ggml.c 495 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if defined(__AVX2__) || defined(__AVX512F__)
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  462. #if __AVXVNNI__
  463. const __m256i zero = _mm256_setzero_si256();
  464. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  465. return _mm256_cvtepi32_ps(summed_pairs);
  466. #else
  467. // Perform multiplication and create 16-bit values
  468. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  469. return sum_i16_pairs_float(dot);
  470. #endif
  471. }
  472. // multiply int8_t, add results pairwise twice and return as float vector
  473. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  474. #if __AVXVNNIINT8__
  475. const __m256i zero = _mm256_setzero_si256();
  476. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. #else
  479. // Get absolute values of x vectors
  480. const __m256i ax = _mm256_sign_epi8(x, x);
  481. // Sign the values of the y vectors
  482. const __m256i sy = _mm256_sign_epi8(y, x);
  483. return mul_sum_us8_pairs_float(ax, sy);
  484. #endif
  485. }
  486. static inline __m128i packNibbles( __m256i bytes )
  487. {
  488. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  489. #if __AVX512F__
  490. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  491. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  492. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  493. #else
  494. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  495. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  496. __m256i low = _mm256_and_si256( lowByte, bytes );
  497. high = _mm256_srli_epi16( high, 4 );
  498. bytes = _mm256_or_si256( low, high );
  499. // Compress uint16_t lanes into bytes
  500. __m128i r0 = _mm256_castsi256_si128( bytes );
  501. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  502. return _mm_packus_epi16( r0, r1 );
  503. #endif
  504. }
  505. #elif defined(__AVX__)
  506. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  507. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  508. uint32_t x32;
  509. memcpy(&x32, x, sizeof(uint32_t));
  510. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  511. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  512. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  513. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  514. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  515. bytesl = _mm_or_si128(bytesl, bit_mask);
  516. bytesh = _mm_or_si128(bytesh, bit_mask);
  517. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  518. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  519. return _mm256_set_m128i(bytesh, bytesl);
  520. }
  521. // Unpack 32 4-bit fields into 32 bytes
  522. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  523. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  524. {
  525. // Load 16 bytes from memory
  526. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  527. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  528. const __m128i lowMask = _mm_set1_epi8(0xF);
  529. tmpl = _mm_and_si128(lowMask, tmpl);
  530. tmph = _mm_and_si128(lowMask, tmph);
  531. return _mm256_set_m128i(tmph, tmpl);
  532. }
  533. // add int16_t pairwise and return as float vector
  534. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  535. const __m128i ones = _mm_set1_epi16(1);
  536. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  537. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  538. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  539. return _mm256_cvtepi32_ps(summed_pairs);
  540. }
  541. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  542. const __m128i axl = _mm256_castsi256_si128(ax);
  543. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  544. const __m128i syl = _mm256_castsi256_si128(sy);
  545. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  546. // Perform multiplication and create 16-bit values
  547. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  548. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  549. return sum_i16_pairs_float(doth, dotl);
  550. }
  551. // multiply int8_t, add results pairwise twice and return as float vector
  552. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  553. const __m128i xl = _mm256_castsi256_si128(x);
  554. const __m128i xh = _mm256_extractf128_si256(x, 1);
  555. const __m128i yl = _mm256_castsi256_si128(y);
  556. const __m128i yh = _mm256_extractf128_si256(y, 1);
  557. // Get absolute values of x vectors
  558. const __m128i axl = _mm_sign_epi8(xl, xl);
  559. const __m128i axh = _mm_sign_epi8(xh, xh);
  560. // Sign the values of the y vectors
  561. const __m128i syl = _mm_sign_epi8(yl, xl);
  562. const __m128i syh = _mm_sign_epi8(yh, xh);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  572. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  573. __m128i low = _mm_and_si128( lowByte, bytes1 );
  574. high = _mm_srli_epi16( high, 4 );
  575. bytes1 = _mm_or_si128( low, high );
  576. high = _mm_andnot_si128( lowByte, bytes2 );
  577. low = _mm_and_si128( lowByte, bytes2 );
  578. high = _mm_srli_epi16( high, 4 );
  579. bytes2 = _mm_or_si128( low, high );
  580. return _mm_packus_epi16( bytes1, bytes2);
  581. }
  582. #endif
  583. #elif defined(__SSSE3__)
  584. // horizontally add 4x4 floats
  585. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  586. __m128 res_0 =_mm_hadd_ps(a, b);
  587. __m128 res_1 =_mm_hadd_ps(c, d);
  588. __m128 res =_mm_hadd_ps(res_0, res_1);
  589. res =_mm_hadd_ps(res, res);
  590. res =_mm_hadd_ps(res, res);
  591. return _mm_cvtss_f32(res);
  592. }
  593. #endif // __AVX__ || __AVX2__ || __AVX512F__
  594. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  595. #if defined(__ARM_NEON)
  596. #if !defined(__aarch64__)
  597. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  598. return
  599. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  600. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  601. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  602. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  603. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  604. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  605. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  606. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  607. }
  608. inline static int16_t vaddvq_s8(int8x16_t v) {
  609. return
  610. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  611. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  612. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  613. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  614. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  615. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  616. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  617. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  618. }
  619. inline static int32_t vaddvq_s16(int16x8_t v) {
  620. return
  621. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  622. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  623. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  624. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  625. }
  626. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  627. return
  628. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  629. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  630. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  631. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  632. }
  633. inline static int32_t vaddvq_s32(int32x4_t v) {
  634. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  635. }
  636. inline static float vaddvq_f32(float32x4_t v) {
  637. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  638. }
  639. inline static float vminvq_f32(float32x4_t v) {
  640. return
  641. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  642. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  643. }
  644. inline static float vmaxvq_f32(float32x4_t v) {
  645. return
  646. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  647. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  648. }
  649. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  650. int32x4_t res;
  651. res[0] = roundf(vgetq_lane_f32(v, 0));
  652. res[1] = roundf(vgetq_lane_f32(v, 1));
  653. res[2] = roundf(vgetq_lane_f32(v, 2));
  654. res[3] = roundf(vgetq_lane_f32(v, 3));
  655. return res;
  656. }
  657. #endif
  658. #endif
  659. #define QK4_0 32
  660. typedef struct {
  661. ggml_fp16_t d; // delta
  662. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  663. } block_q4_0;
  664. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  665. #define QK4_1 32
  666. typedef struct {
  667. ggml_fp16_t d; // delta
  668. ggml_fp16_t m; // min
  669. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  670. } block_q4_1;
  671. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  672. #define QK5_0 32
  673. typedef struct {
  674. ggml_fp16_t d; // delta
  675. uint8_t qh[4]; // 5-th bit of quants
  676. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  677. } block_q5_0;
  678. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  679. #define QK5_1 32
  680. typedef struct {
  681. ggml_fp16_t d; // delta
  682. ggml_fp16_t m; // min
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  685. } block_q5_1;
  686. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  687. #define QK8_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. int8_t qs[QK8_0]; // quants
  691. } block_q8_0;
  692. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  693. #define QK8_1 32
  694. typedef struct {
  695. float d; // delta
  696. float s; // d * sum(qs[i])
  697. int8_t qs[QK8_1]; // quants
  698. } block_q8_1;
  699. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  700. // reference implementation for deterministic creation of model files
  701. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  702. static const int qk = QK4_0;
  703. assert(k % qk == 0);
  704. const int nb = k / qk;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. float max = 0.0f;
  708. for (int j = 0; j < qk; j++) {
  709. const float v = x[i*qk + j];
  710. if (amax < fabsf(v)) {
  711. amax = fabsf(v);
  712. max = v;
  713. }
  714. }
  715. const float d = max / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = GGML_FP32_TO_FP16(d);
  718. for (int j = 0; j < qk/2; ++j) {
  719. const float x0 = x[i*qk + 0 + j]*id;
  720. const float x1 = x[i*qk + qk/2 + j]*id;
  721. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  722. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  723. y[i].qs[j] = xi0;
  724. y[i].qs[j] |= xi1 << 4;
  725. }
  726. }
  727. }
  728. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  729. quantize_row_q4_0_reference(x, y, k);
  730. }
  731. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  732. const int qk = QK4_1;
  733. assert(k % qk == 0);
  734. const int nb = k / qk;
  735. for (int i = 0; i < nb; i++) {
  736. float min = FLT_MAX;
  737. float max = -FLT_MAX;
  738. for (int j = 0; j < qk; j++) {
  739. const float v = x[i*qk + j];
  740. if (v < min) min = v;
  741. if (v > max) max = v;
  742. }
  743. const float d = (max - min) / ((1 << 4) - 1);
  744. const float id = d ? 1.0f/d : 0.0f;
  745. y[i].d = GGML_FP32_TO_FP16(d);
  746. y[i].m = GGML_FP32_TO_FP16(min);
  747. for (int j = 0; j < qk/2; ++j) {
  748. const float x0 = (x[i*qk + 0 + j] - min)*id;
  749. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  750. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  751. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  752. y[i].qs[j] = xi0;
  753. y[i].qs[j] |= xi1 << 4;
  754. }
  755. }
  756. }
  757. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  758. quantize_row_q4_1_reference(x, y, k);
  759. }
  760. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  761. static const int qk = QK5_0;
  762. assert(k % qk == 0);
  763. const int nb = k / qk;
  764. for (int i = 0; i < nb; i++) {
  765. float amax = 0.0f; // absolute max
  766. float max = 0.0f;
  767. for (int j = 0; j < qk; j++) {
  768. const float v = x[i*qk + j];
  769. if (amax < fabsf(v)) {
  770. amax = fabsf(v);
  771. max = v;
  772. }
  773. }
  774. const float d = max / -16;
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. uint32_t qh = 0;
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  782. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  783. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  784. // get the 5-th bit and store it in qh at the right position
  785. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  786. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  787. }
  788. memcpy(&y[i].qh, &qh, sizeof(qh));
  789. }
  790. }
  791. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q5_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  795. const int qk = QK5_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 5) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. uint32_t qh = 0;
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  815. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  816. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  817. // get the 5-th bit and store it in qh at the right position
  818. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  819. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  820. }
  821. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  822. }
  823. }
  824. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  825. quantize_row_q5_1_reference(x, y, k);
  826. }
  827. // reference implementation for deterministic creation of model files
  828. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. for (int j = 0; j < QK8_0; j++) {
  834. const float v = x[i*QK8_0 + j];
  835. amax = MAX(amax, fabsf(v));
  836. }
  837. const float d = amax / ((1 << 7) - 1);
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = GGML_FP32_TO_FP16(d);
  840. for (int j = 0; j < QK8_0; ++j) {
  841. const float x0 = x[i*QK8_0 + j]*id;
  842. y[i].qs[j] = roundf(x0);
  843. }
  844. }
  845. }
  846. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  847. assert(QK8_0 == 32);
  848. assert(k % QK8_0 == 0);
  849. const int nb = k / QK8_0;
  850. block_q8_0 * restrict y = vy;
  851. #if defined(__ARM_NEON)
  852. for (int i = 0; i < nb; i++) {
  853. float32x4_t srcv [8];
  854. float32x4_t asrcv[8];
  855. float32x4_t amaxv[8];
  856. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  857. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  858. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  859. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  860. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  861. const float amax = vmaxvq_f32(amaxv[0]);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. for (int j = 0; j < 8; j++) {
  866. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  867. const int32x4_t vi = vcvtnq_s32_f32(v);
  868. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  869. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  870. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  871. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  872. }
  873. }
  874. #elif defined(__wasm_simd128__)
  875. for (int i = 0; i < nb; i++) {
  876. v128_t srcv [8];
  877. v128_t asrcv[8];
  878. v128_t amaxv[8];
  879. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  880. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  881. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  882. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  883. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  884. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  885. wasm_f32x4_extract_lane(amaxv[0], 1)),
  886. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  887. wasm_f32x4_extract_lane(amaxv[0], 3)));
  888. const float d = amax / ((1 << 7) - 1);
  889. const float id = d ? 1.0f/d : 0.0f;
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. for (int j = 0; j < 8; j++) {
  892. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  893. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  894. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  895. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  896. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  897. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  898. }
  899. }
  900. #elif defined(__AVX2__) || defined(__AVX__)
  901. for (int i = 0; i < nb; i++) {
  902. // Load elements into 4 AVX vectors
  903. __m256 v0 = _mm256_loadu_ps( x );
  904. __m256 v1 = _mm256_loadu_ps( x + 8 );
  905. __m256 v2 = _mm256_loadu_ps( x + 16 );
  906. __m256 v3 = _mm256_loadu_ps( x + 24 );
  907. x += 32;
  908. // Compute max(abs(e)) for the block
  909. const __m256 signBit = _mm256_set1_ps( -0.0f );
  910. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  912. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  914. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  915. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  916. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  917. const float maxScalar = _mm_cvtss_f32( max4 );
  918. // Quantize these floats
  919. const float d = maxScalar / 127.f;
  920. y[i].d = GGML_FP32_TO_FP16(d);
  921. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  922. const __m256 mul = _mm256_set1_ps( id );
  923. // Apply the multiplier
  924. v0 = _mm256_mul_ps( v0, mul );
  925. v1 = _mm256_mul_ps( v1, mul );
  926. v2 = _mm256_mul_ps( v2, mul );
  927. v3 = _mm256_mul_ps( v3, mul );
  928. // Round to nearest integer
  929. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  930. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  931. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  932. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  933. // Convert floats to integers
  934. __m256i i0 = _mm256_cvtps_epi32( v0 );
  935. __m256i i1 = _mm256_cvtps_epi32( v1 );
  936. __m256i i2 = _mm256_cvtps_epi32( v2 );
  937. __m256i i3 = _mm256_cvtps_epi32( v3 );
  938. #if defined(__AVX2__)
  939. // Convert int32 to int16
  940. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  941. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  942. // Convert int16 to int8
  943. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  944. // We got our precious signed bytes, but the order is now wrong
  945. // These AVX2 pack instructions process 16-byte pieces independently
  946. // The following instruction is fixing the order
  947. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  948. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  949. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  950. #else
  951. // Since we don't have in AVX some necessary functions,
  952. // we split the registers in half and call AVX2 analogs from SSE
  953. __m128i ni0 = _mm256_castsi256_si128( i0 );
  954. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  955. __m128i ni2 = _mm256_castsi256_si128( i1 );
  956. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  957. __m128i ni4 = _mm256_castsi256_si128( i2 );
  958. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  959. __m128i ni6 = _mm256_castsi256_si128( i3 );
  960. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  961. // Convert int32 to int16
  962. ni0 = _mm_packs_epi32( ni0, ni1 );
  963. ni2 = _mm_packs_epi32( ni2, ni3 );
  964. ni4 = _mm_packs_epi32( ni4, ni5 );
  965. ni6 = _mm_packs_epi32( ni6, ni7 );
  966. // Convert int16 to int8
  967. ni0 = _mm_packs_epi16( ni0, ni2 );
  968. ni4 = _mm_packs_epi16( ni4, ni6 );
  969. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  970. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  971. #endif
  972. }
  973. #else
  974. // scalar
  975. quantize_row_q8_0_reference(x, y, k);
  976. #endif
  977. }
  978. // reference implementation for deterministic creation of model files
  979. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  980. assert(QK8_1 == 32);
  981. assert(k % QK8_1 == 0);
  982. const int nb = k / QK8_1;
  983. for (int i = 0; i < nb; i++) {
  984. float amax = 0.0f; // absolute max
  985. for (int j = 0; j < QK8_1; j++) {
  986. const float v = x[i*QK8_1 + j];
  987. amax = MAX(amax, fabsf(v));
  988. }
  989. const float d = amax / ((1 << 7) - 1);
  990. const float id = d ? 1.0f/d : 0.0f;
  991. y[i].d = d;
  992. int sum = 0;
  993. for (int j = 0; j < QK8_1/2; ++j) {
  994. const float v0 = x[i*QK8_1 + j]*id;
  995. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  996. y[i].qs[ j] = roundf(v0);
  997. y[i].qs[QK8_1/2 + j] = roundf(v1);
  998. sum += y[i].qs[ j];
  999. sum += y[i].qs[QK8_1/2 + j];
  1000. }
  1001. y[i].s = sum*d;
  1002. }
  1003. }
  1004. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1005. assert(k % QK8_1 == 0);
  1006. const int nb = k / QK8_1;
  1007. block_q8_1 * restrict y = vy;
  1008. #if defined(__ARM_NEON)
  1009. for (int i = 0; i < nb; i++) {
  1010. float32x4_t srcv [8];
  1011. float32x4_t asrcv[8];
  1012. float32x4_t amaxv[8];
  1013. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1014. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1015. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1016. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1017. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1018. const float amax = vmaxvq_f32(amaxv[0]);
  1019. const float d = amax / ((1 << 7) - 1);
  1020. const float id = d ? 1.0f/d : 0.0f;
  1021. y[i].d = d;
  1022. int32x4_t accv = vdupq_n_s32(0);
  1023. for (int j = 0; j < 8; j++) {
  1024. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1025. const int32x4_t vi = vcvtnq_s32_f32(v);
  1026. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1027. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1028. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1029. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1030. accv = vaddq_s32(accv, vi);
  1031. }
  1032. y[i].s = d * vaddvq_s32(accv);
  1033. }
  1034. #elif defined(__wasm_simd128__)
  1035. for (int i = 0; i < nb; i++) {
  1036. v128_t srcv [8];
  1037. v128_t asrcv[8];
  1038. v128_t amaxv[8];
  1039. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1040. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1041. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1042. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1043. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1044. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1045. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1046. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1047. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1048. const float d = amax / ((1 << 7) - 1);
  1049. const float id = d ? 1.0f/d : 0.0f;
  1050. y[i].d = d;
  1051. v128_t accv = wasm_i32x4_splat(0);
  1052. for (int j = 0; j < 8; j++) {
  1053. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1054. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1055. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1056. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1057. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1058. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1059. accv = wasm_i32x4_add(accv, vi);
  1060. }
  1061. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1062. wasm_i32x4_extract_lane(accv, 1) +
  1063. wasm_i32x4_extract_lane(accv, 2) +
  1064. wasm_i32x4_extract_lane(accv, 3));
  1065. }
  1066. #elif defined(__AVX2__) || defined(__AVX__)
  1067. for (int i = 0; i < nb; i++) {
  1068. // Load elements into 4 AVX vectors
  1069. __m256 v0 = _mm256_loadu_ps( x );
  1070. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1071. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1072. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1073. x += 32;
  1074. // Compute max(abs(e)) for the block
  1075. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1076. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1077. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1078. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1079. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1080. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1081. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1082. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1083. const float maxScalar = _mm_cvtss_f32( max4 );
  1084. // Quantize these floats
  1085. const float d = maxScalar / 127.f;
  1086. y[i].d = d;
  1087. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1088. const __m256 mul = _mm256_set1_ps( id );
  1089. // Apply the multiplier
  1090. v0 = _mm256_mul_ps( v0, mul );
  1091. v1 = _mm256_mul_ps( v1, mul );
  1092. v2 = _mm256_mul_ps( v2, mul );
  1093. v3 = _mm256_mul_ps( v3, mul );
  1094. // Round to nearest integer
  1095. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1096. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1097. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1098. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1099. // Convert floats to integers
  1100. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1101. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1102. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1103. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1104. #if defined(__AVX2__)
  1105. // Compute the sum of the quants and set y[i].s
  1106. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1107. // Convert int32 to int16
  1108. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1109. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1110. // Convert int16 to int8
  1111. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1112. // We got our precious signed bytes, but the order is now wrong
  1113. // These AVX2 pack instructions process 16-byte pieces independently
  1114. // The following instruction is fixing the order
  1115. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1116. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1117. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1118. #else
  1119. // Since we don't have in AVX some necessary functions,
  1120. // we split the registers in half and call AVX2 analogs from SSE
  1121. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1122. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1123. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1124. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1125. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1126. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1127. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1128. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1129. // Compute the sum of the quants and set y[i].s
  1130. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1131. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1132. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1133. // Convert int32 to int16
  1134. ni0 = _mm_packs_epi32( ni0, ni1 );
  1135. ni2 = _mm_packs_epi32( ni2, ni3 );
  1136. ni4 = _mm_packs_epi32( ni4, ni5 );
  1137. ni6 = _mm_packs_epi32( ni6, ni7 );
  1138. // Convert int16 to int8
  1139. ni0 = _mm_packs_epi16( ni0, ni2 );
  1140. ni4 = _mm_packs_epi16( ni4, ni6 );
  1141. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1142. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1143. #endif
  1144. }
  1145. #else
  1146. // scalar
  1147. quantize_row_q8_1_reference(x, y, k);
  1148. #endif
  1149. }
  1150. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1151. static const int qk = QK4_0;
  1152. assert(k % qk == 0);
  1153. const int nb = k / qk;
  1154. for (int i = 0; i < nb; i++) {
  1155. const float d = GGML_FP16_TO_FP32(x[i].d);
  1156. for (int j = 0; j < qk/2; ++j) {
  1157. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1158. const int x1 = (x[i].qs[j] >> 4) - 8;
  1159. y[i*qk + j + 0 ] = x0*d;
  1160. y[i*qk + j + qk/2] = x1*d;
  1161. }
  1162. }
  1163. }
  1164. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1165. static const int qk = QK4_1;
  1166. assert(k % qk == 0);
  1167. const int nb = k / qk;
  1168. for (int i = 0; i < nb; i++) {
  1169. const float d = GGML_FP16_TO_FP32(x[i].d);
  1170. const float m = GGML_FP16_TO_FP32(x[i].m);
  1171. for (int j = 0; j < qk/2; ++j) {
  1172. const int x0 = (x[i].qs[j] & 0x0F);
  1173. const int x1 = (x[i].qs[j] >> 4);
  1174. y[i*qk + j + 0 ] = x0*d + m;
  1175. y[i*qk + j + qk/2] = x1*d + m;
  1176. }
  1177. }
  1178. }
  1179. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1180. static const int qk = QK5_0;
  1181. assert(k % qk == 0);
  1182. const int nb = k / qk;
  1183. for (int i = 0; i < nb; i++) {
  1184. const float d = GGML_FP16_TO_FP32(x[i].d);
  1185. uint32_t qh;
  1186. memcpy(&qh, x[i].qh, sizeof(qh));
  1187. for (int j = 0; j < qk/2; ++j) {
  1188. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1189. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1190. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1191. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1192. y[i*qk + j + 0 ] = x0*d;
  1193. y[i*qk + j + qk/2] = x1*d;
  1194. }
  1195. }
  1196. }
  1197. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1198. static const int qk = QK5_1;
  1199. assert(k % qk == 0);
  1200. const int nb = k / qk;
  1201. for (int i = 0; i < nb; i++) {
  1202. const float d = GGML_FP16_TO_FP32(x[i].d);
  1203. const float m = GGML_FP16_TO_FP32(x[i].m);
  1204. uint32_t qh;
  1205. memcpy(&qh, x[i].qh, sizeof(qh));
  1206. for (int j = 0; j < qk/2; ++j) {
  1207. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1208. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1209. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1210. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1211. y[i*qk + j + 0 ] = x0*d + m;
  1212. y[i*qk + j + qk/2] = x1*d + m;
  1213. }
  1214. }
  1215. }
  1216. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1217. static const int qk = QK8_0;
  1218. assert(k % qk == 0);
  1219. const int nb = k / qk;
  1220. const block_q8_0 * restrict x = vx;
  1221. for (int i = 0; i < nb; i++) {
  1222. const float d = GGML_FP16_TO_FP32(x[i].d);
  1223. for (int j = 0; j < qk; ++j) {
  1224. y[i*qk + j] = x[i].qs[j]*d;
  1225. }
  1226. }
  1227. }
  1228. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1229. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1230. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1231. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1234. [GGML_TYPE_Q4_0] = {
  1235. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1236. .quantize_row_q = quantize_row_q4_0,
  1237. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1238. .quantize_row_q_dot = quantize_row_q8_0,
  1239. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1240. .vec_dot_type = GGML_TYPE_Q8_0,
  1241. },
  1242. [GGML_TYPE_Q4_1] = {
  1243. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1244. .quantize_row_q = quantize_row_q4_1,
  1245. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1246. .quantize_row_q_dot = quantize_row_q8_1,
  1247. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1248. .vec_dot_type = GGML_TYPE_Q8_1,
  1249. },
  1250. [GGML_TYPE_Q5_0] = {
  1251. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1252. .quantize_row_q = quantize_row_q5_0,
  1253. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1254. .quantize_row_q_dot = quantize_row_q8_0,
  1255. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1256. .vec_dot_type = GGML_TYPE_Q8_0,
  1257. },
  1258. [GGML_TYPE_Q5_1] = {
  1259. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1260. .quantize_row_q = quantize_row_q5_1,
  1261. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1262. .quantize_row_q_dot = quantize_row_q8_1,
  1263. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1264. .vec_dot_type = GGML_TYPE_Q8_1,
  1265. },
  1266. [GGML_TYPE_Q8_0] = {
  1267. .dequantize_row_q = dequantize_row_q8_0,
  1268. .quantize_row_q = quantize_row_q8_0,
  1269. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1270. .quantize_row_q_dot = quantize_row_q8_0,
  1271. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1272. .vec_dot_type = GGML_TYPE_Q8_0,
  1273. },
  1274. [GGML_TYPE_Q8_1] = {
  1275. .dequantize_row_q = NULL, // TODO
  1276. .quantize_row_q = quantize_row_q8_1,
  1277. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1278. .quantize_row_q_dot = quantize_row_q8_1,
  1279. .vec_dot_q = NULL, // TODO
  1280. .vec_dot_type = GGML_TYPE_Q8_1,
  1281. },
  1282. };
  1283. // For internal test use
  1284. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1285. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1286. return quantize_fns[i];
  1287. }
  1288. //
  1289. // simd mappings
  1290. //
  1291. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1292. // we then implement the fundamental computation operations below using only these macros
  1293. // adding support for new architectures requires to define the corresponding SIMD macros
  1294. //
  1295. // GGML_F32_STEP / GGML_F16_STEP
  1296. // number of elements to process in a single step
  1297. //
  1298. // GGML_F32_EPR / GGML_F16_EPR
  1299. // number of elements to fit in a single register
  1300. //
  1301. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1302. #define GGML_SIMD
  1303. // F32 NEON
  1304. #define GGML_F32_STEP 16
  1305. #define GGML_F32_EPR 4
  1306. #define GGML_F32x4 float32x4_t
  1307. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1308. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1309. #define GGML_F32x4_LOAD vld1q_f32
  1310. #define GGML_F32x4_STORE vst1q_f32
  1311. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1312. #define GGML_F32x4_ADD vaddq_f32
  1313. #define GGML_F32x4_MUL vmulq_f32
  1314. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1315. #define GGML_F32x4_REDUCE(res, x) \
  1316. { \
  1317. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1318. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1319. } \
  1320. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1321. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1322. } \
  1323. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1324. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1325. } \
  1326. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1327. }
  1328. #define GGML_F32_VEC GGML_F32x4
  1329. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1330. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1331. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1332. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1333. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1334. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1335. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1336. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1337. // F16 NEON
  1338. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1339. #define GGML_F16_STEP 32
  1340. #define GGML_F16_EPR 8
  1341. #define GGML_F16x8 float16x8_t
  1342. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1343. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1344. #define GGML_F16x8_LOAD vld1q_f16
  1345. #define GGML_F16x8_STORE vst1q_f16
  1346. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1347. #define GGML_F16x8_ADD vaddq_f16
  1348. #define GGML_F16x8_MUL vmulq_f16
  1349. #define GGML_F16x8_REDUCE(res, x) \
  1350. { \
  1351. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1352. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1353. } \
  1354. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1355. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1356. } \
  1357. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1358. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1359. } \
  1360. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1361. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1362. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1363. }
  1364. #define GGML_F16_VEC GGML_F16x8
  1365. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1366. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1367. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1368. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1369. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1370. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1371. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1372. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1373. #else
  1374. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1375. // and take advantage of the vcvt_ functions to convert to/from FP16
  1376. #define GGML_F16_STEP 16
  1377. #define GGML_F16_EPR 4
  1378. #define GGML_F32Cx4 float32x4_t
  1379. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1380. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1381. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1382. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1383. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1384. #define GGML_F32Cx4_ADD vaddq_f32
  1385. #define GGML_F32Cx4_MUL vmulq_f32
  1386. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1387. #define GGML_F16_VEC GGML_F32Cx4
  1388. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1389. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1390. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1391. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1392. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1393. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1394. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1395. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1396. #endif
  1397. #elif defined(__AVX__)
  1398. #define GGML_SIMD
  1399. // F32 AVX
  1400. #define GGML_F32_STEP 32
  1401. #define GGML_F32_EPR 8
  1402. #define GGML_F32x8 __m256
  1403. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1404. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1405. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1406. #define GGML_F32x8_STORE _mm256_storeu_ps
  1407. #if defined(__FMA__)
  1408. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1409. #else
  1410. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1411. #endif
  1412. #define GGML_F32x8_ADD _mm256_add_ps
  1413. #define GGML_F32x8_MUL _mm256_mul_ps
  1414. #define GGML_F32x8_REDUCE(res, x) \
  1415. { \
  1416. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1417. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1420. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1421. } \
  1422. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1423. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1424. } \
  1425. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1426. _mm256_extractf128_ps(x[0], 1)); \
  1427. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1428. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1429. }
  1430. // TODO: is this optimal ?
  1431. #define GGML_F32_VEC GGML_F32x8
  1432. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1433. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1434. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1435. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1436. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1437. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1438. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1439. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1440. // F16 AVX
  1441. #define GGML_F16_STEP 32
  1442. #define GGML_F16_EPR 8
  1443. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1444. #define GGML_F32Cx8 __m256
  1445. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1446. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1447. #if defined(__F16C__)
  1448. // the _mm256_cvt intrinsics require F16C
  1449. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1450. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1451. #else
  1452. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1453. float tmp[8];
  1454. for (int i = 0; i < 8; i++) {
  1455. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1456. }
  1457. return _mm256_loadu_ps(tmp);
  1458. }
  1459. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1460. float arr[8];
  1461. _mm256_storeu_ps(arr, y);
  1462. for (int i = 0; i < 8; i++)
  1463. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1464. }
  1465. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1466. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1467. #endif
  1468. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1469. #define GGML_F32Cx8_ADD _mm256_add_ps
  1470. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1471. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1472. #define GGML_F16_VEC GGML_F32Cx8
  1473. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1474. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1475. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1476. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1477. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1478. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1479. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1480. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1481. #elif defined(__POWER9_VECTOR__)
  1482. #define GGML_SIMD
  1483. // F32 POWER9
  1484. #define GGML_F32_STEP 32
  1485. #define GGML_F32_EPR 4
  1486. #define GGML_F32x4 vector float
  1487. #define GGML_F32x4_ZERO 0.0f
  1488. #define GGML_F32x4_SET1 vec_splats
  1489. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1490. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1491. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1492. #define GGML_F32x4_ADD vec_add
  1493. #define GGML_F32x4_MUL vec_mul
  1494. #define GGML_F32x4_REDUCE(res, x) \
  1495. { \
  1496. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1497. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1498. } \
  1499. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1500. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1501. } \
  1502. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1503. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1504. } \
  1505. res = vec_extract(x[0], 0) + \
  1506. vec_extract(x[0], 1) + \
  1507. vec_extract(x[0], 2) + \
  1508. vec_extract(x[0], 3); \
  1509. }
  1510. #define GGML_F32_VEC GGML_F32x4
  1511. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1512. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1513. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1514. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1515. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1516. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1517. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1518. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1519. // F16 POWER9
  1520. #define GGML_F16_STEP GGML_F32_STEP
  1521. #define GGML_F16_EPR GGML_F32_EPR
  1522. #define GGML_F16_VEC GGML_F32x4
  1523. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1524. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1525. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1526. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1527. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1528. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1529. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1530. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1531. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1532. #define GGML_F16_VEC_STORE(p, r, i) \
  1533. if (i & 0x1) \
  1534. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1535. r[i - GGML_ENDIAN_BYTE(0)]), \
  1536. 0, p - GGML_F16_EPR)
  1537. #elif defined(__wasm_simd128__)
  1538. #define GGML_SIMD
  1539. // F32 WASM
  1540. #define GGML_F32_STEP 16
  1541. #define GGML_F32_EPR 4
  1542. #define GGML_F32x4 v128_t
  1543. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1544. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1545. #define GGML_F32x4_LOAD wasm_v128_load
  1546. #define GGML_F32x4_STORE wasm_v128_store
  1547. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1548. #define GGML_F32x4_ADD wasm_f32x4_add
  1549. #define GGML_F32x4_MUL wasm_f32x4_mul
  1550. #define GGML_F32x4_REDUCE(res, x) \
  1551. { \
  1552. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1553. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1554. } \
  1555. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1556. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1557. } \
  1558. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1559. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1560. } \
  1561. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1562. wasm_f32x4_extract_lane(x[0], 1) + \
  1563. wasm_f32x4_extract_lane(x[0], 2) + \
  1564. wasm_f32x4_extract_lane(x[0], 3); \
  1565. }
  1566. #define GGML_F32_VEC GGML_F32x4
  1567. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1568. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1569. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1570. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1571. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1572. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1573. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1574. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1575. // F16 WASM
  1576. #define GGML_F16_STEP 16
  1577. #define GGML_F16_EPR 4
  1578. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1579. float tmp[4];
  1580. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1581. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1582. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1583. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1584. return wasm_v128_load(tmp);
  1585. }
  1586. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1587. float tmp[4];
  1588. wasm_v128_store(tmp, x);
  1589. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1590. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1591. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1592. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1593. }
  1594. #define GGML_F16x4 v128_t
  1595. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1596. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1597. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1598. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1599. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1600. #define GGML_F16x4_ADD wasm_f32x4_add
  1601. #define GGML_F16x4_MUL wasm_f32x4_mul
  1602. #define GGML_F16x4_REDUCE(res, x) \
  1603. { \
  1604. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1605. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1606. } \
  1607. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1608. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1609. } \
  1610. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1611. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1612. } \
  1613. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1614. wasm_f32x4_extract_lane(x[0], 1) + \
  1615. wasm_f32x4_extract_lane(x[0], 2) + \
  1616. wasm_f32x4_extract_lane(x[0], 3); \
  1617. }
  1618. #define GGML_F16_VEC GGML_F16x4
  1619. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1620. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1621. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1622. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1623. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1624. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1625. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1626. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1627. #elif defined(__SSE3__)
  1628. #define GGML_SIMD
  1629. // F32 SSE
  1630. #define GGML_F32_STEP 32
  1631. #define GGML_F32_EPR 4
  1632. #define GGML_F32x4 __m128
  1633. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1634. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1635. #define GGML_F32x4_LOAD _mm_loadu_ps
  1636. #define GGML_F32x4_STORE _mm_storeu_ps
  1637. #if defined(__FMA__)
  1638. // TODO: Does this work?
  1639. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1640. #else
  1641. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1642. #endif
  1643. #define GGML_F32x4_ADD _mm_add_ps
  1644. #define GGML_F32x4_MUL _mm_mul_ps
  1645. #define GGML_F32x4_REDUCE(res, x) \
  1646. { \
  1647. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1648. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1649. } \
  1650. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1651. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1652. } \
  1653. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1654. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1655. } \
  1656. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1657. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1658. }
  1659. // TODO: is this optimal ?
  1660. #define GGML_F32_VEC GGML_F32x4
  1661. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1662. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1663. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1664. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1665. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1666. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1667. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1668. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1669. // F16 SSE
  1670. #define GGML_F16_STEP 32
  1671. #define GGML_F16_EPR 4
  1672. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1673. float tmp[4];
  1674. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1675. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1676. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1677. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1678. return _mm_loadu_ps(tmp);
  1679. }
  1680. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1681. float arr[4];
  1682. _mm_storeu_ps(arr, y);
  1683. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1684. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1685. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1686. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1687. }
  1688. #define GGML_F32Cx4 __m128
  1689. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1690. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1691. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1692. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1693. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1694. #define GGML_F32Cx4_ADD _mm_add_ps
  1695. #define GGML_F32Cx4_MUL _mm_mul_ps
  1696. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1697. #define GGML_F16_VEC GGML_F32Cx4
  1698. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1699. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1700. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1701. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1702. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1703. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1704. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1705. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1706. #endif
  1707. // GGML_F32_ARR / GGML_F16_ARR
  1708. // number of registers to use per step
  1709. #ifdef GGML_SIMD
  1710. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1711. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1712. #endif
  1713. //
  1714. // fundamental operations
  1715. //
  1716. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1717. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1718. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1719. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1720. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1721. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1722. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1723. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1724. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1725. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1726. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1727. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1728. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1729. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1730. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1731. #ifdef GGML_SIMD
  1732. float sumf = 0.0f;
  1733. const int np = (n & ~(GGML_F32_STEP - 1));
  1734. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1735. GGML_F32_VEC ax[GGML_F32_ARR];
  1736. GGML_F32_VEC ay[GGML_F32_ARR];
  1737. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1738. for (int j = 0; j < GGML_F32_ARR; j++) {
  1739. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1740. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1741. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1742. }
  1743. }
  1744. // reduce sum0..sum3 to sum0
  1745. GGML_F32_VEC_REDUCE(sumf, sum);
  1746. // leftovers
  1747. for (int i = np; i < n; ++i) {
  1748. sumf += x[i]*y[i];
  1749. }
  1750. #else
  1751. // scalar
  1752. ggml_float sumf = 0.0;
  1753. for (int i = 0; i < n; ++i) {
  1754. sumf += (ggml_float)(x[i]*y[i]);
  1755. }
  1756. #endif
  1757. *s = sumf;
  1758. }
  1759. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1760. ggml_float sumf = 0.0;
  1761. #if defined(GGML_SIMD)
  1762. const int np = (n & ~(GGML_F16_STEP - 1));
  1763. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1764. GGML_F16_VEC ax[GGML_F16_ARR];
  1765. GGML_F16_VEC ay[GGML_F16_ARR];
  1766. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1767. for (int j = 0; j < GGML_F16_ARR; j++) {
  1768. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1769. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1770. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1771. }
  1772. }
  1773. // reduce sum0..sum3 to sum0
  1774. GGML_F16_VEC_REDUCE(sumf, sum);
  1775. // leftovers
  1776. for (int i = np; i < n; ++i) {
  1777. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1778. }
  1779. #else
  1780. for (int i = 0; i < n; ++i) {
  1781. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1782. }
  1783. #endif
  1784. *s = sumf;
  1785. }
  1786. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1787. const int qk = QK8_0;
  1788. const int nb = n / qk;
  1789. assert(n % qk == 0);
  1790. assert(nb % 2 == 0);
  1791. const block_q4_0 * restrict x = vx;
  1792. const block_q8_0 * restrict y = vy;
  1793. #if defined(__ARM_NEON)
  1794. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1795. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1796. for (int i = 0; i < nb; i += 2) {
  1797. const block_q4_0 * restrict x0 = &x[i + 0];
  1798. const block_q4_0 * restrict x1 = &x[i + 1];
  1799. const block_q8_0 * restrict y0 = &y[i + 0];
  1800. const block_q8_0 * restrict y1 = &y[i + 1];
  1801. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1802. const int8x16_t s8b = vdupq_n_s8(0x8);
  1803. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1804. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1805. // 4-bit -> 8-bit
  1806. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1807. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1808. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1809. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1810. // sub 8
  1811. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1812. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1813. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1814. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1815. // load y
  1816. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1817. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1818. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1819. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1820. #if defined(__ARM_FEATURE_DOTPROD)
  1821. // dot product into int32x4_t
  1822. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1823. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1824. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1825. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1826. #else
  1827. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1828. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1829. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1830. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1831. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1832. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1833. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1834. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1835. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1836. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1837. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1838. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1839. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1840. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1841. #endif
  1842. }
  1843. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1844. #elif defined(__AVX2__)
  1845. // Initialize accumulator with zeros
  1846. __m256 acc = _mm256_setzero_ps();
  1847. // Main loop
  1848. for (int i = 0; i < nb; ++i) {
  1849. /* Compute combined scale for the block */
  1850. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1851. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1852. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1853. const __m256i off = _mm256_set1_epi8( 8 );
  1854. bx = _mm256_sub_epi8( bx, off );
  1855. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1856. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1857. /* Multiply q with scale and accumulate */
  1858. acc = _mm256_fmadd_ps( d, q, acc );
  1859. }
  1860. *s = hsum_float_8(acc);
  1861. #elif defined(__AVX__)
  1862. // Initialize accumulator with zeros
  1863. __m256 acc = _mm256_setzero_ps();
  1864. // Main loop
  1865. for (int i = 0; i < nb; ++i) {
  1866. // Compute combined scale for the block
  1867. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1868. const __m128i lowMask = _mm_set1_epi8(0xF);
  1869. const __m128i off = _mm_set1_epi8(8);
  1870. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1871. __m128i bx = _mm_and_si128(lowMask, tmp);
  1872. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1873. bx = _mm_sub_epi8(bx, off);
  1874. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1875. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1876. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1877. bx = _mm_sub_epi8(bx, off);
  1878. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1879. // Convert int32_t to float
  1880. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1881. // Apply the scale, and accumulate
  1882. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1883. }
  1884. *s = hsum_float_8(acc);
  1885. #elif defined(__SSSE3__)
  1886. // set constants
  1887. const __m128i lowMask = _mm_set1_epi8(0xF);
  1888. const __m128i off = _mm_set1_epi8(8);
  1889. // Initialize accumulator with zeros
  1890. __m128 acc_0 = _mm_setzero_ps();
  1891. __m128 acc_1 = _mm_setzero_ps();
  1892. __m128 acc_2 = _mm_setzero_ps();
  1893. __m128 acc_3 = _mm_setzero_ps();
  1894. // First round without accumulation
  1895. {
  1896. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1897. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1898. // Compute combined scale for the block 0 and 1
  1899. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1900. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1901. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1902. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1903. bx_0 = _mm_sub_epi8(bx_0, off);
  1904. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1905. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1906. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1907. bx_1 = _mm_sub_epi8(bx_1, off);
  1908. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1909. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1910. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1911. // Compute combined scale for the block 2 and 3
  1912. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1913. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1914. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1915. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1916. bx_2 = _mm_sub_epi8(bx_2, off);
  1917. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1918. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1919. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1920. bx_3 = _mm_sub_epi8(bx_3, off);
  1921. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1922. // Convert int32_t to float
  1923. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1924. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1925. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1926. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1927. // Apply the scale
  1928. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1929. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1930. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1931. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1932. }
  1933. // Main loop
  1934. for (int i = 2; i < nb; i+=2) {
  1935. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1936. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1937. // Compute combined scale for the block 0 and 1
  1938. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1939. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1940. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1941. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1942. bx_0 = _mm_sub_epi8(bx_0, off);
  1943. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1944. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1945. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1946. bx_1 = _mm_sub_epi8(bx_1, off);
  1947. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1948. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1949. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1950. // Compute combined scale for the block 2 and 3
  1951. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1952. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1953. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1954. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1955. bx_2 = _mm_sub_epi8(bx_2, off);
  1956. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1957. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1958. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1959. bx_3 = _mm_sub_epi8(bx_3, off);
  1960. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1961. // Convert int32_t to float
  1962. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1963. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1964. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1965. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1966. // Apply the scale
  1967. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1968. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1969. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1970. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1971. // Acummulate
  1972. acc_0 = _mm_add_ps(p0_d, acc_0);
  1973. acc_1 = _mm_add_ps(p1_d, acc_1);
  1974. acc_2 = _mm_add_ps(p2_d, acc_2);
  1975. acc_3 = _mm_add_ps(p3_d, acc_3);
  1976. }
  1977. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1978. #else
  1979. // scalar
  1980. float sumf = 0.0;
  1981. for (int i = 0; i < nb; i++) {
  1982. int sumi = 0;
  1983. for (int j = 0; j < qk/2; ++j) {
  1984. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1985. const int v1 = (x[i].qs[j] >> 4) - 8;
  1986. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1987. }
  1988. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1989. }
  1990. *s = sumf;
  1991. #endif
  1992. }
  1993. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1994. const int qk = QK8_1;
  1995. const int nb = n / qk;
  1996. assert(n % qk == 0);
  1997. assert(nb % 2 == 0);
  1998. const block_q4_1 * restrict x = vx;
  1999. const block_q8_1 * restrict y = vy;
  2000. // TODO: add WASM SIMD
  2001. #if defined(__ARM_NEON)
  2002. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2003. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2004. float summs = 0;
  2005. for (int i = 0; i < nb; i += 2) {
  2006. const block_q4_1 * restrict x0 = &x[i + 0];
  2007. const block_q4_1 * restrict x1 = &x[i + 1];
  2008. const block_q8_1 * restrict y0 = &y[i + 0];
  2009. const block_q8_1 * restrict y1 = &y[i + 1];
  2010. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2011. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2012. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2013. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2014. // 4-bit -> 8-bit
  2015. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2016. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2017. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2018. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2019. // load y
  2020. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2021. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2022. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2023. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2024. #if defined(__ARM_FEATURE_DOTPROD)
  2025. // dot product into int32x4_t
  2026. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2027. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2028. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2029. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2030. #else
  2031. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2032. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2033. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2034. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2035. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2036. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2037. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2038. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2039. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2040. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2041. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2042. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2043. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2044. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2045. #endif
  2046. }
  2047. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2048. #elif defined(__AVX2__) || defined(__AVX__)
  2049. // Initialize accumulator with zeros
  2050. __m256 acc = _mm256_setzero_ps();
  2051. float summs = 0;
  2052. // Main loop
  2053. for (int i = 0; i < nb; ++i) {
  2054. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2055. const float d1 = y[i].d;
  2056. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2057. const __m256 d0v = _mm256_set1_ps( d0 );
  2058. const __m256 d1v = _mm256_set1_ps( d1 );
  2059. // Compute combined scales
  2060. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2061. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2062. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2063. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2064. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2065. // Accumulate d0*d1*x*y
  2066. #if defined(__AVX2__)
  2067. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2068. #else
  2069. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2070. #endif
  2071. }
  2072. *s = hsum_float_8(acc) + summs;
  2073. #else
  2074. // scalar
  2075. float sumf = 0.0;
  2076. for (int i = 0; i < nb; i++) {
  2077. int sumi = 0;
  2078. for (int j = 0; j < qk/2; ++j) {
  2079. const int v0 = (x[i].qs[j] & 0x0F);
  2080. const int v1 = (x[i].qs[j] >> 4);
  2081. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2082. }
  2083. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2084. }
  2085. *s = sumf;
  2086. #endif
  2087. }
  2088. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2089. const int qk = QK8_0;
  2090. const int nb = n / qk;
  2091. assert(n % qk == 0);
  2092. assert(nb % 2 == 0);
  2093. assert(qk == QK5_0);
  2094. const block_q5_0 * restrict x = vx;
  2095. const block_q8_0 * restrict y = vy;
  2096. #if defined(__ARM_NEON)
  2097. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2098. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2099. uint32_t qh0;
  2100. uint32_t qh1;
  2101. uint64_t tmp0[4];
  2102. uint64_t tmp1[4];
  2103. for (int i = 0; i < nb; i += 2) {
  2104. const block_q5_0 * restrict x0 = &x[i];
  2105. const block_q5_0 * restrict x1 = &x[i + 1];
  2106. const block_q8_0 * restrict y0 = &y[i];
  2107. const block_q8_0 * restrict y1 = &y[i + 1];
  2108. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2109. // extract the 5th bit via lookup table ((!b) << 4)
  2110. memcpy(&qh0, x0->qh, sizeof(qh0));
  2111. memcpy(&qh1, x1->qh, sizeof(qh1));
  2112. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2113. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2114. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2115. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2116. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2117. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2118. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2119. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2120. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2121. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2122. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2123. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2124. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2125. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2126. // 4-bit -> 8-bit
  2127. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2128. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2129. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2130. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2131. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2132. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2133. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2134. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2135. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2136. // load y
  2137. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2138. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2139. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2140. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2141. #if defined(__ARM_FEATURE_DOTPROD)
  2142. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2143. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2144. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2145. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2146. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2147. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2148. #else
  2149. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2150. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2151. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2152. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2153. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2154. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2155. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2156. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2157. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2158. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2159. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2160. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2161. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2162. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2163. #endif
  2164. }
  2165. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2166. #elif defined(__wasm_simd128__)
  2167. v128_t sumv = wasm_f32x4_splat(0.0f);
  2168. uint32_t qh;
  2169. uint64_t tmp[4];
  2170. // TODO: check if unrolling this is better
  2171. for (int i = 0; i < nb; ++i) {
  2172. const block_q5_0 * restrict x0 = &x[i];
  2173. const block_q8_0 * restrict y0 = &y[i];
  2174. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2175. // extract the 5th bit
  2176. memcpy(&qh, x0->qh, sizeof(qh));
  2177. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2178. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2179. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2180. tmp[3] = table_b2b_1[(qh >> 24) ];
  2181. const v128_t qhl = wasm_v128_load(tmp + 0);
  2182. const v128_t qhh = wasm_v128_load(tmp + 2);
  2183. const v128_t v0 = wasm_v128_load(x0->qs);
  2184. // 4-bit -> 8-bit
  2185. const v128_t v0l = wasm_v128_and (v0, m4b);
  2186. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2187. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2188. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2189. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2190. // load y
  2191. const v128_t v1l = wasm_v128_load(y0->qs);
  2192. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2193. // int8x16 -> int16x8
  2194. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2195. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2196. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2197. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2198. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2199. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2200. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2201. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2202. // dot product
  2203. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2204. wasm_i32x4_add(
  2205. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2206. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2208. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2209. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2210. }
  2211. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2212. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2213. #elif defined(__AVX2__)
  2214. // Initialize accumulator with zeros
  2215. __m256 acc = _mm256_setzero_ps();
  2216. // Main loop
  2217. for (int i = 0; i < nb; i++) {
  2218. /* Compute combined scale for the block */
  2219. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2220. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2221. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2222. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2223. bx = _mm256_or_si256(bx, bxhi);
  2224. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2225. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2226. /* Multiply q with scale and accumulate */
  2227. acc = _mm256_fmadd_ps(d, q, acc);
  2228. }
  2229. *s = hsum_float_8(acc);
  2230. #elif defined(__AVX__)
  2231. // Initialize accumulator with zeros
  2232. __m256 acc = _mm256_setzero_ps();
  2233. __m128i mask = _mm_set1_epi8((char)0xF0);
  2234. // Main loop
  2235. for (int i = 0; i < nb; i++) {
  2236. /* Compute combined scale for the block */
  2237. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2238. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2239. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2240. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2241. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2242. bxhil = _mm_andnot_si128(bxhil, mask);
  2243. bxhih = _mm_andnot_si128(bxhih, mask);
  2244. __m128i bxl = _mm256_castsi256_si128(bx);
  2245. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2246. bxl = _mm_or_si128(bxl, bxhil);
  2247. bxh = _mm_or_si128(bxh, bxhih);
  2248. bx = _mm256_set_m128i(bxh, bxl);
  2249. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2250. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2251. /* Multiply q with scale and accumulate */
  2252. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2253. }
  2254. *s = hsum_float_8(acc);
  2255. #else
  2256. // scalar
  2257. float sumf = 0.0;
  2258. for (int i = 0; i < nb; i++) {
  2259. uint32_t qh;
  2260. memcpy(&qh, x[i].qh, sizeof(qh));
  2261. int sumi = 0;
  2262. for (int j = 0; j < qk/2; ++j) {
  2263. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2264. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2265. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2266. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2267. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2268. }
  2269. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2270. }
  2271. *s = sumf;
  2272. #endif
  2273. }
  2274. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2275. const int qk = QK8_1;
  2276. const int nb = n / qk;
  2277. assert(n % qk == 0);
  2278. assert(nb % 2 == 0);
  2279. assert(qk == QK5_1);
  2280. const block_q5_1 * restrict x = vx;
  2281. const block_q8_1 * restrict y = vy;
  2282. #if defined(__ARM_NEON)
  2283. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2284. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2285. float summs0 = 0.0f;
  2286. float summs1 = 0.0f;
  2287. uint32_t qh0;
  2288. uint32_t qh1;
  2289. uint64_t tmp0[4];
  2290. uint64_t tmp1[4];
  2291. for (int i = 0; i < nb; i += 2) {
  2292. const block_q5_1 * restrict x0 = &x[i];
  2293. const block_q5_1 * restrict x1 = &x[i + 1];
  2294. const block_q8_1 * restrict y0 = &y[i];
  2295. const block_q8_1 * restrict y1 = &y[i + 1];
  2296. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2297. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2298. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2299. // extract the 5th bit via lookup table ((b) << 4)
  2300. memcpy(&qh0, x0->qh, sizeof(qh0));
  2301. memcpy(&qh1, x1->qh, sizeof(qh1));
  2302. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2303. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2304. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2305. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2306. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2307. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2308. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2309. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2310. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2311. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2312. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2313. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2314. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2315. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2316. // 4-bit -> 8-bit
  2317. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2318. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2319. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2320. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2321. // add high bit
  2322. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2323. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2324. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2325. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2326. // load y
  2327. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2328. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2329. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2330. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2331. #if defined(__ARM_FEATURE_DOTPROD)
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2333. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2334. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2335. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2336. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2337. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2338. #else
  2339. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2340. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2341. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2342. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2343. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2344. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2345. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2346. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2347. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2348. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2349. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2350. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2353. #endif
  2354. }
  2355. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2356. #elif defined(__wasm_simd128__)
  2357. v128_t sumv = wasm_f32x4_splat(0.0f);
  2358. float summs = 0.0f;
  2359. uint32_t qh;
  2360. uint64_t tmp[4];
  2361. // TODO: check if unrolling this is better
  2362. for (int i = 0; i < nb; ++i) {
  2363. const block_q5_1 * restrict x0 = &x[i];
  2364. const block_q8_1 * restrict y0 = &y[i];
  2365. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2366. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2367. // extract the 5th bit
  2368. memcpy(&qh, x0->qh, sizeof(qh));
  2369. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2370. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2371. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2372. tmp[3] = table_b2b_0[(qh >> 24) ];
  2373. const v128_t qhl = wasm_v128_load(tmp + 0);
  2374. const v128_t qhh = wasm_v128_load(tmp + 2);
  2375. const v128_t v0 = wasm_v128_load(x0->qs);
  2376. // 4-bit -> 8-bit
  2377. const v128_t v0l = wasm_v128_and (v0, m4b);
  2378. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2379. // add high bit
  2380. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2381. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2382. // load y
  2383. const v128_t v1l = wasm_v128_load(y0->qs);
  2384. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2385. // int8x16 -> int16x8
  2386. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2387. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2388. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2389. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2390. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2391. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2392. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2393. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2394. // dot product
  2395. sumv = wasm_f32x4_add(sumv,
  2396. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2397. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2398. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2400. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2401. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2402. }
  2403. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2404. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2405. #elif defined(__AVX2__)
  2406. // Initialize accumulator with zeros
  2407. __m256 acc = _mm256_setzero_ps();
  2408. float summs = 0.0f;
  2409. // Main loop
  2410. for (int i = 0; i < nb; i++) {
  2411. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2412. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2413. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2414. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2415. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2416. bx = _mm256_or_si256(bx, bxhi);
  2417. const __m256 dy = _mm256_set1_ps(y[i].d);
  2418. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2419. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2420. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2421. }
  2422. *s = hsum_float_8(acc) + summs;
  2423. #elif defined(__AVX__)
  2424. // Initialize accumulator with zeros
  2425. __m256 acc = _mm256_setzero_ps();
  2426. __m128i mask = _mm_set1_epi8(0x10);
  2427. float summs = 0.0f;
  2428. // Main loop
  2429. for (int i = 0; i < nb; i++) {
  2430. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2431. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2432. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2433. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2434. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2435. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2436. bxhil = _mm_and_si128(bxhil, mask);
  2437. bxhih = _mm_and_si128(bxhih, mask);
  2438. __m128i bxl = _mm256_castsi256_si128(bx);
  2439. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2440. bxl = _mm_or_si128(bxl, bxhil);
  2441. bxh = _mm_or_si128(bxh, bxhih);
  2442. bx = _mm256_set_m128i(bxh, bxl);
  2443. const __m256 dy = _mm256_set1_ps(y[i].d);
  2444. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2445. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2446. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2447. }
  2448. *s = hsum_float_8(acc) + summs;
  2449. #else
  2450. // scalar
  2451. float sumf = 0.0;
  2452. for (int i = 0; i < nb; i++) {
  2453. uint32_t qh;
  2454. memcpy(&qh, x[i].qh, sizeof(qh));
  2455. int sumi = 0;
  2456. for (int j = 0; j < qk/2; ++j) {
  2457. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2458. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2459. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2460. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2461. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2462. }
  2463. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2464. }
  2465. *s = sumf;
  2466. #endif
  2467. }
  2468. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2469. const int qk = QK8_0;
  2470. const int nb = n / qk;
  2471. assert(n % qk == 0);
  2472. assert(nb % 2 == 0);
  2473. const block_q8_0 * restrict x = vx;
  2474. const block_q8_0 * restrict y = vy;
  2475. #if defined(__ARM_NEON)
  2476. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2477. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2478. for (int i = 0; i < nb; i += 2) {
  2479. const block_q8_0 * restrict x0 = &x[i + 0];
  2480. const block_q8_0 * restrict x1 = &x[i + 1];
  2481. const block_q8_0 * restrict y0 = &y[i + 0];
  2482. const block_q8_0 * restrict y1 = &y[i + 1];
  2483. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2484. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2485. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2486. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2487. // load y
  2488. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2489. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2490. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2491. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2492. #if defined(__ARM_FEATURE_DOTPROD)
  2493. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2494. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2495. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2496. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2497. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2498. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2499. #else
  2500. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2501. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2502. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2503. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2504. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2505. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2506. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2507. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2508. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2509. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2510. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2511. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2512. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2513. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2514. #endif
  2515. }
  2516. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2517. #elif defined(__AVX2__) || defined(__AVX__)
  2518. // Initialize accumulator with zeros
  2519. __m256 acc = _mm256_setzero_ps();
  2520. // Main loop
  2521. for (int i = 0; i < nb; ++i) {
  2522. // Compute combined scale for the block
  2523. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2524. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2525. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2526. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2527. // Multiply q with scale and accumulate
  2528. #if defined(__AVX2__)
  2529. acc = _mm256_fmadd_ps( d, q, acc );
  2530. #else
  2531. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2532. #endif
  2533. }
  2534. *s = hsum_float_8(acc);
  2535. #else
  2536. // scalar
  2537. float sumf = 0.0;
  2538. for (int i = 0; i < nb; i++) {
  2539. int sumi = 0;
  2540. for (int j = 0; j < qk; j++) {
  2541. sumi += x[i].qs[j]*y[i].qs[j];
  2542. }
  2543. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2544. }
  2545. *s = sumf;
  2546. #endif
  2547. }
  2548. // compute GGML_VEC_DOT_UNROLL dot products at once
  2549. // xs - x row stride in bytes
  2550. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2551. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2552. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2553. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2554. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2555. }
  2556. #if defined(GGML_SIMD)
  2557. const int np = (n & ~(GGML_F16_STEP - 1));
  2558. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2559. GGML_F16_VEC ax[GGML_F16_ARR];
  2560. GGML_F16_VEC ay[GGML_F16_ARR];
  2561. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2562. for (int j = 0; j < GGML_F16_ARR; j++) {
  2563. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2564. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2565. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2566. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2567. }
  2568. }
  2569. }
  2570. // reduce sum0..sum3 to sum0
  2571. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2572. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2573. }
  2574. // leftovers
  2575. for (int i = np; i < n; ++i) {
  2576. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2577. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2578. }
  2579. }
  2580. #else
  2581. for (int i = 0; i < n; ++i) {
  2582. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2583. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2584. }
  2585. }
  2586. #endif
  2587. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2588. s[i] = sumf[i];
  2589. }
  2590. }
  2591. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2592. #if defined(GGML_SIMD)
  2593. const int np = (n & ~(GGML_F32_STEP - 1));
  2594. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2595. GGML_F32_VEC ax[GGML_F32_ARR];
  2596. GGML_F32_VEC ay[GGML_F32_ARR];
  2597. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2598. for (int j = 0; j < GGML_F32_ARR; j++) {
  2599. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2600. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2601. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2602. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2603. }
  2604. }
  2605. // leftovers
  2606. for (int i = np; i < n; ++i) {
  2607. y[i] += x[i]*v;
  2608. }
  2609. #else
  2610. // scalar
  2611. for (int i = 0; i < n; ++i) {
  2612. y[i] += x[i]*v;
  2613. }
  2614. #endif
  2615. }
  2616. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2617. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2618. #if defined(GGML_SIMD)
  2619. const int np = (n & ~(GGML_F32_STEP - 1));
  2620. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2621. GGML_F32_VEC ay[GGML_F32_ARR];
  2622. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2623. for (int j = 0; j < GGML_F32_ARR; j++) {
  2624. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2625. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2626. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2627. }
  2628. }
  2629. // leftovers
  2630. for (int i = np; i < n; ++i) {
  2631. y[i] *= v;
  2632. }
  2633. #else
  2634. // scalar
  2635. for (int i = 0; i < n; ++i) {
  2636. y[i] *= v;
  2637. }
  2638. #endif
  2639. }
  2640. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2641. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2642. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2643. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2644. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2645. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2646. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2647. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2648. static const float GELU_COEF_A = 0.044715f;
  2649. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2650. inline static float ggml_gelu_f32(float x) {
  2651. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2652. }
  2653. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2654. const uint16_t * i16 = (const uint16_t *) x;
  2655. for (int i = 0; i < n; ++i) {
  2656. y[i] = table_gelu_f16[i16[i]];
  2657. }
  2658. }
  2659. #ifdef GGML_GELU_FP16
  2660. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2661. uint16_t t;
  2662. for (int i = 0; i < n; ++i) {
  2663. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2664. memcpy(&t, &fp16, sizeof(uint16_t));
  2665. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2666. }
  2667. }
  2668. #else
  2669. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2670. for (int i = 0; i < n; ++i) {
  2671. y[i] = ggml_gelu_f32(x[i]);
  2672. }
  2673. }
  2674. #endif
  2675. // Sigmoid Linear Unit (SiLU) function
  2676. inline static float ggml_silu_f32(float x) {
  2677. return x/(1.0f + expf(-x));
  2678. }
  2679. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2680. // const uint16_t * i16 = (const uint16_t *) x;
  2681. // for (int i = 0; i < n; ++i) {
  2682. // y[i] = table_silu_f16[i16[i]];
  2683. // }
  2684. //}
  2685. #ifdef GGML_SILU_FP16
  2686. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2687. uint16_t t;
  2688. for (int i = 0; i < n; ++i) {
  2689. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2690. memcpy(&t, &fp16, sizeof(uint16_t));
  2691. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2692. }
  2693. }
  2694. #else
  2695. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2696. for (int i = 0; i < n; ++i) {
  2697. y[i] = ggml_silu_f32(x[i]);
  2698. }
  2699. }
  2700. #endif
  2701. inline static float ggml_silu_backward_f32(float x, float dy) {
  2702. const float s = 1.0f/(1.0f + expf(-x));
  2703. return dy*s*(1.0f + x*(1.0f - s));
  2704. }
  2705. #ifdef GGML_SILU_FP16
  2706. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2707. for (int i = 0; i < n; ++i) {
  2708. // we did not use x[i] to compute forward silu but its f16 equivalent
  2709. // take derivative at f16 of x[i]:
  2710. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2711. float usedx = GGML_FP16_TO_FP32(fp16);
  2712. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2713. }
  2714. }
  2715. #else
  2716. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2717. for (int i = 0; i < n; ++i) {
  2718. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2719. }
  2720. }
  2721. #endif
  2722. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2723. #ifndef GGML_USE_ACCELERATE
  2724. ggml_float sum = 0.0;
  2725. for (int i = 0; i < n; ++i) {
  2726. sum += (ggml_float)x[i];
  2727. }
  2728. *s = sum;
  2729. #else
  2730. vDSP_sve(x, 1, s, n);
  2731. #endif
  2732. }
  2733. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2734. ggml_float sum = 0.0;
  2735. for (int i = 0; i < n; ++i) {
  2736. sum += (ggml_float)x[i];
  2737. }
  2738. *s = sum;
  2739. }
  2740. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2741. #ifndef GGML_USE_ACCELERATE
  2742. float max = -INFINITY;
  2743. for (int i = 0; i < n; ++i) {
  2744. max = MAX(max, x[i]);
  2745. }
  2746. *s = max;
  2747. #else
  2748. vDSP_maxv(x, 1, s, n);
  2749. #endif
  2750. }
  2751. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2752. ggml_vec_norm_f32(n, s, x);
  2753. *s = 1.f/(*s);
  2754. }
  2755. //
  2756. // logging
  2757. //
  2758. #if (GGML_DEBUG >= 1)
  2759. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2760. #else
  2761. #define GGML_PRINT_DEBUG(...)
  2762. #endif
  2763. #if (GGML_DEBUG >= 5)
  2764. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2765. #else
  2766. #define GGML_PRINT_DEBUG_5(...)
  2767. #endif
  2768. #if (GGML_DEBUG >= 10)
  2769. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2770. #else
  2771. #define GGML_PRINT_DEBUG_10(...)
  2772. #endif
  2773. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2774. //
  2775. // data types
  2776. //
  2777. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2778. [GGML_TYPE_F32] = 1,
  2779. [GGML_TYPE_F16] = 1,
  2780. [GGML_TYPE_Q4_0] = QK4_0,
  2781. [GGML_TYPE_Q4_1] = QK4_1,
  2782. [GGML_TYPE_Q5_0] = QK5_0,
  2783. [GGML_TYPE_Q5_1] = QK5_1,
  2784. [GGML_TYPE_Q8_0] = QK8_0,
  2785. [GGML_TYPE_Q8_1] = QK8_1,
  2786. [GGML_TYPE_I8] = 1,
  2787. [GGML_TYPE_I16] = 1,
  2788. [GGML_TYPE_I32] = 1,
  2789. };
  2790. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2791. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2792. [GGML_TYPE_F32] = sizeof(float),
  2793. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2794. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2795. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2796. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2797. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2798. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2799. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2800. [GGML_TYPE_I8] = sizeof(int8_t),
  2801. [GGML_TYPE_I16] = sizeof(int16_t),
  2802. [GGML_TYPE_I32] = sizeof(int32_t),
  2803. };
  2804. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2805. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2806. [GGML_TYPE_F32] = "f32",
  2807. [GGML_TYPE_F16] = "f16",
  2808. [GGML_TYPE_Q4_0] = "q4_0",
  2809. [GGML_TYPE_Q4_1] = "q4_1",
  2810. [GGML_TYPE_Q5_0] = "q5_0",
  2811. [GGML_TYPE_Q5_1] = "q5_1",
  2812. [GGML_TYPE_Q8_0] = "q8_0",
  2813. [GGML_TYPE_Q8_1] = "q8_1",
  2814. [GGML_TYPE_I8] = "i8",
  2815. [GGML_TYPE_I16] = "i16",
  2816. [GGML_TYPE_I32] = "i32",
  2817. };
  2818. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2819. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2820. [GGML_TYPE_F32] = false,
  2821. [GGML_TYPE_F16] = false,
  2822. [GGML_TYPE_Q4_0] = true,
  2823. [GGML_TYPE_Q4_1] = true,
  2824. [GGML_TYPE_Q5_0] = true,
  2825. [GGML_TYPE_Q5_1] = true,
  2826. [GGML_TYPE_Q8_0] = true,
  2827. [GGML_TYPE_Q8_1] = true,
  2828. [GGML_TYPE_I8] = false,
  2829. [GGML_TYPE_I16] = false,
  2830. [GGML_TYPE_I32] = false,
  2831. };
  2832. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2833. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2834. "NONE",
  2835. "DUP",
  2836. "ADD",
  2837. "ADD1",
  2838. "ACC",
  2839. "SUB",
  2840. "MUL",
  2841. "DIV",
  2842. "SQR",
  2843. "SQRT",
  2844. "LOG",
  2845. "SUM",
  2846. "SUM_ROWS",
  2847. "MEAN",
  2848. "REPEAT",
  2849. "ABS",
  2850. "SGN",
  2851. "NEG",
  2852. "STEP",
  2853. "RELU",
  2854. "GELU",
  2855. "SILU",
  2856. "SILU_BACK",
  2857. "NORM",
  2858. "RMS_NORM",
  2859. "RMS_NORM_BACK",
  2860. "MUL_MAT",
  2861. "SCALE",
  2862. "SET",
  2863. "CPY",
  2864. "CONT",
  2865. "RESHAPE",
  2866. "VIEW",
  2867. "PERMUTE",
  2868. "TRANSPOSE",
  2869. "GET_ROWS",
  2870. "GET_ROWS_BACK",
  2871. "DIAG",
  2872. "DIAG_MASK_INF",
  2873. "DIAG_MASK_ZERO",
  2874. "SOFT_MAX",
  2875. "ROPE",
  2876. "ROPE_BACK",
  2877. "ALIBI",
  2878. "CLAMP",
  2879. "CONV_1D_1S",
  2880. "CONV_1D_2S",
  2881. "FLASH_ATTN",
  2882. "FLASH_FF",
  2883. "MAP_UNARY",
  2884. "MAP_BINARY",
  2885. };
  2886. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2887. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2888. "none",
  2889. "x",
  2890. "x+y",
  2891. "x+y",
  2892. "view(x,nb,offset)+=y->x",
  2893. "x-y",
  2894. "x*y",
  2895. "x/y",
  2896. "x^2",
  2897. "√x",
  2898. "log(x)",
  2899. "Σx",
  2900. "Σx_k",
  2901. "Σx/n",
  2902. "repeat(x)",
  2903. "abs(x)",
  2904. "sgn(x)",
  2905. "-x",
  2906. "step(x)",
  2907. "relu(x)",
  2908. "gelu(x)",
  2909. "silu(x)",
  2910. "silu_back(x)",
  2911. "norm(x)",
  2912. "rms_norm(x)",
  2913. "rms_norm_back(x)",
  2914. "X*Y",
  2915. "x*v",
  2916. "y-\\>view(x)",
  2917. "x-\\>y",
  2918. "cont(x)",
  2919. "reshape(x)",
  2920. "view(x)",
  2921. "permute(x)",
  2922. "transpose(x)",
  2923. "get_rows(x)",
  2924. "get_rows_back(x)",
  2925. "diag(x)",
  2926. "diag_mask_inf(x)",
  2927. "diag_mask_zero(x)",
  2928. "soft_max(x)",
  2929. "rope(x)",
  2930. "rope_back(x)",
  2931. "alibi(x)",
  2932. "clamp(x)",
  2933. "conv_1d_1s(x)",
  2934. "conv_1d_2s(x)",
  2935. "flash_attn(x)",
  2936. "flash_ff(x)",
  2937. "f(x)",
  2938. "f(x,y)",
  2939. };
  2940. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2941. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2942. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2943. //
  2944. // ggml context
  2945. //
  2946. struct ggml_context {
  2947. size_t mem_size;
  2948. void * mem_buffer;
  2949. bool mem_buffer_owned;
  2950. bool no_alloc;
  2951. int n_objects;
  2952. struct ggml_object * objects_begin;
  2953. struct ggml_object * objects_end;
  2954. struct ggml_scratch scratch;
  2955. struct ggml_scratch scratch_save;
  2956. };
  2957. struct ggml_context_container {
  2958. bool used;
  2959. struct ggml_context context;
  2960. };
  2961. //
  2962. // compute types
  2963. //
  2964. enum ggml_task_type {
  2965. GGML_TASK_INIT = 0,
  2966. GGML_TASK_COMPUTE,
  2967. GGML_TASK_FINALIZE,
  2968. };
  2969. struct ggml_compute_params {
  2970. enum ggml_task_type type;
  2971. int ith, nth;
  2972. // work buffer for all threads
  2973. size_t wsize;
  2974. void * wdata;
  2975. };
  2976. //
  2977. // ggml state
  2978. //
  2979. struct ggml_state {
  2980. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2981. };
  2982. // global state
  2983. static struct ggml_state g_state;
  2984. static atomic_int g_state_barrier = 0;
  2985. // barrier via spin lock
  2986. inline static void ggml_critical_section_start(void) {
  2987. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2988. while (processing > 0) {
  2989. // wait for other threads to finish
  2990. atomic_fetch_sub(&g_state_barrier, 1);
  2991. sched_yield(); // TODO: reconsider this
  2992. processing = atomic_fetch_add(&g_state_barrier, 1);
  2993. }
  2994. }
  2995. // TODO: make this somehow automatically executed
  2996. // some sort of "sentry" mechanism
  2997. inline static void ggml_critical_section_end(void) {
  2998. atomic_fetch_sub(&g_state_barrier, 1);
  2999. }
  3000. ////////////////////////////////////////////////////////////////////////////////
  3001. void ggml_print_object(const struct ggml_object * obj) {
  3002. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3003. obj->offs, obj->size, (const void *) obj->next);
  3004. }
  3005. void ggml_print_objects(const struct ggml_context * ctx) {
  3006. struct ggml_object * obj = ctx->objects_begin;
  3007. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3008. while (obj != NULL) {
  3009. ggml_print_object(obj);
  3010. obj = obj->next;
  3011. }
  3012. GGML_PRINT("%s: --- end ---\n", __func__);
  3013. }
  3014. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3015. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3016. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3017. }
  3018. int ggml_nrows(const struct ggml_tensor * tensor) {
  3019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3020. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3021. }
  3022. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3023. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3024. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3025. }
  3026. int ggml_blck_size(enum ggml_type type) {
  3027. return GGML_BLCK_SIZE[type];
  3028. }
  3029. size_t ggml_type_size(enum ggml_type type) {
  3030. return GGML_TYPE_SIZE[type];
  3031. }
  3032. float ggml_type_sizef(enum ggml_type type) {
  3033. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3034. }
  3035. const char * ggml_type_name(enum ggml_type type) {
  3036. return GGML_TYPE_NAME[type];
  3037. }
  3038. const char * ggml_op_name(enum ggml_op op) {
  3039. return GGML_OP_NAME[op];
  3040. }
  3041. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3042. return GGML_TYPE_SIZE[tensor->type];
  3043. }
  3044. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3045. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3046. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3047. }
  3048. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3049. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3050. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3051. }
  3052. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3053. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3054. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3055. }
  3056. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3057. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3058. return
  3059. (t0->ne[0] == t1->ne[0]) &&
  3060. (t0->ne[2] == t1->ne[2]) &&
  3061. (t0->ne[3] == t1->ne[3]);
  3062. }
  3063. bool ggml_is_quantized(enum ggml_type type) {
  3064. return GGML_IS_QUANTIZED[type];
  3065. }
  3066. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3067. enum ggml_type wtype = GGML_TYPE_COUNT;
  3068. switch (ftype) {
  3069. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3070. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3071. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3072. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3073. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3074. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3075. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3076. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3077. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3078. }
  3079. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3080. return wtype;
  3081. }
  3082. size_t ggml_tensor_overhead(void) {
  3083. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3084. }
  3085. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3086. return tensor->nb[0] > tensor->nb[1];
  3087. }
  3088. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3090. return
  3091. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3092. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3093. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3094. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3095. }
  3096. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3097. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3098. return
  3099. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3100. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3101. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3102. }
  3103. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3104. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3105. return
  3106. (t0->ne[0] == t1->ne[0] ) &&
  3107. (t0->ne[1] == t1->ne[1] ) &&
  3108. (t0->ne[2] == t1->ne[2] ) &&
  3109. (t0->ne[3] == t1->ne[3] );
  3110. }
  3111. // check if t1 can be represented as a repeatition of t0
  3112. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3113. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3114. return
  3115. (t1->ne[0]%t0->ne[0] == 0) &&
  3116. (t1->ne[1]%t0->ne[1] == 0) &&
  3117. (t1->ne[2]%t0->ne[2] == 0) &&
  3118. (t1->ne[3]%t0->ne[3] == 0);
  3119. }
  3120. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3121. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3122. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3123. }
  3124. static inline int ggml_up32(int n) {
  3125. return (n + 31) & ~31;
  3126. }
  3127. //static inline int ggml_up64(int n) {
  3128. // return (n + 63) & ~63;
  3129. //}
  3130. static inline int ggml_up(int n, int m) {
  3131. // assert m is a power of 2
  3132. GGML_ASSERT((m & (m - 1)) == 0);
  3133. return (n + m - 1) & ~(m - 1);
  3134. }
  3135. // assert that pointer is aligned to GGML_MEM_ALIGN
  3136. #define ggml_assert_aligned(ptr) \
  3137. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3138. ////////////////////////////////////////////////////////////////////////////////
  3139. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3140. // make this function thread safe
  3141. ggml_critical_section_start();
  3142. static bool is_first_call = true;
  3143. if (is_first_call) {
  3144. // initialize time system (required on Windows)
  3145. ggml_time_init();
  3146. // initialize GELU, SILU and EXP F32 tables
  3147. {
  3148. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3149. ggml_fp16_t ii;
  3150. for (int i = 0; i < (1 << 16); ++i) {
  3151. uint16_t ui = i;
  3152. memcpy(&ii, &ui, sizeof(ii));
  3153. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3154. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3155. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3156. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3157. }
  3158. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3159. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3160. }
  3161. // initialize g_state
  3162. {
  3163. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3164. g_state = (struct ggml_state) {
  3165. /*.contexts =*/ { { 0 } },
  3166. };
  3167. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3168. g_state.contexts[i].used = false;
  3169. }
  3170. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3171. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3172. }
  3173. #if defined(GGML_USE_CUBLAS)
  3174. ggml_init_cublas();
  3175. #elif defined(GGML_USE_CLBLAST)
  3176. ggml_cl_init();
  3177. #endif
  3178. is_first_call = false;
  3179. }
  3180. // find non-used context in g_state
  3181. struct ggml_context * ctx = NULL;
  3182. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3183. if (!g_state.contexts[i].used) {
  3184. g_state.contexts[i].used = true;
  3185. ctx = &g_state.contexts[i].context;
  3186. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3187. break;
  3188. }
  3189. }
  3190. if (ctx == NULL) {
  3191. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3192. ggml_critical_section_end();
  3193. return NULL;
  3194. }
  3195. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3196. *ctx = (struct ggml_context) {
  3197. /*.mem_size =*/ mem_size,
  3198. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3199. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3200. /*.no_alloc =*/ params.no_alloc,
  3201. /*.n_objects =*/ 0,
  3202. /*.objects_begin =*/ NULL,
  3203. /*.objects_end =*/ NULL,
  3204. /*.scratch =*/ { 0, 0, NULL, },
  3205. /*.scratch_save =*/ { 0, 0, NULL, },
  3206. };
  3207. GGML_ASSERT(ctx->mem_buffer != NULL);
  3208. ggml_assert_aligned(ctx->mem_buffer);
  3209. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3210. ggml_critical_section_end();
  3211. return ctx;
  3212. }
  3213. void ggml_free(struct ggml_context * ctx) {
  3214. // make this function thread safe
  3215. ggml_critical_section_start();
  3216. bool found = false;
  3217. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3218. if (&g_state.contexts[i].context == ctx) {
  3219. g_state.contexts[i].used = false;
  3220. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3221. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3222. if (ctx->mem_buffer_owned) {
  3223. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3224. }
  3225. found = true;
  3226. break;
  3227. }
  3228. }
  3229. if (!found) {
  3230. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3231. }
  3232. ggml_critical_section_end();
  3233. }
  3234. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3235. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3236. }
  3237. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3238. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3239. ctx->scratch = scratch;
  3240. return result;
  3241. }
  3242. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3243. ctx->no_alloc = no_alloc;
  3244. }
  3245. // IMPORTANT:
  3246. // when creating "opt" tensors, always save and load the scratch buffer
  3247. // this is an error prone process, but it is necessary to support inplace
  3248. // operators when using scratch buffers
  3249. // TODO: implement a better way
  3250. void ggml_scratch_save(struct ggml_context * ctx) {
  3251. ctx->scratch_save = ctx->scratch;
  3252. ctx->scratch.data = NULL;
  3253. }
  3254. void ggml_scratch_load(struct ggml_context * ctx) {
  3255. ctx->scratch = ctx->scratch_save;
  3256. }
  3257. ////////////////////////////////////////////////////////////////////////////////
  3258. struct ggml_tensor * ggml_new_tensor_impl(
  3259. struct ggml_context * ctx,
  3260. enum ggml_type type,
  3261. int n_dims,
  3262. const int64_t* ne,
  3263. void* data) {
  3264. // always insert objects at the end of the context's memory pool
  3265. struct ggml_object * obj_cur = ctx->objects_end;
  3266. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3267. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3268. const size_t cur_end = cur_offs + cur_size;
  3269. size_t size_needed = 0;
  3270. if (data == NULL && !ctx->no_alloc) {
  3271. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3272. for (int i = 1; i < n_dims; i++) {
  3273. size_needed *= ne[i];
  3274. }
  3275. // align to GGML_MEM_ALIGN
  3276. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3277. }
  3278. char * const mem_buffer = ctx->mem_buffer;
  3279. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3280. if (ctx->scratch.data == NULL || data != NULL) {
  3281. size_needed += GGML_TENSOR_SIZE;
  3282. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3283. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3284. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3285. assert(false);
  3286. return NULL;
  3287. }
  3288. *obj_new = (struct ggml_object) {
  3289. .offs = cur_end + GGML_OBJECT_SIZE,
  3290. .size = size_needed,
  3291. .next = NULL,
  3292. };
  3293. } else {
  3294. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3295. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3296. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3297. assert(false);
  3298. return NULL;
  3299. }
  3300. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3301. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3302. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3303. assert(false);
  3304. return NULL;
  3305. }
  3306. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3307. *obj_new = (struct ggml_object) {
  3308. .offs = cur_end + GGML_OBJECT_SIZE,
  3309. .size = GGML_TENSOR_SIZE,
  3310. .next = NULL,
  3311. };
  3312. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3313. ctx->scratch.offs += size_needed;
  3314. }
  3315. if (obj_cur != NULL) {
  3316. obj_cur->next = obj_new;
  3317. } else {
  3318. // this is the first object in this context
  3319. ctx->objects_begin = obj_new;
  3320. }
  3321. ctx->objects_end = obj_new;
  3322. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3323. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3324. ggml_assert_aligned(result);
  3325. *result = (struct ggml_tensor) {
  3326. /*.type =*/ type,
  3327. /*.backend =*/ GGML_BACKEND_CPU,
  3328. /*.n_dims =*/ n_dims,
  3329. /*.ne =*/ { 1, 1, 1, 1 },
  3330. /*.nb =*/ { 0, 0, 0, 0 },
  3331. /*.op =*/ GGML_OP_NONE,
  3332. /*.is_param =*/ false,
  3333. /*.grad =*/ NULL,
  3334. /*.src0 =*/ NULL,
  3335. /*.src1 =*/ NULL,
  3336. /*.opt =*/ { NULL },
  3337. /*.n_tasks =*/ 0,
  3338. /*.perf_runs =*/ 0,
  3339. /*.perf_cycles =*/ 0,
  3340. /*.perf_time_us =*/ 0,
  3341. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3342. /*.name =*/ { 0 },
  3343. /*.pad =*/ { 0 },
  3344. };
  3345. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3346. //ggml_assert_aligned(result->data);
  3347. for (int i = 0; i < n_dims; i++) {
  3348. result->ne[i] = ne[i];
  3349. }
  3350. result->nb[0] = GGML_TYPE_SIZE[type];
  3351. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3352. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3353. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3354. }
  3355. ctx->n_objects++;
  3356. return result;
  3357. }
  3358. struct ggml_tensor * ggml_new_tensor(
  3359. struct ggml_context * ctx,
  3360. enum ggml_type type,
  3361. int n_dims,
  3362. const int64_t * ne) {
  3363. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3364. }
  3365. struct ggml_tensor * ggml_new_tensor_1d(
  3366. struct ggml_context * ctx,
  3367. enum ggml_type type,
  3368. int64_t ne0) {
  3369. return ggml_new_tensor(ctx, type, 1, &ne0);
  3370. }
  3371. struct ggml_tensor * ggml_new_tensor_2d(
  3372. struct ggml_context * ctx,
  3373. enum ggml_type type,
  3374. int64_t ne0,
  3375. int64_t ne1) {
  3376. const int64_t ne[2] = { ne0, ne1 };
  3377. return ggml_new_tensor(ctx, type, 2, ne);
  3378. }
  3379. struct ggml_tensor * ggml_new_tensor_3d(
  3380. struct ggml_context * ctx,
  3381. enum ggml_type type,
  3382. int64_t ne0,
  3383. int64_t ne1,
  3384. int64_t ne2) {
  3385. const int64_t ne[3] = { ne0, ne1, ne2 };
  3386. return ggml_new_tensor(ctx, type, 3, ne);
  3387. }
  3388. struct ggml_tensor * ggml_new_tensor_4d(
  3389. struct ggml_context * ctx,
  3390. enum ggml_type type,
  3391. int64_t ne0,
  3392. int64_t ne1,
  3393. int64_t ne2,
  3394. int64_t ne3) {
  3395. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3396. return ggml_new_tensor(ctx, type, 4, ne);
  3397. }
  3398. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3399. ggml_scratch_save(ctx);
  3400. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3401. ggml_scratch_load(ctx);
  3402. ggml_set_i32(result, value);
  3403. return result;
  3404. }
  3405. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3406. ggml_scratch_save(ctx);
  3407. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3408. ggml_scratch_load(ctx);
  3409. ggml_set_f32(result, value);
  3410. return result;
  3411. }
  3412. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3413. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3414. }
  3415. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3416. memset(tensor->data, 0, ggml_nbytes(tensor));
  3417. return tensor;
  3418. }
  3419. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3420. const int n = ggml_nrows(tensor);
  3421. const int nc = tensor->ne[0];
  3422. const size_t n1 = tensor->nb[1];
  3423. char * const data = tensor->data;
  3424. switch (tensor->type) {
  3425. case GGML_TYPE_I8:
  3426. {
  3427. assert(tensor->nb[0] == sizeof(int8_t));
  3428. for (int i = 0; i < n; i++) {
  3429. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3430. }
  3431. } break;
  3432. case GGML_TYPE_I16:
  3433. {
  3434. assert(tensor->nb[0] == sizeof(int16_t));
  3435. for (int i = 0; i < n; i++) {
  3436. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3437. }
  3438. } break;
  3439. case GGML_TYPE_I32:
  3440. {
  3441. assert(tensor->nb[0] == sizeof(int32_t));
  3442. for (int i = 0; i < n; i++) {
  3443. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3444. }
  3445. } break;
  3446. case GGML_TYPE_F16:
  3447. {
  3448. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3449. for (int i = 0; i < n; i++) {
  3450. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3451. }
  3452. } break;
  3453. case GGML_TYPE_F32:
  3454. {
  3455. assert(tensor->nb[0] == sizeof(float));
  3456. for (int i = 0; i < n; i++) {
  3457. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3458. }
  3459. } break;
  3460. default:
  3461. {
  3462. GGML_ASSERT(false);
  3463. } break;
  3464. }
  3465. return tensor;
  3466. }
  3467. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3468. const int n = ggml_nrows(tensor);
  3469. const int nc = tensor->ne[0];
  3470. const size_t n1 = tensor->nb[1];
  3471. char * const data = tensor->data;
  3472. switch (tensor->type) {
  3473. case GGML_TYPE_I8:
  3474. {
  3475. assert(tensor->nb[0] == sizeof(int8_t));
  3476. for (int i = 0; i < n; i++) {
  3477. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3478. }
  3479. } break;
  3480. case GGML_TYPE_I16:
  3481. {
  3482. assert(tensor->nb[0] == sizeof(int16_t));
  3483. for (int i = 0; i < n; i++) {
  3484. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3485. }
  3486. } break;
  3487. case GGML_TYPE_I32:
  3488. {
  3489. assert(tensor->nb[0] == sizeof(int32_t));
  3490. for (int i = 0; i < n; i++) {
  3491. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3492. }
  3493. } break;
  3494. case GGML_TYPE_F16:
  3495. {
  3496. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3497. for (int i = 0; i < n; i++) {
  3498. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3499. }
  3500. } break;
  3501. case GGML_TYPE_F32:
  3502. {
  3503. assert(tensor->nb[0] == sizeof(float));
  3504. for (int i = 0; i < n; i++) {
  3505. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3506. }
  3507. } break;
  3508. default:
  3509. {
  3510. GGML_ASSERT(false);
  3511. } break;
  3512. }
  3513. return tensor;
  3514. }
  3515. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3516. switch (tensor->type) {
  3517. case GGML_TYPE_I8:
  3518. {
  3519. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3520. return ((int8_t *)(tensor->data))[i];
  3521. } break;
  3522. case GGML_TYPE_I16:
  3523. {
  3524. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3525. return ((int16_t *)(tensor->data))[i];
  3526. } break;
  3527. case GGML_TYPE_I32:
  3528. {
  3529. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3530. return ((int32_t *)(tensor->data))[i];
  3531. } break;
  3532. case GGML_TYPE_F16:
  3533. {
  3534. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3535. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3536. } break;
  3537. case GGML_TYPE_F32:
  3538. {
  3539. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3540. return ((float *)(tensor->data))[i];
  3541. } break;
  3542. default:
  3543. {
  3544. GGML_ASSERT(false);
  3545. } break;
  3546. }
  3547. return 0.0f;
  3548. }
  3549. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3550. switch (tensor->type) {
  3551. case GGML_TYPE_I8:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3554. ((int8_t *)(tensor->data))[i] = value;
  3555. } break;
  3556. case GGML_TYPE_I16:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3559. ((int16_t *)(tensor->data))[i] = value;
  3560. } break;
  3561. case GGML_TYPE_I32:
  3562. {
  3563. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3564. ((int32_t *)(tensor->data))[i] = value;
  3565. } break;
  3566. case GGML_TYPE_F16:
  3567. {
  3568. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3569. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3570. } break;
  3571. case GGML_TYPE_F32:
  3572. {
  3573. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3574. ((float *)(tensor->data))[i] = value;
  3575. } break;
  3576. default:
  3577. {
  3578. GGML_ASSERT(false);
  3579. } break;
  3580. }
  3581. }
  3582. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3583. switch (tensor->type) {
  3584. case GGML_TYPE_I8:
  3585. {
  3586. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3587. return ((int8_t *)(tensor->data))[i];
  3588. } break;
  3589. case GGML_TYPE_I16:
  3590. {
  3591. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3592. return ((int16_t *)(tensor->data))[i];
  3593. } break;
  3594. case GGML_TYPE_I32:
  3595. {
  3596. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3597. return ((int32_t *)(tensor->data))[i];
  3598. } break;
  3599. case GGML_TYPE_F16:
  3600. {
  3601. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3602. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3603. } break;
  3604. case GGML_TYPE_F32:
  3605. {
  3606. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3607. return ((float *)(tensor->data))[i];
  3608. } break;
  3609. default:
  3610. {
  3611. GGML_ASSERT(false);
  3612. } break;
  3613. }
  3614. return 0.0f;
  3615. }
  3616. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3617. switch (tensor->type) {
  3618. case GGML_TYPE_I8:
  3619. {
  3620. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3621. ((int8_t *)(tensor->data))[i] = value;
  3622. } break;
  3623. case GGML_TYPE_I16:
  3624. {
  3625. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3626. ((int16_t *)(tensor->data))[i] = value;
  3627. } break;
  3628. case GGML_TYPE_I32:
  3629. {
  3630. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3631. ((int32_t *)(tensor->data))[i] = value;
  3632. } break;
  3633. case GGML_TYPE_F16:
  3634. {
  3635. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3636. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3637. } break;
  3638. case GGML_TYPE_F32:
  3639. {
  3640. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3641. ((float *)(tensor->data))[i] = value;
  3642. } break;
  3643. default:
  3644. {
  3645. GGML_ASSERT(false);
  3646. } break;
  3647. }
  3648. }
  3649. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3650. return tensor->data;
  3651. }
  3652. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3653. assert(tensor->type == GGML_TYPE_F32);
  3654. return (float *)(tensor->data);
  3655. }
  3656. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3657. return tensor->name;
  3658. }
  3659. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3660. strncpy(tensor->name, name, sizeof(tensor->name));
  3661. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3662. }
  3663. struct ggml_tensor * ggml_view_tensor(
  3664. struct ggml_context * ctx,
  3665. const struct ggml_tensor * src) {
  3666. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3667. result->nb[0] = src->nb[0];
  3668. result->nb[1] = src->nb[1];
  3669. result->nb[2] = src->nb[2];
  3670. result->nb[3] = src->nb[3];
  3671. return result;
  3672. }
  3673. ////////////////////////////////////////////////////////////////////////////////
  3674. // ggml_dup
  3675. struct ggml_tensor * ggml_dup_impl(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. bool inplace) {
  3679. bool is_node = false;
  3680. if (!inplace && (a->grad)) {
  3681. is_node = true;
  3682. }
  3683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3684. result->op = GGML_OP_DUP;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src0 = a;
  3687. result->src1 = NULL;
  3688. return result;
  3689. }
  3690. struct ggml_tensor * ggml_dup(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a) {
  3693. return ggml_dup_impl(ctx, a, false);
  3694. }
  3695. struct ggml_tensor * ggml_dup_inplace(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a) {
  3698. return ggml_dup_impl(ctx, a, true);
  3699. }
  3700. // ggml_add
  3701. struct ggml_tensor * ggml_add_impl(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. struct ggml_tensor * b,
  3705. bool inplace) {
  3706. GGML_ASSERT(ggml_are_same_shape(a, b));
  3707. bool is_node = false;
  3708. if (!inplace && (a->grad || b->grad)) {
  3709. is_node = true;
  3710. }
  3711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3712. result->op = GGML_OP_ADD;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src0 = a;
  3715. result->src1 = b;
  3716. return result;
  3717. }
  3718. struct ggml_tensor * ggml_add(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. struct ggml_tensor * b) {
  3722. return ggml_add_impl(ctx, a, b, false);
  3723. }
  3724. struct ggml_tensor * ggml_add_inplace(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a,
  3727. struct ggml_tensor * b) {
  3728. return ggml_add_impl(ctx, a, b, true);
  3729. }
  3730. // ggml_add1
  3731. struct ggml_tensor * ggml_add1_impl(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. struct ggml_tensor * b,
  3735. bool inplace) {
  3736. GGML_ASSERT(ggml_is_scalar(b));
  3737. GGML_ASSERT(ggml_is_padded_1d(a));
  3738. bool is_node = false;
  3739. if (!inplace && (a->grad || b->grad)) {
  3740. is_node = true;
  3741. }
  3742. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3743. result->op = GGML_OP_ADD1;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src0 = a;
  3746. result->src1 = b;
  3747. return result;
  3748. }
  3749. struct ggml_tensor * ggml_add1(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a,
  3752. struct ggml_tensor * b) {
  3753. return ggml_add1_impl(ctx, a, b, false);
  3754. }
  3755. struct ggml_tensor * ggml_add1_inplace(
  3756. struct ggml_context * ctx,
  3757. struct ggml_tensor * a,
  3758. struct ggml_tensor * b) {
  3759. return ggml_add1_impl(ctx, a, b, true);
  3760. }
  3761. // ggml_acc
  3762. struct ggml_tensor * ggml_acc_impl(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b,
  3766. size_t nb1,
  3767. size_t nb2,
  3768. size_t nb3,
  3769. size_t offset,
  3770. bool inplace) {
  3771. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3772. GGML_ASSERT(ggml_is_contiguous(a));
  3773. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3774. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3775. bool is_node = false;
  3776. if (!inplace && (a->grad || b->grad)) {
  3777. is_node = true;
  3778. }
  3779. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3780. ggml_scratch_save(ctx);
  3781. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3782. ((int32_t *) c->data)[0] = nb1;
  3783. ((int32_t *) c->data)[1] = nb2;
  3784. ((int32_t *) c->data)[2] = nb3;
  3785. ((int32_t *) c->data)[3] = offset;
  3786. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3787. ggml_scratch_load(ctx);
  3788. result->op = GGML_OP_ACC;
  3789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3790. result->src0 = a;
  3791. result->src1 = b;
  3792. result->opt[0] = c;
  3793. return result;
  3794. }
  3795. struct ggml_tensor * ggml_acc(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. struct ggml_tensor * b,
  3799. size_t nb1,
  3800. size_t nb2,
  3801. size_t nb3,
  3802. size_t offset) {
  3803. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3804. }
  3805. struct ggml_tensor * ggml_acc_inplace(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b,
  3809. size_t nb1,
  3810. size_t nb2,
  3811. size_t nb3,
  3812. size_t offset) {
  3813. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3814. }
  3815. // ggml_sub
  3816. struct ggml_tensor * ggml_sub_impl(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b,
  3820. bool inplace) {
  3821. GGML_ASSERT(ggml_are_same_shape(a, b));
  3822. bool is_node = false;
  3823. if (!inplace && (a->grad || b->grad)) {
  3824. is_node = true;
  3825. }
  3826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3827. result->op = GGML_OP_SUB;
  3828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3829. result->src0 = a;
  3830. result->src1 = b;
  3831. return result;
  3832. }
  3833. struct ggml_tensor * ggml_sub(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a,
  3836. struct ggml_tensor * b) {
  3837. return ggml_sub_impl(ctx, a, b, false);
  3838. }
  3839. struct ggml_tensor * ggml_sub_inplace(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a,
  3842. struct ggml_tensor * b) {
  3843. return ggml_sub_impl(ctx, a, b, true);
  3844. }
  3845. // ggml_mul
  3846. struct ggml_tensor * ggml_mul_impl(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. struct ggml_tensor * b,
  3850. bool inplace) {
  3851. // TODO: support less-strict constraint
  3852. // GGML_ASSERT(ggml_can_repeat(b, a));
  3853. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3854. bool is_node = false;
  3855. if (!inplace && (a->grad || b->grad)) {
  3856. // TODO: support backward pass for broadcasting
  3857. GGML_ASSERT(ggml_are_same_shape(a, b));
  3858. is_node = true;
  3859. }
  3860. if (inplace) {
  3861. GGML_ASSERT(is_node == false);
  3862. }
  3863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3864. result->op = GGML_OP_MUL;
  3865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3866. result->src0 = a;
  3867. result->src1 = b;
  3868. return result;
  3869. }
  3870. struct ggml_tensor * ggml_mul(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. struct ggml_tensor * b) {
  3874. return ggml_mul_impl(ctx, a, b, false);
  3875. }
  3876. struct ggml_tensor * ggml_mul_inplace(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b) {
  3880. return ggml_mul_impl(ctx, a, b, true);
  3881. }
  3882. // ggml_div
  3883. struct ggml_tensor * ggml_div_impl(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. struct ggml_tensor * b,
  3887. bool inplace) {
  3888. GGML_ASSERT(ggml_are_same_shape(a, b));
  3889. bool is_node = false;
  3890. if (!inplace && (a->grad || b->grad)) {
  3891. is_node = true;
  3892. }
  3893. if (inplace) {
  3894. GGML_ASSERT(is_node == false);
  3895. }
  3896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3897. result->op = GGML_OP_DIV;
  3898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3899. result->src0 = a;
  3900. result->src1 = b;
  3901. return result;
  3902. }
  3903. struct ggml_tensor * ggml_div(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b) {
  3907. return ggml_div_impl(ctx, a, b, false);
  3908. }
  3909. struct ggml_tensor * ggml_div_inplace(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. struct ggml_tensor * b) {
  3913. return ggml_div_impl(ctx, a, b, true);
  3914. }
  3915. // ggml_sqr
  3916. struct ggml_tensor * ggml_sqr_impl(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a,
  3919. bool inplace) {
  3920. bool is_node = false;
  3921. if (!inplace && (a->grad)) {
  3922. is_node = true;
  3923. }
  3924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3925. result->op = GGML_OP_SQR;
  3926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3927. result->src0 = a;
  3928. result->src1 = NULL;
  3929. return result;
  3930. }
  3931. struct ggml_tensor * ggml_sqr(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a) {
  3934. return ggml_sqr_impl(ctx, a, false);
  3935. }
  3936. struct ggml_tensor * ggml_sqr_inplace(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a) {
  3939. return ggml_sqr_impl(ctx, a, true);
  3940. }
  3941. // ggml_sqrt
  3942. struct ggml_tensor * ggml_sqrt_impl(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. bool inplace) {
  3946. bool is_node = false;
  3947. if (!inplace && (a->grad)) {
  3948. is_node = true;
  3949. }
  3950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3951. result->op = GGML_OP_SQRT;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src0 = a;
  3954. result->src1 = NULL;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_sqrt(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. return ggml_sqrt_impl(ctx, a, false);
  3961. }
  3962. struct ggml_tensor * ggml_sqrt_inplace(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a) {
  3965. return ggml_sqrt_impl(ctx, a, true);
  3966. }
  3967. // ggml_log
  3968. struct ggml_tensor * ggml_log_impl(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. bool inplace) {
  3972. bool is_node = false;
  3973. if (!inplace && (a->grad)) {
  3974. is_node = true;
  3975. }
  3976. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3977. result->op = GGML_OP_LOG;
  3978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3979. result->src0 = a;
  3980. result->src1 = NULL;
  3981. return result;
  3982. }
  3983. struct ggml_tensor * ggml_log(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a) {
  3986. return ggml_log_impl(ctx, a, false);
  3987. }
  3988. struct ggml_tensor * ggml_log_inplace(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a) {
  3991. return ggml_log_impl(ctx, a, true);
  3992. }
  3993. // ggml_sum
  3994. struct ggml_tensor * ggml_sum(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a) {
  3997. bool is_node = false;
  3998. if (a->grad) {
  3999. is_node = true;
  4000. }
  4001. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4002. result->op = GGML_OP_SUM;
  4003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4004. result->src0 = a;
  4005. result->src1 = NULL;
  4006. return result;
  4007. }
  4008. // ggml_sum_rows
  4009. struct ggml_tensor * ggml_sum_rows(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. bool is_node = false;
  4013. if (a->grad) {
  4014. is_node = true;
  4015. }
  4016. int64_t ne[4] = {1,1,1,1};
  4017. for (int i=1; i<a->n_dims; ++i) {
  4018. ne[i] = a->ne[i];
  4019. }
  4020. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4021. result->op = GGML_OP_SUM_ROWS;
  4022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4023. result->src0 = a;
  4024. result->src1 = NULL;
  4025. return result;
  4026. }
  4027. // ggml_mean
  4028. struct ggml_tensor * ggml_mean(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. bool is_node = false;
  4032. if (a->grad) {
  4033. GGML_ASSERT(false); // TODO: implement
  4034. is_node = true;
  4035. }
  4036. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4038. result->op = GGML_OP_MEAN;
  4039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4040. result->src0 = a;
  4041. result->src1 = NULL;
  4042. return result;
  4043. }
  4044. // ggml_repeat
  4045. struct ggml_tensor * ggml_repeat(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. struct ggml_tensor * b) {
  4049. GGML_ASSERT(ggml_can_repeat(a, b));
  4050. bool is_node = false;
  4051. if (a->grad) {
  4052. is_node = true;
  4053. }
  4054. if (ggml_are_same_shape(a, b) && !is_node) {
  4055. return a;
  4056. }
  4057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4058. result->op = GGML_OP_REPEAT;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src0 = a;
  4061. result->src1 = b;
  4062. return result;
  4063. }
  4064. // ggml_abs
  4065. struct ggml_tensor * ggml_abs_impl(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a,
  4068. bool inplace) {
  4069. bool is_node = false;
  4070. if (!inplace && (a->grad)) {
  4071. is_node = true;
  4072. }
  4073. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4074. result->op = GGML_OP_ABS;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src0 = a;
  4077. result->src1 = NULL;
  4078. return result;
  4079. }
  4080. struct ggml_tensor * ggml_abs(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a) {
  4083. return ggml_abs_impl(ctx, a, false);
  4084. }
  4085. struct ggml_tensor * ggml_abs_inplace(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a) {
  4088. return ggml_abs_impl(ctx, a, true);
  4089. }
  4090. // ggml_sgn
  4091. struct ggml_tensor * ggml_sgn_impl(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. bool inplace) {
  4095. bool is_node = false;
  4096. if (!inplace && (a->grad)) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4100. result->op = GGML_OP_SGN;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src0 = a;
  4103. result->src1 = NULL;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_sgn(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a) {
  4109. return ggml_sgn_impl(ctx, a, false);
  4110. }
  4111. struct ggml_tensor * ggml_sgn_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_sgn_impl(ctx, a, true);
  4115. }
  4116. // ggml_neg
  4117. struct ggml_tensor * ggml_neg_impl(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. bool inplace) {
  4121. bool is_node = false;
  4122. if (!inplace && (a->grad)) {
  4123. is_node = true;
  4124. }
  4125. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4126. result->op = GGML_OP_NEG;
  4127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4128. result->src0 = a;
  4129. result->src1 = NULL;
  4130. return result;
  4131. }
  4132. struct ggml_tensor * ggml_neg(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a) {
  4135. return ggml_neg_impl(ctx, a, false);
  4136. }
  4137. struct ggml_tensor * ggml_neg_inplace(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a) {
  4140. return ggml_neg_impl(ctx, a, true);
  4141. }
  4142. // ggml_step
  4143. struct ggml_tensor * ggml_step_impl(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a,
  4146. bool inplace) {
  4147. bool is_node = false;
  4148. if (!inplace && (a->grad)) {
  4149. is_node = true;
  4150. }
  4151. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4152. result->op = GGML_OP_STEP;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src0 = a;
  4155. result->src1 = NULL;
  4156. return result;
  4157. }
  4158. struct ggml_tensor * ggml_step(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_step_impl(ctx, a, false);
  4162. }
  4163. struct ggml_tensor * ggml_step_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_step_impl(ctx, a, true);
  4167. }
  4168. // ggml_relu
  4169. struct ggml_tensor * ggml_relu_impl(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. bool inplace) {
  4173. bool is_node = false;
  4174. if (!inplace && (a->grad)) {
  4175. is_node = true;
  4176. }
  4177. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4178. result->op = GGML_OP_RELU;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src0 = a;
  4181. result->src1 = NULL;
  4182. return result;
  4183. }
  4184. struct ggml_tensor * ggml_relu(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a) {
  4187. return ggml_relu_impl(ctx, a, false);
  4188. }
  4189. struct ggml_tensor * ggml_relu_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a) {
  4192. return ggml_relu_impl(ctx, a, true);
  4193. }
  4194. // ggml_gelu
  4195. struct ggml_tensor * ggml_gelu_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. bool inplace) {
  4199. bool is_node = false;
  4200. if (!inplace && (a->grad)) {
  4201. is_node = true;
  4202. }
  4203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4204. result->op = GGML_OP_GELU;
  4205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. result->src0 = a;
  4207. result->src1 = NULL;
  4208. return result;
  4209. }
  4210. struct ggml_tensor * ggml_gelu(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a) {
  4213. return ggml_gelu_impl(ctx, a, false);
  4214. }
  4215. struct ggml_tensor * ggml_gelu_inplace(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a) {
  4218. return ggml_gelu_impl(ctx, a, true);
  4219. }
  4220. // ggml_silu
  4221. struct ggml_tensor * ggml_silu_impl(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a,
  4224. bool inplace) {
  4225. bool is_node = false;
  4226. if (!inplace && (a->grad)) {
  4227. is_node = true;
  4228. }
  4229. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4230. result->op = GGML_OP_SILU;
  4231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4232. result->src0 = a;
  4233. result->src1 = NULL;
  4234. return result;
  4235. }
  4236. struct ggml_tensor * ggml_silu(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. return ggml_silu_impl(ctx, a, false);
  4240. }
  4241. struct ggml_tensor * ggml_silu_inplace(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a) {
  4244. return ggml_silu_impl(ctx, a, true);
  4245. }
  4246. // ggml_silu_back
  4247. struct ggml_tensor * ggml_silu_back(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b) {
  4251. bool is_node = false;
  4252. if (a->grad || b->grad) {
  4253. // TODO: implement backward
  4254. is_node = true;
  4255. }
  4256. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4257. result->op = GGML_OP_SILU_BACK;
  4258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4259. result->src0 = a;
  4260. result->src1 = b;
  4261. return result;
  4262. }
  4263. // ggml_norm
  4264. struct ggml_tensor * ggml_norm_impl(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. bool inplace) {
  4268. bool is_node = false;
  4269. if (!inplace && (a->grad)) {
  4270. GGML_ASSERT(false); // TODO: implement backward
  4271. is_node = true;
  4272. }
  4273. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4274. result->op = GGML_OP_NORM;
  4275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4276. result->src0 = a;
  4277. result->src1 = NULL; // TODO: maybe store epsilon here?
  4278. return result;
  4279. }
  4280. struct ggml_tensor * ggml_norm(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a) {
  4283. return ggml_norm_impl(ctx, a, false);
  4284. }
  4285. struct ggml_tensor * ggml_norm_inplace(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_norm_impl(ctx, a, true);
  4289. }
  4290. struct ggml_tensor * ggml_rms_norm_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. bool inplace) {
  4294. bool is_node = false;
  4295. if (!inplace && (a->grad)) {
  4296. is_node = true;
  4297. }
  4298. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4299. result->op = GGML_OP_RMS_NORM;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src0 = a;
  4302. result->src1 = NULL; // TODO: maybe store epsilon here?
  4303. return result;
  4304. }
  4305. struct ggml_tensor * ggml_rms_norm(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. return ggml_rms_norm_impl(ctx, a, false);
  4309. }
  4310. struct ggml_tensor * ggml_rms_norm_inplace(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a) {
  4313. return ggml_rms_norm_impl(ctx, a, true);
  4314. }
  4315. struct ggml_tensor * ggml_rms_norm_back(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. struct ggml_tensor * b) {
  4319. bool is_node = false;
  4320. if (a->grad) {
  4321. // TODO: implement backward
  4322. is_node = true;
  4323. }
  4324. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4325. result->op = GGML_OP_RMS_NORM_BACK;
  4326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4327. result->src0 = a;
  4328. result->src1 = b;
  4329. return result;
  4330. }
  4331. // ggml_mul_mat
  4332. struct ggml_tensor * ggml_mul_mat(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a,
  4335. struct ggml_tensor * b) {
  4336. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4337. GGML_ASSERT(!ggml_is_transposed(a));
  4338. bool is_node = false;
  4339. if (a->grad || b->grad) {
  4340. is_node = true;
  4341. }
  4342. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4343. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4344. result->op = GGML_OP_MUL_MAT;
  4345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4346. result->src0 = a;
  4347. result->src1 = b;
  4348. return result;
  4349. }
  4350. // ggml_scale
  4351. struct ggml_tensor * ggml_scale_impl(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. struct ggml_tensor * b,
  4355. bool inplace) {
  4356. GGML_ASSERT(ggml_is_scalar(b));
  4357. GGML_ASSERT(ggml_is_padded_1d(a));
  4358. bool is_node = false;
  4359. if (!inplace && (a->grad || b->grad)) {
  4360. is_node = true;
  4361. }
  4362. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4363. result->op = GGML_OP_SCALE;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->src1 = b;
  4367. return result;
  4368. }
  4369. struct ggml_tensor * ggml_scale(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. struct ggml_tensor * b) {
  4373. return ggml_scale_impl(ctx, a, b, false);
  4374. }
  4375. struct ggml_tensor * ggml_scale_inplace(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. struct ggml_tensor * b) {
  4379. return ggml_scale_impl(ctx, a, b, true);
  4380. }
  4381. // ggml_set
  4382. struct ggml_tensor * ggml_set_impl(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b,
  4386. size_t nb1,
  4387. size_t nb2,
  4388. size_t nb3,
  4389. size_t offset,
  4390. bool inplace) {
  4391. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4392. bool is_node = false;
  4393. if (!inplace && (a->grad || b->grad)) {
  4394. is_node = true;
  4395. }
  4396. // make a view of the destination
  4397. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4398. ggml_scratch_save(ctx);
  4399. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4400. (( int32_t * ) c->data)[0] = nb1;
  4401. (( int32_t * ) c->data)[1] = nb2;
  4402. (( int32_t * ) c->data)[2] = nb3;
  4403. (( int32_t * ) c->data)[3] = offset;
  4404. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4405. ggml_scratch_load(ctx);
  4406. result->op = GGML_OP_SET;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = a;
  4409. result->src1 = b;
  4410. result->opt[0] = c;
  4411. return result;
  4412. }
  4413. struct ggml_tensor * ggml_set(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. struct ggml_tensor * b,
  4417. size_t nb1,
  4418. size_t nb2,
  4419. size_t nb3,
  4420. size_t offset) {
  4421. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4422. }
  4423. struct ggml_tensor * ggml_set_inplace(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b,
  4427. size_t nb1,
  4428. size_t nb2,
  4429. size_t nb3,
  4430. size_t offset) {
  4431. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4432. }
  4433. struct ggml_tensor * ggml_set_1d(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b,
  4437. size_t offset) {
  4438. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4439. }
  4440. struct ggml_tensor * ggml_set_1d_inplace(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a,
  4443. struct ggml_tensor * b,
  4444. size_t offset) {
  4445. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4446. }
  4447. struct ggml_tensor * ggml_set_2d(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. size_t nb1,
  4452. size_t offset) {
  4453. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4454. }
  4455. struct ggml_tensor * ggml_set_2d_inplace(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b,
  4459. size_t nb1,
  4460. size_t offset) {
  4461. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4462. }
  4463. // ggml_cpy
  4464. struct ggml_tensor * ggml_cpy_impl(
  4465. struct ggml_context * ctx,
  4466. struct ggml_tensor * a,
  4467. struct ggml_tensor * b,
  4468. bool inplace) {
  4469. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4470. bool is_node = false;
  4471. if (!inplace && (a->grad || b->grad)) {
  4472. is_node = true;
  4473. }
  4474. // make a view of the destination
  4475. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4476. result->op = GGML_OP_CPY;
  4477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4478. result->src0 = a;
  4479. result->src1 = b;
  4480. return result;
  4481. }
  4482. struct ggml_tensor * ggml_cpy(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. struct ggml_tensor * b) {
  4486. return ggml_cpy_impl(ctx, a, b, false);
  4487. }
  4488. struct ggml_tensor * ggml_cpy_inplace(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b) {
  4492. return ggml_cpy_impl(ctx, a, b, true);
  4493. }
  4494. // ggml_cont
  4495. struct ggml_tensor * ggml_cont_impl(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. bool inplace) {
  4499. bool is_node = false;
  4500. if (!inplace && a->grad) {
  4501. is_node = true;
  4502. }
  4503. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4504. result->op = GGML_OP_CONT;
  4505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4506. result->src0 = a;
  4507. result->src1 = NULL;
  4508. return result;
  4509. }
  4510. struct ggml_tensor * ggml_cont(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a) {
  4513. return ggml_cont_impl(ctx, a, false);
  4514. }
  4515. struct ggml_tensor * ggml_cont_inplace(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a) {
  4518. return ggml_cont_impl(ctx, a, true);
  4519. }
  4520. // ggml_reshape
  4521. struct ggml_tensor * ggml_reshape(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a,
  4524. struct ggml_tensor * b) {
  4525. GGML_ASSERT(ggml_is_contiguous(a));
  4526. GGML_ASSERT(ggml_is_contiguous(b));
  4527. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4528. bool is_node = false;
  4529. if (a->grad) {
  4530. is_node = true;
  4531. }
  4532. if (b->grad) {
  4533. // gradient propagation is not supported
  4534. //GGML_ASSERT(false);
  4535. }
  4536. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4537. result->op = GGML_OP_RESHAPE;
  4538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4539. result->src0 = a;
  4540. result->src1 = NULL;
  4541. return result;
  4542. }
  4543. struct ggml_tensor * ggml_reshape_1d(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. int64_t ne0) {
  4547. GGML_ASSERT(ggml_is_contiguous(a));
  4548. GGML_ASSERT(ggml_nelements(a) == ne0);
  4549. bool is_node = false;
  4550. if (a->grad) {
  4551. is_node = true;
  4552. }
  4553. const int64_t ne[1] = { ne0 };
  4554. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4555. result->op = GGML_OP_RESHAPE;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src0 = a;
  4558. result->src1 = NULL;
  4559. return result;
  4560. }
  4561. struct ggml_tensor * ggml_reshape_2d(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. int64_t ne0,
  4565. int64_t ne1) {
  4566. GGML_ASSERT(ggml_is_contiguous(a));
  4567. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4568. bool is_node = false;
  4569. if (a->grad) {
  4570. is_node = true;
  4571. }
  4572. const int64_t ne[2] = { ne0, ne1 };
  4573. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4574. result->op = GGML_OP_RESHAPE;
  4575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4576. result->src0 = a;
  4577. result->src1 = NULL;
  4578. return result;
  4579. }
  4580. struct ggml_tensor * ggml_reshape_3d(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a,
  4583. int64_t ne0,
  4584. int64_t ne1,
  4585. int64_t ne2) {
  4586. GGML_ASSERT(ggml_is_contiguous(a));
  4587. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4588. bool is_node = false;
  4589. if (a->grad) {
  4590. is_node = true;
  4591. }
  4592. const int64_t ne[3] = { ne0, ne1, ne2 };
  4593. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4594. result->op = GGML_OP_RESHAPE;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src0 = a;
  4597. result->src1 = NULL;
  4598. return result;
  4599. }
  4600. struct ggml_tensor * ggml_reshape_4d(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. int64_t ne0,
  4604. int64_t ne1,
  4605. int64_t ne2,
  4606. int64_t ne3) {
  4607. GGML_ASSERT(ggml_is_contiguous(a));
  4608. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. is_node = true;
  4612. }
  4613. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4614. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4615. result->op = GGML_OP_RESHAPE;
  4616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4617. result->src0 = a;
  4618. result->src1 = NULL;
  4619. return result;
  4620. }
  4621. // ggml_view_1d
  4622. struct ggml_tensor * ggml_view_1d(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. int64_t ne0,
  4626. size_t offset) {
  4627. bool is_node = false;
  4628. if (a->grad) {
  4629. is_node = true;
  4630. }
  4631. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4632. result->op = GGML_OP_VIEW;
  4633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4634. result->src0 = a;
  4635. result->src1 = NULL;
  4636. if (is_node) {
  4637. memcpy(result->padding, &offset, sizeof(offset));
  4638. }
  4639. return result;
  4640. }
  4641. // ggml_view_2d
  4642. struct ggml_tensor * ggml_view_2d(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. int64_t ne0,
  4646. int64_t ne1,
  4647. size_t nb1,
  4648. size_t offset) {
  4649. bool is_node = false;
  4650. if (a->grad) {
  4651. is_node = true;
  4652. }
  4653. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4654. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4655. result->nb[1] = nb1;
  4656. result->nb[2] = result->nb[1]*ne1;
  4657. result->nb[3] = result->nb[2];
  4658. result->op = GGML_OP_VIEW;
  4659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4660. result->src0 = a;
  4661. result->src1 = NULL;
  4662. if (is_node) {
  4663. memcpy(result->padding, &offset, sizeof(offset));
  4664. }
  4665. return result;
  4666. }
  4667. // ggml_view_3d
  4668. struct ggml_tensor * ggml_view_3d(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. int64_t ne0,
  4672. int64_t ne1,
  4673. int64_t ne2,
  4674. size_t nb1,
  4675. size_t nb2,
  4676. size_t offset) {
  4677. bool is_node = false;
  4678. if (a->grad) {
  4679. is_node = true;
  4680. }
  4681. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4682. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4683. result->nb[1] = nb1;
  4684. result->nb[2] = nb2;
  4685. result->nb[3] = result->nb[2]*ne2;
  4686. result->op = GGML_OP_VIEW;
  4687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4688. result->src0 = a;
  4689. result->src1 = NULL;
  4690. if (is_node) {
  4691. memcpy(result->padding, &offset, sizeof(offset));
  4692. }
  4693. return result;
  4694. }
  4695. // ggml_view_4d
  4696. struct ggml_tensor * ggml_view_4d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0,
  4700. int64_t ne1,
  4701. int64_t ne2,
  4702. int64_t ne3,
  4703. size_t nb1,
  4704. size_t nb2,
  4705. size_t nb3,
  4706. size_t offset) {
  4707. bool is_node = false;
  4708. if (a->grad) {
  4709. is_node = true;
  4710. }
  4711. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4712. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4713. result->nb[1] = nb1;
  4714. result->nb[2] = nb2;
  4715. result->nb[3] = nb3;
  4716. result->op = GGML_OP_VIEW;
  4717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4718. result->src0 = a;
  4719. result->src1 = NULL;
  4720. if (is_node) {
  4721. memcpy(result->padding, &offset, sizeof(offset));
  4722. }
  4723. return result;
  4724. }
  4725. // ggml_permute
  4726. struct ggml_tensor * ggml_permute(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. int axis0,
  4730. int axis1,
  4731. int axis2,
  4732. int axis3) {
  4733. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4734. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4735. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4736. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4737. GGML_ASSERT(axis0 != axis1);
  4738. GGML_ASSERT(axis0 != axis2);
  4739. GGML_ASSERT(axis0 != axis3);
  4740. GGML_ASSERT(axis1 != axis2);
  4741. GGML_ASSERT(axis1 != axis3);
  4742. GGML_ASSERT(axis2 != axis3);
  4743. bool is_node = false;
  4744. if (a->grad) {
  4745. is_node = true;
  4746. }
  4747. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4748. int ne[GGML_MAX_DIMS];
  4749. int nb[GGML_MAX_DIMS];
  4750. ne[axis0] = a->ne[0];
  4751. ne[axis1] = a->ne[1];
  4752. ne[axis2] = a->ne[2];
  4753. ne[axis3] = a->ne[3];
  4754. nb[axis0] = a->nb[0];
  4755. nb[axis1] = a->nb[1];
  4756. nb[axis2] = a->nb[2];
  4757. nb[axis3] = a->nb[3];
  4758. result->ne[0] = ne[0];
  4759. result->ne[1] = ne[1];
  4760. result->ne[2] = ne[2];
  4761. result->ne[3] = ne[3];
  4762. result->nb[0] = nb[0];
  4763. result->nb[1] = nb[1];
  4764. result->nb[2] = nb[2];
  4765. result->nb[3] = nb[3];
  4766. result->op = GGML_OP_PERMUTE;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src0 = a;
  4769. result->src1 = NULL;
  4770. if (is_node) {
  4771. result->padding[0] = axis0;
  4772. result->padding[1] = axis1;
  4773. result->padding[2] = axis2;
  4774. result->padding[3] = axis3;
  4775. }
  4776. return result;
  4777. }
  4778. // ggml_transpose
  4779. struct ggml_tensor * ggml_transpose(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a) {
  4782. bool is_node = false;
  4783. if (a->grad) {
  4784. is_node = true;
  4785. }
  4786. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4787. result->ne[0] = a->ne[1];
  4788. result->ne[1] = a->ne[0];
  4789. result->nb[0] = a->nb[1];
  4790. result->nb[1] = a->nb[0];
  4791. result->op = GGML_OP_TRANSPOSE;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src0 = a;
  4794. result->src1 = NULL;
  4795. return result;
  4796. }
  4797. // ggml_get_rows
  4798. struct ggml_tensor * ggml_get_rows(
  4799. struct ggml_context * ctx,
  4800. struct ggml_tensor * a,
  4801. struct ggml_tensor * b) {
  4802. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4803. bool is_node = false;
  4804. if (a->grad || b->grad) {
  4805. is_node = true;
  4806. }
  4807. // TODO: implement non F32 return
  4808. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4809. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4810. result->op = GGML_OP_GET_ROWS;
  4811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4812. result->src0 = a;
  4813. result->src1 = b;
  4814. return result;
  4815. }
  4816. // ggml_get_rows_back
  4817. struct ggml_tensor * ggml_get_rows_back(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * b,
  4821. struct ggml_tensor * c) {
  4822. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4823. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4824. bool is_node = false;
  4825. if (a->grad || b->grad) {
  4826. is_node = true;
  4827. }
  4828. // TODO: implement non F32 return
  4829. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4830. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4831. result->op = GGML_OP_GET_ROWS_BACK;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src0 = a;
  4834. result->src1 = b;
  4835. result->opt[0] = c;
  4836. return result;
  4837. }
  4838. // ggml_diag
  4839. struct ggml_tensor * ggml_diag(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a) {
  4842. GGML_ASSERT(a->ne[1] == 1);
  4843. bool is_node = false;
  4844. if (a->grad) {
  4845. is_node = true;
  4846. }
  4847. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4848. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4849. result->op = GGML_OP_DIAG;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src0 = a;
  4852. result->src1 = NULL;
  4853. return result;
  4854. }
  4855. // ggml_diag_mask_inf
  4856. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. int n_past,
  4860. bool inplace) {
  4861. bool is_node = false;
  4862. if (a->grad) {
  4863. is_node = true;
  4864. }
  4865. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4866. ggml_scratch_save(ctx);
  4867. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4868. ((int32_t *) b->data)[0] = n_past;
  4869. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4870. ggml_scratch_load(ctx);
  4871. result->op = GGML_OP_DIAG_MASK_INF;
  4872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4873. result->src0 = a;
  4874. result->src1 = b;
  4875. return result;
  4876. }
  4877. struct ggml_tensor * ggml_diag_mask_inf(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. int n_past) {
  4881. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4882. }
  4883. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. int n_past) {
  4887. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4888. }
  4889. // ggml_diag_mask_zero
  4890. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. int n_past,
  4894. bool inplace) {
  4895. bool is_node = false;
  4896. if (a->grad) {
  4897. is_node = true;
  4898. }
  4899. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4900. ggml_scratch_save(ctx);
  4901. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4902. ggml_set_name(b, "n_past, inplace");
  4903. ((int32_t *) b->data)[0] = n_past;
  4904. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4905. ggml_scratch_load(ctx);
  4906. result->op = GGML_OP_DIAG_MASK_ZERO;
  4907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4908. result->src0 = a;
  4909. result->src1 = b;
  4910. return result;
  4911. }
  4912. struct ggml_tensor * ggml_diag_mask_zero(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. int n_past) {
  4916. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4917. }
  4918. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. int n_past) {
  4922. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4923. }
  4924. // ggml_soft_max
  4925. struct ggml_tensor * ggml_soft_max_impl(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. bool inplace) {
  4929. bool is_node = false;
  4930. if (a->grad) {
  4931. is_node = true;
  4932. }
  4933. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4934. result->op = GGML_OP_SOFT_MAX;
  4935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4936. result->src0 = a;
  4937. result->src1 = NULL;
  4938. return result;
  4939. }
  4940. struct ggml_tensor * ggml_soft_max(
  4941. struct ggml_context * ctx,
  4942. struct ggml_tensor * a) {
  4943. return ggml_soft_max_impl(ctx, a, false);
  4944. }
  4945. struct ggml_tensor * ggml_soft_max_inplace(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a) {
  4948. return ggml_soft_max_impl(ctx, a, true);
  4949. }
  4950. // ggml_rope
  4951. struct ggml_tensor * ggml_rope_impl(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. int n_past,
  4955. int n_dims,
  4956. int mode,
  4957. bool inplace) {
  4958. GGML_ASSERT(n_past >= 0);
  4959. bool is_node = false;
  4960. if (!inplace && a->grad) {
  4961. is_node = true;
  4962. }
  4963. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4964. ggml_scratch_save(ctx);
  4965. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4966. ((int32_t *) b->data)[0] = n_past;
  4967. ((int32_t *) b->data)[1] = n_dims;
  4968. ((int32_t *) b->data)[2] = mode;
  4969. ggml_scratch_load(ctx);
  4970. result->op = GGML_OP_ROPE;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src0 = a;
  4973. result->src1 = b;
  4974. return result;
  4975. }
  4976. struct ggml_tensor * ggml_rope(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. int n_past,
  4980. int n_dims,
  4981. int mode) {
  4982. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4983. }
  4984. struct ggml_tensor * ggml_rope_inplace(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. int n_past,
  4988. int n_dims,
  4989. int mode) {
  4990. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4991. }
  4992. // ggml_rope_back
  4993. struct ggml_tensor * ggml_rope_back(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. int n_past,
  4997. int n_dims,
  4998. int mode) {
  4999. GGML_ASSERT(n_past >= 0);
  5000. bool is_node = false;
  5001. if (a->grad) {
  5002. GGML_ASSERT(false); // TODO: implement backward
  5003. is_node = true;
  5004. }
  5005. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5006. ggml_scratch_save(ctx);
  5007. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5008. ggml_set_name(b, "n_past, n_dims, mode");
  5009. ((int32_t *) b->data)[0] = n_past;
  5010. ((int32_t *) b->data)[1] = n_dims;
  5011. ((int32_t *) b->data)[2] = mode;
  5012. ggml_scratch_load(ctx);
  5013. result->op = GGML_OP_ROPE_BACK;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src0 = a;
  5016. result->src1 = b;
  5017. return result;
  5018. }
  5019. // ggml_alibi
  5020. struct ggml_tensor * ggml_alibi(
  5021. struct ggml_context * ctx,
  5022. struct ggml_tensor * a,
  5023. int n_past,
  5024. int n_head,
  5025. float bias_max) {
  5026. GGML_ASSERT(n_past >= 0);
  5027. bool is_node = false;
  5028. if (a->grad) {
  5029. GGML_ASSERT(false); // TODO: implement backward
  5030. is_node = true;
  5031. }
  5032. // TODO: when implement backward, fix this:
  5033. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5035. ggml_scratch_save(ctx);
  5036. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5037. ((int32_t *) b->data)[0] = n_past;
  5038. ((int32_t *) b->data)[1] = n_head;
  5039. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5040. (((float *) b->data)[2]) = bias_max;
  5041. ggml_scratch_load(ctx);
  5042. result->op = GGML_OP_ALIBI;
  5043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5044. result->src0 = a;
  5045. result->src1 = b;
  5046. return result;
  5047. }
  5048. // ggml_clamp
  5049. struct ggml_tensor * ggml_clamp(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. float min,
  5053. float max) {
  5054. bool is_node = false;
  5055. if (a->grad) {
  5056. GGML_ASSERT(false); // TODO: implement backward
  5057. is_node = true;
  5058. }
  5059. // TODO: when implement backward, fix this:
  5060. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5061. ggml_scratch_save(ctx);
  5062. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5063. ((float *) b->data)[0] = min;
  5064. ((float *) b->data)[1] = max;
  5065. ggml_scratch_load(ctx);
  5066. result->op = GGML_OP_CLAMP;
  5067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5068. result->src0 = a;
  5069. result->src1 = b;
  5070. return result;
  5071. }
  5072. // ggml_conv_1d_1s
  5073. struct ggml_tensor * ggml_conv_1d_1s(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. struct ggml_tensor * b) {
  5077. GGML_ASSERT(ggml_is_matrix(b));
  5078. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5079. GGML_ASSERT(a->ne[3] == 1);
  5080. bool is_node = false;
  5081. if (a->grad || b->grad) {
  5082. GGML_ASSERT(false); // TODO: implement backward
  5083. is_node = true;
  5084. }
  5085. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5086. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5087. result->op = GGML_OP_CONV_1D_1S;
  5088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5089. result->src0 = a;
  5090. result->src1 = b;
  5091. return result;
  5092. }
  5093. // ggml_conv_1d_2s
  5094. struct ggml_tensor * ggml_conv_1d_2s(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. struct ggml_tensor * b) {
  5098. GGML_ASSERT(ggml_is_matrix(b));
  5099. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5100. GGML_ASSERT(a->ne[3] == 1);
  5101. bool is_node = false;
  5102. if (a->grad || b->grad) {
  5103. GGML_ASSERT(false); // TODO: implement backward
  5104. is_node = true;
  5105. }
  5106. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5107. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5108. result->op = GGML_OP_CONV_1D_2S;
  5109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5110. result->src0 = a;
  5111. result->src1 = b;
  5112. return result;
  5113. }
  5114. // ggml_flash_attn
  5115. struct ggml_tensor * ggml_flash_attn(
  5116. struct ggml_context * ctx,
  5117. struct ggml_tensor * q,
  5118. struct ggml_tensor * k,
  5119. struct ggml_tensor * v,
  5120. bool masked) {
  5121. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5122. // TODO: check if vT can be multiplied by (k*qT)
  5123. bool is_node = false;
  5124. if (q->grad || k->grad || v->grad) {
  5125. GGML_ASSERT(false); // TODO: implement backward
  5126. is_node = true;
  5127. }
  5128. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5129. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5130. result->op = GGML_OP_FLASH_ATTN;
  5131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5132. result->src0 = q;
  5133. result->src1 = k;
  5134. result->opt[0] = v;
  5135. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5136. return result;
  5137. }
  5138. // ggml_flash_ff
  5139. struct ggml_tensor * ggml_flash_ff(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b0,
  5143. struct ggml_tensor * b1,
  5144. struct ggml_tensor * c0,
  5145. struct ggml_tensor * c1) {
  5146. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5147. // TODO: more checks
  5148. bool is_node = false;
  5149. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5150. GGML_ASSERT(false); // TODO: implement backward
  5151. is_node = true;
  5152. }
  5153. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5154. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5155. result->op = GGML_OP_FLASH_FF;
  5156. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5157. result->src0 = a;
  5158. result->src1 = b0;
  5159. result->opt[0] = b1;
  5160. result->opt[1] = c0;
  5161. result->opt[2] = c1;
  5162. return result;
  5163. }
  5164. // ggml_map_unary
  5165. struct ggml_tensor * ggml_map_unary_impl_f32(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. const ggml_unary_op_f32_t fun,
  5169. bool inplace) {
  5170. bool is_node = false;
  5171. if (!inplace && a->grad) {
  5172. is_node = true;
  5173. }
  5174. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5175. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5176. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5177. result->op = GGML_OP_MAP_UNARY;
  5178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5179. result->src0 = a;
  5180. result->opt[0] = addr_tensor;
  5181. return result;
  5182. }
  5183. struct ggml_tensor * ggml_map_unary_f32(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. const ggml_unary_op_f32_t fun) {
  5187. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5188. }
  5189. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. const ggml_unary_op_f32_t fun) {
  5193. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5194. }
  5195. // ggml_map_binary
  5196. struct ggml_tensor * ggml_map_binary_impl_f32(
  5197. struct ggml_context * ctx,
  5198. struct ggml_tensor * a,
  5199. struct ggml_tensor * b,
  5200. const ggml_binary_op_f32_t fun,
  5201. bool inplace) {
  5202. GGML_ASSERT(ggml_are_same_shape(a, b));
  5203. bool is_node = false;
  5204. if (!inplace && (a->grad || b->grad)) {
  5205. is_node = true;
  5206. }
  5207. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5208. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5209. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5210. result->op = GGML_OP_MAP_BINARY;
  5211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5212. result->src0 = a;
  5213. result->src1 = b;
  5214. result->opt[0] = addr_tensor;
  5215. return result;
  5216. }
  5217. struct ggml_tensor * ggml_map_binary_f32(
  5218. struct ggml_context * ctx,
  5219. struct ggml_tensor * a,
  5220. struct ggml_tensor * b,
  5221. const ggml_binary_op_f32_t fun) {
  5222. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5223. }
  5224. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * a,
  5227. struct ggml_tensor * b,
  5228. const ggml_binary_op_f32_t fun) {
  5229. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5230. }
  5231. ////////////////////////////////////////////////////////////////////////////////
  5232. void ggml_set_param(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * tensor) {
  5235. tensor->is_param = true;
  5236. GGML_ASSERT(tensor->grad == NULL);
  5237. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5238. }
  5239. // ggml_compute_forward_dup
  5240. static void ggml_compute_forward_dup_same_cont(
  5241. const struct ggml_compute_params * params,
  5242. const struct ggml_tensor * src0,
  5243. struct ggml_tensor * dst) {
  5244. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5245. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5246. GGML_ASSERT(src0->type == dst->type);
  5247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5248. return;
  5249. }
  5250. const size_t nb00 = src0->nb[0];
  5251. const size_t nb0 = dst->nb[0];
  5252. const int ith = params->ith; // thread index
  5253. const int nth = params->nth; // number of threads
  5254. // parallelize by elements
  5255. const int ne = ggml_nelements(dst);
  5256. const int dr = (ne + nth - 1) / nth;
  5257. const int ie0 = dr * ith;
  5258. const int ie1 = MIN(ie0 + dr, ne);
  5259. if (ie0 < ie1) {
  5260. memcpy(
  5261. ((char *) dst->data + ie0*nb0),
  5262. ((char *) src0->data + ie0*nb00),
  5263. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5264. }
  5265. }
  5266. static void ggml_compute_forward_dup_f16(
  5267. const struct ggml_compute_params * params,
  5268. const struct ggml_tensor * src0,
  5269. struct ggml_tensor * dst) {
  5270. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5272. return;
  5273. }
  5274. const int64_t ne00 = src0->ne[0];
  5275. const int64_t ne01 = src0->ne[1];
  5276. const int64_t ne02 = src0->ne[2];
  5277. const int64_t ne03 = src0->ne[3];
  5278. const int64_t ne0 = dst->ne[0];
  5279. const int64_t ne1 = dst->ne[1];
  5280. const int64_t ne2 = dst->ne[2];
  5281. const int64_t ne3 = dst->ne[3];
  5282. const size_t nb00 = src0->nb[0];
  5283. const size_t nb01 = src0->nb[1];
  5284. const size_t nb02 = src0->nb[2];
  5285. const size_t nb03 = src0->nb[3];
  5286. const size_t nb0 = dst->nb[0];
  5287. const size_t nb1 = dst->nb[1];
  5288. const size_t nb2 = dst->nb[2];
  5289. const size_t nb3 = dst->nb[3];
  5290. const int ith = params->ith; // thread index
  5291. const int nth = params->nth; // number of threads
  5292. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5293. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5294. return;
  5295. }
  5296. // parallelize by rows
  5297. const int nr = ne01;
  5298. // number of rows per thread
  5299. const int dr = (nr + nth - 1) / nth;
  5300. // row range for this thread
  5301. const int ir0 = dr * ith;
  5302. const int ir1 = MIN(ir0 + dr, nr);
  5303. if (src0->type == dst->type &&
  5304. ne00 == ne0 &&
  5305. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5306. // copy by rows
  5307. const size_t rs = ne00*nb00;
  5308. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5309. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5310. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5311. memcpy(
  5312. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5313. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5314. rs);
  5315. }
  5316. }
  5317. }
  5318. return;
  5319. }
  5320. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5321. if (ggml_is_contiguous(dst)) {
  5322. if (nb00 == sizeof(ggml_fp16_t)) {
  5323. if (dst->type == GGML_TYPE_F16) {
  5324. size_t id = 0;
  5325. const size_t rs = ne00 * nb00;
  5326. char * dst_ptr = (char *) dst->data;
  5327. for (int i03 = 0; i03 < ne03; i03++) {
  5328. for (int i02 = 0; i02 < ne02; i02++) {
  5329. id += rs * ir0;
  5330. for (int i01 = ir0; i01 < ir1; i01++) {
  5331. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5332. memcpy(dst_ptr + id, src0_ptr, rs);
  5333. id += rs;
  5334. }
  5335. id += rs * (ne01 - ir1);
  5336. }
  5337. }
  5338. } else if (dst->type == GGML_TYPE_F32) {
  5339. size_t id = 0;
  5340. float * dst_ptr = (float *) dst->data;
  5341. for (int i03 = 0; i03 < ne03; i03++) {
  5342. for (int i02 = 0; i02 < ne02; i02++) {
  5343. id += ne00 * ir0;
  5344. for (int i01 = ir0; i01 < ir1; i01++) {
  5345. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5346. for (int i00 = 0; i00 < ne00; i00++) {
  5347. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5348. id++;
  5349. }
  5350. }
  5351. id += ne00 * (ne01 - ir1);
  5352. }
  5353. }
  5354. } else if (ggml_is_quantized(dst->type)) {
  5355. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5356. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5357. size_t id = 0;
  5358. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5359. char * dst_ptr = (char *) dst->data;
  5360. for (int i03 = 0; i03 < ne03; i03++) {
  5361. for (int i02 = 0; i02 < ne02; i02++) {
  5362. id += rs * ir0;
  5363. for (int i01 = ir0; i01 < ir1; i01++) {
  5364. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5365. for (int i00 = 0; i00 < ne00; i00++) {
  5366. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5367. }
  5368. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5369. id += rs;
  5370. }
  5371. id += rs * (ne01 - ir1);
  5372. }
  5373. }
  5374. } else {
  5375. GGML_ASSERT(false); // TODO: implement
  5376. }
  5377. } else {
  5378. //printf("%s: this is not optimal - fix me\n", __func__);
  5379. if (dst->type == GGML_TYPE_F32) {
  5380. size_t id = 0;
  5381. float * dst_ptr = (float *) dst->data;
  5382. for (int i03 = 0; i03 < ne03; i03++) {
  5383. for (int i02 = 0; i02 < ne02; i02++) {
  5384. id += ne00 * ir0;
  5385. for (int i01 = ir0; i01 < ir1; i01++) {
  5386. for (int i00 = 0; i00 < ne00; i00++) {
  5387. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5388. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5389. id++;
  5390. }
  5391. }
  5392. id += ne00 * (ne01 - ir1);
  5393. }
  5394. }
  5395. } else if (dst->type == GGML_TYPE_F16) {
  5396. size_t id = 0;
  5397. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5398. for (int i03 = 0; i03 < ne03; i03++) {
  5399. for (int i02 = 0; i02 < ne02; i02++) {
  5400. id += ne00 * ir0;
  5401. for (int i01 = ir0; i01 < ir1; i01++) {
  5402. for (int i00 = 0; i00 < ne00; i00++) {
  5403. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5404. dst_ptr[id] = *src0_ptr;
  5405. id++;
  5406. }
  5407. }
  5408. id += ne00 * (ne01 - ir1);
  5409. }
  5410. }
  5411. } else {
  5412. GGML_ASSERT(false); // TODO: implement
  5413. }
  5414. }
  5415. return;
  5416. }
  5417. // dst counters
  5418. int64_t i10 = 0;
  5419. int64_t i11 = 0;
  5420. int64_t i12 = 0;
  5421. int64_t i13 = 0;
  5422. if (dst->type == GGML_TYPE_F16) {
  5423. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5424. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5425. i10 += ne00 * ir0;
  5426. while (i10 >= ne0) {
  5427. i10 -= ne0;
  5428. if (++i11 == ne1) {
  5429. i11 = 0;
  5430. if (++i12 == ne2) {
  5431. i12 = 0;
  5432. if (++i13 == ne3) {
  5433. i13 = 0;
  5434. }
  5435. }
  5436. }
  5437. }
  5438. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5439. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5440. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5441. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5442. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5443. if (++i10 == ne00) {
  5444. i10 = 0;
  5445. if (++i11 == ne01) {
  5446. i11 = 0;
  5447. if (++i12 == ne02) {
  5448. i12 = 0;
  5449. if (++i13 == ne03) {
  5450. i13 = 0;
  5451. }
  5452. }
  5453. }
  5454. }
  5455. }
  5456. }
  5457. i10 += ne00 * (ne01 - ir1);
  5458. while (i10 >= ne0) {
  5459. i10 -= ne0;
  5460. if (++i11 == ne1) {
  5461. i11 = 0;
  5462. if (++i12 == ne2) {
  5463. i12 = 0;
  5464. if (++i13 == ne3) {
  5465. i13 = 0;
  5466. }
  5467. }
  5468. }
  5469. }
  5470. }
  5471. }
  5472. } else if (dst->type == GGML_TYPE_F32) {
  5473. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5474. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5475. i10 += ne00 * ir0;
  5476. while (i10 >= ne0) {
  5477. i10 -= ne0;
  5478. if (++i11 == ne1) {
  5479. i11 = 0;
  5480. if (++i12 == ne2) {
  5481. i12 = 0;
  5482. if (++i13 == ne3) {
  5483. i13 = 0;
  5484. }
  5485. }
  5486. }
  5487. }
  5488. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5489. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5490. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5491. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5492. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5493. if (++i10 == ne0) {
  5494. i10 = 0;
  5495. if (++i11 == ne1) {
  5496. i11 = 0;
  5497. if (++i12 == ne2) {
  5498. i12 = 0;
  5499. if (++i13 == ne3) {
  5500. i13 = 0;
  5501. }
  5502. }
  5503. }
  5504. }
  5505. }
  5506. }
  5507. i10 += ne00 * (ne01 - ir1);
  5508. while (i10 >= ne0) {
  5509. i10 -= ne0;
  5510. if (++i11 == ne1) {
  5511. i11 = 0;
  5512. if (++i12 == ne2) {
  5513. i12 = 0;
  5514. if (++i13 == ne3) {
  5515. i13 = 0;
  5516. }
  5517. }
  5518. }
  5519. }
  5520. }
  5521. }
  5522. } else {
  5523. GGML_ASSERT(false); // TODO: implement
  5524. }
  5525. }
  5526. static void ggml_compute_forward_dup_f32(
  5527. const struct ggml_compute_params * params,
  5528. const struct ggml_tensor * src0,
  5529. struct ggml_tensor * dst) {
  5530. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5531. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5532. return;
  5533. }
  5534. const int64_t ne00 = src0->ne[0];
  5535. const int64_t ne01 = src0->ne[1];
  5536. const int64_t ne02 = src0->ne[2];
  5537. const int64_t ne03 = src0->ne[3];
  5538. const int64_t ne0 = dst->ne[0];
  5539. const int64_t ne1 = dst->ne[1];
  5540. const int64_t ne2 = dst->ne[2];
  5541. const int64_t ne3 = dst->ne[3];
  5542. const size_t nb00 = src0->nb[0];
  5543. const size_t nb01 = src0->nb[1];
  5544. const size_t nb02 = src0->nb[2];
  5545. const size_t nb03 = src0->nb[3];
  5546. const size_t nb0 = dst->nb[0];
  5547. const size_t nb1 = dst->nb[1];
  5548. const size_t nb2 = dst->nb[2];
  5549. const size_t nb3 = dst->nb[3];
  5550. const int ith = params->ith; // thread index
  5551. const int nth = params->nth; // number of threads
  5552. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5553. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5554. return;
  5555. }
  5556. // parallelize by rows
  5557. const int nr = ne01;
  5558. // number of rows per thread
  5559. const int dr = (nr + nth - 1) / nth;
  5560. // row range for this thread
  5561. const int ir0 = dr * ith;
  5562. const int ir1 = MIN(ir0 + dr, nr);
  5563. if (src0->type == dst->type &&
  5564. ne00 == ne0 &&
  5565. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5566. // copy by rows
  5567. const size_t rs = ne00*nb00;
  5568. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5569. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5570. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5571. memcpy(
  5572. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5573. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5574. rs);
  5575. }
  5576. }
  5577. }
  5578. return;
  5579. }
  5580. if (ggml_is_contiguous(dst)) {
  5581. // TODO: simplify
  5582. if (nb00 == sizeof(float)) {
  5583. if (dst->type == GGML_TYPE_F32) {
  5584. size_t id = 0;
  5585. const size_t rs = ne00 * nb00;
  5586. char * dst_ptr = (char *) dst->data;
  5587. for (int i03 = 0; i03 < ne03; i03++) {
  5588. for (int i02 = 0; i02 < ne02; i02++) {
  5589. id += rs * ir0;
  5590. for (int i01 = ir0; i01 < ir1; i01++) {
  5591. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5592. memcpy(dst_ptr + id, src0_ptr, rs);
  5593. id += rs;
  5594. }
  5595. id += rs * (ne01 - ir1);
  5596. }
  5597. }
  5598. } else if (dst->type == GGML_TYPE_F16) {
  5599. size_t id = 0;
  5600. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5601. for (int i03 = 0; i03 < ne03; i03++) {
  5602. for (int i02 = 0; i02 < ne02; i02++) {
  5603. id += ne00 * ir0;
  5604. for (int i01 = ir0; i01 < ir1; i01++) {
  5605. for (int i00 = 0; i00 < ne00; i00++) {
  5606. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5607. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5608. id++;
  5609. }
  5610. }
  5611. id += ne00 * (ne01 - ir1);
  5612. }
  5613. }
  5614. } else if (ggml_is_quantized(dst->type)) {
  5615. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5616. size_t id = 0;
  5617. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5618. char * dst_ptr = (char *) dst->data;
  5619. for (int i03 = 0; i03 < ne03; i03++) {
  5620. for (int i02 = 0; i02 < ne02; i02++) {
  5621. id += rs * ir0;
  5622. for (int i01 = ir0; i01 < ir1; i01++) {
  5623. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5624. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5625. id += rs;
  5626. }
  5627. id += rs * (ne01 - ir1);
  5628. }
  5629. }
  5630. } else {
  5631. GGML_ASSERT(false); // TODO: implement
  5632. }
  5633. } else {
  5634. //printf("%s: this is not optimal - fix me\n", __func__);
  5635. if (dst->type == GGML_TYPE_F32) {
  5636. size_t id = 0;
  5637. float * dst_ptr = (float *) dst->data;
  5638. for (int i03 = 0; i03 < ne03; i03++) {
  5639. for (int i02 = 0; i02 < ne02; i02++) {
  5640. id += ne00 * ir0;
  5641. for (int i01 = ir0; i01 < ir1; i01++) {
  5642. for (int i00 = 0; i00 < ne00; i00++) {
  5643. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5644. dst_ptr[id] = *src0_ptr;
  5645. id++;
  5646. }
  5647. }
  5648. id += ne00 * (ne01 - ir1);
  5649. }
  5650. }
  5651. } else if (dst->type == GGML_TYPE_F16) {
  5652. size_t id = 0;
  5653. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5654. for (int i03 = 0; i03 < ne03; i03++) {
  5655. for (int i02 = 0; i02 < ne02; i02++) {
  5656. id += ne00 * ir0;
  5657. for (int i01 = ir0; i01 < ir1; i01++) {
  5658. for (int i00 = 0; i00 < ne00; i00++) {
  5659. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5660. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5661. id++;
  5662. }
  5663. }
  5664. id += ne00 * (ne01 - ir1);
  5665. }
  5666. }
  5667. } else {
  5668. GGML_ASSERT(false); // TODO: implement
  5669. }
  5670. }
  5671. return;
  5672. }
  5673. // dst counters
  5674. int64_t i10 = 0;
  5675. int64_t i11 = 0;
  5676. int64_t i12 = 0;
  5677. int64_t i13 = 0;
  5678. if (dst->type == GGML_TYPE_F32) {
  5679. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5680. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5681. i10 += ne00 * ir0;
  5682. while (i10 >= ne0) {
  5683. i10 -= ne0;
  5684. if (++i11 == ne1) {
  5685. i11 = 0;
  5686. if (++i12 == ne2) {
  5687. i12 = 0;
  5688. if (++i13 == ne3) {
  5689. i13 = 0;
  5690. }
  5691. }
  5692. }
  5693. }
  5694. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5695. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5696. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5697. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5698. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5699. if (++i10 == ne0) {
  5700. i10 = 0;
  5701. if (++i11 == ne1) {
  5702. i11 = 0;
  5703. if (++i12 == ne2) {
  5704. i12 = 0;
  5705. if (++i13 == ne3) {
  5706. i13 = 0;
  5707. }
  5708. }
  5709. }
  5710. }
  5711. }
  5712. }
  5713. i10 += ne00 * (ne01 - ir1);
  5714. while (i10 >= ne0) {
  5715. i10 -= ne0;
  5716. if (++i11 == ne1) {
  5717. i11 = 0;
  5718. if (++i12 == ne2) {
  5719. i12 = 0;
  5720. if (++i13 == ne3) {
  5721. i13 = 0;
  5722. }
  5723. }
  5724. }
  5725. }
  5726. }
  5727. }
  5728. } else if (dst->type == GGML_TYPE_F16) {
  5729. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5730. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5731. i10 += ne00 * ir0;
  5732. while (i10 >= ne0) {
  5733. i10 -= ne0;
  5734. if (++i11 == ne1) {
  5735. i11 = 0;
  5736. if (++i12 == ne2) {
  5737. i12 = 0;
  5738. if (++i13 == ne3) {
  5739. i13 = 0;
  5740. }
  5741. }
  5742. }
  5743. }
  5744. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5745. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5746. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5747. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5748. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5749. if (++i10 == ne0) {
  5750. i10 = 0;
  5751. if (++i11 == ne1) {
  5752. i11 = 0;
  5753. if (++i12 == ne2) {
  5754. i12 = 0;
  5755. if (++i13 == ne3) {
  5756. i13 = 0;
  5757. }
  5758. }
  5759. }
  5760. }
  5761. }
  5762. }
  5763. i10 += ne00 * (ne01 - ir1);
  5764. while (i10 >= ne0) {
  5765. i10 -= ne0;
  5766. if (++i11 == ne1) {
  5767. i11 = 0;
  5768. if (++i12 == ne2) {
  5769. i12 = 0;
  5770. if (++i13 == ne3) {
  5771. i13 = 0;
  5772. }
  5773. }
  5774. }
  5775. }
  5776. }
  5777. }
  5778. } else {
  5779. GGML_ASSERT(false); // TODO: implement
  5780. }
  5781. }
  5782. static void ggml_compute_forward_dup(
  5783. const struct ggml_compute_params * params,
  5784. const struct ggml_tensor * src0,
  5785. struct ggml_tensor * dst) {
  5786. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5787. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5788. return;
  5789. }
  5790. switch (src0->type) {
  5791. case GGML_TYPE_F16:
  5792. {
  5793. ggml_compute_forward_dup_f16(params, src0, dst);
  5794. } break;
  5795. case GGML_TYPE_F32:
  5796. {
  5797. ggml_compute_forward_dup_f32(params, src0, dst);
  5798. } break;
  5799. default:
  5800. {
  5801. GGML_ASSERT(false);
  5802. } break;
  5803. }
  5804. }
  5805. // ggml_compute_forward_add
  5806. static void ggml_compute_forward_add_f32(
  5807. const struct ggml_compute_params * params,
  5808. const struct ggml_tensor * src0,
  5809. const struct ggml_tensor * src1,
  5810. struct ggml_tensor * dst) {
  5811. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5813. return;
  5814. }
  5815. const int ith = params->ith;
  5816. const int nth = params->nth;
  5817. const int nr = ggml_nrows(src0);
  5818. const int64_t ne0 = src0->ne[0];
  5819. const int64_t ne1 = src0->ne[1];
  5820. const int64_t ne2 = src0->ne[2];
  5821. const size_t nb00 = src0->nb[0];
  5822. const size_t nb01 = src0->nb[1];
  5823. const size_t nb02 = src0->nb[2];
  5824. const size_t nb03 = src0->nb[3];
  5825. const size_t nb10 = src1->nb[0];
  5826. const size_t nb11 = src1->nb[1];
  5827. const size_t nb12 = src1->nb[2];
  5828. const size_t nb13 = src1->nb[3];
  5829. const size_t nb0 = dst->nb[0];
  5830. const size_t nb1 = dst->nb[1];
  5831. const size_t nb2 = dst->nb[2];
  5832. const size_t nb3 = dst->nb[3];
  5833. GGML_ASSERT( nb0 == sizeof(float));
  5834. GGML_ASSERT(nb00 == sizeof(float));
  5835. // rows per thread
  5836. const int dr = (nr + nth - 1)/nth;
  5837. // row range for this thread
  5838. const int ir0 = dr*ith;
  5839. const int ir1 = MIN(ir0 + dr, nr);
  5840. if (nb10 == sizeof(float)) {
  5841. for (int ir = ir0; ir < ir1; ++ir) {
  5842. // src0, src1 and dst are same shape => same indices
  5843. const int i3 = ir/(ne2*ne1);
  5844. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5845. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5846. #ifdef GGML_USE_ACCELERATE
  5847. vDSP_vadd(
  5848. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5849. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5850. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5851. ne0);
  5852. #else
  5853. ggml_vec_add_f32(ne0,
  5854. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5855. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5856. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5857. #endif
  5858. // }
  5859. // }
  5860. }
  5861. } else {
  5862. // src1 is not contiguous
  5863. for (int ir = ir0; ir < ir1; ++ir) {
  5864. // src0, src1 and dst are same shape => same indices
  5865. const int i3 = ir/(ne2*ne1);
  5866. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5867. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5868. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5869. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5870. for (int i0 = 0; i0 < ne0; i0++) {
  5871. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5872. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5873. }
  5874. }
  5875. }
  5876. }
  5877. static void ggml_compute_forward_add_f16_f32(
  5878. const struct ggml_compute_params * params,
  5879. const struct ggml_tensor * src0,
  5880. const struct ggml_tensor * src1,
  5881. struct ggml_tensor * dst) {
  5882. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5884. return;
  5885. }
  5886. const int ith = params->ith;
  5887. const int nth = params->nth;
  5888. const int nr = ggml_nrows(src0);
  5889. const int64_t ne0 = src0->ne[0];
  5890. const int64_t ne1 = src0->ne[1];
  5891. const int64_t ne2 = src0->ne[2];
  5892. const size_t nb00 = src0->nb[0];
  5893. const size_t nb01 = src0->nb[1];
  5894. const size_t nb02 = src0->nb[2];
  5895. const size_t nb03 = src0->nb[3];
  5896. const size_t nb10 = src1->nb[0];
  5897. const size_t nb11 = src1->nb[1];
  5898. const size_t nb12 = src1->nb[2];
  5899. const size_t nb13 = src1->nb[3];
  5900. const size_t nb0 = dst->nb[0];
  5901. const size_t nb1 = dst->nb[1];
  5902. const size_t nb2 = dst->nb[2];
  5903. const size_t nb3 = dst->nb[3];
  5904. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5905. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5906. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5907. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5908. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5909. // rows per thread
  5910. const int dr = (nr + nth - 1)/nth;
  5911. // row range for this thread
  5912. const int ir0 = dr*ith;
  5913. const int ir1 = MIN(ir0 + dr, nr);
  5914. if (nb10 == sizeof(float)) {
  5915. for (int ir = ir0; ir < ir1; ++ir) {
  5916. // src0, src1 and dst are same shape => same indices
  5917. const int i3 = ir/(ne2*ne1);
  5918. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5919. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5920. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5921. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5922. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5923. for (int i = 0; i < ne0; i++) {
  5924. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5925. }
  5926. }
  5927. }
  5928. else {
  5929. // src1 is not contiguous
  5930. GGML_ASSERT(false);
  5931. }
  5932. }
  5933. static void ggml_compute_forward_add_f16_f16(
  5934. const struct ggml_compute_params * params,
  5935. const struct ggml_tensor * src0,
  5936. const struct ggml_tensor * src1,
  5937. struct ggml_tensor * dst) {
  5938. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5939. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5940. return;
  5941. }
  5942. const int ith = params->ith;
  5943. const int nth = params->nth;
  5944. const int nr = ggml_nrows(src0);
  5945. const int64_t ne0 = src0->ne[0];
  5946. const int64_t ne1 = src0->ne[1];
  5947. const int64_t ne2 = src0->ne[2];
  5948. const size_t nb00 = src0->nb[0];
  5949. const size_t nb01 = src0->nb[1];
  5950. const size_t nb02 = src0->nb[2];
  5951. const size_t nb03 = src0->nb[3];
  5952. const size_t nb10 = src1->nb[0];
  5953. const size_t nb11 = src1->nb[1];
  5954. const size_t nb12 = src1->nb[2];
  5955. const size_t nb13 = src1->nb[3];
  5956. const size_t nb0 = dst->nb[0];
  5957. const size_t nb1 = dst->nb[1];
  5958. const size_t nb2 = dst->nb[2];
  5959. const size_t nb3 = dst->nb[3];
  5960. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5961. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5962. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5963. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5964. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5965. // rows per thread
  5966. const int dr = (nr + nth - 1)/nth;
  5967. // row range for this thread
  5968. const int ir0 = dr*ith;
  5969. const int ir1 = MIN(ir0 + dr, nr);
  5970. if (nb10 == sizeof(ggml_fp16_t)) {
  5971. for (int ir = ir0; ir < ir1; ++ir) {
  5972. // src0, src1 and dst are same shape => same indices
  5973. const int i3 = ir/(ne2*ne1);
  5974. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5975. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5976. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5977. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5978. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5979. for (int i = 0; i < ne0; i++) {
  5980. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5981. }
  5982. }
  5983. }
  5984. else {
  5985. // src1 is not contiguous
  5986. GGML_ASSERT(false);
  5987. }
  5988. }
  5989. static void ggml_compute_forward_add_q_f32(
  5990. const struct ggml_compute_params * params,
  5991. const struct ggml_tensor * src0,
  5992. const struct ggml_tensor * src1,
  5993. struct ggml_tensor * dst) {
  5994. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5996. return;
  5997. }
  5998. const int nr = ggml_nrows(src0);
  5999. const int64_t ne00 = src0->ne[0];
  6000. const int64_t ne01 = src0->ne[1];
  6001. const int64_t ne02 = src0->ne[2];
  6002. //const int64_t ne03 = src0->ne[3];
  6003. const size_t nb00 = src0->nb[0];
  6004. const size_t nb01 = src0->nb[1];
  6005. const size_t nb02 = src0->nb[2];
  6006. const size_t nb03 = src0->nb[3];
  6007. const size_t nb10 = src1->nb[0];
  6008. const size_t nb11 = src1->nb[1];
  6009. const size_t nb12 = src1->nb[2];
  6010. const size_t nb13 = src1->nb[3];
  6011. const size_t nb0 = dst->nb[0];
  6012. const size_t nb1 = dst->nb[1];
  6013. const size_t nb2 = dst->nb[2];
  6014. const size_t nb3 = dst->nb[3];
  6015. const int ith = params->ith;
  6016. const int nth = params->nth;
  6017. const enum ggml_type type = src0->type;
  6018. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6019. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6020. // we don't support permuted src0 or src1
  6021. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6022. GGML_ASSERT(nb10 == sizeof(float));
  6023. // dst cannot be transposed or permuted
  6024. GGML_ASSERT(nb0 <= nb1);
  6025. GGML_ASSERT(nb1 <= nb2);
  6026. GGML_ASSERT(nb2 <= nb3);
  6027. GGML_ASSERT(ggml_is_quantized(src0->type));
  6028. GGML_ASSERT(dst->type == src0->type);
  6029. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6030. // rows per thread
  6031. const int dr = (nr + nth - 1)/nth;
  6032. // row range for this thread
  6033. const int ir0 = dr*ith;
  6034. const int ir1 = MIN(ir0 + dr, nr);
  6035. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6036. for (int ir = ir0; ir < ir1; ++ir) {
  6037. // src0 indices
  6038. const int i03 = ir/(ne02*ne01);
  6039. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6040. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6041. // src1 and dst are same shape as src0 => same indices
  6042. const int i13 = i03;
  6043. const int i12 = i02;
  6044. const int i11 = i01;
  6045. const int i3 = i03;
  6046. const int i2 = i02;
  6047. const int i1 = i01;
  6048. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6049. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6050. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6051. assert(ne00 % 32 == 0);
  6052. // unquantize row from src0 to temp buffer
  6053. dequantize_row_q(src0_row, wdata, ne00);
  6054. // add src1
  6055. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6056. // quantize row to dst
  6057. quantize_row_q(wdata, dst_row, ne00);
  6058. }
  6059. }
  6060. static void ggml_compute_forward_add(
  6061. const struct ggml_compute_params * params,
  6062. const struct ggml_tensor * src0,
  6063. const struct ggml_tensor * src1,
  6064. struct ggml_tensor * dst) {
  6065. switch (src0->type) {
  6066. case GGML_TYPE_F32:
  6067. {
  6068. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6069. } break;
  6070. case GGML_TYPE_F16:
  6071. {
  6072. if (src1->type == GGML_TYPE_F16) {
  6073. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6074. }
  6075. else if (src1->type == GGML_TYPE_F32) {
  6076. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6077. }
  6078. else {
  6079. GGML_ASSERT(false);
  6080. }
  6081. } break;
  6082. case GGML_TYPE_Q4_0:
  6083. case GGML_TYPE_Q4_1:
  6084. case GGML_TYPE_Q5_0:
  6085. case GGML_TYPE_Q5_1:
  6086. case GGML_TYPE_Q8_0:
  6087. {
  6088. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6089. } break;
  6090. default:
  6091. {
  6092. GGML_ASSERT(false);
  6093. } break;
  6094. }
  6095. }
  6096. // ggml_compute_forward_add1
  6097. static void ggml_compute_forward_add1_f32(
  6098. const struct ggml_compute_params * params,
  6099. const struct ggml_tensor * src0,
  6100. const struct ggml_tensor * src1,
  6101. struct ggml_tensor * dst) {
  6102. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6103. GGML_ASSERT(ggml_is_scalar(src1));
  6104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6105. return;
  6106. }
  6107. const int ith = params->ith;
  6108. const int nth = params->nth;
  6109. const int nr = ggml_nrows(src0);
  6110. const int64_t ne0 = src0->ne[0];
  6111. const int64_t ne1 = src0->ne[1];
  6112. const int64_t ne2 = src0->ne[2];
  6113. const size_t nb00 = src0->nb[0];
  6114. const size_t nb01 = src0->nb[1];
  6115. const size_t nb02 = src0->nb[2];
  6116. const size_t nb03 = src0->nb[3];
  6117. const size_t nb0 = dst->nb[0];
  6118. const size_t nb1 = dst->nb[1];
  6119. const size_t nb2 = dst->nb[2];
  6120. const size_t nb3 = dst->nb[3];
  6121. GGML_ASSERT( nb0 == sizeof(float));
  6122. GGML_ASSERT(nb00 == sizeof(float));
  6123. // rows per thread
  6124. const int dr = (nr + nth - 1)/nth;
  6125. // row range for this thread
  6126. const int ir0 = dr*ith;
  6127. const int ir1 = MIN(ir0 + dr, nr);
  6128. for (int ir = ir0; ir < ir1; ++ir) {
  6129. // src0 and dst are same shape => same indices
  6130. const int i3 = ir/(ne2*ne1);
  6131. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6132. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6133. #ifdef GGML_USE_ACCELERATE
  6134. UNUSED(ggml_vec_add1_f32);
  6135. vDSP_vadd(
  6136. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6137. (float *) ((char *) src1->data), 0,
  6138. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6139. ne0);
  6140. #else
  6141. ggml_vec_add1_f32(ne0,
  6142. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6143. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6144. *(float *) src1->data);
  6145. #endif
  6146. }
  6147. }
  6148. static void ggml_compute_forward_add1_f16_f32(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. const struct ggml_tensor * src1,
  6152. struct ggml_tensor * dst) {
  6153. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6154. GGML_ASSERT(ggml_is_scalar(src1));
  6155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6156. return;
  6157. }
  6158. // scalar to add
  6159. const float v = *(float *) src1->data;
  6160. const int ith = params->ith;
  6161. const int nth = params->nth;
  6162. const int nr = ggml_nrows(src0);
  6163. const int64_t ne0 = src0->ne[0];
  6164. const int64_t ne1 = src0->ne[1];
  6165. const int64_t ne2 = src0->ne[2];
  6166. const size_t nb00 = src0->nb[0];
  6167. const size_t nb01 = src0->nb[1];
  6168. const size_t nb02 = src0->nb[2];
  6169. const size_t nb03 = src0->nb[3];
  6170. const size_t nb0 = dst->nb[0];
  6171. const size_t nb1 = dst->nb[1];
  6172. const size_t nb2 = dst->nb[2];
  6173. const size_t nb3 = dst->nb[3];
  6174. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6175. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6176. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6177. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6178. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6179. // rows per thread
  6180. const int dr = (nr + nth - 1)/nth;
  6181. // row range for this thread
  6182. const int ir0 = dr*ith;
  6183. const int ir1 = MIN(ir0 + dr, nr);
  6184. for (int ir = ir0; ir < ir1; ++ir) {
  6185. // src0 and dst are same shape => same indices
  6186. const int i3 = ir/(ne2*ne1);
  6187. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6188. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6189. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6190. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6191. for (int i = 0; i < ne0; i++) {
  6192. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6193. }
  6194. }
  6195. }
  6196. static void ggml_compute_forward_add1_f16_f16(
  6197. const struct ggml_compute_params * params,
  6198. const struct ggml_tensor * src0,
  6199. const struct ggml_tensor * src1,
  6200. struct ggml_tensor * dst) {
  6201. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6202. GGML_ASSERT(ggml_is_scalar(src1));
  6203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6204. return;
  6205. }
  6206. // scalar to add
  6207. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6208. const int ith = params->ith;
  6209. const int nth = params->nth;
  6210. const int nr = ggml_nrows(src0);
  6211. const int64_t ne0 = src0->ne[0];
  6212. const int64_t ne1 = src0->ne[1];
  6213. const int64_t ne2 = src0->ne[2];
  6214. const size_t nb00 = src0->nb[0];
  6215. const size_t nb01 = src0->nb[1];
  6216. const size_t nb02 = src0->nb[2];
  6217. const size_t nb03 = src0->nb[3];
  6218. const size_t nb0 = dst->nb[0];
  6219. const size_t nb1 = dst->nb[1];
  6220. const size_t nb2 = dst->nb[2];
  6221. const size_t nb3 = dst->nb[3];
  6222. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6223. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6224. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6225. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6226. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6227. // rows per thread
  6228. const int dr = (nr + nth - 1)/nth;
  6229. // row range for this thread
  6230. const int ir0 = dr*ith;
  6231. const int ir1 = MIN(ir0 + dr, nr);
  6232. for (int ir = ir0; ir < ir1; ++ir) {
  6233. // src0 and dst are same shape => same indices
  6234. const int i3 = ir/(ne2*ne1);
  6235. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6236. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6237. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6238. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6239. for (int i = 0; i < ne0; i++) {
  6240. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6241. }
  6242. }
  6243. }
  6244. static void ggml_compute_forward_add1_q_f32(
  6245. const struct ggml_compute_params * params,
  6246. const struct ggml_tensor * src0,
  6247. const struct ggml_tensor * src1,
  6248. struct ggml_tensor * dst) {
  6249. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6250. GGML_ASSERT(ggml_is_scalar(src1));
  6251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6252. return;
  6253. }
  6254. // scalar to add
  6255. const float v = *(float *) src1->data;
  6256. const int ith = params->ith;
  6257. const int nth = params->nth;
  6258. const int nr = ggml_nrows(src0);
  6259. const int64_t ne0 = src0->ne[0];
  6260. const int64_t ne1 = src0->ne[1];
  6261. const int64_t ne2 = src0->ne[2];
  6262. const size_t nb00 = src0->nb[0];
  6263. const size_t nb01 = src0->nb[1];
  6264. const size_t nb02 = src0->nb[2];
  6265. const size_t nb03 = src0->nb[3];
  6266. const size_t nb0 = dst->nb[0];
  6267. const size_t nb1 = dst->nb[1];
  6268. const size_t nb2 = dst->nb[2];
  6269. const size_t nb3 = dst->nb[3];
  6270. const enum ggml_type type = src0->type;
  6271. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6272. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6273. // we don't support permuted src0
  6274. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6275. // dst cannot be transposed or permuted
  6276. GGML_ASSERT(nb0 <= nb1);
  6277. GGML_ASSERT(nb1 <= nb2);
  6278. GGML_ASSERT(nb2 <= nb3);
  6279. GGML_ASSERT(ggml_is_quantized(src0->type));
  6280. GGML_ASSERT(dst->type == src0->type);
  6281. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6282. // rows per thread
  6283. const int dr = (nr + nth - 1)/nth;
  6284. // row range for this thread
  6285. const int ir0 = dr*ith;
  6286. const int ir1 = MIN(ir0 + dr, nr);
  6287. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6288. for (int ir = ir0; ir < ir1; ++ir) {
  6289. // src0 and dst are same shape => same indices
  6290. const int i3 = ir/(ne2*ne1);
  6291. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6292. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6293. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6294. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6295. assert(ne0 % 32 == 0);
  6296. // unquantize row from src0 to temp buffer
  6297. dequantize_row_q(src0_row, wdata, ne0);
  6298. // add src1
  6299. ggml_vec_acc1_f32(ne0, wdata, v);
  6300. // quantize row to dst
  6301. quantize_row_q(wdata, dst_row, ne0);
  6302. }
  6303. }
  6304. static void ggml_compute_forward_add1(
  6305. const struct ggml_compute_params * params,
  6306. const struct ggml_tensor * src0,
  6307. const struct ggml_tensor * src1,
  6308. struct ggml_tensor * dst) {
  6309. switch (src0->type) {
  6310. case GGML_TYPE_F32:
  6311. {
  6312. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6313. } break;
  6314. case GGML_TYPE_F16:
  6315. {
  6316. if (src1->type == GGML_TYPE_F16) {
  6317. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6318. }
  6319. else if (src1->type == GGML_TYPE_F32) {
  6320. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6321. }
  6322. else {
  6323. GGML_ASSERT(false);
  6324. }
  6325. } break;
  6326. case GGML_TYPE_Q4_0:
  6327. case GGML_TYPE_Q4_1:
  6328. case GGML_TYPE_Q5_0:
  6329. case GGML_TYPE_Q5_1:
  6330. case GGML_TYPE_Q8_0:
  6331. case GGML_TYPE_Q8_1:
  6332. {
  6333. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6334. } break;
  6335. default:
  6336. {
  6337. GGML_ASSERT(false);
  6338. } break;
  6339. }
  6340. }
  6341. // ggml_compute_forward_acc
  6342. static void ggml_compute_forward_acc_f32(
  6343. const struct ggml_compute_params * params,
  6344. const struct ggml_tensor * src0,
  6345. const struct ggml_tensor * src1,
  6346. const struct ggml_tensor * opt0,
  6347. struct ggml_tensor * dst) {
  6348. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6349. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6350. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6351. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6352. // view src0 and dst with these strides and data offset inbytes during acc
  6353. // nb0 is implicitely element_size because src0 and dst are contiguous
  6354. size_t nb1 = ((int32_t *) opt0->data)[0];
  6355. size_t nb2 = ((int32_t *) opt0->data)[1];
  6356. size_t nb3 = ((int32_t *) opt0->data)[2];
  6357. size_t offset = ((int32_t *) opt0->data)[3];
  6358. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6359. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6360. // memcpy needs to be synchronized across threads to avoid race conditions.
  6361. // => do it in INIT phase
  6362. memcpy(
  6363. ((char *) dst->data),
  6364. ((char *) src0->data),
  6365. ggml_nbytes(dst));
  6366. }
  6367. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6368. return;
  6369. }
  6370. const int ith = params->ith;
  6371. const int nth = params->nth;
  6372. const int nr = ggml_nrows(src1);
  6373. const int nc = src1->ne[0];
  6374. const int64_t ne10 = src1->ne[0];
  6375. const int64_t ne11 = src1->ne[1];
  6376. const int64_t ne12 = src1->ne[2];
  6377. const int64_t ne13 = src1->ne[3];
  6378. const size_t nb10 = src1->nb[0];
  6379. const size_t nb11 = src1->nb[1];
  6380. const size_t nb12 = src1->nb[2];
  6381. const size_t nb13 = src1->nb[3];
  6382. // src0 and dst as viewed during acc
  6383. const size_t nb0 = ggml_element_size(src0);
  6384. const size_t nb00 = nb0;
  6385. const size_t nb01 = nb1;
  6386. const size_t nb02 = nb2;
  6387. const size_t nb03 = nb3;
  6388. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6389. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6390. GGML_ASSERT(nb10 == sizeof(float));
  6391. // rows per thread
  6392. const int dr = (nr + nth - 1)/nth;
  6393. // row range for this thread
  6394. const int ir0 = dr*ith;
  6395. const int ir1 = MIN(ir0 + dr, nr);
  6396. for (int ir = ir0; ir < ir1; ++ir) {
  6397. // src0 and dst are viewed with shape of src1 and offset
  6398. // => same indices
  6399. const int i3 = ir/(ne12*ne11);
  6400. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6401. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6402. #ifdef GGML_USE_ACCELERATE
  6403. vDSP_vadd(
  6404. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6405. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6406. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6407. #else
  6408. ggml_vec_add_f32(nc,
  6409. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6410. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6411. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6412. #endif
  6413. }
  6414. }
  6415. static void ggml_compute_forward_acc(
  6416. const struct ggml_compute_params * params,
  6417. const struct ggml_tensor * src0,
  6418. const struct ggml_tensor * src1,
  6419. const struct ggml_tensor * opt0,
  6420. struct ggml_tensor * dst) {
  6421. switch (src0->type) {
  6422. case GGML_TYPE_F32:
  6423. {
  6424. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6425. } break;
  6426. case GGML_TYPE_F16:
  6427. case GGML_TYPE_Q4_0:
  6428. case GGML_TYPE_Q4_1:
  6429. case GGML_TYPE_Q5_0:
  6430. case GGML_TYPE_Q5_1:
  6431. case GGML_TYPE_Q8_0:
  6432. case GGML_TYPE_Q8_1:
  6433. default:
  6434. {
  6435. GGML_ASSERT(false);
  6436. } break;
  6437. }
  6438. }
  6439. // ggml_compute_forward_sub
  6440. static void ggml_compute_forward_sub_f32(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * src0,
  6443. const struct ggml_tensor * src1,
  6444. struct ggml_tensor * dst) {
  6445. assert(params->ith == 0);
  6446. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6448. return;
  6449. }
  6450. const int nr = ggml_nrows(src0);
  6451. const int64_t ne0 = src0->ne[0];
  6452. const int64_t ne1 = src0->ne[1];
  6453. const int64_t ne2 = src0->ne[2];
  6454. const size_t nb00 = src0->nb[0];
  6455. const size_t nb01 = src0->nb[1];
  6456. const size_t nb02 = src0->nb[2];
  6457. const size_t nb03 = src0->nb[3];
  6458. const size_t nb10 = src1->nb[0];
  6459. const size_t nb11 = src1->nb[1];
  6460. const size_t nb12 = src1->nb[2];
  6461. const size_t nb13 = src1->nb[3];
  6462. const size_t nb0 = dst->nb[0];
  6463. const size_t nb1 = dst->nb[1];
  6464. const size_t nb2 = dst->nb[2];
  6465. const size_t nb3 = dst->nb[3];
  6466. GGML_ASSERT( nb0 == sizeof(float));
  6467. GGML_ASSERT(nb00 == sizeof(float));
  6468. if (nb10 == sizeof(float)) {
  6469. for (int ir = 0; ir < nr; ++ir) {
  6470. // src0, src1 and dst are same shape => same indices
  6471. const int i3 = ir/(ne2*ne1);
  6472. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6473. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6474. #ifdef GGML_USE_ACCELERATE
  6475. vDSP_vsub(
  6476. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6477. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6478. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6479. ne0);
  6480. #else
  6481. ggml_vec_sub_f32(ne0,
  6482. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6483. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6484. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6485. #endif
  6486. // }
  6487. // }
  6488. }
  6489. } else {
  6490. // src1 is not contiguous
  6491. for (int ir = 0; ir < nr; ++ir) {
  6492. // src0, src1 and dst are same shape => same indices
  6493. const int i3 = ir/(ne2*ne1);
  6494. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6495. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6496. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6497. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6498. for (int i0 = 0; i0 < ne0; i0++) {
  6499. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6500. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6501. }
  6502. }
  6503. }
  6504. }
  6505. static void ggml_compute_forward_sub(
  6506. const struct ggml_compute_params * params,
  6507. const struct ggml_tensor * src0,
  6508. const struct ggml_tensor * src1,
  6509. struct ggml_tensor * dst) {
  6510. switch (src0->type) {
  6511. case GGML_TYPE_F32:
  6512. {
  6513. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6514. } break;
  6515. default:
  6516. {
  6517. GGML_ASSERT(false);
  6518. } break;
  6519. }
  6520. }
  6521. // ggml_compute_forward_mul
  6522. static void ggml_compute_forward_mul_f32(
  6523. const struct ggml_compute_params * params,
  6524. const struct ggml_tensor * src0,
  6525. const struct ggml_tensor * src1,
  6526. struct ggml_tensor * dst) {
  6527. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6528. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6529. return;
  6530. }
  6531. const int ith = params->ith;
  6532. const int nth = params->nth;
  6533. #ifdef GGML_USE_CUBLAS
  6534. if (src1->backend == GGML_BACKEND_CUDA) {
  6535. if (ith == 0) {
  6536. ggml_cuda_mul(src0, src1, dst);
  6537. }
  6538. return;
  6539. }
  6540. #endif
  6541. const int64_t nr = ggml_nrows(src0);
  6542. const int64_t ne00 = src0->ne[0];
  6543. const int64_t ne01 = src0->ne[1];
  6544. const int64_t ne02 = src0->ne[2];
  6545. const int64_t ne10 = src1->ne[0];
  6546. const int64_t ne11 = src1->ne[1];
  6547. const int64_t ne12 = src1->ne[2];
  6548. const int64_t ne13 = src1->ne[3];
  6549. const size_t nb00 = src0->nb[0];
  6550. const size_t nb01 = src0->nb[1];
  6551. const size_t nb02 = src0->nb[2];
  6552. const size_t nb03 = src0->nb[3];
  6553. const size_t nb10 = src1->nb[0];
  6554. const size_t nb11 = src1->nb[1];
  6555. const size_t nb12 = src1->nb[2];
  6556. const size_t nb13 = src1->nb[3];
  6557. const size_t nb0 = dst->nb[0];
  6558. const size_t nb1 = dst->nb[1];
  6559. const size_t nb2 = dst->nb[2];
  6560. const size_t nb3 = dst->nb[3];
  6561. GGML_ASSERT( nb0 == sizeof(float));
  6562. GGML_ASSERT(nb00 == sizeof(float));
  6563. GGML_ASSERT(ne00 == ne10);
  6564. if (nb10 == sizeof(float)) {
  6565. for (int64_t ir = ith; ir < nr; ir += nth) {
  6566. // src0 and dst are same shape => same indices
  6567. const int64_t i03 = ir/(ne02*ne01);
  6568. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6569. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6570. const int64_t i13 = i03 % ne13;
  6571. const int64_t i12 = i02 % ne12;
  6572. const int64_t i11 = i01 % ne11;
  6573. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6574. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6575. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6576. #ifdef GGML_USE_ACCELERATE
  6577. UNUSED(ggml_vec_mul_f32);
  6578. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6579. #else
  6580. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6581. #endif
  6582. // }
  6583. // }
  6584. }
  6585. } else {
  6586. // src1 is not contiguous
  6587. for (int64_t ir = ith; ir < nr; ir += nth) {
  6588. // src0 and dst are same shape => same indices
  6589. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6590. const int64_t i03 = ir/(ne02*ne01);
  6591. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6592. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6593. const int64_t i13 = i03 % ne13;
  6594. const int64_t i12 = i02 % ne12;
  6595. const int64_t i11 = i01 % ne11;
  6596. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6597. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6598. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6599. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6600. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6601. }
  6602. }
  6603. }
  6604. }
  6605. static void ggml_compute_forward_mul(
  6606. const struct ggml_compute_params * params,
  6607. const struct ggml_tensor * src0,
  6608. const struct ggml_tensor * src1,
  6609. struct ggml_tensor * dst) {
  6610. switch (src0->type) {
  6611. case GGML_TYPE_F32:
  6612. {
  6613. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6614. } break;
  6615. default:
  6616. {
  6617. GGML_ASSERT(false);
  6618. } break;
  6619. }
  6620. }
  6621. // ggml_compute_forward_div
  6622. static void ggml_compute_forward_div_f32(
  6623. const struct ggml_compute_params * params,
  6624. const struct ggml_tensor * src0,
  6625. const struct ggml_tensor * src1,
  6626. struct ggml_tensor * dst) {
  6627. assert(params->ith == 0);
  6628. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6630. return;
  6631. }
  6632. const int nr = ggml_nrows(src0);
  6633. const int64_t ne0 = src0->ne[0];
  6634. const int64_t ne1 = src0->ne[1];
  6635. const int64_t ne2 = src0->ne[2];
  6636. const size_t nb00 = src0->nb[0];
  6637. const size_t nb01 = src0->nb[1];
  6638. const size_t nb02 = src0->nb[2];
  6639. const size_t nb03 = src0->nb[3];
  6640. const size_t nb10 = src1->nb[0];
  6641. const size_t nb11 = src1->nb[1];
  6642. const size_t nb12 = src1->nb[2];
  6643. const size_t nb13 = src1->nb[3];
  6644. const size_t nb0 = dst->nb[0];
  6645. const size_t nb1 = dst->nb[1];
  6646. const size_t nb2 = dst->nb[2];
  6647. const size_t nb3 = dst->nb[3];
  6648. GGML_ASSERT( nb0 == sizeof(float));
  6649. GGML_ASSERT(nb00 == sizeof(float));
  6650. if (nb10 == sizeof(float)) {
  6651. for (int ir = 0; ir < nr; ++ir) {
  6652. // src0, src1 and dst are same shape => same indices
  6653. const int i3 = ir/(ne2*ne1);
  6654. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6655. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6656. #ifdef GGML_USE_ACCELERATE
  6657. vDSP_vdiv(
  6658. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6659. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6660. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6661. ne0);
  6662. #else
  6663. ggml_vec_div_f32(ne0,
  6664. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6665. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6666. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6667. #endif
  6668. // }
  6669. // }
  6670. }
  6671. } else {
  6672. // src1 is not contiguous
  6673. for (int ir = 0; ir < nr; ++ir) {
  6674. // src0, src1 and dst are same shape => same indices
  6675. const int i3 = ir/(ne2*ne1);
  6676. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6677. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6678. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6679. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6680. for (int i0 = 0; i0 < ne0; i0++) {
  6681. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6682. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6683. }
  6684. }
  6685. }
  6686. }
  6687. static void ggml_compute_forward_div(
  6688. const struct ggml_compute_params * params,
  6689. const struct ggml_tensor * src0,
  6690. const struct ggml_tensor * src1,
  6691. struct ggml_tensor * dst) {
  6692. switch (src0->type) {
  6693. case GGML_TYPE_F32:
  6694. {
  6695. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6696. } break;
  6697. default:
  6698. {
  6699. GGML_ASSERT(false);
  6700. } break;
  6701. }
  6702. }
  6703. // ggml_compute_forward_sqr
  6704. static void ggml_compute_forward_sqr_f32(
  6705. const struct ggml_compute_params * params,
  6706. const struct ggml_tensor * src0,
  6707. struct ggml_tensor * dst) {
  6708. assert(params->ith == 0);
  6709. assert(ggml_are_same_shape(src0, dst));
  6710. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6711. return;
  6712. }
  6713. const int n = ggml_nrows(src0);
  6714. const int nc = src0->ne[0];
  6715. assert( dst->nb[0] == sizeof(float));
  6716. assert(src0->nb[0] == sizeof(float));
  6717. for (int i = 0; i < n; i++) {
  6718. ggml_vec_sqr_f32(nc,
  6719. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6720. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6721. }
  6722. }
  6723. static void ggml_compute_forward_sqr(
  6724. const struct ggml_compute_params * params,
  6725. const struct ggml_tensor * src0,
  6726. struct ggml_tensor * dst) {
  6727. switch (src0->type) {
  6728. case GGML_TYPE_F32:
  6729. {
  6730. ggml_compute_forward_sqr_f32(params, src0, dst);
  6731. } break;
  6732. default:
  6733. {
  6734. GGML_ASSERT(false);
  6735. } break;
  6736. }
  6737. }
  6738. // ggml_compute_forward_sqrt
  6739. static void ggml_compute_forward_sqrt_f32(
  6740. const struct ggml_compute_params * params,
  6741. const struct ggml_tensor * src0,
  6742. struct ggml_tensor * dst) {
  6743. assert(params->ith == 0);
  6744. assert(ggml_are_same_shape(src0, dst));
  6745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6746. return;
  6747. }
  6748. const int n = ggml_nrows(src0);
  6749. const int nc = src0->ne[0];
  6750. assert( dst->nb[0] == sizeof(float));
  6751. assert(src0->nb[0] == sizeof(float));
  6752. for (int i = 0; i < n; i++) {
  6753. ggml_vec_sqrt_f32(nc,
  6754. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6755. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6756. }
  6757. }
  6758. static void ggml_compute_forward_sqrt(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * src0,
  6761. struct ggml_tensor * dst) {
  6762. switch (src0->type) {
  6763. case GGML_TYPE_F32:
  6764. {
  6765. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6766. } break;
  6767. default:
  6768. {
  6769. GGML_ASSERT(false);
  6770. } break;
  6771. }
  6772. }
  6773. // ggml_compute_forward_log
  6774. static void ggml_compute_forward_log_f32(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * src0,
  6777. struct ggml_tensor * dst) {
  6778. GGML_ASSERT(params->ith == 0);
  6779. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6781. return;
  6782. }
  6783. const int n = ggml_nrows(src0);
  6784. const int nc = src0->ne[0];
  6785. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6786. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6787. for (int i = 0; i < n; i++) {
  6788. ggml_vec_log_f32(nc,
  6789. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6790. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6791. }
  6792. }
  6793. static void ggml_compute_forward_log(
  6794. const struct ggml_compute_params * params,
  6795. const struct ggml_tensor * src0,
  6796. struct ggml_tensor * dst) {
  6797. switch (src0->type) {
  6798. case GGML_TYPE_F32:
  6799. {
  6800. ggml_compute_forward_log_f32(params, src0, dst);
  6801. } break;
  6802. default:
  6803. {
  6804. GGML_ASSERT(false);
  6805. } break;
  6806. }
  6807. }
  6808. // ggml_compute_forward_sum
  6809. static void ggml_compute_forward_sum_f32(
  6810. const struct ggml_compute_params * params,
  6811. const struct ggml_tensor * src0,
  6812. struct ggml_tensor * dst) {
  6813. assert(params->ith == 0);
  6814. assert(ggml_is_scalar(dst));
  6815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6816. return;
  6817. }
  6818. assert(ggml_is_scalar(dst));
  6819. assert(src0->nb[0] == sizeof(float));
  6820. const int64_t ne00 = src0->ne[0];
  6821. const int64_t ne01 = src0->ne[1];
  6822. const int64_t ne02 = src0->ne[2];
  6823. const int64_t ne03 = src0->ne[3];
  6824. const size_t nb01 = src0->nb[1];
  6825. const size_t nb02 = src0->nb[2];
  6826. const size_t nb03 = src0->nb[3];
  6827. ggml_float sum = 0;
  6828. ggml_float row_sum = 0;
  6829. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6830. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6831. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6832. ggml_vec_sum_ggf(ne00,
  6833. &row_sum,
  6834. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6835. sum += row_sum;
  6836. }
  6837. }
  6838. }
  6839. ((float *) dst->data)[0] = sum;
  6840. }
  6841. static void ggml_compute_forward_sum(
  6842. const struct ggml_compute_params * params,
  6843. const struct ggml_tensor * src0,
  6844. struct ggml_tensor * dst) {
  6845. switch (src0->type) {
  6846. case GGML_TYPE_F32:
  6847. {
  6848. ggml_compute_forward_sum_f32(params, src0, dst);
  6849. } break;
  6850. default:
  6851. {
  6852. GGML_ASSERT(false);
  6853. } break;
  6854. }
  6855. }
  6856. // ggml_compute_forward_sum_rows
  6857. static void ggml_compute_forward_sum_rows_f32(
  6858. const struct ggml_compute_params * params,
  6859. const struct ggml_tensor * src0,
  6860. struct ggml_tensor * dst) {
  6861. GGML_ASSERT(params->ith == 0);
  6862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6863. return;
  6864. }
  6865. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6866. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6867. const int64_t ne00 = src0->ne[0];
  6868. const int64_t ne01 = src0->ne[1];
  6869. const int64_t ne02 = src0->ne[2];
  6870. const int64_t ne03 = src0->ne[3];
  6871. const int64_t ne0 = dst->ne[0];
  6872. const int64_t ne1 = dst->ne[1];
  6873. const int64_t ne2 = dst->ne[2];
  6874. const int64_t ne3 = dst->ne[3];
  6875. GGML_ASSERT(ne0 == 1);
  6876. GGML_ASSERT(ne1 == ne01);
  6877. GGML_ASSERT(ne2 == ne02);
  6878. GGML_ASSERT(ne3 == ne03);
  6879. const size_t nb01 = src0->nb[1];
  6880. const size_t nb02 = src0->nb[2];
  6881. const size_t nb03 = src0->nb[3];
  6882. const size_t nb1 = dst->nb[1];
  6883. const size_t nb2 = dst->nb[2];
  6884. const size_t nb3 = dst->nb[3];
  6885. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6886. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6887. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6888. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6889. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6890. float row_sum = 0;
  6891. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6892. dst_row[0] = row_sum;
  6893. }
  6894. }
  6895. }
  6896. }
  6897. static void ggml_compute_forward_sum_rows(
  6898. const struct ggml_compute_params * params,
  6899. const struct ggml_tensor * src0,
  6900. struct ggml_tensor * dst) {
  6901. switch (src0->type) {
  6902. case GGML_TYPE_F32:
  6903. {
  6904. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6905. } break;
  6906. default:
  6907. {
  6908. GGML_ASSERT(false);
  6909. } break;
  6910. }
  6911. }
  6912. // ggml_compute_forward_mean
  6913. static void ggml_compute_forward_mean_f32(
  6914. const struct ggml_compute_params * params,
  6915. const struct ggml_tensor * src0,
  6916. struct ggml_tensor * dst) {
  6917. assert(params->ith == 0);
  6918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6919. return;
  6920. }
  6921. assert(src0->nb[0] == sizeof(float));
  6922. const int64_t ne00 = src0->ne[0];
  6923. const int64_t ne01 = src0->ne[1];
  6924. const int64_t ne02 = src0->ne[2];
  6925. const int64_t ne03 = src0->ne[3];
  6926. const size_t nb01 = src0->nb[1];
  6927. const size_t nb02 = src0->nb[2];
  6928. const size_t nb03 = src0->nb[3];
  6929. const int64_t ne0 = dst->ne[0];
  6930. const int64_t ne1 = dst->ne[1];
  6931. const int64_t ne2 = dst->ne[2];
  6932. const int64_t ne3 = dst->ne[3];
  6933. assert(ne0 == 1);
  6934. assert(ne1 == ne01);
  6935. assert(ne2 == ne02);
  6936. assert(ne3 == ne03);
  6937. UNUSED(ne0);
  6938. UNUSED(ne1);
  6939. UNUSED(ne2);
  6940. UNUSED(ne3);
  6941. const size_t nb1 = dst->nb[1];
  6942. const size_t nb2 = dst->nb[2];
  6943. const size_t nb3 = dst->nb[3];
  6944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6945. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6946. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6947. ggml_vec_sum_f32(ne00,
  6948. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6949. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6950. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6951. }
  6952. }
  6953. }
  6954. }
  6955. static void ggml_compute_forward_mean(
  6956. const struct ggml_compute_params * params,
  6957. const struct ggml_tensor * src0,
  6958. struct ggml_tensor * dst) {
  6959. switch (src0->type) {
  6960. case GGML_TYPE_F32:
  6961. {
  6962. ggml_compute_forward_mean_f32(params, src0, dst);
  6963. } break;
  6964. default:
  6965. {
  6966. GGML_ASSERT(false);
  6967. } break;
  6968. }
  6969. }
  6970. // ggml_compute_forward_repeat
  6971. static void ggml_compute_forward_repeat_f32(
  6972. const struct ggml_compute_params * params,
  6973. const struct ggml_tensor * src0,
  6974. struct ggml_tensor * dst) {
  6975. GGML_ASSERT(params->ith == 0);
  6976. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6978. return;
  6979. }
  6980. const int64_t ne0 = dst->ne[0];
  6981. const int64_t ne1 = dst->ne[1];
  6982. const int64_t ne2 = dst->ne[2];
  6983. const int64_t ne3 = dst->ne[3];
  6984. const int64_t ne00 = src0->ne[0];
  6985. const int64_t ne01 = src0->ne[1];
  6986. const int64_t ne02 = src0->ne[2];
  6987. const int64_t ne03 = src0->ne[3];
  6988. const size_t nb0 = dst->nb[0];
  6989. const size_t nb1 = dst->nb[1];
  6990. const size_t nb2 = dst->nb[2];
  6991. const size_t nb3 = dst->nb[3];
  6992. const size_t nb00 = src0->nb[0];
  6993. const size_t nb01 = src0->nb[1];
  6994. const size_t nb02 = src0->nb[2];
  6995. const size_t nb03 = src0->nb[3];
  6996. // guaranteed to be an integer due to the check in ggml_can_repeat
  6997. const int nr0 = (int)(ne0/ne00);
  6998. const int nr1 = (int)(ne1/ne01);
  6999. const int nr2 = (int)(ne2/ne02);
  7000. const int nr3 = (int)(ne3/ne03);
  7001. // TODO: support for transposed / permuted tensors
  7002. GGML_ASSERT(nb0 == sizeof(float));
  7003. GGML_ASSERT(nb00 == sizeof(float));
  7004. // TODO: maybe this is not optimal?
  7005. for (int i3 = 0; i3 < nr3; i3++) {
  7006. for (int k3 = 0; k3 < ne03; k3++) {
  7007. for (int i2 = 0; i2 < nr2; i2++) {
  7008. for (int k2 = 0; k2 < ne02; k2++) {
  7009. for (int i1 = 0; i1 < nr1; i1++) {
  7010. for (int k1 = 0; k1 < ne01; k1++) {
  7011. for (int i0 = 0; i0 < nr0; i0++) {
  7012. ggml_vec_cpy_f32(ne00,
  7013. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7014. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7015. }
  7016. }
  7017. }
  7018. }
  7019. }
  7020. }
  7021. }
  7022. }
  7023. static void ggml_compute_forward_repeat(
  7024. const struct ggml_compute_params * params,
  7025. const struct ggml_tensor * src0,
  7026. struct ggml_tensor * dst) {
  7027. switch (src0->type) {
  7028. case GGML_TYPE_F32:
  7029. {
  7030. ggml_compute_forward_repeat_f32(params, src0, dst);
  7031. } break;
  7032. default:
  7033. {
  7034. GGML_ASSERT(false);
  7035. } break;
  7036. }
  7037. }
  7038. // ggml_compute_forward_abs
  7039. static void ggml_compute_forward_abs_f32(
  7040. const struct ggml_compute_params * params,
  7041. const struct ggml_tensor * src0,
  7042. struct ggml_tensor * dst) {
  7043. assert(params->ith == 0);
  7044. assert(ggml_are_same_shape(src0, dst));
  7045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7046. return;
  7047. }
  7048. const int n = ggml_nrows(src0);
  7049. const int nc = src0->ne[0];
  7050. assert(dst->nb[0] == sizeof(float));
  7051. assert(src0->nb[0] == sizeof(float));
  7052. for (int i = 0; i < n; i++) {
  7053. ggml_vec_abs_f32(nc,
  7054. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7055. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7056. }
  7057. }
  7058. static void ggml_compute_forward_abs(
  7059. const struct ggml_compute_params * params,
  7060. const struct ggml_tensor * src0,
  7061. struct ggml_tensor * dst) {
  7062. switch (src0->type) {
  7063. case GGML_TYPE_F32:
  7064. {
  7065. ggml_compute_forward_abs_f32(params, src0, dst);
  7066. } break;
  7067. default:
  7068. {
  7069. GGML_ASSERT(false);
  7070. } break;
  7071. }
  7072. }
  7073. // ggml_compute_forward_sgn
  7074. static void ggml_compute_forward_sgn_f32(
  7075. const struct ggml_compute_params * params,
  7076. const struct ggml_tensor * src0,
  7077. struct ggml_tensor * dst) {
  7078. assert(params->ith == 0);
  7079. assert(ggml_are_same_shape(src0, dst));
  7080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7081. return;
  7082. }
  7083. const int n = ggml_nrows(src0);
  7084. const int nc = src0->ne[0];
  7085. assert(dst->nb[0] == sizeof(float));
  7086. assert(src0->nb[0] == sizeof(float));
  7087. for (int i = 0; i < n; i++) {
  7088. ggml_vec_sgn_f32(nc,
  7089. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7090. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7091. }
  7092. }
  7093. static void ggml_compute_forward_sgn(
  7094. const struct ggml_compute_params * params,
  7095. const struct ggml_tensor * src0,
  7096. struct ggml_tensor * dst) {
  7097. switch (src0->type) {
  7098. case GGML_TYPE_F32:
  7099. {
  7100. ggml_compute_forward_sgn_f32(params, src0, dst);
  7101. } break;
  7102. default:
  7103. {
  7104. GGML_ASSERT(false);
  7105. } break;
  7106. }
  7107. }
  7108. // ggml_compute_forward_neg
  7109. static void ggml_compute_forward_neg_f32(
  7110. const struct ggml_compute_params * params,
  7111. const struct ggml_tensor * src0,
  7112. struct ggml_tensor * dst) {
  7113. assert(params->ith == 0);
  7114. assert(ggml_are_same_shape(src0, dst));
  7115. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7116. return;
  7117. }
  7118. const int n = ggml_nrows(src0);
  7119. const int nc = src0->ne[0];
  7120. assert(dst->nb[0] == sizeof(float));
  7121. assert(src0->nb[0] == sizeof(float));
  7122. for (int i = 0; i < n; i++) {
  7123. ggml_vec_neg_f32(nc,
  7124. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7125. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7126. }
  7127. }
  7128. static void ggml_compute_forward_neg(
  7129. const struct ggml_compute_params * params,
  7130. const struct ggml_tensor * src0,
  7131. struct ggml_tensor * dst) {
  7132. switch (src0->type) {
  7133. case GGML_TYPE_F32:
  7134. {
  7135. ggml_compute_forward_neg_f32(params, src0, dst);
  7136. } break;
  7137. default:
  7138. {
  7139. GGML_ASSERT(false);
  7140. } break;
  7141. }
  7142. }
  7143. // ggml_compute_forward_step
  7144. static void ggml_compute_forward_step_f32(
  7145. const struct ggml_compute_params * params,
  7146. const struct ggml_tensor * src0,
  7147. struct ggml_tensor * dst) {
  7148. assert(params->ith == 0);
  7149. assert(ggml_are_same_shape(src0, dst));
  7150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7151. return;
  7152. }
  7153. const int n = ggml_nrows(src0);
  7154. const int nc = src0->ne[0];
  7155. assert(dst->nb[0] == sizeof(float));
  7156. assert(src0->nb[0] == sizeof(float));
  7157. for (int i = 0; i < n; i++) {
  7158. ggml_vec_step_f32(nc,
  7159. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7160. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7161. }
  7162. }
  7163. static void ggml_compute_forward_step(
  7164. const struct ggml_compute_params * params,
  7165. const struct ggml_tensor * src0,
  7166. struct ggml_tensor * dst) {
  7167. switch (src0->type) {
  7168. case GGML_TYPE_F32:
  7169. {
  7170. ggml_compute_forward_step_f32(params, src0, dst);
  7171. } break;
  7172. default:
  7173. {
  7174. GGML_ASSERT(false);
  7175. } break;
  7176. }
  7177. }
  7178. // ggml_compute_forward_relu
  7179. static void ggml_compute_forward_relu_f32(
  7180. const struct ggml_compute_params * params,
  7181. const struct ggml_tensor * src0,
  7182. struct ggml_tensor * dst) {
  7183. assert(params->ith == 0);
  7184. assert(ggml_are_same_shape(src0, dst));
  7185. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7186. return;
  7187. }
  7188. const int n = ggml_nrows(src0);
  7189. const int nc = src0->ne[0];
  7190. assert(dst->nb[0] == sizeof(float));
  7191. assert(src0->nb[0] == sizeof(float));
  7192. for (int i = 0; i < n; i++) {
  7193. ggml_vec_relu_f32(nc,
  7194. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7195. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7196. }
  7197. }
  7198. static void ggml_compute_forward_relu(
  7199. const struct ggml_compute_params * params,
  7200. const struct ggml_tensor * src0,
  7201. struct ggml_tensor * dst) {
  7202. switch (src0->type) {
  7203. case GGML_TYPE_F32:
  7204. {
  7205. ggml_compute_forward_relu_f32(params, src0, dst);
  7206. } break;
  7207. default:
  7208. {
  7209. GGML_ASSERT(false);
  7210. } break;
  7211. }
  7212. }
  7213. // ggml_compute_forward_gelu
  7214. static void ggml_compute_forward_gelu_f32(
  7215. const struct ggml_compute_params * params,
  7216. const struct ggml_tensor * src0,
  7217. struct ggml_tensor * dst) {
  7218. GGML_ASSERT(ggml_is_contiguous(src0));
  7219. GGML_ASSERT(ggml_is_contiguous(dst));
  7220. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7222. return;
  7223. }
  7224. const int ith = params->ith;
  7225. const int nth = params->nth;
  7226. const int nc = src0->ne[0];
  7227. const int nr = ggml_nrows(src0);
  7228. // rows per thread
  7229. const int dr = (nr + nth - 1)/nth;
  7230. // row range for this thread
  7231. const int ir0 = dr*ith;
  7232. const int ir1 = MIN(ir0 + dr, nr);
  7233. for (int i1 = ir0; i1 < ir1; i1++) {
  7234. ggml_vec_gelu_f32(nc,
  7235. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7236. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7237. #ifndef NDEBUG
  7238. for (int k = 0; k < nc; k++) {
  7239. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7240. UNUSED(x);
  7241. assert(!isnan(x));
  7242. assert(!isinf(x));
  7243. }
  7244. #endif
  7245. }
  7246. }
  7247. static void ggml_compute_forward_gelu(
  7248. const struct ggml_compute_params * params,
  7249. const struct ggml_tensor * src0,
  7250. struct ggml_tensor * dst) {
  7251. switch (src0->type) {
  7252. case GGML_TYPE_F32:
  7253. {
  7254. ggml_compute_forward_gelu_f32(params, src0, dst);
  7255. } break;
  7256. default:
  7257. {
  7258. GGML_ASSERT(false);
  7259. } break;
  7260. }
  7261. //printf("XXXXXXXX gelu\n");
  7262. }
  7263. // ggml_compute_forward_silu
  7264. static void ggml_compute_forward_silu_f32(
  7265. const struct ggml_compute_params * params,
  7266. const struct ggml_tensor * src0,
  7267. struct ggml_tensor * dst) {
  7268. GGML_ASSERT(ggml_is_contiguous(src0));
  7269. GGML_ASSERT(ggml_is_contiguous(dst));
  7270. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7272. return;
  7273. }
  7274. const int ith = params->ith;
  7275. const int nth = params->nth;
  7276. const int nc = src0->ne[0];
  7277. const int nr = ggml_nrows(src0);
  7278. // rows per thread
  7279. const int dr = (nr + nth - 1)/nth;
  7280. // row range for this thread
  7281. const int ir0 = dr*ith;
  7282. const int ir1 = MIN(ir0 + dr, nr);
  7283. for (int i1 = ir0; i1 < ir1; i1++) {
  7284. ggml_vec_silu_f32(nc,
  7285. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7286. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7287. #ifndef NDEBUG
  7288. for (int k = 0; k < nc; k++) {
  7289. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7290. UNUSED(x);
  7291. assert(!isnan(x));
  7292. assert(!isinf(x));
  7293. }
  7294. #endif
  7295. }
  7296. }
  7297. static void ggml_compute_forward_silu(
  7298. const struct ggml_compute_params * params,
  7299. const struct ggml_tensor * src0,
  7300. struct ggml_tensor * dst) {
  7301. switch (src0->type) {
  7302. case GGML_TYPE_F32:
  7303. {
  7304. ggml_compute_forward_silu_f32(params, src0, dst);
  7305. } break;
  7306. default:
  7307. {
  7308. GGML_ASSERT(false);
  7309. } break;
  7310. }
  7311. }
  7312. // ggml_compute_forward_silu_back
  7313. static void ggml_compute_forward_silu_back_f32(
  7314. const struct ggml_compute_params * params,
  7315. const struct ggml_tensor * src0,
  7316. const struct ggml_tensor * grad,
  7317. struct ggml_tensor * dst) {
  7318. GGML_ASSERT(ggml_is_contiguous(grad));
  7319. GGML_ASSERT(ggml_is_contiguous(src0));
  7320. GGML_ASSERT(ggml_is_contiguous(dst));
  7321. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7322. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7324. return;
  7325. }
  7326. const int ith = params->ith;
  7327. const int nth = params->nth;
  7328. const int nc = src0->ne[0];
  7329. const int nr = ggml_nrows(src0);
  7330. // rows per thread
  7331. const int dr = (nr + nth - 1)/nth;
  7332. // row range for this thread
  7333. const int ir0 = dr*ith;
  7334. const int ir1 = MIN(ir0 + dr, nr);
  7335. for (int i1 = ir0; i1 < ir1; i1++) {
  7336. ggml_vec_silu_backward_f32(nc,
  7337. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7338. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7339. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7340. #ifndef NDEBUG
  7341. for (int k = 0; k < nc; k++) {
  7342. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7343. UNUSED(x);
  7344. assert(!isnan(x));
  7345. assert(!isinf(x));
  7346. }
  7347. #endif
  7348. }
  7349. }
  7350. static void ggml_compute_forward_silu_back(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. const struct ggml_tensor * grad,
  7354. struct ggml_tensor * dst) {
  7355. switch (src0->type) {
  7356. case GGML_TYPE_F32:
  7357. {
  7358. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7359. } break;
  7360. default:
  7361. {
  7362. GGML_ASSERT(false);
  7363. } break;
  7364. }
  7365. }
  7366. // ggml_compute_forward_norm
  7367. static void ggml_compute_forward_norm_f32(
  7368. const struct ggml_compute_params * params,
  7369. const struct ggml_tensor * src0,
  7370. struct ggml_tensor * dst) {
  7371. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7376. const int ith = params->ith;
  7377. const int nth = params->nth;
  7378. const int64_t ne00 = src0->ne[0];
  7379. const int64_t ne01 = src0->ne[1];
  7380. const int64_t ne02 = src0->ne[2];
  7381. const int64_t ne03 = src0->ne[3];
  7382. const size_t nb01 = src0->nb[1];
  7383. const size_t nb02 = src0->nb[2];
  7384. const size_t nb03 = src0->nb[3];
  7385. const size_t nb1 = dst->nb[1];
  7386. const size_t nb2 = dst->nb[2];
  7387. const size_t nb3 = dst->nb[3];
  7388. const float eps = 1e-5f; // TODO: make this a parameter
  7389. // TODO: optimize
  7390. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7391. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7392. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7393. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7394. ggml_float sum = 0.0;
  7395. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7396. sum += (ggml_float)x[i00];
  7397. }
  7398. float mean = sum/ne00;
  7399. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7400. ggml_float sum2 = 0.0;
  7401. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7402. float v = x[i00] - mean;
  7403. y[i00] = v;
  7404. sum2 += (ggml_float)(v*v);
  7405. }
  7406. float variance = sum2/ne00;
  7407. const float scale = 1.0f/sqrtf(variance + eps);
  7408. ggml_vec_scale_f32(ne00, y, scale);
  7409. }
  7410. }
  7411. }
  7412. }
  7413. static void ggml_compute_forward_norm(
  7414. const struct ggml_compute_params * params,
  7415. const struct ggml_tensor * src0,
  7416. struct ggml_tensor * dst) {
  7417. switch (src0->type) {
  7418. case GGML_TYPE_F32:
  7419. {
  7420. ggml_compute_forward_norm_f32(params, src0, dst);
  7421. } break;
  7422. default:
  7423. {
  7424. GGML_ASSERT(false);
  7425. } break;
  7426. }
  7427. }
  7428. static void ggml_compute_forward_rms_norm_f32(
  7429. const struct ggml_compute_params * params,
  7430. const struct ggml_tensor * src0,
  7431. struct ggml_tensor * dst) {
  7432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7434. return;
  7435. }
  7436. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7437. const int ith = params->ith;
  7438. const int nth = params->nth;
  7439. const int64_t ne00 = src0->ne[0];
  7440. const int64_t ne01 = src0->ne[1];
  7441. const int64_t ne02 = src0->ne[2];
  7442. const int64_t ne03 = src0->ne[3];
  7443. const size_t nb01 = src0->nb[1];
  7444. const size_t nb02 = src0->nb[2];
  7445. const size_t nb03 = src0->nb[3];
  7446. const size_t nb1 = dst->nb[1];
  7447. const size_t nb2 = dst->nb[2];
  7448. const size_t nb3 = dst->nb[3];
  7449. const float eps = 1e-6f; // TODO: make this a parameter
  7450. // TODO: optimize
  7451. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7452. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7453. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7454. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7455. ggml_float sum = 0.0;
  7456. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7457. sum += (ggml_float)(x[i00] * x[i00]);
  7458. }
  7459. float mean = sum/ne00;
  7460. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7461. memcpy(y, x, ne00 * sizeof(float));
  7462. // for (int i00 = 0; i00 < ne00; i00++) {
  7463. // y[i00] = x[i00];
  7464. // }
  7465. const float scale = 1.0f/sqrtf(mean + eps);
  7466. ggml_vec_scale_f32(ne00, y, scale);
  7467. }
  7468. }
  7469. }
  7470. }
  7471. static void ggml_compute_forward_rms_norm(
  7472. const struct ggml_compute_params * params,
  7473. const struct ggml_tensor * src0,
  7474. struct ggml_tensor * dst) {
  7475. switch (src0->type) {
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. static void ggml_compute_forward_rms_norm_back_f32(
  7487. const struct ggml_compute_params * params,
  7488. const struct ggml_tensor * src0,
  7489. const struct ggml_tensor * src1,
  7490. struct ggml_tensor * dst) {
  7491. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7493. return;
  7494. }
  7495. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7496. const int ith = params->ith;
  7497. const int nth = params->nth;
  7498. const int64_t ne00 = src0->ne[0];
  7499. const int64_t ne01 = src0->ne[1];
  7500. const int64_t ne02 = src0->ne[2];
  7501. const int64_t ne03 = src0->ne[3];
  7502. const size_t nb01 = src0->nb[1];
  7503. const size_t nb02 = src0->nb[2];
  7504. const size_t nb03 = src0->nb[3];
  7505. const size_t nb11 = src1->nb[1];
  7506. const size_t nb12 = src1->nb[2];
  7507. const size_t nb13 = src1->nb[3];
  7508. const size_t nb1 = dst->nb[1];
  7509. const size_t nb2 = dst->nb[2];
  7510. const size_t nb3 = dst->nb[3];
  7511. const float eps = 1e-6f; // TODO: make this a parameter
  7512. // TODO: optimize
  7513. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7514. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7515. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7516. // src1 is same shape as src0 => same indices
  7517. const int64_t i11 = i01;
  7518. const int64_t i12 = i02;
  7519. const int64_t i13 = i03;
  7520. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7521. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7522. ggml_float sum_xx = 0.0;
  7523. ggml_float sum_xdz = 0.0;
  7524. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7525. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7526. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7527. }
  7528. //const float mean = (float)(sum_xx)/ne00;
  7529. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7530. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7531. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7532. // we could cache rms from forward pass to improve performance.
  7533. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7534. //const float rms = sqrtf(mean_eps);
  7535. const float rrms = 1.0f / sqrtf(mean_eps);
  7536. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7537. {
  7538. // z = rms_norm(x)
  7539. //
  7540. // rms_norm(src0) =
  7541. // scale(
  7542. // src0,
  7543. // div(
  7544. // 1,
  7545. // sqrt(
  7546. // add(
  7547. // scale(
  7548. // sum(
  7549. // sqr(
  7550. // src0)),
  7551. // (1.0/N)),
  7552. // eps))));
  7553. // postorder:
  7554. // ## op args grad
  7555. // 00 param src0 grad[#00]
  7556. // 01 const 1
  7557. // 02 sqr (#00) grad[#02]
  7558. // 03 sum (#02) grad[#03]
  7559. // 04 const 1/N
  7560. // 05 scale (#03, #04) grad[#05]
  7561. // 06 const eps
  7562. // 07 add (#05, #06) grad[#07]
  7563. // 08 sqrt (#07) grad[#08]
  7564. // 09 div (#01,#08) grad[#09]
  7565. // 10 scale (#00,#09) grad[#10]
  7566. //
  7567. // backward pass, given grad[#10]
  7568. // #10: scale
  7569. // grad[#00] += scale(grad[#10],#09)
  7570. // grad[#09] += sum(mul(grad[#10],#00))
  7571. // #09: div
  7572. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7573. // #08: sqrt
  7574. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7575. // #07: add
  7576. // grad[#05] += grad[#07]
  7577. // #05: scale
  7578. // grad[#03] += scale(grad[#05],#04)
  7579. // #03: sum
  7580. // grad[#02] += repeat(grad[#03], #02)
  7581. // #02:
  7582. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7583. //
  7584. // substitute and simplify:
  7585. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7586. // grad[#02] = repeat(grad[#03], #02)
  7587. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7588. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7589. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7590. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7591. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7592. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7593. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7594. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7595. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7596. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7597. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7598. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7599. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7600. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7601. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7602. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7603. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7604. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7605. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7606. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7607. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7608. // a = b*c + d*e
  7609. // a = b*c*f/f + d*e*f/f
  7610. // a = (b*c*f + d*e*f)*(1/f)
  7611. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7612. // a = (b + d*e/c)*c
  7613. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7614. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7615. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7616. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7617. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7618. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7619. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7620. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7621. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7622. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7623. }
  7624. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7625. // post-order:
  7626. // dx := x
  7627. // dx := scale(dx,-mean_xdz/mean_eps)
  7628. // dx := add(dx, dz)
  7629. // dx := scale(dx, rrms)
  7630. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7631. ggml_vec_cpy_f32 (ne00, dx, x);
  7632. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7633. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7634. ggml_vec_acc_f32 (ne00, dx, dz);
  7635. ggml_vec_scale_f32(ne00, dx, rrms);
  7636. }
  7637. }
  7638. }
  7639. }
  7640. static void ggml_compute_forward_rms_norm_back(
  7641. const struct ggml_compute_params * params,
  7642. const struct ggml_tensor * src0,
  7643. const struct ggml_tensor * src1,
  7644. struct ggml_tensor * dst) {
  7645. switch (src0->type) {
  7646. case GGML_TYPE_F32:
  7647. {
  7648. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7649. } break;
  7650. default:
  7651. {
  7652. GGML_ASSERT(false);
  7653. } break;
  7654. }
  7655. }
  7656. // ggml_compute_forward_mul_mat
  7657. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7658. // helper function to determine if it is better to use BLAS or not
  7659. // for large matrices, BLAS is faster
  7660. static bool ggml_compute_forward_mul_mat_use_blas(
  7661. const struct ggml_tensor * src0,
  7662. const struct ggml_tensor * src1,
  7663. struct ggml_tensor * dst) {
  7664. //const int64_t ne00 = src0->ne[0];
  7665. //const int64_t ne01 = src0->ne[1];
  7666. const int64_t ne10 = src1->ne[0];
  7667. const int64_t ne0 = dst->ne[0];
  7668. const int64_t ne1 = dst->ne[1];
  7669. // TODO: find the optimal values for these
  7670. if (ggml_is_contiguous(src0) &&
  7671. ggml_is_contiguous(src1) &&
  7672. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7673. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7674. return true;
  7675. }
  7676. return false;
  7677. }
  7678. #endif
  7679. static void ggml_compute_forward_mul_mat_f32(
  7680. const struct ggml_compute_params * params,
  7681. const struct ggml_tensor * src0,
  7682. const struct ggml_tensor * src1,
  7683. struct ggml_tensor * dst) {
  7684. int64_t t0 = ggml_perf_time_us();
  7685. UNUSED(t0);
  7686. const int64_t ne00 = src0->ne[0];
  7687. const int64_t ne01 = src0->ne[1];
  7688. const int64_t ne02 = src0->ne[2];
  7689. const int64_t ne03 = src0->ne[3];
  7690. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7691. const int64_t ne10 = src1->ne[0];
  7692. #endif
  7693. const int64_t ne11 = src1->ne[1];
  7694. #ifndef NDEBUG
  7695. const int64_t ne12 = src1->ne[2];
  7696. const int64_t ne13 = src1->ne[3];
  7697. const int64_t ne0 = dst->ne[0];
  7698. const int64_t ne1 = dst->ne[1];
  7699. const int64_t ne2 = dst->ne[2];
  7700. const int64_t ne3 = dst->ne[3];
  7701. const int nb00 = src0->nb[0];
  7702. #endif
  7703. const int nb01 = src0->nb[1];
  7704. const int nb02 = src0->nb[2];
  7705. const int nb03 = src0->nb[3];
  7706. #ifndef NDEBUG
  7707. const int nb10 = src1->nb[0];
  7708. #endif
  7709. const int nb11 = src1->nb[1];
  7710. const int nb12 = src1->nb[2];
  7711. const int nb13 = src1->nb[3];
  7712. const int nb0 = dst->nb[0];
  7713. const int nb1 = dst->nb[1];
  7714. const int nb2 = dst->nb[2];
  7715. const int nb3 = dst->nb[3];
  7716. const int ith = params->ith;
  7717. const int nth = params->nth;
  7718. assert(ne02 == ne12);
  7719. assert(ne03 == ne13);
  7720. assert(ne2 == ne12);
  7721. assert(ne3 == ne13);
  7722. // we don't support permuted src0 or src1
  7723. assert(nb00 == sizeof(float));
  7724. assert(nb10 == sizeof(float));
  7725. // dst cannot be transposed or permuted
  7726. assert(nb0 == sizeof(float));
  7727. assert(nb0 <= nb1);
  7728. assert(nb1 <= nb2);
  7729. assert(nb2 <= nb3);
  7730. assert(ne0 == ne01);
  7731. assert(ne1 == ne11);
  7732. assert(ne2 == ne02);
  7733. assert(ne3 == ne03);
  7734. // nb01 >= nb00 - src0 is not transposed
  7735. // compute by src0 rows
  7736. #if defined(GGML_USE_CUBLAS)
  7737. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7738. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7739. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7740. }
  7741. return;
  7742. }
  7743. #elif defined(GGML_USE_CLBLAST)
  7744. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7745. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7746. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7747. }
  7748. return;
  7749. }
  7750. #endif
  7751. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7752. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7753. if (params->ith != 0) {
  7754. return;
  7755. }
  7756. if (params->type == GGML_TASK_INIT) {
  7757. return;
  7758. }
  7759. if (params->type == GGML_TASK_FINALIZE) {
  7760. return;
  7761. }
  7762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7764. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7765. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7766. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7767. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7768. ne11, ne01, ne10,
  7769. 1.0f, y, ne10,
  7770. x, ne00,
  7771. 0.0f, d, ne01);
  7772. }
  7773. }
  7774. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7775. return;
  7776. }
  7777. #endif
  7778. if (params->type == GGML_TASK_INIT) {
  7779. return;
  7780. }
  7781. if (params->type == GGML_TASK_FINALIZE) {
  7782. return;
  7783. }
  7784. // parallelize by src0 rows using ggml_vec_dot_f32
  7785. // total rows in src0
  7786. const int nr = ne01*ne02*ne03;
  7787. // rows per thread
  7788. const int dr = (nr + nth - 1)/nth;
  7789. // row range for this thread
  7790. const int ir0 = dr*ith;
  7791. const int ir1 = MIN(ir0 + dr, nr);
  7792. for (int ir = ir0; ir < ir1; ++ir) {
  7793. // src0 indices
  7794. const int i03 = ir/(ne02*ne01);
  7795. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7796. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7797. for (int64_t ic = 0; ic < ne11; ++ic) {
  7798. // src1 indices
  7799. const int i13 = i03;
  7800. const int i12 = i02;
  7801. const int i11 = ic;
  7802. // dst indices
  7803. const int i0 = i01;
  7804. const int i1 = i11;
  7805. const int i2 = i02;
  7806. const int i3 = i03;
  7807. ggml_vec_dot_f32(ne00,
  7808. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7809. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7810. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7811. }
  7812. }
  7813. //int64_t t1 = ggml_perf_time_us();
  7814. //static int64_t acc = 0;
  7815. //acc += t1 - t0;
  7816. //if (t1 - t0 > 10) {
  7817. // printf("\n");
  7818. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7819. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7820. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7821. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7822. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7823. //}
  7824. }
  7825. static void ggml_compute_forward_mul_mat_f16_f32(
  7826. const struct ggml_compute_params * params,
  7827. const struct ggml_tensor * src0,
  7828. const struct ggml_tensor * src1,
  7829. struct ggml_tensor * dst) {
  7830. int64_t t0 = ggml_perf_time_us();
  7831. UNUSED(t0);
  7832. const int64_t ne00 = src0->ne[0];
  7833. const int64_t ne01 = src0->ne[1];
  7834. const int64_t ne02 = src0->ne[2];
  7835. const int64_t ne03 = src0->ne[3];
  7836. const int64_t ne10 = src1->ne[0];
  7837. const int64_t ne11 = src1->ne[1];
  7838. const int64_t ne12 = src1->ne[2];
  7839. const int64_t ne13 = src1->ne[3];
  7840. const int64_t ne0 = dst->ne[0];
  7841. const int64_t ne1 = dst->ne[1];
  7842. const int64_t ne2 = dst->ne[2];
  7843. const int64_t ne3 = dst->ne[3];
  7844. //const int64_t ne = ne0*ne1*ne2*ne3;
  7845. const int nb00 = src0->nb[0];
  7846. const int nb01 = src0->nb[1];
  7847. const int nb02 = src0->nb[2];
  7848. const int nb03 = src0->nb[3];
  7849. const int nb10 = src1->nb[0];
  7850. const int nb11 = src1->nb[1];
  7851. const int nb12 = src1->nb[2];
  7852. const int nb13 = src1->nb[3];
  7853. const int nb0 = dst->nb[0];
  7854. const int nb1 = dst->nb[1];
  7855. const int nb2 = dst->nb[2];
  7856. const int nb3 = dst->nb[3];
  7857. const int ith = params->ith;
  7858. const int nth = params->nth;
  7859. GGML_ASSERT(ne02 == ne12);
  7860. GGML_ASSERT(ne03 == ne13);
  7861. GGML_ASSERT(ne2 == ne12);
  7862. GGML_ASSERT(ne3 == ne13);
  7863. // TODO: we don't support permuted src0
  7864. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7865. // dst cannot be transposed or permuted
  7866. GGML_ASSERT(nb0 == sizeof(float));
  7867. GGML_ASSERT(nb0 <= nb1);
  7868. GGML_ASSERT(nb1 <= nb2);
  7869. GGML_ASSERT(nb2 <= nb3);
  7870. GGML_ASSERT(ne0 == ne01);
  7871. GGML_ASSERT(ne1 == ne11);
  7872. GGML_ASSERT(ne2 == ne02);
  7873. GGML_ASSERT(ne3 == ne03);
  7874. // nb01 >= nb00 - src0 is not transposed
  7875. // compute by src0 rows
  7876. #if defined(GGML_USE_CUBLAS)
  7877. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7878. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7879. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7880. }
  7881. return;
  7882. }
  7883. #elif defined(GGML_USE_CLBLAST)
  7884. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7885. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7886. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7887. }
  7888. return;
  7889. }
  7890. #endif
  7891. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7892. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7893. GGML_ASSERT(nb10 == sizeof(float));
  7894. if (params->ith != 0) {
  7895. return;
  7896. }
  7897. if (params->type == GGML_TASK_INIT) {
  7898. return;
  7899. }
  7900. if (params->type == GGML_TASK_FINALIZE) {
  7901. return;
  7902. }
  7903. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7904. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7905. float * const wdata = params->wdata;
  7906. {
  7907. size_t id = 0;
  7908. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7909. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7910. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7911. }
  7912. }
  7913. assert(id*sizeof(float) <= params->wsize);
  7914. }
  7915. const float * x = wdata;
  7916. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7917. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7918. // zT = y * xT
  7919. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7920. ne11, ne01, ne10,
  7921. 1.0f, y, ne10,
  7922. x, ne00,
  7923. 0.0f, d, ne01);
  7924. }
  7925. }
  7926. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7927. return;
  7928. }
  7929. #endif
  7930. if (params->type == GGML_TASK_INIT) {
  7931. ggml_fp16_t * const wdata = params->wdata;
  7932. size_t id = 0;
  7933. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7934. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7935. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7936. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7937. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7938. }
  7939. }
  7940. }
  7941. }
  7942. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7943. return;
  7944. }
  7945. if (params->type == GGML_TASK_FINALIZE) {
  7946. return;
  7947. }
  7948. // fp16 -> half the size, so divide by 2
  7949. // TODO: do not support transposed src1
  7950. assert(nb10/2 == sizeof(ggml_fp16_t));
  7951. // parallelize by src0 rows using ggml_vec_dot_f16
  7952. // total rows in src0
  7953. const int nr = ne01*ne02*ne03;
  7954. // rows per thread
  7955. const int dr = (nr + nth - 1)/nth;
  7956. // row range for this thread
  7957. const int ir0 = dr*ith;
  7958. const int ir1 = MIN(ir0 + dr, nr);
  7959. ggml_fp16_t * wdata = params->wdata;
  7960. for (int ir = ir0; ir < ir1; ++ir) {
  7961. // src0 indices
  7962. const int i03 = ir/(ne02*ne01);
  7963. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7964. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7965. const int i13 = i03;
  7966. const int i12 = i02;
  7967. const int i0 = i01;
  7968. const int i2 = i02;
  7969. const int i3 = i03;
  7970. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7971. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7972. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7973. for (int64_t ic = 0; ic < ne11; ++ic) {
  7974. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7975. }
  7976. }
  7977. //int64_t t1 = ggml_time_us();
  7978. //static int64_t acc = 0;
  7979. //acc += t1 - t0;
  7980. //if (t1 - t0 > 10) {
  7981. // printf("\n");
  7982. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7983. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7984. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7985. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7986. //}
  7987. }
  7988. static void ggml_compute_forward_mul_mat_q_f32(
  7989. const struct ggml_compute_params * params,
  7990. const struct ggml_tensor * src0,
  7991. const struct ggml_tensor * src1,
  7992. struct ggml_tensor * dst) {
  7993. int64_t t0 = ggml_perf_time_us();
  7994. UNUSED(t0);
  7995. const int64_t ne00 = src0->ne[0];
  7996. const int64_t ne01 = src0->ne[1];
  7997. const int64_t ne02 = src0->ne[2];
  7998. const int64_t ne03 = src0->ne[3];
  7999. const int64_t ne10 = src1->ne[0];
  8000. const int64_t ne11 = src1->ne[1];
  8001. const int64_t ne12 = src1->ne[2];
  8002. const int64_t ne13 = src1->ne[3];
  8003. const int64_t ne0 = dst->ne[0];
  8004. const int64_t ne1 = dst->ne[1];
  8005. const int64_t ne2 = dst->ne[2];
  8006. const int64_t ne3 = dst->ne[3];
  8007. const int nb00 = src0->nb[0];
  8008. const int nb01 = src0->nb[1];
  8009. const int nb02 = src0->nb[2];
  8010. const int nb03 = src0->nb[3];
  8011. const int nb10 = src1->nb[0];
  8012. const int nb11 = src1->nb[1];
  8013. const int nb12 = src1->nb[2];
  8014. const int nb13 = src1->nb[3];
  8015. const int nb0 = dst->nb[0];
  8016. const int nb1 = dst->nb[1];
  8017. const int nb2 = dst->nb[2];
  8018. const int nb3 = dst->nb[3];
  8019. const int ith = params->ith;
  8020. const int nth = params->nth;
  8021. GGML_ASSERT(ne02 == ne12);
  8022. GGML_ASSERT(ne03 == ne13);
  8023. GGML_ASSERT(ne2 == ne12);
  8024. GGML_ASSERT(ne3 == ne13);
  8025. const enum ggml_type type = src0->type;
  8026. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8027. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8028. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8029. // we don't support permuted src0 or src1
  8030. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8031. GGML_ASSERT(nb10 == sizeof(float));
  8032. // dst cannot be transposed or permuted
  8033. GGML_ASSERT(nb0 == sizeof(float));
  8034. GGML_ASSERT(nb0 <= nb1);
  8035. GGML_ASSERT(nb1 <= nb2);
  8036. GGML_ASSERT(nb2 <= nb3);
  8037. GGML_ASSERT(ne0 == ne01);
  8038. GGML_ASSERT(ne1 == ne11);
  8039. GGML_ASSERT(ne2 == ne02);
  8040. GGML_ASSERT(ne3 == ne03);
  8041. // nb01 >= nb00 - src0 is not transposed
  8042. // compute by src0 rows
  8043. #if defined(GGML_USE_CUBLAS)
  8044. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8045. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8046. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8047. }
  8048. return;
  8049. }
  8050. #elif defined(GGML_USE_CLBLAST)
  8051. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8052. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8053. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8054. }
  8055. return;
  8056. }
  8057. #endif
  8058. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8059. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8060. if (params->ith != 0) {
  8061. return;
  8062. }
  8063. if (params->type == GGML_TASK_INIT) {
  8064. return;
  8065. }
  8066. if (params->type == GGML_TASK_FINALIZE) {
  8067. return;
  8068. }
  8069. float * const wdata = params->wdata;
  8070. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8073. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8074. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8075. {
  8076. size_t id = 0;
  8077. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8078. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8079. id += ne00;
  8080. }
  8081. assert(id*sizeof(float) <= params->wsize);
  8082. }
  8083. const float * x = wdata;
  8084. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8085. ne11, ne01, ne10,
  8086. 1.0f, y, ne10,
  8087. x, ne00,
  8088. 0.0f, d, ne01);
  8089. }
  8090. }
  8091. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8092. return;
  8093. }
  8094. #endif
  8095. if (params->type == GGML_TASK_INIT) {
  8096. char * wdata = params->wdata;
  8097. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8098. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8099. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8100. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8101. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8102. wdata += row_size;
  8103. }
  8104. }
  8105. }
  8106. return;
  8107. }
  8108. if (params->type == GGML_TASK_FINALIZE) {
  8109. return;
  8110. }
  8111. // parallelize by src0 rows using ggml_vec_dot_q
  8112. // total rows in src0
  8113. const int nr = ne01*ne02*ne03;
  8114. // rows per thread
  8115. const int dr = (nr + nth - 1)/nth;
  8116. // row range for this thread
  8117. const int ir0 = dr*ith;
  8118. const int ir1 = MIN(ir0 + dr, nr);
  8119. void * wdata = params->wdata;
  8120. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8121. for (int ir = ir0; ir < ir1; ++ir) {
  8122. // src0 indices
  8123. const int i03 = ir/(ne02*ne01);
  8124. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8125. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8126. const int i13 = i03;
  8127. const int i12 = i02;
  8128. const int i0 = i01;
  8129. const int i2 = i02;
  8130. const int i3 = i03;
  8131. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8132. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8133. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8134. assert(ne00 % 32 == 0);
  8135. for (int64_t ic = 0; ic < ne11; ++ic) {
  8136. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8137. }
  8138. }
  8139. //int64_t t1 = ggml_time_us();
  8140. //static int64_t acc = 0;
  8141. //acc += t1 - t0;
  8142. //if (t1 - t0 > 10) {
  8143. // printf("\n");
  8144. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8145. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8146. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8147. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8148. //}
  8149. }
  8150. static void ggml_compute_forward_mul_mat(
  8151. const struct ggml_compute_params * params,
  8152. const struct ggml_tensor * src0,
  8153. const struct ggml_tensor * src1,
  8154. struct ggml_tensor * dst) {
  8155. switch (src0->type) {
  8156. case GGML_TYPE_Q4_0:
  8157. case GGML_TYPE_Q4_1:
  8158. case GGML_TYPE_Q5_0:
  8159. case GGML_TYPE_Q5_1:
  8160. case GGML_TYPE_Q8_0:
  8161. case GGML_TYPE_Q8_1:
  8162. {
  8163. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8164. } break;
  8165. case GGML_TYPE_F16:
  8166. {
  8167. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8168. } break;
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_scale
  8180. static void ggml_compute_forward_scale_f32(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. struct ggml_tensor * dst) {
  8185. GGML_ASSERT(ggml_is_contiguous(src0));
  8186. GGML_ASSERT(ggml_is_contiguous(dst));
  8187. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8188. GGML_ASSERT(ggml_is_scalar(src1));
  8189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8190. return;
  8191. }
  8192. // scale factor
  8193. const float v = *(float *) src1->data;
  8194. const int ith = params->ith;
  8195. const int nth = params->nth;
  8196. const int nc = src0->ne[0];
  8197. const int nr = ggml_nrows(src0);
  8198. // rows per thread
  8199. const int dr = (nr + nth - 1)/nth;
  8200. // row range for this thread
  8201. const int ir0 = dr*ith;
  8202. const int ir1 = MIN(ir0 + dr, nr);
  8203. const size_t nb01 = src0->nb[1];
  8204. const size_t nb1 = dst->nb[1];
  8205. for (int i1 = ir0; i1 < ir1; i1++) {
  8206. if (dst->data != src0->data) {
  8207. // src0 is same shape as dst => same indices
  8208. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8209. }
  8210. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8211. }
  8212. }
  8213. static void ggml_compute_forward_scale(
  8214. const struct ggml_compute_params * params,
  8215. const struct ggml_tensor * src0,
  8216. const struct ggml_tensor * src1,
  8217. struct ggml_tensor * dst) {
  8218. switch (src0->type) {
  8219. case GGML_TYPE_F32:
  8220. {
  8221. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8222. } break;
  8223. default:
  8224. {
  8225. GGML_ASSERT(false);
  8226. } break;
  8227. }
  8228. }
  8229. // ggml_compute_forward_set
  8230. static void ggml_compute_forward_set_f32(
  8231. const struct ggml_compute_params * params,
  8232. const struct ggml_tensor * src0,
  8233. const struct ggml_tensor * src1,
  8234. const struct ggml_tensor * opt0,
  8235. struct ggml_tensor * dst) {
  8236. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8237. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8238. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8239. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8240. // view src0 and dst with these strides and data offset inbytes during set
  8241. // nb0 is implicitely element_size because src0 and dst are contiguous
  8242. size_t nb1 = ((int32_t *) opt0->data)[0];
  8243. size_t nb2 = ((int32_t *) opt0->data)[1];
  8244. size_t nb3 = ((int32_t *) opt0->data)[2];
  8245. size_t offset = ((int32_t *) opt0->data)[3];
  8246. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8247. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8248. // memcpy needs to be synchronized across threads to avoid race conditions.
  8249. // => do it in INIT phase
  8250. memcpy(
  8251. ((char *) dst->data),
  8252. ((char *) src0->data),
  8253. ggml_nbytes(dst));
  8254. }
  8255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8256. return;
  8257. }
  8258. const int ith = params->ith;
  8259. const int nth = params->nth;
  8260. const int nr = ggml_nrows(src1);
  8261. const int nc = src1->ne[0];
  8262. const int64_t ne10 = src1->ne[0];
  8263. const int64_t ne11 = src1->ne[1];
  8264. const int64_t ne12 = src1->ne[2];
  8265. const int64_t ne13 = src1->ne[3];
  8266. const size_t nb10 = src1->nb[0];
  8267. const size_t nb11 = src1->nb[1];
  8268. const size_t nb12 = src1->nb[2];
  8269. const size_t nb13 = src1->nb[3];
  8270. // src0 and dst as viewed during set
  8271. const size_t nb0 = ggml_element_size(src0);
  8272. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8273. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8274. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8275. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8276. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8277. GGML_ASSERT(nb10 == sizeof(float));
  8278. // rows per thread
  8279. const int dr = (nr + nth - 1)/nth;
  8280. // row range for this thread
  8281. const int ir0 = dr*ith;
  8282. const int ir1 = MIN(ir0 + dr, nr);
  8283. for (int ir = ir0; ir < ir1; ++ir) {
  8284. // src0 and dst are viewed with shape of src1 and offset
  8285. // => same indices
  8286. const int i3 = ir/(ne12*ne11);
  8287. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8288. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8289. ggml_vec_cpy_f32(nc,
  8290. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8291. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8292. }
  8293. }
  8294. static void ggml_compute_forward_set(
  8295. const struct ggml_compute_params * params,
  8296. const struct ggml_tensor * src0,
  8297. const struct ggml_tensor * src1,
  8298. const struct ggml_tensor * opt0,
  8299. struct ggml_tensor * dst) {
  8300. switch (src0->type) {
  8301. case GGML_TYPE_F32:
  8302. {
  8303. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8304. } break;
  8305. case GGML_TYPE_F16:
  8306. case GGML_TYPE_Q4_0:
  8307. case GGML_TYPE_Q4_1:
  8308. case GGML_TYPE_Q5_0:
  8309. case GGML_TYPE_Q5_1:
  8310. case GGML_TYPE_Q8_0:
  8311. case GGML_TYPE_Q8_1:
  8312. default:
  8313. {
  8314. GGML_ASSERT(false);
  8315. } break;
  8316. }
  8317. }
  8318. // ggml_compute_forward_cpy
  8319. static void ggml_compute_forward_cpy(
  8320. const struct ggml_compute_params * params,
  8321. const struct ggml_tensor * src0,
  8322. struct ggml_tensor * dst) {
  8323. ggml_compute_forward_dup(params, src0, dst);
  8324. }
  8325. // ggml_compute_forward_cont
  8326. static void ggml_compute_forward_cont(
  8327. const struct ggml_compute_params * params,
  8328. const struct ggml_tensor * src0,
  8329. struct ggml_tensor * dst) {
  8330. ggml_compute_forward_dup(params, src0, dst);
  8331. }
  8332. // ggml_compute_forward_reshape
  8333. static void ggml_compute_forward_reshape(
  8334. const struct ggml_compute_params * params,
  8335. const struct ggml_tensor * src0,
  8336. struct ggml_tensor * dst) {
  8337. // NOP
  8338. UNUSED(params);
  8339. UNUSED(src0);
  8340. UNUSED(dst);
  8341. }
  8342. // ggml_compute_forward_view
  8343. static void ggml_compute_forward_view(
  8344. const struct ggml_compute_params * params,
  8345. const struct ggml_tensor * src0) {
  8346. // NOP
  8347. UNUSED(params);
  8348. UNUSED(src0);
  8349. }
  8350. // ggml_compute_forward_permute
  8351. static void ggml_compute_forward_permute(
  8352. const struct ggml_compute_params * params,
  8353. const struct ggml_tensor * src0) {
  8354. // NOP
  8355. UNUSED(params);
  8356. UNUSED(src0);
  8357. }
  8358. // ggml_compute_forward_transpose
  8359. static void ggml_compute_forward_transpose(
  8360. const struct ggml_compute_params * params,
  8361. const struct ggml_tensor * src0) {
  8362. // NOP
  8363. UNUSED(params);
  8364. UNUSED(src0);
  8365. }
  8366. // ggml_compute_forward_get_rows
  8367. static void ggml_compute_forward_get_rows_q(
  8368. const struct ggml_compute_params * params,
  8369. const struct ggml_tensor * src0,
  8370. const struct ggml_tensor * src1,
  8371. struct ggml_tensor * dst) {
  8372. assert(params->ith == 0);
  8373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8374. return;
  8375. }
  8376. const int nc = src0->ne[0];
  8377. const int nr = ggml_nelements(src1);
  8378. const enum ggml_type type = src0->type;
  8379. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8380. assert( dst->ne[0] == nc);
  8381. assert( dst->ne[1] == nr);
  8382. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8383. for (int i = 0; i < nr; ++i) {
  8384. const int r = ((int32_t *) src1->data)[i];
  8385. dequantize_row_q(
  8386. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8387. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8388. }
  8389. }
  8390. static void ggml_compute_forward_get_rows_f16(
  8391. const struct ggml_compute_params * params,
  8392. const struct ggml_tensor * src0,
  8393. const struct ggml_tensor * src1,
  8394. struct ggml_tensor * dst) {
  8395. assert(params->ith == 0);
  8396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8397. return;
  8398. }
  8399. const int nc = src0->ne[0];
  8400. const int nr = ggml_nelements(src1);
  8401. assert( dst->ne[0] == nc);
  8402. assert( dst->ne[1] == nr);
  8403. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8404. for (int i = 0; i < nr; ++i) {
  8405. const int r = ((int32_t *) src1->data)[i];
  8406. for (int j = 0; j < nc; ++j) {
  8407. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8408. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8409. }
  8410. }
  8411. }
  8412. static void ggml_compute_forward_get_rows_f32(
  8413. const struct ggml_compute_params * params,
  8414. const struct ggml_tensor * src0,
  8415. const struct ggml_tensor * src1,
  8416. struct ggml_tensor * dst) {
  8417. assert(params->ith == 0);
  8418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8419. return;
  8420. }
  8421. const int nc = src0->ne[0];
  8422. const int nr = ggml_nelements(src1);
  8423. assert( dst->ne[0] == nc);
  8424. assert( dst->ne[1] == nr);
  8425. assert(src0->nb[0] == sizeof(float));
  8426. for (int i = 0; i < nr; ++i) {
  8427. const int r = ((int32_t *) src1->data)[i];
  8428. ggml_vec_cpy_f32(nc,
  8429. (float *) ((char *) dst->data + i*dst->nb[1]),
  8430. (float *) ((char *) src0->data + r*src0->nb[1]));
  8431. }
  8432. }
  8433. static void ggml_compute_forward_get_rows(
  8434. const struct ggml_compute_params * params,
  8435. const struct ggml_tensor * src0,
  8436. const struct ggml_tensor * src1,
  8437. struct ggml_tensor * dst) {
  8438. switch (src0->type) {
  8439. case GGML_TYPE_Q4_0:
  8440. case GGML_TYPE_Q4_1:
  8441. case GGML_TYPE_Q5_0:
  8442. case GGML_TYPE_Q5_1:
  8443. case GGML_TYPE_Q8_0:
  8444. case GGML_TYPE_Q8_1:
  8445. {
  8446. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8447. } break;
  8448. case GGML_TYPE_F16:
  8449. {
  8450. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8451. } break;
  8452. case GGML_TYPE_F32:
  8453. {
  8454. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8455. } break;
  8456. default:
  8457. {
  8458. GGML_ASSERT(false);
  8459. } break;
  8460. }
  8461. //static bool first = true;
  8462. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8463. //if (first) {
  8464. // first = false;
  8465. //} else {
  8466. // for (int k = 0; k < dst->ne[1]; ++k) {
  8467. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8468. // for (int i = 0; i < 16; ++i) {
  8469. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8470. // }
  8471. // printf("\n");
  8472. // }
  8473. // printf("\n");
  8474. // }
  8475. // printf("\n");
  8476. // exit(0);
  8477. //}
  8478. }
  8479. // ggml_compute_forward_get_rows_back
  8480. static void ggml_compute_forward_get_rows_back_f32_f16(
  8481. const struct ggml_compute_params * params,
  8482. const struct ggml_tensor * src0,
  8483. const struct ggml_tensor * src1,
  8484. const struct ggml_tensor * opt0,
  8485. struct ggml_tensor * dst) {
  8486. GGML_ASSERT(params->ith == 0);
  8487. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8488. GGML_ASSERT(ggml_is_contiguous(opt0));
  8489. GGML_ASSERT(ggml_is_contiguous(dst));
  8490. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8492. return;
  8493. }
  8494. const int nc = src0->ne[0];
  8495. const int nr = ggml_nelements(src1);
  8496. GGML_ASSERT( dst->ne[0] == nc);
  8497. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8498. for (int i = 0; i < nr; ++i) {
  8499. const int r = ((int32_t *) src1->data)[i];
  8500. for (int j = 0; j < nc; ++j) {
  8501. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8502. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8503. }
  8504. }
  8505. }
  8506. static void ggml_compute_forward_get_rows_back_f32(
  8507. const struct ggml_compute_params * params,
  8508. const struct ggml_tensor * src0,
  8509. const struct ggml_tensor * src1,
  8510. const struct ggml_tensor * opt0,
  8511. struct ggml_tensor * dst) {
  8512. GGML_ASSERT(params->ith == 0);
  8513. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8514. GGML_ASSERT(ggml_is_contiguous(opt0));
  8515. GGML_ASSERT(ggml_is_contiguous(dst));
  8516. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8518. return;
  8519. }
  8520. const int nc = src0->ne[0];
  8521. const int nr = ggml_nelements(src1);
  8522. GGML_ASSERT( dst->ne[0] == nc);
  8523. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8524. for (int i = 0; i < nr; ++i) {
  8525. const int r = ((int32_t *) src1->data)[i];
  8526. ggml_vec_add_f32(nc,
  8527. (float *) ((char *) dst->data + r*dst->nb[1]),
  8528. (float *) ((char *) dst->data + r*dst->nb[1]),
  8529. (float *) ((char *) src0->data + i*src0->nb[1]));
  8530. }
  8531. }
  8532. static void ggml_compute_forward_get_rows_back(
  8533. const struct ggml_compute_params * params,
  8534. const struct ggml_tensor * src0,
  8535. const struct ggml_tensor * src1,
  8536. const struct ggml_tensor * opt0,
  8537. struct ggml_tensor * dst) {
  8538. switch (src0->type) {
  8539. case GGML_TYPE_F16:
  8540. {
  8541. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8542. } break;
  8543. case GGML_TYPE_F32:
  8544. {
  8545. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8546. } break;
  8547. default:
  8548. {
  8549. GGML_ASSERT(false);
  8550. } break;
  8551. }
  8552. //static bool first = true;
  8553. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8554. //if (first) {
  8555. // first = false;
  8556. //} else {
  8557. // for (int k = 0; k < dst->ne[1]; ++k) {
  8558. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8559. // for (int i = 0; i < 16; ++i) {
  8560. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8561. // }
  8562. // printf("\n");
  8563. // }
  8564. // printf("\n");
  8565. // }
  8566. // printf("\n");
  8567. // exit(0);
  8568. //}
  8569. }
  8570. // ggml_compute_forward_diag
  8571. static void ggml_compute_forward_diag_f32(
  8572. const struct ggml_compute_params * params,
  8573. const struct ggml_tensor * src0,
  8574. struct ggml_tensor * dst) {
  8575. GGML_ASSERT(params->ith == 0);
  8576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8577. return;
  8578. }
  8579. // TODO: handle transposed/permuted matrices
  8580. const int ne00 = src0->ne[0];
  8581. const int ne01 = src0->ne[1];
  8582. const int ne02 = src0->ne[2];
  8583. const int ne03 = src0->ne[3];
  8584. const int ne0 = dst->ne[0];
  8585. const int ne1 = dst->ne[1];
  8586. const int ne2 = dst->ne[2];
  8587. const int ne3 = dst->ne[3];
  8588. GGML_ASSERT(ne00 == ne0);
  8589. GGML_ASSERT(ne00 == ne1);
  8590. GGML_ASSERT(ne01 == 1);
  8591. GGML_ASSERT(ne02 == ne2);
  8592. GGML_ASSERT(ne03 == ne3);
  8593. const int nb00 = src0->nb[0];
  8594. //const int nb01 = src0->nb[1];
  8595. const int nb02 = src0->nb[2];
  8596. const int nb03 = src0->nb[3];
  8597. const int nb0 = dst->nb[0];
  8598. const int nb1 = dst->nb[1];
  8599. const int nb2 = dst->nb[2];
  8600. const int nb3 = dst->nb[3];
  8601. GGML_ASSERT(nb00 == sizeof(float));
  8602. GGML_ASSERT(nb0 == sizeof(float));
  8603. for (int i3 = 0; i3 < ne3; i3++) {
  8604. for (int i2 = 0; i2 < ne2; i2++) {
  8605. for (int i1 = 0; i1 < ne1; i1++) {
  8606. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8607. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8608. for (int i0 = 0; i0 < i1; i0++) {
  8609. d[i0] = 0;
  8610. }
  8611. d[i1] = s[i1];
  8612. for (int i0 = i1+1; i0 < ne0; i0++) {
  8613. d[i0] = 0;
  8614. }
  8615. }
  8616. }
  8617. }
  8618. }
  8619. static void ggml_compute_forward_diag(
  8620. const struct ggml_compute_params * params,
  8621. const struct ggml_tensor * src0,
  8622. struct ggml_tensor * dst) {
  8623. switch (src0->type) {
  8624. case GGML_TYPE_F32:
  8625. {
  8626. ggml_compute_forward_diag_f32(params, src0, dst);
  8627. } break;
  8628. default:
  8629. {
  8630. GGML_ASSERT(false);
  8631. } break;
  8632. }
  8633. }
  8634. // ggml_compute_forward_diag_mask_inf
  8635. static void ggml_compute_forward_diag_mask_f32(
  8636. const struct ggml_compute_params * params,
  8637. const struct ggml_tensor * src0,
  8638. const struct ggml_tensor * src1,
  8639. struct ggml_tensor * dst,
  8640. const float value) {
  8641. assert(src1->type == GGML_TYPE_I32);
  8642. assert(ggml_nelements(src1) == 2);
  8643. const int ith = params->ith;
  8644. const int nth = params->nth;
  8645. const int n_past = ((int32_t *) src1->data)[0];
  8646. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8647. assert(n_past >= 0);
  8648. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8649. // memcpy needs to be synchronized across threads to avoid race conditions.
  8650. // => do it in INIT phase
  8651. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8652. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8653. memcpy(
  8654. ((char *) dst->data),
  8655. ((char *) src0->data),
  8656. ggml_nbytes(dst));
  8657. }
  8658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8659. return;
  8660. }
  8661. // TODO: handle transposed/permuted matrices
  8662. const int n = ggml_nrows(src0);
  8663. const int nc = src0->ne[0];
  8664. const int nr = src0->ne[1];
  8665. const int nz = n/nr;
  8666. assert( dst->nb[0] == sizeof(float));
  8667. assert(src0->nb[0] == sizeof(float));
  8668. for (int k = 0; k < nz; k++) {
  8669. for (int j = ith; j < nr; j += nth) {
  8670. for (int i = n_past; i < nc; i++) {
  8671. if (i > n_past + j) {
  8672. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8673. }
  8674. }
  8675. }
  8676. }
  8677. }
  8678. static void ggml_compute_forward_diag_mask_inf(
  8679. const struct ggml_compute_params * params,
  8680. const struct ggml_tensor * src0,
  8681. const struct ggml_tensor * src1,
  8682. struct ggml_tensor * dst) {
  8683. switch (src0->type) {
  8684. case GGML_TYPE_F32:
  8685. {
  8686. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8687. } break;
  8688. default:
  8689. {
  8690. GGML_ASSERT(false);
  8691. } break;
  8692. }
  8693. }
  8694. static void ggml_compute_forward_diag_mask_zero(
  8695. const struct ggml_compute_params * params,
  8696. const struct ggml_tensor * src0,
  8697. const struct ggml_tensor * src1,
  8698. struct ggml_tensor * dst) {
  8699. switch (src0->type) {
  8700. case GGML_TYPE_F32:
  8701. {
  8702. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8703. } break;
  8704. default:
  8705. {
  8706. GGML_ASSERT(false);
  8707. } break;
  8708. }
  8709. }
  8710. // ggml_compute_forward_soft_max
  8711. static void ggml_compute_forward_soft_max_f32(
  8712. const struct ggml_compute_params * params,
  8713. const struct ggml_tensor * src0,
  8714. struct ggml_tensor * dst) {
  8715. GGML_ASSERT(ggml_is_contiguous(src0));
  8716. GGML_ASSERT(ggml_is_contiguous(dst));
  8717. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8719. return;
  8720. }
  8721. // TODO: handle transposed/permuted matrices
  8722. const int ith = params->ith;
  8723. const int nth = params->nth;
  8724. const int nc = src0->ne[0];
  8725. const int nr = ggml_nrows(src0);
  8726. // rows per thread
  8727. const int dr = (nr + nth - 1)/nth;
  8728. // row range for this thread
  8729. const int ir0 = dr*ith;
  8730. const int ir1 = MIN(ir0 + dr, nr);
  8731. for (int i1 = ir0; i1 < ir1; i1++) {
  8732. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8733. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8734. #ifndef NDEBUG
  8735. for (int i = 0; i < nc; ++i) {
  8736. //printf("p[%d] = %f\n", i, p[i]);
  8737. assert(!isnan(sp[i]));
  8738. }
  8739. #endif
  8740. float max = -INFINITY;
  8741. ggml_vec_max_f32(nc, &max, sp);
  8742. ggml_float sum = 0.0;
  8743. uint16_t scvt;
  8744. for (int i = 0; i < nc; i++) {
  8745. if (sp[i] == -INFINITY) {
  8746. dp[i] = 0.0f;
  8747. } else {
  8748. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8749. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8750. memcpy(&scvt, &s, sizeof(scvt));
  8751. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8752. sum += (ggml_float)val;
  8753. dp[i] = val;
  8754. }
  8755. }
  8756. assert(sum > 0.0);
  8757. sum = 1.0/sum;
  8758. ggml_vec_scale_f32(nc, dp, sum);
  8759. #ifndef NDEBUG
  8760. for (int i = 0; i < nc; ++i) {
  8761. assert(!isnan(dp[i]));
  8762. assert(!isinf(dp[i]));
  8763. }
  8764. #endif
  8765. }
  8766. }
  8767. static void ggml_compute_forward_soft_max(
  8768. const struct ggml_compute_params * params,
  8769. const struct ggml_tensor * src0,
  8770. struct ggml_tensor * dst) {
  8771. switch (src0->type) {
  8772. case GGML_TYPE_F32:
  8773. {
  8774. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8775. } break;
  8776. default:
  8777. {
  8778. GGML_ASSERT(false);
  8779. } break;
  8780. }
  8781. }
  8782. // ggml_compute_forward_alibi
  8783. static void ggml_compute_forward_alibi_f32(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0,
  8786. const struct ggml_tensor * src1,
  8787. struct ggml_tensor * dst) {
  8788. assert(params->ith == 0);
  8789. assert(src1->type == GGML_TYPE_I32);
  8790. assert(ggml_nelements(src1) == 3);
  8791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8792. return;
  8793. }
  8794. const int n_past = ((int32_t *) src1->data)[0];
  8795. const int n_head = ((int32_t *) src1->data)[1];
  8796. const float max_bias = ((float *) src1->data)[2];
  8797. assert(n_past >= 0);
  8798. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8799. const int ne1 = src0->ne[1]; // seq_len_without_past
  8800. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8801. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8802. const int n = ggml_nrows(src0);
  8803. const int ne2_ne3 = n/ne1; // ne2*ne3
  8804. const int nb0 = src0->nb[0];
  8805. const int nb1 = src0->nb[1];
  8806. const int nb2 = src0->nb[2];
  8807. //const int nb3 = src0->nb[3];
  8808. assert(nb0 == sizeof(float));
  8809. assert(ne1 + n_past == ne0); (void) n_past;
  8810. // add alibi to src0 (KQ_scaled)
  8811. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8812. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8813. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8814. for (int i = 0; i < ne0; i++) {
  8815. for (int j = 0; j < ne1; j++) {
  8816. for (int k = 0; k < ne2_ne3; k++) {
  8817. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8818. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8819. // TODO: k*nb2 or k*nb3
  8820. float m_k;
  8821. if (k < n_heads_log2_floor) {
  8822. m_k = powf(m0, k + 1);
  8823. } else {
  8824. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8825. }
  8826. pdst[0] = (i-ne0+1) * m_k + src[0];
  8827. }
  8828. }
  8829. }
  8830. }
  8831. static void ggml_compute_forward_alibi_f16(
  8832. const struct ggml_compute_params * params,
  8833. const struct ggml_tensor * src0,
  8834. const struct ggml_tensor * src1,
  8835. struct ggml_tensor * dst) {
  8836. assert(params->ith == 0);
  8837. assert(src1->type == GGML_TYPE_I32);
  8838. assert(ggml_nelements(src1) == 3);
  8839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8840. return;
  8841. }
  8842. const int n_past = ((int32_t *) src1->data)[0];
  8843. const int n_head = ((int32_t *) src1->data)[1];
  8844. const float max_bias = ((float *) src1->data)[2];
  8845. assert(n_past >= 0);
  8846. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8847. const int ne1 = src0->ne[1]; // seq_len_without_past
  8848. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8849. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8850. const int n = ggml_nrows(src0);
  8851. const int ne2_ne3 = n/ne1; // ne2*ne3
  8852. const int nb0 = src0->nb[0];
  8853. const int nb1 = src0->nb[1];
  8854. const int nb2 = src0->nb[2];
  8855. //const int nb3 = src0->nb[3];
  8856. assert(nb0 == sizeof(ggml_fp16_t));
  8857. assert(ne1 + n_past == ne0); (void) n_past;
  8858. // add alibi to src0 (KQ_scaled)
  8859. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8860. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8861. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8862. for (int i = 0; i < ne0; i++) {
  8863. for (int j = 0; j < ne1; j++) {
  8864. for (int k = 0; k < ne2_ne3; k++) {
  8865. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8866. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8867. // TODO: k*nb2 or k*nb3
  8868. float m_k;
  8869. if (k < n_heads_log2_floor) {
  8870. m_k = powf(m0, k + 1);
  8871. } else {
  8872. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8873. }
  8874. // we return F32
  8875. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8876. }
  8877. }
  8878. }
  8879. }
  8880. static void ggml_compute_forward_alibi(
  8881. const struct ggml_compute_params * params,
  8882. const struct ggml_tensor * src0,
  8883. const struct ggml_tensor * src1,
  8884. struct ggml_tensor * dst) {
  8885. switch (src0->type) {
  8886. case GGML_TYPE_F16:
  8887. {
  8888. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8889. } break;
  8890. case GGML_TYPE_F32:
  8891. {
  8892. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8893. } break;
  8894. case GGML_TYPE_Q4_0:
  8895. case GGML_TYPE_Q4_1:
  8896. case GGML_TYPE_Q5_0:
  8897. case GGML_TYPE_Q5_1:
  8898. case GGML_TYPE_Q8_0:
  8899. case GGML_TYPE_Q8_1:
  8900. case GGML_TYPE_I8:
  8901. case GGML_TYPE_I16:
  8902. case GGML_TYPE_I32:
  8903. case GGML_TYPE_COUNT:
  8904. {
  8905. GGML_ASSERT(false);
  8906. } break;
  8907. }
  8908. }
  8909. // ggml_compute_forward_clamp
  8910. static void ggml_compute_forward_clamp_f32(
  8911. const struct ggml_compute_params * params,
  8912. const struct ggml_tensor * src0,
  8913. const struct ggml_tensor * src1,
  8914. struct ggml_tensor * dst) {
  8915. assert(params->ith == 0);
  8916. assert(src1->type == GGML_TYPE_I32);
  8917. assert(ggml_nelements(src1) == 2);
  8918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8919. return;
  8920. }
  8921. const int min = ((float *) src1->data)[0];
  8922. const int max = ((float *) src1->data)[1];
  8923. const int ith = params->ith;
  8924. const int nth = params->nth;
  8925. const int n = ggml_nrows(src0);
  8926. const int nc = src0->ne[0];
  8927. const size_t nb00 = src0->nb[0];
  8928. const size_t nb01 = src0->nb[1];
  8929. const size_t nb0 = dst->nb[0];
  8930. const size_t nb1 = dst->nb[1];
  8931. GGML_ASSERT( nb0 == sizeof(float));
  8932. GGML_ASSERT(nb00 == sizeof(float));
  8933. for (int j = ith; j < n; j += nth) {
  8934. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8935. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8936. for (int i = 0; i < nc; i++) {
  8937. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8938. }
  8939. }
  8940. }
  8941. static void ggml_compute_forward_clamp(
  8942. const struct ggml_compute_params * params,
  8943. const struct ggml_tensor * src0,
  8944. const struct ggml_tensor * src1,
  8945. struct ggml_tensor * dst) {
  8946. switch (src0->type) {
  8947. case GGML_TYPE_F32:
  8948. {
  8949. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  8950. } break;
  8951. case GGML_TYPE_F16:
  8952. case GGML_TYPE_Q4_0:
  8953. case GGML_TYPE_Q4_1:
  8954. case GGML_TYPE_Q5_0:
  8955. case GGML_TYPE_Q5_1:
  8956. case GGML_TYPE_Q8_0:
  8957. case GGML_TYPE_Q8_1:
  8958. case GGML_TYPE_I8:
  8959. case GGML_TYPE_I16:
  8960. case GGML_TYPE_I32:
  8961. case GGML_TYPE_COUNT:
  8962. {
  8963. GGML_ASSERT(false);
  8964. } break;
  8965. }
  8966. }
  8967. // ggml_compute_forward_rope
  8968. static void ggml_compute_forward_rope_f32(
  8969. const struct ggml_compute_params * params,
  8970. const struct ggml_tensor * src0,
  8971. const struct ggml_tensor * src1,
  8972. struct ggml_tensor * dst) {
  8973. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8974. GGML_ASSERT(ggml_nelements(src1) == 3);
  8975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8976. return;
  8977. }
  8978. const int n_past = ((int32_t *) src1->data)[0];
  8979. const int n_dims = ((int32_t *) src1->data)[1];
  8980. const int mode = ((int32_t *) src1->data)[2];
  8981. assert(n_past >= 0);
  8982. const size_t nb00 = src0->nb[0];
  8983. const size_t nb01 = src0->nb[1];
  8984. const size_t nb02 = src0->nb[2];
  8985. const size_t nb03 = src0->nb[3];
  8986. const int64_t ne0 = dst->ne[0];
  8987. const int64_t ne1 = dst->ne[1];
  8988. const int64_t ne2 = dst->ne[2];
  8989. const int64_t ne3 = dst->ne[3];
  8990. const size_t nb0 = dst->nb[0];
  8991. const size_t nb1 = dst->nb[1];
  8992. const size_t nb2 = dst->nb[2];
  8993. const size_t nb3 = dst->nb[3];
  8994. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8995. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8996. GGML_ASSERT(nb00 == sizeof(float));
  8997. const int ith = params->ith;
  8998. const int nth = params->nth;
  8999. const int nr = ggml_nrows(dst);
  9000. GGML_ASSERT(n_dims <= ne0);
  9001. GGML_ASSERT(n_dims % 2 == 0);
  9002. // rows per thread
  9003. const int dr = (nr + nth - 1)/nth;
  9004. // row range for this thread
  9005. const int ir0 = dr*ith;
  9006. const int ir1 = MIN(ir0 + dr, nr);
  9007. // row index used to determine which thread to use
  9008. int ir = 0;
  9009. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9010. const bool is_neox = mode & 2;
  9011. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9012. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9013. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9014. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9015. if (ir++ < ir0) continue;
  9016. if (ir > ir1) break;
  9017. float theta = (float)p;
  9018. if (!is_neox) {
  9019. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9020. const float cos_theta = cosf(theta);
  9021. const float sin_theta = sinf(theta);
  9022. theta *= theta_scale;
  9023. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9024. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9025. const float x0 = src[0];
  9026. const float x1 = src[1];
  9027. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9028. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9029. }
  9030. } else {
  9031. // TODO: this is probably wrong, but I can't figure it out ..
  9032. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9033. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9034. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9035. const float cos_theta = cosf(theta);
  9036. const float sin_theta = sinf(theta);
  9037. theta *= theta_scale;
  9038. const int64_t i0 = ib*n_dims + ic/2;
  9039. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9040. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9041. const float x0 = src[0];
  9042. const float x1 = src[n_dims/2];
  9043. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9044. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9045. }
  9046. }
  9047. }
  9048. }
  9049. }
  9050. }
  9051. }
  9052. static void ggml_compute_forward_rope_f16(
  9053. const struct ggml_compute_params * params,
  9054. const struct ggml_tensor * src0,
  9055. const struct ggml_tensor * src1,
  9056. struct ggml_tensor * dst) {
  9057. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9058. GGML_ASSERT(ggml_nelements(src1) == 3);
  9059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9060. return;
  9061. }
  9062. const int n_past = ((int32_t *) src1->data)[0];
  9063. const int n_dims = ((int32_t *) src1->data)[1];
  9064. const int mode = ((int32_t *) src1->data)[2];
  9065. assert(n_past >= 0);
  9066. const size_t nb00 = src0->nb[0];
  9067. const size_t nb01 = src0->nb[1];
  9068. const size_t nb02 = src0->nb[2];
  9069. const size_t nb03 = src0->nb[3];
  9070. const int64_t ne0 = dst->ne[0];
  9071. const int64_t ne1 = dst->ne[1];
  9072. const int64_t ne2 = dst->ne[2];
  9073. const int64_t ne3 = dst->ne[3];
  9074. const size_t nb0 = dst->nb[0];
  9075. const size_t nb1 = dst->nb[1];
  9076. const size_t nb2 = dst->nb[2];
  9077. const size_t nb3 = dst->nb[3];
  9078. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9079. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9080. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9081. const int ith = params->ith;
  9082. const int nth = params->nth;
  9083. const int nr = ggml_nrows(dst);
  9084. GGML_ASSERT(n_dims <= ne0);
  9085. GGML_ASSERT(n_dims % 2 == 0);
  9086. // rows per thread
  9087. const int dr = (nr + nth - 1)/nth;
  9088. // row range for this thread
  9089. const int ir0 = dr*ith;
  9090. const int ir1 = MIN(ir0 + dr, nr);
  9091. // row index used to determine which thread to use
  9092. int ir = 0;
  9093. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9094. const bool is_neox = mode & 2;
  9095. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9096. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9097. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9098. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9099. if (ir++ < ir0) continue;
  9100. if (ir > ir1) break;
  9101. float theta = (float)p;
  9102. if (!is_neox) {
  9103. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9104. const float cos_theta = cosf(theta);
  9105. const float sin_theta = sinf(theta);
  9106. theta *= theta_scale;
  9107. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9108. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9109. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9110. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9111. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9112. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9113. }
  9114. } else {
  9115. // TODO: this is probably wrong, but I can't figure it out ..
  9116. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9117. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9118. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9119. const float cos_theta = cosf(theta);
  9120. const float sin_theta = sinf(theta);
  9121. theta *= theta_scale;
  9122. const int64_t i0 = ib*n_dims + ic/2;
  9123. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9124. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9125. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9126. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9127. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9128. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9129. }
  9130. }
  9131. }
  9132. }
  9133. }
  9134. }
  9135. }
  9136. static void ggml_compute_forward_rope(
  9137. const struct ggml_compute_params * params,
  9138. const struct ggml_tensor * src0,
  9139. const struct ggml_tensor * src1,
  9140. struct ggml_tensor * dst) {
  9141. switch (src0->type) {
  9142. case GGML_TYPE_F16:
  9143. {
  9144. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9145. } break;
  9146. case GGML_TYPE_F32:
  9147. {
  9148. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9149. } break;
  9150. default:
  9151. {
  9152. GGML_ASSERT(false);
  9153. } break;
  9154. }
  9155. }
  9156. // ggml_compute_forward_rope_back
  9157. static void ggml_compute_forward_rope_back_f32(
  9158. const struct ggml_compute_params * params,
  9159. const struct ggml_tensor * src0,
  9160. const struct ggml_tensor * src1,
  9161. struct ggml_tensor * dst) {
  9162. assert(src1->type == GGML_TYPE_I32);
  9163. assert(ggml_nelements(src1) == 3);
  9164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9165. return;
  9166. }
  9167. // y = rope(x, src1)
  9168. // dx = rope_back(dy, src1)
  9169. // src0 is dy, src1 contains options
  9170. const int n_past = ((int32_t *) src1->data)[0];
  9171. const int n_dims = ((int32_t *) src1->data)[1];
  9172. const int mode = ((int32_t *) src1->data)[2];
  9173. assert(n_past >= 0);
  9174. const size_t nb00 = src0->nb[0];
  9175. const size_t nb01 = src0->nb[1];
  9176. const size_t nb02 = src0->nb[2];
  9177. const size_t nb03 = src0->nb[3];
  9178. const int64_t ne0 = dst->ne[0];
  9179. const int64_t ne1 = dst->ne[1];
  9180. const int64_t ne2 = dst->ne[2];
  9181. const int64_t ne3 = dst->ne[3];
  9182. const size_t nb0 = dst->nb[0];
  9183. const size_t nb1 = dst->nb[1];
  9184. const size_t nb2 = dst->nb[2];
  9185. const size_t nb3 = dst->nb[3];
  9186. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9187. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9188. assert(nb0 == sizeof(float));
  9189. const int ith = params->ith;
  9190. const int nth = params->nth;
  9191. const int nr = ggml_nrows(dst);
  9192. // rows per thread
  9193. const int dr = (nr + nth - 1)/nth;
  9194. // row range for this thread
  9195. const int ir0 = dr*ith;
  9196. const int ir1 = MIN(ir0 + dr, nr);
  9197. // row index used to determine which thread to use
  9198. int ir = 0;
  9199. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9200. const bool is_neox = mode & 2;
  9201. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9202. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9203. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9204. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9205. if (ir++ < ir0) continue;
  9206. if (ir > ir1) break;
  9207. float theta = (float)p;
  9208. if (!is_neox) {
  9209. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9210. const float cos_theta = cosf(theta);
  9211. const float sin_theta = sinf(theta);
  9212. theta *= theta_scale;
  9213. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9214. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9215. const float dy0 = dy[0];
  9216. const float dy1 = dy[1];
  9217. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9218. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9219. }
  9220. } else {
  9221. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9222. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9223. const float cos_theta = cosf(theta);
  9224. const float sin_theta = sinf(theta);
  9225. theta *= theta_scale;
  9226. const int64_t i0 = ib*n_dims + ic/2;
  9227. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9228. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9229. const float dy0 = dy[0];
  9230. const float dy1 = dy[n_dims/2];
  9231. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9232. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9233. }
  9234. }
  9235. }
  9236. }
  9237. }
  9238. }
  9239. }
  9240. static void ggml_compute_forward_rope_back_f16(
  9241. const struct ggml_compute_params * params,
  9242. const struct ggml_tensor * src0,
  9243. const struct ggml_tensor * src1,
  9244. struct ggml_tensor * dst) {
  9245. assert(src1->type == GGML_TYPE_I32);
  9246. assert(ggml_nelements(src1) == 3);
  9247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9248. return;
  9249. }
  9250. // y = rope(x, src1)
  9251. // dx = rope_back(dy, src1)
  9252. // src0 is dy, src1 contains options
  9253. const int n_past = ((int32_t *) src1->data)[0];
  9254. const int n_dims = ((int32_t *) src1->data)[1];
  9255. const int mode = ((int32_t *) src1->data)[2];
  9256. assert(n_past >= 0);
  9257. const size_t nb00 = src0->nb[0];
  9258. const size_t nb01 = src0->nb[1];
  9259. const size_t nb02 = src0->nb[2];
  9260. const size_t nb03 = src0->nb[3];
  9261. const int64_t ne0 = dst->ne[0];
  9262. const int64_t ne1 = dst->ne[1];
  9263. const int64_t ne2 = dst->ne[2];
  9264. const int64_t ne3 = dst->ne[3];
  9265. const size_t nb0 = dst->nb[0];
  9266. const size_t nb1 = dst->nb[1];
  9267. const size_t nb2 = dst->nb[2];
  9268. const size_t nb3 = dst->nb[3];
  9269. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9270. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9271. assert(nb0 == sizeof(ggml_fp16_t));
  9272. const int ith = params->ith;
  9273. const int nth = params->nth;
  9274. const int nr = ggml_nrows(dst);
  9275. // rows per thread
  9276. const int dr = (nr + nth - 1)/nth;
  9277. // row range for this thread
  9278. const int ir0 = dr*ith;
  9279. const int ir1 = MIN(ir0 + dr, nr);
  9280. // row index used to determine which thread to use
  9281. int ir = 0;
  9282. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9283. const bool is_neox = mode & 2;
  9284. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9285. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9286. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9287. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9288. if (ir++ < ir0) continue;
  9289. if (ir > ir1) break;
  9290. float theta = (float)p;
  9291. if (!is_neox) {
  9292. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9293. const float cos_theta = cosf(theta);
  9294. const float sin_theta = sinf(theta);
  9295. theta *= theta_scale;
  9296. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9297. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9298. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9299. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9300. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9301. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9302. }
  9303. } else {
  9304. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9305. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9306. const float cos_theta = cosf(theta);
  9307. const float sin_theta = sinf(theta);
  9308. theta *= theta_scale;
  9309. const int64_t i0 = ib*n_dims + ic/2;
  9310. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9311. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9312. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9313. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9314. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9315. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9316. }
  9317. }
  9318. }
  9319. }
  9320. }
  9321. }
  9322. }
  9323. static void ggml_compute_forward_rope_back(
  9324. const struct ggml_compute_params * params,
  9325. const struct ggml_tensor * src0,
  9326. const struct ggml_tensor * src1,
  9327. struct ggml_tensor * dst) {
  9328. switch (src0->type) {
  9329. case GGML_TYPE_F16:
  9330. {
  9331. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9332. } break;
  9333. case GGML_TYPE_F32:
  9334. {
  9335. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9336. } break;
  9337. default:
  9338. {
  9339. GGML_ASSERT(false);
  9340. } break;
  9341. }
  9342. }
  9343. // ggml_compute_forward_conv_1d_1s
  9344. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9345. const struct ggml_compute_params * params,
  9346. const struct ggml_tensor * src0,
  9347. const struct ggml_tensor * src1,
  9348. struct ggml_tensor * dst) {
  9349. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9350. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9351. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9352. int64_t t0 = ggml_perf_time_us();
  9353. UNUSED(t0);
  9354. const int64_t ne00 = src0->ne[0];
  9355. const int64_t ne01 = src0->ne[1];
  9356. const int64_t ne02 = src0->ne[2];
  9357. //const int64_t ne03 = src0->ne[3];
  9358. const int64_t ne10 = src1->ne[0];
  9359. const int64_t ne11 = src1->ne[1];
  9360. //const int64_t ne12 = src1->ne[2];
  9361. //const int64_t ne13 = src1->ne[3];
  9362. //const int64_t ne0 = dst->ne[0];
  9363. //const int64_t ne1 = dst->ne[1];
  9364. //const int64_t ne2 = dst->ne[2];
  9365. //const int64_t ne3 = dst->ne[3];
  9366. //const int64_t ne = ne0*ne1*ne2*ne3;
  9367. const int nb00 = src0->nb[0];
  9368. const int nb01 = src0->nb[1];
  9369. const int nb02 = src0->nb[2];
  9370. //const int nb03 = src0->nb[3];
  9371. const int nb10 = src1->nb[0];
  9372. const int nb11 = src1->nb[1];
  9373. //const int nb12 = src1->nb[2];
  9374. //const int nb13 = src1->nb[3];
  9375. //const int nb0 = dst->nb[0];
  9376. const int nb1 = dst->nb[1];
  9377. //const int nb2 = dst->nb[2];
  9378. //const int nb3 = dst->nb[3];
  9379. const int ith = params->ith;
  9380. const int nth = params->nth;
  9381. const int nk = ne00;
  9382. const int nh = nk/2;
  9383. const int ew0 = ggml_up32(ne01);
  9384. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9385. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9386. GGML_ASSERT(nb10 == sizeof(float));
  9387. if (params->type == GGML_TASK_INIT) {
  9388. // TODO: fix this memset (wsize is overestimated)
  9389. memset(params->wdata, 0, params->wsize);
  9390. // prepare kernel data (src0)
  9391. {
  9392. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9394. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9395. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9396. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9398. dst_data[i00*ew0 + i01] = src[i00];
  9399. }
  9400. }
  9401. }
  9402. }
  9403. // prepare source data (src1)
  9404. {
  9405. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9406. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9407. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9408. ggml_fp16_t * dst_data = wdata;
  9409. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9410. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9411. }
  9412. }
  9413. }
  9414. return;
  9415. }
  9416. if (params->type == GGML_TASK_FINALIZE) {
  9417. return;
  9418. }
  9419. // total rows in dst
  9420. const int nr = ne02;
  9421. // rows per thread
  9422. const int dr = (nr + nth - 1)/nth;
  9423. // row range for this thread
  9424. const int ir0 = dr*ith;
  9425. const int ir1 = MIN(ir0 + dr, nr);
  9426. for (int i1 = ir0; i1 < ir1; i1++) {
  9427. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9428. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9429. dst_data[i0] = 0;
  9430. for (int k = -nh; k <= nh; k++) {
  9431. float v = 0.0f;
  9432. ggml_vec_dot_f16(ew0, &v,
  9433. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9434. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9435. dst_data[i0] += v;
  9436. }
  9437. }
  9438. }
  9439. }
  9440. static void ggml_compute_forward_conv_1d_1s_f32(
  9441. const struct ggml_compute_params * params,
  9442. const struct ggml_tensor * src0,
  9443. const struct ggml_tensor * src1,
  9444. struct ggml_tensor * dst) {
  9445. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9446. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9447. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9448. int64_t t0 = ggml_perf_time_us();
  9449. UNUSED(t0);
  9450. const int64_t ne00 = src0->ne[0];
  9451. const int64_t ne01 = src0->ne[1];
  9452. const int64_t ne02 = src0->ne[2];
  9453. //const int64_t ne03 = src0->ne[3];
  9454. const int64_t ne10 = src1->ne[0];
  9455. const int64_t ne11 = src1->ne[1];
  9456. //const int64_t ne12 = src1->ne[2];
  9457. //const int64_t ne13 = src1->ne[3];
  9458. //const int64_t ne0 = dst->ne[0];
  9459. //const int64_t ne1 = dst->ne[1];
  9460. //const int64_t ne2 = dst->ne[2];
  9461. //const int64_t ne3 = dst->ne[3];
  9462. //const int64_t ne = ne0*ne1*ne2*ne3;
  9463. const int nb00 = src0->nb[0];
  9464. const int nb01 = src0->nb[1];
  9465. const int nb02 = src0->nb[2];
  9466. //const int nb03 = src0->nb[3];
  9467. const int nb10 = src1->nb[0];
  9468. const int nb11 = src1->nb[1];
  9469. //const int nb12 = src1->nb[2];
  9470. //const int nb13 = src1->nb[3];
  9471. //const int nb0 = dst->nb[0];
  9472. const int nb1 = dst->nb[1];
  9473. //const int nb2 = dst->nb[2];
  9474. //const int nb3 = dst->nb[3];
  9475. const int ith = params->ith;
  9476. const int nth = params->nth;
  9477. const int nk = ne00;
  9478. const int nh = nk/2;
  9479. const int ew0 = ggml_up32(ne01);
  9480. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9481. GGML_ASSERT(nb00 == sizeof(float));
  9482. GGML_ASSERT(nb10 == sizeof(float));
  9483. if (params->type == GGML_TASK_INIT) {
  9484. // TODO: fix this memset (wsize is overestimated)
  9485. memset(params->wdata, 0, params->wsize);
  9486. // prepare kernel data (src0)
  9487. {
  9488. float * const wdata = (float *) params->wdata + 0;
  9489. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9490. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9491. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9492. float * dst_data = wdata + i02*ew0*ne00;
  9493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9494. dst_data[i00*ew0 + i01] = src[i00];
  9495. }
  9496. }
  9497. }
  9498. }
  9499. // prepare source data (src1)
  9500. {
  9501. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9502. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9503. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9504. float * dst_data = wdata;
  9505. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9506. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9507. }
  9508. }
  9509. }
  9510. return;
  9511. }
  9512. if (params->type == GGML_TASK_FINALIZE) {
  9513. return;
  9514. }
  9515. // total rows in dst
  9516. const int nr = ne02;
  9517. // rows per thread
  9518. const int dr = (nr + nth - 1)/nth;
  9519. // row range for this thread
  9520. const int ir0 = dr*ith;
  9521. const int ir1 = MIN(ir0 + dr, nr);
  9522. for (int i1 = ir0; i1 < ir1; i1++) {
  9523. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9524. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9525. dst_data[i0] = 0;
  9526. for (int k = -nh; k <= nh; k++) {
  9527. float v = 0.0f;
  9528. ggml_vec_dot_f32(ew0, &v,
  9529. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9530. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9531. dst_data[i0] += v;
  9532. }
  9533. }
  9534. }
  9535. }
  9536. static void ggml_compute_forward_conv_1d_1s(
  9537. const struct ggml_compute_params * params,
  9538. const struct ggml_tensor * src0,
  9539. const struct ggml_tensor * src1,
  9540. struct ggml_tensor * dst) {
  9541. switch (src0->type) {
  9542. case GGML_TYPE_F16:
  9543. {
  9544. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9545. } break;
  9546. case GGML_TYPE_F32:
  9547. {
  9548. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9549. } break;
  9550. default:
  9551. {
  9552. GGML_ASSERT(false);
  9553. } break;
  9554. }
  9555. }
  9556. // ggml_compute_forward_conv_1d_2s
  9557. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9558. const struct ggml_compute_params * params,
  9559. const struct ggml_tensor * src0,
  9560. const struct ggml_tensor * src1,
  9561. struct ggml_tensor * dst) {
  9562. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9563. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9564. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9565. int64_t t0 = ggml_perf_time_us();
  9566. UNUSED(t0);
  9567. const int64_t ne00 = src0->ne[0];
  9568. const int64_t ne01 = src0->ne[1];
  9569. const int64_t ne02 = src0->ne[2];
  9570. //const int64_t ne03 = src0->ne[3];
  9571. const int64_t ne10 = src1->ne[0];
  9572. const int64_t ne11 = src1->ne[1];
  9573. //const int64_t ne12 = src1->ne[2];
  9574. //const int64_t ne13 = src1->ne[3];
  9575. //const int64_t ne0 = dst->ne[0];
  9576. //const int64_t ne1 = dst->ne[1];
  9577. //const int64_t ne2 = dst->ne[2];
  9578. //const int64_t ne3 = dst->ne[3];
  9579. //const int64_t ne = ne0*ne1*ne2*ne3;
  9580. const int nb00 = src0->nb[0];
  9581. const int nb01 = src0->nb[1];
  9582. const int nb02 = src0->nb[2];
  9583. //const int nb03 = src0->nb[3];
  9584. const int nb10 = src1->nb[0];
  9585. const int nb11 = src1->nb[1];
  9586. //const int nb12 = src1->nb[2];
  9587. //const int nb13 = src1->nb[3];
  9588. //const int nb0 = dst->nb[0];
  9589. const int nb1 = dst->nb[1];
  9590. //const int nb2 = dst->nb[2];
  9591. //const int nb3 = dst->nb[3];
  9592. const int ith = params->ith;
  9593. const int nth = params->nth;
  9594. const int nk = ne00;
  9595. const int nh = nk/2;
  9596. const int ew0 = ggml_up32(ne01);
  9597. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9598. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9599. GGML_ASSERT(nb10 == sizeof(float));
  9600. if (params->type == GGML_TASK_INIT) {
  9601. // TODO: fix this memset (wsize is overestimated)
  9602. memset(params->wdata, 0, params->wsize);
  9603. // prepare kernel data (src0)
  9604. {
  9605. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9606. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9607. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9608. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9609. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9610. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9611. dst_data[i00*ew0 + i01] = src[i00];
  9612. }
  9613. }
  9614. }
  9615. }
  9616. // prepare source data (src1)
  9617. {
  9618. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9619. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9620. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9621. ggml_fp16_t * dst_data = wdata;
  9622. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9623. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9624. }
  9625. }
  9626. }
  9627. return;
  9628. }
  9629. if (params->type == GGML_TASK_FINALIZE) {
  9630. return;
  9631. }
  9632. // total rows in dst
  9633. const int nr = ne02;
  9634. // rows per thread
  9635. const int dr = (nr + nth - 1)/nth;
  9636. // row range for this thread
  9637. const int ir0 = dr*ith;
  9638. const int ir1 = MIN(ir0 + dr, nr);
  9639. for (int i1 = ir0; i1 < ir1; i1++) {
  9640. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9641. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9642. dst_data[i0/2] = 0;
  9643. for (int k = -nh; k <= nh; k++) {
  9644. float v = 0.0f;
  9645. ggml_vec_dot_f16(ew0, &v,
  9646. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9647. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9648. dst_data[i0/2] += v;
  9649. }
  9650. }
  9651. }
  9652. }
  9653. static void ggml_compute_forward_conv_1d_2s_f32(
  9654. const struct ggml_compute_params * params,
  9655. const struct ggml_tensor * src0,
  9656. const struct ggml_tensor * src1,
  9657. struct ggml_tensor * dst) {
  9658. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9659. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9660. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9661. int64_t t0 = ggml_perf_time_us();
  9662. UNUSED(t0);
  9663. const int64_t ne00 = src0->ne[0];
  9664. const int64_t ne01 = src0->ne[1];
  9665. const int64_t ne02 = src0->ne[2];
  9666. //const int64_t ne03 = src0->ne[3];
  9667. const int64_t ne10 = src1->ne[0];
  9668. const int64_t ne11 = src1->ne[1];
  9669. //const int64_t ne12 = src1->ne[2];
  9670. //const int64_t ne13 = src1->ne[3];
  9671. //const int64_t ne0 = dst->ne[0];
  9672. //const int64_t ne1 = dst->ne[1];
  9673. //const int64_t ne2 = dst->ne[2];
  9674. //const int64_t ne3 = dst->ne[3];
  9675. //const int64_t ne = ne0*ne1*ne2*ne3;
  9676. const int nb00 = src0->nb[0];
  9677. const int nb01 = src0->nb[1];
  9678. const int nb02 = src0->nb[2];
  9679. //const int nb03 = src0->nb[3];
  9680. const int nb10 = src1->nb[0];
  9681. const int nb11 = src1->nb[1];
  9682. //const int nb12 = src1->nb[2];
  9683. //const int nb13 = src1->nb[3];
  9684. //const int nb0 = dst->nb[0];
  9685. const int nb1 = dst->nb[1];
  9686. //const int nb2 = dst->nb[2];
  9687. //const int nb3 = dst->nb[3];
  9688. const int ith = params->ith;
  9689. const int nth = params->nth;
  9690. const int nk = ne00;
  9691. const int nh = nk/2;
  9692. const int ew0 = ggml_up32(ne01);
  9693. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9694. GGML_ASSERT(nb00 == sizeof(float));
  9695. GGML_ASSERT(nb10 == sizeof(float));
  9696. if (params->type == GGML_TASK_INIT) {
  9697. // TODO: fix this memset (wsize is overestimated)
  9698. memset(params->wdata, 0, params->wsize);
  9699. // prepare kernel data (src0)
  9700. {
  9701. float * const wdata = (float *) params->wdata + 0;
  9702. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9703. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9704. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9705. float * dst_data = wdata + i02*ew0*ne00;
  9706. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9707. dst_data[i00*ew0 + i01] = src[i00];
  9708. }
  9709. }
  9710. }
  9711. }
  9712. // prepare source data (src1)
  9713. {
  9714. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9715. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9716. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9717. float * dst_data = wdata;
  9718. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9719. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9720. }
  9721. }
  9722. }
  9723. return;
  9724. }
  9725. if (params->type == GGML_TASK_FINALIZE) {
  9726. return;
  9727. }
  9728. // total rows in dst
  9729. const int nr = ne02;
  9730. // rows per thread
  9731. const int dr = (nr + nth - 1)/nth;
  9732. // row range for this thread
  9733. const int ir0 = dr*ith;
  9734. const int ir1 = MIN(ir0 + dr, nr);
  9735. for (int i1 = ir0; i1 < ir1; i1++) {
  9736. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9737. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9738. dst_data[i0/2] = 0;
  9739. for (int k = -nh; k <= nh; k++) {
  9740. float v = 0.0f;
  9741. ggml_vec_dot_f32(ew0, &v,
  9742. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9743. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9744. dst_data[i0/2] += v;
  9745. }
  9746. }
  9747. }
  9748. }
  9749. static void ggml_compute_forward_conv_1d_2s(
  9750. const struct ggml_compute_params * params,
  9751. const struct ggml_tensor * src0,
  9752. const struct ggml_tensor * src1,
  9753. struct ggml_tensor * dst) {
  9754. switch (src0->type) {
  9755. case GGML_TYPE_F16:
  9756. {
  9757. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9758. } break;
  9759. case GGML_TYPE_F32:
  9760. {
  9761. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9762. } break;
  9763. default:
  9764. {
  9765. GGML_ASSERT(false);
  9766. } break;
  9767. }
  9768. }
  9769. // ggml_compute_forward_flash_attn
  9770. static void ggml_compute_forward_flash_attn_f32(
  9771. const struct ggml_compute_params * params,
  9772. const struct ggml_tensor * q,
  9773. const struct ggml_tensor * k,
  9774. const struct ggml_tensor * v,
  9775. const bool masked,
  9776. struct ggml_tensor * dst) {
  9777. int64_t t0 = ggml_perf_time_us();
  9778. UNUSED(t0);
  9779. const int64_t neq0 = q->ne[0];
  9780. const int64_t neq1 = q->ne[1];
  9781. const int64_t neq2 = q->ne[2];
  9782. const int64_t neq3 = q->ne[3];
  9783. const int64_t nek0 = k->ne[0];
  9784. const int64_t nek1 = k->ne[1];
  9785. //const int64_t nek2 = k->ne[2];
  9786. //const int64_t nek3 = k->ne[3];
  9787. //const int64_t nev0 = v->ne[0];
  9788. const int64_t nev1 = v->ne[1];
  9789. //const int64_t nev2 = v->ne[2];
  9790. //const int64_t nev3 = v->ne[3];
  9791. const int64_t ne0 = dst->ne[0];
  9792. const int64_t ne1 = dst->ne[1];
  9793. //const int64_t ne2 = dst->ne[2];
  9794. //const int64_t ne3 = dst->ne[3];
  9795. const int nbk0 = k->nb[0];
  9796. const int nbk1 = k->nb[1];
  9797. const int nbk2 = k->nb[2];
  9798. const int nbk3 = k->nb[3];
  9799. const int nbq0 = q->nb[0];
  9800. const int nbq1 = q->nb[1];
  9801. const int nbq2 = q->nb[2];
  9802. const int nbq3 = q->nb[3];
  9803. const int nbv0 = v->nb[0];
  9804. const int nbv1 = v->nb[1];
  9805. const int nbv2 = v->nb[2];
  9806. const int nbv3 = v->nb[3];
  9807. const int nb0 = dst->nb[0];
  9808. const int nb1 = dst->nb[1];
  9809. const int nb2 = dst->nb[2];
  9810. const int nb3 = dst->nb[3];
  9811. const int ith = params->ith;
  9812. const int nth = params->nth;
  9813. const int64_t D = neq0;
  9814. const int64_t N = neq1;
  9815. const int64_t P = nek1 - N;
  9816. const int64_t M = P + N;
  9817. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9818. GGML_ASSERT(ne0 == D);
  9819. GGML_ASSERT(ne1 == N);
  9820. GGML_ASSERT(P >= 0);
  9821. GGML_ASSERT(nbq0 == sizeof(float));
  9822. GGML_ASSERT(nbk0 == sizeof(float));
  9823. GGML_ASSERT(nbv0 == sizeof(float));
  9824. GGML_ASSERT(neq0 == D);
  9825. GGML_ASSERT(nek0 == D);
  9826. GGML_ASSERT(nev1 == D);
  9827. GGML_ASSERT(neq1 == N);
  9828. GGML_ASSERT(nek1 == N + P);
  9829. GGML_ASSERT(nev1 == D);
  9830. // dst cannot be transposed or permuted
  9831. GGML_ASSERT(nb0 == sizeof(float));
  9832. GGML_ASSERT(nb0 <= nb1);
  9833. GGML_ASSERT(nb1 <= nb2);
  9834. GGML_ASSERT(nb2 <= nb3);
  9835. if (params->type == GGML_TASK_INIT) {
  9836. return;
  9837. }
  9838. if (params->type == GGML_TASK_FINALIZE) {
  9839. return;
  9840. }
  9841. // parallelize by q rows using ggml_vec_dot_f32
  9842. // total rows in q
  9843. const int nr = neq1*neq2*neq3;
  9844. // rows per thread
  9845. const int dr = (nr + nth - 1)/nth;
  9846. // row range for this thread
  9847. const int ir0 = dr*ith;
  9848. const int ir1 = MIN(ir0 + dr, nr);
  9849. const float scale = 1.0f/sqrtf(D);
  9850. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9851. for (int ir = ir0; ir < ir1; ++ir) {
  9852. // q indices
  9853. const int iq3 = ir/(neq2*neq1);
  9854. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9855. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9856. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9857. for (int i = M; i < Mup; ++i) {
  9858. S[i] = -INFINITY;
  9859. }
  9860. for (int64_t ic = 0; ic < nek1; ++ic) {
  9861. // k indices
  9862. const int ik3 = iq3;
  9863. const int ik2 = iq2;
  9864. const int ik1 = ic;
  9865. // S indices
  9866. const int i1 = ik1;
  9867. ggml_vec_dot_f32(neq0,
  9868. S + i1,
  9869. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9870. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9871. }
  9872. // scale
  9873. ggml_vec_scale_f32(nek1, S, scale);
  9874. if (masked) {
  9875. for (int64_t i = P; i < M; i++) {
  9876. if (i > P + iq1) {
  9877. S[i] = -INFINITY;
  9878. }
  9879. }
  9880. }
  9881. // softmax
  9882. {
  9883. float max = -INFINITY;
  9884. ggml_vec_max_f32(M, &max, S);
  9885. ggml_float sum = 0.0;
  9886. {
  9887. #ifdef GGML_SOFT_MAX_ACCELERATE
  9888. max = -max;
  9889. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9890. vvexpf(S, S, &Mup);
  9891. ggml_vec_sum_f32(Mup, &sum, S);
  9892. #else
  9893. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9894. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9895. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9896. float * SS = S + i;
  9897. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9898. if (SS[j] == -INFINITY) {
  9899. SS[j] = 0.0f;
  9900. } else {
  9901. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9902. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9903. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9904. sump[j] += (ggml_float)val;
  9905. SS[j] = val;
  9906. }
  9907. }
  9908. }
  9909. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9910. sum += sump[i];
  9911. }
  9912. #endif
  9913. }
  9914. assert(sum > 0.0);
  9915. sum = 1.0/sum;
  9916. ggml_vec_scale_f32(M, S, sum);
  9917. #ifndef NDEBUG
  9918. for (int i = 0; i < M; ++i) {
  9919. assert(!isnan(S[i]));
  9920. assert(!isinf(S[i]));
  9921. }
  9922. #endif
  9923. }
  9924. for (int64_t ic = 0; ic < nev1; ++ic) {
  9925. // dst indices
  9926. const int i1 = iq1;
  9927. const int i2 = iq2;
  9928. const int i3 = iq3;
  9929. ggml_vec_dot_f32(nek1,
  9930. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9931. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9932. S);
  9933. }
  9934. }
  9935. }
  9936. static void ggml_compute_forward_flash_attn_f16(
  9937. const struct ggml_compute_params * params,
  9938. const struct ggml_tensor * q,
  9939. const struct ggml_tensor * k,
  9940. const struct ggml_tensor * v,
  9941. const bool masked,
  9942. struct ggml_tensor * dst) {
  9943. int64_t t0 = ggml_perf_time_us();
  9944. UNUSED(t0);
  9945. const int64_t neq0 = q->ne[0];
  9946. const int64_t neq1 = q->ne[1];
  9947. const int64_t neq2 = q->ne[2];
  9948. const int64_t neq3 = q->ne[3];
  9949. const int64_t nek0 = k->ne[0];
  9950. const int64_t nek1 = k->ne[1];
  9951. //const int64_t nek2 = k->ne[2];
  9952. //const int64_t nek3 = k->ne[3];
  9953. //const int64_t nev0 = v->ne[0];
  9954. const int64_t nev1 = v->ne[1];
  9955. //const int64_t nev2 = v->ne[2];
  9956. //const int64_t nev3 = v->ne[3];
  9957. const int64_t ne0 = dst->ne[0];
  9958. const int64_t ne1 = dst->ne[1];
  9959. //const int64_t ne2 = dst->ne[2];
  9960. //const int64_t ne3 = dst->ne[3];
  9961. const int nbk0 = k->nb[0];
  9962. const int nbk1 = k->nb[1];
  9963. const int nbk2 = k->nb[2];
  9964. const int nbk3 = k->nb[3];
  9965. const int nbq0 = q->nb[0];
  9966. const int nbq1 = q->nb[1];
  9967. const int nbq2 = q->nb[2];
  9968. const int nbq3 = q->nb[3];
  9969. const int nbv0 = v->nb[0];
  9970. const int nbv1 = v->nb[1];
  9971. const int nbv2 = v->nb[2];
  9972. const int nbv3 = v->nb[3];
  9973. const int nb0 = dst->nb[0];
  9974. const int nb1 = dst->nb[1];
  9975. const int nb2 = dst->nb[2];
  9976. const int nb3 = dst->nb[3];
  9977. const int ith = params->ith;
  9978. const int nth = params->nth;
  9979. const int64_t D = neq0;
  9980. const int64_t N = neq1;
  9981. const int64_t P = nek1 - N;
  9982. const int64_t M = P + N;
  9983. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9984. GGML_ASSERT(ne0 == D);
  9985. GGML_ASSERT(ne1 == N);
  9986. GGML_ASSERT(P >= 0);
  9987. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9988. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9989. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9990. GGML_ASSERT(neq0 == D);
  9991. GGML_ASSERT(nek0 == D);
  9992. GGML_ASSERT(nev1 == D);
  9993. GGML_ASSERT(neq1 == N);
  9994. GGML_ASSERT(nek1 == N + P);
  9995. GGML_ASSERT(nev1 == D);
  9996. // dst cannot be transposed or permuted
  9997. GGML_ASSERT(nb0 == sizeof(float));
  9998. GGML_ASSERT(nb0 <= nb1);
  9999. GGML_ASSERT(nb1 <= nb2);
  10000. GGML_ASSERT(nb2 <= nb3);
  10001. if (params->type == GGML_TASK_INIT) {
  10002. return;
  10003. }
  10004. if (params->type == GGML_TASK_FINALIZE) {
  10005. return;
  10006. }
  10007. // parallelize by q rows using ggml_vec_dot_f32
  10008. // total rows in q
  10009. const int nr = neq1*neq2*neq3;
  10010. // rows per thread
  10011. const int dr = (nr + nth - 1)/nth;
  10012. // row range for this thread
  10013. const int ir0 = dr*ith;
  10014. const int ir1 = MIN(ir0 + dr, nr);
  10015. const float scale = 1.0f/sqrtf(D);
  10016. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10017. for (int ir = ir0; ir < ir1; ++ir) {
  10018. // q indices
  10019. const int iq3 = ir/(neq2*neq1);
  10020. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10021. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10022. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10023. for (int i = M; i < Mup; ++i) {
  10024. S[i] = -INFINITY;
  10025. }
  10026. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10027. for (int64_t ic = 0; ic < nek1; ++ic) {
  10028. // k indices
  10029. const int ik3 = iq3;
  10030. const int ik2 = iq2;
  10031. const int ik1 = ic;
  10032. // S indices
  10033. const int i1 = ik1;
  10034. ggml_vec_dot_f16(neq0,
  10035. S + i1,
  10036. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10037. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10038. }
  10039. } else {
  10040. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10041. // k indices
  10042. const int ik3 = iq3;
  10043. const int ik2 = iq2;
  10044. const int ik1 = ic;
  10045. // S indices
  10046. const int i1 = ik1;
  10047. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10048. S + i1,
  10049. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10050. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10051. }
  10052. }
  10053. // scale
  10054. ggml_vec_scale_f32(nek1, S, scale);
  10055. if (masked) {
  10056. for (int64_t i = P; i < M; i++) {
  10057. if (i > P + iq1) {
  10058. S[i] = -INFINITY;
  10059. }
  10060. }
  10061. }
  10062. // softmax
  10063. {
  10064. float max = -INFINITY;
  10065. ggml_vec_max_f32(M, &max, S);
  10066. ggml_float sum = 0.0;
  10067. {
  10068. #ifdef GGML_SOFT_MAX_ACCELERATE
  10069. max = -max;
  10070. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10071. vvexpf(S, S, &Mup);
  10072. ggml_vec_sum_f32(Mup, &sum, S);
  10073. #else
  10074. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10075. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10076. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10077. float * SS = S + i;
  10078. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10079. if (SS[j] == -INFINITY) {
  10080. SS[j] = 0.0f;
  10081. } else {
  10082. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10083. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10084. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10085. sump[j] += (ggml_float)val;
  10086. SS[j] = val;
  10087. }
  10088. }
  10089. }
  10090. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10091. sum += sump[i];
  10092. }
  10093. #endif
  10094. }
  10095. assert(sum > 0.0);
  10096. sum = 1.0/sum;
  10097. ggml_vec_scale_f32(M, S, sum);
  10098. #ifndef NDEBUG
  10099. for (int i = 0; i < M; ++i) {
  10100. assert(!isnan(S[i]));
  10101. assert(!isinf(S[i]));
  10102. }
  10103. #endif
  10104. }
  10105. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10106. for (int64_t i = 0; i < M; i++) {
  10107. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10108. }
  10109. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10110. for (int64_t ic = 0; ic < nev1; ++ic) {
  10111. // dst indices
  10112. const int i1 = iq1;
  10113. const int i2 = iq2;
  10114. const int i3 = iq3;
  10115. ggml_vec_dot_f16(nek1,
  10116. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10117. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10118. S16);
  10119. }
  10120. } else {
  10121. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10122. // dst indices
  10123. const int i1 = iq1;
  10124. const int i2 = iq2;
  10125. const int i3 = iq3;
  10126. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10127. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10128. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10129. S16);
  10130. }
  10131. }
  10132. }
  10133. }
  10134. static void ggml_compute_forward_flash_attn(
  10135. const struct ggml_compute_params * params,
  10136. const struct ggml_tensor * q,
  10137. const struct ggml_tensor * k,
  10138. const struct ggml_tensor * v,
  10139. const bool masked,
  10140. struct ggml_tensor * dst) {
  10141. switch (q->type) {
  10142. case GGML_TYPE_F16:
  10143. {
  10144. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10145. } break;
  10146. case GGML_TYPE_F32:
  10147. {
  10148. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10149. } break;
  10150. default:
  10151. {
  10152. GGML_ASSERT(false);
  10153. } break;
  10154. }
  10155. }
  10156. // ggml_compute_forward_flash_ff
  10157. static void ggml_compute_forward_flash_ff_f16(
  10158. const struct ggml_compute_params * params,
  10159. const struct ggml_tensor * a, // F16
  10160. const struct ggml_tensor * b0, // F16 fc_w
  10161. const struct ggml_tensor * b1, // F32 fc_b
  10162. const struct ggml_tensor * c0, // F16 proj_w
  10163. const struct ggml_tensor * c1, // F32 proj_b
  10164. struct ggml_tensor * dst) {
  10165. int64_t t0 = ggml_perf_time_us();
  10166. UNUSED(t0);
  10167. const int64_t nea0 = a->ne[0];
  10168. const int64_t nea1 = a->ne[1];
  10169. const int64_t nea2 = a->ne[2];
  10170. const int64_t nea3 = a->ne[3];
  10171. const int64_t neb00 = b0->ne[0];
  10172. const int64_t neb01 = b0->ne[1];
  10173. //const int64_t neb02 = b0->ne[2];
  10174. //const int64_t neb03 = b0->ne[3];
  10175. const int64_t neb10 = b1->ne[0];
  10176. const int64_t neb11 = b1->ne[1];
  10177. //const int64_t neb12 = b1->ne[2];
  10178. //const int64_t neb13 = b1->ne[3];
  10179. const int64_t nec00 = c0->ne[0];
  10180. const int64_t nec01 = c0->ne[1];
  10181. //const int64_t nec02 = c0->ne[2];
  10182. //const int64_t nec03 = c0->ne[3];
  10183. const int64_t nec10 = c1->ne[0];
  10184. const int64_t nec11 = c1->ne[1];
  10185. //const int64_t nec12 = c1->ne[2];
  10186. //const int64_t nec13 = c1->ne[3];
  10187. const int64_t ne0 = dst->ne[0];
  10188. const int64_t ne1 = dst->ne[1];
  10189. const int64_t ne2 = dst->ne[2];
  10190. //const int64_t ne3 = dst->ne[3];
  10191. const int nba0 = a->nb[0];
  10192. const int nba1 = a->nb[1];
  10193. const int nba2 = a->nb[2];
  10194. const int nba3 = a->nb[3];
  10195. const int nbb00 = b0->nb[0];
  10196. const int nbb01 = b0->nb[1];
  10197. const int nbb02 = b0->nb[2];
  10198. const int nbb03 = b0->nb[3];
  10199. const int nbb10 = b1->nb[0];
  10200. //const int nbb11 = b1->nb[1];
  10201. //const int nbb12 = b1->nb[2];
  10202. //const int nbb13 = b1->nb[3];
  10203. const int nbc00 = c0->nb[0];
  10204. const int nbc01 = c0->nb[1];
  10205. const int nbc02 = c0->nb[2];
  10206. const int nbc03 = c0->nb[3];
  10207. const int nbc10 = c1->nb[0];
  10208. //const int nbc11 = c1->nb[1];
  10209. //const int nbc12 = c1->nb[2];
  10210. //const int nbc13 = c1->nb[3];
  10211. const int nb0 = dst->nb[0];
  10212. const int nb1 = dst->nb[1];
  10213. const int nb2 = dst->nb[2];
  10214. const int nb3 = dst->nb[3];
  10215. const int ith = params->ith;
  10216. const int nth = params->nth;
  10217. const int64_t D = nea0;
  10218. //const int64_t N = nea1;
  10219. const int64_t M = neb01;
  10220. GGML_ASSERT(ne0 == nea0);
  10221. GGML_ASSERT(ne1 == nea1);
  10222. GGML_ASSERT(ne2 == nea2);
  10223. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10224. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10225. GGML_ASSERT(nbb10 == sizeof(float));
  10226. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10227. GGML_ASSERT(nbc10 == sizeof(float));
  10228. GGML_ASSERT(neb00 == D);
  10229. GGML_ASSERT(neb01 == M);
  10230. GGML_ASSERT(neb10 == M);
  10231. GGML_ASSERT(neb11 == 1);
  10232. GGML_ASSERT(nec00 == M);
  10233. GGML_ASSERT(nec01 == D);
  10234. GGML_ASSERT(nec10 == D);
  10235. GGML_ASSERT(nec11 == 1);
  10236. // dst cannot be transposed or permuted
  10237. GGML_ASSERT(nb0 == sizeof(float));
  10238. GGML_ASSERT(nb0 <= nb1);
  10239. GGML_ASSERT(nb1 <= nb2);
  10240. GGML_ASSERT(nb2 <= nb3);
  10241. if (params->type == GGML_TASK_INIT) {
  10242. return;
  10243. }
  10244. if (params->type == GGML_TASK_FINALIZE) {
  10245. return;
  10246. }
  10247. // parallelize by a rows using ggml_vec_dot_f32
  10248. // total rows in a
  10249. const int nr = nea1*nea2*nea3;
  10250. // rows per thread
  10251. const int dr = (nr + nth - 1)/nth;
  10252. // row range for this thread
  10253. const int ir0 = dr*ith;
  10254. const int ir1 = MIN(ir0 + dr, nr);
  10255. for (int ir = ir0; ir < ir1; ++ir) {
  10256. // a indices
  10257. const int ia3 = ir/(nea2*nea1);
  10258. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10259. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10260. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10261. for (int64_t ic = 0; ic < neb01; ++ic) {
  10262. // b0 indices
  10263. const int ib03 = ia3;
  10264. const int ib02 = ia2;
  10265. const int ib01 = ic;
  10266. // S indices
  10267. const int i1 = ib01;
  10268. ggml_vec_dot_f16(nea0,
  10269. S + i1,
  10270. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10271. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10272. }
  10273. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10274. //ggml_vec_gelu_f32(neb01, S, S);
  10275. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10276. for (int64_t i = 0; i < M; i++) {
  10277. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10278. }
  10279. ggml_vec_gelu_f16(neb01, S16, S16);
  10280. {
  10281. // dst indices
  10282. const int i1 = ia1;
  10283. const int i2 = ia2;
  10284. const int i3 = ia3;
  10285. for (int64_t ic = 0; ic < nec01; ++ic) {
  10286. ggml_vec_dot_f16(neb01,
  10287. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10288. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10289. S16);
  10290. }
  10291. ggml_vec_add_f32(nec01,
  10292. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10293. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10294. (float *) c1->data);
  10295. }
  10296. }
  10297. }
  10298. static void ggml_compute_forward_flash_ff(
  10299. const struct ggml_compute_params * params,
  10300. const struct ggml_tensor * a,
  10301. const struct ggml_tensor * b0,
  10302. const struct ggml_tensor * b1,
  10303. const struct ggml_tensor * c0,
  10304. const struct ggml_tensor * c1,
  10305. struct ggml_tensor * dst) {
  10306. switch (b0->type) {
  10307. case GGML_TYPE_F16:
  10308. {
  10309. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10310. } break;
  10311. case GGML_TYPE_F32:
  10312. {
  10313. GGML_ASSERT(false); // TODO
  10314. } break;
  10315. default:
  10316. {
  10317. GGML_ASSERT(false);
  10318. } break;
  10319. }
  10320. }
  10321. // ggml_compute_forward_map_unary
  10322. static void ggml_compute_forward_map_unary_f32(
  10323. const struct ggml_compute_params * params,
  10324. const struct ggml_tensor * src0,
  10325. struct ggml_tensor * dst,
  10326. const ggml_unary_op_f32_t fun) {
  10327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10329. return;
  10330. }
  10331. const int n = ggml_nrows(src0);
  10332. const int nc = src0->ne[0];
  10333. assert( dst->nb[0] == sizeof(float));
  10334. assert(src0->nb[0] == sizeof(float));
  10335. for (int i = 0; i < n; i++) {
  10336. fun(nc,
  10337. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10338. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10339. }
  10340. }
  10341. static void ggml_compute_forward_map_unary(
  10342. const struct ggml_compute_params * params,
  10343. const struct ggml_tensor * src0,
  10344. struct ggml_tensor * dst,
  10345. const ggml_unary_op_f32_t fun) {
  10346. switch (src0->type) {
  10347. case GGML_TYPE_F32:
  10348. {
  10349. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10350. } break;
  10351. default:
  10352. {
  10353. GGML_ASSERT(false);
  10354. } break;
  10355. }
  10356. }
  10357. // ggml_compute_forward_map_binary
  10358. static void ggml_compute_forward_map_binary_f32(
  10359. const struct ggml_compute_params * params,
  10360. const struct ggml_tensor * src0,
  10361. const struct ggml_tensor * src1,
  10362. struct ggml_tensor * dst,
  10363. const ggml_binary_op_f32_t fun) {
  10364. assert(params->ith == 0);
  10365. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10367. return;
  10368. }
  10369. const int n = ggml_nrows(src0);
  10370. const int nc = src0->ne[0];
  10371. assert( dst->nb[0] == sizeof(float));
  10372. assert(src0->nb[0] == sizeof(float));
  10373. assert(src1->nb[0] == sizeof(float));
  10374. for (int i = 0; i < n; i++) {
  10375. fun(nc,
  10376. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10377. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10378. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10379. }
  10380. }
  10381. static void ggml_compute_forward_map_binary(
  10382. const struct ggml_compute_params * params,
  10383. const struct ggml_tensor * src0,
  10384. const struct ggml_tensor * src1,
  10385. struct ggml_tensor * dst,
  10386. const ggml_binary_op_f32_t fun) {
  10387. switch (src0->type) {
  10388. case GGML_TYPE_F32:
  10389. {
  10390. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10391. } break;
  10392. default:
  10393. {
  10394. GGML_ASSERT(false);
  10395. } break;
  10396. }
  10397. }
  10398. /////////////////////////////////
  10399. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10400. GGML_ASSERT(params);
  10401. switch (tensor->op) {
  10402. case GGML_OP_DUP:
  10403. {
  10404. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10405. } break;
  10406. case GGML_OP_ADD:
  10407. {
  10408. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10409. } break;
  10410. case GGML_OP_ADD1:
  10411. {
  10412. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10413. } break;
  10414. case GGML_OP_ACC:
  10415. {
  10416. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10417. } break;
  10418. case GGML_OP_SUB:
  10419. {
  10420. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10421. } break;
  10422. case GGML_OP_MUL:
  10423. {
  10424. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10425. } break;
  10426. case GGML_OP_DIV:
  10427. {
  10428. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10429. } break;
  10430. case GGML_OP_SQR:
  10431. {
  10432. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10433. } break;
  10434. case GGML_OP_SQRT:
  10435. {
  10436. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10437. } break;
  10438. case GGML_OP_LOG:
  10439. {
  10440. ggml_compute_forward_log(params, tensor->src0, tensor);
  10441. } break;
  10442. case GGML_OP_SUM:
  10443. {
  10444. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10445. } break;
  10446. case GGML_OP_SUM_ROWS:
  10447. {
  10448. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10449. } break;
  10450. case GGML_OP_MEAN:
  10451. {
  10452. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10453. } break;
  10454. case GGML_OP_REPEAT:
  10455. {
  10456. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10457. } break;
  10458. case GGML_OP_ABS:
  10459. {
  10460. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10461. } break;
  10462. case GGML_OP_SGN:
  10463. {
  10464. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10465. } break;
  10466. case GGML_OP_NEG:
  10467. {
  10468. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10469. } break;
  10470. case GGML_OP_STEP:
  10471. {
  10472. ggml_compute_forward_step(params, tensor->src0, tensor);
  10473. } break;
  10474. case GGML_OP_RELU:
  10475. {
  10476. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10477. } break;
  10478. case GGML_OP_GELU:
  10479. {
  10480. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10481. } break;
  10482. case GGML_OP_SILU:
  10483. {
  10484. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10485. } break;
  10486. case GGML_OP_SILU_BACK:
  10487. {
  10488. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10489. } break;
  10490. case GGML_OP_NORM:
  10491. {
  10492. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10493. } break;
  10494. case GGML_OP_RMS_NORM:
  10495. {
  10496. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10497. } break;
  10498. case GGML_OP_RMS_NORM_BACK:
  10499. {
  10500. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10501. } break;
  10502. case GGML_OP_MUL_MAT:
  10503. {
  10504. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10505. } break;
  10506. case GGML_OP_SCALE:
  10507. {
  10508. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10509. } break;
  10510. case GGML_OP_SET:
  10511. {
  10512. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10513. } break;
  10514. case GGML_OP_CPY:
  10515. {
  10516. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10517. } break;
  10518. case GGML_OP_CONT:
  10519. {
  10520. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10521. } break;
  10522. case GGML_OP_RESHAPE:
  10523. {
  10524. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10525. } break;
  10526. case GGML_OP_VIEW:
  10527. {
  10528. ggml_compute_forward_view(params, tensor->src0);
  10529. } break;
  10530. case GGML_OP_PERMUTE:
  10531. {
  10532. ggml_compute_forward_permute(params, tensor->src0);
  10533. } break;
  10534. case GGML_OP_TRANSPOSE:
  10535. {
  10536. ggml_compute_forward_transpose(params, tensor->src0);
  10537. } break;
  10538. case GGML_OP_GET_ROWS:
  10539. {
  10540. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10541. } break;
  10542. case GGML_OP_GET_ROWS_BACK:
  10543. {
  10544. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10545. } break;
  10546. case GGML_OP_DIAG:
  10547. {
  10548. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10549. } break;
  10550. case GGML_OP_DIAG_MASK_INF:
  10551. {
  10552. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10553. } break;
  10554. case GGML_OP_DIAG_MASK_ZERO:
  10555. {
  10556. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10557. } break;
  10558. case GGML_OP_SOFT_MAX:
  10559. {
  10560. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10561. } break;
  10562. case GGML_OP_ROPE:
  10563. {
  10564. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10565. } break;
  10566. case GGML_OP_ROPE_BACK:
  10567. {
  10568. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10569. } break;
  10570. case GGML_OP_ALIBI:
  10571. {
  10572. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10573. } break;
  10574. case GGML_OP_CLAMP:
  10575. {
  10576. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10577. } break;
  10578. case GGML_OP_CONV_1D_1S:
  10579. {
  10580. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10581. } break;
  10582. case GGML_OP_CONV_1D_2S:
  10583. {
  10584. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10585. } break;
  10586. case GGML_OP_FLASH_ATTN:
  10587. {
  10588. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10589. GGML_ASSERT(t == 0 || t == 1);
  10590. bool masked = t != 0;
  10591. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10592. } break;
  10593. case GGML_OP_FLASH_FF:
  10594. {
  10595. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10596. } break;
  10597. case GGML_OP_MAP_UNARY:
  10598. {
  10599. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10600. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10601. }
  10602. break;
  10603. case GGML_OP_MAP_BINARY:
  10604. {
  10605. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10606. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10607. }
  10608. break;
  10609. case GGML_OP_NONE:
  10610. {
  10611. // nop
  10612. } break;
  10613. case GGML_OP_COUNT:
  10614. {
  10615. GGML_ASSERT(false);
  10616. } break;
  10617. }
  10618. }
  10619. ////////////////////////////////////////////////////////////////////////////////
  10620. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10621. struct ggml_tensor * src0 = tensor->src0;
  10622. struct ggml_tensor * src1 = tensor->src1;
  10623. switch (tensor->op) {
  10624. case GGML_OP_DUP:
  10625. {
  10626. if (src0->grad) {
  10627. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10628. }
  10629. } break;
  10630. case GGML_OP_ADD:
  10631. {
  10632. if (src0->grad) {
  10633. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10634. }
  10635. if (src1->grad) {
  10636. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10637. }
  10638. } break;
  10639. case GGML_OP_ADD1:
  10640. {
  10641. if (src0->grad) {
  10642. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10643. }
  10644. if (src1->grad) {
  10645. src1->grad = ggml_add_impl(ctx,
  10646. src1->grad,
  10647. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10648. inplace);
  10649. }
  10650. } break;
  10651. case GGML_OP_ACC:
  10652. {
  10653. if (src0->grad) {
  10654. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10655. }
  10656. if (src1->grad) {
  10657. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10658. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10659. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10660. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10661. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10662. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10663. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10664. tensor->grad,
  10665. src1->grad->ne[0],
  10666. src1->grad->ne[1],
  10667. src1->grad->ne[2],
  10668. src1->grad->ne[3],
  10669. nb1, nb2, nb3, offset);
  10670. src1->grad =
  10671. ggml_add_impl(ctx,
  10672. src1->grad,
  10673. ggml_reshape(ctx,
  10674. ggml_cont(ctx, tensor_grad_view),
  10675. src1->grad),
  10676. inplace);
  10677. }
  10678. } break;
  10679. case GGML_OP_SUB:
  10680. {
  10681. if (src0->grad) {
  10682. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10683. }
  10684. if (src1->grad) {
  10685. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10686. }
  10687. } break;
  10688. case GGML_OP_MUL:
  10689. {
  10690. if (src0->grad) {
  10691. src0->grad =
  10692. ggml_add_impl(ctx,
  10693. src0->grad,
  10694. ggml_mul(ctx, src1, tensor->grad),
  10695. inplace);
  10696. }
  10697. if (src1->grad) {
  10698. src1->grad =
  10699. ggml_add_impl(ctx,
  10700. src1->grad,
  10701. ggml_mul(ctx, src0, tensor->grad),
  10702. inplace);
  10703. }
  10704. } break;
  10705. case GGML_OP_DIV:
  10706. {
  10707. if (src0->grad) {
  10708. src0->grad =
  10709. ggml_add_impl(ctx,
  10710. src0->grad,
  10711. ggml_div(ctx, tensor->grad, src1),
  10712. inplace);
  10713. }
  10714. if (src1->grad) {
  10715. src1->grad =
  10716. ggml_sub_impl(ctx,
  10717. src1->grad,
  10718. ggml_mul(ctx,
  10719. tensor->grad,
  10720. ggml_div(ctx, tensor, src1)),
  10721. inplace);
  10722. }
  10723. } break;
  10724. case GGML_OP_SQR:
  10725. {
  10726. if (src0->grad) {
  10727. src0->grad =
  10728. ggml_add_impl(ctx,
  10729. src0->grad,
  10730. ggml_scale(ctx,
  10731. ggml_mul(ctx, src0, tensor->grad),
  10732. ggml_new_f32(ctx, 2.0f)),
  10733. inplace);
  10734. }
  10735. } break;
  10736. case GGML_OP_SQRT:
  10737. {
  10738. if (src0->grad) {
  10739. src0->grad =
  10740. ggml_add_impl(ctx,
  10741. src0->grad,
  10742. ggml_mul(ctx,
  10743. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10744. ggml_div(ctx,
  10745. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10746. tensor)),
  10747. inplace);
  10748. }
  10749. } break;
  10750. case GGML_OP_LOG:
  10751. {
  10752. if (src0->grad) {
  10753. src0->grad =
  10754. ggml_add_impl(ctx,
  10755. src0->grad,
  10756. ggml_div(ctx,
  10757. tensor->grad,
  10758. src0),
  10759. inplace);
  10760. }
  10761. } break;
  10762. case GGML_OP_SUM:
  10763. {
  10764. if (src0->grad) {
  10765. src0->grad =
  10766. ggml_add1_impl(ctx,
  10767. src0->grad,
  10768. tensor->grad,
  10769. inplace);
  10770. }
  10771. } break;
  10772. case GGML_OP_SUM_ROWS:
  10773. {
  10774. if (src0->grad) {
  10775. src0->grad =
  10776. ggml_add_impl(ctx,
  10777. src0->grad,
  10778. ggml_repeat(ctx,
  10779. tensor->grad,
  10780. src0->grad),
  10781. inplace);
  10782. }
  10783. } break;
  10784. case GGML_OP_MEAN:
  10785. {
  10786. GGML_ASSERT(false); // TODO: implement
  10787. } break;
  10788. case GGML_OP_REPEAT:
  10789. {
  10790. // necessary for llama
  10791. if (src0->grad) {
  10792. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10793. const int nc = tensor->ne[0];
  10794. const int nr = tensor->ne[1];
  10795. const int nc0 = src0->ne[0];
  10796. const int nr0 = src0->ne[1];
  10797. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10798. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10799. // tensor->grad [nc,nr,1,1]
  10800. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10801. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10802. // substitute [nc0,nr0,ncr,nrr]
  10803. // reshape [nc0*nr0,ncr*nrr,1,1]
  10804. // transpose [ncr*nrr,nc0*nr0,1,1]
  10805. // sum rows [1,nc0*nr0,1,1]
  10806. // transpose [nc0*nr0,1,1]
  10807. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10808. // add to src0->grad
  10809. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10810. struct ggml_tensor* F00 = tensor->grad;
  10811. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10812. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10813. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10814. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10815. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10816. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10817. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10818. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10819. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10820. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10821. src0->grad =
  10822. ggml_add_impl(ctx,
  10823. src0->grad,
  10824. F10,
  10825. inplace);
  10826. }
  10827. } break;
  10828. case GGML_OP_ABS:
  10829. {
  10830. if (src0->grad) {
  10831. src0->grad =
  10832. ggml_add_impl(ctx,
  10833. src0->grad,
  10834. ggml_mul(ctx,
  10835. ggml_sgn(ctx, src0),
  10836. tensor->grad),
  10837. inplace);
  10838. }
  10839. } break;
  10840. case GGML_OP_SGN:
  10841. {
  10842. if (src0->grad) {
  10843. // noop
  10844. }
  10845. } break;
  10846. case GGML_OP_NEG:
  10847. {
  10848. if (src0->grad) {
  10849. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10850. }
  10851. } break;
  10852. case GGML_OP_STEP:
  10853. {
  10854. if (src0->grad) {
  10855. // noop
  10856. }
  10857. } break;
  10858. case GGML_OP_RELU:
  10859. {
  10860. if (src0->grad) {
  10861. src0->grad = ggml_sub_impl(ctx,
  10862. src0->grad,
  10863. ggml_mul(ctx,
  10864. ggml_step(ctx, src0),
  10865. tensor->grad),
  10866. inplace);
  10867. }
  10868. } break;
  10869. case GGML_OP_GELU:
  10870. {
  10871. GGML_ASSERT(false); // TODO: not implemented
  10872. } break;
  10873. case GGML_OP_ALIBI:
  10874. {
  10875. GGML_ASSERT(false); // TODO: not implemented
  10876. } break;
  10877. case GGML_OP_CLAMP:
  10878. {
  10879. GGML_ASSERT(false); // TODO: not implemented
  10880. } break;
  10881. case GGML_OP_SILU:
  10882. {
  10883. // necessary for llama
  10884. if (src0->grad) {
  10885. src0->grad = ggml_add_impl(ctx,
  10886. src0->grad,
  10887. ggml_silu_back(ctx, src0, tensor->grad),
  10888. inplace);
  10889. }
  10890. } break;
  10891. case GGML_OP_SILU_BACK:
  10892. {
  10893. GGML_ASSERT(false); // TODO: not implemented
  10894. } break;
  10895. case GGML_OP_NORM:
  10896. {
  10897. GGML_ASSERT(false); // TODO: not implemented
  10898. } break;
  10899. case GGML_OP_RMS_NORM:
  10900. {
  10901. // necessary for llama
  10902. if (src0->grad) {
  10903. src0->grad = ggml_add_impl(ctx,
  10904. src0->grad,
  10905. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10906. inplace);
  10907. }
  10908. } break;
  10909. case GGML_OP_RMS_NORM_BACK:
  10910. {
  10911. GGML_ASSERT(false); // TODO: not implemented
  10912. } break;
  10913. case GGML_OP_MUL_MAT:
  10914. {
  10915. // https://cs231n.github.io/optimization-2/#staged
  10916. // # forward pass
  10917. // s0 = np.random.randn(5, 10)
  10918. // s1 = np.random.randn(10, 3)
  10919. // t = s0.dot(s1)
  10920. // # now suppose we had the gradient on t from above in the circuit
  10921. // dt = np.random.randn(*t.shape) # same shape as t
  10922. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10923. // ds1 = t.T.dot(dt)
  10924. // tensor.shape [m,p]
  10925. // src0.shape [n,m]
  10926. // src1.shape [n,p]
  10927. // necessary for llama
  10928. if (src0->grad) {
  10929. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10930. src0->grad =
  10931. ggml_add_impl(ctx,
  10932. src0->grad,
  10933. // ds0 = dt.dot(s1.T)
  10934. // ggml_out_prod(ctx, // [n,m]
  10935. // src1, // [n,p]
  10936. // tensor->grad), // [m,p]
  10937. // for now just using A*B==(B.T*A.T).T
  10938. ggml_cont(ctx, // [n,m]
  10939. ggml_transpose(ctx, // [n,m]
  10940. ggml_mul_mat(ctx, // [m,n]
  10941. ggml_cont(ctx, // [p,m]
  10942. ggml_transpose(ctx, // [p,m]
  10943. tensor->grad)), // [m,p]
  10944. ggml_cont(ctx, // [p,n]
  10945. ggml_transpose(ctx, // [p,n]
  10946. src1))))), // [n,p]
  10947. inplace);
  10948. }
  10949. if (src1->grad) {
  10950. src1->grad =
  10951. ggml_add_impl(ctx,
  10952. src1->grad,
  10953. // ds1 = s0.T.dot(dt):
  10954. ggml_mul_mat(ctx, // [n,p]
  10955. ggml_cont(ctx, // [m,n]
  10956. ggml_transpose(ctx, src0)), // [m,n]
  10957. tensor->grad), // [m,p]
  10958. inplace);
  10959. }
  10960. } break;
  10961. case GGML_OP_SCALE:
  10962. {
  10963. // necessary for llama
  10964. if (src0->grad) {
  10965. src0->grad =
  10966. ggml_add_impl(ctx,
  10967. src0->grad,
  10968. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10969. inplace);
  10970. }
  10971. if (src1->grad) {
  10972. src1->grad =
  10973. ggml_add_impl(ctx,
  10974. src1->grad,
  10975. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10976. inplace);
  10977. }
  10978. } break;
  10979. case GGML_OP_SET:
  10980. {
  10981. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10982. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10983. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10984. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10985. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10986. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10987. struct ggml_tensor * tensor_grad_view = NULL;
  10988. if (src0->grad || src1->grad) {
  10989. GGML_ASSERT(src0->type == tensor->type);
  10990. GGML_ASSERT(tensor->grad->type == tensor->type);
  10991. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10992. tensor_grad_view = ggml_view_4d(ctx,
  10993. tensor->grad,
  10994. src1->grad->ne[0],
  10995. src1->grad->ne[1],
  10996. src1->grad->ne[2],
  10997. src1->grad->ne[3],
  10998. nb1, nb2, nb3, offset);
  10999. }
  11000. if (src0->grad) {
  11001. src0->grad = ggml_add_impl(ctx,
  11002. src0->grad,
  11003. ggml_acc_impl(ctx,
  11004. tensor->grad,
  11005. ggml_neg(ctx, tensor_grad_view),
  11006. nb1, nb2, nb3, offset, false),
  11007. inplace);
  11008. }
  11009. if (src1->grad) {
  11010. src1->grad =
  11011. ggml_add_impl(ctx,
  11012. src1->grad,
  11013. ggml_reshape(ctx,
  11014. ggml_cont(ctx, tensor_grad_view),
  11015. src1->grad),
  11016. inplace);
  11017. }
  11018. } break;
  11019. case GGML_OP_CPY:
  11020. {
  11021. // necessary for llama
  11022. // cpy overwrites value of src1 by src0 and returns view(src1)
  11023. // the overwriting is mathematically equivalent to:
  11024. // tensor = src0 * 1 + src1 * 0
  11025. if (src0->grad) {
  11026. // dsrc0 = dtensor * 1
  11027. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11028. }
  11029. if (src1->grad) {
  11030. // dsrc1 = dtensor * 0 -> noop
  11031. }
  11032. } break;
  11033. case GGML_OP_CONT:
  11034. {
  11035. // same as cpy
  11036. if (src0->grad) {
  11037. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11038. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11039. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11040. }
  11041. } break;
  11042. case GGML_OP_RESHAPE:
  11043. {
  11044. // necessary for llama
  11045. if (src0->grad) {
  11046. src0->grad =
  11047. ggml_add_impl(ctx, src0->grad,
  11048. ggml_reshape(ctx, tensor->grad, src0->grad),
  11049. inplace);
  11050. }
  11051. } break;
  11052. case GGML_OP_VIEW:
  11053. {
  11054. // necessary for llama
  11055. if (src0->grad) {
  11056. size_t offset;
  11057. memcpy(&offset, tensor->padding, sizeof(offset));
  11058. size_t nb1 = tensor->nb[1];
  11059. size_t nb2 = tensor->nb[2];
  11060. size_t nb3 = tensor->nb[3];
  11061. if (src0->type != src0->grad->type) {
  11062. // gradient is typically F32, but src0 could be other type
  11063. size_t ng = ggml_element_size(src0->grad);
  11064. size_t n0 = ggml_element_size(src0);
  11065. GGML_ASSERT(offset % n0 == 0);
  11066. GGML_ASSERT(nb1 % n0 == 0);
  11067. GGML_ASSERT(nb2 % n0 == 0);
  11068. GGML_ASSERT(nb3 % n0 == 0);
  11069. offset = (offset / n0) * ng;
  11070. nb1 = (nb1 / n0) * ng;
  11071. nb2 = (nb2 / n0) * ng;
  11072. nb3 = (nb3 / n0) * ng;
  11073. }
  11074. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11075. }
  11076. } break;
  11077. case GGML_OP_PERMUTE:
  11078. {
  11079. // necessary for llama
  11080. if (src0->grad) {
  11081. int axis0 = tensor->padding[0] & 0x3;
  11082. int axis1 = tensor->padding[1] & 0x3;
  11083. int axis2 = tensor->padding[2] & 0x3;
  11084. int axis3 = tensor->padding[3] & 0x3;
  11085. int axes_backward[4] = {0,0,0,0};
  11086. axes_backward[axis0] = 0;
  11087. axes_backward[axis1] = 1;
  11088. axes_backward[axis2] = 2;
  11089. axes_backward[axis3] = 3;
  11090. src0->grad =
  11091. ggml_add_impl(ctx, src0->grad,
  11092. ggml_permute(ctx,
  11093. tensor->grad,
  11094. axes_backward[0],
  11095. axes_backward[1],
  11096. axes_backward[2],
  11097. axes_backward[3]),
  11098. inplace);
  11099. }
  11100. } break;
  11101. case GGML_OP_TRANSPOSE:
  11102. {
  11103. // necessary for llama
  11104. if (src0->grad) {
  11105. src0->grad =
  11106. ggml_add_impl(ctx, src0->grad,
  11107. ggml_transpose(ctx, tensor->grad),
  11108. inplace);
  11109. }
  11110. } break;
  11111. case GGML_OP_GET_ROWS:
  11112. {
  11113. // necessary for llama (only for tokenizer)
  11114. if (src0->grad) {
  11115. src0->grad =
  11116. ggml_add_impl(ctx, src0->grad,
  11117. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11118. inplace);
  11119. }
  11120. if (src1->grad) {
  11121. // noop
  11122. }
  11123. } break;
  11124. case GGML_OP_GET_ROWS_BACK:
  11125. {
  11126. GGML_ASSERT(false); // TODO: not implemented
  11127. } break;
  11128. case GGML_OP_DIAG:
  11129. {
  11130. GGML_ASSERT(false); // TODO: not implemented
  11131. } break;
  11132. case GGML_OP_DIAG_MASK_INF:
  11133. {
  11134. // necessary for llama
  11135. if (src0->grad) {
  11136. assert(src1->type == GGML_TYPE_I32);
  11137. assert(ggml_nelements(src1) == 2);
  11138. const int n_past = ((int32_t *) src1->data)[0];
  11139. src0->grad =
  11140. ggml_add_impl(ctx, src0->grad,
  11141. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11142. inplace);
  11143. }
  11144. if (src1->grad) {
  11145. // noop
  11146. }
  11147. } break;
  11148. case GGML_OP_DIAG_MASK_ZERO:
  11149. {
  11150. // necessary for llama
  11151. if (src0->grad) {
  11152. assert(src1->type == GGML_TYPE_I32);
  11153. assert(ggml_nelements(src1) == 2);
  11154. const int n_past = ((int32_t *) src1->data)[0];
  11155. src0->grad =
  11156. ggml_add_impl(ctx, src0->grad,
  11157. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11158. inplace);
  11159. }
  11160. if (src1->grad) {
  11161. // noop
  11162. }
  11163. } break;
  11164. case GGML_OP_SOFT_MAX:
  11165. {
  11166. // necessary for llama
  11167. if (src0->grad) {
  11168. // y = softmax(x)
  11169. //
  11170. // Jii = yi - yi*yi
  11171. // Jij = -yi*yj
  11172. // J = diag(y)-y.*y
  11173. // dx = J * dy
  11174. // dxk = sum(Jkj * dyk)
  11175. int64_t ne2[4] = {
  11176. tensor->ne[0],
  11177. 1,
  11178. tensor->ne[1]*tensor->ne[2],
  11179. tensor->ne[3]
  11180. };
  11181. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11182. ggml_reshape_4d(ctx,
  11183. ggml_cont(ctx, tensor),
  11184. ne2[0], ne2[1], ne2[2], ne2[3]));
  11185. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11186. ggml_reshape_4d(ctx,
  11187. ggml_cont(ctx, tensor->grad),
  11188. ne2[0], ne2[1], ne2[2], ne2[3]));
  11189. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11190. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11191. tensor2, // [ne0,1,ne1*ne2,ne3]
  11192. 1, 0, 2, 3));
  11193. src0->grad =
  11194. ggml_add_impl(ctx,
  11195. src0->grad, // [ne0,ne1,ne2,ne3]
  11196. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11197. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11198. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11199. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11200. tensor2), // [ne0,1,ne1*ne2,ne3]
  11201. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11202. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11203. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11204. grad2), // [ne0,1,ne1*ne2,ne3]
  11205. src0->grad),
  11206. inplace);
  11207. }
  11208. } break;
  11209. case GGML_OP_ROPE:
  11210. {
  11211. // necessary for llama
  11212. if (src0->grad) {
  11213. assert(src1->type == GGML_TYPE_I32);
  11214. assert(ggml_nelements(src1) == 3);
  11215. const int n_past = ((int32_t *) src1->data)[0];
  11216. const int n_dims = ((int32_t *) src1->data)[1];
  11217. const int mode = ((int32_t *) src1->data)[2];
  11218. src0->grad = ggml_add_impl(ctx,
  11219. src0->grad,
  11220. ggml_rope_back(ctx,
  11221. tensor->grad,
  11222. n_past,
  11223. n_dims,
  11224. mode),
  11225. inplace);
  11226. }
  11227. if (src1->grad) {
  11228. // noop
  11229. }
  11230. } break;
  11231. case GGML_OP_ROPE_BACK:
  11232. {
  11233. if (src0->grad) {
  11234. assert(src1->type == GGML_TYPE_I32);
  11235. assert(ggml_nelements(src1) == 3);
  11236. const int n_past = ((int32_t *) src1->data)[0];
  11237. const int n_dims = ((int32_t *) src1->data)[1];
  11238. const int mode = ((int32_t *) src1->data)[2];
  11239. src0->grad = ggml_add_impl(ctx,
  11240. src0->grad,
  11241. ggml_rope(ctx,
  11242. tensor->grad,
  11243. n_past,
  11244. n_dims,
  11245. mode),
  11246. inplace);
  11247. }
  11248. if (src1->grad) {
  11249. // noop
  11250. }
  11251. } break;
  11252. case GGML_OP_CONV_1D_1S:
  11253. {
  11254. GGML_ASSERT(false); // TODO: not implemented
  11255. } break;
  11256. case GGML_OP_CONV_1D_2S:
  11257. {
  11258. GGML_ASSERT(false); // TODO: not implemented
  11259. } break;
  11260. case GGML_OP_FLASH_ATTN:
  11261. {
  11262. GGML_ASSERT(false); // not supported
  11263. } break;
  11264. case GGML_OP_FLASH_FF:
  11265. {
  11266. GGML_ASSERT(false); // not supported
  11267. } break;
  11268. case GGML_OP_MAP_UNARY:
  11269. case GGML_OP_MAP_BINARY:
  11270. {
  11271. GGML_ASSERT(false); // not supported
  11272. } break;
  11273. case GGML_OP_NONE:
  11274. {
  11275. // nop
  11276. } break;
  11277. case GGML_OP_COUNT:
  11278. {
  11279. GGML_ASSERT(false);
  11280. } break;
  11281. }
  11282. }
  11283. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11284. if (node->grad == NULL) {
  11285. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11286. // it can also happen during forward pass, if the user performs computations with constants
  11287. if (node->op != GGML_OP_NONE) {
  11288. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11289. }
  11290. }
  11291. // check if already visited
  11292. for (int i = 0; i < cgraph->n_nodes; i++) {
  11293. if (cgraph->nodes[i] == node) {
  11294. return;
  11295. }
  11296. }
  11297. for (int i = 0; i < cgraph->n_leafs; i++) {
  11298. if (cgraph->leafs[i] == node) {
  11299. return;
  11300. }
  11301. }
  11302. if (node->src0) {
  11303. ggml_visit_parents(cgraph, node->src0);
  11304. }
  11305. if (node->src1) {
  11306. ggml_visit_parents(cgraph, node->src1);
  11307. }
  11308. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11309. if (node->opt[i]) {
  11310. ggml_visit_parents(cgraph, node->opt[i]);
  11311. }
  11312. }
  11313. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11314. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11315. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11316. if (strlen(node->name) == 0) {
  11317. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11318. }
  11319. cgraph->leafs[cgraph->n_leafs] = node;
  11320. cgraph->n_leafs++;
  11321. } else {
  11322. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11323. if (strlen(node->name) == 0) {
  11324. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11325. }
  11326. cgraph->nodes[cgraph->n_nodes] = node;
  11327. cgraph->grads[cgraph->n_nodes] = node->grad;
  11328. cgraph->n_nodes++;
  11329. }
  11330. }
  11331. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11332. if (!expand) {
  11333. cgraph->n_nodes = 0;
  11334. cgraph->n_leafs = 0;
  11335. }
  11336. const int n0 = cgraph->n_nodes;
  11337. UNUSED(n0);
  11338. ggml_visit_parents(cgraph, tensor);
  11339. const int n_new = cgraph->n_nodes - n0;
  11340. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11341. if (n_new > 0) {
  11342. // the last added node should always be starting point
  11343. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11344. }
  11345. }
  11346. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11347. ggml_build_forward_impl(cgraph, tensor, true);
  11348. }
  11349. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11350. struct ggml_cgraph result = {
  11351. /*.n_nodes =*/ 0,
  11352. /*.n_leafs =*/ 0,
  11353. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11354. /*.work_size =*/ 0,
  11355. /*.work =*/ NULL,
  11356. /*.nodes =*/ { NULL },
  11357. /*.grads =*/ { NULL },
  11358. /*.leafs =*/ { NULL },
  11359. /*.perf_runs =*/ 0,
  11360. /*.perf_cycles =*/ 0,
  11361. /*.perf_time_us =*/ 0,
  11362. };
  11363. ggml_build_forward_impl(&result, tensor, false);
  11364. return result;
  11365. }
  11366. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11367. struct ggml_cgraph result = *gf;
  11368. GGML_ASSERT(gf->n_nodes > 0);
  11369. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11370. if (keep) {
  11371. for (int i = 0; i < gf->n_nodes; i++) {
  11372. struct ggml_tensor * node = gf->nodes[i];
  11373. if (node->grad) {
  11374. node->grad = ggml_dup_tensor(ctx, node);
  11375. gf->grads[i] = node->grad;
  11376. }
  11377. }
  11378. }
  11379. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11380. struct ggml_tensor * node = gf->nodes[i];
  11381. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11382. if (node->grad) {
  11383. ggml_compute_backward(ctx, node, keep);
  11384. }
  11385. }
  11386. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11387. struct ggml_tensor * node = gf->nodes[i];
  11388. if (node->is_param) {
  11389. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11390. ggml_build_forward_impl(&result, node->grad, true);
  11391. }
  11392. }
  11393. return result;
  11394. }
  11395. //
  11396. // thread data
  11397. //
  11398. // synchronization is done via busy loops
  11399. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11400. //
  11401. #ifdef __APPLE__
  11402. //#include <os/lock.h>
  11403. //
  11404. //typedef os_unfair_lock ggml_lock_t;
  11405. //
  11406. //#define ggml_lock_init(x) UNUSED(x)
  11407. //#define ggml_lock_destroy(x) UNUSED(x)
  11408. //#define ggml_lock_lock os_unfair_lock_lock
  11409. //#define ggml_lock_unlock os_unfair_lock_unlock
  11410. //
  11411. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11412. typedef int ggml_lock_t;
  11413. #define ggml_lock_init(x) UNUSED(x)
  11414. #define ggml_lock_destroy(x) UNUSED(x)
  11415. #define ggml_lock_lock(x) UNUSED(x)
  11416. #define ggml_lock_unlock(x) UNUSED(x)
  11417. #define GGML_LOCK_INITIALIZER 0
  11418. typedef pthread_t ggml_thread_t;
  11419. #define ggml_thread_create pthread_create
  11420. #define ggml_thread_join pthread_join
  11421. #else
  11422. //typedef pthread_spinlock_t ggml_lock_t;
  11423. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11424. //#define ggml_lock_destroy pthread_spin_destroy
  11425. //#define ggml_lock_lock pthread_spin_lock
  11426. //#define ggml_lock_unlock pthread_spin_unlock
  11427. typedef int ggml_lock_t;
  11428. #define ggml_lock_init(x) UNUSED(x)
  11429. #define ggml_lock_destroy(x) UNUSED(x)
  11430. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11431. #define ggml_lock_lock(x) _mm_pause()
  11432. #else
  11433. #define ggml_lock_lock(x) UNUSED(x)
  11434. #endif
  11435. #define ggml_lock_unlock(x) UNUSED(x)
  11436. #define GGML_LOCK_INITIALIZER 0
  11437. typedef pthread_t ggml_thread_t;
  11438. #define ggml_thread_create pthread_create
  11439. #define ggml_thread_join pthread_join
  11440. #endif
  11441. struct ggml_compute_state_shared {
  11442. ggml_lock_t spin;
  11443. int n_threads;
  11444. // synchronization primitives
  11445. atomic_int n_ready;
  11446. atomic_bool has_work;
  11447. atomic_bool stop; // stop all threads
  11448. };
  11449. struct ggml_compute_state {
  11450. ggml_thread_t thrd;
  11451. struct ggml_compute_params params;
  11452. struct ggml_tensor * node;
  11453. struct ggml_compute_state_shared * shared;
  11454. };
  11455. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11456. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11457. const int n_threads = state->shared->n_threads;
  11458. while (true) {
  11459. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11460. atomic_store(&state->shared->has_work, false);
  11461. } else {
  11462. while (atomic_load(&state->shared->has_work)) {
  11463. if (atomic_load(&state->shared->stop)) {
  11464. return 0;
  11465. }
  11466. ggml_lock_lock (&state->shared->spin);
  11467. ggml_lock_unlock(&state->shared->spin);
  11468. }
  11469. }
  11470. atomic_fetch_sub(&state->shared->n_ready, 1);
  11471. // wait for work
  11472. while (!atomic_load(&state->shared->has_work)) {
  11473. if (atomic_load(&state->shared->stop)) {
  11474. return 0;
  11475. }
  11476. ggml_lock_lock (&state->shared->spin);
  11477. ggml_lock_unlock(&state->shared->spin);
  11478. }
  11479. // check if we should stop
  11480. if (atomic_load(&state->shared->stop)) {
  11481. break;
  11482. }
  11483. if (state->node) {
  11484. if (state->params.ith < state->params.nth) {
  11485. ggml_compute_forward(&state->params, state->node);
  11486. }
  11487. state->node = NULL;
  11488. } else {
  11489. break;
  11490. }
  11491. }
  11492. return 0;
  11493. }
  11494. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11495. const int n_threads = cgraph->n_threads;
  11496. struct ggml_compute_state_shared state_shared = {
  11497. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11498. /*.n_threads =*/ n_threads,
  11499. /*.n_ready =*/ 0,
  11500. /*.has_work =*/ false,
  11501. /*.stop =*/ false,
  11502. };
  11503. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11504. // create thread pool
  11505. if (n_threads > 1) {
  11506. ggml_lock_init(&state_shared.spin);
  11507. atomic_store(&state_shared.has_work, true);
  11508. for (int j = 0; j < n_threads - 1; j++) {
  11509. workers[j] = (struct ggml_compute_state) {
  11510. .thrd = 0,
  11511. .params = {
  11512. .type = GGML_TASK_COMPUTE,
  11513. .ith = j + 1,
  11514. .nth = n_threads,
  11515. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11516. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11517. },
  11518. .node = NULL,
  11519. .shared = &state_shared,
  11520. };
  11521. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11522. GGML_ASSERT(rc == 0);
  11523. UNUSED(rc);
  11524. }
  11525. }
  11526. // initialize tasks + work buffer
  11527. {
  11528. size_t work_size = 0;
  11529. // thread scheduling for the different operations
  11530. for (int i = 0; i < cgraph->n_nodes; i++) {
  11531. struct ggml_tensor * node = cgraph->nodes[i];
  11532. switch (node->op) {
  11533. case GGML_OP_CPY:
  11534. case GGML_OP_DUP:
  11535. {
  11536. node->n_tasks = n_threads;
  11537. size_t cur = 0;
  11538. if (ggml_is_quantized(node->type)) {
  11539. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11540. }
  11541. work_size = MAX(work_size, cur);
  11542. } break;
  11543. case GGML_OP_ADD:
  11544. case GGML_OP_ADD1:
  11545. {
  11546. node->n_tasks = n_threads;
  11547. size_t cur = 0;
  11548. if (ggml_is_quantized(node->src0->type)) {
  11549. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11550. }
  11551. work_size = MAX(work_size, cur);
  11552. } break;
  11553. case GGML_OP_ACC:
  11554. {
  11555. node->n_tasks = n_threads;
  11556. size_t cur = 0;
  11557. if (ggml_is_quantized(node->src0->type)) {
  11558. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11559. }
  11560. work_size = MAX(work_size, cur);
  11561. } break;
  11562. case GGML_OP_SUB:
  11563. case GGML_OP_DIV:
  11564. case GGML_OP_SQR:
  11565. case GGML_OP_SQRT:
  11566. case GGML_OP_LOG:
  11567. case GGML_OP_SUM:
  11568. case GGML_OP_SUM_ROWS:
  11569. case GGML_OP_MEAN:
  11570. case GGML_OP_REPEAT:
  11571. case GGML_OP_ABS:
  11572. case GGML_OP_SGN:
  11573. case GGML_OP_NEG:
  11574. case GGML_OP_STEP:
  11575. case GGML_OP_RELU:
  11576. {
  11577. node->n_tasks = 1;
  11578. } break;
  11579. case GGML_OP_MUL:
  11580. case GGML_OP_GELU:
  11581. case GGML_OP_SILU:
  11582. case GGML_OP_SILU_BACK:
  11583. case GGML_OP_NORM:
  11584. case GGML_OP_RMS_NORM:
  11585. case GGML_OP_RMS_NORM_BACK:
  11586. {
  11587. node->n_tasks = n_threads;
  11588. } break;
  11589. case GGML_OP_MUL_MAT:
  11590. {
  11591. node->n_tasks = n_threads;
  11592. // TODO: use different scheduling for different matrix sizes
  11593. //const int nr0 = ggml_nrows(node->src0);
  11594. //const int nr1 = ggml_nrows(node->src1);
  11595. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11596. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11597. size_t cur = 0;
  11598. #if defined(GGML_USE_CUBLAS)
  11599. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11600. node->n_tasks = 1; // TODO: this actually is doing nothing
  11601. // the threads are still spinning
  11602. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11603. }
  11604. else
  11605. #elif defined(GGML_USE_CLBLAST)
  11606. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11607. node->n_tasks = 1; // TODO: this actually is doing nothing
  11608. // the threads are still spinning
  11609. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11610. }
  11611. else
  11612. #endif
  11613. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11614. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11615. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11616. node->n_tasks = 1; // TODO: this actually is doing nothing
  11617. // the threads are still spinning
  11618. // here we need memory just for single 2D matrix from src0
  11619. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11620. } else {
  11621. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11622. }
  11623. #else
  11624. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11625. #endif
  11626. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11627. cur = 0;
  11628. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11629. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11630. node->n_tasks = 1;
  11631. }
  11632. #endif
  11633. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11634. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11635. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11636. node->n_tasks = 1;
  11637. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11638. } else
  11639. #endif
  11640. {
  11641. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11642. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11643. }
  11644. } else {
  11645. GGML_ASSERT(false);
  11646. }
  11647. work_size = MAX(work_size, cur);
  11648. } break;
  11649. case GGML_OP_SCALE:
  11650. {
  11651. node->n_tasks = n_threads;
  11652. } break;
  11653. case GGML_OP_SET:
  11654. case GGML_OP_CONT:
  11655. case GGML_OP_RESHAPE:
  11656. case GGML_OP_VIEW:
  11657. case GGML_OP_PERMUTE:
  11658. case GGML_OP_TRANSPOSE:
  11659. case GGML_OP_GET_ROWS:
  11660. case GGML_OP_GET_ROWS_BACK:
  11661. case GGML_OP_DIAG:
  11662. case GGML_OP_DIAG_MASK_ZERO:
  11663. {
  11664. node->n_tasks = 1;
  11665. } break;
  11666. case GGML_OP_DIAG_MASK_INF:
  11667. case GGML_OP_SOFT_MAX:
  11668. case GGML_OP_ROPE:
  11669. case GGML_OP_ROPE_BACK:
  11670. {
  11671. node->n_tasks = n_threads;
  11672. } break;
  11673. case GGML_OP_ALIBI:
  11674. {
  11675. node->n_tasks = 1; //TODO
  11676. } break;
  11677. case GGML_OP_CLAMP:
  11678. {
  11679. node->n_tasks = 1; //TODO
  11680. } break;
  11681. case GGML_OP_CONV_1D_1S:
  11682. case GGML_OP_CONV_1D_2S:
  11683. {
  11684. node->n_tasks = n_threads;
  11685. GGML_ASSERT(node->src0->ne[3] == 1);
  11686. GGML_ASSERT(node->src1->ne[2] == 1);
  11687. GGML_ASSERT(node->src1->ne[3] == 1);
  11688. size_t cur = 0;
  11689. const int nk = node->src0->ne[0];
  11690. if (node->src0->type == GGML_TYPE_F16 &&
  11691. node->src1->type == GGML_TYPE_F32) {
  11692. cur = sizeof(ggml_fp16_t)*(
  11693. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11694. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11695. );
  11696. } else if (node->src0->type == GGML_TYPE_F32 &&
  11697. node->src1->type == GGML_TYPE_F32) {
  11698. cur = sizeof(float)*(
  11699. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11700. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11701. );
  11702. } else {
  11703. GGML_ASSERT(false);
  11704. }
  11705. work_size = MAX(work_size, cur);
  11706. } break;
  11707. case GGML_OP_FLASH_ATTN:
  11708. {
  11709. node->n_tasks = n_threads;
  11710. size_t cur = 0;
  11711. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11712. if (node->src1->type == GGML_TYPE_F32) {
  11713. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11714. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11715. }
  11716. if (node->src1->type == GGML_TYPE_F16) {
  11717. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11718. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11719. }
  11720. work_size = MAX(work_size, cur);
  11721. } break;
  11722. case GGML_OP_FLASH_FF:
  11723. {
  11724. node->n_tasks = n_threads;
  11725. size_t cur = 0;
  11726. if (node->src1->type == GGML_TYPE_F32) {
  11727. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11728. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11729. }
  11730. if (node->src1->type == GGML_TYPE_F16) {
  11731. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11732. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11733. }
  11734. work_size = MAX(work_size, cur);
  11735. } break;
  11736. case GGML_OP_MAP_UNARY:
  11737. case GGML_OP_MAP_BINARY:
  11738. {
  11739. node->n_tasks = 1;
  11740. } break;
  11741. case GGML_OP_NONE:
  11742. {
  11743. node->n_tasks = 1;
  11744. } break;
  11745. case GGML_OP_COUNT:
  11746. {
  11747. GGML_ASSERT(false);
  11748. } break;
  11749. }
  11750. }
  11751. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11752. GGML_ASSERT(false); // TODO: better handling
  11753. }
  11754. if (work_size > 0 && cgraph->work == NULL) {
  11755. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11756. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11757. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11758. }
  11759. }
  11760. const int64_t perf_start_cycles = ggml_perf_cycles();
  11761. const int64_t perf_start_time_us = ggml_perf_time_us();
  11762. for (int i = 0; i < cgraph->n_nodes; i++) {
  11763. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11764. struct ggml_tensor * node = cgraph->nodes[i];
  11765. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11766. //if (node->grad == NULL && node->perf_runs > 0) {
  11767. // continue;
  11768. //}
  11769. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11770. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11771. // INIT
  11772. struct ggml_compute_params params = {
  11773. /*.type =*/ GGML_TASK_INIT,
  11774. /*.ith =*/ 0,
  11775. /*.nth =*/ node->n_tasks,
  11776. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11777. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11778. };
  11779. ggml_compute_forward(&params, node);
  11780. // COMPUTE
  11781. if (node->n_tasks > 1) {
  11782. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11783. atomic_store(&state_shared.has_work, false);
  11784. }
  11785. while (atomic_load(&state_shared.has_work)) {
  11786. ggml_lock_lock (&state_shared.spin);
  11787. ggml_lock_unlock(&state_shared.spin);
  11788. }
  11789. // launch thread pool
  11790. for (int j = 0; j < n_threads - 1; j++) {
  11791. workers[j].params = (struct ggml_compute_params) {
  11792. .type = GGML_TASK_COMPUTE,
  11793. .ith = j + 1,
  11794. .nth = node->n_tasks,
  11795. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11796. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11797. };
  11798. workers[j].node = node;
  11799. }
  11800. atomic_fetch_sub(&state_shared.n_ready, 1);
  11801. while (atomic_load(&state_shared.n_ready) > 0) {
  11802. ggml_lock_lock (&state_shared.spin);
  11803. ggml_lock_unlock(&state_shared.spin);
  11804. }
  11805. atomic_store(&state_shared.has_work, true);
  11806. }
  11807. params.type = GGML_TASK_COMPUTE;
  11808. ggml_compute_forward(&params, node);
  11809. // wait for thread pool
  11810. if (node->n_tasks > 1) {
  11811. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11812. atomic_store(&state_shared.has_work, false);
  11813. }
  11814. while (atomic_load(&state_shared.has_work)) {
  11815. ggml_lock_lock (&state_shared.spin);
  11816. ggml_lock_unlock(&state_shared.spin);
  11817. }
  11818. atomic_fetch_sub(&state_shared.n_ready, 1);
  11819. while (atomic_load(&state_shared.n_ready) != 0) {
  11820. ggml_lock_lock (&state_shared.spin);
  11821. ggml_lock_unlock(&state_shared.spin);
  11822. }
  11823. }
  11824. // FINALIZE
  11825. if (node->n_tasks > 1) {
  11826. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11827. atomic_store(&state_shared.has_work, false);
  11828. }
  11829. while (atomic_load(&state_shared.has_work)) {
  11830. ggml_lock_lock (&state_shared.spin);
  11831. ggml_lock_unlock(&state_shared.spin);
  11832. }
  11833. // launch thread pool
  11834. for (int j = 0; j < n_threads - 1; j++) {
  11835. workers[j].params = (struct ggml_compute_params) {
  11836. .type = GGML_TASK_FINALIZE,
  11837. .ith = j + 1,
  11838. .nth = node->n_tasks,
  11839. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11840. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11841. };
  11842. workers[j].node = node;
  11843. }
  11844. atomic_fetch_sub(&state_shared.n_ready, 1);
  11845. while (atomic_load(&state_shared.n_ready) > 0) {
  11846. ggml_lock_lock (&state_shared.spin);
  11847. ggml_lock_unlock(&state_shared.spin);
  11848. }
  11849. atomic_store(&state_shared.has_work, true);
  11850. }
  11851. params.type = GGML_TASK_FINALIZE;
  11852. ggml_compute_forward(&params, node);
  11853. // wait for thread pool
  11854. if (node->n_tasks > 1) {
  11855. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11856. atomic_store(&state_shared.has_work, false);
  11857. }
  11858. while (atomic_load(&state_shared.has_work)) {
  11859. ggml_lock_lock (&state_shared.spin);
  11860. ggml_lock_unlock(&state_shared.spin);
  11861. }
  11862. atomic_fetch_sub(&state_shared.n_ready, 1);
  11863. while (atomic_load(&state_shared.n_ready) != 0) {
  11864. ggml_lock_lock (&state_shared.spin);
  11865. ggml_lock_unlock(&state_shared.spin);
  11866. }
  11867. }
  11868. // performance stats (node)
  11869. {
  11870. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11871. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11872. node->perf_runs++;
  11873. node->perf_cycles += perf_cycles_cur;
  11874. node->perf_time_us += perf_time_us_cur;
  11875. }
  11876. }
  11877. // join thread pool
  11878. if (n_threads > 1) {
  11879. atomic_store(&state_shared.stop, true);
  11880. atomic_store(&state_shared.has_work, true);
  11881. for (int j = 0; j < n_threads - 1; j++) {
  11882. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11883. GGML_ASSERT(rc == 0);
  11884. UNUSED(rc);
  11885. }
  11886. ggml_lock_destroy(&state_shared.spin);
  11887. }
  11888. // performance stats (graph)
  11889. {
  11890. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11891. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11892. cgraph->perf_runs++;
  11893. cgraph->perf_cycles += perf_cycles_cur;
  11894. cgraph->perf_time_us += perf_time_us_cur;
  11895. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11896. __func__, cgraph->perf_runs,
  11897. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11898. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11899. (double) perf_time_us_cur / 1000.0,
  11900. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11901. }
  11902. }
  11903. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11904. for (int i = 0; i < cgraph->n_nodes; i++) {
  11905. struct ggml_tensor * grad = cgraph->grads[i];
  11906. if (grad) {
  11907. ggml_set_zero(grad);
  11908. }
  11909. }
  11910. }
  11911. struct ggml_tensor * ggml_get_tensor_by_name(struct ggml_cgraph * cgraph, const char * name) {
  11912. for (int i = 0; i < cgraph->n_leafs; i++) {
  11913. struct ggml_tensor * leaf = cgraph->leafs[i];
  11914. if (strcmp(leaf->name, name) == 0) {
  11915. return leaf;
  11916. }
  11917. }
  11918. for (int i = 0; i < cgraph->n_nodes; i++) {
  11919. struct ggml_tensor * node = cgraph->nodes[i];
  11920. if (strcmp(node->name, name) == 0) {
  11921. return node;
  11922. }
  11923. }
  11924. return NULL;
  11925. }
  11926. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11927. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11928. GGML_PRINT("=== GRAPH ===\n");
  11929. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11930. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11931. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11932. for (int i = 0; i < cgraph->n_nodes; i++) {
  11933. struct ggml_tensor * node = cgraph->nodes[i];
  11934. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11935. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11936. i,
  11937. node->ne[0], node->ne[1], node->ne[2],
  11938. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11939. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11940. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11941. (double) node->perf_time_us / 1000.0,
  11942. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11943. }
  11944. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11945. for (int i = 0; i < cgraph->n_leafs; i++) {
  11946. struct ggml_tensor * node = cgraph->leafs[i];
  11947. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11948. i,
  11949. node->ne[0], node->ne[1],
  11950. GGML_OP_NAME[node->op]);
  11951. }
  11952. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11953. if (perf_total_per_op_us[i] == 0) {
  11954. continue;
  11955. }
  11956. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  11957. }
  11958. GGML_PRINT("========================================\n");
  11959. }
  11960. // check if node is part of the graph
  11961. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11962. if (cgraph == NULL) {
  11963. return true;
  11964. }
  11965. for (int i = 0; i < cgraph->n_nodes; i++) {
  11966. if (cgraph->nodes[i] == node) {
  11967. return true;
  11968. }
  11969. }
  11970. return false;
  11971. }
  11972. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11973. for (int i = 0; i < cgraph->n_nodes; i++) {
  11974. struct ggml_tensor * parent = cgraph->nodes[i];
  11975. if (parent->grad == node) {
  11976. return parent;
  11977. }
  11978. }
  11979. return NULL;
  11980. }
  11981. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11982. char color[16];
  11983. FILE * fp = fopen(filename, "w");
  11984. GGML_ASSERT(fp);
  11985. fprintf(fp, "digraph G {\n");
  11986. fprintf(fp, " newrank = true;\n");
  11987. fprintf(fp, " rankdir = LR;\n");
  11988. for (int i = 0; i < gb->n_nodes; i++) {
  11989. struct ggml_tensor * node = gb->nodes[i];
  11990. if (ggml_graph_get_parent(gb, node) != NULL) {
  11991. continue;
  11992. }
  11993. if (node->is_param) {
  11994. snprintf(color, sizeof(color), "yellow");
  11995. } else if (node->grad) {
  11996. if (ggml_graph_find(gf, node)) {
  11997. snprintf(color, sizeof(color), "green");
  11998. } else {
  11999. snprintf(color, sizeof(color), "lightblue");
  12000. }
  12001. } else {
  12002. snprintf(color, sizeof(color), "white");
  12003. }
  12004. fprintf(fp, " \"%p\" [ "
  12005. "style = filled; fillcolor = %s; shape = record; "
  12006. "label=\"",
  12007. (void *) node, color);
  12008. if (strlen(node->name) > 0) {
  12009. fprintf(fp, "%s |", node->name);
  12010. }
  12011. if (node->n_dims == 2) {
  12012. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12013. } else {
  12014. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12015. }
  12016. if (node->grad) {
  12017. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12018. } else {
  12019. fprintf(fp, "\"; ]\n");
  12020. }
  12021. }
  12022. for (int i = 0; i < gb->n_leafs; i++) {
  12023. struct ggml_tensor * node = gb->leafs[i];
  12024. snprintf(color, sizeof(color), "pink");
  12025. fprintf(fp, " \"%p\" [ "
  12026. "style = filled; fillcolor = %s; shape = record; "
  12027. "label=\"<x>",
  12028. (void *) node, color);
  12029. if (strlen(node->name) > 0) {
  12030. fprintf(fp, "%s | ", node->name);
  12031. }
  12032. if (ggml_nelements(node) == 1) {
  12033. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12034. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12035. }
  12036. else {
  12037. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12038. }
  12039. }
  12040. else {
  12041. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12042. }
  12043. fprintf(fp, "\"; ]\n");
  12044. }
  12045. for (int i = 0; i < gb->n_nodes; i++) {
  12046. struct ggml_tensor * node = gb->nodes[i];
  12047. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12048. if (node->src0) {
  12049. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12050. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12051. parent0 ? (void *) parent0 : (void *) node->src0,
  12052. parent0 ? "g" : "x",
  12053. parent ? (void *) parent : (void *) node,
  12054. parent ? "g" : "x",
  12055. parent ? "empty" : "vee",
  12056. parent ? "dashed" : "solid");
  12057. }
  12058. if (node->src1) {
  12059. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12060. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12061. parent1 ? (void *) parent1 : (void *) node->src1,
  12062. parent1 ? "g" : "x",
  12063. parent ? (void *) parent : (void *) node,
  12064. parent ? "g" : "x",
  12065. parent ? "empty" : "vee",
  12066. parent ? "dashed" : "solid");
  12067. }
  12068. }
  12069. for (int i = 0; i < gb->n_leafs; i++) {
  12070. struct ggml_tensor * node = gb->leafs[i];
  12071. if (node->src0) {
  12072. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12073. (void *) node->src0, "x",
  12074. (void *) node, "x");
  12075. }
  12076. if (node->src1) {
  12077. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12078. (void *) node->src1, "x",
  12079. (void *) node, "x");
  12080. }
  12081. }
  12082. fprintf(fp, "}\n");
  12083. fclose(fp);
  12084. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12085. }
  12086. ////////////////////////////////////////////////////////////////////////////////
  12087. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12088. int i = 0;
  12089. for (int p = 0; p < np; ++p) {
  12090. const int64_t ne = ggml_nelements(ps[p]) ;
  12091. // TODO: add function to set tensor from array
  12092. for (int64_t j = 0; j < ne; ++j) {
  12093. ggml_set_f32_1d(ps[p], j, x[i++]);
  12094. }
  12095. }
  12096. }
  12097. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12098. int i = 0;
  12099. for (int p = 0; p < np; ++p) {
  12100. const int64_t ne = ggml_nelements(ps[p]) ;
  12101. // TODO: add function to get all elements at once
  12102. for (int64_t j = 0; j < ne; ++j) {
  12103. x[i++] = ggml_get_f32_1d(ps[p], j);
  12104. }
  12105. }
  12106. }
  12107. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12108. int i = 0;
  12109. for (int p = 0; p < np; ++p) {
  12110. const int64_t ne = ggml_nelements(ps[p]) ;
  12111. // TODO: add function to get all elements at once
  12112. for (int64_t j = 0; j < ne; ++j) {
  12113. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12114. }
  12115. }
  12116. }
  12117. //
  12118. // ADAM
  12119. //
  12120. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12121. //
  12122. static enum ggml_opt_result ggml_opt_adam(
  12123. struct ggml_context * ctx,
  12124. struct ggml_opt_params params,
  12125. struct ggml_tensor * f,
  12126. struct ggml_cgraph * gf,
  12127. struct ggml_cgraph * gb) {
  12128. GGML_ASSERT(ggml_is_scalar(f));
  12129. gf->n_threads = params.n_threads;
  12130. gb->n_threads = params.n_threads;
  12131. // these will store the parameters we want to optimize
  12132. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12133. int np = 0;
  12134. int nx = 0;
  12135. for (int i = 0; i < gf->n_nodes; ++i) {
  12136. if (gf->nodes[i]->is_param) {
  12137. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12138. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12139. ps[np++] = gf->nodes[i];
  12140. nx += ggml_nelements(gf->nodes[i]);
  12141. }
  12142. }
  12143. // constants
  12144. const float alpha = params.adam.alpha;
  12145. const float beta1 = params.adam.beta1;
  12146. const float beta2 = params.adam.beta2;
  12147. const float eps = params.adam.eps;
  12148. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12149. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12150. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12151. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12152. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12153. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12154. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12155. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12156. // initialize
  12157. ggml_vec_set_f32(nx, m, 0.0f);
  12158. ggml_vec_set_f32(nx, v, 0.0f);
  12159. // update view
  12160. ggml_opt_get_params(np, ps, x);
  12161. // compute the function value
  12162. ggml_graph_reset (gf);
  12163. ggml_set_f32 (f->grad, 1.0f);
  12164. ggml_graph_compute(ctx, gb);
  12165. float fx_prev = ggml_get_f32_1d(f, 0);
  12166. if (pf) {
  12167. pf[0] = fx_prev;
  12168. }
  12169. int n_no_improvement = 0;
  12170. float fx_best = fx_prev;
  12171. // run the optimizer
  12172. for (int t = 0; t < params.adam.n_iter; ++t) {
  12173. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12174. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12175. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12176. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12177. for (int i = 0; i < np; ++i) {
  12178. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12179. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12180. }
  12181. const int64_t t_start_wall = ggml_time_us();
  12182. const int64_t t_start_cpu = ggml_cycles();
  12183. UNUSED(t_start_wall);
  12184. UNUSED(t_start_cpu);
  12185. {
  12186. // update the gradient
  12187. ggml_opt_get_grad(np, ps, g1);
  12188. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12189. ggml_vec_scale_f32(nx, m, beta1);
  12190. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12191. // g2 = g1^2
  12192. ggml_vec_sqr_f32 (nx, g2, g1);
  12193. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12194. ggml_vec_scale_f32(nx, v, beta2);
  12195. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12196. // m^hat = m_t / (1 - beta1^t)
  12197. // v^hat = v_t / (1 - beta2^t)
  12198. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12199. ggml_vec_cpy_f32 (nx, mh, m);
  12200. ggml_vec_cpy_f32 (nx, vh, v);
  12201. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12202. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12203. ggml_vec_sqrt_f32 (nx, vh, vh);
  12204. ggml_vec_acc1_f32 (nx, vh, eps);
  12205. ggml_vec_div_f32 (nx, mh, mh, vh);
  12206. ggml_vec_sub_f32 (nx, x, x, mh);
  12207. // update the parameters
  12208. ggml_opt_set_params(np, ps, x);
  12209. }
  12210. ggml_graph_reset (gf);
  12211. ggml_set_f32 (f->grad, 1.0f);
  12212. ggml_graph_compute(ctx, gb);
  12213. const float fx = ggml_get_f32_1d(f, 0);
  12214. // check convergence
  12215. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12216. GGML_PRINT_DEBUG("converged\n");
  12217. return GGML_OPT_OK;
  12218. }
  12219. // delta-based convergence test
  12220. if (pf != NULL) {
  12221. // need at least params.past iterations to start checking for convergence
  12222. if (params.past <= t) {
  12223. const float rate = (pf[t%params.past] - fx)/fx;
  12224. if (fabsf(rate) < params.delta) {
  12225. return GGML_OPT_OK;
  12226. }
  12227. }
  12228. pf[t%params.past] = fx;
  12229. }
  12230. // check for improvement
  12231. if (params.max_no_improvement > 0) {
  12232. if (fx_best > fx) {
  12233. fx_best = fx;
  12234. n_no_improvement = 0;
  12235. } else {
  12236. ++n_no_improvement;
  12237. if (n_no_improvement >= params.max_no_improvement) {
  12238. return GGML_OPT_OK;
  12239. }
  12240. }
  12241. }
  12242. fx_prev = fx;
  12243. {
  12244. const int64_t t_end_cpu = ggml_cycles();
  12245. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12246. UNUSED(t_end_cpu);
  12247. const int64_t t_end_wall = ggml_time_us();
  12248. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12249. UNUSED(t_end_wall);
  12250. }
  12251. }
  12252. return GGML_OPT_DID_NOT_CONVERGE;
  12253. }
  12254. //
  12255. // L-BFGS
  12256. //
  12257. // the L-BFGS implementation below is based on the following implementation:
  12258. //
  12259. // https://github.com/chokkan/liblbfgs
  12260. //
  12261. struct ggml_lbfgs_iteration_data {
  12262. float alpha;
  12263. float ys;
  12264. float * s;
  12265. float * y;
  12266. };
  12267. static enum ggml_opt_result linesearch_backtracking(
  12268. struct ggml_context * ctx,
  12269. const struct ggml_opt_params * params,
  12270. int nx,
  12271. float * x,
  12272. float * fx,
  12273. float * g,
  12274. float * d,
  12275. float * step,
  12276. const float * xp,
  12277. struct ggml_tensor * f,
  12278. struct ggml_cgraph * gf,
  12279. struct ggml_cgraph * gb,
  12280. const int np,
  12281. struct ggml_tensor * ps[]) {
  12282. int count = 0;
  12283. float width = 0.0f;
  12284. float dg = 0.0f;
  12285. float finit = 0.0f;
  12286. float dginit = 0.0f;
  12287. float dgtest = 0.0f;
  12288. const float dec = 0.5f;
  12289. const float inc = 2.1f;
  12290. if (*step <= 0.f) {
  12291. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12292. }
  12293. // compute the initial gradient in the search direction
  12294. ggml_vec_dot_f32(nx, &dginit, g, d);
  12295. // make sure that d points to a descent direction
  12296. if (0 < dginit) {
  12297. return GGML_LINESEARCH_FAIL;
  12298. }
  12299. // initialize local variables
  12300. finit = *fx;
  12301. dgtest = params->lbfgs.ftol*dginit;
  12302. while (true) {
  12303. ggml_vec_cpy_f32(nx, x, xp);
  12304. ggml_vec_mad_f32(nx, x, d, *step);
  12305. // evaluate the function and gradient values
  12306. {
  12307. ggml_opt_set_params(np, ps, x);
  12308. ggml_graph_reset (gf);
  12309. ggml_set_f32 (f->grad, 1.0f);
  12310. ggml_graph_compute(ctx, gb);
  12311. ggml_opt_get_grad(np, ps, g);
  12312. *fx = ggml_get_f32_1d(f, 0);
  12313. }
  12314. ++count;
  12315. if (*fx > finit + (*step)*dgtest) {
  12316. width = dec;
  12317. } else {
  12318. // Armijo condition is satisfied
  12319. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12320. return count;
  12321. }
  12322. ggml_vec_dot_f32(nx, &dg, g, d);
  12323. // check the Wolfe condition
  12324. if (dg < params->lbfgs.wolfe * dginit) {
  12325. width = inc;
  12326. } else {
  12327. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12328. // regular Wolfe conditions
  12329. return count;
  12330. }
  12331. if(dg > -params->lbfgs.wolfe*dginit) {
  12332. width = dec;
  12333. } else {
  12334. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12335. return count;
  12336. }
  12337. return count;
  12338. }
  12339. }
  12340. if (*step < params->lbfgs.min_step) {
  12341. return GGML_LINESEARCH_MINIMUM_STEP;
  12342. }
  12343. if (*step > params->lbfgs.max_step) {
  12344. return GGML_LINESEARCH_MAXIMUM_STEP;
  12345. }
  12346. if (params->lbfgs.max_linesearch <= count) {
  12347. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12348. }
  12349. (*step) *= width;
  12350. }
  12351. return GGML_LINESEARCH_FAIL;
  12352. }
  12353. static enum ggml_opt_result ggml_opt_lbfgs(
  12354. struct ggml_context * ctx,
  12355. struct ggml_opt_params params,
  12356. struct ggml_tensor * f,
  12357. struct ggml_cgraph * gf,
  12358. struct ggml_cgraph * gb) {
  12359. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12360. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12361. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12362. return GGML_OPT_INVALID_WOLFE;
  12363. }
  12364. }
  12365. gf->n_threads = params.n_threads;
  12366. gb->n_threads = params.n_threads;
  12367. const int m = params.lbfgs.m;
  12368. // these will store the parameters we want to optimize
  12369. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12370. int np = 0;
  12371. int nx = 0;
  12372. for (int i = 0; i < gf->n_nodes; ++i) {
  12373. if (gf->nodes[i]->is_param) {
  12374. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12375. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12376. ps[np++] = gf->nodes[i];
  12377. nx += ggml_nelements(gf->nodes[i]);
  12378. }
  12379. }
  12380. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12381. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12382. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12383. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12384. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12385. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12386. float fx = 0.0f; // cost function value
  12387. float xnorm = 0.0f; // ||x||
  12388. float gnorm = 0.0f; // ||g||
  12389. float step = 0.0f;
  12390. // initialize x from the graph nodes
  12391. ggml_opt_get_params(np, ps, x);
  12392. // the L-BFGS memory
  12393. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12394. for (int i = 0; i < m; ++i) {
  12395. lm[i].alpha = 0.0f;
  12396. lm[i].ys = 0.0f;
  12397. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12398. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12399. }
  12400. // evaluate the function value and its gradient
  12401. {
  12402. ggml_opt_set_params(np, ps, x);
  12403. ggml_graph_reset (gf);
  12404. ggml_set_f32 (f->grad, 1.0f);
  12405. ggml_graph_compute(ctx, gb);
  12406. ggml_opt_get_grad(np, ps, g);
  12407. fx = ggml_get_f32_1d(f, 0);
  12408. }
  12409. if (pf) {
  12410. pf[0] = fx;
  12411. }
  12412. float fx_best = fx;
  12413. // search direction = -gradient
  12414. ggml_vec_neg_f32(nx, d, g);
  12415. // ||x||, ||g||
  12416. ggml_vec_norm_f32(nx, &xnorm, x);
  12417. ggml_vec_norm_f32(nx, &gnorm, g);
  12418. if (xnorm < 1.0f) {
  12419. xnorm = 1.0f;
  12420. }
  12421. // already optimized
  12422. if (gnorm/xnorm <= params.lbfgs.eps) {
  12423. return GGML_OPT_OK;
  12424. }
  12425. // initial step
  12426. ggml_vec_norm_inv_f32(nx, &step, d);
  12427. int j = 0;
  12428. int k = 1;
  12429. int ls = 0;
  12430. int end = 0;
  12431. int bound = 0;
  12432. int n_no_improvement = 0;
  12433. float ys = 0.0f;
  12434. float yy = 0.0f;
  12435. float beta = 0.0f;
  12436. while (true) {
  12437. // store the current position and gradient vectors
  12438. ggml_vec_cpy_f32(nx, xp, x);
  12439. ggml_vec_cpy_f32(nx, gp, g);
  12440. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12441. if (ls < 0) {
  12442. // linesearch failed - go back to the previous point and return
  12443. ggml_vec_cpy_f32(nx, x, xp);
  12444. ggml_vec_cpy_f32(nx, g, gp);
  12445. return ls;
  12446. }
  12447. ggml_vec_norm_f32(nx, &xnorm, x);
  12448. ggml_vec_norm_f32(nx, &gnorm, g);
  12449. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12450. if (xnorm < 1.0f) {
  12451. xnorm = 1.0f;
  12452. }
  12453. if (gnorm/xnorm <= params.lbfgs.eps) {
  12454. // converged
  12455. return GGML_OPT_OK;
  12456. }
  12457. // delta-based convergence test
  12458. if (pf != NULL) {
  12459. // need at least params.past iterations to start checking for convergence
  12460. if (params.past <= k) {
  12461. const float rate = (pf[k%params.past] - fx)/fx;
  12462. if (fabsf(rate) < params.delta) {
  12463. return GGML_OPT_OK;
  12464. }
  12465. }
  12466. pf[k%params.past] = fx;
  12467. }
  12468. // check for improvement
  12469. if (params.max_no_improvement > 0) {
  12470. if (fx < fx_best) {
  12471. fx_best = fx;
  12472. n_no_improvement = 0;
  12473. } else {
  12474. n_no_improvement++;
  12475. if (n_no_improvement >= params.max_no_improvement) {
  12476. return GGML_OPT_OK;
  12477. }
  12478. }
  12479. }
  12480. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12481. // reached the maximum number of iterations
  12482. return GGML_OPT_DID_NOT_CONVERGE;
  12483. }
  12484. // update vectors s and y:
  12485. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12486. // y_{k+1} = g_{k+1} - g_{k}.
  12487. //
  12488. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12489. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12490. // compute scalars ys and yy:
  12491. // ys = y^t \cdot s -> 1 / \rho.
  12492. // yy = y^t \cdot y.
  12493. //
  12494. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12495. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12496. lm[end].ys = ys;
  12497. // find new search direction
  12498. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12499. bound = (m <= k) ? m : k;
  12500. k++;
  12501. end = (end + 1)%m;
  12502. // initialize search direction with -g
  12503. ggml_vec_neg_f32(nx, d, g);
  12504. j = end;
  12505. for (int i = 0; i < bound; ++i) {
  12506. j = (j + m - 1) % m;
  12507. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12508. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12509. lm[j].alpha /= lm[j].ys;
  12510. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12511. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12512. }
  12513. ggml_vec_scale_f32(nx, d, ys/yy);
  12514. for (int i = 0; i < bound; ++i) {
  12515. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12516. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12517. beta /= lm[j].ys;
  12518. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12519. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12520. j = (j + 1)%m;
  12521. }
  12522. step = 1.0;
  12523. }
  12524. return GGML_OPT_DID_NOT_CONVERGE;
  12525. }
  12526. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12527. struct ggml_opt_params result;
  12528. switch (type) {
  12529. case GGML_OPT_ADAM:
  12530. {
  12531. result = (struct ggml_opt_params) {
  12532. .type = GGML_OPT_ADAM,
  12533. .n_threads = 1,
  12534. .past = 0,
  12535. .delta = 1e-5f,
  12536. .max_no_improvement = 100,
  12537. .print_forward_graph = true,
  12538. .print_backward_graph = true,
  12539. .adam = {
  12540. .n_iter = 10000,
  12541. .alpha = 0.001f,
  12542. .beta1 = 0.9f,
  12543. .beta2 = 0.999f,
  12544. .eps = 1e-8f,
  12545. .eps_f = 1e-5f,
  12546. .eps_g = 1e-3f,
  12547. },
  12548. };
  12549. } break;
  12550. case GGML_OPT_LBFGS:
  12551. {
  12552. result = (struct ggml_opt_params) {
  12553. .type = GGML_OPT_LBFGS,
  12554. .n_threads = 1,
  12555. .past = 0,
  12556. .delta = 1e-5f,
  12557. .max_no_improvement = 0,
  12558. .print_forward_graph = true,
  12559. .print_backward_graph = true,
  12560. .lbfgs = {
  12561. .m = 6,
  12562. .n_iter = 100,
  12563. .max_linesearch = 20,
  12564. .eps = 1e-5f,
  12565. .ftol = 1e-4f,
  12566. .wolfe = 0.9f,
  12567. .min_step = 1e-20f,
  12568. .max_step = 1e+20f,
  12569. .linesearch = GGML_LINESEARCH_DEFAULT,
  12570. },
  12571. };
  12572. } break;
  12573. }
  12574. return result;
  12575. }
  12576. enum ggml_opt_result ggml_opt(
  12577. struct ggml_context * ctx,
  12578. struct ggml_opt_params params,
  12579. struct ggml_tensor * f) {
  12580. bool free_ctx = false;
  12581. if (ctx == NULL) {
  12582. struct ggml_init_params params_ctx = {
  12583. .mem_size = 16*1024*1024,
  12584. .mem_buffer = NULL,
  12585. .no_alloc = false,
  12586. };
  12587. ctx = ggml_init(params_ctx);
  12588. if (ctx == NULL) {
  12589. return GGML_OPT_NO_CONTEXT;
  12590. }
  12591. free_ctx = true;
  12592. }
  12593. enum ggml_opt_result result = GGML_OPT_OK;
  12594. // build forward + backward compute graphs
  12595. struct ggml_cgraph gf = ggml_build_forward (f);
  12596. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12597. switch (params.type) {
  12598. case GGML_OPT_ADAM:
  12599. {
  12600. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12601. } break;
  12602. case GGML_OPT_LBFGS:
  12603. {
  12604. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12605. } break;
  12606. }
  12607. if (params.print_forward_graph) {
  12608. ggml_graph_print (&gf);
  12609. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12610. }
  12611. if (params.print_backward_graph) {
  12612. ggml_graph_print (&gb);
  12613. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12614. }
  12615. if (free_ctx) {
  12616. ggml_free(ctx);
  12617. }
  12618. return result;
  12619. }
  12620. ////////////////////////////////////////////////////////////////////////////////
  12621. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12622. assert(k % QK4_0 == 0);
  12623. const int nb = k / QK4_0;
  12624. for (int b = 0; b < n; b += k) {
  12625. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12626. quantize_row_q4_0_reference(src + b, y, k);
  12627. for (int i = 0; i < nb; i++) {
  12628. for (int j = 0; j < QK4_0; j += 2) {
  12629. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12630. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12631. hist[vi0]++;
  12632. hist[vi1]++;
  12633. }
  12634. }
  12635. }
  12636. return (n/QK4_0*sizeof(block_q4_0));
  12637. }
  12638. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12639. assert(k % QK4_1 == 0);
  12640. const int nb = k / QK4_1;
  12641. for (int b = 0; b < n; b += k) {
  12642. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12643. quantize_row_q4_1_reference(src + b, y, k);
  12644. for (int i = 0; i < nb; i++) {
  12645. for (int j = 0; j < QK4_1; j += 2) {
  12646. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12647. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12648. hist[vi0]++;
  12649. hist[vi1]++;
  12650. }
  12651. }
  12652. }
  12653. return (n/QK4_1*sizeof(block_q4_1));
  12654. }
  12655. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12656. assert(k % QK5_0 == 0);
  12657. const int nb = k / QK5_0;
  12658. for (int b = 0; b < n; b += k) {
  12659. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12660. quantize_row_q5_0_reference(src + b, y, k);
  12661. for (int i = 0; i < nb; i++) {
  12662. uint32_t qh;
  12663. memcpy(&qh, &y[i].qh, sizeof(qh));
  12664. for (int j = 0; j < QK5_0; j += 2) {
  12665. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12666. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12667. // cast to 16 bins
  12668. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12669. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12670. hist[vi0]++;
  12671. hist[vi1]++;
  12672. }
  12673. }
  12674. }
  12675. return (n/QK5_0*sizeof(block_q5_0));
  12676. }
  12677. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12678. assert(k % QK5_1 == 0);
  12679. const int nb = k / QK5_1;
  12680. for (int b = 0; b < n; b += k) {
  12681. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12682. quantize_row_q5_1_reference(src + b, y, k);
  12683. for (int i = 0; i < nb; i++) {
  12684. uint32_t qh;
  12685. memcpy(&qh, &y[i].qh, sizeof(qh));
  12686. for (int j = 0; j < QK5_1; j += 2) {
  12687. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12688. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12689. // cast to 16 bins
  12690. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12691. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12692. hist[vi0]++;
  12693. hist[vi1]++;
  12694. }
  12695. }
  12696. }
  12697. return (n/QK5_1*sizeof(block_q5_1));
  12698. }
  12699. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12700. assert(k % QK8_0 == 0);
  12701. const int nb = k / QK8_0;
  12702. for (int b = 0; b < n; b += k) {
  12703. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12704. quantize_row_q8_0_reference(src + b, y, k);
  12705. for (int i = 0; i < nb; i++) {
  12706. for (int j = 0; j < QK8_0; ++j) {
  12707. const int8_t vi = y[i].qs[j];
  12708. hist[vi/16 + 8]++;
  12709. }
  12710. }
  12711. }
  12712. return (n/QK8_0*sizeof(block_q8_0));
  12713. }
  12714. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12715. size_t result = 0;
  12716. switch (type) {
  12717. case GGML_TYPE_Q4_0:
  12718. {
  12719. GGML_ASSERT(start % QK4_0 == 0);
  12720. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12721. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12722. } break;
  12723. case GGML_TYPE_Q4_1:
  12724. {
  12725. GGML_ASSERT(start % QK4_1 == 0);
  12726. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12727. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12728. } break;
  12729. case GGML_TYPE_Q5_0:
  12730. {
  12731. GGML_ASSERT(start % QK5_0 == 0);
  12732. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12733. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12734. } break;
  12735. case GGML_TYPE_Q5_1:
  12736. {
  12737. GGML_ASSERT(start % QK5_1 == 0);
  12738. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12739. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12740. } break;
  12741. case GGML_TYPE_Q8_0:
  12742. {
  12743. GGML_ASSERT(start % QK8_0 == 0);
  12744. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12745. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12746. } break;
  12747. default:
  12748. assert(false);
  12749. }
  12750. return result;
  12751. }
  12752. ////////////////////////////////////////////////////////////////////////////////
  12753. int ggml_cpu_has_avx(void) {
  12754. #if defined(__AVX__)
  12755. return 1;
  12756. #else
  12757. return 0;
  12758. #endif
  12759. }
  12760. int ggml_cpu_has_avx2(void) {
  12761. #if defined(__AVX2__)
  12762. return 1;
  12763. #else
  12764. return 0;
  12765. #endif
  12766. }
  12767. int ggml_cpu_has_avx512(void) {
  12768. #if defined(__AVX512F__)
  12769. return 1;
  12770. #else
  12771. return 0;
  12772. #endif
  12773. }
  12774. int ggml_cpu_has_avx512_vbmi(void) {
  12775. #if defined(__AVX512VBMI__)
  12776. return 1;
  12777. #else
  12778. return 0;
  12779. #endif
  12780. }
  12781. int ggml_cpu_has_avx512_vnni(void) {
  12782. #if defined(__AVX512VNNI__)
  12783. return 1;
  12784. #else
  12785. return 0;
  12786. #endif
  12787. }
  12788. int ggml_cpu_has_fma(void) {
  12789. #if defined(__FMA__)
  12790. return 1;
  12791. #else
  12792. return 0;
  12793. #endif
  12794. }
  12795. int ggml_cpu_has_neon(void) {
  12796. #if defined(__ARM_NEON)
  12797. return 1;
  12798. #else
  12799. return 0;
  12800. #endif
  12801. }
  12802. int ggml_cpu_has_arm_fma(void) {
  12803. #if defined(__ARM_FEATURE_FMA)
  12804. return 1;
  12805. #else
  12806. return 0;
  12807. #endif
  12808. }
  12809. int ggml_cpu_has_f16c(void) {
  12810. #if defined(__F16C__)
  12811. return 1;
  12812. #else
  12813. return 0;
  12814. #endif
  12815. }
  12816. int ggml_cpu_has_fp16_va(void) {
  12817. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12818. return 1;
  12819. #else
  12820. return 0;
  12821. #endif
  12822. }
  12823. int ggml_cpu_has_wasm_simd(void) {
  12824. #if defined(__wasm_simd128__)
  12825. return 1;
  12826. #else
  12827. return 0;
  12828. #endif
  12829. }
  12830. int ggml_cpu_has_blas(void) {
  12831. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12832. return 1;
  12833. #else
  12834. return 0;
  12835. #endif
  12836. }
  12837. int ggml_cpu_has_cublas(void) {
  12838. #if defined(GGML_USE_CUBLAS)
  12839. return 1;
  12840. #else
  12841. return 0;
  12842. #endif
  12843. }
  12844. int ggml_cpu_has_clblast(void) {
  12845. #if defined(GGML_USE_CLBLAST)
  12846. return 1;
  12847. #else
  12848. return 0;
  12849. #endif
  12850. }
  12851. int ggml_cpu_has_gpublas(void) {
  12852. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12853. }
  12854. int ggml_cpu_has_sse3(void) {
  12855. #if defined(__SSE3__)
  12856. return 1;
  12857. #else
  12858. return 0;
  12859. #endif
  12860. }
  12861. int ggml_cpu_has_vsx(void) {
  12862. #if defined(__POWER9_VECTOR__)
  12863. return 1;
  12864. #else
  12865. return 0;
  12866. #endif
  12867. }
  12868. ////////////////////////////////////////////////////////////////////////////////