convert_hf_to_gguf.py 374 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  565. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  566. res = "hunyuan-dense"
  567. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  577. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  578. res = "falcon-h1"
  579. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  580. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  581. res = "kimi-k2"
  582. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  583. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  584. res = "llama-bpe"
  585. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  586. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  587. res = "deepseek-llm"
  588. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  589. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  590. res = "deepseek-coder"
  591. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  592. # ref: https://huggingface.co/tiiuae/falcon-7b
  593. res = "falcon"
  594. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  595. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  596. res = "bert-bge"
  597. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  598. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  599. res = "falcon3"
  600. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  601. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  602. res = "bert-bge-large"
  603. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  604. # ref: https://huggingface.co/mosaicml/mpt-7b
  605. res = "mpt"
  606. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  607. # ref: https://huggingface.co/bigcode/starcoder2-3b
  608. res = "starcoder"
  609. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  610. # ref: https://huggingface.co/openai-community/gpt2
  611. res = "gpt-2"
  612. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  613. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  614. res = "stablelm2"
  615. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  616. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  617. res = "refact"
  618. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  619. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  620. res = "command-r"
  621. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  622. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  623. res = "qwen2"
  624. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  625. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  626. res = "olmo"
  627. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  628. # ref: https://huggingface.co/databricks/dbrx-base
  629. res = "dbrx"
  630. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  631. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  632. res = "jina-v1-en"
  633. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  634. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  635. res = "jina-v2-en"
  636. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  638. res = "jina-v2-es"
  639. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  640. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  641. res = "jina-v2-de"
  642. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  643. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  644. res = "smaug-bpe"
  645. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  646. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  647. res = "poro-chat"
  648. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  649. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  650. res = "jina-v2-code"
  651. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  652. # ref: https://huggingface.co/LumiOpen/Viking-7B
  653. res = "viking"
  654. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  655. # ref: https://huggingface.co/core42/jais-13b
  656. res = "jais"
  657. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  658. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  659. res = "codeshell"
  660. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  661. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  662. res = "tekken"
  663. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  664. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  665. res = "smollm"
  666. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  667. # ref: https://huggingface.co/bigscience/bloom
  668. res = "bloom"
  669. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  670. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  671. res = "gpt3-finnish"
  672. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  673. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  674. res = "exaone"
  675. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  676. # ref: https://huggingface.co/microsoft/phi-2
  677. res = "phi-2"
  678. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  679. # ref: https://huggingface.co/facebook/chameleon-7b
  680. res = "chameleon"
  681. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  682. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  683. res = "roberta-bpe"
  684. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  685. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  686. res = "gigachat"
  687. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  688. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  689. res = "megrez"
  690. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  691. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  692. res = "deepseek-v3"
  693. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  694. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  695. res = "deepseek-r1-qwen"
  696. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  697. # ref: https://huggingface.co/Xenova/gpt-4o
  698. res = "gpt-4o"
  699. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  700. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  701. res = "superbpe"
  702. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  703. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  704. res = "trillion"
  705. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  706. # ref: https://huggingface.co/inclusionAI/Ling-lite
  707. res = "bailingmoe"
  708. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  709. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  710. res = "llama4"
  711. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  712. # ref: https://huggingface.co/mistral-community/pixtral-12b
  713. res = "pixtral"
  714. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  715. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  716. res = "seed-coder"
  717. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  718. # ref: https://huggingface.co/skt/A.X-4.0
  719. res = "a.x-4.0"
  720. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  721. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  722. res = "midm-2.0"
  723. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  724. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  725. res = "lfm2"
  726. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  727. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  728. res = "exaone4"
  729. if res is None:
  730. logger.warning("\n")
  731. logger.warning("**************************************************************************************")
  732. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  733. logger.warning("** There are 2 possible reasons for this:")
  734. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  735. logger.warning("** - the pre-tokenization config has changed upstream")
  736. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  737. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  738. logger.warning("**")
  739. logger.warning(f"** chkhsh: {chkhsh}")
  740. logger.warning("**************************************************************************************")
  741. logger.warning("\n")
  742. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  743. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  744. logger.debug(f"chkhsh: {chkhsh}")
  745. return res
  746. # Marker: End get_vocab_base_pre
  747. def _set_vocab_none(self) -> None:
  748. self.gguf_writer.add_tokenizer_model("none")
  749. def _set_vocab_gpt2(self) -> None:
  750. tokens, toktypes, tokpre = self.get_vocab_base()
  751. self.gguf_writer.add_tokenizer_model("gpt2")
  752. self.gguf_writer.add_tokenizer_pre(tokpre)
  753. self.gguf_writer.add_token_list(tokens)
  754. self.gguf_writer.add_token_types(toktypes)
  755. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  756. special_vocab.add_to_gguf(self.gguf_writer)
  757. def _set_vocab_qwen(self):
  758. dir_model = self.dir_model
  759. hparams = self.hparams
  760. tokens: list[str] = []
  761. toktypes: list[int] = []
  762. from transformers import AutoTokenizer
  763. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  764. vocab_size = hparams["vocab_size"]
  765. assert max(tokenizer.get_vocab().values()) < vocab_size
  766. tokpre = self.get_vocab_base_pre(tokenizer)
  767. merges = []
  768. vocab = {}
  769. mergeable_ranks = tokenizer.mergeable_ranks
  770. for token, rank in mergeable_ranks.items():
  771. vocab[QwenModel.token_bytes_to_string(token)] = rank
  772. if len(token) == 1:
  773. continue
  774. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  775. assert len(merged) == 2
  776. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  777. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  778. added_vocab = tokenizer.special_tokens
  779. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  780. for i in range(vocab_size):
  781. if i not in reverse_vocab:
  782. tokens.append(f"[PAD{i}]")
  783. toktypes.append(gguf.TokenType.UNUSED)
  784. elif reverse_vocab[i] in added_vocab:
  785. tokens.append(reverse_vocab[i])
  786. toktypes.append(gguf.TokenType.CONTROL)
  787. else:
  788. tokens.append(reverse_vocab[i])
  789. toktypes.append(gguf.TokenType.NORMAL)
  790. self.gguf_writer.add_tokenizer_model("gpt2")
  791. self.gguf_writer.add_tokenizer_pre(tokpre)
  792. self.gguf_writer.add_token_list(tokens)
  793. self.gguf_writer.add_token_types(toktypes)
  794. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  795. special_vocab.merges = merges
  796. # only add special tokens when they were not already loaded from config.json
  797. if len(special_vocab.special_token_ids) == 0:
  798. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  799. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  800. # this one is usually not in config.json anyway
  801. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  802. special_vocab.add_to_gguf(self.gguf_writer)
  803. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  804. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  805. self.gguf_writer.add_tokenizer_model("llama")
  806. self.gguf_writer.add_tokenizer_pre("default")
  807. self.gguf_writer.add_token_list(tokens)
  808. self.gguf_writer.add_token_scores(scores)
  809. self.gguf_writer.add_token_types(toktypes)
  810. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  811. special_vocab.add_to_gguf(self.gguf_writer)
  812. def _create_vocab_sentencepiece(self):
  813. from sentencepiece import SentencePieceProcessor
  814. tokenizer_path = self.dir_model / 'tokenizer.model'
  815. if not tokenizer_path.is_file():
  816. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  817. tokenizer = SentencePieceProcessor()
  818. tokenizer.LoadFromFile(str(tokenizer_path))
  819. vocab_size = self.find_hparam([
  820. "vocab_size_per_layer_input", # gemma3n
  821. "vocab_size",
  822. ], optional=True) or tokenizer.vocab_size()
  823. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  824. scores: list[float] = [-10000.0] * vocab_size
  825. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  826. for token_id in range(tokenizer.vocab_size()):
  827. if token_id >= vocab_size:
  828. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  829. break
  830. piece = tokenizer.IdToPiece(token_id)
  831. text = piece.encode("utf-8")
  832. score = tokenizer.GetScore(token_id)
  833. toktype = SentencePieceTokenTypes.NORMAL
  834. if tokenizer.IsUnknown(token_id):
  835. toktype = SentencePieceTokenTypes.UNKNOWN
  836. elif tokenizer.IsControl(token_id):
  837. toktype = SentencePieceTokenTypes.CONTROL
  838. elif tokenizer.IsUnused(token_id):
  839. toktype = SentencePieceTokenTypes.UNUSED
  840. elif tokenizer.IsByte(token_id):
  841. toktype = SentencePieceTokenTypes.BYTE
  842. tokens[token_id] = text
  843. scores[token_id] = score
  844. toktypes[token_id] = toktype
  845. added_tokens_file = self.dir_model / 'added_tokens.json'
  846. if added_tokens_file.is_file():
  847. with open(added_tokens_file, "r", encoding="utf-8") as f:
  848. added_tokens_json = json.load(f)
  849. for key in added_tokens_json:
  850. token_id = added_tokens_json[key]
  851. if token_id >= vocab_size:
  852. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  853. continue
  854. tokens[token_id] = key.encode("utf-8")
  855. scores[token_id] = -1000.0
  856. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  857. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  858. if tokenizer_config_file.is_file():
  859. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  860. tokenizer_config_json = json.load(f)
  861. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  862. for token_id, token_data in added_tokens_decoder.items():
  863. token_id = int(token_id)
  864. token: str = token_data["content"]
  865. if token_id >= vocab_size:
  866. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  867. continue
  868. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  869. if tokens[token_id] != token.encode("utf-8"):
  870. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  871. if token_data.get("special") or self.does_token_look_special(token):
  872. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  873. else:
  874. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  875. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  876. scores[token_id] = -1000.0
  877. tokens[token_id] = token.encode("utf-8")
  878. if vocab_size > len(tokens):
  879. pad_count = vocab_size - len(tokens)
  880. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  881. for i in range(1, pad_count + 1):
  882. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  883. scores.append(-1000.0)
  884. toktypes.append(SentencePieceTokenTypes.UNUSED)
  885. return tokens, scores, toktypes
  886. def _set_vocab_llama_hf(self):
  887. vocab = gguf.LlamaHfVocab(self.dir_model)
  888. tokens = []
  889. scores = []
  890. toktypes = []
  891. for text, score, toktype in vocab.all_tokens():
  892. tokens.append(text)
  893. scores.append(score)
  894. toktypes.append(toktype)
  895. assert len(tokens) == vocab.vocab_size
  896. self.gguf_writer.add_tokenizer_model("llama")
  897. self.gguf_writer.add_tokenizer_pre("default")
  898. self.gguf_writer.add_token_list(tokens)
  899. self.gguf_writer.add_token_scores(scores)
  900. self.gguf_writer.add_token_types(toktypes)
  901. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  902. special_vocab.add_to_gguf(self.gguf_writer)
  903. def _set_vocab_rwkv_world(self):
  904. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  905. vocab_size = self.hparams.get("vocab_size", 65536)
  906. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  907. toktypes: list[int] = [gguf.TokenType.CONTROL]
  908. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  909. lines = f.readlines()
  910. for line in lines:
  911. parts = line.split(' ')
  912. assert len(parts) >= 3
  913. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  914. token = token.encode("utf-8") if isinstance(token, str) else token
  915. assert isinstance(token, bytes)
  916. assert len(token) == token_len
  917. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  918. tokens.append(token_text.encode("utf-8"))
  919. toktypes.append(gguf.TokenType.NORMAL)
  920. remainder = vocab_size - len(tokens)
  921. assert remainder >= 0
  922. for i in range(len(tokens), vocab_size):
  923. tokens.append(f"[PAD{i}]".encode("utf-8"))
  924. toktypes.append(gguf.TokenType.UNUSED)
  925. self.gguf_writer.add_tokenizer_model("rwkv")
  926. self.gguf_writer.add_token_list(tokens)
  927. self.gguf_writer.add_token_types(toktypes)
  928. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  929. if special_vocab.chat_template is None:
  930. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  931. if template_path.is_file():
  932. with open(template_path, "r", encoding="utf-8") as f:
  933. template = f.read()
  934. else:
  935. template = "rwkv-world"
  936. special_vocab.chat_template = template
  937. # hack: Add '\n\n' as the EOT token to make it chat normally
  938. special_vocab._set_special_token("eot", 261)
  939. # hack: Override these as they have already been set (incorrectly)
  940. special_vocab.special_token_ids["bos"] = 0
  941. special_vocab.special_token_ids["eos"] = 0
  942. special_vocab.add_to_gguf(self.gguf_writer)
  943. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  944. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  945. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  946. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  947. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  948. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  949. assert field # tokenizer model
  950. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  951. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  952. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  953. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  954. assert field # token list
  955. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  956. if model_name == "llama-spm":
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  958. assert field # token scores
  959. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  960. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  961. assert field # token types
  962. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  963. if model_name != "llama-spm":
  964. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  965. assert field # token merges
  966. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  967. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  968. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  969. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  970. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  971. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  972. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  973. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  974. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  975. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  976. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  977. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  978. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  979. def _try_set_pooling_type(self) -> None:
  980. # get pooling path
  981. pooling_path = None
  982. module_path = self.dir_model / "modules.json"
  983. if module_path.is_file():
  984. with open(module_path, encoding="utf-8") as f:
  985. modules = json.load(f)
  986. for mod in modules:
  987. if mod["type"] == "sentence_transformers.models.Pooling":
  988. pooling_path = mod["path"]
  989. break
  990. # get pooling type
  991. if pooling_path is not None:
  992. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  993. pooling = json.load(f)
  994. if pooling["pooling_mode_mean_tokens"]:
  995. pooling_type = gguf.PoolingType.MEAN
  996. elif pooling["pooling_mode_cls_token"]:
  997. pooling_type = gguf.PoolingType.CLS
  998. elif pooling["pooling_mode_lasttoken"]:
  999. pooling_type = gguf.PoolingType.LAST
  1000. else:
  1001. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1002. self.gguf_writer.add_pooling_type(pooling_type)
  1003. class MmprojModel(ModelBase):
  1004. model_type = ModelType.MMPROJ
  1005. model_arch = gguf.MODEL_ARCH.MMPROJ
  1006. preprocessor_config: dict[str, Any]
  1007. global_config: dict[str, Any]
  1008. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1009. has_vision_encoder: bool = True # by default
  1010. has_audio_encoder: bool = False
  1011. # for models having multiple encoders, we need to separate their hparams
  1012. hparams_vision: dict[str, Any] | None = None
  1013. hparams_audio: dict[str, Any] | None = None
  1014. def __init__(self, *args, **kwargs):
  1015. super().__init__(*args, **kwargs)
  1016. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1017. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1018. # get n_embd of the text model
  1019. if "text_config" not in self.hparams:
  1020. self.hparams["text_config"] = {}
  1021. if "audio_config" not in self.hparams:
  1022. self.hparams["audio_config"] = {}
  1023. text_config = {**self.hparams, **self.hparams["text_config"]}
  1024. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1025. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1026. # move vision config to the top level, while preserving the original hparams in global_config
  1027. import copy
  1028. self.global_config = copy.deepcopy(self.hparams)
  1029. self.hparams_vision = self.get_vision_config()
  1030. self.hparams_audio = self.get_audio_config()
  1031. if self.hparams_vision is None and self.hparams_audio is None:
  1032. raise ValueError("vision_config / audio_config not found in hparams")
  1033. # for compat with vision-only models
  1034. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1035. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1036. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1037. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1038. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1039. # load preprocessor config
  1040. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1041. self.preprocessor_config = json.load(f)
  1042. def get_vision_config(self) -> dict[str, Any] | None:
  1043. return self.global_config.get("vision_config")
  1044. def get_audio_config(self) -> dict[str, Any] | None:
  1045. return self.global_config.get("audio_config")
  1046. def set_type(self):
  1047. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1048. def set_gguf_parameters(self):
  1049. self.gguf_writer.add_file_type(self.ftype)
  1050. if self.has_vision_encoder:
  1051. self.gguf_writer.add_clip_has_vision_encoder(True)
  1052. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1053. # vision config
  1054. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1055. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1056. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1057. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1058. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1059. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1060. # preprocessor config
  1061. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1062. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1063. if self.has_audio_encoder:
  1064. self.gguf_writer.add_clip_has_audio_encoder(True)
  1065. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1066. # audio config
  1067. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1068. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1069. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1070. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1071. if not self.has_vision_encoder and not self.has_audio_encoder:
  1072. raise ValueError("MmprojModel must have either vision or audio encoder")
  1073. def write_vocab(self):
  1074. raise ValueError("MmprojModel does not support vocab writing")
  1075. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1076. assert self.hparams_vision is not None
  1077. return self._find_param(self.hparams_vision, keys, optional)
  1078. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1079. assert self.hparams_audio is not None
  1080. return self._find_param(self.hparams_audio, keys, optional)
  1081. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1082. key = next((k for k in keys if k in obj), None)
  1083. if key is not None:
  1084. return obj[key]
  1085. if optional:
  1086. return None
  1087. raise KeyError(f"could not find any of: {keys}")
  1088. @ModelBase.register("GPTNeoXForCausalLM")
  1089. class GPTNeoXModel(TextModel):
  1090. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1091. def set_gguf_parameters(self):
  1092. block_count = self.hparams["num_hidden_layers"]
  1093. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1094. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1095. self.gguf_writer.add_block_count(block_count)
  1096. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1097. self.gguf_writer.add_rope_dimension_count(
  1098. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1099. )
  1100. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1101. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1102. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1104. del bid # unused
  1105. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1106. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1107. tensors: list[tuple[str, Tensor]] = []
  1108. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1109. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1110. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1111. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1112. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1113. data_torch = torch.cat(
  1114. (
  1115. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1116. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1117. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1118. ),
  1119. dim=0,
  1120. )
  1121. logger.info("re-format attention.linear_qkv.weight")
  1122. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1123. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1124. data_torch = torch.cat(
  1125. (
  1126. qkv_bias[:, 0, :].reshape((n_embed,)),
  1127. qkv_bias[:, 1, :].reshape((n_embed,)),
  1128. qkv_bias[:, 2, :].reshape((n_embed,)),
  1129. ),
  1130. dim=0,
  1131. )
  1132. logger.info("re-format attention.linear_qkv.bias")
  1133. tensors.append((self.map_tensor_name(name), data_torch))
  1134. return tensors
  1135. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1136. class BloomModel(TextModel):
  1137. model_arch = gguf.MODEL_ARCH.BLOOM
  1138. def set_gguf_parameters(self):
  1139. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1140. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1141. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1142. self.gguf_writer.add_embedding_length(n_embed)
  1143. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1144. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1145. self.gguf_writer.add_head_count(n_head)
  1146. self.gguf_writer.add_head_count_kv(n_head)
  1147. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1148. self.gguf_writer.add_file_type(self.ftype)
  1149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1150. del bid # unused
  1151. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1152. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1153. name = re.sub(r'transformer\.', '', name)
  1154. tensors: list[tuple[str, Tensor]] = []
  1155. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1156. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1157. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1158. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1159. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1160. data_torch = torch.cat(
  1161. (
  1162. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1163. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1164. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1165. ),
  1166. dim=0,
  1167. )
  1168. logger.info("re-format attention.linear_qkv.weight")
  1169. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1170. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1171. data_torch = torch.cat(
  1172. (
  1173. qkv_bias[:, 0, :].reshape((n_embed,)),
  1174. qkv_bias[:, 1, :].reshape((n_embed,)),
  1175. qkv_bias[:, 2, :].reshape((n_embed,)),
  1176. ),
  1177. dim=0,
  1178. )
  1179. logger.info("re-format attention.linear_qkv.bias")
  1180. tensors.append((self.map_tensor_name(name), data_torch))
  1181. return tensors
  1182. @ModelBase.register("MPTForCausalLM")
  1183. class MPTModel(TextModel):
  1184. model_arch = gguf.MODEL_ARCH.MPT
  1185. def set_vocab(self):
  1186. try:
  1187. self._set_vocab_gpt2()
  1188. except Exception:
  1189. # Fallback for SEA-LION model
  1190. self._set_vocab_sentencepiece()
  1191. self.gguf_writer.add_add_bos_token(False)
  1192. self.gguf_writer.add_pad_token_id(3)
  1193. self.gguf_writer.add_eos_token_id(1)
  1194. self.gguf_writer.add_unk_token_id(0)
  1195. def set_gguf_parameters(self):
  1196. block_count = self.hparams["n_layers"]
  1197. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1198. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1199. self.gguf_writer.add_block_count(block_count)
  1200. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1201. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1202. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1203. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1204. self.gguf_writer.add_layer_norm_eps(1e-5)
  1205. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1206. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1207. if self.hparams["attn_config"]["alibi"]:
  1208. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1209. else:
  1210. self.gguf_writer.add_max_alibi_bias(0.0)
  1211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1212. del bid # unused
  1213. if "scales" in name:
  1214. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1215. new_name = new_name.replace("scales", "act.scales")
  1216. else:
  1217. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1218. return [(new_name, data_torch)]
  1219. @ModelBase.register("OrionForCausalLM")
  1220. class OrionModel(TextModel):
  1221. model_arch = gguf.MODEL_ARCH.ORION
  1222. def set_vocab(self):
  1223. self._set_vocab_sentencepiece()
  1224. def set_gguf_parameters(self):
  1225. block_count = self.hparams["num_hidden_layers"]
  1226. head_count = self.hparams["num_attention_heads"]
  1227. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1228. ctx_length = 0
  1229. if "max_sequence_length" in self.hparams:
  1230. ctx_length = self.hparams["max_sequence_length"]
  1231. elif "max_position_embeddings" in self.hparams:
  1232. ctx_length = self.hparams["max_position_embeddings"]
  1233. elif "model_max_length" in self.hparams:
  1234. ctx_length = self.hparams["model_max_length"]
  1235. else:
  1236. raise ValueError("gguf: can not find ctx length parameter.")
  1237. self.gguf_writer.add_file_type(self.ftype)
  1238. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1239. self.gguf_writer.add_context_length(ctx_length)
  1240. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1241. self.gguf_writer.add_block_count(block_count)
  1242. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1243. self.gguf_writer.add_head_count(head_count)
  1244. self.gguf_writer.add_head_count_kv(head_count_kv)
  1245. # note: config provides rms norm but it is actually layer norm
  1246. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1247. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1248. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1249. class BaichuanModel(TextModel):
  1250. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1251. def set_vocab(self):
  1252. self._set_vocab_sentencepiece()
  1253. def set_gguf_parameters(self):
  1254. block_count = self.hparams["num_hidden_layers"]
  1255. head_count = self.hparams["num_attention_heads"]
  1256. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1257. ctx_length = 0
  1258. if "max_sequence_length" in self.hparams:
  1259. ctx_length = self.hparams["max_sequence_length"]
  1260. elif "max_position_embeddings" in self.hparams:
  1261. ctx_length = self.hparams["max_position_embeddings"]
  1262. elif "model_max_length" in self.hparams:
  1263. ctx_length = self.hparams["model_max_length"]
  1264. else:
  1265. raise ValueError("gguf: can not find ctx length parameter.")
  1266. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1267. self.gguf_writer.add_context_length(ctx_length)
  1268. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1269. self.gguf_writer.add_block_count(block_count)
  1270. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1271. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1272. self.gguf_writer.add_head_count(head_count)
  1273. self.gguf_writer.add_head_count_kv(head_count_kv)
  1274. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1275. self.gguf_writer.add_file_type(self.ftype)
  1276. rope_scaling = self.hparams.get("rope_scaling") or {}
  1277. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1278. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1279. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1280. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1281. head_count = self.hparams["num_attention_heads"]
  1282. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1283. tensors: list[tuple[str, Tensor]] = []
  1284. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1285. logger.info(f"Unpacking and permuting layer {bid}")
  1286. tensors = [
  1287. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1288. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1289. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1290. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1291. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1292. self._reverse_hf_part(data_torch, 2)),
  1293. ]
  1294. else:
  1295. tensors = [(self.map_tensor_name(name), data_torch)]
  1296. return tensors
  1297. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1298. if n_kv_head is not None and n_head != n_kv_head:
  1299. n_head //= n_kv_head
  1300. return (
  1301. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1302. .swapaxes(1, 2)
  1303. .reshape(weights.shape)
  1304. )
  1305. def _reverse_hf_permute_part(
  1306. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1307. ) -> Tensor:
  1308. r = weights.shape[0] // 3
  1309. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1310. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1311. r = weights.shape[0] // 3
  1312. return weights[r * n_part:r * n_part + r, ...]
  1313. @ModelBase.register("XverseForCausalLM")
  1314. class XverseModel(TextModel):
  1315. model_arch = gguf.MODEL_ARCH.XVERSE
  1316. def set_vocab(self):
  1317. assert (self.dir_model / "tokenizer.json").is_file()
  1318. dir_model = self.dir_model
  1319. hparams = self.hparams
  1320. tokens: list[bytes] = []
  1321. toktypes: list[int] = []
  1322. from transformers import AutoTokenizer
  1323. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1324. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1325. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1326. # because vocab_size is the count of items, and indexes start at 0.
  1327. max_vocab_index = max(tokenizer.get_vocab().values())
  1328. if max_vocab_index >= vocab_size:
  1329. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1330. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1331. added_vocab = tokenizer.get_added_vocab()
  1332. for token_id in range(vocab_size):
  1333. token_text = reverse_vocab[token_id].encode('utf-8')
  1334. # replace "\x00" to string with length > 0
  1335. if token_text == b"\x00":
  1336. toktype = gguf.TokenType.BYTE # special
  1337. token_text = f"<{token_text}>".encode('utf-8')
  1338. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1339. toktype = gguf.TokenType.BYTE # special
  1340. elif reverse_vocab[token_id] in added_vocab:
  1341. if tokenizer.added_tokens_decoder[token_id].special:
  1342. toktype = gguf.TokenType.CONTROL
  1343. else:
  1344. toktype = gguf.TokenType.USER_DEFINED
  1345. else:
  1346. toktype = gguf.TokenType.NORMAL
  1347. tokens.append(token_text)
  1348. toktypes.append(toktype)
  1349. self.gguf_writer.add_tokenizer_model("llama")
  1350. self.gguf_writer.add_tokenizer_pre("default")
  1351. self.gguf_writer.add_token_list(tokens)
  1352. self.gguf_writer.add_token_types(toktypes)
  1353. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1354. special_vocab.add_to_gguf(self.gguf_writer)
  1355. def set_gguf_parameters(self):
  1356. block_count = self.hparams["num_hidden_layers"]
  1357. head_count = self.hparams["num_attention_heads"]
  1358. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1359. ctx_length = 0
  1360. if "max_sequence_length" in self.hparams:
  1361. ctx_length = self.hparams["max_sequence_length"]
  1362. elif "max_position_embeddings" in self.hparams:
  1363. ctx_length = self.hparams["max_position_embeddings"]
  1364. elif "model_max_length" in self.hparams:
  1365. ctx_length = self.hparams["model_max_length"]
  1366. else:
  1367. raise ValueError("gguf: can not find ctx length parameter.")
  1368. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1369. self.gguf_writer.add_context_length(ctx_length)
  1370. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1371. self.gguf_writer.add_block_count(block_count)
  1372. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1373. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1374. self.gguf_writer.add_head_count(head_count)
  1375. self.gguf_writer.add_head_count_kv(head_count_kv)
  1376. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1377. self.gguf_writer.add_file_type(self.ftype)
  1378. rope_scaling = self.hparams.get("rope_scaling") or {}
  1379. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1380. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1381. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1382. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1383. del bid # unused
  1384. head_count = self.hparams["num_attention_heads"]
  1385. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1386. # HF models permute some of the tensors, so we need to undo that
  1387. if name.endswith("q_proj.weight"):
  1388. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1389. if name.endswith("k_proj.weight"):
  1390. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1391. return [(self.map_tensor_name(name), data_torch)]
  1392. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1393. if n_kv_head is not None and n_head != n_kv_head:
  1394. n_head //= n_kv_head
  1395. return (
  1396. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1397. .swapaxes(1, 2)
  1398. .reshape(weights.shape)
  1399. )
  1400. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1401. class FalconModel(TextModel):
  1402. model_arch = gguf.MODEL_ARCH.FALCON
  1403. def set_gguf_parameters(self):
  1404. block_count = self.hparams.get("num_hidden_layers")
  1405. if block_count is None:
  1406. block_count = self.hparams["n_layer"] # old name
  1407. n_head = self.hparams.get("num_attention_heads")
  1408. if n_head is None:
  1409. n_head = self.hparams["n_head"] # old name
  1410. n_head_kv = self.hparams.get("num_kv_heads")
  1411. if n_head_kv is None:
  1412. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1413. self.gguf_writer.add_context_length(2048) # not in config.json
  1414. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1415. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1416. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1417. self.gguf_writer.add_block_count(block_count)
  1418. self.gguf_writer.add_head_count(n_head)
  1419. self.gguf_writer.add_head_count_kv(n_head_kv)
  1420. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1421. self.gguf_writer.add_file_type(self.ftype)
  1422. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1423. del bid # unused
  1424. # QKV tensor transform
  1425. # The original query_key_value tensor contains n_head_kv "kv groups",
  1426. # each consisting of n_head/n_head_kv query weights followed by one key
  1427. # and one value weight (shared by all query heads in the kv group).
  1428. # This layout makes it a big pain to work with in GGML.
  1429. # So we rearrange them here,, so that we have n_head query weights
  1430. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1431. # in contiguous fashion.
  1432. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1433. if "query_key_value" in name:
  1434. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1435. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1436. head_dim = self.hparams["hidden_size"] // n_head
  1437. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1438. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1439. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1440. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1441. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1442. return [(self.map_tensor_name(name), data_torch)]
  1443. @ModelBase.register("GPTBigCodeForCausalLM")
  1444. class StarCoderModel(TextModel):
  1445. model_arch = gguf.MODEL_ARCH.STARCODER
  1446. def set_gguf_parameters(self):
  1447. block_count = self.hparams["n_layer"]
  1448. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1449. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1450. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1451. self.gguf_writer.add_block_count(block_count)
  1452. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1453. self.gguf_writer.add_head_count_kv(1)
  1454. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1455. self.gguf_writer.add_file_type(self.ftype)
  1456. @ModelBase.register("GPTRefactForCausalLM")
  1457. class RefactModel(TextModel):
  1458. model_arch = gguf.MODEL_ARCH.REFACT
  1459. def set_vocab(self):
  1460. super().set_vocab()
  1461. # TODO: how to determine special FIM tokens automatically?
  1462. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1463. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1464. special_vocab._set_special_token("prefix", 1)
  1465. special_vocab._set_special_token("suffix", 3)
  1466. special_vocab._set_special_token("middle", 2)
  1467. special_vocab.chat_template = None # do not add it twice
  1468. special_vocab.add_to_gguf(self.gguf_writer)
  1469. def set_gguf_parameters(self):
  1470. hidden_dim = self.hparams["n_embd"]
  1471. inner_dim = 4 * hidden_dim
  1472. hidden_dim = int(2 * inner_dim / 3)
  1473. multiple_of = 256
  1474. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1475. block_count = self.hparams["n_layer"]
  1476. # refact uses Alibi. So this is from config.json which might be used by training.
  1477. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1478. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1479. self.gguf_writer.add_feed_forward_length(ff_dim)
  1480. self.gguf_writer.add_block_count(block_count)
  1481. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1482. self.gguf_writer.add_head_count_kv(1)
  1483. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1484. self.gguf_writer.add_file_type(self.ftype)
  1485. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1486. hidden_dim = self.hparams["n_embd"]
  1487. inner_dim = 4 * hidden_dim
  1488. hidden_dim = int(2 * inner_dim / 3)
  1489. multiple_of = 256
  1490. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1491. n_head = self.hparams["n_head"]
  1492. n_head_kv = 1
  1493. head_dim = self.hparams["n_embd"] // n_head
  1494. tensors: list[tuple[str, Tensor]] = []
  1495. if bid is not None:
  1496. if name == f"transformer.h.{bid}.attn.kv.weight":
  1497. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1498. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1499. elif name == f"transformer.h.{bid}.attn.q.weight":
  1500. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1501. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1502. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1503. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1504. if len(tensors) == 0:
  1505. tensors.append((self.map_tensor_name(name), data_torch))
  1506. return tensors
  1507. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1508. class StableLMModel(TextModel):
  1509. model_arch = gguf.MODEL_ARCH.STABLELM
  1510. def set_vocab(self):
  1511. if (self.dir_model / "tokenizer.json").is_file():
  1512. self._set_vocab_gpt2()
  1513. else:
  1514. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1515. self._set_vocab_qwen()
  1516. def set_gguf_parameters(self):
  1517. hparams = self.hparams
  1518. block_count = hparams["num_hidden_layers"]
  1519. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1520. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1521. self.gguf_writer.add_block_count(block_count)
  1522. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1523. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1524. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1525. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1526. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1527. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1528. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1529. self.gguf_writer.add_file_type(self.ftype)
  1530. _q_norms: list[dict[str, Tensor]] | None = None
  1531. _k_norms: list[dict[str, Tensor]] | None = None
  1532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1533. n_head = self.hparams["num_attention_heads"]
  1534. n_kv_head = self.hparams["num_key_value_heads"]
  1535. if name.find("q_layernorm.norms") != -1:
  1536. assert bid is not None
  1537. if self._q_norms is None:
  1538. self._q_norms = [{} for _ in range(self.block_count)]
  1539. self._q_norms[bid][name] = data_torch
  1540. if len(self._q_norms[bid]) >= n_head:
  1541. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1542. else:
  1543. return []
  1544. if name.find("k_layernorm.norms") != -1:
  1545. assert bid is not None
  1546. if self._k_norms is None:
  1547. self._k_norms = [{} for _ in range(self.block_count)]
  1548. self._k_norms[bid][name] = data_torch
  1549. if len(self._k_norms[bid]) >= n_kv_head:
  1550. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1551. else:
  1552. return []
  1553. return [(self.map_tensor_name(name), data_torch)]
  1554. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1555. datas: list[Tensor] = []
  1556. # extract the norms in order
  1557. for xid in range(n_head):
  1558. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1559. datas.append(norms[ename])
  1560. del norms[ename]
  1561. data_torch = torch.stack(datas, dim=0)
  1562. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1563. new_name = self.map_tensor_name(merged_name)
  1564. return [(new_name, data_torch)]
  1565. def prepare_tensors(self):
  1566. super().prepare_tensors()
  1567. if self._q_norms is not None or self._k_norms is not None:
  1568. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1569. norms = (
  1570. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1571. ) + (
  1572. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1573. )
  1574. if len(norms) > 0:
  1575. raise ValueError(f"Unprocessed norms: {norms}")
  1576. @ModelBase.register(
  1577. "LLaMAForCausalLM",
  1578. "LlamaForCausalLM",
  1579. "MistralForCausalLM",
  1580. "MixtralForCausalLM",
  1581. "VLlama3ForCausalLM",
  1582. "LlavaForConditionalGeneration",
  1583. "VoxtralForConditionalGeneration",
  1584. "LlamaModel")
  1585. class LlamaModel(TextModel):
  1586. model_arch = gguf.MODEL_ARCH.LLAMA
  1587. undo_permute = True
  1588. def __init__(self, *args, **kwargs):
  1589. super().__init__(*args, **kwargs)
  1590. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1591. if self.hf_arch == "VLlama3ForCausalLM":
  1592. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1593. def set_vocab(self):
  1594. path_tekken_json = self.dir_model / "tekken.json"
  1595. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1596. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1597. return self.set_vocab_tekken()
  1598. try:
  1599. self._set_vocab_sentencepiece()
  1600. except FileNotFoundError:
  1601. try:
  1602. self._set_vocab_llama_hf()
  1603. except (FileNotFoundError, TypeError):
  1604. # Llama 3
  1605. self._set_vocab_gpt2()
  1606. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1607. if self.hparams.get("vocab_size", 32000) == 32016:
  1608. special_vocab = gguf.SpecialVocab(
  1609. self.dir_model, load_merges=False,
  1610. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1611. )
  1612. special_vocab._set_special_token("prefix", 32007)
  1613. special_vocab._set_special_token("suffix", 32008)
  1614. special_vocab._set_special_token("middle", 32009)
  1615. special_vocab._set_special_token("eot", 32010)
  1616. special_vocab.add_to_gguf(self.gguf_writer)
  1617. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1618. if tokenizer_config_file.is_file():
  1619. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1620. tokenizer_config_json = json.load(f)
  1621. if "add_prefix_space" in tokenizer_config_json:
  1622. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1623. # Apply to granite small models only
  1624. if self.hparams.get("vocab_size", 32000) == 49152:
  1625. self.gguf_writer.add_add_bos_token(False)
  1626. def set_vocab_tekken(self):
  1627. vocab = gguf.vocab.MistralVocab(self.dir_model)
  1628. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1629. tokens = []
  1630. scores = []
  1631. toktypes = []
  1632. for text, score, toktype in vocab.all_tokens():
  1633. tokens.append(text)
  1634. scores.append(score)
  1635. toktypes.append(toktype)
  1636. assert len(tokens) == vocab.vocab_size, (
  1637. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1638. )
  1639. if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
  1640. self.gguf_writer.add_tokenizer_pre("tekken")
  1641. self.gguf_writer.add_token_merges(
  1642. vocab.extract_vocab_merges_from_model()
  1643. )
  1644. logger.info(
  1645. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1646. )
  1647. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1648. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1649. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1650. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1651. self.gguf_writer.add_token_list(tokens)
  1652. self.gguf_writer.add_token_scores(scores)
  1653. self.gguf_writer.add_token_types(toktypes)
  1654. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1655. self.gguf_writer.add_add_bos_token(True)
  1656. self.gguf_writer.add_add_eos_token(False)
  1657. script_dir = Path(__file__).parent
  1658. template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
  1659. with open(template_path, "r", encoding="utf-8") as f:
  1660. template = f.read()
  1661. self.gguf_writer.add_chat_template(template)
  1662. def set_gguf_parameters(self):
  1663. super().set_gguf_parameters()
  1664. hparams = self.hparams
  1665. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1666. if (rope_dim := hparams.get("head_dim")) is None:
  1667. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1668. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1669. rope_scaling = self.hparams.get("rope_scaling") or {}
  1670. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1671. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1672. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1673. @staticmethod
  1674. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1675. if n_head_kv is not None and n_head != n_head_kv:
  1676. n_head = n_head_kv
  1677. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1678. .swapaxes(1, 2)
  1679. .reshape(weights.shape))
  1680. _experts: list[dict[str, Tensor]] | None = None
  1681. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1682. n_head = self.hparams["num_attention_heads"]
  1683. n_kv_head = self.hparams.get("num_key_value_heads")
  1684. is_multimodal_tensor = "vision_tower" in name \
  1685. or "vision_model" in name \
  1686. or "audio_tower" in name \
  1687. or "model.connector" in name \
  1688. or "multi_modal_projector" in name
  1689. if is_multimodal_tensor:
  1690. return [] # skip vision tensors
  1691. elif self.hf_arch == "LlamaModel":
  1692. name = "model." + name
  1693. elif name.startswith("model.text_model"):
  1694. name = name.replace("text_model.", "") # for SmolVLM
  1695. elif name.startswith("language_model."):
  1696. name = name.replace("language_model.", "") # for the rest
  1697. if self.undo_permute:
  1698. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1699. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1700. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1701. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1702. # process the experts separately
  1703. if name.find("block_sparse_moe.experts") != -1:
  1704. n_experts = self.hparams["num_local_experts"]
  1705. assert bid is not None
  1706. if self._experts is None:
  1707. self._experts = [{} for _ in range(self.block_count)]
  1708. self._experts[bid][name] = data_torch
  1709. if len(self._experts[bid]) >= n_experts * 3:
  1710. tensors: list[tuple[str, Tensor]] = []
  1711. # merge the experts into a single 3d tensor
  1712. for wid in ["w1", "w2", "w3"]:
  1713. datas: list[Tensor] = []
  1714. for xid in range(n_experts):
  1715. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1716. datas.append(self._experts[bid][ename])
  1717. del self._experts[bid][ename]
  1718. data_torch = torch.stack(datas, dim=0)
  1719. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1720. new_name = self.map_tensor_name(merged_name)
  1721. tensors.append((new_name, data_torch))
  1722. return tensors
  1723. else:
  1724. return []
  1725. return [(self.map_tensor_name(name), data_torch)]
  1726. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1727. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1728. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1729. base = self.hparams.get("rope_theta", 10000.0)
  1730. if (dim := self.hparams.get("head_dim")) is None:
  1731. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1732. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1733. factor = rope_scaling.get("factor", 8.0)
  1734. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1735. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1736. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1737. low_freq_wavelen = old_context_len / low_freq_factor
  1738. high_freq_wavelen = old_context_len / high_freq_factor
  1739. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1740. rope_factors = []
  1741. for freq in freqs:
  1742. wavelen = 2 * math.pi / freq
  1743. if wavelen < high_freq_wavelen:
  1744. rope_factors.append(1)
  1745. elif wavelen > low_freq_wavelen:
  1746. rope_factors.append(factor)
  1747. else:
  1748. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1749. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1750. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1751. def prepare_tensors(self):
  1752. super().prepare_tensors()
  1753. if self._experts is not None:
  1754. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1755. experts = [k for d in self._experts for k in d.keys()]
  1756. if len(experts) > 0:
  1757. raise ValueError(f"Unprocessed experts: {experts}")
  1758. @ModelBase.register("ArceeForCausalLM")
  1759. class ArceeModel(LlamaModel):
  1760. model_arch = gguf.MODEL_ARCH.ARCEE
  1761. def set_gguf_parameters(self):
  1762. super().set_gguf_parameters()
  1763. self._try_set_pooling_type()
  1764. rope_scaling = self.hparams.get("rope_scaling") or {}
  1765. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1766. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1767. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1768. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1769. @ModelBase.register(
  1770. "LlavaForConditionalGeneration", # pixtral
  1771. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1772. )
  1773. class LlavaVisionModel(MmprojModel):
  1774. img_break_tok_id = -1
  1775. def __init__(self, *args, **kwargs):
  1776. super().__init__(*args, **kwargs)
  1777. if self.hparams["model_type"] == "pixtral":
  1778. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1779. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1780. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1781. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1782. else:
  1783. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1784. def get_token_id(self, token: str) -> int:
  1785. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1786. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1787. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1788. for id_, token_data in added_tokens_decoder.items():
  1789. if token_data["content"] == token:
  1790. return int(id_)
  1791. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1792. def set_gguf_parameters(self):
  1793. super().set_gguf_parameters()
  1794. hparams = self.hparams
  1795. if hparams["model_type"] == "pixtral":
  1796. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1797. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1798. # hidden_act
  1799. if hparams["hidden_act"] == "silu":
  1800. self.gguf_writer.add_vision_use_silu(True)
  1801. elif hparams["hidden_act"] == "gelu":
  1802. self.gguf_writer.add_vision_use_gelu(True)
  1803. else:
  1804. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1805. # spatial_merge_size
  1806. if "spatial_merge_size" in self.global_config:
  1807. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1808. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1809. del bid # unused
  1810. n_head = self.hparams["num_attention_heads"]
  1811. n_kv_head = n_head
  1812. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1813. # process vision tensors
  1814. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1815. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1816. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1817. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1818. return [(self.map_tensor_name(name), data_torch)]
  1819. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1820. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1821. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1822. img_break_embd = data_torch[self.img_break_tok_id]
  1823. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1824. return [(self.map_tensor_name(name), img_break_embd)]
  1825. return [] # skip other tensors
  1826. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1827. class SmolVLMModel(MmprojModel):
  1828. def __init__(self, *args, **kwargs):
  1829. super().__init__(*args, **kwargs)
  1830. if self.hparams["model_type"] == "smolvlm_vision":
  1831. # fix for SmolVLM2, missing some keys in config.json
  1832. # default values are taken from transformers code
  1833. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1834. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1835. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1836. def set_gguf_parameters(self):
  1837. super().set_gguf_parameters()
  1838. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1839. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1840. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1841. self.gguf_writer.add_vision_use_gelu(True)
  1842. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1843. del bid, new_name, n_dims # unused
  1844. if ".embeddings." in name:
  1845. return gguf.GGMLQuantizationType.F32
  1846. return False
  1847. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1848. del bid # unused
  1849. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1850. if is_vision_tensor:
  1851. return [(self.map_tensor_name(name), data_torch)]
  1852. return [] # skip other tensors
  1853. @ModelBase.register("Llama4ForConditionalGeneration")
  1854. class Llama4Model(LlamaModel):
  1855. model_arch = gguf.MODEL_ARCH.LLAMA4
  1856. undo_permute = False
  1857. def __init__(self, *args, **kwargs):
  1858. super().__init__(*args, **kwargs)
  1859. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1860. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1861. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1862. def set_vocab(self):
  1863. self._set_vocab_gpt2()
  1864. def set_gguf_parameters(self):
  1865. super().set_gguf_parameters()
  1866. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1867. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1869. if name.startswith("language_model."):
  1870. name = name.replace("language_model.", "")
  1871. # split the gate_up into gate and up
  1872. if "gate_up_proj" in name:
  1873. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1874. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1875. dim_half = data_torch.shape[-1] // 2
  1876. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1877. return [
  1878. (self.map_tensor_name(name_gate), gate_proj_weight),
  1879. (self.map_tensor_name(name_up), up_proj_weight)
  1880. ]
  1881. if name.endswith("down_proj"):
  1882. name += ".weight"
  1883. data_torch = data_torch.transpose(-1, -2)
  1884. if "multi_modal_projector" in name or "vision_model" in name:
  1885. return []
  1886. return super().modify_tensors(data_torch, name, bid)
  1887. @ModelBase.register("Llama4ForConditionalGeneration")
  1888. class Llama4VisionModel(MmprojModel):
  1889. def set_gguf_parameters(self):
  1890. super().set_gguf_parameters()
  1891. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1892. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1893. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1894. assert self.hparams["hidden_act"] == "gelu"
  1895. self.gguf_writer.add_vision_use_gelu(True)
  1896. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1897. del bid # unused
  1898. if "multi_modal_projector" in name or "vision_model" in name:
  1899. # process vision tensors
  1900. if "positional_embedding_vlm" in name and ".weight" not in name:
  1901. name += ".weight"
  1902. if "multi_modal_projector.linear_1" in name:
  1903. # despite the name with number postfix, this is a single fully connected layer
  1904. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1905. return [(self.map_tensor_name(name), data_torch)]
  1906. return []
  1907. @ModelBase.register("Mistral3ForConditionalGeneration")
  1908. class Mistral3Model(LlamaModel):
  1909. model_arch = gguf.MODEL_ARCH.LLAMA
  1910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1911. name = name.replace("language_model.", "")
  1912. if "multi_modal_projector" in name or "vision_tower" in name:
  1913. return []
  1914. return super().modify_tensors(data_torch, name, bid)
  1915. @ModelBase.register("DeciLMForCausalLM")
  1916. class DeciModel(TextModel):
  1917. model_arch = gguf.MODEL_ARCH.DECI
  1918. @staticmethod
  1919. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1920. # DeciLM-specific code
  1921. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1922. return DeciModel._find_multiple(intermediate_size, 256)
  1923. @staticmethod
  1924. def _find_multiple(n: int, k: int) -> int:
  1925. # DeciLM-specific code
  1926. if n % k == 0:
  1927. return n
  1928. return n + k - (n % k)
  1929. def __init__(self, *args, **kwargs):
  1930. super().__init__(*args, **kwargs)
  1931. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1932. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1933. assert self.block_count == len(_block_configs)
  1934. self._num_kv_heads = list()
  1935. self._num_heads = list()
  1936. _ffn_multipliers = list()
  1937. # ***linear attention layer***
  1938. # if n_heads_in_group is None and replace_with_linear is True
  1939. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1940. # ***attention-free layer***
  1941. # if n_heads_in_group is None and replace_with_linear is False
  1942. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1943. # ***normal attention-layer***
  1944. # if n_heads_in_group is not None, then
  1945. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1946. # _num_heads[il] is num_attention_head
  1947. # ***dummy layer*** for nemotron 253B
  1948. # if n_heads_in_group is None and ffn_mult is None
  1949. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1950. for il in range(len(_block_configs)):
  1951. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1952. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1953. self._num_kv_heads.append(0)
  1954. self._num_heads.append(self.hparams["num_attention_heads"])
  1955. else:
  1956. self._num_kv_heads.append(0)
  1957. self._num_heads.append(0)
  1958. else:
  1959. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1960. self._num_heads.append(self.hparams["num_attention_heads"])
  1961. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1962. _ffn_multipliers.append(0.0)
  1963. else:
  1964. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1965. assert self.block_count == len(self._num_kv_heads)
  1966. assert self.block_count == len(self._num_heads)
  1967. assert self.block_count == len(_ffn_multipliers)
  1968. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1969. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1970. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1971. self._ffn_dims: list[int] = [
  1972. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1973. for multiplier in _ffn_multipliers
  1974. ]
  1975. def set_vocab(self):
  1976. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1977. # eos_token from '|eot_id|' to '|end_of_text|'
  1978. if self.hparams.get("vocab_size", 128256) == 128256:
  1979. tokens, toktypes, tokpre = self.get_vocab_base()
  1980. self.gguf_writer.add_tokenizer_model("gpt2")
  1981. self.gguf_writer.add_tokenizer_pre(tokpre)
  1982. self.gguf_writer.add_token_list(tokens)
  1983. self.gguf_writer.add_token_types(toktypes)
  1984. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1985. special_vocab.add_to_gguf(self.gguf_writer)
  1986. else:
  1987. # DeciLM-7B
  1988. self._set_vocab_llama_hf()
  1989. def set_gguf_parameters(self):
  1990. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1991. assert self.block_count == len(self._num_kv_heads)
  1992. assert self.block_count == len(self._num_heads)
  1993. assert self.block_count == len(self._ffn_dims)
  1994. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1995. self.gguf_writer.add_rope_freq_base(rope_theta)
  1996. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1997. self.gguf_writer.add_head_count(self._num_heads)
  1998. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1999. self.gguf_writer.add_block_count(self.block_count)
  2000. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2001. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2002. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2003. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2004. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2005. self.gguf_writer.add_file_type(self.ftype)
  2006. else: # DeciLM-7B
  2007. super().set_gguf_parameters()
  2008. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2009. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2010. assert self.block_count == len(self._num_kv_heads)
  2011. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2012. hparams = self.hparams
  2013. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2014. if (rope_dim := hparams.get("head_dim")) is None:
  2015. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2016. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2017. rope_scaling = self.hparams.get("rope_scaling") or {}
  2018. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2019. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2020. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2021. @staticmethod
  2022. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2023. if n_head_kv is not None and n_head != n_head_kv:
  2024. n_head = n_head_kv
  2025. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2026. .swapaxes(1, 2)
  2027. .reshape(weights.shape))
  2028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2029. n_head = self.hparams["num_attention_heads"]
  2030. if bid is not None:
  2031. if "num_key_value_heads_per_layer" in self.hparams:
  2032. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2033. elif "block_configs" in self.hparams:
  2034. n_kv_head = self._num_kv_heads[bid]
  2035. n_head = self._num_heads[bid]
  2036. else:
  2037. n_kv_head = self.hparams.get("num_key_value_heads")
  2038. else:
  2039. n_kv_head = self.hparams.get("num_key_value_heads")
  2040. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2041. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2042. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2043. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2044. return [(self.map_tensor_name(name), data_torch)]
  2045. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2046. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2047. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2048. base = self.hparams.get("rope_theta", 10000.0)
  2049. if (dim := self.hparams.get("head_dim")) is None:
  2050. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2051. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2052. factor = rope_scaling.get("factor", 8.0)
  2053. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2054. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2055. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2056. low_freq_wavelen = old_context_len / low_freq_factor
  2057. high_freq_wavelen = old_context_len / high_freq_factor
  2058. assert low_freq_wavelen != high_freq_wavelen
  2059. rope_factors = []
  2060. for freq in freqs:
  2061. wavelen = 2 * math.pi / freq
  2062. if wavelen < high_freq_wavelen:
  2063. rope_factors.append(1)
  2064. elif wavelen > low_freq_wavelen:
  2065. rope_factors.append(factor)
  2066. else:
  2067. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2068. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2069. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2070. def prepare_tensors(self):
  2071. super().prepare_tensors()
  2072. @ModelBase.register("BitnetForCausalLM")
  2073. class BitnetModel(TextModel):
  2074. model_arch = gguf.MODEL_ARCH.BITNET
  2075. def set_vocab(self):
  2076. self._set_vocab_sentencepiece()
  2077. def set_gguf_parameters(self):
  2078. super().set_gguf_parameters()
  2079. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2080. self.gguf_writer.add_rope_scaling_factor(1.0)
  2081. def weight_quant(self, weight: Tensor) -> Tensor:
  2082. dtype = weight.dtype
  2083. weight = weight.float()
  2084. scale = weight.abs().mean().clamp(min=1e-5)
  2085. iscale = 1 / scale
  2086. # TODO: multiply by the scale directly instead of inverting it twice
  2087. # (this is also unnecessarily doubly inverted upstream)
  2088. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2089. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2090. return result.type(dtype)
  2091. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2092. new_name = self.map_tensor_name(name)
  2093. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2094. gguf.MODEL_TENSOR.ATTN_Q,
  2095. gguf.MODEL_TENSOR.ATTN_K,
  2096. gguf.MODEL_TENSOR.ATTN_V,
  2097. gguf.MODEL_TENSOR.ATTN_OUT,
  2098. gguf.MODEL_TENSOR.FFN_UP,
  2099. gguf.MODEL_TENSOR.FFN_DOWN,
  2100. gguf.MODEL_TENSOR.FFN_GATE,
  2101. ]):
  2102. # transform weight into 1/0/-1 (in fp32)
  2103. data_torch = self.weight_quant(data_torch)
  2104. yield (new_name, data_torch)
  2105. @ModelBase.register("GrokForCausalLM")
  2106. class GrokModel(TextModel):
  2107. model_arch = gguf.MODEL_ARCH.GROK
  2108. def set_vocab(self):
  2109. self._set_vocab_sentencepiece()
  2110. def __init__(self, *args, **kwargs):
  2111. super().__init__(*args, **kwargs)
  2112. def set_gguf_parameters(self):
  2113. super().set_gguf_parameters()
  2114. _experts: list[dict[str, Tensor]] | None = None
  2115. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2116. # process the experts separately
  2117. if name.find(".moe.") != -1:
  2118. n_experts = self.hparams["num_local_experts"]
  2119. assert bid is not None
  2120. if self._experts is None:
  2121. self._experts = [{} for _ in range(self.block_count)]
  2122. self._experts[bid][name] = data_torch
  2123. if len(self._experts[bid]) >= n_experts * 3:
  2124. tensors: list[tuple[str, Tensor]] = []
  2125. # merge the experts into a single 3d tensor
  2126. for wid in ["linear", "linear_1", "linear_v"]:
  2127. datas: list[Tensor] = []
  2128. for xid in range(n_experts):
  2129. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2130. datas.append(self._experts[bid][ename])
  2131. del self._experts[bid][ename]
  2132. data_torch = torch.stack(datas, dim=0)
  2133. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2134. new_name = self.map_tensor_name(merged_name)
  2135. tensors.append((new_name, data_torch))
  2136. return tensors
  2137. else:
  2138. return []
  2139. return [(self.map_tensor_name(name), data_torch)]
  2140. @ModelBase.register("DbrxForCausalLM")
  2141. class DbrxModel(TextModel):
  2142. model_arch = gguf.MODEL_ARCH.DBRX
  2143. def set_gguf_parameters(self):
  2144. ffn_config = self.hparams["ffn_config"]
  2145. attn_config = self.hparams["attn_config"]
  2146. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2147. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2148. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2149. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2150. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2151. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2152. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2153. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2154. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2155. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2156. self.gguf_writer.add_layer_norm_eps(1e-5)
  2157. self.gguf_writer.add_file_type(self.ftype)
  2158. logger.info(f"gguf: file type = {self.ftype}")
  2159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2160. del bid # unused
  2161. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2162. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2163. n_embd = self.hparams["d_model"]
  2164. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2165. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2166. # But llama.cpp moe graph works differently
  2167. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2168. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2169. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2170. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2171. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2172. experts = False
  2173. for exp_tensor_name in exp_tensor_names.keys():
  2174. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2175. experts = True
  2176. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2177. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2178. data_torch = data_torch.permute(*permute_tensor)
  2179. break
  2180. # map tensor names
  2181. # In MoE models the ffn tensors are typically most of the model weights,
  2182. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2183. # Every other model has the weight names ending in .weight,
  2184. # let's assume that is the convention which is not the case for dbrx:
  2185. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2186. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2187. return [(new_name, data_torch)]
  2188. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2189. del name, new_name, bid # unused
  2190. return n_dims > 1
  2191. @ModelBase.register("MiniCPMForCausalLM")
  2192. class MiniCPMModel(TextModel):
  2193. model_arch = gguf.MODEL_ARCH.MINICPM
  2194. def set_gguf_parameters(self):
  2195. super().set_gguf_parameters()
  2196. embedding_scale = float(self.hparams["scale_emb"])
  2197. self.gguf_writer.add_embedding_scale(embedding_scale)
  2198. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2199. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2200. self.gguf_writer.add_residual_scale(residual_scale)
  2201. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2202. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2203. self.gguf_writer.add_logit_scale(logit_scale)
  2204. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2205. rope_scaling = self.hparams.get("rope_scaling") or {}
  2206. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2207. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2208. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2209. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2210. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2211. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2212. if rope_scaling is not None:
  2213. long_factors = rope_scaling.get('long_factor', None)
  2214. short_factors = rope_scaling.get('short_factor', None)
  2215. if long_factors is None or short_factors is None:
  2216. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2217. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2218. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2219. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2220. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2221. def set_vocab(self):
  2222. self._set_vocab_sentencepiece()
  2223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2224. del bid # unused
  2225. n_head = self.hparams["num_attention_heads"]
  2226. n_kv_head = self.hparams.get("num_key_value_heads")
  2227. # HF models permute some of the tensors, so we need to undo that
  2228. if name.endswith(("q_proj.weight")):
  2229. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2230. if name.endswith(("k_proj.weight")):
  2231. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2232. return [(self.map_tensor_name(name), data_torch)]
  2233. @ModelBase.register("MiniCPM3ForCausalLM")
  2234. class MiniCPM3Model(TextModel):
  2235. model_arch = gguf.MODEL_ARCH.MINICPM3
  2236. def set_gguf_parameters(self):
  2237. hparams = self.hparams
  2238. self.gguf_writer.add_file_type(self.ftype)
  2239. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2240. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2241. self.gguf_writer.add_block_count(self.block_count)
  2242. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2243. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2244. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2245. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2246. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2247. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2248. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2249. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2250. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2251. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2252. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2253. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2254. if rope_scaling is not None:
  2255. rope_dims = self.hparams["qk_rope_head_dim"]
  2256. long_factors = rope_scaling.get('long_factor', None)
  2257. short_factors = rope_scaling.get('short_factor', None)
  2258. if long_factors is None or short_factors is None:
  2259. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2260. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2261. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2262. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2263. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2264. def set_vocab(self):
  2265. self._set_vocab_sentencepiece()
  2266. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2267. if n_kv_head is not None and n_head != n_kv_head:
  2268. n_head //= n_kv_head
  2269. return (
  2270. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2271. .swapaxes(1, 2)
  2272. .reshape(weights.shape)
  2273. )
  2274. @ModelBase.register("QWenLMHeadModel")
  2275. class QwenModel(TextModel):
  2276. model_arch = gguf.MODEL_ARCH.QWEN
  2277. @staticmethod
  2278. def token_bytes_to_string(b):
  2279. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2280. byte_encoder = bytes_to_unicode()
  2281. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2282. @staticmethod
  2283. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2284. parts = [bytes([b]) for b in token]
  2285. while True:
  2286. min_idx = None
  2287. min_rank = None
  2288. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2289. rank = mergeable_ranks.get(pair[0] + pair[1])
  2290. if rank is not None and (min_rank is None or rank < min_rank):
  2291. min_idx = i
  2292. min_rank = rank
  2293. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2294. break
  2295. assert min_idx is not None
  2296. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2297. return parts
  2298. def set_vocab(self):
  2299. self._set_vocab_qwen()
  2300. def set_gguf_parameters(self):
  2301. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2302. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2303. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2304. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2305. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2306. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2307. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2308. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2309. self.gguf_writer.add_file_type(self.ftype)
  2310. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2311. class Qwen2Model(TextModel):
  2312. model_arch = gguf.MODEL_ARCH.QWEN2
  2313. def set_vocab(self):
  2314. try:
  2315. self._set_vocab_sentencepiece()
  2316. except FileNotFoundError:
  2317. self._set_vocab_gpt2()
  2318. def set_gguf_parameters(self):
  2319. super().set_gguf_parameters()
  2320. self._try_set_pooling_type()
  2321. rope_scaling = self.hparams.get("rope_scaling") or {}
  2322. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2323. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2324. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2325. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2326. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2327. if self.hf_arch == "Qwen2Model":
  2328. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2329. if "language_model." in name:
  2330. name = name.replace("language_model.", "") # for InternVL
  2331. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2332. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2333. # skip vision and audio tensors
  2334. return []
  2335. yield from super().modify_tensors(data_torch, name, bid)
  2336. @ModelBase.register("DreamModel")
  2337. class DreamModel(TextModel):
  2338. model_arch = gguf.MODEL_ARCH.DREAM
  2339. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2340. tokens: list[str] = []
  2341. toktypes: list[int] = []
  2342. from transformers import AutoTokenizer
  2343. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2344. vocab_dict = tokenizer.get_vocab()
  2345. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2346. assert max(vocab_dict.values()) < vocab_size
  2347. tokpre = self.get_vocab_base_pre(tokenizer)
  2348. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2349. added_vocab = tokenizer.get_added_vocab()
  2350. for i in range(vocab_size):
  2351. if i not in reverse_vocab:
  2352. tokens.append(f"[PAD{i}]")
  2353. toktypes.append(gguf.TokenType.UNUSED)
  2354. elif reverse_vocab[i] in added_vocab:
  2355. tokens.append(reverse_vocab[i])
  2356. # Check if it's a special token - treat special tokens as CONTROL tokens
  2357. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2358. if tokenizer.added_tokens_decoder[i].special:
  2359. toktypes.append(gguf.TokenType.CONTROL)
  2360. else:
  2361. toktypes.append(gguf.TokenType.USER_DEFINED)
  2362. else:
  2363. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2364. toktypes.append(gguf.TokenType.CONTROL)
  2365. else:
  2366. tokens.append(reverse_vocab[i])
  2367. toktypes.append(gguf.TokenType.NORMAL)
  2368. return tokens, toktypes, tokpre
  2369. def set_vocab(self):
  2370. try:
  2371. self._set_vocab_sentencepiece()
  2372. except FileNotFoundError:
  2373. self._set_vocab_gpt2()
  2374. def set_gguf_parameters(self):
  2375. super().set_gguf_parameters()
  2376. self._try_set_pooling_type()
  2377. # Dream models use non-causal attention for diffusion
  2378. self.gguf_writer.add_causal_attention(False)
  2379. # Handle RoPE scaling similar to Qwen2
  2380. rope_scaling = self.hparams.get("rope_scaling") or {}
  2381. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2382. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2383. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2384. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2385. # Add Dream-specific parameters
  2386. mask_token_id = self.hparams.get("mask_token_id")
  2387. if mask_token_id is not None:
  2388. self.gguf_writer.add_mask_token_id(mask_token_id)
  2389. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2390. # Dream model tensors should be mapped directly since it's the base model
  2391. yield from super().modify_tensors(data_torch, name, bid)
  2392. @ModelBase.register("LLaDAModelLM")
  2393. class LLaDAModel(TextModel):
  2394. model_arch = gguf.MODEL_ARCH.LLADA
  2395. undo_permute = True
  2396. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2397. tokens: list[str] = []
  2398. toktypes: list[int] = []
  2399. from transformers import AutoTokenizer
  2400. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2401. vocab_dict = tokenizer.get_vocab()
  2402. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2403. assert max(vocab_dict.values()) < vocab_size
  2404. tokpre = self.get_vocab_base_pre(tokenizer)
  2405. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2406. added_vocab = tokenizer.get_added_vocab()
  2407. for i in range(vocab_size):
  2408. if i not in reverse_vocab:
  2409. tokens.append(f"[PAD{i}]")
  2410. toktypes.append(gguf.TokenType.UNUSED)
  2411. elif reverse_vocab[i] in added_vocab:
  2412. tokens.append(reverse_vocab[i])
  2413. # Check if it's a special token - treat special tokens as CONTROL tokens
  2414. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2415. if tokenizer.added_tokens_decoder[i].special:
  2416. toktypes.append(gguf.TokenType.CONTROL)
  2417. else:
  2418. toktypes.append(gguf.TokenType.USER_DEFINED)
  2419. else:
  2420. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2421. toktypes.append(gguf.TokenType.CONTROL)
  2422. else:
  2423. tokens.append(reverse_vocab[i])
  2424. toktypes.append(gguf.TokenType.NORMAL)
  2425. return tokens, toktypes, tokpre
  2426. def set_vocab(self):
  2427. self._set_vocab_gpt2()
  2428. # LLaDA specific parameters
  2429. self.gguf_writer.add_add_bos_token(True)
  2430. def set_gguf_parameters(self):
  2431. super().set_gguf_parameters()
  2432. self._try_set_pooling_type()
  2433. # Add parameters similar to LlamaModel
  2434. hparams = self.hparams
  2435. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2436. if (rope_dim := hparams.get("head_dim")) is None:
  2437. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2438. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2439. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2440. # Set context length for LLaDA
  2441. context_length = self.hparams.get("max_sequence_length", 4096)
  2442. self.gguf_writer.add_context_length(context_length)
  2443. # Set embedding length (dimension size)
  2444. embedding_length = self.hparams.get("d_model", 4096)
  2445. self.gguf_writer.add_embedding_length(embedding_length)
  2446. # Set feed forward length (MLP hidden size)
  2447. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2448. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2449. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2450. self.gguf_writer.add_causal_attention(False)
  2451. # LLaDA models don't shift their logits
  2452. self.gguf_writer.add_diffusion_shift_logits(False)
  2453. @staticmethod
  2454. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2455. if n_head_kv is not None and n_head != n_head_kv:
  2456. n_head = n_head_kv
  2457. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2458. .swapaxes(1, 2)
  2459. .reshape(weights.shape))
  2460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2461. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2462. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2463. if self.undo_permute:
  2464. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2465. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2466. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2467. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2468. # LLaDA model tensors should be mapped directly since it's the base model
  2469. yield from super().modify_tensors(data_torch, name, bid)
  2470. @ModelBase.register("Ernie4_5_ForCausalLM")
  2471. class Ernie4_5Model(TextModel):
  2472. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2473. def set_vocab(self):
  2474. self._set_vocab_sentencepiece()
  2475. def set_gguf_parameters(self):
  2476. super().set_gguf_parameters()
  2477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2478. num_heads = self.hparams["num_attention_heads"]
  2479. num_kv_heads = self.hparams["num_key_value_heads"]
  2480. if (head_dim := self.hparams.get("head_dim")) is None:
  2481. head_dim = self.hparams["hidden_size"] // num_heads
  2482. if "ernie." in name:
  2483. name = name.replace("ernie.", "model.")
  2484. # split the qkv weights
  2485. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2486. if "qkv_proj" in name:
  2487. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2488. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2489. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2490. total_q_dim = num_heads * head_dim
  2491. total_k_dim = num_kv_heads * head_dim
  2492. total_v_dim = num_kv_heads * head_dim
  2493. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2494. return [
  2495. (self.map_tensor_name(name_q), q_proj_weight),
  2496. (self.map_tensor_name(name_k), k_proj_weight),
  2497. (self.map_tensor_name(name_v), v_proj_weight)
  2498. ]
  2499. # split the up_gate_proj into gate and up
  2500. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2501. if "up_gate_proj" in name:
  2502. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2503. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2504. dim_half = data_torch.shape[0] // 2
  2505. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2506. return [
  2507. (self.map_tensor_name(name_gate), gate_proj_weight),
  2508. (self.map_tensor_name(name_up), up_proj_weight)
  2509. ]
  2510. return [(self.map_tensor_name(name), data_torch)]
  2511. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2512. class Ernie4_5MoeModel(Ernie4_5Model):
  2513. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2514. _experts: list[dict[str, Tensor]] | None = None
  2515. def __init__(self, *args, **kwargs):
  2516. super().__init__(*args, **kwargs)
  2517. self._experts = [{} for _ in range(self.block_count)]
  2518. def set_gguf_parameters(self):
  2519. super().set_gguf_parameters()
  2520. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2521. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2522. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2523. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2524. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2525. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2526. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2527. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2528. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2529. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2530. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2531. # Modify correction bias name as in DeepseekV2
  2532. if name.endswith("e_score_correction_bias"):
  2533. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2534. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2535. match = re.match(r"model.mtp_block.(\d+)", name)
  2536. if match:
  2537. return []
  2538. # skip all other MTP tensors for now
  2539. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2540. if match:
  2541. return []
  2542. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2543. if match:
  2544. return []
  2545. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2546. if match:
  2547. return []
  2548. # process the experts separately
  2549. if name.find("mlp.experts") != -1:
  2550. n_experts = self.hparams["moe_num_experts"]
  2551. assert bid is not None
  2552. if self._experts is None:
  2553. self._experts = [{} for _ in range(self.block_count)]
  2554. self._experts[bid][name] = data_torch
  2555. if len(self._experts[bid]) >= n_experts * 3:
  2556. tensors: list[tuple[str, Tensor]] = []
  2557. # merge the experts into a single 3d tensor
  2558. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2559. datas: list[Tensor] = []
  2560. for xid in range(n_experts):
  2561. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2562. datas.append(self._experts[bid][ename_to_retrieve])
  2563. del self._experts[bid][ename_to_retrieve]
  2564. data_torch = torch.stack(datas, dim=0)
  2565. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2566. new_name = self.map_tensor_name(merged_name)
  2567. tensors.append((new_name, data_torch))
  2568. return tensors
  2569. else:
  2570. return []
  2571. return [(self.map_tensor_name(name), data_torch)]
  2572. def prepare_tensors(self):
  2573. super().prepare_tensors()
  2574. if self._experts is not None:
  2575. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2576. experts = [k for d in self._experts for k in d.keys()]
  2577. if len(experts) > 0:
  2578. raise ValueError(f"Unprocessed experts: {experts}")
  2579. @ModelBase.register(
  2580. "Qwen2VLModel",
  2581. "Qwen2VLForConditionalGeneration",
  2582. "Qwen2_5_VLForConditionalGeneration",
  2583. "Qwen2_5OmniModel",
  2584. )
  2585. class Qwen2VLModel(TextModel):
  2586. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2587. def set_gguf_parameters(self):
  2588. super().set_gguf_parameters()
  2589. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2590. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2591. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2592. def set_vocab(self):
  2593. try:
  2594. self._set_vocab_sentencepiece()
  2595. except FileNotFoundError:
  2596. self._set_vocab_gpt2()
  2597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2598. del bid # unused
  2599. if name.startswith("thinker."):
  2600. name = name.replace("thinker.", "")
  2601. if name.startswith("visual") or name.startswith("audio") or \
  2602. name.startswith("talker") or name.startswith("token2wav"):
  2603. # skip multimodal tensors
  2604. return []
  2605. return [(self.map_tensor_name(name), data_torch)]
  2606. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2607. class Qwen2VLVisionModel(MmprojModel):
  2608. def __init__(self, *args, **kwargs):
  2609. super().__init__(*args, **kwargs)
  2610. assert self.hparams_vision is not None
  2611. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2612. # rename config.json values
  2613. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2614. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2615. if "embed_dim" in self.hparams_vision: # qwen2vl
  2616. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2617. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2618. def set_gguf_parameters(self):
  2619. super().set_gguf_parameters()
  2620. assert self.hparams_vision is not None
  2621. hparams = self.hparams_vision
  2622. model_type = self.global_config['model_type']
  2623. if model_type == 'qwen2_vl':
  2624. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2625. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2626. if model_type == 'qwen2_5_omni':
  2627. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2628. else:
  2629. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2630. self.gguf_writer.add_vision_use_silu(True)
  2631. # find n_wa_pattern (window attention pattern)
  2632. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2633. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2634. n_wa_pattern = fullatt_block_indexes[0] + 1
  2635. # validate n_wa_pattern
  2636. for i in range(1, len(fullatt_block_indexes)):
  2637. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2638. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2639. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2640. else:
  2641. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2642. # default values below are taken from HF tranformers code
  2643. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2644. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2645. del bid, name, n_dims # unused
  2646. if ".patch_embd." in new_name:
  2647. return gguf.GGMLQuantizationType.F16
  2648. if ".position_embd." in new_name:
  2649. return gguf.GGMLQuantizationType.F32
  2650. return False
  2651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2652. del bid # unused
  2653. if name.startswith("visual."):
  2654. # process visual tensors
  2655. # split QKV tensors if needed
  2656. if ".qkv." in name:
  2657. if data_torch.ndim == 2: # weight
  2658. c3, _ = data_torch.shape
  2659. else: # bias
  2660. c3 = data_torch.shape[0]
  2661. assert c3 % 3 == 0
  2662. c = c3 // 3
  2663. wq = data_torch[:c]
  2664. wk = data_torch[c: c * 2]
  2665. wv = data_torch[c * 2:]
  2666. return [
  2667. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2668. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2669. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2670. ]
  2671. elif 'patch_embed.proj.weight' in name:
  2672. # split Conv3D into Conv2Ds
  2673. c1, c2, kt, kh, kw = data_torch.shape
  2674. del c1, c2, kh, kw # unused
  2675. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2676. return [
  2677. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2678. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2679. ]
  2680. else:
  2681. return [(self.map_tensor_name(name), data_torch)]
  2682. return [] # skip other tensors
  2683. @ModelBase.register("Qwen2_5OmniModel")
  2684. class Qwen25OmniModel(Qwen2VLVisionModel):
  2685. has_vision_encoder = True
  2686. has_audio_encoder = True
  2687. def __init__(self, *args, **kwargs):
  2688. super().__init__(*args, **kwargs)
  2689. assert self.hparams_audio is not None
  2690. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2691. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2692. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2693. def set_gguf_parameters(self):
  2694. super().set_gguf_parameters()
  2695. assert self.hparams_audio is not None
  2696. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2697. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2698. def get_vision_config(self) -> dict[str, Any] | None:
  2699. return self.global_config["thinker_config"].get("vision_config")
  2700. def get_audio_config(self) -> dict[str, Any] | None:
  2701. return self.global_config["thinker_config"].get("audio_config")
  2702. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2703. # SinusoidsPositionEmbedding
  2704. assert self.hparams_audio is not None
  2705. max_timescale = 10000
  2706. length = 1500
  2707. channels = self.hparams_audio["hidden_size"]
  2708. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2709. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2710. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2711. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2712. yield ("audio_tower.embed_positions.weight", pos_embd)
  2713. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2714. del bid, new_name, n_dims # unused
  2715. if ".conv" in name and ".weight" in name:
  2716. return gguf.GGMLQuantizationType.F16
  2717. return False
  2718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2719. if name.startswith("thinker."):
  2720. name = name.replace("thinker.", "")
  2721. if name.startswith("audio_tower"):
  2722. # process audio tensors
  2723. if "conv1.bias" in name or "conv2.bias" in name:
  2724. # transpose conv1 and conv2 bias
  2725. data_torch = data_torch.unsqueeze(-1)
  2726. if "audio_bos_eos_token" in name:
  2727. # this tensor is left unused in transformers code
  2728. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2729. return []
  2730. return [(self.map_tensor_name(name), data_torch)]
  2731. return super().modify_tensors(data_torch, name, bid)
  2732. @ModelBase.register("InternVisionModel")
  2733. class InternVisionModel(MmprojModel):
  2734. def set_gguf_parameters(self):
  2735. super().set_gguf_parameters()
  2736. hparams = self.hparams
  2737. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2738. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2739. # hidden_act
  2740. if hparams["hidden_act"] == "silu":
  2741. self.gguf_writer.add_vision_use_silu(True)
  2742. elif hparams["hidden_act"] == "gelu":
  2743. self.gguf_writer.add_vision_use_gelu(True)
  2744. else:
  2745. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2746. # downsample_ratio
  2747. downsample_ratio = self.global_config.get("downsample_ratio")
  2748. assert downsample_ratio is not None
  2749. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2750. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2751. del bid, name, n_dims # unused
  2752. if ".patch_embd." in new_name:
  2753. return gguf.GGMLQuantizationType.F16
  2754. if ".position_embd." in new_name:
  2755. return gguf.GGMLQuantizationType.F32
  2756. return False
  2757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2758. del bid # unused
  2759. if name.startswith("vision_model") or name.startswith("mlp"):
  2760. # process visual tensors
  2761. # correct name
  2762. if name.startswith("vision_model"):
  2763. name = "vision_tower." + name
  2764. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2765. name += ".weight"
  2766. # split QKV tensors if needed
  2767. if ".qkv." in name:
  2768. if data_torch.ndim == 2: # weight
  2769. c3, _ = data_torch.shape
  2770. else: # bias
  2771. c3 = data_torch.shape[0]
  2772. assert c3 % 3 == 0
  2773. c = c3 // 3
  2774. wq = data_torch[:c]
  2775. wk = data_torch[c: c * 2]
  2776. wv = data_torch[c * 2:]
  2777. return [
  2778. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2779. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2780. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2781. ]
  2782. return [(self.map_tensor_name(name), data_torch)]
  2783. return [] # skip other tensors
  2784. @ModelBase.register("WavTokenizerDec")
  2785. class WavTokenizerDecModel(TextModel):
  2786. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2788. del bid # unused
  2789. if \
  2790. name.endswith("codebook.cluster_size") or \
  2791. name.endswith("codebook.embed_avg") or \
  2792. name.endswith("codebook.inited"):
  2793. logger.debug(f"Skipping {name!r}")
  2794. return []
  2795. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2796. return [(self.map_tensor_name(name), data_torch)]
  2797. def set_vocab(self):
  2798. self._set_vocab_none()
  2799. def set_gguf_parameters(self):
  2800. super().set_gguf_parameters()
  2801. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2802. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2803. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2804. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2805. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2806. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2807. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2808. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2809. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2810. self.gguf_writer.add_causal_attention(False)
  2811. @ModelBase.register("Qwen2MoeForCausalLM")
  2812. class Qwen2MoeModel(TextModel):
  2813. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2814. def set_gguf_parameters(self):
  2815. super().set_gguf_parameters()
  2816. if (n_experts := self.hparams.get("num_experts")) is not None:
  2817. self.gguf_writer.add_expert_count(n_experts)
  2818. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2819. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2820. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2821. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2822. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2823. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2824. # YaRN is not enabled by default
  2825. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2826. rope_scaling = self.hparams.get("rope_scaling") or {}
  2827. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2828. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2829. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2830. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2831. _experts: list[dict[str, Tensor]] | None = None
  2832. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2833. # process the experts separately
  2834. if name.find("experts") != -1:
  2835. n_experts = self.hparams["num_experts"]
  2836. assert bid is not None
  2837. if self._experts is None:
  2838. self._experts = [{} for _ in range(self.block_count)]
  2839. self._experts[bid][name] = data_torch
  2840. if len(self._experts[bid]) >= n_experts * 3:
  2841. tensors: list[tuple[str, Tensor]] = []
  2842. # merge the experts into a single 3d tensor
  2843. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2844. datas: list[Tensor] = []
  2845. for xid in range(n_experts):
  2846. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2847. datas.append(self._experts[bid][ename])
  2848. del self._experts[bid][ename]
  2849. data_torch = torch.stack(datas, dim=0)
  2850. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2851. new_name = self.map_tensor_name(merged_name)
  2852. tensors.append((new_name, data_torch))
  2853. return tensors
  2854. else:
  2855. return []
  2856. return [(self.map_tensor_name(name), data_torch)]
  2857. def prepare_tensors(self):
  2858. super().prepare_tensors()
  2859. if self._experts is not None:
  2860. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2861. experts = [k for d in self._experts for k in d.keys()]
  2862. if len(experts) > 0:
  2863. raise ValueError(f"Unprocessed experts: {experts}")
  2864. @ModelBase.register("Qwen3ForCausalLM")
  2865. class Qwen3Model(Qwen2Model):
  2866. model_arch = gguf.MODEL_ARCH.QWEN3
  2867. @ModelBase.register("Qwen3MoeForCausalLM")
  2868. class Qwen3MoeModel(Qwen2MoeModel):
  2869. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2870. @ModelBase.register("GPT2LMHeadModel")
  2871. class GPT2Model(TextModel):
  2872. model_arch = gguf.MODEL_ARCH.GPT2
  2873. def set_gguf_parameters(self):
  2874. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2875. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2876. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2877. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2878. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2879. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2880. self.gguf_writer.add_file_type(self.ftype)
  2881. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2882. del bid # unused
  2883. tensors: list[tuple[str, Tensor]] = []
  2884. # we don't need these
  2885. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2886. return tensors
  2887. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2888. data_torch = data_torch.transpose(1, 0)
  2889. new_name = self.map_tensor_name(name)
  2890. tensors.append((new_name, data_torch))
  2891. return tensors
  2892. @ModelBase.register("PhiForCausalLM")
  2893. class Phi2Model(TextModel):
  2894. model_arch = gguf.MODEL_ARCH.PHI2
  2895. def set_gguf_parameters(self):
  2896. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2897. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2898. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2899. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2900. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2901. self.gguf_writer.add_embedding_length(n_embd)
  2902. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2903. self.gguf_writer.add_block_count(block_count)
  2904. self.gguf_writer.add_head_count(n_head)
  2905. self.gguf_writer.add_head_count_kv(n_head)
  2906. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2907. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2908. self.gguf_writer.add_file_type(self.ftype)
  2909. self.gguf_writer.add_add_bos_token(False)
  2910. @ModelBase.register("Phi3ForCausalLM")
  2911. class Phi3MiniModel(TextModel):
  2912. model_arch = gguf.MODEL_ARCH.PHI3
  2913. def set_vocab(self):
  2914. # Phi-4 model uses GPT2Tokenizer
  2915. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2916. if tokenizer_config_file.is_file():
  2917. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2918. tokenizer_config_json = json.load(f)
  2919. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2920. if tokenizer_class == 'GPT2Tokenizer':
  2921. return self._set_vocab_gpt2()
  2922. from sentencepiece import SentencePieceProcessor
  2923. tokenizer_path = self.dir_model / 'tokenizer.model'
  2924. if not tokenizer_path.is_file():
  2925. raise ValueError(f'Error: Missing {tokenizer_path}')
  2926. tokenizer = SentencePieceProcessor()
  2927. tokenizer.LoadFromFile(str(tokenizer_path))
  2928. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2929. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2930. scores: list[float] = [-10000.0] * vocab_size
  2931. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2932. for token_id in range(tokenizer.vocab_size()):
  2933. piece = tokenizer.IdToPiece(token_id)
  2934. text = piece.encode("utf-8")
  2935. score = tokenizer.GetScore(token_id)
  2936. toktype = SentencePieceTokenTypes.NORMAL
  2937. if tokenizer.IsUnknown(token_id):
  2938. toktype = SentencePieceTokenTypes.UNKNOWN
  2939. elif tokenizer.IsControl(token_id):
  2940. toktype = SentencePieceTokenTypes.CONTROL
  2941. elif tokenizer.IsUnused(token_id):
  2942. toktype = SentencePieceTokenTypes.UNUSED
  2943. elif tokenizer.IsByte(token_id):
  2944. toktype = SentencePieceTokenTypes.BYTE
  2945. tokens[token_id] = text
  2946. scores[token_id] = score
  2947. toktypes[token_id] = toktype
  2948. added_tokens_file = self.dir_model / 'added_tokens.json'
  2949. if added_tokens_file.is_file():
  2950. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2951. added_tokens_json = json.load(f)
  2952. for key in added_tokens_json:
  2953. token_id = added_tokens_json[key]
  2954. if token_id >= vocab_size:
  2955. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2956. continue
  2957. tokens[token_id] = key.encode("utf-8")
  2958. scores[token_id] = -1000.0
  2959. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2960. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2961. if tokenizer_config_file.is_file():
  2962. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2963. tokenizer_config_json = json.load(f)
  2964. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2965. for token_id, foken_data in added_tokens_decoder.items():
  2966. token_id = int(token_id)
  2967. token = foken_data["content"].encode("utf-8")
  2968. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2969. if tokens[token_id] != token:
  2970. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2971. tokens[token_id] = token
  2972. scores[token_id] = -1000.0
  2973. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2974. if foken_data.get("special"):
  2975. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2976. tokenizer_file = self.dir_model / 'tokenizer.json'
  2977. if tokenizer_file.is_file():
  2978. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2979. tokenizer_json = json.load(f)
  2980. added_tokens = tokenizer_json.get("added_tokens", [])
  2981. for foken_data in added_tokens:
  2982. token_id = int(foken_data["id"])
  2983. token = foken_data["content"].encode("utf-8")
  2984. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2985. if tokens[token_id] != token:
  2986. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2987. tokens[token_id] = token
  2988. scores[token_id] = -1000.0
  2989. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2990. if foken_data.get("special"):
  2991. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2992. self.gguf_writer.add_tokenizer_model("llama")
  2993. self.gguf_writer.add_tokenizer_pre("default")
  2994. self.gguf_writer.add_token_list(tokens)
  2995. self.gguf_writer.add_token_scores(scores)
  2996. self.gguf_writer.add_token_types(toktypes)
  2997. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2998. special_vocab.add_to_gguf(self.gguf_writer)
  2999. def set_gguf_parameters(self):
  3000. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3001. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3002. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3003. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3004. rms_eps = self.find_hparam(["rms_norm_eps"])
  3005. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3006. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3007. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3008. rope_dims = int(rot_pct * n_embd) // n_head
  3009. self.gguf_writer.add_context_length(max_pos_embds)
  3010. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3011. self.gguf_writer.add_embedding_length(n_embd)
  3012. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3013. self.gguf_writer.add_block_count(block_count)
  3014. self.gguf_writer.add_head_count(n_head)
  3015. self.gguf_writer.add_head_count_kv(n_head_kv)
  3016. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3017. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3018. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3019. self.gguf_writer.add_file_type(self.ftype)
  3020. sliding_window = self.hparams.get("sliding_window")
  3021. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3022. if sliding_window is None:
  3023. sliding_window = 0
  3024. self.gguf_writer.add_sliding_window(sliding_window)
  3025. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3026. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3027. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3028. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3029. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3030. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3031. rope_dims = int(rot_pct * n_embd) // n_head
  3032. # write rope scaling for long context (128k) model
  3033. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3034. if rope_scaling is None:
  3035. return
  3036. scale = max_pos_embds / orig_max_pos_embds
  3037. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3038. if len(rope_scaling_type) == 0:
  3039. raise KeyError('Missing the required key rope_scaling.type')
  3040. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3041. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3042. elif rope_scaling_type == 'yarn':
  3043. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3044. else:
  3045. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3046. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3047. long_factors = rope_scaling.get('long_factor', None)
  3048. short_factors = rope_scaling.get('short_factor', None)
  3049. if long_factors is None or short_factors is None:
  3050. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3051. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3052. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3053. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3054. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3055. @ModelBase.register("PhiMoEForCausalLM")
  3056. class PhiMoeModel(Phi3MiniModel):
  3057. model_arch = gguf.MODEL_ARCH.PHIMOE
  3058. _experts: list[dict[str, Tensor]] | None = None
  3059. def set_gguf_parameters(self):
  3060. super().set_gguf_parameters()
  3061. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3062. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3064. # process the experts separately
  3065. if name.find("block_sparse_moe.experts") != -1:
  3066. n_experts = self.hparams["num_local_experts"]
  3067. assert bid is not None
  3068. if self._experts is None:
  3069. self._experts = [{} for _ in range(self.block_count)]
  3070. self._experts[bid][name] = data_torch
  3071. if len(self._experts[bid]) >= n_experts * 3:
  3072. tensors: list[tuple[str, Tensor]] = []
  3073. # merge the experts into a single 3d tensor
  3074. for w_name in ["w1", "w2", "w3"]:
  3075. datas: list[Tensor] = []
  3076. for xid in range(n_experts):
  3077. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3078. datas.append(self._experts[bid][ename])
  3079. del self._experts[bid][ename]
  3080. data_torch = torch.stack(datas, dim=0)
  3081. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3082. new_name = self.map_tensor_name(merged_name)
  3083. tensors.append((new_name, data_torch))
  3084. return tensors
  3085. else:
  3086. return []
  3087. return [(self.map_tensor_name(name), data_torch)]
  3088. def prepare_tensors(self):
  3089. super().prepare_tensors()
  3090. if self._experts is not None:
  3091. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3092. experts = [k for d in self._experts for k in d.keys()]
  3093. if len(experts) > 0:
  3094. raise ValueError(f"Unprocessed experts: {experts}")
  3095. @ModelBase.register("PlamoForCausalLM")
  3096. class PlamoModel(TextModel):
  3097. model_arch = gguf.MODEL_ARCH.PLAMO
  3098. def set_vocab(self):
  3099. self._set_vocab_sentencepiece()
  3100. def set_gguf_parameters(self):
  3101. hparams = self.hparams
  3102. block_count = hparams["num_hidden_layers"]
  3103. self.gguf_writer.add_context_length(4096) # not in config.json
  3104. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3105. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3106. self.gguf_writer.add_block_count(block_count)
  3107. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3108. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3109. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3110. self.gguf_writer.add_file_type(self.ftype)
  3111. def shuffle_attn_q_weight(self, data_torch):
  3112. assert data_torch.size() == (5120, 5120)
  3113. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3114. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3115. data_torch = torch.reshape(data_torch, (5120, 5120))
  3116. return data_torch
  3117. def shuffle_attn_output_weight(self, data_torch):
  3118. assert data_torch.size() == (5120, 5120)
  3119. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3120. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3121. data_torch = torch.reshape(data_torch, (5120, 5120))
  3122. return data_torch
  3123. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3124. del bid # unused
  3125. new_name = self.map_tensor_name(name)
  3126. # shuffle for broadcasting of gqa in ggml_mul_mat
  3127. if new_name.endswith("attn_q.weight"):
  3128. data_torch = self.shuffle_attn_q_weight(data_torch)
  3129. elif new_name.endswith("attn_output.weight"):
  3130. data_torch = self.shuffle_attn_output_weight(data_torch)
  3131. return [(new_name, data_torch)]
  3132. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3133. class Plamo2Model(TextModel):
  3134. model_arch = gguf.MODEL_ARCH.PLAMO2
  3135. def set_vocab(self):
  3136. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3137. # We need to handle this specially
  3138. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3139. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3140. if not tokenizer_jsonl_path.is_file():
  3141. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3142. # Load tokenizer config
  3143. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3144. tokenizer_config = json.load(f)
  3145. # Load tokens from JSONL file (actually a list format)
  3146. tokens = []
  3147. scores = []
  3148. toktypes = []
  3149. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3150. for line_num, line in enumerate(f):
  3151. if line.strip():
  3152. token_data = json.loads(line)
  3153. # Format: [token, score, type, ?, ?, ?, ?]
  3154. token = token_data[0].encode("utf-8")
  3155. score = float(token_data[1])
  3156. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3157. tokens.append(token)
  3158. scores.append(score)
  3159. # Map token type strings to GGUF token types
  3160. if token_type_str == "UNKNOWN":
  3161. toktypes.append(gguf.TokenType.UNKNOWN)
  3162. elif token_type_str == "CONTROL":
  3163. toktypes.append(gguf.TokenType.CONTROL)
  3164. elif token_type_str == "BYTE":
  3165. toktypes.append(gguf.TokenType.BYTE)
  3166. else:
  3167. # Check for PLaMo-2 special tokens
  3168. token_str = token_data[0]
  3169. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3170. toktypes.append(gguf.TokenType.CONTROL)
  3171. else:
  3172. toktypes.append(gguf.TokenType.NORMAL)
  3173. vocab_size = self.hparams["vocab_size"]
  3174. if vocab_size > len(tokens):
  3175. pad_count = vocab_size - len(tokens)
  3176. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3177. for i in range(1, pad_count + 1):
  3178. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3179. scores.append(-1000.0)
  3180. toktypes.append(gguf.TokenType.UNUSED)
  3181. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3182. self.gguf_writer.add_tokenizer_model("plamo2")
  3183. self.gguf_writer.add_tokenizer_pre("default")
  3184. self.gguf_writer.add_token_list(tokens)
  3185. self.gguf_writer.add_token_scores(scores)
  3186. self.gguf_writer.add_token_types(toktypes)
  3187. # Add special tokens from config
  3188. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3189. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3190. self.gguf_writer.add_bos_token_id(token_id)
  3191. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3192. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3193. self.gguf_writer.add_eos_token_id(token_id)
  3194. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3195. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3196. self.gguf_writer.add_pad_token_id(token_id)
  3197. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3198. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3199. self.gguf_writer.add_sep_token_id(token_id)
  3200. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3201. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3202. self.gguf_writer.add_unk_token_id(token_id)
  3203. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3204. self.gguf_writer.add_eot_token_id(4)
  3205. self.gguf_writer.add_add_space_prefix(False)
  3206. def set_gguf_parameters(self):
  3207. hparams = self.hparams
  3208. block_count = hparams["num_hidden_layers"]
  3209. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3210. # Which layers are Mamba layers
  3211. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3212. # This logic matches modeling_plamo.py's is_mamba function
  3213. mamba_step = hparams.get("mamba_step", 2)
  3214. mamba_enabled = hparams.get("mamba_enabled", True)
  3215. mamba_layers = []
  3216. if mamba_enabled:
  3217. for i in range(block_count):
  3218. if block_count <= (mamba_step // 2):
  3219. # use attention in last layer
  3220. is_mamba = (i != block_count - 1)
  3221. else:
  3222. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3223. if is_mamba:
  3224. mamba_layers.append(0)
  3225. else:
  3226. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3227. if mamba_layers:
  3228. self.gguf_writer.add_head_count_kv(mamba_layers)
  3229. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3230. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3231. self.gguf_writer.add_block_count(block_count)
  3232. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3233. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3234. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3235. # Mamba parameters
  3236. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3237. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3238. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3239. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3240. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3241. self.gguf_writer.add_ssm_group_count(0)
  3242. # MLP feed forward parameters (for attention layers)
  3243. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3244. self.gguf_writer.add_file_type(self.ftype)
  3245. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3246. del bid # unused
  3247. if name.endswith(".A_log"):
  3248. data_torch = -torch.exp(data_torch)
  3249. elif name.endswith(".dt_bias"):
  3250. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3251. elif name.endswith(".dt_norm_weight"):
  3252. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3253. elif name.endswith(".B_norm_weight"):
  3254. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3255. elif name.endswith(".C_norm_weight"):
  3256. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3257. elif name.endswith(".k_weight"):
  3258. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3259. elif name.endswith(".q_weight"):
  3260. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3261. elif name.endswith(".conv1d.weight"):
  3262. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3263. assert data_torch.ndim == 2
  3264. elif name.endswith(".pre_mixer_norm.weight"):
  3265. data_torch += 1.0
  3266. elif name.endswith(".post_mixer_norm.weight"):
  3267. data_torch += 1.0 / 5
  3268. elif name.endswith(".pre_mlp_norm.weight"):
  3269. data_torch += 1.0
  3270. elif name.endswith(".post_mlp_norm.weight"):
  3271. data_torch += 1.0 / (5**1.5)
  3272. elif name.endswith(".norm.weight"):
  3273. data_torch += 1.0
  3274. new_name = self.map_tensor_name(name)
  3275. return [(new_name, data_torch)]
  3276. @ModelBase.register("CodeShellForCausalLM")
  3277. class CodeShellModel(TextModel):
  3278. model_arch = gguf.MODEL_ARCH.CODESHELL
  3279. def set_gguf_parameters(self):
  3280. block_count = self.hparams["n_layer"]
  3281. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3282. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3283. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3284. self.gguf_writer.add_block_count(block_count)
  3285. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3286. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3287. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3288. self.gguf_writer.add_file_type(self.ftype)
  3289. self.gguf_writer.add_rope_freq_base(10000.0)
  3290. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3291. self.gguf_writer.add_rope_scaling_factor(1.0)
  3292. _has_tok_embd = False
  3293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3294. del bid # unused
  3295. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3296. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3297. new_name = self.map_tensor_name(name)
  3298. # assuming token_embd.weight is seen before output.weight
  3299. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3300. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3301. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3302. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3303. self.tensor_names.remove("transformer.wte.weight")
  3304. elif new_name == tok_embd_name:
  3305. self._has_tok_embd = True
  3306. return [(new_name, data_torch)]
  3307. @ModelBase.register("InternLM2ForCausalLM")
  3308. class InternLM2Model(TextModel):
  3309. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3310. def set_vocab(self):
  3311. # (TODO): Is there a better way?
  3312. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3313. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3314. # recognized as an empty string in C++.
  3315. from sentencepiece import SentencePieceProcessor
  3316. from sentencepiece import sentencepiece_model_pb2 as model
  3317. tokenizer_path = self.dir_model / 'tokenizer.model'
  3318. tokens: list[bytes] = []
  3319. scores: list[float] = []
  3320. toktypes: list[int] = []
  3321. if not tokenizer_path.is_file():
  3322. logger.error(f'Error: Missing {tokenizer_path}')
  3323. sys.exit(1)
  3324. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3325. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3326. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3327. tokenizer = SentencePieceProcessor()
  3328. tokenizer.LoadFromFile(str(tokenizer_path))
  3329. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3330. for token_id in range(vocab_size):
  3331. piece = tokenizer.IdToPiece(token_id)
  3332. text = piece.encode("utf-8")
  3333. score = tokenizer.GetScore(token_id)
  3334. if text == b"\x00":
  3335. # (TODO): fixme
  3336. # Hack here and replace the \x00 characters.
  3337. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3338. text = "🐉".encode("utf-8")
  3339. toktype = SentencePieceTokenTypes.NORMAL
  3340. if tokenizer.IsUnknown(token_id):
  3341. toktype = SentencePieceTokenTypes.UNKNOWN
  3342. elif tokenizer.IsControl(token_id):
  3343. toktype = SentencePieceTokenTypes.CONTROL
  3344. elif tokenizer.IsUnused(token_id):
  3345. toktype = SentencePieceTokenTypes.UNUSED
  3346. elif tokenizer.IsByte(token_id):
  3347. toktype = SentencePieceTokenTypes.BYTE
  3348. # take care of ununsed raw token
  3349. if piece.startswith('[UNUSED'):
  3350. toktype = SentencePieceTokenTypes.UNUSED
  3351. tokens.append(text)
  3352. scores.append(score)
  3353. toktypes.append(toktype)
  3354. added_tokens_file = self.dir_model / 'added_tokens.json'
  3355. if added_tokens_file.is_file():
  3356. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3357. added_tokens_json = json.load(f)
  3358. for key in added_tokens_json:
  3359. tokens.append(key.encode("utf-8"))
  3360. scores.append(-1000.0)
  3361. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3362. chat_eos_token = '<|im_end|>'
  3363. chat_eos_token_id = None
  3364. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3365. if tokenizer_config_file.is_file():
  3366. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3367. tokenizer_config_json = json.load(f)
  3368. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3369. for token_id, foken_data in added_tokens_decoder.items():
  3370. token_id = int(token_id)
  3371. token = foken_data["content"]
  3372. if token == chat_eos_token:
  3373. chat_eos_token_id = token_id
  3374. token = token.encode("utf-8")
  3375. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3376. if tokens[token_id] != token:
  3377. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3378. tokens[token_id] = token
  3379. scores[token_id] = -1000.0
  3380. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3381. if foken_data.get("special"):
  3382. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3383. tokenizer_file = self.dir_model / 'tokenizer.json'
  3384. if tokenizer_file.is_file():
  3385. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3386. tokenizer_json = json.load(f)
  3387. added_tokens = tokenizer_json.get("added_tokens", [])
  3388. for foken_data in added_tokens:
  3389. token_id = int(foken_data["id"])
  3390. token = foken_data["content"]
  3391. if token == chat_eos_token:
  3392. chat_eos_token_id = token_id
  3393. token = token.encode("utf-8")
  3394. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3395. if tokens[token_id] != token:
  3396. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3397. tokens[token_id] = token
  3398. scores[token_id] = -1000.0
  3399. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3400. if foken_data.get("special"):
  3401. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3402. self.gguf_writer.add_tokenizer_model("llama")
  3403. self.gguf_writer.add_tokenizer_pre("default")
  3404. self.gguf_writer.add_token_list(tokens)
  3405. self.gguf_writer.add_token_scores(scores)
  3406. self.gguf_writer.add_token_types(toktypes)
  3407. self.gguf_writer.add_add_space_prefix(add_prefix)
  3408. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3409. old_eos = special_vocab.special_token_ids["eos"]
  3410. if chat_eos_token_id is not None:
  3411. # For the chat model, we replace the eos with '<|im_end|>'.
  3412. # TODO: this is a hack, should be fixed
  3413. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3414. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3415. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3416. " in chat mode so that the conversation can end normally.")
  3417. special_vocab.add_to_gguf(self.gguf_writer)
  3418. def set_gguf_parameters(self):
  3419. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3420. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3421. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3422. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3423. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3424. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3425. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3426. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3427. self.gguf_writer.add_file_type(self.ftype)
  3428. rope_scaling = self.hparams.get("rope_scaling") or {}
  3429. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3430. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3431. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3432. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3433. num_heads = self.hparams["num_attention_heads"]
  3434. num_kv_heads = self.hparams["num_key_value_heads"]
  3435. n_embd = self.hparams["hidden_size"]
  3436. q_per_kv = num_heads // num_kv_heads
  3437. head_dim = n_embd // num_heads
  3438. num_groups = num_heads // q_per_kv
  3439. name = name.replace("language_model.", "") # InternVL
  3440. if name.startswith("mlp") or name.startswith("vision_model"):
  3441. # skip visual tensors
  3442. return []
  3443. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3444. qkv = data_torch
  3445. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3446. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3447. # The model weights of q and k equire additional reshape.
  3448. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3449. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3450. v = v.reshape((-1, v.shape[-1]))
  3451. return [
  3452. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3453. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3454. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3455. ]
  3456. else:
  3457. return [(self.map_tensor_name(name), data_torch)]
  3458. @ModelBase.register("InternLM3ForCausalLM")
  3459. class InternLM3Model(TextModel):
  3460. model_arch = gguf.MODEL_ARCH.LLAMA
  3461. def set_vocab(self):
  3462. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3463. self.gguf_writer.add_tokenizer_model("llama")
  3464. self.gguf_writer.add_tokenizer_pre("default")
  3465. self.gguf_writer.add_token_list(tokens)
  3466. self.gguf_writer.add_token_scores(scores)
  3467. self.gguf_writer.add_token_types(toktypes)
  3468. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3469. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3470. if tokenizer_config_file.is_file():
  3471. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3472. tokenizer_config_json = json.load(f)
  3473. if "add_prefix_space" in tokenizer_config_json:
  3474. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3475. if "added_tokens_decoder" in tokenizer_config_json:
  3476. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3477. if token_data.get("special"):
  3478. token_id = int(token_id)
  3479. token = token_data["content"]
  3480. special_vocab._set_special_token(token, token_id)
  3481. # update eos token
  3482. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3483. special_vocab.special_token_ids["eos"] = token_id
  3484. special_vocab.add_to_gguf(self.gguf_writer)
  3485. def set_gguf_parameters(self):
  3486. super().set_gguf_parameters()
  3487. hparams = self.hparams
  3488. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3489. if (rope_dim := hparams.get("head_dim")) is None:
  3490. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3491. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3492. rope_scaling = self.hparams.get("rope_scaling") or {}
  3493. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3494. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3495. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3496. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3497. n_head = self.hparams["num_attention_heads"]
  3498. n_kv_head = self.hparams.get("num_key_value_heads")
  3499. name = name.replace("language_model.", "") # InternVL
  3500. if name.startswith("mlp") or name.startswith("vision_model"):
  3501. # skip visual tensors
  3502. return []
  3503. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3504. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3505. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3506. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3507. return [(self.map_tensor_name(name), data_torch)]
  3508. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3509. class BertModel(TextModel):
  3510. model_arch = gguf.MODEL_ARCH.BERT
  3511. def __init__(self, *args, **kwargs):
  3512. super().__init__(*args, **kwargs)
  3513. self.vocab_size = None
  3514. if cls_out_labels := self.hparams.get("id2label"):
  3515. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3516. # Remove dummy labels added by AutoConfig
  3517. cls_out_labels = None
  3518. self.cls_out_labels = cls_out_labels
  3519. def set_gguf_parameters(self):
  3520. super().set_gguf_parameters()
  3521. self.gguf_writer.add_causal_attention(False)
  3522. self._try_set_pooling_type()
  3523. if self.cls_out_labels:
  3524. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3525. def set_vocab(self):
  3526. tokens, toktypes, tokpre = self.get_vocab_base()
  3527. self.vocab_size = len(tokens)
  3528. # we need this to validate the size of the token_type embeddings
  3529. # though currently we are passing all zeros to the token_type embeddings
  3530. # "Sequence A" or "Sequence B"
  3531. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3532. # convert to phantom space vocab
  3533. def phantom(tok):
  3534. if tok.startswith("[") and tok.endswith("]"):
  3535. return tok
  3536. if tok.startswith("##"):
  3537. return tok[2:]
  3538. return "\u2581" + tok
  3539. tokens = list(map(phantom, tokens))
  3540. # add vocab to gguf
  3541. self.gguf_writer.add_tokenizer_model("bert")
  3542. self.gguf_writer.add_tokenizer_pre(tokpre)
  3543. self.gguf_writer.add_token_list(tokens)
  3544. self.gguf_writer.add_token_types(toktypes)
  3545. # handle special tokens
  3546. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3547. special_vocab.add_to_gguf(self.gguf_writer)
  3548. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3549. del bid # unused
  3550. if name.startswith("bert."):
  3551. name = name[5:]
  3552. if name.endswith(".gamma"):
  3553. name = name[:-6] + ".weight"
  3554. if name.endswith(".beta"):
  3555. name = name[:-5] + ".bias"
  3556. # we are only using BERT for embeddings so we don't need the pooling layer
  3557. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3558. return [] # we don't need these
  3559. if name.startswith("cls.predictions"):
  3560. return []
  3561. if name.startswith("cls.seq_relationship"):
  3562. return []
  3563. if self.cls_out_labels:
  3564. # For BertForSequenceClassification (direct projection layer)
  3565. if name == "classifier.weight":
  3566. name = "classifier.out_proj.weight"
  3567. if name == "classifier.bias":
  3568. name = "classifier.out_proj.bias"
  3569. return [(self.map_tensor_name(name), data_torch)]
  3570. def _xlmroberta_tokenizer_init(self) -> None:
  3571. # we need the pad_token_id to know how to chop down position_embd matrix
  3572. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3573. self._position_offset = 1 + pad_token_id
  3574. if "max_position_embeddings" in self.hparams:
  3575. self.hparams["max_position_embeddings"] -= self._position_offset
  3576. else:
  3577. self._position_offset = None
  3578. def _xlmroberta_set_vocab(self) -> None:
  3579. # to avoid TypeError: Descriptors cannot be created directly
  3580. # exception when importing sentencepiece_model_pb2
  3581. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3582. from sentencepiece import SentencePieceProcessor
  3583. from sentencepiece import sentencepiece_model_pb2 as model
  3584. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3585. tokenizer_json = {}
  3586. tokenizer_config_json = {}
  3587. if not tokenizer_path.is_file():
  3588. tokenizer_path = self.dir_model / 'tokenizer.json'
  3589. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3590. if not tokenizer_path.is_file():
  3591. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3592. from base64 import b64decode
  3593. from transformers import AutoTokenizer
  3594. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3595. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3596. tokenizer_json = json.load(fp)
  3597. if tokenizer_config_path.is_file():
  3598. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3599. tokenizer_config_json = json.load(fp)
  3600. add_prefix = tokenizer.add_prefix_space
  3601. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3602. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3603. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3604. else:
  3605. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3606. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3607. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3608. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3609. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3610. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3611. tokenizer = SentencePieceProcessor()
  3612. tokenizer.LoadFromFile(str(tokenizer_path))
  3613. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3614. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3615. scores: list[float] = [-10000.0] * vocab_size
  3616. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3617. if isinstance(tokenizer, SentencePieceProcessor):
  3618. for token_id in range(tokenizer.vocab_size()):
  3619. piece = tokenizer.IdToPiece(token_id)
  3620. text = piece.encode("utf-8")
  3621. score = tokenizer.GetScore(token_id)
  3622. toktype = SentencePieceTokenTypes.NORMAL
  3623. if tokenizer.IsUnknown(token_id):
  3624. toktype = SentencePieceTokenTypes.UNKNOWN
  3625. elif tokenizer.IsControl(token_id):
  3626. toktype = SentencePieceTokenTypes.CONTROL
  3627. elif tokenizer.IsUnused(token_id):
  3628. toktype = SentencePieceTokenTypes.UNUSED
  3629. elif tokenizer.IsByte(token_id):
  3630. toktype = SentencePieceTokenTypes.BYTE
  3631. tokens[token_id] = text
  3632. scores[token_id] = score
  3633. toktypes[token_id] = toktype
  3634. else:
  3635. added_vocab = tokenizer.get_added_vocab()
  3636. unk_token = tokenizer_config_json.get("unk_token")
  3637. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3638. for token_id in range(tokenizer.vocab_size):
  3639. piece = tokenizer._convert_id_to_token(token_id)
  3640. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3641. text = piece.encode("utf-8")
  3642. score = tokenizer_json["model"]["vocab"][token_id][1]
  3643. toktype = SentencePieceTokenTypes.NORMAL
  3644. if token_id == unk_token_id:
  3645. toktype = SentencePieceTokenTypes.UNKNOWN
  3646. elif token_id in tokenizer.all_special_ids:
  3647. toktype = SentencePieceTokenTypes.CONTROL
  3648. elif token_id in added_vocab.values():
  3649. toktype = SentencePieceTokenTypes.USER_DEFINED
  3650. # No reliable way to detect this, but jina doesn't have any
  3651. # elif tokenizer.IsByte(token_id):
  3652. # toktype = SentencePieceTokenTypes.BYTE
  3653. tokens[token_id] = text
  3654. scores[token_id] = score
  3655. toktypes[token_id] = toktype
  3656. if isinstance(tokenizer, SentencePieceProcessor):
  3657. # realign tokens (see HF tokenizer code)
  3658. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3659. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3660. toktypes = [
  3661. SentencePieceTokenTypes.CONTROL,
  3662. SentencePieceTokenTypes.CONTROL,
  3663. SentencePieceTokenTypes.CONTROL,
  3664. SentencePieceTokenTypes.UNKNOWN,
  3665. ] + toktypes[3:-1]
  3666. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3667. # Add mask token missing from sentencepiece.bpe.model
  3668. tokens[250001] = b'<mask>'
  3669. scores[250001] = 0.0
  3670. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3671. self.gguf_writer.add_tokenizer_model("t5")
  3672. self.gguf_writer.add_tokenizer_pre("default")
  3673. self.gguf_writer.add_token_list(tokens)
  3674. self.gguf_writer.add_token_scores(scores)
  3675. self.gguf_writer.add_token_types(toktypes)
  3676. self.gguf_writer.add_add_space_prefix(add_prefix)
  3677. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3678. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3679. if precompiled_charsmap:
  3680. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3681. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3682. special_vocab.add_to_gguf(self.gguf_writer)
  3683. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3684. class DistilBertModel(BertModel):
  3685. model_arch = gguf.MODEL_ARCH.BERT
  3686. def set_gguf_parameters(self):
  3687. self.gguf_writer.add_layer_norm_eps(1e-12)
  3688. logger.info("gguf: layer norm epsilon = 1e-12")
  3689. super().set_gguf_parameters()
  3690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3691. if name.startswith("distilbert."):
  3692. name = name[11:]
  3693. # These layers act as MLM head, so we don't need them
  3694. if name.startswith("vocab_"):
  3695. return []
  3696. return super().modify_tensors(data_torch, name, bid)
  3697. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3698. class RobertaModel(BertModel):
  3699. model_arch = gguf.MODEL_ARCH.BERT
  3700. def __init__(self, *args, **kwargs):
  3701. super().__init__(*args, **kwargs)
  3702. # we need the pad_token_id to know how to chop down position_embd matrix
  3703. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3704. self._position_offset = 1 + pad_token_id
  3705. if "max_position_embeddings" in self.hparams:
  3706. self.hparams["max_position_embeddings"] -= self._position_offset
  3707. else:
  3708. self._position_offset = None
  3709. def set_vocab(self):
  3710. """Support BPE tokenizers for roberta models"""
  3711. bpe_tok_path = self.dir_model / "tokenizer.json"
  3712. if bpe_tok_path.exists():
  3713. self._set_vocab_gpt2()
  3714. # we need this to validate the size of the token_type embeddings
  3715. # though currently we are passing all zeros to the token_type embeddings
  3716. # "Sequence A" or "Sequence B"
  3717. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3718. else:
  3719. return super().set_vocab()
  3720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3721. # if name starts with "roberta.", remove the prefix
  3722. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3723. if name.startswith("roberta."):
  3724. name = name[8:]
  3725. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3726. if name == "embeddings.position_embeddings.weight":
  3727. if self._position_offset is not None:
  3728. data_torch = data_torch[self._position_offset:,:]
  3729. return super().modify_tensors(data_torch, name, bid)
  3730. @ModelBase.register("NomicBertModel")
  3731. class NomicBertModel(BertModel):
  3732. model_arch = gguf.MODEL_ARCH.BERT
  3733. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3734. hparams = kwargs.pop("hparams", None)
  3735. if hparams is None:
  3736. hparams = ModelBase.load_hparams(dir_model)
  3737. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3738. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3739. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3740. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3741. if self._tokenizer_is_xlmroberta:
  3742. self._xlmroberta_tokenizer_init()
  3743. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3744. if npos == 8192 and mtp == 2048:
  3745. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3746. elif npos == 2048 and mtp == 2048:
  3747. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3748. else:
  3749. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3750. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3751. # this doesn't do anything in the HF version
  3752. assert self.hparams["causal"] is False
  3753. # no bias tensors unless MoE
  3754. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3755. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3756. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3757. # norm at end of layer
  3758. assert self.hparams["prenorm"] is False
  3759. # standard RoPE
  3760. assert self.hparams["rotary_emb_fraction"] == 1.0
  3761. assert self.hparams["rotary_emb_interleaved"] is False
  3762. assert self.hparams["rotary_emb_scale_base"] is None
  3763. def set_vocab(self) -> None:
  3764. if self._tokenizer_is_xlmroberta:
  3765. return self._xlmroberta_set_vocab()
  3766. return super().set_vocab()
  3767. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3768. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3769. if "mlp.experts.bias" in name:
  3770. return [] # Explicitly return an empty list.
  3771. if "mlp.experts.mlp.w1" in name:
  3772. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3773. name += ".weight"
  3774. if "mlp.experts.mlp.w2" in name:
  3775. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3776. data_torch = data_torch.transpose(1, 2)
  3777. name += ".weight"
  3778. return [(self.map_tensor_name(name), data_torch)]
  3779. def set_gguf_parameters(self):
  3780. super().set_gguf_parameters()
  3781. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3782. if self.is_moe:
  3783. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3784. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3785. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3786. def _is_tokenizer_xlmroberta(self) -> bool:
  3787. with open(self.dir_model / "tokenizer.json") as f:
  3788. tokenizer_json = json.load(f)
  3789. toktyp = tokenizer_json["model"]["type"]
  3790. if toktyp == "Unigram":
  3791. return True
  3792. if toktyp == "WordPiece":
  3793. return False
  3794. raise ValueError(f"unknown tokenizer: {toktyp}")
  3795. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3796. class NeoBert(BertModel):
  3797. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3798. def set_gguf_parameters(self):
  3799. super().set_gguf_parameters()
  3800. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3801. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3802. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3803. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3804. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3805. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3806. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3807. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3808. def modify_tensors(self, data_torch, name, bid):
  3809. if name.startswith("decoder."):
  3810. return []
  3811. if name.startswith("model."):
  3812. name = name[6:]
  3813. return super().modify_tensors(data_torch, name, bid)
  3814. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3815. class XLMRobertaModel(BertModel):
  3816. model_arch = gguf.MODEL_ARCH.BERT
  3817. def __init__(self, *args, **kwargs):
  3818. super().__init__(*args, **kwargs)
  3819. self._xlmroberta_tokenizer_init()
  3820. def set_vocab(self):
  3821. self._xlmroberta_set_vocab()
  3822. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3823. # if name starts with "roberta.", remove the prefix
  3824. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3825. if name.startswith("roberta."):
  3826. name = name[8:]
  3827. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3828. if name == "embeddings.position_embeddings.weight":
  3829. if self._position_offset is not None:
  3830. data_torch = data_torch[self._position_offset:,:]
  3831. return super().modify_tensors(data_torch, name, bid)
  3832. @ModelBase.register("GemmaForCausalLM")
  3833. class GemmaModel(TextModel):
  3834. model_arch = gguf.MODEL_ARCH.GEMMA
  3835. def set_vocab(self):
  3836. self._set_vocab_sentencepiece()
  3837. # TODO: these special tokens should be exported only for the CodeGemma family
  3838. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3839. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3840. special_vocab._set_special_token("prefix", 67)
  3841. special_vocab._set_special_token("suffix", 69)
  3842. special_vocab._set_special_token("middle", 68)
  3843. special_vocab._set_special_token("fsep", 70)
  3844. special_vocab._set_special_token("eot", 107)
  3845. special_vocab.chat_template = None # do not add it twice
  3846. special_vocab.add_to_gguf(self.gguf_writer)
  3847. self.gguf_writer.add_add_space_prefix(False)
  3848. def set_gguf_parameters(self):
  3849. hparams = self.hparams
  3850. block_count = hparams["num_hidden_layers"]
  3851. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3852. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3853. self.gguf_writer.add_block_count(block_count)
  3854. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3855. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3856. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3857. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3858. self.gguf_writer.add_key_length(hparams["head_dim"])
  3859. self.gguf_writer.add_value_length(hparams["head_dim"])
  3860. self.gguf_writer.add_file_type(self.ftype)
  3861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3862. del bid # unused
  3863. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3864. # To prevent errors, skip loading lm_head.weight.
  3865. if name == "lm_head.weight":
  3866. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3867. return []
  3868. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3869. if name.endswith("norm.weight"):
  3870. data_torch = data_torch + 1
  3871. return [(self.map_tensor_name(name), data_torch)]
  3872. @ModelBase.register("Gemma2ForCausalLM")
  3873. class Gemma2Model(TextModel):
  3874. model_arch = gguf.MODEL_ARCH.GEMMA2
  3875. def set_vocab(self):
  3876. self._set_vocab_sentencepiece()
  3877. self.gguf_writer.add_add_space_prefix(False)
  3878. def set_gguf_parameters(self):
  3879. hparams = self.hparams
  3880. block_count = hparams["num_hidden_layers"]
  3881. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3882. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3883. self.gguf_writer.add_block_count(block_count)
  3884. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3885. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3886. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3887. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3888. self.gguf_writer.add_key_length(hparams["head_dim"])
  3889. self.gguf_writer.add_value_length(hparams["head_dim"])
  3890. self.gguf_writer.add_file_type(self.ftype)
  3891. self.gguf_writer.add_attn_logit_softcapping(
  3892. self.hparams["attn_logit_softcapping"]
  3893. )
  3894. self.gguf_writer.add_final_logit_softcapping(
  3895. self.hparams["final_logit_softcapping"]
  3896. )
  3897. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3899. del bid # unused
  3900. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3901. # To prevent errors, skip loading lm_head.weight.
  3902. if name == "lm_head.weight":
  3903. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3904. return []
  3905. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3906. if name.endswith("norm.weight"):
  3907. data_torch = data_torch + 1
  3908. return [(self.map_tensor_name(name), data_torch)]
  3909. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3910. class Gemma3Model(TextModel):
  3911. model_arch = gguf.MODEL_ARCH.GEMMA3
  3912. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3913. def set_vocab(self):
  3914. self._set_vocab_sentencepiece()
  3915. self.gguf_writer.add_add_space_prefix(False)
  3916. def set_gguf_parameters(self):
  3917. hparams = self.hparams
  3918. block_count = hparams["num_hidden_layers"]
  3919. # some default values are not specified in the hparams
  3920. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3921. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3922. self.gguf_writer.add_block_count(block_count)
  3923. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3924. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3925. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3926. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3927. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3928. self.gguf_writer.add_file_type(self.ftype)
  3929. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3930. # attn_logit_softcapping is removed in Gemma3
  3931. assert hparams.get("attn_logit_softcapping") is None
  3932. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3933. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3934. if hparams.get("rope_scaling") is not None:
  3935. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3936. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3937. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3938. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3939. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3940. del bid # unused
  3941. if "language_model." in name:
  3942. name = name.replace("language_model.", "")
  3943. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3944. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3945. return [] # skip vision tensors
  3946. # remove OOV (out-of-vocabulary) rows in token_embd
  3947. if "embed_tokens.weight" in name:
  3948. vocab = self._create_vocab_sentencepiece()
  3949. tokens = vocab[0]
  3950. data_torch = data_torch[:len(tokens)]
  3951. # ref code in Gemma3RMSNorm
  3952. # output = output * (1.0 + self.weight.float())
  3953. # note: this is not the case on gemma3n
  3954. if name.endswith("norm.weight"):
  3955. data_torch = data_torch + self.norm_shift
  3956. return [(self.map_tensor_name(name), data_torch)]
  3957. @ModelBase.register("Gemma3ForConditionalGeneration")
  3958. class Gemma3VisionModel(MmprojModel):
  3959. def set_gguf_parameters(self):
  3960. super().set_gguf_parameters()
  3961. hparams = self.hparams
  3962. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3963. # default values below are taken from HF tranformers code
  3964. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3965. self.gguf_writer.add_vision_use_gelu(True)
  3966. # calculate proj_scale_factor (used by tinygemma3 test model)
  3967. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3968. n_per_side = int(image_seq_length ** 0.5)
  3969. image_size = self.hparams["image_size"]
  3970. patch_size = self.hparams["patch_size"]
  3971. proj_scale_factor = (image_size // patch_size) // n_per_side
  3972. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3973. # we only need to write this if it's not the default value
  3974. # in this case, we are converting a test model
  3975. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3976. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3977. del bid, new_name, n_dims # unused
  3978. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3979. if "input_projection" in name:
  3980. return gguf.GGMLQuantizationType.F16
  3981. if ".embeddings." in name:
  3982. return gguf.GGMLQuantizationType.F32
  3983. return False
  3984. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3985. del bid # unused
  3986. if "vision_model.head." in name:
  3987. return [] # skip redundant tensors for tinygemma3
  3988. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3989. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3990. # process vision tensors
  3991. name = name.replace("_weight", ".weight")
  3992. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3993. # the other norm values are part of SigLIP model, and they are already correct
  3994. # ref code: Gemma3RMSNorm
  3995. if "soft_emb_norm.weight" in name:
  3996. logger.info(f"Correcting norm value for '{name}'")
  3997. data_torch = data_torch + 1
  3998. return [(self.map_tensor_name(name), data_torch)]
  3999. return [] # skip other tensors
  4000. @ModelBase.register("Gemma3nForConditionalGeneration")
  4001. class Gemma3NModel(Gemma3Model):
  4002. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4003. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4004. _altup_proj: list[Tensor] = []
  4005. _altup_unembd: list[Tensor] = []
  4006. def __init__(self, *args, **kwargs):
  4007. super().__init__(*args, **kwargs)
  4008. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4009. self._altup_proj = [
  4010. torch.Tensor(), # to be replaced
  4011. torch.Tensor(), # to be replaced
  4012. torch.Tensor(), # to be replaced
  4013. ]
  4014. self._altup_unembd = [
  4015. torch.Tensor(), # to be replaced
  4016. torch.Tensor(), # to be replaced
  4017. torch.Tensor(), # to be replaced
  4018. ]
  4019. def set_vocab(self):
  4020. super().set_vocab()
  4021. def set_gguf_parameters(self):
  4022. super().set_gguf_parameters()
  4023. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4024. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4025. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4026. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4027. activation_sparsity_scale = []
  4028. for s in self.hparams["activation_sparsity_pattern"]:
  4029. normal_dist = torch.distributions.normal.Normal(0, 1)
  4030. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4031. activation_sparsity_scale.append(std_multiplier.item())
  4032. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4033. sliding_window_pattern = []
  4034. for t in self.hparams["layer_types"]:
  4035. sliding_window_pattern.append(t == "sliding_attention")
  4036. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4037. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4038. has_all = all(m.numel() > 0 for m in matrices)
  4039. if not has_all:
  4040. return None
  4041. else:
  4042. return torch.stack(matrices, dim=0)
  4043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4044. if name.endswith("_scale"):
  4045. name = name + ".weight"
  4046. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4047. if "language_model." not in name:
  4048. return [] # skip non-language model tensors
  4049. if "altup_unembed_projections" in name:
  4050. data_torch = data_torch.to(device="cpu")
  4051. if ".0." in name:
  4052. self._altup_unembd[0] = data_torch
  4053. elif ".1." in name:
  4054. self._altup_unembd[1] = data_torch
  4055. elif ".2." in name:
  4056. self._altup_unembd[2] = data_torch
  4057. else:
  4058. raise ValueError(f"Unknown name: {name}")
  4059. out = self._stack_matrices(self._altup_unembd)
  4060. if out is not None:
  4061. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4062. else:
  4063. return []
  4064. if "altup_projections" in name:
  4065. data_torch = data_torch.to(device="cpu")
  4066. if ".0." in name:
  4067. self._altup_proj[0] = data_torch
  4068. elif ".1." in name:
  4069. self._altup_proj[1] = data_torch
  4070. elif ".2." in name:
  4071. self._altup_proj[2] = data_torch
  4072. else:
  4073. raise ValueError(f"Unknown name: {name}")
  4074. out = self._stack_matrices(self._altup_proj)
  4075. if out is not None:
  4076. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4077. else:
  4078. return []
  4079. return super().modify_tensors(data_torch, name, bid)
  4080. @ModelBase.register("Starcoder2ForCausalLM")
  4081. class StarCoder2Model(TextModel):
  4082. model_arch = gguf.MODEL_ARCH.STARCODER2
  4083. @ModelBase.register("Rwkv6ForCausalLM")
  4084. class Rwkv6Model(TextModel):
  4085. model_arch = gguf.MODEL_ARCH.RWKV6
  4086. def set_vocab(self):
  4087. self._set_vocab_rwkv_world()
  4088. def set_gguf_parameters(self):
  4089. block_count = self.hparams["num_hidden_layers"]
  4090. head_size = self.hparams["head_size"]
  4091. hidden_size = self.hparams["hidden_size"]
  4092. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4093. rescale_every_n_layers = self.hparams["rescale_every"]
  4094. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4095. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4096. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4097. # RWKV isn't context limited
  4098. self.gguf_writer.add_context_length(1048576)
  4099. self.gguf_writer.add_embedding_length(hidden_size)
  4100. self.gguf_writer.add_block_count(block_count)
  4101. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4102. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4103. self.gguf_writer.add_wkv_head_size(head_size)
  4104. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4105. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4106. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4107. self.gguf_writer.add_file_type(self.ftype)
  4108. # required by llama.cpp, unused
  4109. self.gguf_writer.add_head_count(0)
  4110. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4111. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4112. new_name = self.map_tensor_name(name)
  4113. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4114. new_name += ".weight"
  4115. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4116. data_torch = data_torch.transpose(0, 1)
  4117. if new_name.endswith("time_mix_w2.weight"):
  4118. data_torch = data_torch.permute(0, 2, 1)
  4119. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4120. data_torch = data_torch.squeeze()
  4121. try:
  4122. rescale_every_n_layers = self.hparams["rescale_every"]
  4123. if rescale_every_n_layers > 0:
  4124. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4125. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4126. except KeyError:
  4127. pass
  4128. # concat time_mix_lerp weights to reduce some cpu overhead
  4129. # also reduces the number of tensors in the model
  4130. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4131. try:
  4132. self.lerp_weights[bid][new_name] = data_torch
  4133. except KeyError:
  4134. self.lerp_weights[bid] = {new_name: data_torch}
  4135. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4136. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4137. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4138. yield (new_name, data)
  4139. return
  4140. yield (new_name, data_torch)
  4141. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4142. class RWKV6Qwen2Model(Rwkv6Model):
  4143. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4144. def set_vocab(self):
  4145. try:
  4146. self._set_vocab_sentencepiece()
  4147. except FileNotFoundError:
  4148. self._set_vocab_gpt2()
  4149. def set_gguf_parameters(self):
  4150. block_count = self.hparams["num_hidden_layers"]
  4151. num_attention_heads = self.hparams["num_attention_heads"]
  4152. num_key_value_heads = self.hparams["num_key_value_heads"]
  4153. hidden_size = self.hparams["hidden_size"]
  4154. head_size = hidden_size // num_attention_heads
  4155. rms_norm_eps = self.hparams["rms_norm_eps"]
  4156. intermediate_size = self.hparams["intermediate_size"]
  4157. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4158. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4159. # RWKV isn't context limited
  4160. self.gguf_writer.add_context_length(1048576)
  4161. self.gguf_writer.add_embedding_length(hidden_size)
  4162. self.gguf_writer.add_block_count(block_count)
  4163. self.gguf_writer.add_wkv_head_size(head_size)
  4164. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4165. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4166. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4167. self.gguf_writer.add_file_type(self.ftype)
  4168. # special parameters for time_mixing in RWKV6QWEN2
  4169. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4170. self.gguf_writer.add_token_shift_count(1)
  4171. # RWKV6QWEN2 use grouped key/value like GQA
  4172. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4173. # required by llama.cpp, unused
  4174. self.gguf_writer.add_head_count(0)
  4175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4176. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4177. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4178. data = data.view(5, -1, data.shape[-1])
  4179. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4180. # permute them here to avoid code changes
  4181. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4182. if "w2" in new_name:
  4183. data = data.view(5, -1, data.shape[-1])
  4184. yield (new_name, data)
  4185. continue
  4186. yield (new_name, data)
  4187. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4188. class Rwkv7Model(TextModel):
  4189. model_arch = gguf.MODEL_ARCH.RWKV7
  4190. def set_vocab(self):
  4191. self._set_vocab_rwkv_world()
  4192. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4193. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4194. def set_gguf_parameters(self):
  4195. block_count = self.hparams["num_hidden_layers"]
  4196. try:
  4197. head_size = self.hparams["head_size"]
  4198. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4199. except KeyError:
  4200. head_size = self.hparams["head_dim"]
  4201. layer_norm_eps = self.hparams["norm_eps"]
  4202. hidden_size = self.hparams["hidden_size"]
  4203. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4204. # ICLR: In-Context-Learning-Rate
  4205. try:
  4206. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4207. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4208. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4209. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4210. except KeyError:
  4211. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4212. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4213. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4214. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4215. # RWKV isn't context limited
  4216. self.gguf_writer.add_context_length(1048576)
  4217. self.gguf_writer.add_embedding_length(hidden_size)
  4218. self.gguf_writer.add_block_count(block_count)
  4219. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4220. self.gguf_writer.add_wkv_head_size(head_size)
  4221. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4222. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4223. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4224. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4225. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4226. self.gguf_writer.add_file_type(self.ftype)
  4227. # required by llama.cpp, unused
  4228. self.gguf_writer.add_head_count(0)
  4229. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4230. lora_needs_transpose: bool = True
  4231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4232. # unify tensor names here to make life easier
  4233. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4234. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4235. name = name.replace("time_mixer.", "")
  4236. # lora layer names in fla-hub's impl
  4237. if "_lora.lora" in name:
  4238. self.lora_needs_transpose = False
  4239. name = name.replace("_lora.lora.0.weight", "1.weight")
  4240. name = name.replace("_lora.lora.2.weight", "2.weight")
  4241. name = name.replace("_lora.lora.2.bias", "0.weight")
  4242. name = name.replace("feed_forward_norm", "ln2")
  4243. name = name.replace("g_norm", "ln_x")
  4244. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4245. # some models have dummy v0/v1/v2 on first layer while others don't
  4246. # ignore them all since they are not used
  4247. return
  4248. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4249. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4250. if bid is not None and "attention.x_" in name:
  4251. if "attention.x_x" in name:
  4252. # already concatenated
  4253. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4254. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4255. yield (new_name, data)
  4256. else:
  4257. try:
  4258. self.lerp_weights[bid][name] = data_torch
  4259. except KeyError:
  4260. self.lerp_weights[bid] = {name: data_torch}
  4261. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4262. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4263. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4264. yield (new_name, data)
  4265. return
  4266. else:
  4267. data_torch = data_torch.squeeze()
  4268. new_name = self.map_tensor_name(name)
  4269. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4270. new_name += ".weight"
  4271. if self.lora_needs_transpose and any(
  4272. new_name.endswith(t) for t in [
  4273. "time_mix_w1.weight", "time_mix_w2.weight",
  4274. "time_mix_a1.weight", "time_mix_a2.weight",
  4275. "time_mix_v1.weight", "time_mix_v2.weight",
  4276. "time_mix_g1.weight", "time_mix_g2.weight",
  4277. ]
  4278. ):
  4279. data_torch = data_torch.transpose(0, 1)
  4280. if 'r_k' in new_name:
  4281. data_torch = data_torch.flatten()
  4282. if bid == 0 and "time_mix_a" in new_name:
  4283. # dummy v0/v1/v2 on first layer
  4284. # easist way to make llama happy
  4285. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4286. yield (new_name, data_torch)
  4287. @ModelBase.register("RwkvHybridForCausalLM")
  4288. class ARwkv7Model(Rwkv7Model):
  4289. model_arch = gguf.MODEL_ARCH.ARWKV7
  4290. def set_vocab(self):
  4291. try:
  4292. self._set_vocab_sentencepiece()
  4293. except FileNotFoundError:
  4294. self._set_vocab_gpt2()
  4295. def set_gguf_parameters(self):
  4296. block_count = self.hparams["num_hidden_layers"]
  4297. hidden_size = self.hparams["hidden_size"]
  4298. head_size = self.hparams["head_size"]
  4299. rms_norm_eps = self.hparams["rms_norm_eps"]
  4300. intermediate_size = self.hparams["intermediate_size"]
  4301. wkv_has_gate = self.hparams["wkv_has_gate"]
  4302. assert self.hparams["wkv_version"] == 7
  4303. # ICLR: In-Context-Learning-Rate
  4304. lora_rank_decay = 64
  4305. lora_rank_iclr = 64
  4306. lora_rank_value_residual_mix = 32
  4307. lora_rank_gate = 128 if wkv_has_gate else 0
  4308. # RWKV isn't context limited
  4309. self.gguf_writer.add_context_length(1048576)
  4310. self.gguf_writer.add_embedding_length(hidden_size)
  4311. self.gguf_writer.add_block_count(block_count)
  4312. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4313. self.gguf_writer.add_wkv_head_size(head_size)
  4314. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4315. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4316. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4317. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4318. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4319. self.gguf_writer.add_file_type(self.ftype)
  4320. self.gguf_writer.add_token_shift_count(1)
  4321. # required by llama.cpp, unused
  4322. self.gguf_writer.add_head_count(0)
  4323. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4324. class MambaModel(TextModel):
  4325. model_arch = gguf.MODEL_ARCH.MAMBA
  4326. def __init__(self, dir_model: Path, *args, **kwargs):
  4327. # Avoid using AutoConfig for hparams
  4328. hparams = kwargs.pop("hparams", None)
  4329. if hparams is None:
  4330. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4331. hparams = json.load(f)
  4332. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4333. def set_vocab(self):
  4334. vocab_size = self.hparams["vocab_size"]
  4335. # Round vocab size to next multiple of 8
  4336. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4337. # pad using ceiling division
  4338. # ref: https://stackoverflow.com/a/17511341/22827863
  4339. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4340. self.hparams["vocab_size"] = vocab_size
  4341. if (self.dir_model / "tokenizer.json").is_file():
  4342. self._set_vocab_gpt2()
  4343. elif (self.dir_model / "tokenizer.model").is_file():
  4344. self._set_vocab_sentencepiece()
  4345. else:
  4346. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4347. self._set_vocab_builtin("gpt-neox", vocab_size)
  4348. def set_gguf_parameters(self):
  4349. d_model = self.find_hparam(["hidden_size", "d_model"])
  4350. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4351. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4352. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4353. # ceiling division
  4354. # ref: https://stackoverflow.com/a/17511341/22827863
  4355. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4356. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4357. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4358. use_dt_b_c_norm = False
  4359. # For falconmamba we do apply RMS norm on B / DT and C layers
  4360. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4361. use_dt_b_c_norm = True
  4362. # Fail early for models which don't have a block expansion factor of 2
  4363. assert d_inner == 2 * d_model
  4364. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4365. self.gguf_writer.add_embedding_length(d_model)
  4366. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4367. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4368. self.gguf_writer.add_block_count(self.block_count)
  4369. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4370. self.gguf_writer.add_ssm_inner_size(d_inner)
  4371. self.gguf_writer.add_ssm_state_size(d_state)
  4372. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4373. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4374. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4375. self.gguf_writer.add_file_type(self.ftype)
  4376. _tok_embd = None
  4377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4378. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4379. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4380. new_name = self.map_tensor_name(name)
  4381. if name.endswith(".A_log"):
  4382. logger.debug("A_log --> A ==> " + new_name)
  4383. data_torch = -torch.exp(data_torch)
  4384. # [4 1 8192 1] -> [4 8192 1 1]
  4385. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4386. data_torch = data_torch.squeeze()
  4387. # assuming token_embd.weight is seen before output.weight
  4388. if self._tok_embd is not None and new_name == output_name:
  4389. if torch.equal(self._tok_embd, data_torch):
  4390. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4391. return []
  4392. elif new_name == tok_embd_name:
  4393. self._tok_embd = data_torch
  4394. return [(new_name, data_torch)]
  4395. @ModelBase.register("Mamba2ForCausalLM")
  4396. class Mamba2Model(TextModel):
  4397. model_arch = gguf.MODEL_ARCH.MAMBA2
  4398. def __init__(self, dir_model: Path, *args, **kwargs):
  4399. # Avoid using AutoConfig for hparams
  4400. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4401. hparams = kwargs.pop("hparams", None)
  4402. if hparams is None:
  4403. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4404. hparams = json.load(f)
  4405. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4406. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4407. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4408. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4409. def set_vocab(self):
  4410. vocab_size = self.hparams["vocab_size"]
  4411. # Round vocab size to next multiple of 16
  4412. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4413. # pad using ceiling division
  4414. # ref: https://stackoverflow.com/a/17511341/22827863
  4415. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4416. self.hparams["vocab_size"] = vocab_size
  4417. if (self.dir_model / "tokenizer.model").is_file():
  4418. self._set_vocab_sentencepiece()
  4419. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4420. # mamba-codestral
  4421. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4422. elif (self.dir_model / "tokenizer.json").is_file():
  4423. self._set_vocab_gpt2()
  4424. else:
  4425. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4426. self._set_vocab_builtin("gpt-neox", vocab_size)
  4427. def set_gguf_parameters(self):
  4428. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4429. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4430. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4431. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4432. # Fail early for models which don't have a block expansion factor of 2
  4433. # TODO: does this really matter?
  4434. # skip the assertion for FalconH1 Model
  4435. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4436. assert self.d_inner == 2 * self.d_model
  4437. assert self.d_inner % head_dim == 0
  4438. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4439. self.gguf_writer.add_embedding_length(self.d_model)
  4440. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4441. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4442. self.gguf_writer.add_block_count(self.block_count)
  4443. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4444. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4445. self.gguf_writer.add_ssm_state_size(d_state)
  4446. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4447. self.gguf_writer.add_ssm_group_count(self.n_group)
  4448. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4449. self.gguf_writer.add_file_type(self.ftype)
  4450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4451. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4452. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4453. name = name.removeprefix("model.")
  4454. if name.endswith(".dt_bias"):
  4455. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4456. new_name = self.map_tensor_name(name)
  4457. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4458. data_torch = data_torch.squeeze()
  4459. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4460. gguf.MODEL_TENSOR.SSM_A,
  4461. gguf.MODEL_TENSOR.SSM_D,
  4462. ]):
  4463. # unsqueeze A to use similar shape semantics as Mamba-1
  4464. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4465. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4466. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4467. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4468. if name.endswith(".A_log"):
  4469. logger.debug("A_log --> A ==> " + new_name)
  4470. data_torch = -torch.exp(data_torch)
  4471. yield (new_name, data_torch)
  4472. @ModelBase.register("JambaForCausalLM")
  4473. class JambaModel(TextModel):
  4474. model_arch = gguf.MODEL_ARCH.JAMBA
  4475. def get_vocab_base_pre(self, tokenizer) -> str:
  4476. del tokenizer # unused
  4477. return "gpt-2"
  4478. def set_vocab(self):
  4479. if (self.dir_model / "tokenizer.model").is_file():
  4480. # Using Jamba's tokenizer.json causes errors on model load
  4481. # (something about "byte not found in vocab"),
  4482. # but there's a working tokenizer.model
  4483. self._set_vocab_sentencepiece()
  4484. else:
  4485. # Some Jamba models only have a tokenizer.json, which works.
  4486. self._set_vocab_gpt2()
  4487. def set_gguf_parameters(self):
  4488. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4489. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4490. d_inner = self.hparams["mamba_expand"] * d_model
  4491. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4492. # ceiling division
  4493. # ref: https://stackoverflow.com/a/17511341/22827863
  4494. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4495. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4496. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4497. n_kv_head = self.hparams["num_key_value_heads"]
  4498. attn_offset = self.hparams["attn_layer_offset"]
  4499. attn_period = self.hparams["attn_layer_period"]
  4500. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4501. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4502. ]
  4503. self.gguf_writer.add_block_count(self.block_count)
  4504. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4505. self.gguf_writer.add_embedding_length(d_model)
  4506. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4507. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4508. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4509. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4510. self.gguf_writer.add_ssm_inner_size(d_inner)
  4511. self.gguf_writer.add_ssm_state_size(d_state)
  4512. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4513. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4514. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4515. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4516. self.gguf_writer.add_file_type(self.ftype)
  4517. _experts: list[dict[str, Tensor]] | None = None
  4518. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4519. # Mini-Jamba
  4520. name = name.replace(".moe.", ".feed_forward.")
  4521. if bid is not None:
  4522. moe_offset = self.hparams["expert_layer_offset"]
  4523. moe_period = self.hparams["expert_layer_period"]
  4524. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4525. name = name.replace(".experts.0.", ".")
  4526. # process the experts separately
  4527. if ".feed_forward.experts." in name:
  4528. n_experts = self.hparams["num_experts"]
  4529. assert bid is not None
  4530. if self._experts is None:
  4531. self._experts = [{} for _ in range(self.block_count)]
  4532. self._experts[bid][name] = data_torch
  4533. if len(self._experts[bid]) >= n_experts * 3:
  4534. # merge the experts into a single 3d tensor
  4535. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4536. datas: list[Tensor] = []
  4537. for xid in range(n_experts):
  4538. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4539. datas.append(self._experts[bid][ename])
  4540. del self._experts[bid][ename]
  4541. data_torch = torch.stack(datas, dim=0)
  4542. # using the same merged name as qwen2moe
  4543. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4544. new_name = self.map_tensor_name(merged_name)
  4545. yield new_name, data_torch
  4546. return
  4547. new_name = self.map_tensor_name(name)
  4548. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4549. data_torch = data_torch.squeeze()
  4550. if name.endswith(".A_log"):
  4551. logger.debug("A_log --> A ==> " + new_name)
  4552. data_torch = -torch.exp(data_torch)
  4553. yield (new_name, data_torch)
  4554. def prepare_tensors(self):
  4555. super().prepare_tensors()
  4556. if self._experts is not None:
  4557. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4558. experts = [k for d in self._experts for k in d.keys()]
  4559. if len(experts) > 0:
  4560. raise ValueError(f"Unprocessed experts: {experts}")
  4561. @ModelBase.register("CohereForCausalLM")
  4562. class CommandR2Model(TextModel):
  4563. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4564. def __init__(self, *args, **kwargs):
  4565. super().__init__(*args, **kwargs)
  4566. # max_position_embeddings = 8192 in config.json but model was actually
  4567. # trained on 128k context length
  4568. # aya-23 models don't have model_max_length specified
  4569. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4570. def set_gguf_parameters(self):
  4571. super().set_gguf_parameters()
  4572. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4573. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4574. @ModelBase.register("Cohere2ForCausalLM")
  4575. class Cohere2Model(TextModel):
  4576. model_arch = gguf.MODEL_ARCH.COHERE2
  4577. def set_gguf_parameters(self):
  4578. super().set_gguf_parameters()
  4579. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4580. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4581. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4582. rotary_pct = self.hparams["rotary_pct"]
  4583. hidden_size = self.hparams["hidden_size"]
  4584. num_attention_heads = self.hparams["num_attention_heads"]
  4585. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4586. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4587. @ModelBase.register("OlmoForCausalLM")
  4588. @ModelBase.register("OLMoForCausalLM")
  4589. class OlmoModel(TextModel):
  4590. model_arch = gguf.MODEL_ARCH.OLMO
  4591. def set_gguf_parameters(self):
  4592. super().set_gguf_parameters()
  4593. self.gguf_writer.add_layer_norm_eps(1e-5)
  4594. clip_qkv = self.hparams.get("clip_qkv")
  4595. if clip_qkv is not None:
  4596. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4597. # Same as super class, but permuting q_proj, k_proj
  4598. # Copied from: LlamaModel
  4599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4600. del bid # unused
  4601. n_head = self.hparams["num_attention_heads"]
  4602. n_kv_head = self.hparams.get("num_key_value_heads")
  4603. if name.endswith("q_proj.weight"):
  4604. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4605. if name.endswith("k_proj.weight"):
  4606. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4607. return [(self.map_tensor_name(name), data_torch)]
  4608. @ModelBase.register("Olmo2ForCausalLM")
  4609. class Olmo2Model(TextModel):
  4610. model_arch = gguf.MODEL_ARCH.OLMO2
  4611. @ModelBase.register("OlmoeForCausalLM")
  4612. class OlmoeModel(TextModel):
  4613. model_arch = gguf.MODEL_ARCH.OLMOE
  4614. def set_gguf_parameters(self):
  4615. super().set_gguf_parameters()
  4616. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4617. if (n_experts := self.hparams.get("num_experts")) is not None:
  4618. self.gguf_writer.add_expert_count(n_experts)
  4619. _experts: list[dict[str, Tensor]] | None = None
  4620. # Copied from: Qwen2MoeModel
  4621. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4622. # process the experts separately
  4623. if name.find("experts") != -1:
  4624. n_experts = self.hparams["num_experts"]
  4625. assert bid is not None
  4626. if self._experts is None:
  4627. self._experts = [{} for _ in range(self.block_count)]
  4628. self._experts[bid][name] = data_torch
  4629. if len(self._experts[bid]) >= n_experts * 3:
  4630. tensors: list[tuple[str, Tensor]] = []
  4631. # merge the experts into a single 3d tensor
  4632. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4633. datas: list[Tensor] = []
  4634. for xid in range(n_experts):
  4635. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4636. datas.append(self._experts[bid][ename])
  4637. del self._experts[bid][ename]
  4638. data_torch = torch.stack(datas, dim=0)
  4639. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4640. new_name = self.map_tensor_name(merged_name)
  4641. tensors.append((new_name, data_torch))
  4642. return tensors
  4643. else:
  4644. return []
  4645. return [(self.map_tensor_name(name), data_torch)]
  4646. # Copied from: Qwen2MoeModel
  4647. def prepare_tensors(self):
  4648. super().prepare_tensors()
  4649. if self._experts is not None:
  4650. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4651. experts = [k for d in self._experts for k in d.keys()]
  4652. if len(experts) > 0:
  4653. raise ValueError(f"Unprocessed experts: {experts}")
  4654. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4655. class JinaBertV2Model(BertModel):
  4656. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4657. def set_vocab(self):
  4658. tokenizer_class = 'BertTokenizer'
  4659. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4660. tokenizer_class = json.load(f)['tokenizer_class']
  4661. if tokenizer_class == 'BertTokenizer':
  4662. super().set_vocab()
  4663. elif tokenizer_class == 'RobertaTokenizer':
  4664. self._set_vocab_gpt2()
  4665. self.gguf_writer.add_token_type_count(2)
  4666. else:
  4667. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4668. @ModelBase.register("OpenELMForCausalLM")
  4669. class OpenELMModel(TextModel):
  4670. model_arch = gguf.MODEL_ARCH.OPENELM
  4671. @staticmethod
  4672. def _make_divisible(v: float | int, divisor: int) -> int:
  4673. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4674. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4675. # Make sure that round down does not go down by more than 10%.
  4676. if new_v < 0.9 * v:
  4677. new_v += divisor
  4678. return new_v
  4679. def __init__(self, *args, **kwargs):
  4680. super().__init__(*args, **kwargs)
  4681. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4682. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4683. self._n_embd: int = self.hparams["model_dim"]
  4684. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4685. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4686. self._ffn_dims: list[int] = [
  4687. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4688. for multiplier in ffn_multipliers
  4689. ]
  4690. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4691. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4692. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4693. def set_vocab(self):
  4694. try:
  4695. self._set_vocab_sentencepiece()
  4696. except FileNotFoundError:
  4697. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4698. def set_gguf_parameters(self):
  4699. n_embd = self._n_embd
  4700. head_dim = self.hparams["head_dim"]
  4701. rot_pct = 1.0
  4702. assert self.block_count == len(self._num_kv_heads)
  4703. assert self.block_count == len(self._num_query_heads)
  4704. assert self.block_count == len(self._ffn_dims)
  4705. self.gguf_writer.add_block_count(self.block_count)
  4706. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4707. self.gguf_writer.add_embedding_length(n_embd)
  4708. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4709. self.gguf_writer.add_head_count(self._num_query_heads)
  4710. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4711. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4712. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4713. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4714. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4715. self.gguf_writer.add_key_length(head_dim)
  4716. self.gguf_writer.add_value_length(head_dim)
  4717. self.gguf_writer.add_file_type(self.ftype)
  4718. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4719. if "n_layers" in keys:
  4720. return self.hparams["num_transformer_layers"]
  4721. return super().find_hparam(keys, optional)
  4722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4723. # split ff
  4724. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4725. ff_dim = self._ffn_dims[bid]
  4726. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4727. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4728. return
  4729. yield (self.map_tensor_name(name), data_torch)
  4730. @ModelBase.register("ArcticForCausalLM")
  4731. class ArcticModel(TextModel):
  4732. model_arch = gguf.MODEL_ARCH.ARCTIC
  4733. def set_vocab(self):
  4734. # The reason for using a custom implementation here is that the
  4735. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4736. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4737. from sentencepiece import SentencePieceProcessor
  4738. tokenizer_path = self.dir_model / 'tokenizer.model'
  4739. if not tokenizer_path.is_file():
  4740. logger.error(f'Error: Missing {tokenizer_path}')
  4741. sys.exit(1)
  4742. # Read the whole vocabulary from the tokenizer.model file
  4743. tokenizer = SentencePieceProcessor()
  4744. tokenizer.LoadFromFile(str(tokenizer_path))
  4745. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4746. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4747. scores: list[float] = [-10000.0] * vocab_size
  4748. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4749. for token_id in range(tokenizer.vocab_size()):
  4750. piece = tokenizer.IdToPiece(token_id)
  4751. text = piece.encode("utf-8")
  4752. score = tokenizer.GetScore(token_id)
  4753. toktype = SentencePieceTokenTypes.NORMAL
  4754. if tokenizer.IsUnknown(token_id):
  4755. toktype = SentencePieceTokenTypes.UNKNOWN
  4756. elif tokenizer.IsControl(token_id):
  4757. toktype = SentencePieceTokenTypes.CONTROL
  4758. elif tokenizer.IsUnused(token_id):
  4759. toktype = SentencePieceTokenTypes.UNUSED
  4760. elif tokenizer.IsByte(token_id):
  4761. toktype = SentencePieceTokenTypes.BYTE
  4762. tokens[token_id] = text
  4763. scores[token_id] = score
  4764. toktypes[token_id] = toktype
  4765. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4766. # of information about added/redefined tokens and modify them accordingly.
  4767. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4768. if tokenizer_config_file.is_file():
  4769. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4770. tokenizer_config_json = json.load(f)
  4771. if "added_tokens_decoder" in tokenizer_config_json:
  4772. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4773. for token_id, token_json in added_tokens_decoder.items():
  4774. token_id = int(token_id)
  4775. if token_id >= vocab_size:
  4776. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4777. continue
  4778. token_content = token_json["content"]
  4779. token_type = SentencePieceTokenTypes.USER_DEFINED
  4780. token_score = -10000.0
  4781. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4782. # Set the score to 0.0 as in the original tokenizer.model
  4783. if ("special" in token_json) and token_json["special"]:
  4784. if token_content == tokenizer_config_json["unk_token"]:
  4785. token_type = SentencePieceTokenTypes.UNKNOWN
  4786. else:
  4787. token_type = SentencePieceTokenTypes.CONTROL
  4788. token_score = 0.0
  4789. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4790. tokens[token_id] = token_content.encode("utf-8")
  4791. toktypes[token_id] = token_type
  4792. scores[token_id] = token_score
  4793. self.gguf_writer.add_tokenizer_model("llama")
  4794. self.gguf_writer.add_tokenizer_pre("default")
  4795. self.gguf_writer.add_token_list(tokens)
  4796. self.gguf_writer.add_token_scores(scores)
  4797. self.gguf_writer.add_token_types(toktypes)
  4798. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4799. special_vocab.add_to_gguf(self.gguf_writer)
  4800. def set_gguf_parameters(self):
  4801. super().set_gguf_parameters()
  4802. hparams = self.hparams
  4803. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4804. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4805. _experts: list[dict[str, Tensor]] | None = None
  4806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4807. n_head = self.hparams["num_attention_heads"]
  4808. n_kv_head = self.hparams.get("num_key_value_heads")
  4809. if name.endswith("q_proj.weight"):
  4810. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4811. if name.endswith("k_proj.weight"):
  4812. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4813. # process the experts separately
  4814. if name.find("block_sparse_moe.experts") != -1:
  4815. n_experts = self.hparams["num_local_experts"]
  4816. assert bid is not None
  4817. if self._experts is None:
  4818. self._experts = [{} for _ in range(self.block_count)]
  4819. self._experts[bid][name] = data_torch
  4820. if len(self._experts[bid]) >= n_experts * 3:
  4821. tensors: list[tuple[str, Tensor]] = []
  4822. # merge the experts into a single 3d tensor
  4823. for wid in ["w1", "w2", "w3"]:
  4824. datas: list[Tensor] = []
  4825. for xid in range(n_experts):
  4826. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4827. datas.append(self._experts[bid][ename])
  4828. del self._experts[bid][ename]
  4829. data_torch = torch.stack(datas, dim=0)
  4830. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4831. new_name = self.map_tensor_name(merged_name)
  4832. tensors.append((new_name, data_torch))
  4833. return tensors
  4834. else:
  4835. return []
  4836. return [(self.map_tensor_name(name), data_torch)]
  4837. def prepare_tensors(self):
  4838. super().prepare_tensors()
  4839. if self._experts is not None:
  4840. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4841. experts = [k for d in self._experts for k in d.keys()]
  4842. if len(experts) > 0:
  4843. raise ValueError(f"Unprocessed experts: {experts}")
  4844. @ModelBase.register("DeepseekForCausalLM")
  4845. class DeepseekModel(TextModel):
  4846. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4847. def set_vocab(self):
  4848. try:
  4849. self._set_vocab_sentencepiece()
  4850. except FileNotFoundError:
  4851. self._set_vocab_gpt2()
  4852. def set_gguf_parameters(self):
  4853. super().set_gguf_parameters()
  4854. hparams = self.hparams
  4855. if (rope_dim := hparams.get("head_dim")) is None:
  4856. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4857. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4858. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4859. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4860. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4861. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4862. self.gguf_writer.add_expert_weights_scale(1.0)
  4863. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4864. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4865. _experts: list[dict[str, Tensor]] | None = None
  4866. @staticmethod
  4867. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4868. if n_head_kv is not None and n_head != n_head_kv:
  4869. n_head = n_head_kv
  4870. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4871. .swapaxes(1, 2)
  4872. .reshape(weights.shape))
  4873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4874. n_head = self.hparams["num_attention_heads"]
  4875. n_kv_head = self.hparams.get("num_key_value_heads")
  4876. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4877. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4878. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4879. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4880. # process the experts separately
  4881. if name.find("mlp.experts") != -1:
  4882. n_experts = self.hparams["n_routed_experts"]
  4883. assert bid is not None
  4884. if self._experts is None:
  4885. self._experts = [{} for _ in range(self.block_count)]
  4886. self._experts[bid][name] = data_torch
  4887. if len(self._experts[bid]) >= n_experts * 3:
  4888. tensors: list[tuple[str, Tensor]] = []
  4889. # merge the experts into a single 3d tensor
  4890. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4891. datas: list[Tensor] = []
  4892. for xid in range(n_experts):
  4893. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4894. datas.append(self._experts[bid][ename])
  4895. del self._experts[bid][ename]
  4896. data_torch = torch.stack(datas, dim=0)
  4897. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4898. new_name = self.map_tensor_name(merged_name)
  4899. tensors.append((new_name, data_torch))
  4900. return tensors
  4901. else:
  4902. return []
  4903. return [(self.map_tensor_name(name), data_torch)]
  4904. def prepare_tensors(self):
  4905. super().prepare_tensors()
  4906. if self._experts is not None:
  4907. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4908. experts = [k for d in self._experts for k in d.keys()]
  4909. if len(experts) > 0:
  4910. raise ValueError(f"Unprocessed experts: {experts}")
  4911. @ModelBase.register("DeepseekV2ForCausalLM")
  4912. @ModelBase.register("DeepseekV3ForCausalLM")
  4913. class DeepseekV2Model(TextModel):
  4914. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4915. def set_vocab(self):
  4916. try:
  4917. self._set_vocab_gpt2()
  4918. return
  4919. except Exception:
  4920. pass
  4921. from transformers import AutoTokenizer
  4922. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4923. tokpre = self.get_vocab_base_pre(tokenizer)
  4924. if tokpre == "kimi-k2":
  4925. # Build merges list using the approach similar to HunYuanMoE
  4926. merges = []
  4927. vocab = {}
  4928. mergeable_ranks = tokenizer.model._mergeable_ranks
  4929. for token, rank in mergeable_ranks.items():
  4930. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4931. if len(token) == 1:
  4932. continue
  4933. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4934. if len(merged) == 2:
  4935. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4936. # Build token list
  4937. vocab_size = self.hparams["vocab_size"]
  4938. special_tokens = tokenizer.special_tokens
  4939. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4940. tokens: list[str] = []
  4941. toktypes: list[int] = []
  4942. for i in range(vocab_size):
  4943. if i not in reverse_vocab:
  4944. tokens.append(f"[PAD{i}]")
  4945. toktypes.append(gguf.TokenType.UNUSED)
  4946. else:
  4947. token = reverse_vocab[i]
  4948. tokens.append(token)
  4949. if i in special_tokens.values():
  4950. toktypes.append(gguf.TokenType.CONTROL)
  4951. else:
  4952. toktypes.append(gguf.TokenType.NORMAL)
  4953. self.gguf_writer.add_tokenizer_model("gpt2")
  4954. self.gguf_writer.add_tokenizer_pre(tokpre)
  4955. self.gguf_writer.add_token_list(tokens)
  4956. self.gguf_writer.add_token_types(toktypes)
  4957. self.gguf_writer.add_token_merges(merges)
  4958. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4959. special_vocab.add_to_gguf(self.gguf_writer)
  4960. else:
  4961. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4962. def set_gguf_parameters(self):
  4963. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4964. self.hparams["num_key_value_heads"] = 1
  4965. super().set_gguf_parameters()
  4966. hparams = self.hparams
  4967. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4968. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4969. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4970. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4971. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4972. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4973. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4974. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4975. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4976. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4977. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4978. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4979. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4980. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4981. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4982. if hparams["scoring_func"] == "sigmoid":
  4983. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4984. elif hparams["scoring_func"] == "softmax":
  4985. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4986. else:
  4987. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4988. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4989. rope_scaling = self.hparams.get("rope_scaling") or {}
  4990. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4991. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4992. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4993. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4994. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4995. _experts: list[dict[str, Tensor]] | None = None
  4996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4997. # rename e_score_correction_bias tensors
  4998. if name.endswith("e_score_correction_bias"):
  4999. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5000. # skip Multi-Token Prediction (MTP) layers
  5001. block_count = self.hparams["num_hidden_layers"]
  5002. match = re.match(r"model.layers.(\d+)", name)
  5003. if match and int(match.group(1)) >= block_count:
  5004. return []
  5005. # process the experts separately
  5006. if name.find("mlp.experts") != -1:
  5007. n_experts = self.hparams["n_routed_experts"]
  5008. assert bid is not None
  5009. if self._experts is None:
  5010. self._experts = [{} for _ in range(self.block_count)]
  5011. self._experts[bid][name] = data_torch
  5012. if len(self._experts[bid]) >= n_experts * 3:
  5013. tensors: list[tuple[str, Tensor]] = []
  5014. # merge the experts into a single 3d tensor
  5015. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5016. datas: list[Tensor] = []
  5017. for xid in range(n_experts):
  5018. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5019. datas.append(self._experts[bid][ename])
  5020. del self._experts[bid][ename]
  5021. data_torch = torch.stack(datas, dim=0)
  5022. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5023. new_name = self.map_tensor_name(merged_name)
  5024. tensors.append((new_name, data_torch))
  5025. return tensors
  5026. else:
  5027. return []
  5028. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5029. if name.endswith("kv_b_proj.weight"):
  5030. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5031. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5032. n_head_kv = self.hparams["num_key_value_heads"]
  5033. v_head_dim = self.hparams["v_head_dim"]
  5034. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5035. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5036. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5037. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5038. k_b = k_b.transpose(1, 2)
  5039. return [
  5040. (self.map_tensor_name(name_kb), k_b),
  5041. (self.map_tensor_name(name_vb), v_b)
  5042. ]
  5043. return [(self.map_tensor_name(name), data_torch)]
  5044. def prepare_tensors(self):
  5045. super().prepare_tensors()
  5046. if self._experts is not None:
  5047. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5048. experts = [k for d in self._experts for k in d.keys()]
  5049. if len(experts) > 0:
  5050. raise ValueError(f"Unprocessed experts: {experts}")
  5051. @ModelBase.register("Dots1ForCausalLM")
  5052. class Dots1Model(Qwen2MoeModel):
  5053. model_arch = gguf.MODEL_ARCH.DOTS1
  5054. def __init__(self, *args, **kwargs):
  5055. super().__init__(*args, **kwargs)
  5056. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5057. def set_gguf_parameters(self):
  5058. super().set_gguf_parameters()
  5059. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5060. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5061. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5062. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5063. if self.hparams["scoring_func"] == "noaux_tc":
  5064. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5065. else:
  5066. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5068. if name.endswith("e_score_correction_bias"):
  5069. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5070. if "shared_experts" in name:
  5071. return [(self.map_tensor_name(name), data_torch)]
  5072. return super().modify_tensors(data_torch, name, bid)
  5073. @ModelBase.register("PLMForCausalLM")
  5074. class PLMModel(TextModel):
  5075. model_arch = gguf.MODEL_ARCH.PLM
  5076. def set_vocab(self):
  5077. self._set_vocab_gpt2()
  5078. def set_gguf_parameters(self):
  5079. super().set_gguf_parameters()
  5080. hparams = self.hparams
  5081. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5082. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5083. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5084. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5085. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5087. return [(self.map_tensor_name(name), data_torch)]
  5088. def prepare_tensors(self):
  5089. super().prepare_tensors()
  5090. @ModelBase.register("T5WithLMHeadModel")
  5091. @ModelBase.register("T5ForConditionalGeneration")
  5092. @ModelBase.register("MT5ForConditionalGeneration")
  5093. @ModelBase.register("UMT5ForConditionalGeneration")
  5094. class T5Model(TextModel):
  5095. model_arch = gguf.MODEL_ARCH.T5
  5096. def __init__(self, *args, **kwargs):
  5097. super().__init__(*args, **kwargs)
  5098. self.shared_token_embeddings_found = False
  5099. def set_vocab(self):
  5100. # to avoid TypeError: Descriptors cannot be created directly
  5101. # exception when importing sentencepiece_model_pb2
  5102. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5103. from sentencepiece import SentencePieceProcessor
  5104. from sentencepiece import sentencepiece_model_pb2 as model
  5105. tokenizer_path = self.dir_model / 'tokenizer.model'
  5106. # many older models use spiece.model tokenizer model filename
  5107. if not tokenizer_path.is_file():
  5108. tokenizer_path = self.dir_model / 'spiece.model'
  5109. if not tokenizer_path.is_file():
  5110. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5111. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5112. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5113. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5114. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5115. # assure the tokenizer model file name is correct
  5116. assert tokenizer_path.name == 'tokenizer.model'
  5117. return self._set_vocab_sentencepiece()
  5118. else:
  5119. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5120. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5121. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5122. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5123. tokenizer = SentencePieceProcessor()
  5124. tokenizer.LoadFromFile(str(tokenizer_path))
  5125. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5126. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5127. scores: list[float] = [-10000.0] * vocab_size
  5128. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5129. for token_id in range(tokenizer.vocab_size()):
  5130. piece = tokenizer.IdToPiece(token_id)
  5131. text = piece.encode("utf-8")
  5132. score = tokenizer.GetScore(token_id)
  5133. toktype = SentencePieceTokenTypes.NORMAL
  5134. if tokenizer.IsUnknown(token_id):
  5135. toktype = SentencePieceTokenTypes.UNKNOWN
  5136. elif tokenizer.IsControl(token_id):
  5137. toktype = SentencePieceTokenTypes.CONTROL
  5138. elif tokenizer.IsUnused(token_id):
  5139. toktype = SentencePieceTokenTypes.UNUSED
  5140. elif tokenizer.IsByte(token_id):
  5141. toktype = SentencePieceTokenTypes.BYTE
  5142. tokens[token_id] = text
  5143. scores[token_id] = score
  5144. toktypes[token_id] = toktype
  5145. added_tokens_file = self.dir_model / 'added_tokens.json'
  5146. if added_tokens_file.is_file():
  5147. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5148. added_tokens_json = json.load(f)
  5149. for key in added_tokens_json:
  5150. token_id = added_tokens_json[key]
  5151. if token_id >= vocab_size:
  5152. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5153. continue
  5154. tokens[token_id] = key.encode("utf-8")
  5155. scores[token_id] = -1000.0
  5156. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5157. if vocab_size > len(tokens):
  5158. pad_count = vocab_size - len(tokens)
  5159. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5160. for i in range(1, pad_count + 1):
  5161. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5162. scores.append(-1000.0)
  5163. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5164. self.gguf_writer.add_tokenizer_model("t5")
  5165. self.gguf_writer.add_tokenizer_pre("default")
  5166. self.gguf_writer.add_token_list(tokens)
  5167. self.gguf_writer.add_token_scores(scores)
  5168. self.gguf_writer.add_token_types(toktypes)
  5169. self.gguf_writer.add_add_space_prefix(add_prefix)
  5170. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5171. if precompiled_charsmap:
  5172. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5173. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5174. special_vocab.add_to_gguf(self.gguf_writer)
  5175. def set_gguf_parameters(self):
  5176. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5177. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5178. n_ctx = 512
  5179. self.gguf_writer.add_context_length(n_ctx)
  5180. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5181. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5182. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5183. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5184. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5185. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5186. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5187. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5188. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5189. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5190. self.gguf_writer.add_file_type(self.ftype)
  5191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5192. del bid # unused
  5193. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5194. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5195. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5196. # and decoder and ignore the remaining ones.
  5197. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5198. if not self.shared_token_embeddings_found:
  5199. name = "shared.weight"
  5200. self.shared_token_embeddings_found = True
  5201. else:
  5202. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5203. return []
  5204. return [(self.map_tensor_name(name), data_torch)]
  5205. @ModelBase.register("T5EncoderModel")
  5206. class T5EncoderModel(TextModel):
  5207. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5208. def __init__(self, *args, **kwargs):
  5209. super().__init__(*args, **kwargs)
  5210. self.shared_token_embeddings_found = False
  5211. def set_vocab(self):
  5212. # to avoid TypeError: Descriptors cannot be created directly
  5213. # exception when importing sentencepiece_model_pb2
  5214. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5215. from sentencepiece import SentencePieceProcessor
  5216. from sentencepiece import sentencepiece_model_pb2 as model
  5217. tokenizer_path = self.dir_model / 'tokenizer.model'
  5218. # many older models use spiece.model tokenizer model filename
  5219. if not tokenizer_path.is_file():
  5220. tokenizer_path = self.dir_model / 'spiece.model'
  5221. if not tokenizer_path.is_file():
  5222. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5223. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5224. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5225. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5226. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5227. # assure the tokenizer model file name is correct
  5228. assert tokenizer_path.name == 'tokenizer.model'
  5229. return self._set_vocab_sentencepiece()
  5230. else:
  5231. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5232. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5233. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5234. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5235. tokenizer = SentencePieceProcessor()
  5236. tokenizer.LoadFromFile(str(tokenizer_path))
  5237. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5238. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5239. scores: list[float] = [-10000.0] * vocab_size
  5240. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5241. for token_id in range(tokenizer.vocab_size()):
  5242. piece = tokenizer.IdToPiece(token_id)
  5243. text = piece.encode("utf-8")
  5244. score = tokenizer.GetScore(token_id)
  5245. toktype = SentencePieceTokenTypes.NORMAL
  5246. if tokenizer.IsUnknown(token_id):
  5247. toktype = SentencePieceTokenTypes.UNKNOWN
  5248. elif tokenizer.IsControl(token_id):
  5249. toktype = SentencePieceTokenTypes.CONTROL
  5250. elif tokenizer.IsUnused(token_id):
  5251. toktype = SentencePieceTokenTypes.UNUSED
  5252. elif tokenizer.IsByte(token_id):
  5253. toktype = SentencePieceTokenTypes.BYTE
  5254. tokens[token_id] = text
  5255. scores[token_id] = score
  5256. toktypes[token_id] = toktype
  5257. added_tokens_file = self.dir_model / 'added_tokens.json'
  5258. if added_tokens_file.is_file():
  5259. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5260. added_tokens_json = json.load(f)
  5261. for key in added_tokens_json:
  5262. token_id = added_tokens_json[key]
  5263. if token_id >= vocab_size:
  5264. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5265. continue
  5266. tokens[token_id] = key.encode("utf-8")
  5267. scores[token_id] = -1000.0
  5268. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5269. if vocab_size > len(tokens):
  5270. pad_count = vocab_size - len(tokens)
  5271. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5272. for i in range(1, pad_count + 1):
  5273. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5274. scores.append(-1000.0)
  5275. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5276. self.gguf_writer.add_tokenizer_model("t5")
  5277. self.gguf_writer.add_tokenizer_pre("default")
  5278. self.gguf_writer.add_token_list(tokens)
  5279. self.gguf_writer.add_token_scores(scores)
  5280. self.gguf_writer.add_token_types(toktypes)
  5281. self.gguf_writer.add_add_space_prefix(add_prefix)
  5282. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5283. if precompiled_charsmap:
  5284. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5285. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5286. special_vocab.add_to_gguf(self.gguf_writer)
  5287. def set_gguf_parameters(self):
  5288. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5289. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5290. n_ctx = 512
  5291. self.gguf_writer.add_context_length(n_ctx)
  5292. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5293. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5294. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5295. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5296. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5297. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5298. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5299. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5300. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5301. self.gguf_writer.add_file_type(self.ftype)
  5302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5303. del bid # unused
  5304. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5305. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5306. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5307. # and decoder and ignore the remaining ones.
  5308. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5309. if not self.shared_token_embeddings_found:
  5310. name = "shared.weight"
  5311. self.shared_token_embeddings_found = True
  5312. else:
  5313. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5314. return []
  5315. return [(self.map_tensor_name(name), data_torch)]
  5316. @ModelBase.register("JAISLMHeadModel")
  5317. class JaisModel(TextModel):
  5318. model_arch = gguf.MODEL_ARCH.JAIS
  5319. def __init__(self, *args, **kwargs):
  5320. super().__init__(*args, **kwargs)
  5321. # SwigLU activation
  5322. assert self.hparams["activation_function"] == "swiglu"
  5323. # ALiBi position embedding
  5324. assert self.hparams["position_embedding_type"] == "alibi"
  5325. # Embeddings scale
  5326. self.embeddings_scale = 1.0
  5327. if 'mup_embeddings_scale' in self.hparams:
  5328. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5329. elif 'embeddings_scale' in self.hparams:
  5330. self.embeddings_scale = self.hparams['embeddings_scale']
  5331. else:
  5332. assert False
  5333. self.width_scale = 1.0
  5334. if 'mup_output_alpha' in self.hparams:
  5335. assert 'mup_width_scale' in self.hparams
  5336. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5337. elif 'width_scale' in self.hparams:
  5338. self.width_scale = self.hparams['width_scale']
  5339. else:
  5340. assert False
  5341. self.max_alibi_bias = 8.0
  5342. def set_vocab(self):
  5343. self._set_vocab_gpt2()
  5344. def set_gguf_parameters(self):
  5345. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5346. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5347. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5348. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5349. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5350. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5351. self.gguf_writer.add_file_type(self.ftype)
  5352. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5353. del bid # unused
  5354. tensors: list[tuple[str, Tensor]] = []
  5355. # we don't need these
  5356. if name.endswith((".attn.bias")):
  5357. return tensors
  5358. if name.endswith(("relative_pe.slopes")):
  5359. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5360. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5361. # but Jais's PyTorch model simply precalculates the slope values and places them
  5362. # in relative_pes.slopes
  5363. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5364. first_val = float(data_torch[0].item())
  5365. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5366. return tensors
  5367. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5368. data_torch = data_torch.transpose(1, 0)
  5369. new_name = self.map_tensor_name(name)
  5370. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5371. tensors.append((new_name, data_torch * self.embeddings_scale))
  5372. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5373. tensors.append((new_name, data_torch * self.width_scale))
  5374. else:
  5375. tensors.append((new_name, data_torch))
  5376. return tensors
  5377. def prepare_tensors(self):
  5378. super().prepare_tensors()
  5379. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5380. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5381. class Glm4Model(TextModel):
  5382. model_arch = gguf.MODEL_ARCH.GLM4
  5383. def set_vocab(self):
  5384. from transformers import AutoTokenizer
  5385. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5386. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5387. tokens, toktypes, tokpre = self.get_vocab_base()
  5388. self.gguf_writer.add_tokenizer_model("gpt2")
  5389. self.gguf_writer.add_tokenizer_pre(tokpre)
  5390. self.gguf_writer.add_token_list(tokens)
  5391. self.gguf_writer.add_token_types(toktypes)
  5392. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5393. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5394. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5395. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5396. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5397. special_vocab.add_to_gguf(self.gguf_writer)
  5398. def set_gguf_parameters(self):
  5399. super().set_gguf_parameters()
  5400. if (rope_dim := self.hparams.get("head_dim")) is None:
  5401. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5402. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5403. rope_scaling = self.hparams.get("rope_scaling") or {}
  5404. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5405. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5406. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5407. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5408. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5409. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5410. return []
  5411. elif name.startswith("model.language_model."):
  5412. name = name.replace("language_model.", "") # for Glm4v
  5413. return super().modify_tensors(data_torch, name, bid)
  5414. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5415. class ChatGLMModel(TextModel):
  5416. model_arch = gguf.MODEL_ARCH.CHATGLM
  5417. def set_vocab_chatglm3(self):
  5418. dir_model = self.dir_model
  5419. hparams = self.hparams
  5420. tokens: list[bytes] = []
  5421. toktypes: list[int] = []
  5422. scores: list[float] = []
  5423. from transformers import AutoTokenizer
  5424. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5425. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5426. assert max(tokenizer.get_vocab().values()) < vocab_size
  5427. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5428. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5429. for token_id in range(vocab_size):
  5430. piece = tokenizer._convert_id_to_token(token_id)
  5431. if token_id == 0:
  5432. piece = "<unk>"
  5433. elif token_id == 1:
  5434. piece = "<bos>"
  5435. elif token_id == 2:
  5436. piece = "<eos>"
  5437. text = piece.encode("utf-8")
  5438. score = 0.0
  5439. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5440. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5441. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5442. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5443. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5444. if piece in special_tokens:
  5445. toktype = SentencePieceTokenTypes.CONTROL
  5446. elif len(piece) == 0:
  5447. text = f"[PAD{token_id}]".encode("utf-8")
  5448. toktype = SentencePieceTokenTypes.UNUSED
  5449. else:
  5450. toktype = SentencePieceTokenTypes.USER_DEFINED
  5451. tokens.append(text)
  5452. scores.append(score)
  5453. toktypes.append(toktype)
  5454. continue
  5455. toktype = SentencePieceTokenTypes.NORMAL
  5456. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5457. toktype = SentencePieceTokenTypes.UNKNOWN
  5458. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5459. toktype = SentencePieceTokenTypes.CONTROL
  5460. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5461. toktype = SentencePieceTokenTypes.UNUSED
  5462. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5463. toktype = SentencePieceTokenTypes.BYTE
  5464. tokens.append(text)
  5465. scores.append(score)
  5466. toktypes.append(toktype)
  5467. self.gguf_writer.add_tokenizer_model("llama")
  5468. # glm3 needs prefix and suffix formatted as:
  5469. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5470. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5471. self.gguf_writer.add_token_list(tokens)
  5472. self.gguf_writer.add_token_scores(scores)
  5473. self.gguf_writer.add_token_types(toktypes)
  5474. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5475. special_vocab.add_to_gguf(self.gguf_writer)
  5476. @staticmethod
  5477. def token_bytes_to_string(b):
  5478. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5479. byte_encoder = bytes_to_unicode()
  5480. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5481. @staticmethod
  5482. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5483. parts = [bytes([b]) for b in token]
  5484. while True:
  5485. min_idx = None
  5486. min_rank = None
  5487. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5488. rank = mergeable_ranks.get(pair[0] + pair[1])
  5489. if rank is not None and (min_rank is None or rank < min_rank):
  5490. min_idx = i
  5491. min_rank = rank
  5492. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5493. break
  5494. assert min_idx is not None
  5495. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5496. return parts
  5497. def set_vocab(self):
  5498. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5499. self.set_vocab_chatglm3()
  5500. return
  5501. dir_model = self.dir_model
  5502. hparams = self.hparams
  5503. tokens: list[str] = []
  5504. toktypes: list[int] = []
  5505. from transformers import AutoTokenizer
  5506. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5507. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5508. assert max(tokenizer.get_vocab().values()) < vocab_size
  5509. tokens, toktypes, tokpre = self.get_vocab_base()
  5510. self.gguf_writer.add_tokenizer_model("gpt2")
  5511. self.gguf_writer.add_tokenizer_pre(tokpre)
  5512. self.gguf_writer.add_token_list(tokens)
  5513. self.gguf_writer.add_token_types(toktypes)
  5514. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5515. # only add special tokens when they were not already loaded from config.json
  5516. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5517. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5518. # this one is usually not in config.json anyway
  5519. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5520. special_vocab.add_to_gguf(self.gguf_writer)
  5521. def set_gguf_parameters(self):
  5522. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5523. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5524. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5525. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5526. self.gguf_writer.add_embedding_length(n_embed)
  5527. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5528. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5529. self.gguf_writer.add_head_count(n_head)
  5530. self.gguf_writer.add_head_count_kv(n_head_kv)
  5531. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5532. self.gguf_writer.add_file_type(self.ftype)
  5533. if "attention_dim" in self.hparams:
  5534. rope_dim = self.hparams["attention_dim"]
  5535. else:
  5536. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5537. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5538. self.gguf_writer.add_add_bos_token(False)
  5539. rope_freq = 10000
  5540. if "rope_ratio" in self.hparams:
  5541. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5542. self.gguf_writer.add_rope_freq_base(rope_freq)
  5543. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5544. del bid # unused
  5545. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5546. return []
  5547. name = name.removeprefix("transformer.")
  5548. return [(self.map_tensor_name(name), data_torch)]
  5549. @ModelBase.register("NemotronForCausalLM")
  5550. class NemotronModel(TextModel):
  5551. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5552. def set_vocab(self):
  5553. self._set_vocab_sentencepiece()
  5554. self.gguf_writer.add_pad_token_id(0)
  5555. self.gguf_writer.add_unk_token_id(1)
  5556. def set_gguf_parameters(self):
  5557. super().set_gguf_parameters()
  5558. hparams = self.hparams
  5559. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5560. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5561. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5562. # * Partial RoPE
  5563. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5564. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5565. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5566. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5567. # * RopeScaling for Nemotron
  5568. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5569. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5570. else:
  5571. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5572. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5573. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5574. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5575. # model.layers.{l}.input_layernorm.weight
  5576. # model.layers.{l}.post_attention_layernorm.weight
  5577. # model.norm.weight
  5578. if name.endswith("norm.weight"):
  5579. data_torch = data_torch + 1
  5580. return [(self.map_tensor_name(name), data_torch)]
  5581. @ModelBase.register("ExaoneForCausalLM")
  5582. class ExaoneModel(TextModel):
  5583. model_arch = gguf.MODEL_ARCH.EXAONE
  5584. def set_gguf_parameters(self):
  5585. hparams = self.hparams
  5586. assert (hparams["activation_function"] == "silu")
  5587. max_position_embeddings = hparams["max_position_embeddings"]
  5588. embed_dim = hparams["hidden_size"]
  5589. num_heads = hparams["num_attention_heads"]
  5590. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5591. layer_norm_eps = hparams["layer_norm_epsilon"]
  5592. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5593. num_layers = hparams["num_layers"]
  5594. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5595. # attention_dropout_rate = hparams["attention_dropout"]
  5596. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5597. # embed_dropout_rate = hparams["embed_dropout"]
  5598. self.gguf_writer.add_embedding_length(embed_dim)
  5599. self.gguf_writer.add_head_count(num_heads)
  5600. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5601. self.gguf_writer.add_context_length(max_position_embeddings)
  5602. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5603. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5604. self.gguf_writer.add_block_count(num_layers)
  5605. self.gguf_writer.add_file_type(self.ftype)
  5606. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5607. self.gguf_writer.add_rope_freq_base(rope_theta)
  5608. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5609. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5610. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5611. rope_scaling = self.hparams.get("rope_scaling") or {}
  5612. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5613. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5614. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5615. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5616. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5617. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5618. base = self.hparams.get("rope_theta", 10000.0)
  5619. if (dim := self.hparams.get("head_dim")) is None:
  5620. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5621. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5622. factor = rope_scaling.get("factor", 8.0)
  5623. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5624. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5625. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5626. low_freq_wavelen = old_context_len / low_freq_factor
  5627. high_freq_wavelen = old_context_len / high_freq_factor
  5628. assert low_freq_wavelen != high_freq_wavelen
  5629. rope_factors = []
  5630. for freq in freqs:
  5631. wavelen = 2 * math.pi / freq
  5632. if wavelen < high_freq_wavelen:
  5633. rope_factors.append(1)
  5634. elif wavelen > low_freq_wavelen:
  5635. rope_factors.append(factor)
  5636. else:
  5637. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5638. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5639. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5640. @ModelBase.register("Exaone4ForCausalLM")
  5641. class Exaone4Model(TextModel):
  5642. model_arch = gguf.MODEL_ARCH.EXAONE4
  5643. def set_vocab(self):
  5644. tokens, toktypes, tokpre = self.get_vocab_base()
  5645. self.gguf_writer.add_tokenizer_model("gpt2")
  5646. self.gguf_writer.add_tokenizer_pre(tokpre)
  5647. self.gguf_writer.add_token_list(tokens)
  5648. self.gguf_writer.add_token_types(toktypes)
  5649. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5650. special_vocab.add_to_gguf(self.gguf_writer)
  5651. def set_gguf_parameters(self):
  5652. super().set_gguf_parameters()
  5653. hparams = self.hparams
  5654. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5655. if hparams.get("sliding_window") is not None:
  5656. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5657. if "layer_types" in hparams:
  5658. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5659. elif "sliding_window_pattern" in hparams:
  5660. sliding_window_pattern = []
  5661. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5662. for i in range(hparams["num_hidden_layers"]):
  5663. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5664. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5665. for i in range(hparams["num_hidden_layers"]):
  5666. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5667. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5668. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5669. rope_scaling = self.hparams.get("rope_scaling") or {}
  5670. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5671. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5672. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5673. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5674. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5675. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5676. base = self.hparams.get("rope_theta", 10_000.0)
  5677. if (dim := self.hparams.get("head_dim")) is None:
  5678. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5679. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5680. factor = rope_scaling.get("factor", 16.0)
  5681. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5682. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5683. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5684. low_freq_wavelen = old_context_len / low_freq_factor
  5685. high_freq_wavelen = old_context_len / high_freq_factor
  5686. rope_factors = []
  5687. for freq in freqs:
  5688. wavelen = 2 * math.pi / freq
  5689. if wavelen < high_freq_wavelen:
  5690. rope_factors.append(1)
  5691. elif wavelen > low_freq_wavelen:
  5692. rope_factors.append(factor)
  5693. else:
  5694. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5695. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5696. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5697. @ModelBase.register("GraniteForCausalLM")
  5698. class GraniteModel(LlamaModel):
  5699. """Conversion for IBM's GraniteForCausalLM"""
  5700. model_arch = gguf.MODEL_ARCH.GRANITE
  5701. def set_gguf_parameters(self):
  5702. """Granite uses standard llama parameters with the following differences:
  5703. - No head_dim support
  5704. - New multiplier params:
  5705. - attention_scale
  5706. - embedding_scale
  5707. - residual_scale
  5708. - logits_scaling
  5709. """
  5710. if head_dim := self.hparams.pop("head_dim", None):
  5711. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5712. super().set_gguf_parameters()
  5713. # NOTE: Convert _multiplier params to _scale params for naming
  5714. # consistency
  5715. if attention_scale := self.hparams.get("attention_multiplier"):
  5716. self.gguf_writer.add_attention_scale(attention_scale)
  5717. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5718. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5719. self.gguf_writer.add_embedding_scale(embedding_scale)
  5720. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5721. if residual_scale := self.hparams.get("residual_multiplier"):
  5722. self.gguf_writer.add_residual_scale(residual_scale)
  5723. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5724. if logits_scale := self.hparams.get("logits_scaling"):
  5725. self.gguf_writer.add_logit_scale(logits_scale)
  5726. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5727. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5728. class GraniteMoeModel(GraniteModel):
  5729. """Conversion for IBM's GraniteMoeForCausalLM"""
  5730. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5731. def set_gguf_parameters(self):
  5732. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5733. - shared_intermediate_size
  5734. """
  5735. super().set_gguf_parameters()
  5736. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5737. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5738. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5740. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5741. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5742. the hidden size that is then split during forward. To keep compatibility
  5743. with existing mixtral support, we pull them apart here.
  5744. """
  5745. if name.endswith("block_sparse_moe.input_linear.weight"):
  5746. ffn_dim = self.hparams["intermediate_size"]
  5747. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5748. gate, up = data_torch.split(ffn_dim, dim=-2)
  5749. return [
  5750. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5751. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5752. ]
  5753. has_experts = bool(self.hparams.get('num_local_experts'))
  5754. if name.endswith("shared_mlp.input_linear.weight"):
  5755. ffn_dim = self.hparams["shared_intermediate_size"]
  5756. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5757. gate, up = data_torch.split(ffn_dim, dim=-2)
  5758. if has_experts:
  5759. return [
  5760. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5761. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5762. ]
  5763. return [
  5764. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5765. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5766. ]
  5767. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5768. return [
  5769. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5770. ]
  5771. return super().modify_tensors(data_torch, name, bid)
  5772. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5773. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5774. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5775. layers and optionally uses MoE w/ a shared expert"""
  5776. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5777. undo_permute = True
  5778. def __init__(self, *args, **kwargs):
  5779. # Hybrid mamba models use a prefix for the mamba-specific params.
  5780. # TODO: Extend this if the prefix(es) need to be configurable
  5781. self.hparam_prefixes = ["mamba"]
  5782. super().__init__(*args, **kwargs)
  5783. # Lists of which layers use ssm vs attention
  5784. self._attn_layers = self.get_attn_layers()
  5785. self._ssm_layers = [
  5786. i for i in range(self.block_count)
  5787. if i not in self._attn_layers
  5788. ]
  5789. # n_group and d_inner are used during reshape_tensors for mamba2
  5790. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5791. self.n_group = self.find_hparam(["n_groups"])
  5792. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5793. def get_attn_layers(self):
  5794. # Explicit list of layer type names
  5795. if layer_types := self.hparams.get("layer_types"):
  5796. return [
  5797. i for i, typ in enumerate(layer_types)
  5798. if typ == "attention"
  5799. ]
  5800. # Layer types indicated by index or period
  5801. attn_layers = self.hparams.get("attn_layer_indices", [])
  5802. if not attn_layers:
  5803. attn_period = self.hparams.get("attn_layer_period")
  5804. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5805. attn_offset = self.hparams.get("attn_layer_offset")
  5806. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5807. attn_layers = [
  5808. i for i in range(self.block_count)
  5809. if i % attn_period == attn_offset
  5810. ]
  5811. return attn_layers
  5812. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5813. prefixed = []
  5814. for pfx in self.hparam_prefixes:
  5815. prefixed.extend(
  5816. "_".join([pfx, k])
  5817. for k in keys
  5818. )
  5819. keys = list(keys) + prefixed
  5820. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5821. def modify_tensors(
  5822. self, data_torch: Tensor, name: str, bid: int | None
  5823. ) -> Iterable[tuple[str, Tensor]]:
  5824. if (
  5825. name.endswith("block_sparse_moe.input_linear.weight")
  5826. or "shared_mlp" in name
  5827. ):
  5828. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5829. # Determine whether this is a mamba layer or an attention layer
  5830. if bid in self._ssm_layers:
  5831. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5832. elif bid in self._attn_layers:
  5833. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5834. return [(self.map_tensor_name(name), data_torch)]
  5835. def set_gguf_parameters(self):
  5836. """This method merges params from both parents and some that are
  5837. specific to this model. The result is some duplication of how the params
  5838. get set. The following warnings are expected during conversion:
  5839. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5840. WARNING:Duplicated key name 'granitehybrid.context_length'
  5841. """
  5842. GraniteMoeModel.set_gguf_parameters(self)
  5843. ## Mamba mixer params ##
  5844. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5845. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5846. self.gguf_writer.add_ssm_group_count(self.n_group)
  5847. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5848. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5849. # in llama.cpp
  5850. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5851. ## Attention params ##
  5852. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5853. head_count_kv_vec = [
  5854. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5855. ]
  5856. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5857. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5858. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5859. ## If Bamba, use rope, otherwise don't
  5860. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5861. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5862. if not use_rope:
  5863. self.gguf_writer.add_context_length(2**20)
  5864. ## Validation ##
  5865. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5866. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5867. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5868. def set_vocab(self):
  5869. self.hparams["pad_vocab_size_multiple"] = 8
  5870. Mamba2Model.set_vocab(self)
  5871. @ModelBase.register("BailingMoeForCausalLM")
  5872. class BailingMoeModel(TextModel):
  5873. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5874. def set_vocab(self):
  5875. self._set_vocab_gpt2()
  5876. def set_gguf_parameters(self):
  5877. super().set_gguf_parameters()
  5878. hparams = self.hparams
  5879. if (rope_dim := hparams.get("head_dim")) is None:
  5880. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5881. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5882. rope_scaling = self.hparams.get("rope_scaling") or {}
  5883. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5884. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5885. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5886. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5887. else:
  5888. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5889. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5890. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5891. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5892. self.gguf_writer.add_expert_weights_scale(1.0)
  5893. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5894. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5895. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5896. _experts: list[dict[str, Tensor]] | None = None
  5897. @staticmethod
  5898. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5899. if n_head_kv is not None and n_head != n_head_kv:
  5900. n_head = n_head_kv
  5901. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5902. .swapaxes(1, 2)
  5903. .reshape(weights.shape))
  5904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5905. n_head = self.hparams["num_attention_heads"]
  5906. n_kv_head = self.hparams.get("num_key_value_heads")
  5907. n_embd = self.hparams["hidden_size"]
  5908. if (head_dim := self.hparams.get("head_dim")) is None:
  5909. head_dim = n_embd // n_head
  5910. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5911. if name.endswith("attention.dense.weight"):
  5912. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5913. elif name.endswith("query_key_value.weight"):
  5914. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5915. return [
  5916. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5917. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5918. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5919. ]
  5920. elif name.find("mlp.experts") != -1:
  5921. n_experts = self.hparams["num_experts"]
  5922. assert bid is not None
  5923. tensors: list[tuple[str, Tensor]] = []
  5924. if self._experts is None:
  5925. self._experts = [{} for _ in range(self.block_count)]
  5926. self._experts[bid][name] = data_torch
  5927. if len(self._experts[bid]) >= n_experts * 3:
  5928. # merge the experts into a single 3d tensor
  5929. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5930. datas: list[Tensor] = []
  5931. for xid in range(n_experts):
  5932. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5933. datas.append(self._experts[bid][ename])
  5934. del self._experts[bid][ename]
  5935. data_torch = torch.stack(datas, dim=0)
  5936. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5937. new_name = self.map_tensor_name(merged_name)
  5938. tensors.append((new_name, data_torch))
  5939. return tensors
  5940. new_name = self.map_tensor_name(name)
  5941. if new_name == output_name and self.hparams.get("norm_head"):
  5942. data_torch = data_torch.float()
  5943. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5944. return [(new_name, data_torch)]
  5945. def prepare_tensors(self):
  5946. super().prepare_tensors()
  5947. if self._experts is not None:
  5948. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5949. experts = [k for d in self._experts for k in d.keys()]
  5950. if len(experts) > 0:
  5951. raise ValueError(f"Unprocessed experts: {experts}")
  5952. @ModelBase.register("ChameleonForConditionalGeneration")
  5953. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5954. class ChameleonModel(TextModel):
  5955. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5956. def set_gguf_parameters(self):
  5957. super().set_gguf_parameters()
  5958. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5959. def set_vocab(self):
  5960. self._set_vocab_gpt2()
  5961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5962. # ignore image tokenizer for now
  5963. # TODO: remove this once image support is implemented for Chameleon
  5964. if name.startswith("model.vqmodel"):
  5965. return []
  5966. n_head = self.hparams["num_attention_heads"]
  5967. n_kv_head = self.hparams.get("num_key_value_heads")
  5968. hidden_dim = self.hparams.get("hidden_size")
  5969. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5970. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5971. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5972. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5973. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5974. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5975. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5976. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5977. return [(self.map_tensor_name(name), data_torch)]
  5978. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5979. @staticmethod
  5980. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5981. head_dim = hidden_dim // n_heads
  5982. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5983. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5984. return data_torch
  5985. @ModelBase.register("UltravoxModel")
  5986. class UltravoxModel(TextModel):
  5987. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5988. def __init__(self, *args, **kwargs):
  5989. super().__init__(*args, **kwargs)
  5990. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5991. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5992. class WhisperEncoderModel(MmprojModel):
  5993. has_vision_encoder = False # no vision encoder
  5994. has_audio_encoder = True
  5995. def __init__(self, *args, **kwargs):
  5996. super().__init__(*args, **kwargs)
  5997. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  5998. self.hparams["hidden_size"] = self.hparams["d_model"]
  5999. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6000. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6001. def set_gguf_parameters(self):
  6002. super().set_gguf_parameters()
  6003. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6004. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6005. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6006. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6007. del bid, new_name, n_dims # unused
  6008. if ".conv" in name and ".weight" in name:
  6009. return gguf.GGMLQuantizationType.F16
  6010. return False
  6011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6012. del bid # unused
  6013. if name.startswith("language_model."):
  6014. # skip language model tensors
  6015. return []
  6016. # prevent clash naming with vision tensors
  6017. if name.startswith("multi_modal_projector"):
  6018. name = "audio." + name
  6019. if "conv1.bias" in name or "conv2.bias" in name:
  6020. # transpose conv1 and conv2 bias
  6021. data_torch = data_torch.unsqueeze(-1)
  6022. return [(self.map_tensor_name(name), data_torch)]
  6023. @ModelBase.register("UltravoxModel")
  6024. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6025. has_vision_encoder = False # no vision encoder
  6026. has_audio_encoder = True
  6027. def set_gguf_parameters(self):
  6028. super().set_gguf_parameters()
  6029. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6030. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6031. @ModelBase.register("VoxtralForConditionalGeneration")
  6032. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6033. has_vision_encoder = False # no vision encoder
  6034. has_audio_encoder = True
  6035. def set_gguf_parameters(self):
  6036. super().set_gguf_parameters()
  6037. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6038. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6039. @ModelBase.register("FalconH1ForCausalLM")
  6040. class FalconH1Model(Mamba2Model):
  6041. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6042. def __init__(self, *args, **kwargs):
  6043. # Set the hparam prefixes for Falcon Mamba2
  6044. self.hparam_prefixes = ["mamba"]
  6045. # Initialize the base Mamba2Model
  6046. super().__init__(*args, **kwargs)
  6047. # Use Llama conversion for attention
  6048. self._transformer_model_class = LlamaModel
  6049. # n_group and d_inner are used during reshape_tensors for mamba2
  6050. self.n_group = self.find_hparam(["n_groups"])
  6051. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6052. self.d_head = self.find_hparam(["d_head"])
  6053. # Initialize any Falcon Mamba2 specific attributes
  6054. self.has_attention = True # Falcon Mamba2 has attention components
  6055. # Load Falcon-H1 multipliers from hyperparameters
  6056. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6057. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6058. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6059. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6060. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6061. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6062. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6063. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6064. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6065. prefixed = []
  6066. for pfx in self.hparam_prefixes:
  6067. prefixed.extend(
  6068. "_".join([pfx, k])
  6069. for k in keys
  6070. )
  6071. keys = list(keys) + prefixed
  6072. return super().find_hparam(keys, *args, **kwargs)
  6073. def set_vocab(self):
  6074. self._set_vocab_gpt2()
  6075. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6076. tensors = list(super().modify_tensors(data_torch, name, bid))
  6077. tensor = tensors[0][1]
  6078. if "down_proj" in name:
  6079. tensor = tensor * self.mlp_multipliers[1]
  6080. elif "gate_proj" in name:
  6081. tensor = tensor * self.mlp_multipliers[0]
  6082. elif "k_proj" in name:
  6083. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6084. elif "q_proj" in name:
  6085. tensor = tensor * self.attention_in_multiplier
  6086. elif "v_proj" in name:
  6087. tensor = tensor * self.attention_in_multiplier
  6088. elif "o_proj" in name:
  6089. tensor = tensor * self.attention_out_multiplier
  6090. elif "out_proj" in name:
  6091. tensor = tensor * self.ssm_out_multiplier
  6092. elif "in_proj" in name:
  6093. tensor = tensor * self.ssm_in_multiplier
  6094. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6095. intermediate_size = self.hparams["mamba_d_ssm"]
  6096. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6097. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6098. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6099. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6100. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6101. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6102. elif "lm_head" in name:
  6103. tensor = tensor * self.hparams["lm_head_multiplier"]
  6104. elif "embed_tokens" in name:
  6105. tensor = tensor * self.hparams["embedding_multiplier"]
  6106. elif "mamba.norm" in name:
  6107. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6108. tensors = [(tensors[0][0], tensor)]
  6109. return tensors
  6110. def set_gguf_parameters(self):
  6111. super().set_gguf_parameters()
  6112. ## General Params ##
  6113. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6114. # Override some Mamba2 defaults
  6115. self.gguf_writer.add_block_count(self.block_count)
  6116. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6117. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6118. ## Attention params ##
  6119. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6120. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6121. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6122. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6123. ## Validation ##
  6124. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6125. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6126. # Add any other Falcon Mamba2 specific configuration
  6127. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6128. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6129. class HunYuanMoEModel(TextModel):
  6130. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6131. def set_vocab(self):
  6132. from transformers import AutoTokenizer
  6133. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6134. # 1. Get the pre-tokenizer identifier hash
  6135. tokpre = self.get_vocab_base_pre(tokenizer)
  6136. # 2. Reverse-engineer the merges list from mergeable_ranks
  6137. merges = []
  6138. vocab = {}
  6139. mergeable_ranks = tokenizer.mergeable_ranks
  6140. for token, rank in mergeable_ranks.items():
  6141. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6142. if len(token) == 1:
  6143. continue
  6144. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6145. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6146. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6147. # 3. Generate the tokens and toktypes lists
  6148. vocab_size = self.hparams["vocab_size"]
  6149. assert tokenizer.vocab_size == vocab_size
  6150. special_tokens = tokenizer.special_tokens
  6151. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6152. tokens: list[str] = []
  6153. toktypes: list[int] = []
  6154. for i in range(vocab_size):
  6155. if i not in reverse_vocab:
  6156. tokens.append(f"[PAD{i}]")
  6157. toktypes.append(gguf.TokenType.UNUSED)
  6158. else:
  6159. token = reverse_vocab[i]
  6160. tokens.append(token)
  6161. if i in special_tokens.values():
  6162. toktypes.append(gguf.TokenType.CONTROL)
  6163. else:
  6164. toktypes.append(gguf.TokenType.NORMAL)
  6165. # 4. Write all vocab-related fields to the GGUF writer
  6166. self.gguf_writer.add_tokenizer_model("gpt2")
  6167. self.gguf_writer.add_tokenizer_pre(tokpre)
  6168. self.gguf_writer.add_token_list(tokens)
  6169. self.gguf_writer.add_token_types(toktypes)
  6170. self.gguf_writer.add_token_merges(merges)
  6171. # 5. Add special tokens and chat templates
  6172. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6173. special_vocab.add_to_gguf(self.gguf_writer)
  6174. # FIX for BOS token: Overwrite incorrect id read from config.json
  6175. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6176. def set_gguf_parameters(self):
  6177. super().set_gguf_parameters()
  6178. hparams = self.hparams
  6179. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6180. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6181. moe_intermediate_size = hparams["moe_intermediate_size"]
  6182. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6183. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6184. moe_topk = hparams["moe_topk"]
  6185. assert all(topk == moe_topk[0] for topk in moe_topk)
  6186. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6187. moe_shared_expert = hparams["num_shared_expert"]
  6188. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6189. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6190. # Rope
  6191. rope_scaling = hparams.get("rope_scaling", {})
  6192. if rope_scaling.get("type") == "dynamic":
  6193. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6194. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6195. alpha = rope_scaling.get("alpha", 1000)
  6196. base = hparams.get("rope_theta", 10000.0)
  6197. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6198. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6199. self.gguf_writer.add_rope_freq_base(scaled_base)
  6200. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6201. self.gguf_writer.add_rope_scaling_factor(1)
  6202. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6203. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6204. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6205. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6206. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6207. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6208. _experts: list[dict[str, Tensor]] | None = None
  6209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6210. if name == "lm_head.weight":
  6211. if self.hparams.get("tie_word_embeddings", False):
  6212. logger.info("Skipping tied output layer 'lm_head.weight'")
  6213. return []
  6214. if name.find("mlp.experts") != -1:
  6215. n_experts = self.hparams["num_experts"]
  6216. assert bid is not None
  6217. if self._experts is None:
  6218. self._experts = [{} for _ in range(self.block_count)]
  6219. self._experts[bid][name] = data_torch
  6220. if len(self._experts[bid]) >= n_experts * 3:
  6221. # merge the experts into a single 3d tensor
  6222. tensors: list[tuple[str, Tensor]] = []
  6223. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6224. datas: list[Tensor] = []
  6225. for xid in range(n_experts):
  6226. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6227. datas.append(self._experts[bid][ename])
  6228. del self._experts[bid][ename]
  6229. data_torch = torch.stack(datas, dim=0)
  6230. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6231. new_name = self.map_tensor_name(merged_name)
  6232. tensors.append((new_name, data_torch))
  6233. return tensors
  6234. else:
  6235. return []
  6236. return [(self.map_tensor_name(name), data_torch)]
  6237. def prepare_tensors(self):
  6238. super().prepare_tensors()
  6239. if self._experts is not None:
  6240. experts = [k for d in self._experts for k in d.keys()]
  6241. if len(experts) > 0:
  6242. raise ValueError(f"Unprocessed experts: {experts}")
  6243. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6244. class HunYuanModel(TextModel):
  6245. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6246. def set_vocab(self):
  6247. if (self.dir_model / "tokenizer.json").is_file():
  6248. self._set_vocab_gpt2()
  6249. else:
  6250. from transformers import AutoTokenizer
  6251. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6252. # 1. Get the pre-tokenizer identifier hash
  6253. tokpre = self.get_vocab_base_pre(tokenizer)
  6254. # 2. Reverse-engineer the merges list from mergeable_ranks
  6255. merges = []
  6256. vocab = {}
  6257. mergeable_ranks = tokenizer.mergeable_ranks
  6258. for token, rank in mergeable_ranks.items():
  6259. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6260. if len(token) == 1:
  6261. continue
  6262. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6263. if len(merged) == 2:
  6264. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6265. # 3. Generate the tokens and toktypes lists
  6266. vocab_size = self.hparams["vocab_size"]
  6267. assert tokenizer.vocab_size == vocab_size
  6268. special_tokens = tokenizer.special_tokens
  6269. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6270. tokens: list[str] = []
  6271. toktypes: list[int] = []
  6272. for i in range(vocab_size):
  6273. if i not in reverse_vocab:
  6274. tokens.append(f"[PAD{i}]")
  6275. toktypes.append(gguf.TokenType.UNUSED)
  6276. else:
  6277. token = reverse_vocab[i]
  6278. tokens.append(token)
  6279. if i in special_tokens.values():
  6280. toktypes.append(gguf.TokenType.CONTROL)
  6281. else:
  6282. toktypes.append(gguf.TokenType.NORMAL)
  6283. # 4. Write all vocab-related fields to the GGUF writer
  6284. self.gguf_writer.add_tokenizer_model("gpt2")
  6285. self.gguf_writer.add_tokenizer_pre(tokpre)
  6286. self.gguf_writer.add_token_list(tokens)
  6287. self.gguf_writer.add_token_types(toktypes)
  6288. self.gguf_writer.add_token_merges(merges)
  6289. # 5. Add special tokens and chat templates
  6290. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6291. special_vocab.add_to_gguf(self.gguf_writer)
  6292. # FIX for BOS token: Overwrite incorrect id read from config.json
  6293. if self.hparams['hidden_size'] == 4096:
  6294. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6295. def set_gguf_parameters(self):
  6296. super().set_gguf_parameters()
  6297. hparams = self.hparams
  6298. # Rope
  6299. rope_scaling = hparams.get("rope_scaling", {})
  6300. if rope_scaling.get("type") == "dynamic":
  6301. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6302. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6303. alpha = rope_scaling.get("alpha", 50)
  6304. base = hparams.get("rope_theta", 10000.0)
  6305. dim = hparams["head_dim"]
  6306. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6307. self.gguf_writer.add_rope_freq_base(scaled_base)
  6308. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6309. self.gguf_writer.add_rope_scaling_factor(1)
  6310. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6311. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6312. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6313. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6314. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6315. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6317. if name == "lm_head.weight":
  6318. if self.hparams.get("tie_word_embeddings", False):
  6319. logger.info("Skipping tied output layer 'lm_head.weight'")
  6320. return []
  6321. return [(self.map_tensor_name(name), data_torch)]
  6322. @ModelBase.register("SmolLM3ForCausalLM")
  6323. class SmolLM3Model(LlamaModel):
  6324. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6325. def set_vocab(self):
  6326. super().set_vocab()
  6327. # remove unsupported array slicing in chat template
  6328. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6329. from transformers import AutoTokenizer
  6330. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6331. if tokenizer.chat_template is not None:
  6332. chat_template = tokenizer.chat_template.replace("[:]", "")
  6333. self.gguf_writer.add_chat_template(chat_template)
  6334. @ModelBase.register("Lfm2ForCausalLM")
  6335. @ModelBase.register("LFM2ForCausalLM")
  6336. class LFM2Model(TextModel):
  6337. model_arch = gguf.MODEL_ARCH.LFM2
  6338. def _add_feed_forward_length(self):
  6339. ff_dim = self.hparams["block_ff_dim"]
  6340. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6341. ff_dim = self.hparams["block_ff_dim"]
  6342. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6343. multiple_of = self.hparams["block_multiple_of"]
  6344. if auto_adjust_ff_dim:
  6345. ff_dim = int(2 * ff_dim / 3)
  6346. # custom dim factor multiplier
  6347. if ffn_dim_multiplier is not None:
  6348. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6349. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6350. self.gguf_writer.add_feed_forward_length(ff_dim)
  6351. def set_gguf_parameters(self):
  6352. # set num_key_value_heads only for attention layers
  6353. self.hparams["num_key_value_heads"] = [
  6354. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6355. for layer_type in self.hparams["layer_types"]
  6356. ]
  6357. super().set_gguf_parameters()
  6358. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6359. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6360. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6361. self._add_feed_forward_length()
  6362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6363. # conv op requires 2d tensor
  6364. if 'conv.conv' in name:
  6365. data_torch = data_torch.squeeze(1)
  6366. return [(self.map_tensor_name(name), data_torch)]
  6367. @ModelBase.register("SmallThinkerForCausalLM")
  6368. class SmallThinkerModel(TextModel):
  6369. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6370. def set_gguf_parameters(self):
  6371. super().set_gguf_parameters()
  6372. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6373. self.gguf_writer.add_expert_count(n_experts)
  6374. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6375. self.gguf_writer.add_expert_used_count(n_experts_used)
  6376. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6377. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6378. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6379. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6380. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6381. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6382. else:
  6383. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6384. # YaRN is not enabled by default
  6385. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6386. rope_scaling = self.hparams.get("rope_scaling") or {}
  6387. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6388. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6389. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6390. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6391. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6392. if sliding_window_layout:
  6393. for i in sliding_window_layout:
  6394. if i != 0:
  6395. sliding_window = self.hparams.get("sliding_window_size")
  6396. if sliding_window:
  6397. self.gguf_writer.add_sliding_window(sliding_window)
  6398. break
  6399. _experts: list[dict[str, Tensor]] | None = None
  6400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6401. # process the experts separately
  6402. if name.find("experts") != -1:
  6403. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6404. assert bid is not None
  6405. if self._experts is None:
  6406. self._experts = [{} for _ in range(self.block_count)]
  6407. self._experts[bid][name] = data_torch
  6408. if len(self._experts[bid]) >= n_experts * 3:
  6409. tensors: list[tuple[str, Tensor]] = []
  6410. # merge the experts into a single 3d tensor
  6411. for w_name in ["down", "gate", "up"]:
  6412. datas: list[Tensor] = []
  6413. for xid in range(n_experts):
  6414. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6415. datas.append(self._experts[bid][ename])
  6416. del self._experts[bid][ename]
  6417. data_torch = torch.stack(datas, dim=0)
  6418. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6419. new_name = self.map_tensor_name(merged_name)
  6420. tensors.append((new_name, data_torch))
  6421. return tensors
  6422. else:
  6423. return []
  6424. return [(self.map_tensor_name(name), data_torch)]
  6425. def prepare_tensors(self):
  6426. super().prepare_tensors()
  6427. if self._experts is not None:
  6428. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6429. experts = [k for d in self._experts for k in d.keys()]
  6430. if len(experts) > 0:
  6431. raise ValueError(f"Unprocessed experts: {experts}")
  6432. ###### CONVERSION LOGIC ######
  6433. # tree of lazy tensors
  6434. class LazyTorchTensor(gguf.LazyBase):
  6435. _tensor_type = torch.Tensor
  6436. # to keep the type-checker happy
  6437. dtype: torch.dtype
  6438. shape: torch.Size
  6439. # only used when converting a torch.Tensor to a np.ndarray
  6440. _dtype_map: dict[torch.dtype, type] = {
  6441. torch.float16: np.float16,
  6442. torch.float32: np.float32,
  6443. }
  6444. # used for safetensors slices
  6445. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6446. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6447. _dtype_str_map: dict[str, torch.dtype] = {
  6448. "F64": torch.float64,
  6449. "F32": torch.float32,
  6450. "BF16": torch.bfloat16,
  6451. "F16": torch.float16,
  6452. # "U64": torch.uint64,
  6453. "I64": torch.int64,
  6454. # "U32": torch.uint32,
  6455. "I32": torch.int32,
  6456. # "U16": torch.uint16,
  6457. "I16": torch.int16,
  6458. "U8": torch.uint8,
  6459. "I8": torch.int8,
  6460. "BOOL": torch.bool,
  6461. "F8_E4M3": torch.float8_e4m3fn,
  6462. "F8_E5M2": torch.float8_e5m2,
  6463. }
  6464. def numpy(self) -> gguf.LazyNumpyTensor:
  6465. dtype = self._dtype_map[self.dtype]
  6466. return gguf.LazyNumpyTensor(
  6467. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6468. args=(self,),
  6469. func=(lambda s: s.numpy())
  6470. )
  6471. @classmethod
  6472. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6473. return torch.empty(size=shape, dtype=dtype, device="meta")
  6474. @classmethod
  6475. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6476. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6477. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6478. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6479. return cast(torch.Tensor, lazy)
  6480. @classmethod
  6481. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6482. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6483. shape = remote_tensor.shape
  6484. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6485. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6486. return cast(torch.Tensor, lazy)
  6487. @classmethod
  6488. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6489. del types # unused
  6490. if kwargs is None:
  6491. kwargs = {}
  6492. if func is torch.Tensor.numpy:
  6493. return args[0].numpy()
  6494. return cls._wrap_fn(func)(*args, **kwargs)
  6495. def parse_args() -> argparse.Namespace:
  6496. parser = argparse.ArgumentParser(
  6497. description="Convert a huggingface model to a GGML compatible file")
  6498. parser.add_argument(
  6499. "--vocab-only", action="store_true",
  6500. help="extract only the vocab",
  6501. )
  6502. parser.add_argument(
  6503. "--outfile", type=Path,
  6504. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6505. )
  6506. parser.add_argument(
  6507. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6508. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6509. )
  6510. parser.add_argument(
  6511. "--bigendian", action="store_true",
  6512. help="model is executed on big endian machine",
  6513. )
  6514. parser.add_argument(
  6515. "model", type=str,
  6516. help="directory containing model file or huggingface repository ID (if --remote)",
  6517. nargs="?",
  6518. )
  6519. parser.add_argument(
  6520. "--use-temp-file", action="store_true",
  6521. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6522. )
  6523. parser.add_argument(
  6524. "--no-lazy", action="store_true",
  6525. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6526. )
  6527. parser.add_argument(
  6528. "--model-name", type=str, default=None,
  6529. help="name of the model",
  6530. )
  6531. parser.add_argument(
  6532. "--verbose", action="store_true",
  6533. help="increase output verbosity",
  6534. )
  6535. parser.add_argument(
  6536. "--split-max-tensors", type=int, default=0,
  6537. help="max tensors in each split",
  6538. )
  6539. parser.add_argument(
  6540. "--split-max-size", type=str, default="0",
  6541. help="max size per split N(M|G)",
  6542. )
  6543. parser.add_argument(
  6544. "--dry-run", action="store_true",
  6545. help="only print out a split plan and exit, without writing any new files",
  6546. )
  6547. parser.add_argument(
  6548. "--no-tensor-first-split", action="store_true",
  6549. help="do not add tensors to the first split (disabled by default)"
  6550. )
  6551. parser.add_argument(
  6552. "--metadata", type=Path,
  6553. help="Specify the path for an authorship metadata override file"
  6554. )
  6555. parser.add_argument(
  6556. "--print-supported-models", action="store_true",
  6557. help="Print the supported models"
  6558. )
  6559. parser.add_argument(
  6560. "--remote", action="store_true",
  6561. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6562. )
  6563. parser.add_argument(
  6564. "--mmproj", action="store_true",
  6565. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6566. )
  6567. args = parser.parse_args()
  6568. if not args.print_supported_models and args.model is None:
  6569. parser.error("the following arguments are required: model")
  6570. return args
  6571. def split_str_to_n_bytes(split_str: str) -> int:
  6572. if split_str.endswith("K"):
  6573. n = int(split_str[:-1]) * 1000
  6574. elif split_str.endswith("M"):
  6575. n = int(split_str[:-1]) * 1000 * 1000
  6576. elif split_str.endswith("G"):
  6577. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6578. elif split_str.isnumeric():
  6579. n = int(split_str)
  6580. else:
  6581. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6582. if n < 0:
  6583. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6584. return n
  6585. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6586. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6587. # maybe we should fallback to text model's arch in that case, since not many models have both
  6588. text_config = hparams.get("text_config", {})
  6589. vision_config = hparams.get("vision_config", {})
  6590. arch = None
  6591. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6592. arch = arches[0]
  6593. elif "ssm_cfg" in hparams:
  6594. # For non-hf Mamba and Mamba2 models
  6595. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6596. # if "architectures" is found in the sub-config, use that instead
  6597. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6598. arch = text_config["architectures"][0]
  6599. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6600. arch = vision_config["architectures"][0]
  6601. if arch is None:
  6602. raise ValueError("Failed to detect model architecture")
  6603. return arch
  6604. def main() -> None:
  6605. args = parse_args()
  6606. if args.print_supported_models:
  6607. logger.error("Supported models:")
  6608. ModelBase.print_registered_models()
  6609. sys.exit(0)
  6610. if args.verbose:
  6611. logging.basicConfig(level=logging.DEBUG)
  6612. else:
  6613. logging.basicConfig(level=logging.INFO)
  6614. if args.remote:
  6615. hf_repo_id = args.model
  6616. from huggingface_hub import snapshot_download
  6617. local_dir = snapshot_download(
  6618. repo_id=hf_repo_id,
  6619. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6620. dir_model = Path(local_dir)
  6621. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6622. else:
  6623. hf_repo_id = None
  6624. dir_model = Path(args.model)
  6625. if not dir_model.is_dir():
  6626. logger.error(f'Error: {dir_model} is not a directory')
  6627. sys.exit(1)
  6628. ftype_map: dict[str, gguf.LlamaFileType] = {
  6629. "f32": gguf.LlamaFileType.ALL_F32,
  6630. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6631. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6632. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6633. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6634. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6635. "auto": gguf.LlamaFileType.GUESSED,
  6636. }
  6637. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6638. if args.use_temp_file and is_split:
  6639. logger.error("Error: Cannot use temp file when splitting")
  6640. sys.exit(1)
  6641. if args.outfile is not None:
  6642. fname_out = args.outfile
  6643. elif hf_repo_id:
  6644. # if remote, use the model ID as the output file name
  6645. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6646. else:
  6647. fname_out = dir_model
  6648. logger.info(f"Loading model: {dir_model.name}")
  6649. if args.mmproj:
  6650. if "mmproj" not in fname_out.name:
  6651. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6652. with torch.inference_mode():
  6653. output_type = ftype_map[args.outtype]
  6654. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6655. hparams = ModelBase.load_hparams(dir_model)
  6656. model_architecture = get_model_architecture(hparams, model_type)
  6657. logger.info(f"Model architecture: {model_architecture}")
  6658. try:
  6659. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6660. except NotImplementedError:
  6661. logger.error(f"Model {model_architecture} is not supported")
  6662. sys.exit(1)
  6663. model_instance = model_class(dir_model, output_type, fname_out,
  6664. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6665. eager=args.no_lazy,
  6666. metadata_override=args.metadata, model_name=args.model_name,
  6667. split_max_tensors=args.split_max_tensors,
  6668. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6669. small_first_shard=args.no_tensor_first_split,
  6670. remote_hf_model_id=hf_repo_id)
  6671. if args.vocab_only:
  6672. logger.info("Exporting model vocab...")
  6673. model_instance.write_vocab()
  6674. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6675. else:
  6676. logger.info("Exporting model...")
  6677. model_instance.write()
  6678. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6679. logger.info(f"Model successfully exported to {out_path}")
  6680. if __name__ == '__main__':
  6681. main()