llama.h 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUBLAS
  5. #include "ggml-cuda.h"
  6. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  7. #else
  8. #define LLAMA_MAX_DEVICES 1
  9. #endif // GGML_USE_CUBLAS
  10. #include <stddef.h>
  11. #include <stdint.h>
  12. #include <stdio.h>
  13. #include <stdbool.h>
  14. #ifdef LLAMA_SHARED
  15. # if defined(_WIN32) && !defined(__MINGW32__)
  16. # ifdef LLAMA_BUILD
  17. # define LLAMA_API __declspec(dllexport)
  18. # else
  19. # define LLAMA_API __declspec(dllimport)
  20. # endif
  21. # else
  22. # define LLAMA_API __attribute__ ((visibility ("default")))
  23. # endif
  24. #else
  25. # define LLAMA_API
  26. #endif
  27. #ifdef __GNUC__
  28. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  29. #elif defined(_MSC_VER)
  30. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  31. #else
  32. # define DEPRECATED(func, hint) func
  33. #endif
  34. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  35. #define LLAMA_MAX_RNG_STATE (64*1024)
  36. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  37. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  38. #define LLAMA_SESSION_VERSION 1
  39. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  40. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  41. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  42. #endif
  43. #ifdef __cplusplus
  44. extern "C" {
  45. #endif
  46. //
  47. // C interface
  48. //
  49. // TODO: show sample usage
  50. //
  51. struct llama_model;
  52. struct llama_context;
  53. typedef int32_t llama_pos;
  54. typedef int32_t llama_token;
  55. typedef int32_t llama_seq_id;
  56. enum llama_vocab_type {
  57. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  58. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  59. };
  60. enum llama_token_type {
  61. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  62. LLAMA_TOKEN_TYPE_NORMAL = 1,
  63. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  64. LLAMA_TOKEN_TYPE_CONTROL = 3,
  65. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  66. LLAMA_TOKEN_TYPE_UNUSED = 5,
  67. LLAMA_TOKEN_TYPE_BYTE = 6,
  68. };
  69. // model file types
  70. enum llama_ftype {
  71. LLAMA_FTYPE_ALL_F32 = 0,
  72. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  73. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  74. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  76. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  77. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  78. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  79. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  90. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  91. };
  92. typedef struct llama_token_data {
  93. llama_token id; // token id
  94. float logit; // log-odds of the token
  95. float p; // probability of the token
  96. } llama_token_data;
  97. typedef struct llama_token_data_array {
  98. llama_token_data * data;
  99. size_t size;
  100. bool sorted;
  101. } llama_token_data_array;
  102. typedef void (*llama_progress_callback)(float progress, void *ctx);
  103. // Input data for llama_decode
  104. // A llama_batch object can contain input about one or many sequences
  105. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  106. //
  107. // - token : the token ids of the input (used when embd is NULL)
  108. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  109. // - pos : the positions of the respective token in the sequence
  110. // - seq_id : the sequence to which the respective token belongs
  111. // - logits : if zero, the logits for the respective token will not be output
  112. //
  113. typedef struct llama_batch {
  114. int32_t n_tokens;
  115. llama_token * token;
  116. float * embd;
  117. llama_pos * pos;
  118. llama_seq_id * seq_id;
  119. int8_t * logits;
  120. // NOTE: helpers for smooth API transition - can be deprecated in the future
  121. // for future-proof code, use the above fields instead and ignore everything below
  122. //
  123. // pos[i] = all_pos_0 + i*all_pos_1
  124. //
  125. llama_pos all_pos_0; // used if pos == NULL
  126. llama_pos all_pos_1; // used if pos == NULL
  127. llama_seq_id all_seq_id; // used if seq_id == NULL
  128. } llama_batch;
  129. struct llama_context_params {
  130. uint32_t seed; // RNG seed, -1 for random
  131. int32_t n_ctx; // text context
  132. int32_t n_batch; // prompt processing batch size
  133. int32_t n_gpu_layers; // number of layers to store in VRAM
  134. int32_t main_gpu; // the GPU that is used for scratch and small tensors
  135. const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
  136. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  137. float rope_freq_base; // RoPE base frequency
  138. float rope_freq_scale; // RoPE frequency scaling factor
  139. // called with a progress value between 0 and 1, pass NULL to disable
  140. llama_progress_callback progress_callback;
  141. // context pointer passed to the progress callback
  142. void * progress_callback_user_data;
  143. // Keep the booleans together to avoid misalignment during copy-by-value.
  144. bool low_vram; // if true, reduce VRAM usage at the cost of performance
  145. bool mul_mat_q; // if true, use experimental mul_mat_q kernels
  146. bool f16_kv; // use fp16 for KV cache
  147. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  148. bool vocab_only; // only load the vocabulary, no weights
  149. bool use_mmap; // use mmap if possible
  150. bool use_mlock; // force system to keep model in RAM
  151. bool embedding; // embedding mode only
  152. };
  153. // model quantization parameters
  154. typedef struct llama_model_quantize_params {
  155. int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  156. enum llama_ftype ftype; // quantize to this llama_ftype
  157. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  158. bool quantize_output_tensor; // quantize output.weight
  159. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  160. } llama_model_quantize_params;
  161. // grammar types
  162. struct llama_grammar;
  163. // grammar element type
  164. enum llama_gretype {
  165. // end of rule definition
  166. LLAMA_GRETYPE_END = 0,
  167. // start of alternate definition for rule
  168. LLAMA_GRETYPE_ALT = 1,
  169. // non-terminal element: reference to rule
  170. LLAMA_GRETYPE_RULE_REF = 2,
  171. // terminal element: character (code point)
  172. LLAMA_GRETYPE_CHAR = 3,
  173. // inverse char(s) ([^a], [^a-b] [^abc])
  174. LLAMA_GRETYPE_CHAR_NOT = 4,
  175. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  176. // be an inclusive range ([a-z])
  177. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  178. // modifies a preceding LLAMA_GRETYPE_CHAR or
  179. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  180. LLAMA_GRETYPE_CHAR_ALT = 6,
  181. };
  182. typedef struct llama_grammar_element {
  183. enum llama_gretype type;
  184. uint32_t value; // Unicode code point or rule ID
  185. } llama_grammar_element;
  186. // performance timing information
  187. struct llama_timings {
  188. double t_start_ms;
  189. double t_end_ms;
  190. double t_load_ms;
  191. double t_sample_ms;
  192. double t_p_eval_ms;
  193. double t_eval_ms;
  194. int32_t n_sample;
  195. int32_t n_p_eval;
  196. int32_t n_eval;
  197. };
  198. // Helpers for getting default parameters
  199. LLAMA_API struct llama_context_params llama_context_default_params(void);
  200. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  201. // Initialize the llama + ggml backend
  202. // If numa is true, use NUMA optimizations
  203. // Call once at the start of the program
  204. LLAMA_API void llama_backend_init(bool numa);
  205. // Call once at the end of the program - currently only used for MPI
  206. LLAMA_API void llama_backend_free(void);
  207. LLAMA_API struct llama_model * llama_load_model_from_file(
  208. const char * path_model,
  209. struct llama_context_params params);
  210. LLAMA_API void llama_free_model(struct llama_model * model);
  211. LLAMA_API struct llama_context * llama_new_context_with_model(
  212. struct llama_model * model,
  213. struct llama_context_params params);
  214. // Frees all allocated memory
  215. LLAMA_API void llama_free(struct llama_context * ctx);
  216. LLAMA_API int64_t llama_time_us(void);
  217. LLAMA_API int llama_max_devices (void);
  218. LLAMA_API bool llama_mmap_supported (void);
  219. LLAMA_API bool llama_mlock_supported(void);
  220. LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
  221. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  222. LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx);
  223. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  224. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
  225. LLAMA_API int llama_model_n_vocab (const struct llama_model * model);
  226. LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
  227. LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model);
  228. LLAMA_API int llama_model_n_embd (const struct llama_model * model);
  229. // Get a string describing the model type
  230. LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  231. // Returns the total size of all the tensors in the model in bytes
  232. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  233. // Returns the total number of parameters in the model
  234. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  235. // Get a llama model tensor
  236. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  237. // Returns 0 on success
  238. LLAMA_API int llama_model_quantize(
  239. const char * fname_inp,
  240. const char * fname_out,
  241. const llama_model_quantize_params * params);
  242. // Apply a LoRA adapter to a loaded model
  243. // path_base_model is the path to a higher quality model to use as a base for
  244. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  245. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  246. // will be applied on top of the previous one
  247. // Returns 0 on success
  248. LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
  249. struct llama_context * ctx,
  250. const char * path_lora,
  251. float scale,
  252. const char * path_base_model,
  253. int n_threads),
  254. "use llama_model_apply_lora_from_file instead");
  255. LLAMA_API int llama_model_apply_lora_from_file(
  256. const struct llama_model * model,
  257. const char * path_lora,
  258. float scale,
  259. const char * path_base_model,
  260. int n_threads);
  261. //
  262. // KV cache
  263. //
  264. // Returns the number of tokens in the KV cache
  265. LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
  266. "avoid using this, it will be removed in the future, instead - count the tokens in user code");
  267. // Remove all tokens data of cells in [c0, c1)
  268. LLAMA_API void llama_kv_cache_tokens_rm(
  269. struct llama_context * ctx,
  270. int32_t c0,
  271. int32_t c1);
  272. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  273. LLAMA_API void llama_kv_cache_seq_rm(
  274. struct llama_context * ctx,
  275. llama_seq_id seq_id,
  276. llama_pos p0,
  277. llama_pos p1);
  278. // Copy all tokens that belong to the specified sequence to another sequence
  279. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  280. LLAMA_API void llama_kv_cache_seq_cp(
  281. struct llama_context * ctx,
  282. llama_seq_id seq_id_src,
  283. llama_seq_id seq_id_dst,
  284. llama_pos p0,
  285. llama_pos p1);
  286. // Removes all tokens that do not belong to the specified sequence
  287. LLAMA_API void llama_kv_cache_seq_keep(
  288. struct llama_context * ctx,
  289. llama_seq_id seq_id);
  290. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  291. // If the KV cache is RoPEd, the KV data is updated accordingly
  292. LLAMA_API void llama_kv_cache_seq_shift(
  293. struct llama_context * ctx,
  294. llama_seq_id seq_id,
  295. llama_pos p0,
  296. llama_pos p1,
  297. llama_pos delta);
  298. //
  299. // State / sessions
  300. //
  301. // Returns the maximum size in bytes of the state (rng, logits, embedding
  302. // and kv_cache) - will often be smaller after compacting tokens
  303. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  304. // Copies the state to the specified destination address.
  305. // Destination needs to have allocated enough memory.
  306. // Returns the number of bytes copied
  307. LLAMA_API size_t llama_copy_state_data(
  308. struct llama_context * ctx,
  309. uint8_t * dst);
  310. // Set the state reading from the specified address
  311. // Returns the number of bytes read
  312. LLAMA_API size_t llama_set_state_data(
  313. struct llama_context * ctx,
  314. uint8_t * src);
  315. // Save/load session file
  316. LLAMA_API bool llama_load_session_file(
  317. struct llama_context * ctx,
  318. const char * path_session,
  319. llama_token * tokens_out,
  320. size_t n_token_capacity,
  321. size_t * n_token_count_out);
  322. LLAMA_API bool llama_save_session_file(
  323. struct llama_context * ctx,
  324. const char * path_session,
  325. const llama_token * tokens,
  326. size_t n_token_count);
  327. //
  328. // Decoding
  329. //
  330. // Run the llama inference to obtain the logits and probabilities for the next token(s).
  331. // tokens + n_tokens is the provided batch of new tokens to process
  332. // n_past is the number of tokens to use from previous eval calls
  333. // Returns 0 on success
  334. // DEPRECATED: use llama_decode() instead
  335. LLAMA_API DEPRECATED(int llama_eval(
  336. struct llama_context * ctx,
  337. llama_token * tokens,
  338. int32_t n_tokens,
  339. int n_past,
  340. int n_threads),
  341. "use llama_decode() instead");
  342. // Same as llama_eval, but use float matrix input directly.
  343. // DEPRECATED: use llama_decode() instead
  344. LLAMA_API DEPRECATED(int llama_eval_embd(
  345. struct llama_context * ctx,
  346. float * embd,
  347. int32_t n_tokens,
  348. int n_past,
  349. int n_threads),
  350. "use llama_decode() instead");
  351. // Return batch for single sequence of tokens starting at pos_0
  352. //
  353. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  354. //
  355. LLAMA_API struct llama_batch llama_batch_get_one(
  356. llama_token * tokens,
  357. int32_t n_tokens,
  358. llama_pos pos_0,
  359. llama_seq_id seq_id);
  360. // Allocates a batch of tokens on the heap
  361. // The batch has to be freed with llama_batch_free()
  362. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  363. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  364. // The rest of the llama_batch members are allocated with size n_tokens
  365. // All members are left uninitialized
  366. LLAMA_API struct llama_batch llama_batch_init(
  367. int32_t n_tokens,
  368. int32_t embd);
  369. // Frees a batch of tokens allocated with llama_batch_init()
  370. LLAMA_API void llama_batch_free(struct llama_batch batch);
  371. // Positive return values does not mean a fatal error, but rather a warning.
  372. // 0 - success
  373. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  374. // < 0 - error
  375. LLAMA_API int llama_decode(
  376. struct llama_context * ctx,
  377. struct llama_batch batch,
  378. int n_threads);
  379. // Token logits obtained from the last call to llama_eval()
  380. // The logits for the last token are stored in the last row
  381. // Logits for which llama_batch.logits[i] == 0 are undefined
  382. // Rows: n_tokens provided with llama_batch
  383. // Cols: n_vocab
  384. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  385. // Logits for the ith token. Equivalent to:
  386. // llama_get_logits(ctx) + i*n_vocab
  387. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  388. // Get the embeddings for the input
  389. // shape: [n_embd] (1-dimensional)
  390. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  391. //
  392. // Vocab
  393. //
  394. LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
  395. LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
  396. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
  397. // Special tokens
  398. LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
  399. LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
  400. LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
  401. //
  402. // Tokenization
  403. //
  404. // Convert the provided text into tokens.
  405. // The tokens pointer must be large enough to hold the resulting tokens.
  406. // Returns the number of tokens on success, no more than n_max_tokens
  407. // Returns a negative number on failure - the number of tokens that would have been returned
  408. LLAMA_API int llama_tokenize(
  409. struct llama_context * ctx,
  410. const char * text,
  411. int text_len,
  412. llama_token * tokens,
  413. int n_max_tokens,
  414. bool add_bos);
  415. LLAMA_API int llama_tokenize_with_model(
  416. const struct llama_model * model,
  417. const char * text,
  418. int text_len,
  419. llama_token * tokens,
  420. int n_max_tokens,
  421. bool add_bos);
  422. // Token Id -> Piece.
  423. // Uses the vocabulary in the provided context.
  424. // Does not write null terminator to the buffer.
  425. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  426. LLAMA_API int llama_token_to_piece(
  427. const struct llama_context * ctx,
  428. llama_token token,
  429. char * buf,
  430. int length);
  431. LLAMA_API int llama_token_to_piece_with_model(
  432. const struct llama_model * model,
  433. llama_token token,
  434. char * buf,
  435. int length);
  436. //
  437. // Grammar
  438. //
  439. LLAMA_API struct llama_grammar * llama_grammar_init(
  440. const llama_grammar_element ** rules,
  441. size_t n_rules,
  442. size_t start_rule_index);
  443. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  444. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  445. //
  446. // Sampling functions
  447. //
  448. // Sets the current rng seed.
  449. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  450. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  451. LLAMA_API void llama_sample_repetition_penalty(
  452. struct llama_context * ctx,
  453. llama_token_data_array * candidates,
  454. const llama_token * last_tokens,
  455. size_t last_tokens_size,
  456. float penalty);
  457. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  458. LLAMA_API void llama_sample_frequency_and_presence_penalties(
  459. struct llama_context * ctx,
  460. llama_token_data_array * candidates,
  461. const llama_token * last_tokens,
  462. size_t last_tokens_size,
  463. float alpha_frequency,
  464. float alpha_presence);
  465. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  466. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
  467. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  468. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  469. LLAMA_API void llama_sample_classifier_free_guidance(
  470. struct llama_context * ctx,
  471. llama_token_data_array * candidates,
  472. struct llama_context * guidance_ctx,
  473. float scale);
  474. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  475. LLAMA_API void llama_sample_softmax(
  476. struct llama_context * ctx,
  477. llama_token_data_array * candidates);
  478. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  479. LLAMA_API void llama_sample_top_k(
  480. struct llama_context * ctx,
  481. llama_token_data_array * candidates,
  482. int k,
  483. size_t min_keep);
  484. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  485. LLAMA_API void llama_sample_top_p(
  486. struct llama_context * ctx,
  487. llama_token_data_array * candidates,
  488. float p,
  489. size_t min_keep);
  490. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  491. LLAMA_API void llama_sample_tail_free(
  492. struct llama_context * ctx,
  493. llama_token_data_array * candidates,
  494. float z,
  495. size_t min_keep);
  496. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  497. LLAMA_API void llama_sample_typical(
  498. struct llama_context * ctx,
  499. llama_token_data_array * candidates,
  500. float p,
  501. size_t min_keep);
  502. LLAMA_API void llama_sample_temp(
  503. struct llama_context * ctx,
  504. llama_token_data_array * candidates,
  505. float temp);
  506. LLAMA_API DEPRECATED(void llama_sample_temperature(
  507. struct llama_context * ctx,
  508. llama_token_data_array * candidates,
  509. float temp),
  510. "use llama_sample_temp instead");
  511. /// @details Apply constraints from grammar
  512. LLAMA_API void llama_sample_grammar(
  513. struct llama_context * ctx,
  514. llama_token_data_array * candidates,
  515. const struct llama_grammar * grammar);
  516. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  517. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  518. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  519. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  520. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  521. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  522. LLAMA_API llama_token llama_sample_token_mirostat(
  523. struct llama_context * ctx,
  524. llama_token_data_array * candidates,
  525. float tau,
  526. float eta,
  527. int m,
  528. float * mu);
  529. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  530. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  531. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  532. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  533. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  534. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  535. struct llama_context * ctx,
  536. llama_token_data_array * candidates,
  537. float tau,
  538. float eta,
  539. float * mu);
  540. /// @details Selects the token with the highest probability.
  541. LLAMA_API llama_token llama_sample_token_greedy(
  542. struct llama_context * ctx,
  543. llama_token_data_array * candidates);
  544. /// @details Randomly selects a token from the candidates based on their probabilities.
  545. LLAMA_API llama_token llama_sample_token(
  546. struct llama_context * ctx,
  547. llama_token_data_array * candidates);
  548. /// @details Accepts the sampled token into the grammar
  549. LLAMA_API void llama_grammar_accept_token(
  550. struct llama_context * ctx,
  551. struct llama_grammar * grammar,
  552. llama_token token);
  553. //
  554. // Beam search
  555. //
  556. struct llama_beam_view {
  557. const llama_token * tokens;
  558. size_t n_tokens;
  559. float p; // Cumulative beam probability (renormalized relative to all beams)
  560. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  561. };
  562. // Passed to beam_search_callback function.
  563. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  564. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  565. // These pointers are valid only during the synchronous callback, so should not be saved.
  566. struct llama_beams_state {
  567. struct llama_beam_view * beam_views;
  568. size_t n_beams; // Number of elements in beam_views[].
  569. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  570. bool last_call; // True iff this is the last callback invocation.
  571. };
  572. // Type of pointer to the beam_search_callback function.
  573. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  574. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  575. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  576. /// @details Deterministically returns entire sentence constructed by a beam search.
  577. /// @param ctx Pointer to the llama_context.
  578. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  579. /// @param callback_data A pointer that is simply passed back to callback.
  580. /// @param n_beams Number of beams to use.
  581. /// @param n_past Number of tokens already evaluated.
  582. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  583. /// @param n_threads Number of threads as passed to llama_eval().
  584. LLAMA_API void llama_beam_search(
  585. struct llama_context * ctx,
  586. llama_beam_search_callback_fn_t callback,
  587. void * callback_data,
  588. size_t n_beams,
  589. int n_past,
  590. int n_predict,
  591. int n_threads);
  592. // Performance information
  593. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  594. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  595. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  596. // Print system information
  597. LLAMA_API const char * llama_print_system_info(void);
  598. // Set callback for all future logging events.
  599. // If this is not called, or NULL is supplied, everything is output on stderr.
  600. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  601. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  602. #ifdef __cplusplus
  603. }
  604. #endif
  605. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  606. #ifdef LLAMA_API_INTERNAL
  607. #include <vector>
  608. #include <string>
  609. struct ggml_tensor;
  610. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  611. struct llama_context * ctx
  612. );
  613. #endif // LLAMA_API_INTERNAL
  614. #endif // LLAMA_H