0];
  7217. const int64_t ne11 = src1->ne[1];
  7218. //const int64_t ne12 = src1->ne[2];
  7219. //const int64_t ne13 = src1->ne[3];
  7220. //const int64_t ne0 = dst->ne[0];
  7221. //const int64_t ne1 = dst->ne[1];
  7222. //const int64_t ne2 = dst->ne[2];
  7223. //const int64_t ne3 = dst->ne[3];
  7224. //const int64_t ne = ne0*ne1*ne2*ne3;
  7225. const int nb00 = src0->nb[0];
  7226. const int nb01 = src0->nb[1];
  7227. const int nb02 = src0->nb[2];
  7228. //const int nb03 = src0->nb[3];
  7229. const int nb10 = src1->nb[0];
  7230. const int nb11 = src1->nb[1];
  7231. //const int nb12 = src1->nb[2];
  7232. //const int nb13 = src1->nb[3];
  7233. //const int nb0 = dst->nb[0];
  7234. const int nb1 = dst->nb[1];
  7235. //const int nb2 = dst->nb[2];
  7236. //const int nb3 = dst->nb[3];
  7237. const int ith = params->ith;
  7238. const int nth = params->nth;
  7239. const int nk = ne00;
  7240. const int nh = nk/2;
  7241. const int ew0 = ggml_up32(ne01);
  7242. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7243. GGML_ASSERT(nb00 == sizeof(float));
  7244. GGML_ASSERT(nb10 == sizeof(float));
  7245. if (params->type == GGML_TASK_INIT) {
  7246. // TODO: fix this memset (wsize is overestimated)
  7247. memset(params->wdata, 0, params->wsize);
  7248. // prepare kernel data (src0)
  7249. {
  7250. float * const wdata = (float *) params->wdata + 0;
  7251. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7252. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7253. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7254. float * dst_data = wdata + i02*ew0*ne00;
  7255. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7256. dst_data[i00*ew0 + i01] = src[i00];
  7257. }
  7258. }
  7259. }
  7260. }
  7261. // prepare source data (src1)
  7262. {
  7263. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7264. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7265. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7266. float * dst_data = wdata;
  7267. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7268. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7269. }
  7270. }
  7271. }
  7272. return;
  7273. }
  7274. if (params->type == GGML_TASK_FINALIZE) {
  7275. return;
  7276. }
  7277. // total rows in dst
  7278. const int nr = ne02;
  7279. // rows per thread
  7280. const int dr = (nr + nth - 1)/nth;
  7281. // row range for this thread
  7282. const int ir0 = dr*ith;
  7283. const int ir1 = MIN(ir0 + dr, nr);
  7284. for (int i1 = ir0; i1 < ir1; i1++) {
  7285. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7286. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7287. dst_data[i0] = 0;
  7288. for (int k = -nh; k <= nh; k++) {
  7289. float v = 0.0f;
  7290. ggml_vec_dot_f32(ew0, &v,
  7291. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7292. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7293. dst_data[i0] += v;
  7294. }
  7295. }
  7296. }
  7297. }
  7298. static void ggml_compute_forward_conv_1d_1s(
  7299. const struct ggml_compute_params * params,
  7300. const struct ggml_tensor * src0,
  7301. const struct ggml_tensor * src1,
  7302. struct ggml_tensor * dst) {
  7303. switch (src0->type) {
  7304. case GGML_TYPE_F16:
  7305. {
  7306. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7307. } break;
  7308. case GGML_TYPE_F32:
  7309. {
  7310. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7311. } break;
  7312. default:
  7313. {
  7314. GGML_ASSERT(false);
  7315. } break;
  7316. }
  7317. }
  7318. // ggml_compute_forward_conv_1d_2s
  7319. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7320. const struct ggml_compute_params * params,
  7321. const struct ggml_tensor * src0,
  7322. const struct ggml_tensor * src1,
  7323. struct ggml_tensor * dst) {
  7324. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7325. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7326. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7327. int64_t t0 = ggml_perf_time_us();
  7328. UNUSED(t0);
  7329. const int64_t ne00 = src0->ne[0];
  7330. const int64_t ne01 = src0->ne[1];
  7331. const int64_t ne02 = src0->ne[2];
  7332. //const int64_t ne03 = src0->ne[3];
  7333. const int64_t ne10 = src1->ne[0];
  7334. const int64_t ne11 = src1->ne[1];
  7335. //const int64_t ne12 = src1->ne[2];
  7336. //const int64_t ne13 = src1->ne[3];
  7337. //const int64_t ne0 = dst->ne[0];
  7338. //const int64_t ne1 = dst->ne[1];
  7339. //const int64_t ne2 = dst->ne[2];
  7340. //const int64_t ne3 = dst->ne[3];
  7341. //const int64_t ne = ne0*ne1*ne2*ne3;
  7342. const int nb00 = src0->nb[0];
  7343. const int nb01 = src0->nb[1];
  7344. const int nb02 = src0->nb[2];
  7345. //const int nb03 = src0->nb[3];
  7346. const int nb10 = src1->nb[0];
  7347. const int nb11 = src1->nb[1];
  7348. //const int nb12 = src1->nb[2];
  7349. //const int nb13 = src1->nb[3];
  7350. //const int nb0 = dst->nb[0];
  7351. const int nb1 = dst->nb[1];
  7352. //const int nb2 = dst->nb[2];
  7353. //const int nb3 = dst->nb[3];
  7354. const int ith = params->ith;
  7355. const int nth = params->nth;
  7356. const int nk = ne00;
  7357. const int nh = nk/2;
  7358. const int ew0 = ggml_up32(ne01);
  7359. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7360. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7361. GGML_ASSERT(nb10 == sizeof(float));
  7362. if (params->type == GGML_TASK_INIT) {
  7363. // TODO: fix this memset (wsize is overestimated)
  7364. memset(params->wdata, 0, params->wsize);
  7365. // prepare kernel data (src0)
  7366. {
  7367. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7368. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7369. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7370. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7371. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7372. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7373. dst_data[i00*ew0 + i01] = src[i00];
  7374. }
  7375. }
  7376. }
  7377. }
  7378. // prepare source data (src1)
  7379. {
  7380. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7381. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7382. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7383. ggml_fp16_t * dst_data = wdata;
  7384. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7385. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7386. }
  7387. }
  7388. }
  7389. return;
  7390. }
  7391. if (params->type == GGML_TASK_FINALIZE) {
  7392. return;
  7393. }
  7394. // total rows in dst
  7395. const int nr = ne02;
  7396. // rows per thread
  7397. const int dr = (nr + nth - 1)/nth;
  7398. // row range for this thread
  7399. const int ir0 = dr*ith;
  7400. const int ir1 = MIN(ir0 + dr, nr);
  7401. for (int i1 = ir0; i1 < ir1; i1++) {
  7402. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7403. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7404. dst_data[i0/2] = 0;
  7405. for (int k = -nh; k <= nh; k++) {
  7406. float v = 0.0f;
  7407. ggml_vec_dot_f16(ew0, &v,
  7408. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7409. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7410. dst_data[i0/2] += v;
  7411. }
  7412. }
  7413. }
  7414. }
  7415. static void ggml_compute_forward_conv_1d_2s_f32(
  7416. const struct ggml_compute_params * params,
  7417. const struct ggml_tensor * src0,
  7418. const struct ggml_tensor * src1,
  7419. struct ggml_tensor * dst) {
  7420. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7421. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7422. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7423. int64_t t0 = ggml_perf_time_us();
  7424. UNUSED(t0);
  7425. const int64_t ne00 = src0->ne[0];
  7426. const int64_t ne01 = src0->ne[1];
  7427. const int64_t ne02 = src0->ne[2];
  7428. //const int64_t ne03 = src0->ne[3];
  7429. const int64_t ne10 = src1->ne[0];
  7430. const int64_t ne11 = src1->ne[1];
  7431. //const int64_t ne12 = src1->ne[2];
  7432. //const int64_t ne13 = src1->ne[3];
  7433. //const int64_t ne0 = dst->ne[0];
  7434. //const int64_t ne1 = dst->ne[1];
  7435. //const int64_t ne2 = dst->ne[2];
  7436. //const int64_t ne3 = dst->ne[3];
  7437. //const int64_t ne = ne0*ne1*ne2*ne3;
  7438. const int nb00 = src0->nb[0];
  7439. const int nb01 = src0->nb[1];
  7440. const int nb02 = src0->nb[2];
  7441. //const int nb03 = src0->nb[3];
  7442. const int nb10 = src1->nb[0];
  7443. const int nb11 = src1->nb[1];
  7444. //const int nb12 = src1->nb[2];
  7445. //const int nb13 = src1->nb[3];
  7446. //const int nb0 = dst->nb[0];
  7447. const int nb1 = dst->nb[1];
  7448. //const int nb2 = dst->nb[2];
  7449. //const int nb3 = dst->nb[3];
  7450. const int ith = params->ith;
  7451. const int nth = params->nth;
  7452. const int nk = ne00;
  7453. const int nh = nk/2;
  7454. const int ew0 = ggml_up32(ne01);
  7455. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7456. GGML_ASSERT(nb00 == sizeof(float));
  7457. GGML_ASSERT(nb10 == sizeof(float));
  7458. if (params->type == GGML_TASK_INIT) {
  7459. // TODO: fix this memset (wsize is overestimated)
  7460. memset(params->wdata, 0, params->wsize);
  7461. // prepare kernel data (src0)
  7462. {
  7463. float * const wdata = (float *) params->wdata + 0;
  7464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7465. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7466. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7467. float * dst_data = wdata + i02*ew0*ne00;
  7468. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7469. dst_data[i00*ew0 + i01] = src[i00];
  7470. }
  7471. }
  7472. }
  7473. }
  7474. // prepare source data (src1)
  7475. {
  7476. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7477. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7478. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7479. float * dst_data = wdata;
  7480. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7481. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7482. }
  7483. }
  7484. }
  7485. return;
  7486. }
  7487. if (params->type == GGML_TASK_FINALIZE) {
  7488. return;
  7489. }
  7490. // total rows in dst
  7491. const int nr = ne02;
  7492. // rows per thread
  7493. const int dr = (nr + nth - 1)/nth;
  7494. // row range for this thread
  7495. const int ir0 = dr*ith;
  7496. const int ir1 = MIN(ir0 + dr, nr);
  7497. for (int i1 = ir0; i1 < ir1; i1++) {
  7498. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7499. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7500. dst_data[i0/2] = 0;
  7501. for (int k = -nh; k <= nh; k++) {
  7502. float v = 0.0f;
  7503. ggml_vec_dot_f32(ew0, &v,
  7504. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7505. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7506. dst_data[i0/2] += v;
  7507. }
  7508. }
  7509. }
  7510. }
  7511. static void ggml_compute_forward_conv_1d_2s(
  7512. const struct ggml_compute_params * params,
  7513. const struct ggml_tensor * src0,
  7514. const struct ggml_tensor * src1,
  7515. struct ggml_tensor * dst) {
  7516. switch (src0->type) {
  7517. case GGML_TYPE_F16:
  7518. {
  7519. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7520. } break;
  7521. case GGML_TYPE_F32:
  7522. {
  7523. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7524. } break;
  7525. default:
  7526. {
  7527. GGML_ASSERT(false);
  7528. } break;
  7529. }
  7530. }
  7531. // ggml_compute_forward_flash_attn
  7532. static void ggml_compute_forward_flash_attn_f32(
  7533. const struct ggml_compute_params * params,
  7534. const struct ggml_tensor * q,
  7535. const struct ggml_tensor * k,
  7536. const struct ggml_tensor * v,
  7537. const bool masked,
  7538. struct ggml_tensor * dst) {
  7539. int64_t t0 = ggml_perf_time_us();
  7540. UNUSED(t0);
  7541. const int64_t neq0 = q->ne[0];
  7542. const int64_t neq1 = q->ne[1];
  7543. const int64_t neq2 = q->ne[2];
  7544. const int64_t neq3 = q->ne[3];
  7545. const int64_t nek0 = k->ne[0];
  7546. const int64_t nek1 = k->ne[1];
  7547. //const int64_t nek2 = k->ne[2];
  7548. //const int64_t nek3 = k->ne[3];
  7549. //const int64_t nev0 = v->ne[0];
  7550. const int64_t nev1 = v->ne[1];
  7551. //const int64_t nev2 = v->ne[2];
  7552. //const int64_t nev3 = v->ne[3];
  7553. const int64_t ne0 = dst->ne[0];
  7554. const int64_t ne1 = dst->ne[1];
  7555. //const int64_t ne2 = dst->ne[2];
  7556. //const int64_t ne3 = dst->ne[3];
  7557. const int nbk0 = k->nb[0];
  7558. const int nbk1 = k->nb[1];
  7559. const int nbk2 = k->nb[2];
  7560. const int nbk3 = k->nb[3];
  7561. const int nbq0 = q->nb[0];
  7562. const int nbq1 = q->nb[1];
  7563. const int nbq2 = q->nb[2];
  7564. const int nbq3 = q->nb[3];
  7565. const int nbv0 = v->nb[0];
  7566. const int nbv1 = v->nb[1];
  7567. const int nbv2 = v->nb[2];
  7568. const int nbv3 = v->nb[3];
  7569. const int nb0 = dst->nb[0];
  7570. const int nb1 = dst->nb[1];
  7571. const int nb2 = dst->nb[2];
  7572. const int nb3 = dst->nb[3];
  7573. const int ith = params->ith;
  7574. const int nth = params->nth;
  7575. const int64_t D = neq0;
  7576. const int64_t N = neq1;
  7577. const int64_t P = nek1 - N;
  7578. const int64_t M = P + N;
  7579. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7580. GGML_ASSERT(ne0 == D);
  7581. GGML_ASSERT(ne1 == N);
  7582. GGML_ASSERT(P >= 0);
  7583. GGML_ASSERT(nbq0 == sizeof(float));
  7584. GGML_ASSERT(nbk0 == sizeof(float));
  7585. GGML_ASSERT(nbv0 == sizeof(float));
  7586. GGML_ASSERT(neq0 == D);
  7587. GGML_ASSERT(nek0 == D);
  7588. GGML_ASSERT(nev1 == D);
  7589. GGML_ASSERT(neq1 == N);
  7590. GGML_ASSERT(nek1 == N + P);
  7591. GGML_ASSERT(nev1 == D);
  7592. // dst cannot be transposed or permuted
  7593. GGML_ASSERT(nb0 == sizeof(float));
  7594. GGML_ASSERT(nb0 <= nb1);
  7595. GGML_ASSERT(nb1 <= nb2);
  7596. GGML_ASSERT(nb2 <= nb3);
  7597. if (params->type == GGML_TASK_INIT) {
  7598. return;
  7599. }
  7600. if (params->type == GGML_TASK_FINALIZE) {
  7601. return;
  7602. }
  7603. // parallelize by q rows using ggml_vec_dot_f32
  7604. // total rows in q
  7605. const int nr = neq1*neq2*neq3;
  7606. // rows per thread
  7607. const int dr = (nr + nth - 1)/nth;
  7608. // row range for this thread
  7609. const int ir0 = dr*ith;
  7610. const int ir1 = MIN(ir0 + dr, nr);
  7611. const float scale = 1.0f/sqrtf(D);
  7612. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7613. for (int ir = ir0; ir < ir1; ++ir) {
  7614. // q indices
  7615. const int iq3 = ir/(neq2*neq1);
  7616. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7617. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7618. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7619. for (int i = M; i < Mup; ++i) {
  7620. S[i] = -INFINITY;
  7621. }
  7622. for (int64_t ic = 0; ic < nek1; ++ic) {
  7623. // k indices
  7624. const int ik3 = iq3;
  7625. const int ik2 = iq2;
  7626. const int ik1 = ic;
  7627. // S indices
  7628. const int i1 = ik1;
  7629. ggml_vec_dot_f32(neq0,
  7630. S + i1,
  7631. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7632. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7633. }
  7634. // scale
  7635. ggml_vec_scale_f32(nek1, S, scale);
  7636. if (masked) {
  7637. for (int64_t i = P; i < M; i++) {
  7638. if (i > P + iq1) {
  7639. S[i] = -INFINITY;
  7640. }
  7641. }
  7642. }
  7643. // softmax
  7644. {
  7645. float max = -INFINITY;
  7646. ggml_vec_max_f32(M, &max, S);
  7647. ggml_float sum = 0.0;
  7648. {
  7649. #ifdef GGML_SOFT_MAX_ACCELERATE
  7650. max = -max;
  7651. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7652. vvexpf(S, S, &Mup);
  7653. ggml_vec_sum_f32(Mup, &sum, S);
  7654. #else
  7655. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7656. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7657. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7658. float * SS = S + i;
  7659. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7660. if (SS[j] == -INFINITY) {
  7661. SS[j] = 0.0f;
  7662. } else {
  7663. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7664. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7665. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7666. sump[j] += (ggml_float)val;
  7667. SS[j] = val;
  7668. }
  7669. }
  7670. }
  7671. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7672. sum += sump[i];
  7673. }
  7674. #endif
  7675. }
  7676. assert(sum > 0.0);
  7677. sum = 1.0/sum;
  7678. ggml_vec_scale_f32(M, S, sum);
  7679. #ifndef NDEBUG
  7680. for (int i = 0; i < M; ++i) {
  7681. assert(!isnan(S[i]));
  7682. assert(!isinf(S[i]));
  7683. }
  7684. #endif
  7685. }
  7686. for (int64_t ic = 0; ic < nev1; ++ic) {
  7687. // dst indices
  7688. const int i1 = iq1;
  7689. const int i2 = iq2;
  7690. const int i3 = iq3;
  7691. ggml_vec_dot_f32(nek1,
  7692. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7693. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7694. S);
  7695. }
  7696. }
  7697. }
  7698. static void ggml_compute_forward_flash_attn_f16(
  7699. const struct ggml_compute_params * params,
  7700. const struct ggml_tensor * q,
  7701. const struct ggml_tensor * k,
  7702. const struct ggml_tensor * v,
  7703. const bool masked,
  7704. struct ggml_tensor * dst) {
  7705. int64_t t0 = ggml_perf_time_us();
  7706. UNUSED(t0);
  7707. const int64_t neq0 = q->ne[0];
  7708. const int64_t neq1 = q->ne[1];
  7709. const int64_t neq2 = q->ne[2];
  7710. const int64_t neq3 = q->ne[3];
  7711. const int64_t nek0 = k->ne[0];
  7712. const int64_t nek1 = k->ne[1];
  7713. //const int64_t nek2 = k->ne[2];
  7714. //const int64_t nek3 = k->ne[3];
  7715. //const int64_t nev0 = v->ne[0];
  7716. const int64_t nev1 = v->ne[1];
  7717. //const int64_t nev2 = v->ne[2];
  7718. //const int64_t nev3 = v->ne[3];
  7719. const int64_t ne0 = dst->ne[0];
  7720. const int64_t ne1 = dst->ne[1];
  7721. //const int64_t ne2 = dst->ne[2];
  7722. //const int64_t ne3 = dst->ne[3];
  7723. const int nbk0 = k->nb[0];
  7724. const int nbk1 = k->nb[1];
  7725. const int nbk2 = k->nb[2];
  7726. const int nbk3 = k->nb[3];
  7727. const int nbq0 = q->nb[0];
  7728. const int nbq1 = q->nb[1];
  7729. const int nbq2 = q->nb[2];
  7730. const int nbq3 = q->nb[3];
  7731. const int nbv0 = v->nb[0];
  7732. const int nbv1 = v->nb[1];
  7733. const int nbv2 = v->nb[2];
  7734. const int nbv3 = v->nb[3];
  7735. const int nb0 = dst->nb[0];
  7736. const int nb1 = dst->nb[1];
  7737. const int nb2 = dst->nb[2];
  7738. const int nb3 = dst->nb[3];
  7739. const int ith = params->ith;
  7740. const int nth = params->nth;
  7741. const int64_t D = neq0;
  7742. const int64_t N = neq1;
  7743. const int64_t P = nek1 - N;
  7744. const int64_t M = P + N;
  7745. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7746. GGML_ASSERT(ne0 == D);
  7747. GGML_ASSERT(ne1 == N);
  7748. GGML_ASSERT(P >= 0);
  7749. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7750. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7751. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7752. GGML_ASSERT(neq0 == D);
  7753. GGML_ASSERT(nek0 == D);
  7754. GGML_ASSERT(nev1 == D);
  7755. GGML_ASSERT(neq1 == N);
  7756. GGML_ASSERT(nek1 == N + P);
  7757. GGML_ASSERT(nev1 == D);
  7758. // dst cannot be transposed or permuted
  7759. GGML_ASSERT(nb0 == sizeof(float));
  7760. GGML_ASSERT(nb0 <= nb1);
  7761. GGML_ASSERT(nb1 <= nb2);
  7762. GGML_ASSERT(nb2 <= nb3);
  7763. if (params->type == GGML_TASK_INIT) {
  7764. return;
  7765. }
  7766. if (params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. // parallelize by q rows using ggml_vec_dot_f32
  7770. // total rows in q
  7771. const int nr = neq1*neq2*neq3;
  7772. // rows per thread
  7773. const int dr = (nr + nth - 1)/nth;
  7774. // row range for this thread
  7775. const int ir0 = dr*ith;
  7776. const int ir1 = MIN(ir0 + dr, nr);
  7777. const float scale = 1.0f/sqrtf(D);
  7778. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7779. for (int ir = ir0; ir < ir1; ++ir) {
  7780. // q indices
  7781. const int iq3 = ir/(neq2*neq1);
  7782. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7783. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7784. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7785. for (int i = M; i < Mup; ++i) {
  7786. S[i] = -INFINITY;
  7787. }
  7788. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7789. for (int64_t ic = 0; ic < nek1; ++ic) {
  7790. // k indices
  7791. const int ik3 = iq3;
  7792. const int ik2 = iq2;
  7793. const int ik1 = ic;
  7794. // S indices
  7795. const int i1 = ik1;
  7796. ggml_vec_dot_f16(neq0,
  7797. S + i1,
  7798. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7799. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7800. }
  7801. } else {
  7802. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7803. // k indices
  7804. const int ik3 = iq3;
  7805. const int ik2 = iq2;
  7806. const int ik1 = ic;
  7807. // S indices
  7808. const int i1 = ik1;
  7809. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7810. S + i1,
  7811. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7812. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7813. }
  7814. }
  7815. // scale
  7816. ggml_vec_scale_f32(nek1, S, scale);
  7817. if (masked) {
  7818. for (int64_t i = P; i < M; i++) {
  7819. if (i > P + iq1) {
  7820. S[i] = -INFINITY;
  7821. }
  7822. }
  7823. }
  7824. // softmax
  7825. {
  7826. float max = -INFINITY;
  7827. ggml_vec_max_f32(M, &max, S);
  7828. ggml_float sum = 0.0;
  7829. {
  7830. #ifdef GGML_SOFT_MAX_ACCELERATE
  7831. max = -max;
  7832. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7833. vvexpf(S, S, &Mup);
  7834. ggml_vec_sum_f32(Mup, &sum, S);
  7835. #else
  7836. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7837. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7838. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7839. float * SS = S + i;
  7840. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7841. if (SS[j] == -INFINITY) {
  7842. SS[j] = 0.0f;
  7843. } else {
  7844. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7845. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7846. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7847. sump[j] += (ggml_float)val;
  7848. SS[j] = val;
  7849. }
  7850. }
  7851. }
  7852. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7853. sum += sump[i];
  7854. }
  7855. #endif
  7856. }
  7857. assert(sum > 0.0);
  7858. sum = 1.0/sum;
  7859. ggml_vec_scale_f32(M, S, sum);
  7860. #ifndef NDEBUG
  7861. for (int i = 0; i < M; ++i) {
  7862. assert(!isnan(S[i]));
  7863. assert(!isinf(S[i]));
  7864. }
  7865. #endif
  7866. }
  7867. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7868. for (int64_t i = 0; i < M; i++) {
  7869. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7870. }
  7871. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7872. for (int64_t ic = 0; ic < nev1; ++ic) {
  7873. // dst indices
  7874. const int i1 = iq1;
  7875. const int i2 = iq2;
  7876. const int i3 = iq3;
  7877. ggml_vec_dot_f16(nek1,
  7878. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7879. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7880. S16);
  7881. }
  7882. } else {
  7883. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7884. // dst indices
  7885. const int i1 = iq1;
  7886. const int i2 = iq2;
  7887. const int i3 = iq3;
  7888. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7889. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7890. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7891. S16);
  7892. }
  7893. }
  7894. }
  7895. }
  7896. static void ggml_compute_forward_flash_attn(
  7897. const struct ggml_compute_params * params,
  7898. const struct ggml_tensor * q,
  7899. const struct ggml_tensor * k,
  7900. const struct ggml_tensor * v,
  7901. const bool masked,
  7902. struct ggml_tensor * dst) {
  7903. switch (q->type) {
  7904. case GGML_TYPE_F16:
  7905. {
  7906. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7907. } break;
  7908. case GGML_TYPE_F32:
  7909. {
  7910. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7911. } break;
  7912. default:
  7913. {
  7914. GGML_ASSERT(false);
  7915. } break;
  7916. }
  7917. }
  7918. // ggml_compute_forward_flash_ff
  7919. static void ggml_compute_forward_flash_ff_f16(
  7920. const struct ggml_compute_params * params,
  7921. const struct ggml_tensor * a, // F16
  7922. const struct ggml_tensor * b0, // F16 fc_w
  7923. const struct ggml_tensor * b1, // F32 fc_b
  7924. const struct ggml_tensor * c0, // F16 proj_w
  7925. const struct ggml_tensor * c1, // F32 proj_b
  7926. struct ggml_tensor * dst) {
  7927. int64_t t0 = ggml_perf_time_us();
  7928. UNUSED(t0);
  7929. const int64_t nea0 = a->ne[0];
  7930. const int64_t nea1 = a->ne[1];
  7931. const int64_t nea2 = a->ne[2];
  7932. const int64_t nea3 = a->ne[3];
  7933. const int64_t neb00 = b0->ne[0];
  7934. const int64_t neb01 = b0->ne[1];
  7935. //const int64_t neb02 = b0->ne[2];
  7936. //const int64_t neb03 = b0->ne[3];
  7937. const int64_t neb10 = b1->ne[0];
  7938. const int64_t neb11 = b1->ne[1];
  7939. //const int64_t neb12 = b1->ne[2];
  7940. //const int64_t neb13 = b1->ne[3];
  7941. const int64_t nec00 = c0->ne[0];
  7942. const int64_t nec01 = c0->ne[1];
  7943. //const int64_t nec02 = c0->ne[2];
  7944. //const int64_t nec03 = c0->ne[3];
  7945. const int64_t nec10 = c1->ne[0];
  7946. const int64_t nec11 = c1->ne[1];
  7947. //const int64_t nec12 = c1->ne[2];
  7948. //const int64_t nec13 = c1->ne[3];
  7949. const int64_t ne0 = dst->ne[0];
  7950. const int64_t ne1 = dst->ne[1];
  7951. const int64_t ne2 = dst->ne[2];
  7952. //const int64_t ne3 = dst->ne[3];
  7953. const int nba0 = a->nb[0];
  7954. const int nba1 = a->nb[1];
  7955. const int nba2 = a->nb[2];
  7956. const int nba3 = a->nb[3];
  7957. const int nbb00 = b0->nb[0];
  7958. const int nbb01 = b0->nb[1];
  7959. const int nbb02 = b0->nb[2];
  7960. const int nbb03 = b0->nb[3];
  7961. const int nbb10 = b1->nb[0];
  7962. //const int nbb11 = b1->nb[1];
  7963. //const int nbb12 = b1->nb[2];
  7964. //const int nbb13 = b1->nb[3];
  7965. const int nbc00 = c0->nb[0];
  7966. const int nbc01 = c0->nb[1];
  7967. const int nbc02 = c0->nb[2];
  7968. const int nbc03 = c0->nb[3];
  7969. const int nbc10 = c1->nb[0];
  7970. //const int nbc11 = c1->nb[1];
  7971. //const int nbc12 = c1->nb[2];
  7972. //const int nbc13 = c1->nb[3];
  7973. const int nb0 = dst->nb[0];
  7974. const int nb1 = dst->nb[1];
  7975. const int nb2 = dst->nb[2];
  7976. const int nb3 = dst->nb[3];
  7977. const int ith = params->ith;
  7978. const int nth = params->nth;
  7979. const int64_t D = nea0;
  7980. //const int64_t N = nea1;
  7981. const int64_t M = neb01;
  7982. GGML_ASSERT(ne0 == nea0);
  7983. GGML_ASSERT(ne1 == nea1);
  7984. GGML_ASSERT(ne2 == nea2);
  7985. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7986. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7987. GGML_ASSERT(nbb10 == sizeof(float));
  7988. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7989. GGML_ASSERT(nbc10 == sizeof(float));
  7990. GGML_ASSERT(neb00 == D);
  7991. GGML_ASSERT(neb01 == M);
  7992. GGML_ASSERT(neb10 == M);
  7993. GGML_ASSERT(neb11 == 1);
  7994. GGML_ASSERT(nec00 == M);
  7995. GGML_ASSERT(nec01 == D);
  7996. GGML_ASSERT(nec10 == D);
  7997. GGML_ASSERT(nec11 == 1);
  7998. // dst cannot be transposed or permuted
  7999. GGML_ASSERT(nb0 == sizeof(float));
  8000. GGML_ASSERT(nb0 <= nb1);
  8001. GGML_ASSERT(nb1 <= nb2);
  8002. GGML_ASSERT(nb2 <= nb3);
  8003. if (params->type == GGML_TASK_INIT) {
  8004. return;
  8005. }
  8006. if (params->type == GGML_TASK_FINALIZE) {
  8007. return;
  8008. }
  8009. // parallelize by a rows using ggml_vec_dot_f32
  8010. // total rows in a
  8011. const int nr = nea1*nea2*nea3;
  8012. // rows per thread
  8013. const int dr = (nr + nth - 1)/nth;
  8014. // row range for this thread
  8015. const int ir0 = dr*ith;
  8016. const int ir1 = MIN(ir0 + dr, nr);
  8017. for (int ir = ir0; ir < ir1; ++ir) {
  8018. // a indices
  8019. const int ia3 = ir/(nea2*nea1);
  8020. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8021. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8022. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8023. for (int64_t ic = 0; ic < neb01; ++ic) {
  8024. // b0 indices
  8025. const int ib03 = ia3;
  8026. const int ib02 = ia2;
  8027. const int ib01 = ic;
  8028. // S indices
  8029. const int i1 = ib01;
  8030. ggml_vec_dot_f16(nea0,
  8031. S + i1,
  8032. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8033. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8034. }
  8035. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8036. //ggml_vec_gelu_f32(neb01, S, S);
  8037. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8038. for (int64_t i = 0; i < M; i++) {
  8039. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8040. }
  8041. ggml_vec_gelu_f16(neb01, S16, S16);
  8042. {
  8043. // dst indices
  8044. const int i1 = ia1;
  8045. const int i2 = ia2;
  8046. const int i3 = ia3;
  8047. for (int64_t ic = 0; ic < nec01; ++ic) {
  8048. ggml_vec_dot_f16(neb01,
  8049. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8050. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8051. S16);
  8052. }
  8053. ggml_vec_add_f32(nec01,
  8054. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8055. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8056. (float *) c1->data);
  8057. }
  8058. }
  8059. }
  8060. static void ggml_compute_forward_flash_ff(
  8061. const struct ggml_compute_params * params,
  8062. const struct ggml_tensor * a,
  8063. const struct ggml_tensor * b0,
  8064. const struct ggml_tensor * b1,
  8065. const struct ggml_tensor * c0,
  8066. const struct ggml_tensor * c1,
  8067. struct ggml_tensor * dst) {
  8068. switch (b0->type) {
  8069. case GGML_TYPE_F16:
  8070. {
  8071. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8072. } break;
  8073. case GGML_TYPE_F32:
  8074. {
  8075. GGML_ASSERT(false); // TODO
  8076. } break;
  8077. default:
  8078. {
  8079. GGML_ASSERT(false);
  8080. } break;
  8081. }
  8082. }
  8083. // ggml_compute_forward_map_unary
  8084. static void ggml_compute_forward_map_unary_f32(
  8085. const struct ggml_compute_params * params,
  8086. const struct ggml_tensor * src0,
  8087. struct ggml_tensor * dst,
  8088. const ggml_unary_op_f32_t fun) {
  8089. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8090. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8091. return;
  8092. }
  8093. const int n = ggml_nrows(src0);
  8094. const int nc = src0->ne[0];
  8095. assert( dst->nb[0] == sizeof(float));
  8096. assert(src0->nb[0] == sizeof(float));
  8097. for (int i = 0; i < n; i++) {
  8098. fun(nc,
  8099. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8100. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8101. }
  8102. }
  8103. static void ggml_compute_forward_map_unary(
  8104. const struct ggml_compute_params * params,
  8105. const struct ggml_tensor * src0,
  8106. struct ggml_tensor * dst,
  8107. const ggml_unary_op_f32_t fun) {
  8108. switch (src0->type) {
  8109. case GGML_TYPE_F32:
  8110. {
  8111. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8112. } break;
  8113. default:
  8114. {
  8115. GGML_ASSERT(false);
  8116. } break;
  8117. }
  8118. }
  8119. // ggml_compute_forward_map_binary
  8120. static void ggml_compute_forward_map_binary_f32(
  8121. const struct ggml_compute_params * params,
  8122. const struct ggml_tensor * src0,
  8123. const struct ggml_tensor * src1,
  8124. struct ggml_tensor * dst,
  8125. const ggml_binary_op_f32_t fun) {
  8126. assert(params->ith == 0);
  8127. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8129. return;
  8130. }
  8131. const int n = ggml_nrows(src0);
  8132. const int nc = src0->ne[0];
  8133. assert( dst->nb[0] == sizeof(float));
  8134. assert(src0->nb[0] == sizeof(float));
  8135. assert(src1->nb[0] == sizeof(float));
  8136. for (int i = 0; i < n; i++) {
  8137. fun(nc,
  8138. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8139. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8140. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8141. }
  8142. }
  8143. static void ggml_compute_forward_map_binary(
  8144. const struct ggml_compute_params * params,
  8145. const struct ggml_tensor * src0,
  8146. const struct ggml_tensor * src1,
  8147. struct ggml_tensor * dst,
  8148. const ggml_binary_op_f32_t fun) {
  8149. switch (src0->type) {
  8150. case GGML_TYPE_F32:
  8151. {
  8152. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8153. } break;
  8154. default:
  8155. {
  8156. GGML_ASSERT(false);
  8157. } break;
  8158. }
  8159. }
  8160. /////////////////////////////////
  8161. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8162. GGML_ASSERT(params);
  8163. switch (tensor->op) {
  8164. case GGML_OP_DUP:
  8165. {
  8166. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8167. } break;
  8168. case GGML_OP_ADD:
  8169. {
  8170. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8171. } break;
  8172. case GGML_OP_SUB:
  8173. {
  8174. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8175. } break;
  8176. case GGML_OP_MUL:
  8177. {
  8178. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8179. } break;
  8180. case GGML_OP_DIV:
  8181. {
  8182. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8183. } break;
  8184. case GGML_OP_SQR:
  8185. {
  8186. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8187. } break;
  8188. case GGML_OP_SQRT:
  8189. {
  8190. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8191. } break;
  8192. case GGML_OP_SUM:
  8193. {
  8194. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8195. } break;
  8196. case GGML_OP_MEAN:
  8197. {
  8198. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8199. } break;
  8200. case GGML_OP_REPEAT:
  8201. {
  8202. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8203. } break;
  8204. case GGML_OP_ABS:
  8205. {
  8206. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8207. } break;
  8208. case GGML_OP_SGN:
  8209. {
  8210. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8211. } break;
  8212. case GGML_OP_NEG:
  8213. {
  8214. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8215. } break;
  8216. case GGML_OP_STEP:
  8217. {
  8218. ggml_compute_forward_step(params, tensor->src0, tensor);
  8219. } break;
  8220. case GGML_OP_RELU:
  8221. {
  8222. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8223. } break;
  8224. case GGML_OP_GELU:
  8225. {
  8226. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8227. } break;
  8228. case GGML_OP_SILU:
  8229. {
  8230. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8231. } break;
  8232. case GGML_OP_NORM:
  8233. {
  8234. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8235. } break;
  8236. case GGML_OP_RMS_NORM:
  8237. {
  8238. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8239. } break;
  8240. case GGML_OP_MUL_MAT:
  8241. {
  8242. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8243. } break;
  8244. case GGML_OP_SCALE:
  8245. {
  8246. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8247. } break;
  8248. case GGML_OP_CPY:
  8249. {
  8250. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8251. } break;
  8252. case GGML_OP_CONT:
  8253. {
  8254. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8255. } break;
  8256. case GGML_OP_RESHAPE:
  8257. {
  8258. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8259. } break;
  8260. case GGML_OP_VIEW:
  8261. {
  8262. ggml_compute_forward_view(params, tensor->src0);
  8263. } break;
  8264. case GGML_OP_PERMUTE:
  8265. {
  8266. ggml_compute_forward_permute(params, tensor->src0);
  8267. } break;
  8268. case GGML_OP_TRANSPOSE:
  8269. {
  8270. ggml_compute_forward_transpose(params, tensor->src0);
  8271. } break;
  8272. case GGML_OP_GET_ROWS:
  8273. {
  8274. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8275. } break;
  8276. case GGML_OP_DIAG_MASK_INF:
  8277. {
  8278. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8279. } break;
  8280. case GGML_OP_SOFT_MAX:
  8281. {
  8282. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8283. } break;
  8284. case GGML_OP_ROPE:
  8285. {
  8286. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8287. } break;
  8288. case GGML_OP_CONV_1D_1S:
  8289. {
  8290. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8291. } break;
  8292. case GGML_OP_CONV_1D_2S:
  8293. {
  8294. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8295. } break;
  8296. case GGML_OP_FLASH_ATTN:
  8297. {
  8298. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8299. GGML_ASSERT(t == 0 || t == 1);
  8300. bool masked = t != 0;
  8301. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8302. } break;
  8303. case GGML_OP_FLASH_FF:
  8304. {
  8305. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8306. } break;
  8307. case GGML_OP_MAP_UNARY:
  8308. {
  8309. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8310. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8311. }
  8312. break;
  8313. case GGML_OP_MAP_BINARY:
  8314. {
  8315. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8316. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8317. }
  8318. break;
  8319. case GGML_OP_NONE:
  8320. {
  8321. // nop
  8322. } break;
  8323. case GGML_OP_COUNT:
  8324. {
  8325. GGML_ASSERT(false);
  8326. } break;
  8327. }
  8328. }
  8329. ////////////////////////////////////////////////////////////////////////////////
  8330. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8331. struct ggml_tensor * src0 = tensor->src0;
  8332. struct ggml_tensor * src1 = tensor->src1;
  8333. switch (tensor->op) {
  8334. case GGML_OP_DUP:
  8335. {
  8336. if (src0->grad) {
  8337. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8338. }
  8339. } break;
  8340. case GGML_OP_ADD:
  8341. {
  8342. if (src0->grad) {
  8343. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8344. }
  8345. if (src1->grad) {
  8346. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8347. }
  8348. } break;
  8349. case GGML_OP_SUB:
  8350. {
  8351. if (src0->grad) {
  8352. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8353. }
  8354. if (src1->grad) {
  8355. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8356. }
  8357. } break;
  8358. case GGML_OP_MUL:
  8359. {
  8360. if (src0->grad) {
  8361. src0->grad =
  8362. ggml_add_impl(ctx,
  8363. src0->grad,
  8364. ggml_mul(ctx, src1, tensor->grad),
  8365. inplace);
  8366. }
  8367. if (src1->grad) {
  8368. src1->grad =
  8369. ggml_add_impl(ctx,
  8370. src1->grad,
  8371. ggml_mul(ctx, src0, tensor->grad),
  8372. inplace);
  8373. }
  8374. } break;
  8375. case GGML_OP_DIV:
  8376. {
  8377. if (src0->grad) {
  8378. src0->grad =
  8379. ggml_add_impl(ctx,
  8380. src0->grad,
  8381. ggml_div(ctx, tensor->grad, src1),
  8382. inplace);
  8383. }
  8384. if (src1->grad) {
  8385. src1->grad =
  8386. ggml_sub_impl(ctx,
  8387. src1->grad,
  8388. ggml_mul(ctx,
  8389. tensor->grad,
  8390. ggml_div(ctx, tensor, src1)),
  8391. inplace);
  8392. }
  8393. } break;
  8394. case GGML_OP_SQR:
  8395. {
  8396. if (src0->grad) {
  8397. src0->grad =
  8398. ggml_add_impl(ctx,
  8399. src0->grad,
  8400. ggml_mul(ctx,
  8401. ggml_mul(ctx, src0, tensor->grad),
  8402. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8403. inplace);
  8404. }
  8405. } break;
  8406. case GGML_OP_SQRT:
  8407. {
  8408. if (src0->grad) {
  8409. src0->grad =
  8410. ggml_add_impl(ctx,
  8411. src0->grad,
  8412. ggml_div(ctx,
  8413. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8414. tensor),
  8415. inplace);
  8416. }
  8417. } break;
  8418. case GGML_OP_SUM:
  8419. {
  8420. if (src0->grad) {
  8421. src0->grad =
  8422. ggml_add_impl(ctx,
  8423. src0->grad,
  8424. ggml_repeat(ctx, tensor->grad, src0->grad),
  8425. inplace);
  8426. }
  8427. } break;
  8428. case GGML_OP_MEAN:
  8429. {
  8430. GGML_ASSERT(false); // TODO: implement
  8431. } break;
  8432. case GGML_OP_REPEAT:
  8433. {
  8434. if (src0->grad) {
  8435. src0->grad =
  8436. ggml_add_impl(ctx,
  8437. src0->grad,
  8438. ggml_sum(ctx, tensor->grad),
  8439. inplace);
  8440. }
  8441. } break;
  8442. case GGML_OP_ABS:
  8443. {
  8444. if (src0->grad) {
  8445. src0->grad =
  8446. ggml_add_impl(ctx,
  8447. src0->grad,
  8448. ggml_mul(ctx,
  8449. ggml_sgn(ctx, src0),
  8450. tensor->grad),
  8451. inplace);
  8452. }
  8453. } break;
  8454. case GGML_OP_SGN:
  8455. {
  8456. if (src0->grad) {
  8457. // noop
  8458. }
  8459. } break;
  8460. case GGML_OP_NEG:
  8461. {
  8462. if (src0->grad) {
  8463. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8464. }
  8465. } break;
  8466. case GGML_OP_STEP:
  8467. {
  8468. if (src0->grad) {
  8469. // noop
  8470. }
  8471. } break;
  8472. case GGML_OP_RELU:
  8473. {
  8474. if (src0->grad) {
  8475. src0->grad = ggml_sub_impl(ctx,
  8476. src0->grad,
  8477. ggml_mul(ctx,
  8478. ggml_step(ctx, src0),
  8479. tensor->grad),
  8480. inplace);
  8481. }
  8482. } break;
  8483. case GGML_OP_GELU:
  8484. {
  8485. GGML_ASSERT(false); // TODO: not implemented
  8486. } break;
  8487. case GGML_OP_SILU:
  8488. {
  8489. GGML_ASSERT(false); // TODO: not implemented
  8490. } break;
  8491. case GGML_OP_NORM:
  8492. {
  8493. GGML_ASSERT(false); // TODO: not implemented
  8494. } break;
  8495. case GGML_OP_RMS_NORM:
  8496. {
  8497. GGML_ASSERT(false); // TODO: not implemented
  8498. } break;
  8499. case GGML_OP_MUL_MAT:
  8500. {
  8501. if (src0->grad) {
  8502. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8503. GGML_ASSERT(false);
  8504. }
  8505. if (src1->grad) {
  8506. src1->grad =
  8507. ggml_add_impl(ctx,
  8508. src1->grad,
  8509. ggml_mul_mat(ctx,
  8510. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8511. tensor->grad),
  8512. inplace);
  8513. }
  8514. } break;
  8515. case GGML_OP_SCALE:
  8516. {
  8517. GGML_ASSERT(false); // TODO: not implemented
  8518. } break;
  8519. case GGML_OP_CPY:
  8520. {
  8521. GGML_ASSERT(false); // TODO: not implemented
  8522. } break;
  8523. case GGML_OP_CONT:
  8524. {
  8525. GGML_ASSERT(false); // TODO: not implemented
  8526. } break;
  8527. case GGML_OP_RESHAPE:
  8528. {
  8529. GGML_ASSERT(false); // TODO: not implemented
  8530. } break;
  8531. case GGML_OP_VIEW:
  8532. {
  8533. GGML_ASSERT(false); // not supported
  8534. } break;
  8535. case GGML_OP_PERMUTE:
  8536. {
  8537. GGML_ASSERT(false); // TODO: not implemented
  8538. } break;
  8539. case GGML_OP_TRANSPOSE:
  8540. {
  8541. GGML_ASSERT(false); // TODO: not implemented
  8542. } break;
  8543. case GGML_OP_GET_ROWS:
  8544. {
  8545. GGML_ASSERT(false); // TODO: not implemented
  8546. } break;
  8547. case GGML_OP_DIAG_MASK_INF:
  8548. {
  8549. GGML_ASSERT(false); // TODO: not implemented
  8550. } break;
  8551. case GGML_OP_SOFT_MAX:
  8552. {
  8553. GGML_ASSERT(false); // TODO: not implemented
  8554. } break;
  8555. case GGML_OP_ROPE:
  8556. {
  8557. GGML_ASSERT(false); // TODO: not implemented
  8558. } break;
  8559. case GGML_OP_CONV_1D_1S:
  8560. {
  8561. GGML_ASSERT(false); // TODO: not implemented
  8562. } break;
  8563. case GGML_OP_CONV_1D_2S:
  8564. {
  8565. GGML_ASSERT(false); // TODO: not implemented
  8566. } break;
  8567. case GGML_OP_FLASH_ATTN:
  8568. {
  8569. GGML_ASSERT(false); // not supported
  8570. } break;
  8571. case GGML_OP_FLASH_FF:
  8572. {
  8573. GGML_ASSERT(false); // not supported
  8574. } break;
  8575. case GGML_OP_MAP_UNARY:
  8576. case GGML_OP_MAP_BINARY:
  8577. {
  8578. GGML_ASSERT(false); // not supported
  8579. } break;
  8580. case GGML_OP_NONE:
  8581. {
  8582. // nop
  8583. } break;
  8584. case GGML_OP_COUNT:
  8585. {
  8586. GGML_ASSERT(false);
  8587. } break;
  8588. }
  8589. }
  8590. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8591. if (node->grad == NULL) {
  8592. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8593. // it can also happen during forward pass, if the user performs computations with constants
  8594. if (node->op != GGML_OP_NONE) {
  8595. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8596. }
  8597. }
  8598. // check if already visited
  8599. for (int i = 0; i < cgraph->n_nodes; i++) {
  8600. if (cgraph->nodes[i] == node) {
  8601. return;
  8602. }
  8603. }
  8604. for (int i = 0; i < cgraph->n_leafs; i++) {
  8605. if (cgraph->leafs[i] == node) {
  8606. return;
  8607. }
  8608. }
  8609. if (node->src0) {
  8610. ggml_visit_parents(cgraph, node->src0);
  8611. }
  8612. if (node->src1) {
  8613. ggml_visit_parents(cgraph, node->src1);
  8614. }
  8615. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8616. if (node->opt[i]) {
  8617. ggml_visit_parents(cgraph, node->opt[i]);
  8618. }
  8619. }
  8620. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8621. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8622. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8623. cgraph->leafs[cgraph->n_leafs] = node;
  8624. cgraph->n_leafs++;
  8625. } else {
  8626. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8627. cgraph->nodes[cgraph->n_nodes] = node;
  8628. cgraph->grads[cgraph->n_nodes] = node->grad;
  8629. cgraph->n_nodes++;
  8630. }
  8631. }
  8632. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8633. if (!expand) {
  8634. cgraph->n_nodes = 0;
  8635. cgraph->n_leafs = 0;
  8636. }
  8637. const int n0 = cgraph->n_nodes;
  8638. UNUSED(n0);
  8639. ggml_visit_parents(cgraph, tensor);
  8640. const int n_new = cgraph->n_nodes - n0;
  8641. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8642. if (n_new > 0) {
  8643. // the last added node should always be starting point
  8644. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8645. }
  8646. }
  8647. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8648. ggml_build_forward_impl(cgraph, tensor, true);
  8649. }
  8650. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8651. struct ggml_cgraph result = {
  8652. /*.n_nodes =*/ 0,
  8653. /*.n_leafs =*/ 0,
  8654. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8655. /*.work_size =*/ 0,
  8656. /*.work =*/ NULL,
  8657. /*.nodes =*/ { NULL },
  8658. /*.grads =*/ { NULL },
  8659. /*.leafs =*/ { NULL },
  8660. /*.perf_runs =*/ 0,
  8661. /*.perf_cycles =*/ 0,
  8662. /*.perf_time_us =*/ 0,
  8663. };
  8664. ggml_build_forward_impl(&result, tensor, false);
  8665. return result;
  8666. }
  8667. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8668. struct ggml_cgraph result = *gf;
  8669. GGML_ASSERT(gf->n_nodes > 0);
  8670. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8671. if (keep) {
  8672. for (int i = 0; i < gf->n_nodes; i++) {
  8673. struct ggml_tensor * node = gf->nodes[i];
  8674. if (node->grad) {
  8675. node->grad = ggml_dup_tensor(ctx, node);
  8676. gf->grads[i] = node->grad;
  8677. }
  8678. }
  8679. }
  8680. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8681. struct ggml_tensor * node = gf->nodes[i];
  8682. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8683. if (node->grad) {
  8684. ggml_compute_backward(ctx, node, keep);
  8685. }
  8686. }
  8687. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8688. struct ggml_tensor * node = gf->nodes[i];
  8689. if (node->is_param) {
  8690. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8691. ggml_build_forward_impl(&result, node->grad, true);
  8692. }
  8693. }
  8694. return result;
  8695. }
  8696. //
  8697. // thread data
  8698. //
  8699. // synchronization is done via busy loops
  8700. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8701. //
  8702. #ifdef __APPLE__
  8703. //#include <os/lock.h>
  8704. //
  8705. //typedef os_unfair_lock ggml_lock_t;
  8706. //
  8707. //#define ggml_lock_init(x) UNUSED(x)
  8708. //#define ggml_lock_destroy(x) UNUSED(x)
  8709. //#define ggml_lock_lock os_unfair_lock_lock
  8710. //#define ggml_lock_unlock os_unfair_lock_unlock
  8711. //
  8712. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8713. typedef int ggml_lock_t;
  8714. #define ggml_lock_init(x) UNUSED(x)
  8715. #define ggml_lock_destroy(x) UNUSED(x)
  8716. #define ggml_lock_lock(x) UNUSED(x)
  8717. #define ggml_lock_unlock(x) UNUSED(x)
  8718. #define GGML_LOCK_INITIALIZER 0
  8719. typedef pthread_t ggml_thread_t;
  8720. #define ggml_thread_create pthread_create
  8721. #define ggml_thread_join pthread_join
  8722. #else
  8723. //typedef pthread_spinlock_t ggml_lock_t;
  8724. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8725. //#define ggml_lock_destroy pthread_spin_destroy
  8726. //#define ggml_lock_lock pthread_spin_lock
  8727. //#define ggml_lock_unlock pthread_spin_unlock
  8728. typedef int ggml_lock_t;
  8729. #define ggml_lock_init(x) UNUSED(x)
  8730. #define ggml_lock_destroy(x) UNUSED(x)
  8731. #define ggml_lock_lock(x) UNUSED(x)
  8732. #define ggml_lock_unlock(x) UNUSED(x)
  8733. #define GGML_LOCK_INITIALIZER 0
  8734. typedef pthread_t ggml_thread_t;
  8735. #define ggml_thread_create pthread_create
  8736. #define ggml_thread_join pthread_join
  8737. #endif
  8738. struct ggml_compute_state_shared {
  8739. ggml_lock_t spin;
  8740. int n_threads;
  8741. // synchronization primitives
  8742. atomic_int n_ready;
  8743. atomic_bool has_work;
  8744. atomic_bool stop; // stop all threads
  8745. };
  8746. struct ggml_compute_state {
  8747. ggml_thread_t thrd;
  8748. struct ggml_compute_params params;
  8749. struct ggml_tensor * node;
  8750. struct ggml_compute_state_shared * shared;
  8751. };
  8752. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8753. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8754. const int n_threads = state->shared->n_threads;
  8755. while (true) {
  8756. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8757. atomic_store(&state->shared->has_work, false);
  8758. } else {
  8759. while (atomic_load(&state->shared->has_work)) {
  8760. if (atomic_load(&state->shared->stop)) {
  8761. return 0;
  8762. }
  8763. ggml_lock_lock (&state->shared->spin);
  8764. ggml_lock_unlock(&state->shared->spin);
  8765. }
  8766. }
  8767. atomic_fetch_sub(&state->shared->n_ready, 1);
  8768. // wait for work
  8769. while (!atomic_load(&state->shared->has_work)) {
  8770. if (atomic_load(&state->shared->stop)) {
  8771. return 0;
  8772. }
  8773. ggml_lock_lock (&state->shared->spin);
  8774. ggml_lock_unlock(&state->shared->spin);
  8775. }
  8776. // check if we should stop
  8777. if (atomic_load(&state->shared->stop)) {
  8778. break;
  8779. }
  8780. if (state->node) {
  8781. if (state->params.ith < state->params.nth) {
  8782. ggml_compute_forward(&state->params, state->node);
  8783. }
  8784. state->node = NULL;
  8785. } else {
  8786. break;
  8787. }
  8788. }
  8789. return 0;
  8790. }
  8791. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8792. const int n_threads = cgraph->n_threads;
  8793. struct ggml_compute_state_shared state_shared = {
  8794. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8795. /*.n_threads =*/ n_threads,
  8796. /*.n_ready =*/ 0,
  8797. /*.has_work =*/ false,
  8798. /*.stop =*/ false,
  8799. };
  8800. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8801. // create thread pool
  8802. if (n_threads > 1) {
  8803. ggml_lock_init(&state_shared.spin);
  8804. atomic_store(&state_shared.has_work, true);
  8805. for (int j = 0; j < n_threads - 1; j++) {
  8806. workers[j] = (struct ggml_compute_state) {
  8807. .thrd = 0,
  8808. .params = {
  8809. .type = GGML_TASK_COMPUTE,
  8810. .ith = j + 1,
  8811. .nth = n_threads,
  8812. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8813. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8814. },
  8815. .node = NULL,
  8816. .shared = &state_shared,
  8817. };
  8818. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8819. GGML_ASSERT(rc == 0);
  8820. UNUSED(rc);
  8821. }
  8822. }
  8823. // initialize tasks + work buffer
  8824. {
  8825. size_t work_size = 0;
  8826. // thread scheduling for the different operations
  8827. for (int i = 0; i < cgraph->n_nodes; i++) {
  8828. struct ggml_tensor * node = cgraph->nodes[i];
  8829. switch (node->op) {
  8830. case GGML_OP_CPY:
  8831. case GGML_OP_DUP:
  8832. {
  8833. node->n_tasks = n_threads;
  8834. size_t cur = 0;
  8835. if (ggml_is_quantized(node->type)) {
  8836. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8837. }
  8838. work_size = MAX(work_size, cur);
  8839. } break;
  8840. case GGML_OP_ADD:
  8841. {
  8842. node->n_tasks = n_threads;
  8843. size_t cur = 0;
  8844. if (ggml_is_quantized(node->src0->type)) {
  8845. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8846. }
  8847. work_size = MAX(work_size, cur);
  8848. } break;
  8849. case GGML_OP_SUB:
  8850. case GGML_OP_MUL:
  8851. case GGML_OP_DIV:
  8852. case GGML_OP_SQR:
  8853. case GGML_OP_SQRT:
  8854. case GGML_OP_SUM:
  8855. case GGML_OP_MEAN:
  8856. case GGML_OP_REPEAT:
  8857. case GGML_OP_ABS:
  8858. case GGML_OP_SGN:
  8859. case GGML_OP_NEG:
  8860. case GGML_OP_STEP:
  8861. case GGML_OP_RELU:
  8862. {
  8863. node->n_tasks = 1;
  8864. } break;
  8865. case GGML_OP_GELU:
  8866. {
  8867. node->n_tasks = n_threads;
  8868. } break;
  8869. case GGML_OP_SILU:
  8870. {
  8871. node->n_tasks = n_threads;
  8872. } break;
  8873. case GGML_OP_NORM:
  8874. case GGML_OP_RMS_NORM:
  8875. {
  8876. node->n_tasks = n_threads;
  8877. } break;
  8878. case GGML_OP_MUL_MAT:
  8879. {
  8880. node->n_tasks = n_threads;
  8881. // TODO: use different scheduling for different matrix sizes
  8882. //const int nr0 = ggml_nrows(node->src0);
  8883. //const int nr1 = ggml_nrows(node->src1);
  8884. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8885. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8886. size_t cur = 0;
  8887. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8888. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8889. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8890. node->n_tasks = 1; // TODO: this actually is doing nothing
  8891. // the threads are still spinning
  8892. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8893. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8894. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8895. //printf("cur = %zu\n", cur);
  8896. } else {
  8897. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8898. }
  8899. #else
  8900. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8901. #endif
  8902. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8903. cur = 0;
  8904. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8905. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8906. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8907. node->n_tasks = 1;
  8908. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8909. } else
  8910. #endif
  8911. {
  8912. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8913. }
  8914. } else {
  8915. GGML_ASSERT(false);
  8916. }
  8917. work_size = MAX(work_size, cur);
  8918. } break;
  8919. case GGML_OP_SCALE:
  8920. {
  8921. node->n_tasks = n_threads;
  8922. } break;
  8923. case GGML_OP_CONT:
  8924. case GGML_OP_RESHAPE:
  8925. case GGML_OP_VIEW:
  8926. case GGML_OP_PERMUTE:
  8927. case GGML_OP_TRANSPOSE:
  8928. case GGML_OP_GET_ROWS:
  8929. case GGML_OP_DIAG_MASK_INF:
  8930. {
  8931. node->n_tasks = 1;
  8932. } break;
  8933. case GGML_OP_SOFT_MAX:
  8934. {
  8935. node->n_tasks = n_threads;
  8936. } break;
  8937. case GGML_OP_ROPE:
  8938. {
  8939. node->n_tasks = n_threads;
  8940. } break;
  8941. case GGML_OP_CONV_1D_1S:
  8942. case GGML_OP_CONV_1D_2S:
  8943. {
  8944. node->n_tasks = n_threads;
  8945. GGML_ASSERT(node->src0->ne[3] == 1);
  8946. GGML_ASSERT(node->src1->ne[2] == 1);
  8947. GGML_ASSERT(node->src1->ne[3] == 1);
  8948. size_t cur = 0;
  8949. const int nk = node->src0->ne[0];
  8950. if (node->src0->type == GGML_TYPE_F16 &&
  8951. node->src1->type == GGML_TYPE_F32) {
  8952. cur = sizeof(ggml_fp16_t)*(
  8953. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8954. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8955. );
  8956. } else if (node->src0->type == GGML_TYPE_F32 &&
  8957. node->src1->type == GGML_TYPE_F32) {
  8958. cur = sizeof(float)*(
  8959. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8960. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8961. );
  8962. } else {
  8963. GGML_ASSERT(false);
  8964. }
  8965. work_size = MAX(work_size, cur);
  8966. } break;
  8967. case GGML_OP_FLASH_ATTN:
  8968. {
  8969. node->n_tasks = n_threads;
  8970. size_t cur = 0;
  8971. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8972. if (node->src1->type == GGML_TYPE_F32) {
  8973. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8974. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8975. }
  8976. if (node->src1->type == GGML_TYPE_F16) {
  8977. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8978. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8979. }
  8980. work_size = MAX(work_size, cur);
  8981. } break;
  8982. case GGML_OP_FLASH_FF:
  8983. {
  8984. node->n_tasks = n_threads;
  8985. size_t cur = 0;
  8986. if (node->src1->type == GGML_TYPE_F32) {
  8987. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8988. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8989. }
  8990. if (node->src1->type == GGML_TYPE_F16) {
  8991. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8992. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8993. }
  8994. work_size = MAX(work_size, cur);
  8995. } break;
  8996. case GGML_OP_MAP_UNARY:
  8997. case GGML_OP_MAP_BINARY:
  8998. {
  8999. node->n_tasks = 1;
  9000. } break;
  9001. case GGML_OP_NONE:
  9002. {
  9003. node->n_tasks = 1;
  9004. } break;
  9005. case GGML_OP_COUNT:
  9006. {
  9007. GGML_ASSERT(false);
  9008. } break;
  9009. }
  9010. }
  9011. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9012. GGML_ASSERT(false); // TODO: better handling
  9013. }
  9014. if (work_size > 0 && cgraph->work == NULL) {
  9015. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9016. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9017. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9018. }
  9019. }
  9020. const int64_t perf_start_cycles = ggml_perf_cycles();
  9021. const int64_t perf_start_time_us = ggml_perf_time_us();
  9022. for (int i = 0; i < cgraph->n_nodes; i++) {
  9023. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9024. struct ggml_tensor * node = cgraph->nodes[i];
  9025. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9026. //if (node->grad == NULL && node->perf_runs > 0) {
  9027. // continue;
  9028. //}
  9029. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9030. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9031. // INIT
  9032. struct ggml_compute_params params = {
  9033. /*.type =*/ GGML_TASK_INIT,
  9034. /*.ith =*/ 0,
  9035. /*.nth =*/ node->n_tasks,
  9036. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9037. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9038. };
  9039. ggml_compute_forward(&params, node);
  9040. // COMPUTE
  9041. if (node->n_tasks > 1) {
  9042. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9043. atomic_store(&state_shared.has_work, false);
  9044. }
  9045. while (atomic_load(&state_shared.has_work)) {
  9046. ggml_lock_lock (&state_shared.spin);
  9047. ggml_lock_unlock(&state_shared.spin);
  9048. }
  9049. // launch thread pool
  9050. for (int j = 0; j < n_threads - 1; j++) {
  9051. workers[j].params = (struct ggml_compute_params) {
  9052. .type = GGML_TASK_COMPUTE,
  9053. .ith = j + 1,
  9054. .nth = node->n_tasks,
  9055. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9056. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9057. };
  9058. workers[j].node = node;
  9059. }
  9060. atomic_fetch_sub(&state_shared.n_ready, 1);
  9061. while (atomic_load(&state_shared.n_ready) > 0) {
  9062. ggml_lock_lock (&state_shared.spin);
  9063. ggml_lock_unlock(&state_shared.spin);
  9064. }
  9065. atomic_store(&state_shared.has_work, true);
  9066. }
  9067. params.type = GGML_TASK_COMPUTE;
  9068. ggml_compute_forward(&params, node);
  9069. // wait for thread pool
  9070. if (node->n_tasks > 1) {
  9071. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9072. atomic_store(&state_shared.has_work, false);
  9073. }
  9074. while (atomic_load(&state_shared.has_work)) {
  9075. ggml_lock_lock (&state_shared.spin);
  9076. ggml_lock_unlock(&state_shared.spin);
  9077. }
  9078. atomic_fetch_sub(&state_shared.n_ready, 1);
  9079. while (atomic_load(&state_shared.n_ready) != 0) {
  9080. ggml_lock_lock (&state_shared.spin);
  9081. ggml_lock_unlock(&state_shared.spin);
  9082. }
  9083. }
  9084. // FINALIZE
  9085. if (node->n_tasks > 1) {
  9086. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9087. atomic_store(&state_shared.has_work, false);
  9088. }
  9089. while (atomic_load(&state_shared.has_work)) {
  9090. ggml_lock_lock (&state_shared.spin);
  9091. ggml_lock_unlock(&state_shared.spin);
  9092. }
  9093. // launch thread pool
  9094. for (int j = 0; j < n_threads - 1; j++) {
  9095. workers[j].params = (struct ggml_compute_params) {
  9096. .type = GGML_TASK_FINALIZE,
  9097. .ith = j + 1,
  9098. .nth = node->n_tasks,
  9099. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9100. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9101. };
  9102. workers[j].node = node;
  9103. }
  9104. atomic_fetch_sub(&state_shared.n_ready, 1);
  9105. while (atomic_load(&state_shared.n_ready) > 0) {
  9106. ggml_lock_lock (&state_shared.spin);
  9107. ggml_lock_unlock(&state_shared.spin);
  9108. }
  9109. atomic_store(&state_shared.has_work, true);
  9110. }
  9111. params.type = GGML_TASK_FINALIZE;
  9112. ggml_compute_forward(&params, node);
  9113. // wait for thread pool
  9114. if (node->n_tasks > 1) {
  9115. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9116. atomic_store(&state_shared.has_work, false);
  9117. }
  9118. while (atomic_load(&state_shared.has_work)) {
  9119. ggml_lock_lock (&state_shared.spin);
  9120. ggml_lock_unlock(&state_shared.spin);
  9121. }
  9122. atomic_fetch_sub(&state_shared.n_ready, 1);
  9123. while (atomic_load(&state_shared.n_ready) != 0) {
  9124. ggml_lock_lock (&state_shared.spin);
  9125. ggml_lock_unlock(&state_shared.spin);
  9126. }
  9127. }
  9128. // performance stats (node)
  9129. {
  9130. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9131. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9132. node->perf_runs++;
  9133. node->perf_cycles += perf_cycles_cur;
  9134. node->perf_time_us += perf_time_us_cur;
  9135. }
  9136. }
  9137. // join thread pool
  9138. if (n_threads > 1) {
  9139. atomic_store(&state_shared.stop, true);
  9140. atomic_store(&state_shared.has_work, true);
  9141. for (int j = 0; j < n_threads - 1; j++) {
  9142. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9143. GGML_ASSERT(rc == 0);
  9144. UNUSED(rc);
  9145. }
  9146. ggml_lock_destroy(&state_shared.spin);
  9147. }
  9148. // performance stats (graph)
  9149. {
  9150. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9151. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9152. cgraph->perf_runs++;
  9153. cgraph->perf_cycles += perf_cycles_cur;
  9154. cgraph->perf_time_us += perf_time_us_cur;
  9155. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9156. __func__, cgraph->perf_runs,
  9157. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9158. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9159. (double) perf_time_us_cur / 1000.0,
  9160. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9161. }
  9162. }
  9163. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9164. for (int i = 0; i < cgraph->n_nodes; i++) {
  9165. struct ggml_tensor * grad = cgraph->grads[i];
  9166. if (grad) {
  9167. ggml_set_zero(grad);
  9168. }
  9169. }
  9170. }
  9171. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9172. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9173. GGML_PRINT("=== GRAPH ===\n");
  9174. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9175. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9176. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9177. for (int i = 0; i < cgraph->n_nodes; i++) {
  9178. struct ggml_tensor * node = cgraph->nodes[i];
  9179. perf_total_per_op_us[node->op] += node->perf_time_us;
  9180. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9181. i,
  9182. node->ne[0], node->ne[1], node->ne[2],
  9183. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9184. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9185. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9186. (double) node->perf_time_us / 1000.0,
  9187. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9188. }
  9189. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9190. for (int i = 0; i < cgraph->n_leafs; i++) {
  9191. struct ggml_tensor * node = cgraph->leafs[i];
  9192. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9193. i,
  9194. node->ne[0], node->ne[1],
  9195. GGML_OP_LABEL[node->op]);
  9196. }
  9197. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9198. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9199. }
  9200. GGML_PRINT("========================================\n");
  9201. }
  9202. // check if node is part of the graph
  9203. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9204. if (cgraph == NULL) {
  9205. return true;
  9206. }
  9207. for (int i = 0; i < cgraph->n_nodes; i++) {
  9208. if (cgraph->nodes[i] == node) {
  9209. return true;
  9210. }
  9211. }
  9212. return false;
  9213. }
  9214. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9215. for (int i = 0; i < cgraph->n_nodes; i++) {
  9216. struct ggml_tensor * parent = cgraph->nodes[i];
  9217. if (parent->grad == node) {
  9218. return parent;
  9219. }
  9220. }
  9221. return NULL;
  9222. }
  9223. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9224. char color[16];
  9225. FILE * fp = fopen(filename, "w");
  9226. GGML_ASSERT(fp);
  9227. fprintf(fp, "digraph G {\n");
  9228. fprintf(fp, " newrank = true;\n");
  9229. fprintf(fp, " rankdir = LR;\n");
  9230. for (int i = 0; i < gb->n_nodes; i++) {
  9231. struct ggml_tensor * node = gb->nodes[i];
  9232. if (ggml_graph_get_parent(gb, node) != NULL) {
  9233. continue;
  9234. }
  9235. if (node->is_param) {
  9236. snprintf(color, sizeof(color), "yellow");
  9237. } else if (node->grad) {
  9238. if (ggml_graph_find(gf, node)) {
  9239. snprintf(color, sizeof(color), "green");
  9240. } else {
  9241. snprintf(color, sizeof(color), "lightblue");
  9242. }
  9243. } else {
  9244. snprintf(color, sizeof(color), "white");
  9245. }
  9246. fprintf(fp, " \"%p\" [ \
  9247. style = filled; fillcolor = %s; shape = record; \
  9248. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9249. (void *) node, color,
  9250. i, node->ne[0], node->ne[1],
  9251. GGML_OP_SYMBOL[node->op]);
  9252. if (node->grad) {
  9253. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9254. } else {
  9255. fprintf(fp, "\"; ]\n");
  9256. }
  9257. }
  9258. for (int i = 0; i < gb->n_leafs; i++) {
  9259. struct ggml_tensor * node = gb->leafs[i];
  9260. snprintf(color, sizeof(color), "pink");
  9261. if (ggml_nelements(node) == 1) {
  9262. fprintf(fp, " \"%p\" [ \
  9263. style = filled; fillcolor = %s; shape = record; \
  9264. label=\"<x>%.1e\"; ]\n",
  9265. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9266. } else {
  9267. fprintf(fp, " \"%p\" [ \
  9268. style = filled; fillcolor = %s; shape = record; \
  9269. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9270. (void *) node, color,
  9271. i, node->ne[0], node->ne[1]);
  9272. }
  9273. }
  9274. for (int i = 0; i < gb->n_nodes; i++) {
  9275. struct ggml_tensor * node = gb->nodes[i];
  9276. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9277. if (node->src0) {
  9278. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9279. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9280. parent0 ? (void *) parent0 : (void *) node->src0,
  9281. parent0 ? "g" : "x",
  9282. parent ? (void *) parent : (void *) node,
  9283. parent ? "g" : "x",
  9284. parent ? "empty" : "vee",
  9285. parent ? "dashed" : "solid");
  9286. }
  9287. if (node->src1) {
  9288. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9289. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9290. parent1 ? (void *) parent1 : (void *) node->src1,
  9291. parent1 ? "g" : "x",
  9292. parent ? (void *) parent : (void *) node,
  9293. parent ? "g" : "x",
  9294. parent ? "empty" : "vee",
  9295. parent ? "dashed" : "solid");
  9296. }
  9297. }
  9298. for (int i = 0; i < gb->n_leafs; i++) {
  9299. struct ggml_tensor * node = gb->leafs[i];
  9300. if (node->src0) {
  9301. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9302. (void *) node->src0, "x",
  9303. (void *) node, "x");
  9304. }
  9305. if (node->src1) {
  9306. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9307. (void *) node->src1, "x",
  9308. (void *) node, "x");
  9309. }
  9310. }
  9311. fprintf(fp, "}\n");
  9312. fclose(fp);
  9313. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9314. }
  9315. ////////////////////////////////////////////////////////////////////////////////
  9316. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9317. int i = 0;
  9318. for (int p = 0; p < np; ++p) {
  9319. const int64_t ne = ggml_nelements(ps[p]) ;
  9320. // TODO: add function to set tensor from array
  9321. for (int64_t j = 0; j < ne; ++j) {
  9322. ggml_set_f32_1d(ps[p], j, x[i++]);
  9323. }
  9324. }
  9325. }
  9326. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9327. int i = 0;
  9328. for (int p = 0; p < np; ++p) {
  9329. const int64_t ne = ggml_nelements(ps[p]) ;
  9330. // TODO: add function to get all elements at once
  9331. for (int64_t j = 0; j < ne; ++j) {
  9332. x[i++] = ggml_get_f32_1d(ps[p], j);
  9333. }
  9334. }
  9335. }
  9336. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9337. int i = 0;
  9338. for (int p = 0; p < np; ++p) {
  9339. const int64_t ne = ggml_nelements(ps[p]) ;
  9340. // TODO: add function to get all elements at once
  9341. for (int64_t j = 0; j < ne; ++j) {
  9342. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9343. }
  9344. }
  9345. }
  9346. //
  9347. // ADAM
  9348. //
  9349. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9350. //
  9351. static enum ggml_opt_result ggml_opt_adam(
  9352. struct ggml_context * ctx,
  9353. struct ggml_opt_params params,
  9354. struct ggml_tensor * f,
  9355. struct ggml_cgraph * gf,
  9356. struct ggml_cgraph * gb) {
  9357. GGML_ASSERT(ggml_is_scalar(f));
  9358. gf->n_threads = params.n_threads;
  9359. gb->n_threads = params.n_threads;
  9360. // these will store the parameters we want to optimize
  9361. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9362. int np = 0;
  9363. int nx = 0;
  9364. for (int i = 0; i < gf->n_nodes; ++i) {
  9365. if (gf->nodes[i]->is_param) {
  9366. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9367. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9368. ps[np++] = gf->nodes[i];
  9369. nx += ggml_nelements(gf->nodes[i]);
  9370. }
  9371. }
  9372. // constants
  9373. const float alpha = params.adam.alpha;
  9374. const float beta1 = params.adam.beta1;
  9375. const float beta2 = params.adam.beta2;
  9376. const float eps = params.adam.eps;
  9377. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9378. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9379. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9380. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9381. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9382. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9383. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9384. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9385. // initialize
  9386. ggml_vec_set_f32(nx, m, 0.0f);
  9387. ggml_vec_set_f32(nx, v, 0.0f);
  9388. // update view
  9389. ggml_opt_get_params(np, ps, x);
  9390. // compute the function value
  9391. ggml_graph_reset (gf);
  9392. ggml_set_f32 (f->grad, 1.0f);
  9393. ggml_graph_compute(ctx, gb);
  9394. float fx_prev = ggml_get_f32_1d(f, 0);
  9395. if (pf) {
  9396. pf[0] = fx_prev;
  9397. }
  9398. int n_no_improvement = 0;
  9399. float fx_best = fx_prev;
  9400. // run the optimizer
  9401. for (int t = 0; t < params.adam.n_iter; ++t) {
  9402. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9403. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9404. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9405. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9406. for (int i = 0; i < np; ++i) {
  9407. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9408. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9409. }
  9410. const int64_t t_start_wall = ggml_time_us();
  9411. const int64_t t_start_cpu = ggml_cycles();
  9412. UNUSED(t_start_wall);
  9413. UNUSED(t_start_cpu);
  9414. {
  9415. // update the gradient
  9416. ggml_opt_get_grad(np, ps, g1);
  9417. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9418. ggml_vec_scale_f32(nx, m, beta1);
  9419. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9420. // g2 = g1^2
  9421. ggml_vec_sqr_f32 (nx, g2, g1);
  9422. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9423. ggml_vec_scale_f32(nx, v, beta2);
  9424. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9425. // m^hat = m_t / (1 - beta1^t)
  9426. // v^hat = v_t / (1 - beta2^t)
  9427. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9428. ggml_vec_cpy_f32 (nx, mh, m);
  9429. ggml_vec_cpy_f32 (nx, vh, v);
  9430. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9431. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9432. ggml_vec_sqrt_f32 (nx, vh, vh);
  9433. ggml_vec_acc1_f32 (nx, vh, eps);
  9434. ggml_vec_div_f32 (nx, mh, mh, vh);
  9435. ggml_vec_sub_f32 (nx, x, x, mh);
  9436. // update the parameters
  9437. ggml_opt_set_params(np, ps, x);
  9438. }
  9439. ggml_graph_reset (gf);
  9440. ggml_set_f32 (f->grad, 1.0f);
  9441. ggml_graph_compute(ctx, gb);
  9442. const float fx = ggml_get_f32_1d(f, 0);
  9443. // check convergence
  9444. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9445. GGML_PRINT_DEBUG("converged\n");
  9446. return GGML_OPT_OK;
  9447. }
  9448. // delta-based convergence test
  9449. if (pf != NULL) {
  9450. // need at least params.past iterations to start checking for convergence
  9451. if (params.past <= t) {
  9452. const float rate = (pf[t%params.past] - fx)/fx;
  9453. if (fabsf(rate) < params.delta) {
  9454. return GGML_OPT_OK;
  9455. }
  9456. }
  9457. pf[t%params.past] = fx;
  9458. }
  9459. // check for improvement
  9460. if (params.max_no_improvement > 0) {
  9461. if (fx_best > fx) {
  9462. fx_best = fx;
  9463. n_no_improvement = 0;
  9464. } else {
  9465. ++n_no_improvement;
  9466. if (n_no_improvement >= params.max_no_improvement) {
  9467. return GGML_OPT_OK;
  9468. }
  9469. }
  9470. }
  9471. fx_prev = fx;
  9472. {
  9473. const int64_t t_end_cpu = ggml_cycles();
  9474. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9475. UNUSED(t_end_cpu);
  9476. const int64_t t_end_wall = ggml_time_us();
  9477. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9478. UNUSED(t_end_wall);
  9479. }
  9480. }
  9481. return GGML_OPT_DID_NOT_CONVERGE;
  9482. }
  9483. //
  9484. // L-BFGS
  9485. //
  9486. // the L-BFGS implementation below is based on the following implementation:
  9487. //
  9488. // https://github.com/chokkan/liblbfgs
  9489. //
  9490. struct ggml_lbfgs_iteration_data {
  9491. float alpha;
  9492. float ys;
  9493. float * s;
  9494. float * y;
  9495. };
  9496. static enum ggml_opt_result linesearch_backtracking(
  9497. struct ggml_context * ctx,
  9498. const struct ggml_opt_params * params,
  9499. int nx,
  9500. float * x,
  9501. float * fx,
  9502. float * g,
  9503. float * d,
  9504. float * step,
  9505. const float * xp,
  9506. struct ggml_tensor * f,
  9507. struct ggml_cgraph * gf,
  9508. struct ggml_cgraph * gb,
  9509. const int np,
  9510. struct ggml_tensor * ps[]) {
  9511. int count = 0;
  9512. float width = 0.0f;
  9513. float dg = 0.0f;
  9514. float finit = 0.0f;
  9515. float dginit = 0.0f;
  9516. float dgtest = 0.0f;
  9517. const float dec = 0.5f;
  9518. const float inc = 2.1f;
  9519. if (*step <= 0.f) {
  9520. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9521. }
  9522. // compute the initial gradient in the search direction
  9523. ggml_vec_dot_f32(nx, &dginit, g, d);
  9524. // make sure that d points to a descent direction
  9525. if (0 < dginit) {
  9526. return GGML_LINESEARCH_FAIL;
  9527. }
  9528. // initialize local variables
  9529. finit = *fx;
  9530. dgtest = params->lbfgs.ftol*dginit;
  9531. while (true) {
  9532. ggml_vec_cpy_f32(nx, x, xp);
  9533. ggml_vec_mad_f32(nx, x, d, *step);
  9534. // evaluate the function and gradient values
  9535. {
  9536. ggml_opt_set_params(np, ps, x);
  9537. ggml_graph_reset (gf);
  9538. ggml_set_f32 (f->grad, 1.0f);
  9539. ggml_graph_compute(ctx, gb);
  9540. ggml_opt_get_grad(np, ps, g);
  9541. *fx = ggml_get_f32_1d(f, 0);
  9542. }
  9543. ++count;
  9544. if (*fx > finit + (*step)*dgtest) {
  9545. width = dec;
  9546. } else {
  9547. // Armijo condition is satisfied
  9548. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9549. return count;
  9550. }
  9551. ggml_vec_dot_f32(nx, &dg, g, d);
  9552. // check the Wolfe condition
  9553. if (dg < params->lbfgs.wolfe * dginit) {
  9554. width = inc;
  9555. } else {
  9556. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9557. // regular Wolfe conditions
  9558. return count;
  9559. }
  9560. if(dg > -params->lbfgs.wolfe*dginit) {
  9561. width = dec;
  9562. } else {
  9563. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9564. return count;
  9565. }
  9566. return count;
  9567. }
  9568. }
  9569. if (*step < params->lbfgs.min_step) {
  9570. return GGML_LINESEARCH_MINIMUM_STEP;
  9571. }
  9572. if (*step > params->lbfgs.max_step) {
  9573. return GGML_LINESEARCH_MAXIMUM_STEP;
  9574. }
  9575. if (params->lbfgs.max_linesearch <= count) {
  9576. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9577. }
  9578. (*step) *= width;
  9579. }
  9580. return GGML_LINESEARCH_FAIL;
  9581. }
  9582. static enum ggml_opt_result ggml_opt_lbfgs(
  9583. struct ggml_context * ctx,
  9584. struct ggml_opt_params params,
  9585. struct ggml_tensor * f,
  9586. struct ggml_cgraph * gf,
  9587. struct ggml_cgraph * gb) {
  9588. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9589. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9590. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9591. return GGML_OPT_INVALID_WOLFE;
  9592. }
  9593. }
  9594. gf->n_threads = params.n_threads;
  9595. gb->n_threads = params.n_threads;
  9596. const int m = params.lbfgs.m;
  9597. // these will store the parameters we want to optimize
  9598. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9599. int np = 0;
  9600. int nx = 0;
  9601. for (int i = 0; i < gf->n_nodes; ++i) {
  9602. if (gf->nodes[i]->is_param) {
  9603. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9604. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9605. ps[np++] = gf->nodes[i];
  9606. nx += ggml_nelements(gf->nodes[i]);
  9607. }
  9608. }
  9609. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9610. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9611. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9612. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9613. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9614. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9615. float fx = 0.0f; // cost function value
  9616. float xnorm = 0.0f; // ||x||
  9617. float gnorm = 0.0f; // ||g||
  9618. float step = 0.0f;
  9619. // initialize x from the graph nodes
  9620. ggml_opt_get_params(np, ps, x);
  9621. // the L-BFGS memory
  9622. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9623. for (int i = 0; i < m; ++i) {
  9624. lm[i].alpha = 0.0f;
  9625. lm[i].ys = 0.0f;
  9626. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9627. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9628. }
  9629. // evaluate the function value and its gradient
  9630. {
  9631. ggml_opt_set_params(np, ps, x);
  9632. ggml_graph_reset (gf);
  9633. ggml_set_f32 (f->grad, 1.0f);
  9634. ggml_graph_compute(ctx, gb);
  9635. ggml_opt_get_grad(np, ps, g);
  9636. fx = ggml_get_f32_1d(f, 0);
  9637. }
  9638. if (pf) {
  9639. pf[0] = fx;
  9640. }
  9641. float fx_best = fx;
  9642. // search direction = -gradient
  9643. ggml_vec_neg_f32(nx, d, g);
  9644. // ||x||, ||g||
  9645. ggml_vec_norm_f32(nx, &xnorm, x);
  9646. ggml_vec_norm_f32(nx, &gnorm, g);
  9647. if (xnorm < 1.0f) {
  9648. xnorm = 1.0f;
  9649. }
  9650. // already optimized
  9651. if (gnorm/xnorm <= params.lbfgs.eps) {
  9652. return GGML_OPT_OK;
  9653. }
  9654. // initial step
  9655. ggml_vec_norm_inv_f32(nx, &step, d);
  9656. int j = 0;
  9657. int k = 1;
  9658. int ls = 0;
  9659. int end = 0;
  9660. int bound = 0;
  9661. int n_no_improvement = 0;
  9662. float ys = 0.0f;
  9663. float yy = 0.0f;
  9664. float beta = 0.0f;
  9665. while (true) {
  9666. // store the current position and gradient vectors
  9667. ggml_vec_cpy_f32(nx, xp, x);
  9668. ggml_vec_cpy_f32(nx, gp, g);
  9669. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9670. if (ls < 0) {
  9671. // linesearch failed - go back to the previous point and return
  9672. ggml_vec_cpy_f32(nx, x, xp);
  9673. ggml_vec_cpy_f32(nx, g, gp);
  9674. return ls;
  9675. }
  9676. ggml_vec_norm_f32(nx, &xnorm, x);
  9677. ggml_vec_norm_f32(nx, &gnorm, g);
  9678. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9679. if (xnorm < 1.0f) {
  9680. xnorm = 1.0f;
  9681. }
  9682. if (gnorm/xnorm <= params.lbfgs.eps) {
  9683. // converged
  9684. return GGML_OPT_OK;
  9685. }
  9686. // delta-based convergence test
  9687. if (pf != NULL) {
  9688. // need at least params.past iterations to start checking for convergence
  9689. if (params.past <= k) {
  9690. const float rate = (pf[k%params.past] - fx)/fx;
  9691. if (fabsf(rate) < params.delta) {
  9692. return GGML_OPT_OK;
  9693. }
  9694. }
  9695. pf[k%params.past] = fx;
  9696. }
  9697. // check for improvement
  9698. if (params.max_no_improvement > 0) {
  9699. if (fx < fx_best) {
  9700. fx_best = fx;
  9701. n_no_improvement = 0;
  9702. } else {
  9703. n_no_improvement++;
  9704. if (n_no_improvement >= params.max_no_improvement) {
  9705. return GGML_OPT_OK;
  9706. }
  9707. }
  9708. }
  9709. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9710. // reached the maximum number of iterations
  9711. return GGML_OPT_DID_NOT_CONVERGE;
  9712. }
  9713. // update vectors s and y:
  9714. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9715. // y_{k+1} = g_{k+1} - g_{k}.
  9716. //
  9717. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9718. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9719. // compute scalars ys and yy:
  9720. // ys = y^t \cdot s -> 1 / \rho.
  9721. // yy = y^t \cdot y.
  9722. //
  9723. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9724. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9725. lm[end].ys = ys;
  9726. // find new search direction
  9727. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9728. bound = (m <= k) ? m : k;
  9729. k++;
  9730. end = (end + 1)%m;
  9731. // initialize search direction with -g
  9732. ggml_vec_neg_f32(nx, d, g);
  9733. j = end;
  9734. for (int i = 0; i < bound; ++i) {
  9735. j = (j + m - 1) % m;
  9736. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9737. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9738. lm[j].alpha /= lm[j].ys;
  9739. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9740. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9741. }
  9742. ggml_vec_scale_f32(nx, d, ys/yy);
  9743. for (int i = 0; i < bound; ++i) {
  9744. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9745. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9746. beta /= lm[j].ys;
  9747. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9748. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9749. j = (j + 1)%m;
  9750. }
  9751. step = 1.0;
  9752. }
  9753. return GGML_OPT_DID_NOT_CONVERGE;
  9754. }
  9755. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9756. struct ggml_opt_params result;
  9757. switch (type) {
  9758. case GGML_OPT_ADAM:
  9759. {
  9760. result = (struct ggml_opt_params) {
  9761. .type = GGML_OPT_ADAM,
  9762. .n_threads = 1,
  9763. .past = 0,
  9764. .delta = 1e-5f,
  9765. .max_no_improvement = 100,
  9766. .print_forward_graph = true,
  9767. .print_backward_graph = true,
  9768. .adam = {
  9769. .n_iter = 10000,
  9770. .alpha = 0.001f,
  9771. .beta1 = 0.9f,
  9772. .beta2 = 0.999f,
  9773. .eps = 1e-8f,
  9774. .eps_f = 1e-5f,
  9775. .eps_g = 1e-3f,
  9776. },
  9777. };
  9778. } break;
  9779. case GGML_OPT_LBFGS:
  9780. {
  9781. result = (struct ggml_opt_params) {
  9782. .type = GGML_OPT_LBFGS,
  9783. .n_threads = 1,
  9784. .past = 0,
  9785. .delta = 1e-5f,
  9786. .max_no_improvement = 0,
  9787. .print_forward_graph = true,
  9788. .print_backward_graph = true,
  9789. .lbfgs = {
  9790. .m = 6,
  9791. .n_iter = 100,
  9792. .max_linesearch = 20,
  9793. .eps = 1e-5f,
  9794. .ftol = 1e-4f,
  9795. .wolfe = 0.9f,
  9796. .min_step = 1e-20f,
  9797. .max_step = 1e+20f,
  9798. .linesearch = GGML_LINESEARCH_DEFAULT,
  9799. },
  9800. };
  9801. } break;
  9802. }
  9803. return result;
  9804. }
  9805. enum ggml_opt_result ggml_opt(
  9806. struct ggml_context * ctx,
  9807. struct ggml_opt_params params,
  9808. struct ggml_tensor * f) {
  9809. bool free_ctx = false;
  9810. if (ctx == NULL) {
  9811. struct ggml_init_params params_ctx = {
  9812. .mem_size = 16*1024*1024,
  9813. .mem_buffer = NULL,
  9814. .no_alloc = false,
  9815. };
  9816. ctx = ggml_init(params_ctx);
  9817. if (ctx == NULL) {
  9818. return GGML_OPT_NO_CONTEXT;
  9819. }
  9820. free_ctx = true;
  9821. }
  9822. enum ggml_opt_result result = GGML_OPT_OK;
  9823. // build forward + backward compute graphs
  9824. struct ggml_cgraph gf = ggml_build_forward (f);
  9825. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9826. switch (params.type) {
  9827. case GGML_OPT_ADAM:
  9828. {
  9829. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9830. } break;
  9831. case GGML_OPT_LBFGS:
  9832. {
  9833. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9834. } break;
  9835. }
  9836. if (params.print_forward_graph) {
  9837. ggml_graph_print (&gf);
  9838. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9839. }
  9840. if (params.print_backward_graph) {
  9841. ggml_graph_print (&gb);
  9842. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9843. }
  9844. if (free_ctx) {
  9845. ggml_free(ctx);
  9846. }
  9847. return result;
  9848. }
  9849. ////////////////////////////////////////////////////////////////////////////////
  9850. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9851. assert(k % QK4_0 == 0);
  9852. const int nb = k / QK4_0;
  9853. for (int j = 0; j < n; j += k) {
  9854. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9855. quantize_row_q4_0_reference(src + j, y, k);
  9856. for (int i = 0; i < nb; i++) {
  9857. for (int l = 0; l < QK4_0; l += 2) {
  9858. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9859. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9860. hist[vi0]++;
  9861. hist[vi1]++;
  9862. }
  9863. }
  9864. }
  9865. return (n/QK4_0*sizeof(block_q4_0));
  9866. }
  9867. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9868. assert(k % QK4_1 == 0);
  9869. const int nb = k / QK4_1;
  9870. for (int j = 0; j < n; j += k) {
  9871. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9872. quantize_row_q4_1_reference(src + j, y, k);
  9873. for (int i = 0; i < nb; i++) {
  9874. for (int l = 0; l < QK4_1; l += 2) {
  9875. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9876. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9877. hist[vi0]++;
  9878. hist[vi1]++;
  9879. }
  9880. }
  9881. }
  9882. return (n/QK4_1*sizeof(block_q4_1));
  9883. }
  9884. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9885. assert(k % QK4_2 == 0);
  9886. const int nb = k / QK4_2;
  9887. for (int j = 0; j < n; j += k) {
  9888. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9889. //quantize_row_q4_2_reference(src + j, y, k);
  9890. quantize_row_q4_2_rmse(src + j, y, k);
  9891. for (int i = 0; i < nb; i++) {
  9892. for (int l = 0; l < QK4_2; l += 2) {
  9893. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9894. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9895. hist[vi0]++;
  9896. hist[vi1]++;
  9897. }
  9898. }
  9899. }
  9900. return (n/QK4_2*sizeof(block_q4_2));
  9901. }
  9902. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9903. assert(k % QK4_3 == 0);
  9904. const int nb = k / QK4_3;
  9905. for (int j = 0; j < n; j += k) {
  9906. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9907. quantize_row_q4_3_reference(src + j, y, k);
  9908. for (int i = 0; i < nb; i++) {
  9909. for (int l = 0; l < QK4_3; l += 2) {
  9910. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9911. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9912. hist[vi0]++;
  9913. hist[vi1]++;
  9914. }
  9915. }
  9916. }
  9917. return (n/QK4_3*sizeof(block_q4_3));
  9918. }
  9919. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9920. size_t result = 0;
  9921. switch (type) {
  9922. case GGML_TYPE_Q4_0:
  9923. {
  9924. GGML_ASSERT(start % QK4_0 == 0);
  9925. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9926. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9927. } break;
  9928. case GGML_TYPE_Q4_1:
  9929. {
  9930. GGML_ASSERT(start % QK4_1 == 0);
  9931. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9932. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9933. } break;
  9934. case GGML_TYPE_Q4_2:
  9935. {
  9936. GGML_ASSERT(start % QK4_2 == 0);
  9937. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9938. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9939. } break;
  9940. case GGML_TYPE_Q4_3:
  9941. {
  9942. GGML_ASSERT(start % QK4_3 == 0);
  9943. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9944. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9945. } break;
  9946. default:
  9947. assert(false);
  9948. }
  9949. return result;
  9950. }
  9951. ////////////////////////////////////////////////////////////////////////////////
  9952. int ggml_cpu_has_avx(void) {
  9953. #if defined(__AVX__)
  9954. return 1;
  9955. #else
  9956. return 0;
  9957. #endif
  9958. }
  9959. int ggml_cpu_has_avx2(void) {
  9960. #if defined(__AVX2__)
  9961. return 1;
  9962. #else
  9963. return 0;
  9964. #endif
  9965. }
  9966. int ggml_cpu_has_avx512(void) {
  9967. #if defined(__AVX512F__)
  9968. return 1;
  9969. #else
  9970. return 0;
  9971. #endif
  9972. }
  9973. int ggml_cpu_has_avx512_vbmi(void) {
  9974. #if defined(__AVX512VBMI__)
  9975. return 1;
  9976. #else
  9977. return 0;
  9978. #endif
  9979. }
  9980. int ggml_cpu_has_avx512_vnni(void) {
  9981. #if defined(__AVX512VNNI__)
  9982. return 1;
  9983. #else
  9984. return 0;
  9985. #endif
  9986. }
  9987. int ggml_cpu_has_fma(void) {
  9988. #if defined(__FMA__)
  9989. return 1;
  9990. #else
  9991. return 0;
  9992. #endif
  9993. }
  9994. int ggml_cpu_has_neon(void) {
  9995. #if defined(__ARM_NEON)
  9996. return 1;
  9997. #else
  9998. return 0;
  9999. #endif
  10000. }
  10001. int ggml_cpu_has_arm_fma(void) {
  10002. #if defined(__ARM_FEATURE_FMA)
  10003. return 1;
  10004. #else
  10005. return 0;
  10006. #endif
  10007. }
  10008. int ggml_cpu_has_f16c(void) {
  10009. #if defined(__F16C__)
  10010. return 1;
  10011. #else
  10012. return 0;
  10013. #endif
  10014. }
  10015. int ggml_cpu_has_fp16_va(void) {
  10016. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10017. return 1;
  10018. #else
  10019. return 0;
  10020. #endif
  10021. }
  10022. int ggml_cpu_has_wasm_simd(void) {
  10023. #if defined(__wasm_simd128__)
  10024. return 1;
  10025. #else
  10026. return 0;
  10027. #endif
  10028. }
  10029. int ggml_cpu_has_blas(void) {
  10030. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10031. return 1;
  10032. #else
  10033. return 0;
  10034. #endif
  10035. }
  10036. int ggml_cpu_has_cublas(void) {
  10037. #if defined(GGML_USE_CUBLAS)
  10038. return 1;
  10039. #else
  10040. return 0;
  10041. #endif
  10042. }
  10043. int ggml_cpu_has_sse3(void) {
  10044. #if defined(__SSE3__)
  10045. return 1;
  10046. #else
  10047. return 0;
  10048. #endif
  10049. }
  10050. int ggml_cpu_has_vsx(void) {
  10051. #if defined(__POWER9_VECTOR__)
  10052. return 1;
  10053. #else
  10054. return 0;
  10055. #endif
  10056. }
  10057. ////////////////////////////////////////////////////////////////////////////////