llama-bench.cpp 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <thread>
  20. #include "ggml.h"
  21. #include "llama.h"
  22. #include "common.h"
  23. #include "ggml-cuda.h"
  24. #include "ggml-sycl.h"
  25. #ifdef GGML_USE_CANN
  26. #include "ggml-cann.h"
  27. #endif
  28. #ifdef _WIN32
  29. #define WIN32_LEAN_AND_MEAN
  30. #ifndef NOMINMAX
  31. # define NOMINMAX
  32. #endif
  33. #include <windows.h>
  34. #endif
  35. // utils
  36. static uint64_t get_time_ns() {
  37. using clock = std::chrono::high_resolution_clock;
  38. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  39. }
  40. template<class T>
  41. static std::string join(const std::vector<T> & values, const std::string & delim) {
  42. std::ostringstream str;
  43. for (size_t i = 0; i < values.size(); i++) {
  44. str << values[i];
  45. if (i < values.size() - 1) {
  46. str << delim;
  47. }
  48. }
  49. return str.str();
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. fclose(f);
  98. }
  99. #elif defined(_WIN32)
  100. HKEY hKey;
  101. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  102. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  103. 0,
  104. KEY_READ,
  105. &hKey) != ERROR_SUCCESS) {
  106. // fail to open registry key
  107. return "";
  108. }
  109. char cpu_brand[256];
  110. DWORD cpu_brand_size = sizeof(cpu_brand);
  111. if (RegQueryValueExA(hKey,
  112. TEXT("ProcessorNameString"),
  113. NULL,
  114. NULL,
  115. (LPBYTE)cpu_brand,
  116. &cpu_brand_size) == ERROR_SUCCESS) {
  117. id.assign(cpu_brand, cpu_brand_size);
  118. if (id.find('\0') != std::string::npos) {
  119. id.resize(id.find('\0'));
  120. }
  121. }
  122. RegCloseKey(hKey);
  123. #endif
  124. // TODO: other platforms
  125. return id;
  126. }
  127. static std::string get_gpu_info() {
  128. std::string id;
  129. #ifdef GGML_USE_CUDA
  130. int count = ggml_backend_cuda_get_device_count();
  131. for (int i = 0; i < count; i++) {
  132. char buf[128];
  133. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  134. id += buf;
  135. if (i < count - 1) {
  136. id += "/";
  137. }
  138. }
  139. #endif
  140. #ifdef GGML_USE_SYCL
  141. int count = ggml_backend_sycl_get_device_count();
  142. for (int i = 0; i < count; i++) {
  143. char buf[128];
  144. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  145. id += buf;
  146. if (i < count - 1) {
  147. id += "/";
  148. }
  149. }
  150. #endif
  151. #ifdef GGML_USE_CANN
  152. uint32_t count = ggml_backend_cann_get_device_count();
  153. for (uint32_t i = 0; i < count; i++) {
  154. char buf[128];
  155. ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
  156. id += buf;
  157. if (i < count - 1) {
  158. id += "/";
  159. }
  160. }
  161. #endif
  162. // TODO: other backends
  163. return id;
  164. }
  165. // command line params
  166. enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
  167. static const char * output_format_str(output_formats format) {
  168. switch (format) {
  169. case NONE: return "none";
  170. case CSV: return "csv";
  171. case JSON: return "json";
  172. case JSONL: return "jsonl";
  173. case MARKDOWN: return "md";
  174. case SQL: return "sql";
  175. default: GGML_ABORT("invalid output format");
  176. }
  177. }
  178. static bool output_format_from_str(const std::string & s, output_formats & format) {
  179. if (s == "none") {
  180. format = NONE;
  181. } else if (s == "csv") {
  182. format = CSV;
  183. } else if (s == "json") {
  184. format = JSON;
  185. } else if (s == "jsonl") {
  186. format = JSONL;
  187. } else if (s == "md") {
  188. format = MARKDOWN;
  189. } else if (s == "sql") {
  190. format = SQL;
  191. } else {
  192. return false;
  193. }
  194. return true;
  195. }
  196. static const char * split_mode_str(llama_split_mode mode) {
  197. switch (mode) {
  198. case LLAMA_SPLIT_MODE_NONE: return "none";
  199. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  200. case LLAMA_SPLIT_MODE_ROW: return "row";
  201. default: GGML_ABORT("invalid split mode");
  202. }
  203. }
  204. static std::string pair_str(const std::pair<int, int> & p) {
  205. static char buf[32];
  206. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  207. return buf;
  208. }
  209. struct cmd_params {
  210. std::vector<std::string> model;
  211. std::vector<int> n_prompt;
  212. std::vector<int> n_gen;
  213. std::vector<std::pair<int, int>> n_pg;
  214. std::vector<int> n_batch;
  215. std::vector<int> n_ubatch;
  216. std::vector<ggml_type> type_k;
  217. std::vector<ggml_type> type_v;
  218. std::vector<int> n_threads;
  219. std::vector<std::string> cpu_mask;
  220. std::vector<bool> cpu_strict;
  221. std::vector<int> poll;
  222. std::vector<int> n_gpu_layers;
  223. std::vector<std::string> rpc_servers;
  224. std::vector<llama_split_mode> split_mode;
  225. std::vector<int> main_gpu;
  226. std::vector<bool> no_kv_offload;
  227. std::vector<bool> flash_attn;
  228. std::vector<std::vector<float>> tensor_split;
  229. std::vector<bool> use_mmap;
  230. std::vector<bool> embeddings;
  231. ggml_numa_strategy numa;
  232. int reps;
  233. ggml_sched_priority prio;
  234. int delay;
  235. bool verbose;
  236. bool progress;
  237. output_formats output_format;
  238. output_formats output_format_stderr;
  239. };
  240. static const cmd_params cmd_params_defaults = {
  241. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  242. /* n_prompt */ {512},
  243. /* n_gen */ {128},
  244. /* n_pg */ {},
  245. /* n_batch */ {2048},
  246. /* n_ubatch */ {512},
  247. /* type_k */ {GGML_TYPE_F16},
  248. /* type_v */ {GGML_TYPE_F16},
  249. /* n_threads */ {cpu_get_num_math()},
  250. /* cpu_mask */ {"0x0"},
  251. /* cpu_strict */ {false},
  252. /* poll */ {50},
  253. /* n_gpu_layers */ {99},
  254. /* rpc_servers */ {""},
  255. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  256. /* main_gpu */ {0},
  257. /* no_kv_offload */ {false},
  258. /* flash_attn */ {false},
  259. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  260. /* use_mmap */ {true},
  261. /* embeddings */ {false},
  262. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  263. /* reps */ 5,
  264. /* prio */ GGML_SCHED_PRIO_NORMAL,
  265. /* delay */ 0,
  266. /* verbose */ false,
  267. /* progress */ false,
  268. /* output_format */ MARKDOWN,
  269. /* output_format_stderr */ NONE,
  270. };
  271. static void print_usage(int /* argc */, char ** argv) {
  272. printf("usage: %s [options]\n", argv[0]);
  273. printf("\n");
  274. printf("options:\n");
  275. printf(" -h, --help\n");
  276. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  277. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  278. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  279. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  280. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  281. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  282. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  283. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  284. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  285. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
  286. printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
  287. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  288. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  289. if (llama_supports_rpc()) {
  290. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  291. }
  292. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  293. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  294. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  295. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  296. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  297. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  298. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  299. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  300. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  301. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  302. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  303. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  304. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  305. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  306. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  307. printf("\n");
  308. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  309. }
  310. static ggml_type ggml_type_from_name(const std::string & s) {
  311. if (s == "f16") {
  312. return GGML_TYPE_F16;
  313. }
  314. if (s == "q8_0") {
  315. return GGML_TYPE_Q8_0;
  316. }
  317. if (s == "q4_0") {
  318. return GGML_TYPE_Q4_0;
  319. }
  320. if (s == "q4_1") {
  321. return GGML_TYPE_Q4_1;
  322. }
  323. if (s == "q5_0") {
  324. return GGML_TYPE_Q5_0;
  325. }
  326. if (s == "q5_1") {
  327. return GGML_TYPE_Q5_1;
  328. }
  329. if (s == "iq4_nl") {
  330. return GGML_TYPE_IQ4_NL;
  331. }
  332. return GGML_TYPE_COUNT;
  333. }
  334. static cmd_params parse_cmd_params(int argc, char ** argv) {
  335. cmd_params params;
  336. std::string arg;
  337. bool invalid_param = false;
  338. const std::string arg_prefix = "--";
  339. const char split_delim = ',';
  340. params.verbose = cmd_params_defaults.verbose;
  341. params.output_format = cmd_params_defaults.output_format;
  342. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  343. params.reps = cmd_params_defaults.reps;
  344. params.numa = cmd_params_defaults.numa;
  345. params.prio = cmd_params_defaults.prio;
  346. params.delay = cmd_params_defaults.delay;
  347. params.progress = cmd_params_defaults.progress;
  348. for (int i = 1; i < argc; i++) {
  349. arg = argv[i];
  350. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  351. std::replace(arg.begin(), arg.end(), '_', '-');
  352. }
  353. if (arg == "-h" || arg == "--help") {
  354. print_usage(argc, argv);
  355. exit(0);
  356. } else if (arg == "-m" || arg == "--model") {
  357. if (++i >= argc) {
  358. invalid_param = true;
  359. break;
  360. }
  361. auto p = string_split<std::string>(argv[i], split_delim);
  362. params.model.insert(params.model.end(), p.begin(), p.end());
  363. } else if (arg == "-p" || arg == "--n-prompt") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. auto p = string_split<int>(argv[i], split_delim);
  369. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  370. } else if (arg == "-n" || arg == "--n-gen") {
  371. if (++i >= argc) {
  372. invalid_param = true;
  373. break;
  374. }
  375. auto p = string_split<int>(argv[i], split_delim);
  376. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  377. } else if (arg == "-pg") {
  378. if (++i >= argc) {
  379. invalid_param = true;
  380. break;
  381. }
  382. auto p = string_split<std::string>(argv[i], ',');
  383. if (p.size() != 2) {
  384. invalid_param = true;
  385. break;
  386. }
  387. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  388. } else if (arg == "-b" || arg == "--batch-size") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. auto p = string_split<int>(argv[i], split_delim);
  394. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  395. } else if (arg == "-ub" || arg == "--ubatch-size") {
  396. if (++i >= argc) {
  397. invalid_param = true;
  398. break;
  399. }
  400. auto p = string_split<int>(argv[i], split_delim);
  401. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  402. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  403. if (++i >= argc) {
  404. invalid_param = true;
  405. break;
  406. }
  407. auto p = string_split<std::string>(argv[i], split_delim);
  408. std::vector<ggml_type> types;
  409. for (const auto & t : p) {
  410. ggml_type gt = ggml_type_from_name(t);
  411. if (gt == GGML_TYPE_COUNT) {
  412. invalid_param = true;
  413. break;
  414. }
  415. types.push_back(gt);
  416. }
  417. if (invalid_param) {
  418. break;
  419. }
  420. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  421. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  422. if (++i >= argc) {
  423. invalid_param = true;
  424. break;
  425. }
  426. auto p = string_split<std::string>(argv[i], split_delim);
  427. std::vector<ggml_type> types;
  428. for (const auto & t : p) {
  429. ggml_type gt = ggml_type_from_name(t);
  430. if (gt == GGML_TYPE_COUNT) {
  431. invalid_param = true;
  432. break;
  433. }
  434. types.push_back(gt);
  435. }
  436. if (invalid_param) {
  437. break;
  438. }
  439. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  440. } else if (arg == "-t" || arg == "--threads") {
  441. if (++i >= argc) {
  442. invalid_param = true;
  443. break;
  444. }
  445. auto p = string_split<int>(argv[i], split_delim);
  446. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  447. } else if (arg == "-C" || arg == "--cpu-mask") {
  448. if (++i >= argc) {
  449. invalid_param = true;
  450. break;
  451. }
  452. auto p = string_split<std::string>(argv[i], split_delim);
  453. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  454. } else if (arg == "--cpu-strict") {
  455. if (++i >= argc) {
  456. invalid_param = true;
  457. break;
  458. }
  459. auto p = string_split<bool>(argv[i], split_delim);
  460. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  461. } else if (arg == "--poll") {
  462. if (++i >= argc) {
  463. invalid_param = true;
  464. break;
  465. }
  466. auto p = string_split<int>(argv[i], split_delim);
  467. params.poll.insert(params.poll.end(), p.begin(), p.end());
  468. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  469. if (++i >= argc) {
  470. invalid_param = true;
  471. break;
  472. }
  473. auto p = string_split<int>(argv[i], split_delim);
  474. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  475. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  476. if (++i >= argc) {
  477. invalid_param = true;
  478. break;
  479. }
  480. params.rpc_servers.push_back(argv[i]);
  481. } else if (arg == "-sm" || arg == "--split-mode") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. auto p = string_split<std::string>(argv[i], split_delim);
  487. std::vector<llama_split_mode> modes;
  488. for (const auto & m : p) {
  489. llama_split_mode mode;
  490. if (m == "none") {
  491. mode = LLAMA_SPLIT_MODE_NONE;
  492. } else if (m == "layer") {
  493. mode = LLAMA_SPLIT_MODE_LAYER;
  494. } else if (m == "row") {
  495. mode = LLAMA_SPLIT_MODE_ROW;
  496. } else {
  497. invalid_param = true;
  498. break;
  499. }
  500. modes.push_back(mode);
  501. }
  502. if (invalid_param) {
  503. break;
  504. }
  505. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  506. } else if (arg == "-mg" || arg == "--main-gpu") {
  507. if (++i >= argc) {
  508. invalid_param = true;
  509. break;
  510. }
  511. params.main_gpu = string_split<int>(argv[i], split_delim);
  512. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  513. if (++i >= argc) {
  514. invalid_param = true;
  515. break;
  516. }
  517. auto p = string_split<bool>(argv[i], split_delim);
  518. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  519. } else if (arg == "--numa") {
  520. if (++i >= argc) {
  521. invalid_param = true;
  522. break;
  523. } else {
  524. std::string value(argv[i]);
  525. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  526. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  527. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  528. else { invalid_param = true; break; }
  529. }
  530. } else if (arg == "-fa" || arg == "--flash-attn") {
  531. if (++i >= argc) {
  532. invalid_param = true;
  533. break;
  534. }
  535. auto p = string_split<bool>(argv[i], split_delim);
  536. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  537. } else if (arg == "-mmp" || arg == "--mmap") {
  538. if (++i >= argc) {
  539. invalid_param = true;
  540. break;
  541. }
  542. auto p = string_split<bool>(argv[i], split_delim);
  543. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  544. } else if (arg == "-embd" || arg == "--embeddings") {
  545. if (++i >= argc) {
  546. invalid_param = true;
  547. break;
  548. }
  549. auto p = string_split<bool>(argv[i], split_delim);
  550. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  551. } else if (arg == "-ts" || arg == "--tensor-split") {
  552. if (++i >= argc) {
  553. invalid_param = true;
  554. break;
  555. }
  556. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  557. // split string by ; and /
  558. const std::regex regex{R"([;/]+)"};
  559. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  560. std::vector<std::string> split_arg{it, {}};
  561. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  562. std::vector<float> tensor_split(llama_max_devices());
  563. for (size_t i = 0; i < llama_max_devices(); ++i) {
  564. if (i < split_arg.size()) {
  565. tensor_split[i] = std::stof(split_arg[i]);
  566. } else {
  567. tensor_split[i] = 0.0f;
  568. }
  569. }
  570. params.tensor_split.push_back(tensor_split);
  571. }
  572. } else if (arg == "-r" || arg == "--repetitions") {
  573. if (++i >= argc) {
  574. invalid_param = true;
  575. break;
  576. }
  577. params.reps = std::stoi(argv[i]);
  578. } else if (arg == "--prio") {
  579. if (++i >= argc) {
  580. invalid_param = true;
  581. break;
  582. }
  583. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  584. } else if (arg == "--delay") {
  585. if (++i >= argc) {
  586. invalid_param = true;
  587. break;
  588. }
  589. params.delay = std::stoi(argv[i]);
  590. } else if (arg == "-o" || arg == "--output") {
  591. if (++i >= argc) {
  592. invalid_param = true;
  593. break;
  594. }
  595. invalid_param = !output_format_from_str(argv[i], params.output_format);
  596. } else if (arg == "-oe" || arg == "--output-err") {
  597. if (++i >= argc) {
  598. invalid_param = true;
  599. break;
  600. }
  601. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  602. } else if (arg == "-v" || arg == "--verbose") {
  603. params.verbose = true;
  604. } else if (arg == "--progress") {
  605. params.progress = true;
  606. } else {
  607. invalid_param = true;
  608. break;
  609. }
  610. }
  611. if (invalid_param) {
  612. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  613. print_usage(argc, argv);
  614. exit(1);
  615. }
  616. // set defaults
  617. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  618. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  619. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  620. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  621. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  622. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  623. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  624. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  625. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  626. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  627. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  628. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  629. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  630. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  631. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  632. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  633. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  634. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  635. if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
  636. if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
  637. if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
  638. return params;
  639. }
  640. struct cmd_params_instance {
  641. std::string model;
  642. int n_prompt;
  643. int n_gen;
  644. int n_batch;
  645. int n_ubatch;
  646. ggml_type type_k;
  647. ggml_type type_v;
  648. int n_threads;
  649. std::string cpu_mask;
  650. bool cpu_strict;
  651. int poll;
  652. int n_gpu_layers;
  653. std::string rpc_servers;
  654. llama_split_mode split_mode;
  655. int main_gpu;
  656. bool no_kv_offload;
  657. bool flash_attn;
  658. std::vector<float> tensor_split;
  659. bool use_mmap;
  660. bool embeddings;
  661. llama_model_params to_llama_mparams() const {
  662. llama_model_params mparams = llama_model_default_params();
  663. mparams.n_gpu_layers = n_gpu_layers;
  664. if (!rpc_servers.empty()) {
  665. mparams.rpc_servers = rpc_servers.c_str();
  666. }
  667. mparams.split_mode = split_mode;
  668. mparams.main_gpu = main_gpu;
  669. mparams.tensor_split = tensor_split.data();
  670. mparams.use_mmap = use_mmap;
  671. return mparams;
  672. }
  673. bool equal_mparams(const cmd_params_instance & other) const {
  674. return model == other.model &&
  675. n_gpu_layers == other.n_gpu_layers &&
  676. rpc_servers == other.rpc_servers &&
  677. split_mode == other.split_mode &&
  678. main_gpu == other.main_gpu &&
  679. use_mmap == other.use_mmap &&
  680. tensor_split == other.tensor_split;
  681. }
  682. llama_context_params to_llama_cparams() const {
  683. llama_context_params cparams = llama_context_default_params();
  684. cparams.n_ctx = n_prompt + n_gen;
  685. cparams.n_batch = n_batch;
  686. cparams.n_ubatch = n_ubatch;
  687. cparams.type_k = type_k;
  688. cparams.type_v = type_v;
  689. cparams.offload_kqv = !no_kv_offload;
  690. cparams.flash_attn = flash_attn;
  691. cparams.embeddings = embeddings;
  692. return cparams;
  693. }
  694. };
  695. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  696. std::vector<cmd_params_instance> instances;
  697. // this ordering minimizes the number of times that each model needs to be reloaded
  698. for (const auto & m : params.model)
  699. for (const auto & nl : params.n_gpu_layers)
  700. for (const auto & rpc : params.rpc_servers)
  701. for (const auto & sm : params.split_mode)
  702. for (const auto & mg : params.main_gpu)
  703. for (const auto & ts : params.tensor_split)
  704. for (const auto & mmp : params.use_mmap)
  705. for (const auto & embd : params.embeddings)
  706. for (const auto & nb : params.n_batch)
  707. for (const auto & nub : params.n_ubatch)
  708. for (const auto & tk : params.type_k)
  709. for (const auto & tv : params.type_v)
  710. for (const auto & nkvo : params.no_kv_offload)
  711. for (const auto & fa : params.flash_attn)
  712. for (const auto & nt : params.n_threads)
  713. for (const auto & cm : params.cpu_mask)
  714. for (const auto & cs : params.cpu_strict)
  715. for (const auto & pl : params.poll) {
  716. for (const auto & n_prompt : params.n_prompt) {
  717. if (n_prompt == 0) {
  718. continue;
  719. }
  720. cmd_params_instance instance = {
  721. /* .model = */ m,
  722. /* .n_prompt = */ n_prompt,
  723. /* .n_gen = */ 0,
  724. /* .n_batch = */ nb,
  725. /* .n_ubatch = */ nub,
  726. /* .type_k = */ tk,
  727. /* .type_v = */ tv,
  728. /* .n_threads = */ nt,
  729. /* .cpu_mask = */ cm,
  730. /* .cpu_strict = */ cs,
  731. /* .poll = */ pl,
  732. /* .n_gpu_layers = */ nl,
  733. /* .rpc_servers = */ rpc,
  734. /* .split_mode = */ sm,
  735. /* .main_gpu = */ mg,
  736. /* .no_kv_offload= */ nkvo,
  737. /* .flash_attn = */ fa,
  738. /* .tensor_split = */ ts,
  739. /* .use_mmap = */ mmp,
  740. /* .embeddings = */ embd,
  741. };
  742. instances.push_back(instance);
  743. }
  744. for (const auto & n_gen : params.n_gen) {
  745. if (n_gen == 0) {
  746. continue;
  747. }
  748. cmd_params_instance instance = {
  749. /* .model = */ m,
  750. /* .n_prompt = */ 0,
  751. /* .n_gen = */ n_gen,
  752. /* .n_batch = */ nb,
  753. /* .n_ubatch = */ nub,
  754. /* .type_k = */ tk,
  755. /* .type_v = */ tv,
  756. /* .n_threads = */ nt,
  757. /* .cpu_mask = */ cm,
  758. /* .cpu_strict = */ cs,
  759. /* .poll = */ pl,
  760. /* .n_gpu_layers = */ nl,
  761. /* .rpc_servers = */ rpc,
  762. /* .split_mode = */ sm,
  763. /* .main_gpu = */ mg,
  764. /* .no_kv_offload= */ nkvo,
  765. /* .flash_attn = */ fa,
  766. /* .tensor_split = */ ts,
  767. /* .use_mmap = */ mmp,
  768. /* .embeddings = */ embd,
  769. };
  770. instances.push_back(instance);
  771. }
  772. for (const auto & n_pg : params.n_pg) {
  773. if (n_pg.first == 0 && n_pg.second == 0) {
  774. continue;
  775. }
  776. cmd_params_instance instance = {
  777. /* .model = */ m,
  778. /* .n_prompt = */ n_pg.first,
  779. /* .n_gen = */ n_pg.second,
  780. /* .n_batch = */ nb,
  781. /* .n_ubatch = */ nub,
  782. /* .type_k = */ tk,
  783. /* .type_v = */ tv,
  784. /* .n_threads = */ nt,
  785. /* .cpu_mask = */ cm,
  786. /* .cpu_strict = */ cs,
  787. /* .poll = */ pl,
  788. /* .n_gpu_layers = */ nl,
  789. /* .rpc_servers = */ rpc,
  790. /* .split_mode = */ sm,
  791. /* .main_gpu = */ mg,
  792. /* .no_kv_offload= */ nkvo,
  793. /* .flash_attn = */ fa,
  794. /* .tensor_split = */ ts,
  795. /* .use_mmap = */ mmp,
  796. /* .embeddings = */ embd,
  797. };
  798. instances.push_back(instance);
  799. }
  800. }
  801. return instances;
  802. }
  803. struct test {
  804. static const std::string build_commit;
  805. static const int build_number;
  806. static const bool cuda;
  807. static const bool vulkan;
  808. static const bool kompute;
  809. static const bool metal;
  810. static const bool sycl;
  811. static const bool gpu_blas;
  812. static const bool blas;
  813. static const std::string cpu_info;
  814. static const std::string gpu_info;
  815. std::string model_filename;
  816. std::string model_type;
  817. uint64_t model_size;
  818. uint64_t model_n_params;
  819. int n_batch;
  820. int n_ubatch;
  821. int n_threads;
  822. std::string cpu_mask;
  823. bool cpu_strict;
  824. int poll;
  825. bool has_rpc;
  826. ggml_type type_k;
  827. ggml_type type_v;
  828. int n_gpu_layers;
  829. llama_split_mode split_mode;
  830. int main_gpu;
  831. bool no_kv_offload;
  832. bool flash_attn;
  833. std::vector<float> tensor_split;
  834. bool use_mmap;
  835. bool embeddings;
  836. int n_prompt;
  837. int n_gen;
  838. std::string test_time;
  839. std::vector<uint64_t> samples_ns;
  840. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  841. model_filename = inst.model;
  842. char buf[128];
  843. llama_model_desc(lmodel, buf, sizeof(buf));
  844. model_type = buf;
  845. model_size = llama_model_size(lmodel);
  846. model_n_params = llama_model_n_params(lmodel);
  847. n_batch = inst.n_batch;
  848. n_ubatch = inst.n_ubatch;
  849. n_threads = inst.n_threads;
  850. cpu_mask = inst.cpu_mask;
  851. cpu_strict = inst.cpu_strict;
  852. poll = inst.poll;
  853. has_rpc = !inst.rpc_servers.empty();
  854. type_k = inst.type_k;
  855. type_v = inst.type_v;
  856. n_gpu_layers = inst.n_gpu_layers;
  857. split_mode = inst.split_mode;
  858. main_gpu = inst.main_gpu;
  859. no_kv_offload = inst.no_kv_offload;
  860. flash_attn = inst.flash_attn;
  861. tensor_split = inst.tensor_split;
  862. use_mmap = inst.use_mmap;
  863. embeddings = inst.embeddings;
  864. n_prompt = inst.n_prompt;
  865. n_gen = inst.n_gen;
  866. // RFC 3339 date-time format
  867. time_t t = time(NULL);
  868. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  869. test_time = buf;
  870. (void) ctx;
  871. }
  872. uint64_t avg_ns() const {
  873. return ::avg(samples_ns);
  874. }
  875. uint64_t stdev_ns() const {
  876. return ::stdev(samples_ns);
  877. }
  878. std::vector<double> get_ts() const {
  879. int n_tokens = n_prompt + n_gen;
  880. std::vector<double> ts;
  881. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  882. return ts;
  883. }
  884. double avg_ts() const {
  885. return ::avg(get_ts());
  886. }
  887. double stdev_ts() const {
  888. return ::stdev(get_ts());
  889. }
  890. static std::string get_backend() {
  891. if (cuda) {
  892. return GGML_CUDA_NAME;
  893. }
  894. if (vulkan) {
  895. return "Vulkan";
  896. }
  897. if (kompute) {
  898. return "Kompute";
  899. }
  900. if (metal) {
  901. return "Metal";
  902. }
  903. if (sycl) {
  904. return GGML_SYCL_NAME;
  905. }
  906. if (gpu_blas) {
  907. return "GPU BLAS";
  908. }
  909. if (blas) {
  910. return "BLAS";
  911. }
  912. return "CPU";
  913. }
  914. static const std::vector<std::string> & get_fields() {
  915. static const std::vector<std::string> fields = {
  916. "build_commit", "build_number",
  917. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  918. "cpu_info", "gpu_info",
  919. "model_filename", "model_type", "model_size", "model_n_params",
  920. "n_batch", "n_ubatch",
  921. "n_threads", "cpu_mask", "cpu_strict", "poll",
  922. "type_k", "type_v",
  923. "n_gpu_layers", "split_mode",
  924. "main_gpu", "no_kv_offload", "flash_attn",
  925. "tensor_split", "use_mmap", "embeddings",
  926. "n_prompt", "n_gen", "test_time",
  927. "avg_ns", "stddev_ns",
  928. "avg_ts", "stddev_ts",
  929. };
  930. return fields;
  931. }
  932. enum field_type {STRING, BOOL, INT, FLOAT};
  933. static field_type get_field_type(const std::string & field) {
  934. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  935. field == "n_threads" || field == "poll" ||
  936. field == "model_size" || field == "model_n_params" ||
  937. field == "n_gpu_layers" || field == "main_gpu" ||
  938. field == "n_prompt" || field == "n_gen" ||
  939. field == "avg_ns" || field == "stddev_ns") {
  940. return INT;
  941. }
  942. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  943. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  944. field == "cpu_strict" ||
  945. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  946. return BOOL;
  947. }
  948. if (field == "avg_ts" || field == "stddev_ts") {
  949. return FLOAT;
  950. }
  951. return STRING;
  952. }
  953. std::vector<std::string> get_values() const {
  954. std::string tensor_split_str;
  955. int max_nonzero = 0;
  956. for (size_t i = 0; i < llama_max_devices(); i++) {
  957. if (tensor_split[i] > 0) {
  958. max_nonzero = i;
  959. }
  960. }
  961. for (int i = 0; i <= max_nonzero; i++) {
  962. char buf[32];
  963. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  964. tensor_split_str += buf;
  965. if (i < max_nonzero) {
  966. tensor_split_str += "/";
  967. }
  968. }
  969. std::vector<std::string> values = {
  970. build_commit, std::to_string(build_number),
  971. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  972. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  973. cpu_info, gpu_info,
  974. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  975. std::to_string(n_batch), std::to_string(n_ubatch),
  976. std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
  977. ggml_type_name(type_k), ggml_type_name(type_v),
  978. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  979. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  980. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  981. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  982. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  983. std::to_string(avg_ts()), std::to_string(stdev_ts())
  984. };
  985. return values;
  986. }
  987. std::map<std::string, std::string> get_map() const {
  988. std::map<std::string, std::string> map;
  989. auto fields = get_fields();
  990. auto values = get_values();
  991. std::transform(fields.begin(), fields.end(), values.begin(),
  992. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  993. return map;
  994. }
  995. };
  996. const std::string test::build_commit = LLAMA_COMMIT;
  997. const int test::build_number = LLAMA_BUILD_NUMBER;
  998. const bool test::cuda = !!ggml_cpu_has_cuda();
  999. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  1000. const bool test::kompute = !!ggml_cpu_has_kompute();
  1001. const bool test::metal = !!ggml_cpu_has_metal();
  1002. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  1003. const bool test::blas = !!ggml_cpu_has_blas();
  1004. const bool test::sycl = !!ggml_cpu_has_sycl();
  1005. const std::string test::cpu_info = get_cpu_info();
  1006. const std::string test::gpu_info = get_gpu_info();
  1007. struct printer {
  1008. virtual ~printer() {}
  1009. FILE * fout;
  1010. virtual void print_header(const cmd_params & params) { (void) params; }
  1011. virtual void print_test(const test & t) = 0;
  1012. virtual void print_footer() { }
  1013. };
  1014. struct csv_printer : public printer {
  1015. static std::string escape_csv(const std::string & field) {
  1016. std::string escaped = "\"";
  1017. for (auto c : field) {
  1018. if (c == '"') {
  1019. escaped += "\"";
  1020. }
  1021. escaped += c;
  1022. }
  1023. escaped += "\"";
  1024. return escaped;
  1025. }
  1026. void print_header(const cmd_params & params) override {
  1027. std::vector<std::string> fields = test::get_fields();
  1028. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1029. (void) params;
  1030. }
  1031. void print_test(const test & t) override {
  1032. std::vector<std::string> values = t.get_values();
  1033. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1034. fprintf(fout, "%s\n", join(values, ",").c_str());
  1035. }
  1036. };
  1037. static std::string escape_json(const std::string & value) {
  1038. std::string escaped;
  1039. for (auto c : value) {
  1040. if (c == '"') {
  1041. escaped += "\\\"";
  1042. } else if (c == '\\') {
  1043. escaped += "\\\\";
  1044. } else if (c <= 0x1f) {
  1045. char buf[8];
  1046. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1047. escaped += buf;
  1048. } else {
  1049. escaped += c;
  1050. }
  1051. }
  1052. return escaped;
  1053. }
  1054. static std::string format_json_value(const std::string & field, const std::string & value) {
  1055. switch (test::get_field_type(field)) {
  1056. case test::STRING:
  1057. return "\"" + escape_json(value) + "\"";
  1058. case test::BOOL:
  1059. return value == "0" ? "false" : "true";
  1060. default:
  1061. return value;
  1062. }
  1063. }
  1064. struct json_printer : public printer {
  1065. bool first = true;
  1066. void print_header(const cmd_params & params) override {
  1067. fprintf(fout, "[\n");
  1068. (void) params;
  1069. }
  1070. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1071. assert(fields.size() == values.size());
  1072. for (size_t i = 0; i < fields.size(); i++) {
  1073. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1074. }
  1075. }
  1076. void print_test(const test & t) override {
  1077. if (first) {
  1078. first = false;
  1079. } else {
  1080. fprintf(fout, ",\n");
  1081. }
  1082. fprintf(fout, " {\n");
  1083. print_fields(test::get_fields(), t.get_values());
  1084. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1085. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1086. fprintf(fout, " }");
  1087. fflush(fout);
  1088. }
  1089. void print_footer() override {
  1090. fprintf(fout, "\n]\n");
  1091. }
  1092. };
  1093. struct jsonl_printer : public printer {
  1094. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1095. assert(fields.size() == values.size());
  1096. for (size_t i = 0; i < fields.size(); i++) {
  1097. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1098. }
  1099. }
  1100. void print_test(const test & t) override {
  1101. fprintf(fout, "{");
  1102. print_fields(test::get_fields(), t.get_values());
  1103. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1104. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1105. fprintf(fout, "}\n");
  1106. fflush(fout);
  1107. }
  1108. };
  1109. struct markdown_printer : public printer {
  1110. std::vector<std::string> fields;
  1111. static int get_field_width(const std::string & field) {
  1112. if (field == "model") {
  1113. return -30;
  1114. }
  1115. if (field == "t/s") {
  1116. return 20;
  1117. }
  1118. if (field == "size" || field == "params") {
  1119. return 10;
  1120. }
  1121. if (field == "n_gpu_layers") {
  1122. return 3;
  1123. }
  1124. if (field == "n_threads") {
  1125. return 7;
  1126. }
  1127. if (field == "n_batch") {
  1128. return 7;
  1129. }
  1130. if (field == "n_ubatch") {
  1131. return 8;
  1132. }
  1133. if (field == "type_k" || field == "type_v") {
  1134. return 6;
  1135. }
  1136. if (field == "split_mode") {
  1137. return 5;
  1138. }
  1139. if (field == "flash_attn") {
  1140. return 2;
  1141. }
  1142. if (field == "use_mmap") {
  1143. return 4;
  1144. }
  1145. if (field == "test") {
  1146. return 13;
  1147. }
  1148. int width = std::max((int)field.length(), 10);
  1149. if (test::get_field_type(field) == test::STRING) {
  1150. return -width;
  1151. }
  1152. return width;
  1153. }
  1154. static std::string get_field_display_name(const std::string & field) {
  1155. if (field == "n_gpu_layers") {
  1156. return "ngl";
  1157. }
  1158. if (field == "split_mode") {
  1159. return "sm";
  1160. }
  1161. if (field == "n_threads") {
  1162. return "threads";
  1163. }
  1164. if (field == "no_kv_offload") {
  1165. return "nkvo";
  1166. }
  1167. if (field == "flash_attn") {
  1168. return "fa";
  1169. }
  1170. if (field == "use_mmap") {
  1171. return "mmap";
  1172. }
  1173. if (field == "embeddings") {
  1174. return "embd";
  1175. }
  1176. if (field == "tensor_split") {
  1177. return "ts";
  1178. }
  1179. return field;
  1180. }
  1181. void print_header(const cmd_params & params) override {
  1182. // select fields to print
  1183. fields.emplace_back("model");
  1184. fields.emplace_back("size");
  1185. fields.emplace_back("params");
  1186. fields.emplace_back("backend");
  1187. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1188. if (!is_cpu_backend) {
  1189. fields.emplace_back("n_gpu_layers");
  1190. }
  1191. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1192. fields.emplace_back("n_threads");
  1193. }
  1194. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1195. fields.emplace_back("cpu_mask");
  1196. }
  1197. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1198. fields.emplace_back("cpu_strict");
  1199. }
  1200. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1201. fields.emplace_back("poll");
  1202. }
  1203. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1204. fields.emplace_back("n_batch");
  1205. }
  1206. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1207. fields.emplace_back("n_ubatch");
  1208. }
  1209. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1210. fields.emplace_back("type_k");
  1211. }
  1212. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1213. fields.emplace_back("type_v");
  1214. }
  1215. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1216. fields.emplace_back("main_gpu");
  1217. }
  1218. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1219. fields.emplace_back("split_mode");
  1220. }
  1221. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1222. fields.emplace_back("no_kv_offload");
  1223. }
  1224. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1225. fields.emplace_back("flash_attn");
  1226. }
  1227. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1228. fields.emplace_back("tensor_split");
  1229. }
  1230. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1231. fields.emplace_back("use_mmap");
  1232. }
  1233. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1234. fields.emplace_back("embeddings");
  1235. }
  1236. fields.emplace_back("test");
  1237. fields.emplace_back("t/s");
  1238. fprintf(fout, "|");
  1239. for (const auto & field : fields) {
  1240. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1241. }
  1242. fprintf(fout, "\n");
  1243. fprintf(fout, "|");
  1244. for (const auto & field : fields) {
  1245. int width = get_field_width(field);
  1246. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1247. }
  1248. fprintf(fout, "\n");
  1249. }
  1250. void print_test(const test & t) override {
  1251. std::map<std::string, std::string> vmap = t.get_map();
  1252. fprintf(fout, "|");
  1253. for (const auto & field : fields) {
  1254. std::string value;
  1255. char buf[128];
  1256. if (field == "model") {
  1257. value = t.model_type;
  1258. } else if (field == "size") {
  1259. if (t.model_size < 1024*1024*1024) {
  1260. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1261. } else {
  1262. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1263. }
  1264. value = buf;
  1265. } else if (field == "params") {
  1266. if (t.model_n_params < 1000*1000*1000) {
  1267. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1268. } else {
  1269. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1270. }
  1271. value = buf;
  1272. } else if (field == "backend") {
  1273. value = test::get_backend();
  1274. if (t.has_rpc) {
  1275. value += "+RPC";
  1276. }
  1277. } else if (field == "test") {
  1278. if (t.n_prompt > 0 && t.n_gen == 0) {
  1279. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1280. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1281. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1282. } else {
  1283. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1284. }
  1285. value = buf;
  1286. } else if (field == "t/s") {
  1287. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1288. value = buf;
  1289. } else if (vmap.find(field) != vmap.end()) {
  1290. value = vmap.at(field);
  1291. } else {
  1292. assert(false);
  1293. exit(1);
  1294. }
  1295. int width = get_field_width(field);
  1296. if (field == "t/s") {
  1297. // HACK: the utf-8 character is 2 bytes
  1298. width += 1;
  1299. }
  1300. fprintf(fout, " %*s |", width, value.c_str());
  1301. }
  1302. fprintf(fout, "\n");
  1303. }
  1304. void print_footer() override {
  1305. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1306. }
  1307. };
  1308. struct sql_printer : public printer {
  1309. static std::string get_sql_field_type(const std::string & field) {
  1310. switch (test::get_field_type(field)) {
  1311. case test::STRING:
  1312. return "TEXT";
  1313. case test::BOOL:
  1314. case test::INT:
  1315. return "INTEGER";
  1316. case test::FLOAT:
  1317. return "REAL";
  1318. default:
  1319. assert(false);
  1320. exit(1);
  1321. }
  1322. }
  1323. void print_header(const cmd_params & params) override {
  1324. std::vector<std::string> fields = test::get_fields();
  1325. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1326. for (size_t i = 0; i < fields.size(); i++) {
  1327. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1328. }
  1329. fprintf(fout, ");\n");
  1330. fprintf(fout, "\n");
  1331. (void) params;
  1332. }
  1333. void print_test(const test & t) override {
  1334. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1335. fprintf(fout, "VALUES (");
  1336. std::vector<std::string> values = t.get_values();
  1337. for (size_t i = 0; i < values.size(); i++) {
  1338. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1339. }
  1340. fprintf(fout, ");\n");
  1341. }
  1342. };
  1343. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1344. llama_set_n_threads(ctx, n_threads, n_threads);
  1345. const llama_model * model = llama_get_model(ctx);
  1346. const int32_t n_vocab = llama_n_vocab(model);
  1347. std::vector<llama_token> tokens(n_batch);
  1348. int n_processed = 0;
  1349. while (n_processed < n_prompt) {
  1350. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1351. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1352. for (int i = 1; i < n_tokens; i++) {
  1353. tokens[i] = std::rand() % n_vocab;
  1354. }
  1355. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1356. n_processed += n_tokens;
  1357. }
  1358. llama_synchronize(ctx);
  1359. }
  1360. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1361. llama_set_n_threads(ctx, n_threads, n_threads);
  1362. const llama_model * model = llama_get_model(ctx);
  1363. const int32_t n_vocab = llama_n_vocab(model);
  1364. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1365. for (int i = 0; i < n_gen; i++) {
  1366. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1367. llama_synchronize(ctx);
  1368. token = std::rand() % n_vocab;
  1369. }
  1370. }
  1371. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1372. (void) level;
  1373. (void) text;
  1374. (void) user_data;
  1375. }
  1376. static std::unique_ptr<printer> create_printer(output_formats format) {
  1377. switch (format) {
  1378. case NONE:
  1379. return nullptr;
  1380. case CSV:
  1381. return std::unique_ptr<printer>(new csv_printer());
  1382. case JSON:
  1383. return std::unique_ptr<printer>(new json_printer());
  1384. case JSONL:
  1385. return std::unique_ptr<printer>(new jsonl_printer());
  1386. case MARKDOWN:
  1387. return std::unique_ptr<printer>(new markdown_printer());
  1388. case SQL:
  1389. return std::unique_ptr<printer>(new sql_printer());
  1390. }
  1391. GGML_ABORT("fatal error");
  1392. }
  1393. int main(int argc, char ** argv) {
  1394. // try to set locale for unicode characters in markdown
  1395. setlocale(LC_CTYPE, ".UTF-8");
  1396. #if !defined(NDEBUG)
  1397. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1398. #endif
  1399. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1400. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1401. #endif
  1402. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1403. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1404. #endif
  1405. cmd_params params = parse_cmd_params(argc, argv);
  1406. // initialize llama.cpp
  1407. if (!params.verbose) {
  1408. llama_log_set(llama_null_log_callback, NULL);
  1409. }
  1410. llama_backend_init();
  1411. llama_numa_init(params.numa);
  1412. set_process_priority(params.prio);
  1413. // initialize printer
  1414. std::unique_ptr<printer> p = create_printer(params.output_format);
  1415. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1416. if (p) {
  1417. p->fout = stdout;
  1418. p->print_header(params);
  1419. }
  1420. if (p_err) {
  1421. p_err->fout = stderr;
  1422. p_err->print_header(params);
  1423. }
  1424. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1425. llama_model * lmodel = nullptr;
  1426. const cmd_params_instance * prev_inst = nullptr;
  1427. int params_idx = 0;
  1428. auto params_count = params_instances.size();
  1429. for (const auto & inst : params_instances) {
  1430. params_idx ++;
  1431. if (params.progress) {
  1432. fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
  1433. }
  1434. // keep the same model between tests when possible
  1435. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1436. if (lmodel) {
  1437. llama_free_model(lmodel);
  1438. }
  1439. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1440. if (lmodel == NULL) {
  1441. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1442. return 1;
  1443. }
  1444. prev_inst = &inst;
  1445. }
  1446. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1447. if (ctx == NULL) {
  1448. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1449. llama_free_model(lmodel);
  1450. return 1;
  1451. }
  1452. test t(inst, lmodel, ctx);
  1453. llama_kv_cache_clear(ctx);
  1454. // cool off before the test
  1455. if (params.delay) {
  1456. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1457. }
  1458. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1459. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1460. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1461. exit(1);
  1462. }
  1463. tpp.strict_cpu = t.cpu_strict;
  1464. tpp.poll = t.poll;
  1465. tpp.prio = params.prio;
  1466. struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
  1467. if (!threadpool) {
  1468. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1469. exit(1);
  1470. }
  1471. llama_attach_threadpool(ctx, threadpool, NULL);
  1472. // warmup run
  1473. if (t.n_prompt > 0) {
  1474. if (params.progress) {
  1475. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
  1476. }
  1477. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1478. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1479. }
  1480. if (t.n_gen > 0) {
  1481. if (params.progress) {
  1482. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
  1483. }
  1484. test_gen(ctx, 1, 0, t.n_threads);
  1485. }
  1486. for (int i = 0; i < params.reps; i++) {
  1487. llama_kv_cache_clear(ctx);
  1488. uint64_t t_start = get_time_ns();
  1489. if (t.n_prompt > 0) {
  1490. if (params.progress) {
  1491. fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1492. }
  1493. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1494. }
  1495. if (t.n_gen > 0) {
  1496. if (params.progress) {
  1497. fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1498. }
  1499. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1500. }
  1501. uint64_t t_ns = get_time_ns() - t_start;
  1502. t.samples_ns.push_back(t_ns);
  1503. }
  1504. if (p) {
  1505. p->print_test(t);
  1506. fflush(p->fout);
  1507. }
  1508. if (p_err) {
  1509. p_err->print_test(t);
  1510. fflush(p_err->fout);
  1511. }
  1512. llama_perf_context_print(ctx);
  1513. llama_free(ctx);
  1514. ggml_threadpool_free(threadpool);
  1515. }
  1516. llama_free_model(lmodel);
  1517. if (p) {
  1518. p->print_footer();
  1519. }
  1520. if (p_err) {
  1521. p_err->print_footer();
  1522. }
  1523. llama_backend_free();
  1524. return 0;
  1525. }