ggml.h 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdbool.h>
  212. #include <stddef.h>
  213. #include <stdint.h>
  214. #include <stdio.h>
  215. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  216. #define GGML_FILE_VERSION 1
  217. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  218. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  219. #define GGML_MAX_DIMS 4
  220. #define GGML_MAX_PARAMS 2048
  221. #define GGML_MAX_CONTEXTS 64
  222. #define GGML_MAX_SRC 10
  223. #ifndef GGML_MAX_NAME
  224. #define GGML_MAX_NAME 64
  225. #endif
  226. #define GGML_MAX_OP_PARAMS 64
  227. #define GGML_DEFAULT_N_THREADS 4
  228. #define GGML_DEFAULT_GRAPH_SIZE 2048
  229. #if UINTPTR_MAX == 0xFFFFFFFF
  230. #define GGML_MEM_ALIGN 4
  231. #else
  232. #define GGML_MEM_ALIGN 16
  233. #endif
  234. #define GGML_EXIT_SUCCESS 0
  235. #define GGML_EXIT_ABORTED 1
  236. #define GGUF_MAGIC "GGUF"
  237. #define GGUF_VERSION 3
  238. #define GGUF_DEFAULT_ALIGNMENT 32
  239. #define GGML_UNUSED(x) (void)(x)
  240. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  241. #define GGML_ASSERT(x) \
  242. do { \
  243. if (!(x)) { \
  244. fflush(stdout); \
  245. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  246. ggml_print_backtrace(); \
  247. abort(); \
  248. } \
  249. } while (0)
  250. #ifndef NDEBUG
  251. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  252. #elif defined(__GNUC__)
  253. #define GGML_UNREACHABLE() __builtin_unreachable()
  254. #elif defined(_MSC_VER)
  255. #define GGML_UNREACHABLE() __assume(0)
  256. #else
  257. #define GGML_UNREACHABLE() ((void) 0)
  258. #endif
  259. // used to copy the number of elements and stride in bytes of tensors into local variables.
  260. // main purpose is to reduce code duplication and improve readability.
  261. //
  262. // example:
  263. //
  264. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  265. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  266. //
  267. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  268. const type prefix##0 = (pointer)->array[0]; \
  269. GGML_UNUSED(prefix##0);
  270. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  271. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  272. const type prefix##1 = (pointer)->array[1]; \
  273. GGML_UNUSED(prefix##1);
  274. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  275. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  276. const type prefix##2 = (pointer)->array[2]; \
  277. GGML_UNUSED(prefix##2);
  278. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  279. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  280. const type prefix##3 = (pointer)->array[3]; \
  281. GGML_UNUSED(prefix##3);
  282. #define GGML_TENSOR_UNARY_OP_LOCALS \
  283. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  284. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  285. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  287. #define GGML_TENSOR_BINARY_OP_LOCALS \
  288. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  289. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  290. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  294. #ifdef __cplusplus
  295. extern "C" {
  296. #endif
  297. enum ggml_status {
  298. GGML_STATUS_ALLOC_FAILED = -2,
  299. GGML_STATUS_FAILED = -1,
  300. GGML_STATUS_SUCCESS = 0,
  301. GGML_STATUS_ABORTED = 1,
  302. };
  303. // get ggml_status name string
  304. GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
  305. // ieee 754-2008 half-precision float16
  306. // todo: make this not an integral type
  307. typedef uint16_t ggml_fp16_t;
  308. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  309. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  310. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  311. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  312. // google brain half-precision bfloat16
  313. typedef struct { uint16_t bits; } ggml_bf16_t;
  314. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  315. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  316. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  317. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  318. struct ggml_object;
  319. struct ggml_context;
  320. // NOTE: always add types at the end of the enum to keep backward compatibility
  321. enum ggml_type {
  322. GGML_TYPE_F32 = 0,
  323. GGML_TYPE_F16 = 1,
  324. GGML_TYPE_Q4_0 = 2,
  325. GGML_TYPE_Q4_1 = 3,
  326. // GGML_TYPE_Q4_2 = 4, support has been removed
  327. // GGML_TYPE_Q4_3 = 5, support has been removed
  328. GGML_TYPE_Q5_0 = 6,
  329. GGML_TYPE_Q5_1 = 7,
  330. GGML_TYPE_Q8_0 = 8,
  331. GGML_TYPE_Q8_1 = 9,
  332. GGML_TYPE_Q2_K = 10,
  333. GGML_TYPE_Q3_K = 11,
  334. GGML_TYPE_Q4_K = 12,
  335. GGML_TYPE_Q5_K = 13,
  336. GGML_TYPE_Q6_K = 14,
  337. GGML_TYPE_Q8_K = 15,
  338. GGML_TYPE_IQ2_XXS = 16,
  339. GGML_TYPE_IQ2_XS = 17,
  340. GGML_TYPE_IQ3_XXS = 18,
  341. GGML_TYPE_IQ1_S = 19,
  342. GGML_TYPE_IQ4_NL = 20,
  343. GGML_TYPE_IQ3_S = 21,
  344. GGML_TYPE_IQ2_S = 22,
  345. GGML_TYPE_IQ4_XS = 23,
  346. GGML_TYPE_I8 = 24,
  347. GGML_TYPE_I16 = 25,
  348. GGML_TYPE_I32 = 26,
  349. GGML_TYPE_I64 = 27,
  350. GGML_TYPE_F64 = 28,
  351. GGML_TYPE_IQ1_M = 29,
  352. GGML_TYPE_BF16 = 30,
  353. GGML_TYPE_COUNT,
  354. };
  355. // precision
  356. enum ggml_prec {
  357. GGML_PREC_DEFAULT,
  358. GGML_PREC_F32,
  359. };
  360. enum ggml_backend_type {
  361. GGML_BACKEND_TYPE_CPU = 0,
  362. GGML_BACKEND_TYPE_GPU = 10,
  363. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  364. };
  365. // model file types
  366. enum ggml_ftype {
  367. GGML_FTYPE_UNKNOWN = -1,
  368. GGML_FTYPE_ALL_F32 = 0,
  369. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  370. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  371. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  372. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  373. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  374. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  375. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  376. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  377. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  378. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  379. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  380. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  391. };
  392. // available tensor operations:
  393. enum ggml_op {
  394. GGML_OP_NONE = 0,
  395. GGML_OP_DUP,
  396. GGML_OP_ADD,
  397. GGML_OP_ADD1,
  398. GGML_OP_ACC,
  399. GGML_OP_SUB,
  400. GGML_OP_MUL,
  401. GGML_OP_DIV,
  402. GGML_OP_SQR,
  403. GGML_OP_SQRT,
  404. GGML_OP_LOG,
  405. GGML_OP_SUM,
  406. GGML_OP_SUM_ROWS,
  407. GGML_OP_MEAN,
  408. GGML_OP_ARGMAX,
  409. GGML_OP_REPEAT,
  410. GGML_OP_REPEAT_BACK,
  411. GGML_OP_CONCAT,
  412. GGML_OP_SILU_BACK,
  413. GGML_OP_NORM, // normalize
  414. GGML_OP_RMS_NORM,
  415. GGML_OP_RMS_NORM_BACK,
  416. GGML_OP_GROUP_NORM,
  417. GGML_OP_MUL_MAT,
  418. GGML_OP_MUL_MAT_ID,
  419. GGML_OP_OUT_PROD,
  420. GGML_OP_SCALE,
  421. GGML_OP_SET,
  422. GGML_OP_CPY,
  423. GGML_OP_CONT,
  424. GGML_OP_RESHAPE,
  425. GGML_OP_VIEW,
  426. GGML_OP_PERMUTE,
  427. GGML_OP_TRANSPOSE,
  428. GGML_OP_GET_ROWS,
  429. GGML_OP_GET_ROWS_BACK,
  430. GGML_OP_DIAG,
  431. GGML_OP_DIAG_MASK_INF,
  432. GGML_OP_DIAG_MASK_ZERO,
  433. GGML_OP_SOFT_MAX,
  434. GGML_OP_SOFT_MAX_BACK,
  435. GGML_OP_ROPE,
  436. GGML_OP_ROPE_BACK,
  437. GGML_OP_CLAMP,
  438. GGML_OP_CONV_TRANSPOSE_1D,
  439. GGML_OP_IM2COL,
  440. GGML_OP_CONV_TRANSPOSE_2D,
  441. GGML_OP_POOL_1D,
  442. GGML_OP_POOL_2D,
  443. GGML_OP_UPSCALE, // nearest interpolate
  444. GGML_OP_PAD,
  445. GGML_OP_ARANGE,
  446. GGML_OP_TIMESTEP_EMBEDDING,
  447. GGML_OP_ARGSORT,
  448. GGML_OP_LEAKY_RELU,
  449. GGML_OP_FLASH_ATTN,
  450. GGML_OP_FLASH_ATTN_EXT,
  451. GGML_OP_FLASH_FF,
  452. GGML_OP_FLASH_ATTN_BACK,
  453. GGML_OP_SSM_CONV,
  454. GGML_OP_SSM_SCAN,
  455. GGML_OP_WIN_PART,
  456. GGML_OP_WIN_UNPART,
  457. GGML_OP_GET_REL_POS,
  458. GGML_OP_ADD_REL_POS,
  459. GGML_OP_UNARY,
  460. GGML_OP_MAP_UNARY,
  461. GGML_OP_MAP_BINARY,
  462. GGML_OP_MAP_CUSTOM1_F32,
  463. GGML_OP_MAP_CUSTOM2_F32,
  464. GGML_OP_MAP_CUSTOM3_F32,
  465. GGML_OP_MAP_CUSTOM1,
  466. GGML_OP_MAP_CUSTOM2,
  467. GGML_OP_MAP_CUSTOM3,
  468. GGML_OP_CROSS_ENTROPY_LOSS,
  469. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  470. GGML_OP_COUNT,
  471. };
  472. enum ggml_unary_op {
  473. GGML_UNARY_OP_ABS,
  474. GGML_UNARY_OP_SGN,
  475. GGML_UNARY_OP_NEG,
  476. GGML_UNARY_OP_STEP,
  477. GGML_UNARY_OP_TANH,
  478. GGML_UNARY_OP_ELU,
  479. GGML_UNARY_OP_RELU,
  480. GGML_UNARY_OP_SIGMOID,
  481. GGML_UNARY_OP_GELU,
  482. GGML_UNARY_OP_GELU_QUICK,
  483. GGML_UNARY_OP_SILU,
  484. GGML_UNARY_OP_HARDSWISH,
  485. GGML_UNARY_OP_HARDSIGMOID,
  486. GGML_UNARY_OP_COUNT,
  487. };
  488. enum ggml_object_type {
  489. GGML_OBJECT_TYPE_TENSOR,
  490. GGML_OBJECT_TYPE_GRAPH,
  491. GGML_OBJECT_TYPE_WORK_BUFFER
  492. };
  493. enum ggml_log_level {
  494. GGML_LOG_LEVEL_ERROR = 2,
  495. GGML_LOG_LEVEL_WARN = 3,
  496. GGML_LOG_LEVEL_INFO = 4,
  497. GGML_LOG_LEVEL_DEBUG = 5
  498. };
  499. enum ggml_tensor_flag {
  500. GGML_TENSOR_FLAG_INPUT = 1,
  501. GGML_TENSOR_FLAG_OUTPUT = 2,
  502. GGML_TENSOR_FLAG_PARAM = 4,
  503. };
  504. // ggml object
  505. struct ggml_object {
  506. size_t offs;
  507. size_t size;
  508. struct ggml_object * next;
  509. enum ggml_object_type type;
  510. char padding[4];
  511. };
  512. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  513. // n-dimensional tensor
  514. struct ggml_tensor {
  515. enum ggml_type type;
  516. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  517. struct ggml_backend_buffer * buffer;
  518. int64_t ne[GGML_MAX_DIMS]; // number of elements
  519. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  520. // nb[0] = ggml_type_size(type)
  521. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  522. // nb[i] = nb[i-1] * ne[i-1]
  523. // compute data
  524. enum ggml_op op;
  525. // op params - allocated as int32_t for alignment
  526. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  527. int32_t flags;
  528. struct ggml_tensor * grad;
  529. struct ggml_tensor * src[GGML_MAX_SRC];
  530. // performance
  531. int perf_runs;
  532. int64_t perf_cycles;
  533. int64_t perf_time_us;
  534. struct ggml_tensor * view_src;
  535. size_t view_offs;
  536. void * data;
  537. char name[GGML_MAX_NAME];
  538. void * extra; // extra things e.g. for ggml-cuda.cu
  539. char padding[8];
  540. };
  541. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  542. // Abort callback
  543. // If not NULL, called before ggml computation
  544. // If it returns true, the computation is aborted
  545. typedef bool (*ggml_abort_callback)(void * data);
  546. // the compute plan that needs to be prepared for ggml_graph_compute()
  547. // since https://github.com/ggerganov/ggml/issues/287
  548. struct ggml_cplan {
  549. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  550. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  551. int n_threads;
  552. // abort ggml_graph_compute when true
  553. ggml_abort_callback abort_callback;
  554. void * abort_callback_data;
  555. };
  556. enum ggml_cgraph_eval_order {
  557. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  558. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  559. GGML_CGRAPH_EVAL_ORDER_COUNT
  560. };
  561. struct ggml_hash_set {
  562. size_t size;
  563. struct ggml_tensor ** keys;
  564. };
  565. // computation graph
  566. struct ggml_cgraph {
  567. int size;
  568. int n_nodes;
  569. int n_leafs;
  570. struct ggml_tensor ** nodes;
  571. struct ggml_tensor ** grads;
  572. struct ggml_tensor ** leafs;
  573. struct ggml_hash_set visited_hash_table;
  574. enum ggml_cgraph_eval_order order;
  575. // performance
  576. int perf_runs;
  577. int64_t perf_cycles;
  578. int64_t perf_time_us;
  579. };
  580. // scratch buffer
  581. struct ggml_scratch {
  582. size_t offs;
  583. size_t size;
  584. void * data;
  585. };
  586. struct ggml_init_params {
  587. // memory pool
  588. size_t mem_size; // bytes
  589. void * mem_buffer; // if NULL, memory will be allocated internally
  590. bool no_alloc; // don't allocate memory for the tensor data
  591. };
  592. // compute types
  593. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  594. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  595. enum ggml_task_type {
  596. GGML_TASK_TYPE_INIT = 0,
  597. GGML_TASK_TYPE_COMPUTE,
  598. GGML_TASK_TYPE_FINALIZE,
  599. };
  600. struct ggml_compute_params {
  601. enum ggml_task_type type;
  602. // ith = thread index, nth = number of threads
  603. int ith, nth;
  604. // work buffer for all threads
  605. size_t wsize;
  606. void * wdata;
  607. };
  608. // numa strategies
  609. enum ggml_numa_strategy {
  610. GGML_NUMA_STRATEGY_DISABLED = 0,
  611. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  612. GGML_NUMA_STRATEGY_ISOLATE = 2,
  613. GGML_NUMA_STRATEGY_NUMACTL = 3,
  614. GGML_NUMA_STRATEGY_MIRROR = 4,
  615. GGML_NUMA_STRATEGY_COUNT
  616. };
  617. //
  618. // GUID
  619. //
  620. // GUID types
  621. typedef uint8_t ggml_guid[16];
  622. typedef ggml_guid * ggml_guid_t;
  623. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  624. // misc
  625. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  626. GGML_API int64_t ggml_time_ms(void);
  627. GGML_API int64_t ggml_time_us(void);
  628. GGML_API int64_t ggml_cycles(void);
  629. GGML_API int64_t ggml_cycles_per_ms(void);
  630. GGML_API void ggml_print_backtrace(void);
  631. // accepts a UTF-8 path, even on Windows
  632. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  633. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  634. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  635. GGML_API void ggml_print_object (const struct ggml_object * obj);
  636. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  637. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  638. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  639. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  640. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  641. GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
  642. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  643. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  644. GGML_DEPRECATED(
  645. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  646. "use ggml_row_size() instead");
  647. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  648. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  649. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  650. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  651. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  652. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  653. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  654. // TODO: temporary until model loading of ggml examples is refactored
  655. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  656. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  657. GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  658. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  659. GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
  660. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  661. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  662. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  663. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  664. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  665. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  666. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  667. // use this to compute the memory overhead of a tensor
  668. GGML_API size_t ggml_tensor_overhead(void);
  669. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  670. // main
  671. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  672. GGML_API void ggml_free(struct ggml_context * ctx);
  673. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  674. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  675. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  676. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  677. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  678. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  679. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  680. GGML_API struct ggml_tensor * ggml_new_tensor(
  681. struct ggml_context * ctx,
  682. enum ggml_type type,
  683. int n_dims,
  684. const int64_t *ne);
  685. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  686. struct ggml_context * ctx,
  687. enum ggml_type type,
  688. int64_t ne0);
  689. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  690. struct ggml_context * ctx,
  691. enum ggml_type type,
  692. int64_t ne0,
  693. int64_t ne1);
  694. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  695. struct ggml_context * ctx,
  696. enum ggml_type type,
  697. int64_t ne0,
  698. int64_t ne1,
  699. int64_t ne2);
  700. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  701. struct ggml_context * ctx,
  702. enum ggml_type type,
  703. int64_t ne0,
  704. int64_t ne1,
  705. int64_t ne2,
  706. int64_t ne3);
  707. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  708. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  709. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  710. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  711. // Context tensor enumeration and lookup
  712. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  713. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  714. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  715. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  716. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  717. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  718. // Converts a flat index into coordinates
  719. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  720. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  721. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  722. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  723. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  724. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  725. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  726. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  727. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  728. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  729. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  730. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  731. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  732. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  733. GGML_ATTRIBUTE_FORMAT(2, 3)
  734. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  735. //
  736. // operations on tensors with backpropagation
  737. //
  738. GGML_API struct ggml_tensor * ggml_dup(
  739. struct ggml_context * ctx,
  740. struct ggml_tensor * a);
  741. // in-place, returns view(a)
  742. GGML_API struct ggml_tensor * ggml_dup_inplace(
  743. struct ggml_context * ctx,
  744. struct ggml_tensor * a);
  745. GGML_API struct ggml_tensor * ggml_add(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a,
  748. struct ggml_tensor * b);
  749. GGML_API struct ggml_tensor * ggml_add_inplace(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a,
  752. struct ggml_tensor * b);
  753. GGML_API struct ggml_tensor * ggml_add_cast(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a,
  756. struct ggml_tensor * b,
  757. enum ggml_type type);
  758. GGML_API struct ggml_tensor * ggml_add1(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a,
  761. struct ggml_tensor * b);
  762. GGML_API struct ggml_tensor * ggml_add1_inplace(
  763. struct ggml_context * ctx,
  764. struct ggml_tensor * a,
  765. struct ggml_tensor * b);
  766. // dst = a
  767. // view(dst, nb1, nb2, nb3, offset) += b
  768. // return dst
  769. GGML_API struct ggml_tensor * ggml_acc(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a,
  772. struct ggml_tensor * b,
  773. size_t nb1,
  774. size_t nb2,
  775. size_t nb3,
  776. size_t offset);
  777. GGML_API struct ggml_tensor * ggml_acc_inplace(
  778. struct ggml_context * ctx,
  779. struct ggml_tensor * a,
  780. struct ggml_tensor * b,
  781. size_t nb1,
  782. size_t nb2,
  783. size_t nb3,
  784. size_t offset);
  785. GGML_API struct ggml_tensor * ggml_sub(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a,
  788. struct ggml_tensor * b);
  789. GGML_API struct ggml_tensor * ggml_sub_inplace(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a,
  792. struct ggml_tensor * b);
  793. GGML_API struct ggml_tensor * ggml_mul(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a,
  796. struct ggml_tensor * b);
  797. GGML_API struct ggml_tensor * ggml_mul_inplace(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a,
  800. struct ggml_tensor * b);
  801. GGML_API struct ggml_tensor * ggml_div(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a,
  804. struct ggml_tensor * b);
  805. GGML_API struct ggml_tensor * ggml_div_inplace(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a,
  808. struct ggml_tensor * b);
  809. GGML_API struct ggml_tensor * ggml_sqr(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a);
  812. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  813. struct ggml_context * ctx,
  814. struct ggml_tensor * a);
  815. GGML_API struct ggml_tensor * ggml_sqrt(
  816. struct ggml_context * ctx,
  817. struct ggml_tensor * a);
  818. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a);
  821. GGML_API struct ggml_tensor * ggml_log(
  822. struct ggml_context * ctx,
  823. struct ggml_tensor * a);
  824. GGML_API struct ggml_tensor * ggml_log_inplace(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a);
  827. // return scalar
  828. GGML_API struct ggml_tensor * ggml_sum(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a);
  831. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  832. GGML_API struct ggml_tensor * ggml_sum_rows(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. // mean along rows
  836. GGML_API struct ggml_tensor * ggml_mean(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a);
  839. // argmax along rows
  840. GGML_API struct ggml_tensor * ggml_argmax(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a);
  843. // if a is the same shape as b, and a is not parameter, return a
  844. // otherwise, return a new tensor: repeat(a) to fit in b
  845. GGML_API struct ggml_tensor * ggml_repeat(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. struct ggml_tensor * b);
  849. // sums repetitions in a into shape of b
  850. GGML_API struct ggml_tensor * ggml_repeat_back(
  851. struct ggml_context * ctx,
  852. struct ggml_tensor * a,
  853. struct ggml_tensor * b);
  854. // concat a and b on dim 2
  855. // used in stable-diffusion
  856. GGML_API struct ggml_tensor * ggml_concat(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a,
  859. struct ggml_tensor * b);
  860. GGML_API struct ggml_tensor * ggml_abs(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a);
  863. GGML_API struct ggml_tensor * ggml_abs_inplace(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a);
  866. GGML_API struct ggml_tensor * ggml_sgn(
  867. struct ggml_context * ctx,
  868. struct ggml_tensor * a);
  869. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a);
  872. GGML_API struct ggml_tensor * ggml_neg(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a);
  875. GGML_API struct ggml_tensor * ggml_neg_inplace(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_step(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a);
  881. GGML_API struct ggml_tensor * ggml_step_inplace(
  882. struct ggml_context * ctx,
  883. struct ggml_tensor * a);
  884. GGML_API struct ggml_tensor * ggml_tanh(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_elu(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. GGML_API struct ggml_tensor * ggml_elu_inplace(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a);
  896. GGML_API struct ggml_tensor * ggml_relu(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. GGML_API struct ggml_tensor * ggml_leaky_relu(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a, float negative_slope, bool inplace);
  902. GGML_API struct ggml_tensor * ggml_relu_inplace(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. GGML_API struct ggml_tensor * ggml_sigmoid(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a);
  908. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a);
  911. GGML_API struct ggml_tensor * ggml_gelu(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a);
  914. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a);
  917. GGML_API struct ggml_tensor * ggml_gelu_quick(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a);
  920. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a);
  923. GGML_API struct ggml_tensor * ggml_silu(
  924. struct ggml_context * ctx,
  925. struct ggml_tensor * a);
  926. GGML_API struct ggml_tensor * ggml_silu_inplace(
  927. struct ggml_context * ctx,
  928. struct ggml_tensor * a);
  929. // a - x
  930. // b - dy
  931. GGML_API struct ggml_tensor * ggml_silu_back(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. struct ggml_tensor * b);
  935. // hardswish(x) = x * relu6(x + 3) / 6
  936. GGML_API struct ggml_tensor * ggml_hardswish(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a);
  939. // hardsigmoid(x) = relu6(x + 3) / 6
  940. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a);
  943. // normalize along rows
  944. GGML_API struct ggml_tensor * ggml_norm(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. float eps);
  948. GGML_API struct ggml_tensor * ggml_norm_inplace(
  949. struct ggml_context * ctx,
  950. struct ggml_tensor * a,
  951. float eps);
  952. GGML_API struct ggml_tensor * ggml_rms_norm(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a,
  955. float eps);
  956. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  957. struct ggml_context * ctx,
  958. struct ggml_tensor * a,
  959. float eps);
  960. // group normalize along ne0*ne1*n_groups
  961. // used in stable-diffusion
  962. // TODO: eps is hardcoded to 1e-6 for now
  963. GGML_API struct ggml_tensor * ggml_group_norm(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a,
  966. int n_groups);
  967. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  968. struct ggml_context * ctx,
  969. struct ggml_tensor * a,
  970. int n_groups);
  971. // a - x
  972. // b - dy
  973. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  974. struct ggml_context * ctx,
  975. struct ggml_tensor * a,
  976. struct ggml_tensor * b,
  977. float eps);
  978. // A: k columns, n rows => [ne03, ne02, n, k]
  979. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  980. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  981. GGML_API struct ggml_tensor * ggml_mul_mat(
  982. struct ggml_context * ctx,
  983. struct ggml_tensor * a,
  984. struct ggml_tensor * b);
  985. // change the precision of a matrix multiplication
  986. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  987. GGML_API void ggml_mul_mat_set_prec(
  988. struct ggml_tensor * a,
  989. enum ggml_prec prec);
  990. // indirect matrix multiplication
  991. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  992. struct ggml_context * ctx,
  993. struct ggml_tensor * as,
  994. struct ggml_tensor * b,
  995. struct ggml_tensor * ids);
  996. // A: m columns, n rows,
  997. // B: p columns, n rows,
  998. // result is m columns, p rows
  999. GGML_API struct ggml_tensor * ggml_out_prod(
  1000. struct ggml_context * ctx,
  1001. struct ggml_tensor * a,
  1002. struct ggml_tensor * b);
  1003. //
  1004. // operations on tensors without backpropagation
  1005. //
  1006. GGML_API struct ggml_tensor * ggml_scale(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a,
  1009. float s);
  1010. // in-place, returns view(a)
  1011. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1012. struct ggml_context * ctx,
  1013. struct ggml_tensor * a,
  1014. float s);
  1015. // b -> view(a,offset,nb1,nb2,3), return modified a
  1016. GGML_API struct ggml_tensor * ggml_set(
  1017. struct ggml_context * ctx,
  1018. struct ggml_tensor * a,
  1019. struct ggml_tensor * b,
  1020. size_t nb1,
  1021. size_t nb2,
  1022. size_t nb3,
  1023. size_t offset);
  1024. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1025. GGML_API struct ggml_tensor * ggml_set_inplace(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. struct ggml_tensor * b,
  1029. size_t nb1,
  1030. size_t nb2,
  1031. size_t nb3,
  1032. size_t offset);
  1033. GGML_API struct ggml_tensor * ggml_set_1d(
  1034. struct ggml_context * ctx,
  1035. struct ggml_tensor * a,
  1036. struct ggml_tensor * b,
  1037. size_t offset);
  1038. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. struct ggml_tensor * b,
  1042. size_t offset);
  1043. // b -> view(a,offset,nb1,nb2,3), return modified a
  1044. GGML_API struct ggml_tensor * ggml_set_2d(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a,
  1047. struct ggml_tensor * b,
  1048. size_t nb1,
  1049. size_t offset);
  1050. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1051. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1052. struct ggml_context * ctx,
  1053. struct ggml_tensor * a,
  1054. struct ggml_tensor * b,
  1055. size_t nb1,
  1056. size_t offset);
  1057. // a -> b, return view(b)
  1058. GGML_API struct ggml_tensor * ggml_cpy(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. struct ggml_tensor * b);
  1062. GGML_API struct ggml_tensor * ggml_cast(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * a,
  1065. enum ggml_type type);
  1066. // make contiguous
  1067. GGML_API struct ggml_tensor * ggml_cont(
  1068. struct ggml_context * ctx,
  1069. struct ggml_tensor * a);
  1070. // make contiguous, with new shape
  1071. GGML_API struct ggml_tensor * ggml_cont_1d(
  1072. struct ggml_context * ctx,
  1073. struct ggml_tensor * a,
  1074. int64_t ne0);
  1075. GGML_API struct ggml_tensor * ggml_cont_2d(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. int64_t ne0,
  1079. int64_t ne1);
  1080. GGML_API struct ggml_tensor * ggml_cont_3d(
  1081. struct ggml_context * ctx,
  1082. struct ggml_tensor * a,
  1083. int64_t ne0,
  1084. int64_t ne1,
  1085. int64_t ne2);
  1086. GGML_API struct ggml_tensor * ggml_cont_4d(
  1087. struct ggml_context * ctx,
  1088. struct ggml_tensor * a,
  1089. int64_t ne0,
  1090. int64_t ne1,
  1091. int64_t ne2,
  1092. int64_t ne3);
  1093. // return view(a), b specifies the new shape
  1094. // TODO: when we start computing gradient, make a copy instead of view
  1095. GGML_API struct ggml_tensor * ggml_reshape(
  1096. struct ggml_context * ctx,
  1097. struct ggml_tensor * a,
  1098. struct ggml_tensor * b);
  1099. // return view(a)
  1100. // TODO: when we start computing gradient, make a copy instead of view
  1101. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1102. struct ggml_context * ctx,
  1103. struct ggml_tensor * a,
  1104. int64_t ne0);
  1105. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. int64_t ne0,
  1109. int64_t ne1);
  1110. // return view(a)
  1111. // TODO: when we start computing gradient, make a copy instead of view
  1112. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a,
  1115. int64_t ne0,
  1116. int64_t ne1,
  1117. int64_t ne2);
  1118. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1119. struct ggml_context * ctx,
  1120. struct ggml_tensor * a,
  1121. int64_t ne0,
  1122. int64_t ne1,
  1123. int64_t ne2,
  1124. int64_t ne3);
  1125. // offset in bytes
  1126. GGML_API struct ggml_tensor * ggml_view_1d(
  1127. struct ggml_context * ctx,
  1128. struct ggml_tensor * a,
  1129. int64_t ne0,
  1130. size_t offset);
  1131. GGML_API struct ggml_tensor * ggml_view_2d(
  1132. struct ggml_context * ctx,
  1133. struct ggml_tensor * a,
  1134. int64_t ne0,
  1135. int64_t ne1,
  1136. size_t nb1, // row stride in bytes
  1137. size_t offset);
  1138. GGML_API struct ggml_tensor * ggml_view_3d(
  1139. struct ggml_context * ctx,
  1140. struct ggml_tensor * a,
  1141. int64_t ne0,
  1142. int64_t ne1,
  1143. int64_t ne2,
  1144. size_t nb1, // row stride in bytes
  1145. size_t nb2, // slice stride in bytes
  1146. size_t offset);
  1147. GGML_API struct ggml_tensor * ggml_view_4d(
  1148. struct ggml_context * ctx,
  1149. struct ggml_tensor * a,
  1150. int64_t ne0,
  1151. int64_t ne1,
  1152. int64_t ne2,
  1153. int64_t ne3,
  1154. size_t nb1, // row stride in bytes
  1155. size_t nb2, // slice stride in bytes
  1156. size_t nb3,
  1157. size_t offset);
  1158. GGML_API struct ggml_tensor * ggml_permute(
  1159. struct ggml_context * ctx,
  1160. struct ggml_tensor * a,
  1161. int axis0,
  1162. int axis1,
  1163. int axis2,
  1164. int axis3);
  1165. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1166. GGML_API struct ggml_tensor * ggml_transpose(
  1167. struct ggml_context * ctx,
  1168. struct ggml_tensor * a);
  1169. // supports 3D: a->ne[2] == b->ne[1]
  1170. GGML_API struct ggml_tensor * ggml_get_rows(
  1171. struct ggml_context * ctx,
  1172. struct ggml_tensor * a,
  1173. struct ggml_tensor * b);
  1174. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1175. struct ggml_context * ctx,
  1176. struct ggml_tensor * a,
  1177. struct ggml_tensor * b,
  1178. struct ggml_tensor * c);
  1179. GGML_API struct ggml_tensor * ggml_diag(
  1180. struct ggml_context * ctx,
  1181. struct ggml_tensor * a);
  1182. // set elements above the diagonal to -INF
  1183. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1184. struct ggml_context * ctx,
  1185. struct ggml_tensor * a,
  1186. int n_past);
  1187. // in-place, returns view(a)
  1188. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1189. struct ggml_context * ctx,
  1190. struct ggml_tensor * a,
  1191. int n_past);
  1192. // set elements above the diagonal to 0
  1193. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1194. struct ggml_context * ctx,
  1195. struct ggml_tensor * a,
  1196. int n_past);
  1197. // in-place, returns view(a)
  1198. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1199. struct ggml_context * ctx,
  1200. struct ggml_tensor * a,
  1201. int n_past);
  1202. GGML_API struct ggml_tensor * ggml_soft_max(
  1203. struct ggml_context * ctx,
  1204. struct ggml_tensor * a);
  1205. // in-place, returns view(a)
  1206. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1207. struct ggml_context * ctx,
  1208. struct ggml_tensor * a);
  1209. // fused soft_max(a*scale + mask*(ALiBi slope))
  1210. // mask is optional
  1211. // max_bias = 0.0f for no ALiBi
  1212. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1213. struct ggml_context * ctx,
  1214. struct ggml_tensor * a,
  1215. struct ggml_tensor * mask,
  1216. float scale,
  1217. float max_bias);
  1218. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1219. struct ggml_context * ctx,
  1220. struct ggml_tensor * a,
  1221. struct ggml_tensor * b);
  1222. // in-place, returns view(a)
  1223. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1224. struct ggml_context * ctx,
  1225. struct ggml_tensor * a,
  1226. struct ggml_tensor * b);
  1227. // rotary position embedding
  1228. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1229. // if mode & 2 == 1, GPT-NeoX style
  1230. // if mode & 4 == 1, ChatGLM style
  1231. //
  1232. // b is an int32 vector with size a->ne[2], it contains the positions
  1233. GGML_API struct ggml_tensor * ggml_rope(
  1234. struct ggml_context * ctx,
  1235. struct ggml_tensor * a,
  1236. struct ggml_tensor * b,
  1237. int n_dims,
  1238. int mode,
  1239. int n_ctx);
  1240. // in-place, returns view(a)
  1241. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1242. struct ggml_context * ctx,
  1243. struct ggml_tensor * a,
  1244. struct ggml_tensor * b,
  1245. int n_dims,
  1246. int mode,
  1247. int n_ctx);
  1248. // custom RoPE
  1249. GGML_API struct ggml_tensor * ggml_rope_custom(
  1250. struct ggml_context * ctx,
  1251. struct ggml_tensor * a,
  1252. struct ggml_tensor * b,
  1253. int n_dims,
  1254. int mode,
  1255. int n_ctx,
  1256. int n_orig_ctx,
  1257. float freq_base,
  1258. float freq_scale,
  1259. float ext_factor,
  1260. float attn_factor,
  1261. float beta_fast,
  1262. float beta_slow);
  1263. // in-place, returns view(a)
  1264. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. struct ggml_tensor * b,
  1268. int n_dims,
  1269. int mode,
  1270. int n_ctx,
  1271. int n_orig_ctx,
  1272. float freq_base,
  1273. float freq_scale,
  1274. float ext_factor,
  1275. float attn_factor,
  1276. float beta_fast,
  1277. float beta_slow);
  1278. // compute correction dims for YaRN RoPE scaling
  1279. GGML_CALL void ggml_rope_yarn_corr_dims(
  1280. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1281. // xPos RoPE, in-place, returns view(a)
  1282. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1283. struct ggml_context * ctx,
  1284. struct ggml_tensor * a,
  1285. struct ggml_tensor * b,
  1286. int n_dims,
  1287. float base,
  1288. bool down);
  1289. // rotary position embedding backward, i.e compute dx from dy
  1290. // a - dy
  1291. GGML_API struct ggml_tensor * ggml_rope_back(
  1292. struct ggml_context * ctx,
  1293. struct ggml_tensor * a,
  1294. struct ggml_tensor * b,
  1295. int n_dims,
  1296. int mode,
  1297. int n_ctx,
  1298. int n_orig_ctx,
  1299. float freq_base,
  1300. float freq_scale,
  1301. float ext_factor,
  1302. float attn_factor,
  1303. float beta_fast,
  1304. float beta_slow,
  1305. float xpos_base,
  1306. bool xpos_down);
  1307. // clamp
  1308. // in-place, returns view(a)
  1309. GGML_API struct ggml_tensor * ggml_clamp(
  1310. struct ggml_context * ctx,
  1311. struct ggml_tensor * a,
  1312. float min,
  1313. float max);
  1314. GGML_API struct ggml_tensor * ggml_im2col(
  1315. struct ggml_context * ctx,
  1316. struct ggml_tensor * a,
  1317. struct ggml_tensor * b,
  1318. int s0,
  1319. int s1,
  1320. int p0,
  1321. int p1,
  1322. int d0,
  1323. int d1,
  1324. bool is_2D,
  1325. enum ggml_type dst_type);
  1326. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1327. struct ggml_context * ctx,
  1328. struct ggml_tensor * a,
  1329. struct ggml_tensor * b,
  1330. int s0,
  1331. int s1,
  1332. int p0,
  1333. int p1,
  1334. int d0,
  1335. int d1);
  1336. GGML_API struct ggml_tensor * ggml_conv_1d(
  1337. struct ggml_context * ctx,
  1338. struct ggml_tensor * a,
  1339. struct ggml_tensor * b,
  1340. int s0, // stride
  1341. int p0, // padding
  1342. int d0); // dilation
  1343. // conv_1d with padding = half
  1344. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1345. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1346. struct ggml_context * ctx,
  1347. struct ggml_tensor * a,
  1348. struct ggml_tensor * b,
  1349. int s,
  1350. int d);
  1351. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1352. struct ggml_context * ctx,
  1353. struct ggml_tensor * a,
  1354. struct ggml_tensor * b,
  1355. int s0,
  1356. int p0,
  1357. int d0);
  1358. GGML_API struct ggml_tensor * ggml_conv_2d(
  1359. struct ggml_context * ctx,
  1360. struct ggml_tensor * a,
  1361. struct ggml_tensor * b,
  1362. int s0,
  1363. int s1,
  1364. int p0,
  1365. int p1,
  1366. int d0,
  1367. int d1);
  1368. // kernel size is a->ne[0] x a->ne[1]
  1369. // stride is equal to kernel size
  1370. // padding is zero
  1371. // example:
  1372. // a: 16 16 3 768
  1373. // b: 1024 1024 3 1
  1374. // res: 64 64 768 1
  1375. // used in sam
  1376. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1377. struct ggml_context * ctx,
  1378. struct ggml_tensor * a,
  1379. struct ggml_tensor * b);
  1380. // kernel size is a->ne[0] x a->ne[1]
  1381. // stride is 1
  1382. // padding is half
  1383. // example:
  1384. // a: 3 3 256 256
  1385. // b: 64 64 256 1
  1386. // res: 64 64 256 1
  1387. // used in sam
  1388. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1389. struct ggml_context * ctx,
  1390. struct ggml_tensor * a,
  1391. struct ggml_tensor * b);
  1392. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1393. struct ggml_context * ctx,
  1394. struct ggml_tensor * a,
  1395. struct ggml_tensor * b,
  1396. int stride);
  1397. enum ggml_op_pool {
  1398. GGML_OP_POOL_MAX,
  1399. GGML_OP_POOL_AVG,
  1400. GGML_OP_POOL_COUNT,
  1401. };
  1402. GGML_API struct ggml_tensor * ggml_pool_1d(
  1403. struct ggml_context * ctx,
  1404. struct ggml_tensor * a,
  1405. enum ggml_op_pool op,
  1406. int k0, // kernel size
  1407. int s0, // stride
  1408. int p0); // padding
  1409. // the result will have 2*p0 padding for the first dimension
  1410. // and 2*p1 padding for the second dimension
  1411. GGML_API struct ggml_tensor * ggml_pool_2d(
  1412. struct ggml_context * ctx,
  1413. struct ggml_tensor * a,
  1414. enum ggml_op_pool op,
  1415. int k0,
  1416. int k1,
  1417. int s0,
  1418. int s1,
  1419. float p0,
  1420. float p1);
  1421. // nearest interpolate
  1422. // multiplies ne0 and ne1 by scale factor
  1423. // used in stable-diffusion
  1424. GGML_API struct ggml_tensor * ggml_upscale(
  1425. struct ggml_context * ctx,
  1426. struct ggml_tensor * a,
  1427. int scale_factor);
  1428. // nearest interpolate
  1429. // nearest interpolate to specified dimensions
  1430. // used in tortoise.cpp
  1431. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1432. struct ggml_context * ctx,
  1433. struct ggml_tensor * a,
  1434. int ne0,
  1435. int ne1,
  1436. int ne2,
  1437. int ne3);
  1438. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1439. GGML_API struct ggml_tensor * ggml_pad(
  1440. struct ggml_context * ctx,
  1441. struct ggml_tensor * a,
  1442. int p0,
  1443. int p1,
  1444. int p2,
  1445. int p3);
  1446. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1447. // timesteps: [N,]
  1448. // return: [N, dim]
  1449. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1450. struct ggml_context * ctx,
  1451. struct ggml_tensor * timesteps,
  1452. int dim,
  1453. int max_period);
  1454. // sort rows
  1455. enum ggml_sort_order {
  1456. GGML_SORT_ORDER_ASC,
  1457. GGML_SORT_ORDER_DESC,
  1458. };
  1459. GGML_API struct ggml_tensor * ggml_argsort(
  1460. struct ggml_context * ctx,
  1461. struct ggml_tensor * a,
  1462. enum ggml_sort_order order);
  1463. GGML_API struct ggml_tensor * ggml_arange(
  1464. struct ggml_context * ctx,
  1465. float start,
  1466. float stop,
  1467. float step);
  1468. // top k elements per row
  1469. GGML_API struct ggml_tensor * ggml_top_k(
  1470. struct ggml_context * ctx,
  1471. struct ggml_tensor * a,
  1472. int k);
  1473. GGML_API struct ggml_tensor * ggml_flash_attn(
  1474. struct ggml_context * ctx,
  1475. struct ggml_tensor * q,
  1476. struct ggml_tensor * k,
  1477. struct ggml_tensor * v,
  1478. bool masked);
  1479. #define GGML_KQ_MASK_PAD 32
  1480. // q: [n_embd, n_batch, n_head, 1]
  1481. // k: [n_embd, n_kv, n_head_kv, 1]
  1482. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1483. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1484. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1485. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1486. struct ggml_context * ctx,
  1487. struct ggml_tensor * q,
  1488. struct ggml_tensor * k,
  1489. struct ggml_tensor * v,
  1490. struct ggml_tensor * mask,
  1491. float scale,
  1492. float max_bias);
  1493. GGML_API void ggml_flash_attn_ext_set_prec(
  1494. struct ggml_tensor * a,
  1495. enum ggml_prec prec);
  1496. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1497. struct ggml_context * ctx,
  1498. struct ggml_tensor * q,
  1499. struct ggml_tensor * k,
  1500. struct ggml_tensor * v,
  1501. struct ggml_tensor * d,
  1502. bool masked);
  1503. GGML_API struct ggml_tensor * ggml_flash_ff(
  1504. struct ggml_context * ctx,
  1505. struct ggml_tensor * a,
  1506. struct ggml_tensor * b0,
  1507. struct ggml_tensor * b1,
  1508. struct ggml_tensor * c0,
  1509. struct ggml_tensor * c1);
  1510. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1511. struct ggml_context * ctx,
  1512. struct ggml_tensor * s,
  1513. struct ggml_tensor * x,
  1514. struct ggml_tensor * c,
  1515. struct ggml_tensor * sq);
  1516. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1517. struct ggml_context * ctx,
  1518. struct ggml_tensor * s,
  1519. struct ggml_tensor * x,
  1520. struct ggml_tensor * dt,
  1521. struct ggml_tensor * A,
  1522. struct ggml_tensor * B,
  1523. struct ggml_tensor * C,
  1524. struct ggml_tensor * sq);
  1525. // partition into non-overlapping windows with padding if needed
  1526. // example:
  1527. // a: 768 64 64 1
  1528. // w: 14
  1529. // res: 768 14 14 25
  1530. // used in sam
  1531. GGML_API struct ggml_tensor * ggml_win_part(
  1532. struct ggml_context * ctx,
  1533. struct ggml_tensor * a,
  1534. int w);
  1535. // reverse of ggml_win_part
  1536. // used in sam
  1537. GGML_API struct ggml_tensor * ggml_win_unpart(
  1538. struct ggml_context * ctx,
  1539. struct ggml_tensor * a,
  1540. int w0,
  1541. int h0,
  1542. int w);
  1543. GGML_API struct ggml_tensor * ggml_unary(
  1544. struct ggml_context * ctx,
  1545. struct ggml_tensor * a,
  1546. enum ggml_unary_op op);
  1547. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1548. struct ggml_context * ctx,
  1549. struct ggml_tensor * a,
  1550. enum ggml_unary_op op);
  1551. // used in sam
  1552. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1553. struct ggml_context * ctx,
  1554. struct ggml_tensor * a,
  1555. int qh,
  1556. int kh);
  1557. // used in sam
  1558. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1559. struct ggml_context * ctx,
  1560. struct ggml_tensor * a,
  1561. struct ggml_tensor * pw,
  1562. struct ggml_tensor * ph);
  1563. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1564. struct ggml_context * ctx,
  1565. struct ggml_tensor * a,
  1566. struct ggml_tensor * pw,
  1567. struct ggml_tensor * ph);
  1568. // custom operators
  1569. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1570. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1571. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1572. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1573. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1574. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1575. struct ggml_context * ctx,
  1576. struct ggml_tensor * a,
  1577. ggml_unary_op_f32_t fun),
  1578. "use ggml_map_custom1 instead");
  1579. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1580. struct ggml_context * ctx,
  1581. struct ggml_tensor * a,
  1582. ggml_unary_op_f32_t fun),
  1583. "use ggml_map_custom1_inplace instead");
  1584. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1585. struct ggml_context * ctx,
  1586. struct ggml_tensor * a,
  1587. struct ggml_tensor * b,
  1588. ggml_binary_op_f32_t fun),
  1589. "use ggml_map_custom2 instead");
  1590. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1591. struct ggml_context * ctx,
  1592. struct ggml_tensor * a,
  1593. struct ggml_tensor * b,
  1594. ggml_binary_op_f32_t fun),
  1595. "use ggml_map_custom2_inplace instead");
  1596. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1597. struct ggml_context * ctx,
  1598. struct ggml_tensor * a,
  1599. ggml_custom1_op_f32_t fun),
  1600. "use ggml_map_custom1 instead");
  1601. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1602. struct ggml_context * ctx,
  1603. struct ggml_tensor * a,
  1604. ggml_custom1_op_f32_t fun),
  1605. "use ggml_map_custom1_inplace instead");
  1606. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1607. struct ggml_context * ctx,
  1608. struct ggml_tensor * a,
  1609. struct ggml_tensor * b,
  1610. ggml_custom2_op_f32_t fun),
  1611. "use ggml_map_custom2 instead");
  1612. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1613. struct ggml_context * ctx,
  1614. struct ggml_tensor * a,
  1615. struct ggml_tensor * b,
  1616. ggml_custom2_op_f32_t fun),
  1617. "use ggml_map_custom2_inplace instead");
  1618. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1619. struct ggml_context * ctx,
  1620. struct ggml_tensor * a,
  1621. struct ggml_tensor * b,
  1622. struct ggml_tensor * c,
  1623. ggml_custom3_op_f32_t fun),
  1624. "use ggml_map_custom3 instead");
  1625. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1626. struct ggml_context * ctx,
  1627. struct ggml_tensor * a,
  1628. struct ggml_tensor * b,
  1629. struct ggml_tensor * c,
  1630. ggml_custom3_op_f32_t fun),
  1631. "use ggml_map_custom3_inplace instead");
  1632. // custom operators v2
  1633. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1634. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1635. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1636. #define GGML_N_TASKS_MAX -1
  1637. GGML_API struct ggml_tensor * ggml_map_custom1(
  1638. struct ggml_context * ctx,
  1639. struct ggml_tensor * a,
  1640. ggml_custom1_op_t fun,
  1641. int n_tasks,
  1642. void * userdata);
  1643. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1644. struct ggml_context * ctx,
  1645. struct ggml_tensor * a,
  1646. ggml_custom1_op_t fun,
  1647. int n_tasks,
  1648. void * userdata);
  1649. GGML_API struct ggml_tensor * ggml_map_custom2(
  1650. struct ggml_context * ctx,
  1651. struct ggml_tensor * a,
  1652. struct ggml_tensor * b,
  1653. ggml_custom2_op_t fun,
  1654. int n_tasks,
  1655. void * userdata);
  1656. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1657. struct ggml_context * ctx,
  1658. struct ggml_tensor * a,
  1659. struct ggml_tensor * b,
  1660. ggml_custom2_op_t fun,
  1661. int n_tasks,
  1662. void * userdata);
  1663. GGML_API struct ggml_tensor * ggml_map_custom3(
  1664. struct ggml_context * ctx,
  1665. struct ggml_tensor * a,
  1666. struct ggml_tensor * b,
  1667. struct ggml_tensor * c,
  1668. ggml_custom3_op_t fun,
  1669. int n_tasks,
  1670. void * userdata);
  1671. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1672. struct ggml_context * ctx,
  1673. struct ggml_tensor * a,
  1674. struct ggml_tensor * b,
  1675. struct ggml_tensor * c,
  1676. ggml_custom3_op_t fun,
  1677. int n_tasks,
  1678. void * userdata);
  1679. // loss function
  1680. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1681. struct ggml_context * ctx,
  1682. struct ggml_tensor * a,
  1683. struct ggml_tensor * b);
  1684. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1685. struct ggml_context * ctx,
  1686. struct ggml_tensor * a,
  1687. struct ggml_tensor * b,
  1688. struct ggml_tensor * c);
  1689. //
  1690. // automatic differentiation
  1691. //
  1692. GGML_API void ggml_set_param(
  1693. struct ggml_context * ctx,
  1694. struct ggml_tensor * tensor);
  1695. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1696. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1697. // graph allocation in a context
  1698. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1699. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1700. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1701. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1702. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1703. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1704. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1705. GGML_API size_t ggml_graph_overhead(void);
  1706. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1707. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1708. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1709. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1710. GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1711. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1712. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1713. GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1714. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1715. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1716. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1717. // print info and performance information for the graph
  1718. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1719. // dump the graph into a file using the dot format
  1720. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1721. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1722. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1723. // but without the second forward pass nodes.
  1724. GGML_API void ggml_build_backward_gradient_checkpointing(
  1725. struct ggml_context * ctx,
  1726. struct ggml_cgraph * gf,
  1727. struct ggml_cgraph * gb,
  1728. struct ggml_cgraph * gb_tmp,
  1729. struct ggml_tensor * * checkpoints,
  1730. int n_checkpoints);
  1731. //
  1732. // optimization
  1733. //
  1734. // optimization methods
  1735. enum ggml_opt_type {
  1736. GGML_OPT_TYPE_ADAM,
  1737. GGML_OPT_TYPE_LBFGS,
  1738. };
  1739. // linesearch methods
  1740. enum ggml_linesearch {
  1741. GGML_LINESEARCH_DEFAULT = 1,
  1742. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1743. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1744. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1745. };
  1746. // optimization return values
  1747. enum ggml_opt_result {
  1748. GGML_OPT_RESULT_OK = 0,
  1749. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1750. GGML_OPT_RESULT_NO_CONTEXT,
  1751. GGML_OPT_RESULT_INVALID_WOLFE,
  1752. GGML_OPT_RESULT_FAIL,
  1753. GGML_OPT_RESULT_CANCEL,
  1754. GGML_LINESEARCH_FAIL = -128,
  1755. GGML_LINESEARCH_MINIMUM_STEP,
  1756. GGML_LINESEARCH_MAXIMUM_STEP,
  1757. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1758. GGML_LINESEARCH_INVALID_PARAMETERS,
  1759. };
  1760. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1761. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1762. // optimization parameters
  1763. //
  1764. // see ggml.c (ggml_opt_default_params) for default values
  1765. //
  1766. struct ggml_opt_params {
  1767. enum ggml_opt_type type;
  1768. size_t graph_size;
  1769. int n_threads;
  1770. // delta-based convergence test
  1771. //
  1772. // if past == 0 - disabled
  1773. // if past > 0:
  1774. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1775. //
  1776. int past;
  1777. float delta;
  1778. // maximum number of iterations without improvement
  1779. //
  1780. // if 0 - disabled
  1781. // if > 0:
  1782. // assume convergence if no cost improvement in this number of iterations
  1783. //
  1784. int max_no_improvement;
  1785. bool print_forward_graph;
  1786. bool print_backward_graph;
  1787. int n_gradient_accumulation;
  1788. // ADAM parameters
  1789. struct {
  1790. int n_iter;
  1791. float sched; // schedule multiplier (fixed, decay or warmup)
  1792. float decay; // weight decay for AdamW, use 0.0f to disable
  1793. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1794. float alpha; // learning rate
  1795. float beta1;
  1796. float beta2;
  1797. float eps; // epsilon for numerical stability
  1798. float eps_f; // epsilon for convergence test
  1799. float eps_g; // epsilon for convergence test
  1800. float gclip; // gradient clipping
  1801. } adam;
  1802. // LBFGS parameters
  1803. struct {
  1804. int m; // number of corrections to approximate the inv. Hessian
  1805. int n_iter;
  1806. int max_linesearch;
  1807. float eps; // convergence tolerance
  1808. float ftol; // line search tolerance
  1809. float wolfe;
  1810. float min_step;
  1811. float max_step;
  1812. enum ggml_linesearch linesearch;
  1813. } lbfgs;
  1814. };
  1815. struct ggml_opt_context {
  1816. struct ggml_context * ctx;
  1817. struct ggml_opt_params params;
  1818. int iter;
  1819. int64_t nx; // number of parameter elements
  1820. bool just_initialized;
  1821. float loss_before;
  1822. float loss_after;
  1823. struct {
  1824. struct ggml_tensor * g; // current gradient
  1825. struct ggml_tensor * m; // first moment
  1826. struct ggml_tensor * v; // second moment
  1827. struct ggml_tensor * pf; // past function values
  1828. float fx_best;
  1829. float fx_prev;
  1830. int n_no_improvement;
  1831. } adam;
  1832. struct {
  1833. struct ggml_tensor * x; // current parameters
  1834. struct ggml_tensor * xp; // previous parameters
  1835. struct ggml_tensor * g; // current gradient
  1836. struct ggml_tensor * gp; // previous gradient
  1837. struct ggml_tensor * d; // search direction
  1838. struct ggml_tensor * pf; // past function values
  1839. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1840. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1841. struct ggml_tensor * lms; // the L-BFGS memory s
  1842. struct ggml_tensor * lmy; // the L-BFGS memory y
  1843. float fx_best;
  1844. float step;
  1845. int j;
  1846. int k;
  1847. int end;
  1848. int n_no_improvement;
  1849. } lbfgs;
  1850. };
  1851. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1852. // optimize the function defined by the tensor f
  1853. GGML_API enum ggml_opt_result ggml_opt(
  1854. struct ggml_context * ctx,
  1855. struct ggml_opt_params params,
  1856. struct ggml_tensor * f);
  1857. // initialize optimizer context
  1858. GGML_API void ggml_opt_init(
  1859. struct ggml_context * ctx,
  1860. struct ggml_opt_context * opt,
  1861. struct ggml_opt_params params,
  1862. int64_t nx);
  1863. // continue optimizing the function defined by the tensor f
  1864. GGML_API enum ggml_opt_result ggml_opt_resume(
  1865. struct ggml_context * ctx,
  1866. struct ggml_opt_context * opt,
  1867. struct ggml_tensor * f);
  1868. // continue optimizing the function defined by the tensor f
  1869. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1870. struct ggml_context * ctx,
  1871. struct ggml_opt_context * opt,
  1872. struct ggml_tensor * f,
  1873. struct ggml_cgraph * gf,
  1874. struct ggml_cgraph * gb,
  1875. ggml_opt_callback callback,
  1876. void * callback_data);
  1877. //
  1878. // tensor flags
  1879. //
  1880. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1881. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1882. //
  1883. // quantization
  1884. //
  1885. // - ggml_quantize_init can be called multiple times with the same type
  1886. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1887. // automatically called by ggml_quantize_chunk for convenience
  1888. //
  1889. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1890. // call this at the end of the program to avoid memory leaks
  1891. //
  1892. // note: these are thread-safe
  1893. //
  1894. GGML_API void ggml_quantize_init(enum ggml_type type);
  1895. GGML_API void ggml_quantize_free(void);
  1896. // some quantization type cannot be used without an importance matrix
  1897. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1898. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1899. GGML_API size_t ggml_quantize_chunk(
  1900. enum ggml_type type,
  1901. const float * src,
  1902. void * dst,
  1903. int64_t start,
  1904. int64_t nrows,
  1905. int64_t n_per_row,
  1906. const float * imatrix);
  1907. //
  1908. // gguf
  1909. //
  1910. enum gguf_type {
  1911. GGUF_TYPE_UINT8 = 0,
  1912. GGUF_TYPE_INT8 = 1,
  1913. GGUF_TYPE_UINT16 = 2,
  1914. GGUF_TYPE_INT16 = 3,
  1915. GGUF_TYPE_UINT32 = 4,
  1916. GGUF_TYPE_INT32 = 5,
  1917. GGUF_TYPE_FLOAT32 = 6,
  1918. GGUF_TYPE_BOOL = 7,
  1919. GGUF_TYPE_STRING = 8,
  1920. GGUF_TYPE_ARRAY = 9,
  1921. GGUF_TYPE_UINT64 = 10,
  1922. GGUF_TYPE_INT64 = 11,
  1923. GGUF_TYPE_FLOAT64 = 12,
  1924. GGUF_TYPE_COUNT, // marks the end of the enum
  1925. };
  1926. struct gguf_context;
  1927. struct gguf_init_params {
  1928. bool no_alloc;
  1929. // if not NULL, create a ggml_context and allocate the tensor data in it
  1930. struct ggml_context ** ctx;
  1931. };
  1932. GGML_API struct gguf_context * gguf_init_empty(void);
  1933. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1934. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1935. GGML_API void gguf_free(struct gguf_context * ctx);
  1936. GGML_API const char * gguf_type_name(enum gguf_type type);
  1937. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1938. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1939. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1940. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1941. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1942. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1943. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1944. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1945. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1946. // will abort if the wrong type is used for the key
  1947. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1948. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1949. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1950. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1951. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1952. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1953. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1954. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1955. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1956. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1957. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1958. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1959. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1960. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1961. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1962. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1963. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1964. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1965. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1966. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1967. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1968. // removes key if it exists
  1969. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1970. // overrides existing values or adds a new one
  1971. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1972. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1973. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1974. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1975. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1976. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1977. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1978. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1979. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1980. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1981. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1982. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1983. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1984. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1985. // set or add KV pairs from another context
  1986. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1987. // manage tensor info
  1988. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1989. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1990. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1991. // writing gguf files can be done in 2 ways:
  1992. //
  1993. // - write the entire gguf_context to a binary file in a single pass:
  1994. //
  1995. // gguf_write_to_file(ctx, fname);
  1996. //
  1997. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1998. //
  1999. // FILE * f = fopen(fname, "wb");
  2000. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2001. // fwrite(f, ...);
  2002. // void * data = gguf_meta_get_meta_data(ctx);
  2003. // fseek(f, 0, SEEK_SET);
  2004. // fwrite(f, data, gguf_get_meta_size(ctx));
  2005. // free(data);
  2006. // fclose(f);
  2007. //
  2008. // write the entire context to a binary file
  2009. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2010. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2011. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2012. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2013. //
  2014. // system info
  2015. //
  2016. GGML_API int ggml_cpu_has_avx (void);
  2017. GGML_API int ggml_cpu_has_avx_vnni (void);
  2018. GGML_API int ggml_cpu_has_avx2 (void);
  2019. GGML_API int ggml_cpu_has_avx512 (void);
  2020. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2021. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2022. GGML_API int ggml_cpu_has_fma (void);
  2023. GGML_API int ggml_cpu_has_neon (void);
  2024. GGML_API int ggml_cpu_has_arm_fma (void);
  2025. GGML_API int ggml_cpu_has_metal (void);
  2026. GGML_API int ggml_cpu_has_f16c (void);
  2027. GGML_API int ggml_cpu_has_fp16_va (void);
  2028. GGML_API int ggml_cpu_has_wasm_simd (void);
  2029. GGML_API int ggml_cpu_has_blas (void);
  2030. GGML_API int ggml_cpu_has_cuda (void);
  2031. GGML_API int ggml_cpu_has_clblast (void);
  2032. GGML_API int ggml_cpu_has_vulkan (void);
  2033. GGML_API int ggml_cpu_has_kompute (void);
  2034. GGML_API int ggml_cpu_has_gpublas (void);
  2035. GGML_API int ggml_cpu_has_sse3 (void);
  2036. GGML_API int ggml_cpu_has_ssse3 (void);
  2037. GGML_API int ggml_cpu_has_sycl (void);
  2038. GGML_API int ggml_cpu_has_vsx (void);
  2039. GGML_API int ggml_cpu_has_matmul_int8(void);
  2040. //
  2041. // Internal types and functions exposed for tests and benchmarks
  2042. //
  2043. #ifdef __cplusplus
  2044. // restrict not standard in C++
  2045. #define GGML_RESTRICT
  2046. #else
  2047. #define GGML_RESTRICT restrict
  2048. #endif
  2049. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2050. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2051. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  2052. const void * GGML_RESTRICT y, size_t by, int nrc);
  2053. typedef struct {
  2054. const char * type_name;
  2055. int blck_size;
  2056. size_t type_size;
  2057. bool is_quantized;
  2058. ggml_to_float_t to_float;
  2059. ggml_from_float_t from_float;
  2060. ggml_from_float_t from_float_reference;
  2061. ggml_vec_dot_t vec_dot;
  2062. enum ggml_type vec_dot_type;
  2063. int64_t nrows; // number of rows to process simultaneously;
  2064. } ggml_type_traits_t;
  2065. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2066. #ifdef __cplusplus
  2067. }
  2068. #endif