| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- #include "clip.h"
- #include "llava-utils.h"
- #include "common.h"
- #include "llama.h"
- #include <cstdio>
- #include <cstdlib>
- #include <vector>
- static void show_additional_info(int /*argc*/, char ** argv) {
- printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
- printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
- }
- int main(int argc, char ** argv) {
- ggml_time_init();
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- show_additional_info(argc, argv);
- return 1;
- }
- if (params.mmproj.empty() || params.image.empty()) {
- gpt_print_usage(argc, argv, params);
- show_additional_info(argc, argv);
- return 1;
- }
- const char * clip_path = params.mmproj.c_str();
- const char * img_path = params.image.c_str();
- if (params.prompt.empty()) {
- params.prompt = "describe the image in detail.";
- }
- auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
- // load and preprocess the image
- clip_image_u8 img;
- clip_image_f32 img_res;
- if (!clip_image_load_from_file(img_path, &img)) {
- fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
- clip_free(ctx_clip);
- return 1;
- }
- if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
- fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
- clip_free(ctx_clip);
- return 1;
- }
- int n_img_pos = clip_n_patches(ctx_clip);
- int n_img_embd = clip_n_mmproj_embd(ctx_clip);
- float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
- if (!image_embd) {
- fprintf(stderr, "Unable to allocate memory for image embeddings\n");
- return 1;
- }
- const int64_t t_img_enc_start_us = ggml_time_us();
- if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
- fprintf(stderr, "Unable to encode image\n");
- return 1;
- }
- const int64_t t_img_enc_end_us = ggml_time_us();
- // we get the embeddings, free up the memory required for CLIP
- clip_free(ctx_clip);
- llama_backend_init(params.numa);
- llama_model_params model_params = llama_model_default_params();
- model_params.n_gpu_layers = params.n_gpu_layers;
- model_params.main_gpu = params.main_gpu;
- model_params.tensor_split = params.tensor_split;
- model_params.use_mmap = params.use_mmap;
- model_params.use_mlock = params.use_mlock;
- llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
- ctx_params.n_threads = params.n_threads;
- ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
- ctx_params.seed = params.seed;
- llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
- if (ctx_llama == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- // make sure that the correct mmproj was used, i.e., compare apples to apples
- const int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
- if (n_img_embd != n_llama_embd) {
- printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
- llama_free(ctx_llama);
- llama_free_model(model);
- llama_backend_free();
- free(image_embd);
- return 1;
- }
- // process the prompt
- // llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
- int n_past = 0;
- const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
- eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
- eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
- eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
- // generate the response
- printf("\n");
- printf("prompt: '%s'\n", params.prompt.c_str());
- printf("\n");
- for (int i = 0; i < max_tgt_len; i++) {
- const char * tmp = sample(ctx_llama, params, &n_past);
- if (strcmp(tmp, "</s>") == 0) break;
- printf("%s", tmp);
- fflush(stdout);
- }
- printf("\n");
- {
- const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
- printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
- }
- llama_print_timings(ctx_llama);
- llama_free(ctx_llama);
- llama_free_model(model);
- llama_backend_free();
- free(image_embd);
- return 0;
- }
|