test-backend-ops.cpp 304 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  153. std::vector<float> tv;
  154. tv.reserve(ggml_nelements(t));
  155. std::vector<uint8_t> buf(ggml_nbytes(t));
  156. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  157. const auto * tt = ggml_get_type_traits(t->type);
  158. size_t bs = ggml_blck_size(t->type);
  159. std::vector<float> vq(ggml_blck_size(t->type));
  160. bool quantized = ggml_is_quantized(t->type);
  161. // access elements by index to avoid gaps in views
  162. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  163. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  164. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  165. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  166. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  167. if (t->type == GGML_TYPE_F16) {
  168. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  169. } else if (t->type == GGML_TYPE_BF16) {
  170. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  171. } else if (t->type == GGML_TYPE_F32) {
  172. tv.push_back(*(float *) &buf[i]);
  173. } else if (t->type == GGML_TYPE_I64) {
  174. tv.push_back((float)*(int64_t *) &buf[i]);
  175. } else if (t->type == GGML_TYPE_I32) {
  176. tv.push_back((float)*(int32_t *) &buf[i]);
  177. } else if (t->type == GGML_TYPE_I16) {
  178. tv.push_back((float)*(int16_t *) &buf[i]);
  179. } else if (t->type == GGML_TYPE_I8) {
  180. tv.push_back((float)*(int8_t *) &buf[i]);
  181. } else if (quantized) {
  182. tt->to_float(&buf[i], vq.data(), bs);
  183. tv.insert(tv.end(), vq.begin(), vq.end());
  184. } else {
  185. GGML_ABORT("fatal error");
  186. }
  187. }
  188. }
  189. }
  190. }
  191. return tv;
  192. }
  193. // normalized mean squared error = mse(a, b) / mse(a, 0)
  194. static double nmse(const float * a, const float * b, size_t n) {
  195. double mse_a_b = 0.0;
  196. double mse_a_0 = 0.0;
  197. for (size_t i = 0; i < n; i++) {
  198. float a_i = a[i];
  199. float b_i = b[i];
  200. mse_a_b += (a_i - b_i) * (a_i - b_i);
  201. mse_a_0 += a_i * a_i;
  202. }
  203. return mse_a_b / mse_a_0;
  204. }
  205. // maximum absolute asymmetry between a and b
  206. // asymmetry: (a - b) / (a + b)
  207. // This is more stable than relative error if one of the values fluctuates towards zero.
  208. // n: number of values to compare.
  209. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  210. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  211. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  212. double sum = 0.0f;
  213. size_t nvalid = 0;
  214. for (size_t i = 0; i < n; i++) {
  215. if (!expected_vals.empty()) {
  216. bool matches_any = false;
  217. for (const float & ev : expected_vals) {
  218. if (fabsf(a[i] - ev) < 1e-3f) {
  219. matches_any = true;
  220. break;
  221. }
  222. }
  223. if (!matches_any) {
  224. continue;
  225. }
  226. }
  227. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  228. sum += fabsf(asymm);
  229. nvalid++;
  230. }
  231. return sum/nvalid;
  232. }
  233. // utils for printing the variables of the test cases
  234. static std::string var_to_str(const std::string & x) {
  235. return x;
  236. }
  237. template<typename T>
  238. static std::string var_to_str(const T & x) {
  239. return std::to_string(x);
  240. }
  241. template<typename T, size_t N>
  242. static std::string var_to_str(const T (&x)[N]) {
  243. std::string s = "[";
  244. for (size_t i = 0; i < N; i++) {
  245. if (i > 0) {
  246. s += ",";
  247. }
  248. s += var_to_str(x[i]);
  249. }
  250. s += "]";
  251. return s;
  252. }
  253. template<typename T, size_t N>
  254. static std::string var_to_str(const std::array<T, N> & x) {
  255. std::string s = "[";
  256. for (size_t i = 0; i < N; i++) {
  257. if (i > 0) {
  258. s += ",";
  259. }
  260. s += var_to_str(x[i]);
  261. }
  262. s += "]";
  263. return s;
  264. }
  265. static std::string var_to_str(ggml_type type) {
  266. return ggml_type_name(type);
  267. }
  268. static std::string var_to_str(ggml_prec prec) {
  269. return prec == GGML_PREC_F32 ? "f32" : "def";
  270. }
  271. static std::string var_to_str(ggml_op_pool pool) {
  272. switch (pool) {
  273. case GGML_OP_POOL_AVG: return "avg";
  274. case GGML_OP_POOL_MAX: return "max";
  275. default: return std::to_string(pool);
  276. }
  277. }
  278. static std::string var_to_str(ggml_scale_mode mode) {
  279. switch (mode) {
  280. case GGML_SCALE_MODE_NEAREST: return "nearest";
  281. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  282. case GGML_SCALE_MODE_BICUBIC: return "bicubic";
  283. default: return std::to_string(mode);
  284. }
  285. }
  286. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  287. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  288. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  289. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  290. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  291. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  292. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  293. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  294. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  295. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  296. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  297. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  298. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  299. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  300. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  301. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  302. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  303. #ifdef GGML_USE_SYCL
  304. static bool inline _isinf(float f) {
  305. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  306. }
  307. #else
  308. static bool inline _isinf(float f) { return std::isinf(f); }
  309. #endif
  310. // accept FLT_MAX as infinity
  311. static bool isinf_or_max(float f) {
  312. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  313. }
  314. static bool ggml_is_view_op(enum ggml_op op) {
  315. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  316. }
  317. enum test_mode {
  318. MODE_TEST,
  319. MODE_PERF,
  320. MODE_GRAD,
  321. MODE_SUPPORT,
  322. };
  323. // Output format support similar to llama-bench
  324. enum output_formats { CONSOLE, SQL, CSV };
  325. static const char * output_format_str(output_formats format) {
  326. switch (format) {
  327. case CONSOLE:
  328. return "console";
  329. case SQL:
  330. return "sql";
  331. case CSV:
  332. return "csv";
  333. default:
  334. GGML_ABORT("invalid output format");
  335. }
  336. }
  337. static bool output_format_from_str(const std::string & s, output_formats & format) {
  338. if (s == "console") {
  339. format = CONSOLE;
  340. } else if (s == "sql") {
  341. format = SQL;
  342. } else if (s == "csv") {
  343. format = CSV;
  344. } else {
  345. return false;
  346. }
  347. return true;
  348. }
  349. // Test result structure for SQL output
  350. struct test_result {
  351. std::string test_time;
  352. std::string build_commit;
  353. std::string backend_name;
  354. std::string op_name;
  355. std::string op_params;
  356. std::string test_mode;
  357. bool supported;
  358. bool passed;
  359. std::string error_message;
  360. double time_us;
  361. double flops;
  362. double bandwidth_gb_s;
  363. size_t memory_kb;
  364. int n_runs;
  365. std::string device_description;
  366. std::string backend_reg_name;
  367. test_result() {
  368. // Initialize with default values
  369. time_us = 0.0;
  370. flops = 0.0;
  371. bandwidth_gb_s = 0.0;
  372. memory_kb = 0;
  373. n_runs = 0;
  374. supported = false;
  375. passed = false;
  376. // Set test time
  377. time_t t = time(NULL);
  378. char buf[32];
  379. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  380. test_time = buf;
  381. // Set build info
  382. build_commit = ggml_commit();
  383. }
  384. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  385. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  386. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  387. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  388. backend_name(backend_name),
  389. op_name(op_name),
  390. op_params(op_params),
  391. test_mode(test_mode),
  392. supported(supported),
  393. passed(passed),
  394. error_message(error_message),
  395. time_us(time_us),
  396. flops(flops),
  397. bandwidth_gb_s(bandwidth_gb_s),
  398. memory_kb(memory_kb),
  399. n_runs(n_runs),
  400. device_description(device_description),
  401. backend_reg_name(backend_reg_name) {
  402. // Set test time
  403. time_t t = time(NULL);
  404. char buf[32];
  405. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  406. test_time = buf;
  407. // Set build info
  408. build_commit = ggml_commit();
  409. }
  410. static const std::vector<std::string> & get_fields() {
  411. static const std::vector<std::string> fields = {
  412. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  413. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  414. "device_description", "backend_reg_name"
  415. };
  416. return fields;
  417. }
  418. enum field_type { STRING, BOOL, INT, FLOAT };
  419. static field_type get_field_type(const std::string & field) {
  420. if (field == "supported" || field == "passed") {
  421. return BOOL;
  422. }
  423. if (field == "memory_kb" || field == "n_runs") {
  424. return INT;
  425. }
  426. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  427. return FLOAT;
  428. }
  429. return STRING;
  430. }
  431. std::vector<std::string> get_values() const {
  432. return { test_time,
  433. build_commit,
  434. backend_name,
  435. op_name,
  436. op_params,
  437. test_mode,
  438. std::to_string(supported),
  439. std::to_string(passed),
  440. error_message,
  441. std::to_string(time_us),
  442. std::to_string(flops),
  443. std::to_string(bandwidth_gb_s),
  444. std::to_string(memory_kb),
  445. std::to_string(n_runs),
  446. device_description,
  447. backend_reg_name };
  448. }
  449. };
  450. // Printer classes for different output formats
  451. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  452. struct test_operation_info {
  453. std::string op_name;
  454. std::string op_params;
  455. std::string backend_name;
  456. test_status_t status = test_status_t::OK;
  457. std::string failure_reason;
  458. // Additional information fields that were previously in separate structs
  459. std::string error_component;
  460. std::string error_details;
  461. // Gradient info
  462. int64_t gradient_index = -1;
  463. std::string gradient_param_name;
  464. float gradient_value = 0.0f;
  465. // MAA error info
  466. double maa_error = 0.0;
  467. double maa_threshold = 0.0;
  468. // Flags for different types of information
  469. bool has_error = false;
  470. bool has_gradient_info = false;
  471. bool has_maa_error = false;
  472. bool is_compare_failure = false;
  473. bool is_large_tensor_skip = false;
  474. test_operation_info() = default;
  475. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  476. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  477. op_name(op_name),
  478. op_params(op_params),
  479. backend_name(backend_name),
  480. status(status),
  481. failure_reason(failure_reason) {}
  482. // Set error information
  483. void set_error(const std::string & component, const std::string & details) {
  484. has_error = true;
  485. error_component = component;
  486. error_details = details;
  487. if (status == test_status_t::OK) {
  488. status = test_status_t::FAIL;
  489. }
  490. }
  491. // Set gradient information
  492. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  493. has_gradient_info = true;
  494. gradient_index = index;
  495. gradient_param_name = param_name;
  496. gradient_value = value;
  497. if (status == test_status_t::OK) {
  498. status = test_status_t::FAIL;
  499. }
  500. }
  501. // Set MAA error information
  502. void set_maa_error(double error, double threshold) {
  503. has_maa_error = true;
  504. maa_error = error;
  505. maa_threshold = threshold;
  506. if (status == test_status_t::OK) {
  507. status = test_status_t::FAIL;
  508. }
  509. }
  510. // Set compare failure
  511. void set_compare_failure() {
  512. is_compare_failure = true;
  513. if (status == test_status_t::OK) {
  514. status = test_status_t::FAIL;
  515. }
  516. }
  517. // Set large tensor skip
  518. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  519. };
  520. struct test_summary_info {
  521. size_t tests_passed;
  522. size_t tests_total;
  523. bool is_backend_summary = false; // true for backend summary, false for test summary
  524. test_summary_info() = default;
  525. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  526. tests_passed(tests_passed),
  527. tests_total(tests_total),
  528. is_backend_summary(is_backend_summary) {}
  529. };
  530. struct testing_start_info {
  531. size_t device_count;
  532. testing_start_info() = default;
  533. testing_start_info(size_t device_count) : device_count(device_count) {}
  534. };
  535. struct backend_init_info {
  536. size_t device_index;
  537. size_t total_devices;
  538. std::string device_name;
  539. bool skipped = false;
  540. std::string skip_reason;
  541. std::string description;
  542. size_t memory_total_mb = 0;
  543. size_t memory_free_mb = 0;
  544. bool has_memory_info = false;
  545. backend_init_info() = default;
  546. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  547. const std::string & skip_reason = "", const std::string & description = "",
  548. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  549. device_index(device_index),
  550. total_devices(total_devices),
  551. device_name(device_name),
  552. skipped(skipped),
  553. skip_reason(skip_reason),
  554. description(description),
  555. memory_total_mb(memory_total_mb),
  556. memory_free_mb(memory_free_mb),
  557. has_memory_info(has_memory_info) {}
  558. };
  559. struct backend_status_info {
  560. std::string backend_name;
  561. test_status_t status;
  562. backend_status_info() = default;
  563. backend_status_info(const std::string & backend_name, test_status_t status) :
  564. backend_name(backend_name),
  565. status(status) {}
  566. };
  567. struct overall_summary_info {
  568. size_t backends_passed;
  569. size_t backends_total;
  570. bool all_passed;
  571. overall_summary_info() = default;
  572. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  573. backends_passed(backends_passed),
  574. backends_total(backends_total),
  575. all_passed(all_passed) {}
  576. };
  577. struct printer {
  578. virtual ~printer() {}
  579. FILE * fout = stdout;
  580. virtual void print_header() {}
  581. virtual void print_test_result(const test_result & result) = 0;
  582. virtual void print_footer() {}
  583. virtual void print_operation(const test_operation_info & info) { (void) info; }
  584. virtual void print_summary(const test_summary_info & info) { (void) info; }
  585. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  586. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  587. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  588. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  589. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  590. };
  591. struct console_printer : public printer {
  592. void print_test_result(const test_result & result) override {
  593. if (result.test_mode == "test") {
  594. print_test_console(result);
  595. } else if (result.test_mode == "perf") {
  596. print_perf_console(result);
  597. } else if (result.test_mode == "support") {
  598. print_support_console(result);
  599. }
  600. }
  601. void print_operation(const test_operation_info & info) override {
  602. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  603. fflush(stdout);
  604. // Handle large tensor skip first
  605. if (info.is_large_tensor_skip) {
  606. printf("skipping large tensors for speed \n");
  607. return;
  608. }
  609. // Handle not supported status
  610. if (info.status == test_status_t::NOT_SUPPORTED) {
  611. if (!info.failure_reason.empty()) {
  612. printf("not supported [%s]\n", info.failure_reason.c_str());
  613. } else {
  614. printf("not supported [%s]\n", info.backend_name.c_str());
  615. }
  616. return;
  617. }
  618. // Handle errors and additional information
  619. if (info.has_error) {
  620. if (info.error_component == "allocation") {
  621. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  622. } else if (info.error_component == "backend") {
  623. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  624. } else {
  625. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  626. }
  627. }
  628. // Handle gradient info
  629. if (info.has_gradient_info) {
  630. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  631. info.gradient_param_name.c_str(), info.gradient_value);
  632. }
  633. // Handle MAA error
  634. if (info.has_maa_error) {
  635. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  636. }
  637. // Handle compare failure
  638. if (info.is_compare_failure) {
  639. printf("compare failed ");
  640. }
  641. // Print final status
  642. if (info.status == test_status_t::OK) {
  643. printf("\033[1;32mOK\033[0m\n");
  644. } else {
  645. printf("\033[1;31mFAIL\033[0m\n");
  646. }
  647. }
  648. void print_summary(const test_summary_info & info) override {
  649. if (info.is_backend_summary) {
  650. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  651. } else {
  652. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  653. }
  654. }
  655. void print_backend_status(const backend_status_info & info) override {
  656. printf(" Backend %s: ", info.backend_name.c_str());
  657. if (info.status == test_status_t::OK) {
  658. printf("\033[1;32mOK\033[0m\n");
  659. } else {
  660. printf("\033[1;31mFAIL\033[0m\n");
  661. }
  662. }
  663. void print_testing_start(const testing_start_info & info) override {
  664. printf("Testing %zu devices\n\n", info.device_count);
  665. }
  666. void print_backend_init(const backend_init_info & info) override {
  667. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  668. if (info.skipped) {
  669. printf(" %s\n", info.skip_reason.c_str());
  670. return;
  671. }
  672. if (!info.description.empty()) {
  673. printf(" Device description: %s\n", info.description.c_str());
  674. }
  675. if (info.has_memory_info) {
  676. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  677. }
  678. printf("\n");
  679. }
  680. void print_overall_summary(const overall_summary_info & info) override {
  681. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  682. if (info.all_passed) {
  683. printf("\033[1;32mOK\033[0m\n");
  684. } else {
  685. printf("\033[1;31mFAIL\033[0m\n");
  686. }
  687. }
  688. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  689. if (failed_tests.empty()) {
  690. return;
  691. }
  692. printf("\nFailing tests:\n");
  693. for (const auto & test_name : failed_tests) {
  694. printf(" %s\n", test_name.c_str());
  695. }
  696. }
  697. private:
  698. void print_test_console(const test_result & result) {
  699. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  700. fflush(stdout);
  701. if (!result.supported) {
  702. printf("not supported [%s] ", result.backend_name.c_str());
  703. printf("\n");
  704. return;
  705. }
  706. if (result.passed) {
  707. printf("\033[1;32mOK\033[0m\n");
  708. } else {
  709. printf("\033[1;31mFAIL\033[0m\n");
  710. }
  711. }
  712. void print_perf_console(const test_result & result) {
  713. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  714. fflush(stdout);
  715. if (!result.supported) {
  716. printf("not supported\n");
  717. return;
  718. }
  719. // align while also leaving some margin for variations in parameters
  720. int align = 8;
  721. int last = (len + align - 1) / align * align;
  722. if (last - len < 5) {
  723. last += align;
  724. }
  725. printf("%*s", last - len, "");
  726. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  727. if (result.flops > 0) {
  728. auto format_flops = [](double flops) -> std::string {
  729. char buf[256];
  730. if (flops >= 1e12) {
  731. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  732. } else if (flops >= 1e9) {
  733. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  734. } else if (flops >= 1e6) {
  735. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  736. } else {
  737. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  738. }
  739. return buf;
  740. };
  741. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  742. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  743. format_flops(result.flops).c_str());
  744. } else {
  745. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  746. }
  747. printf("\n");
  748. }
  749. void print_support_console(const test_result & result) {
  750. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  751. fflush(stdout);
  752. if (result.supported) {
  753. printf("\033[1;32mSUPPORTED\033[0m\n");
  754. } else {
  755. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  756. }
  757. }
  758. };
  759. struct sql_printer : public printer {
  760. static std::string get_sql_field_type(const std::string & field) {
  761. switch (test_result::get_field_type(field)) {
  762. case test_result::STRING:
  763. return "TEXT";
  764. case test_result::BOOL:
  765. case test_result::INT:
  766. return "INTEGER";
  767. case test_result::FLOAT:
  768. return "REAL";
  769. default:
  770. GGML_ABORT("invalid field type");
  771. }
  772. }
  773. void print_header() override {
  774. std::vector<std::string> fields = test_result::get_fields();
  775. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  776. for (size_t i = 0; i < fields.size(); i++) {
  777. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  778. i < fields.size() - 1 ? "," : "");
  779. }
  780. fprintf(fout, ");\n\n");
  781. }
  782. void print_test_result(const test_result & result) override {
  783. fprintf(fout, "INSERT INTO test_backend_ops (");
  784. std::vector<std::string> fields = test_result::get_fields();
  785. for (size_t i = 0; i < fields.size(); i++) {
  786. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  787. }
  788. fprintf(fout, ") VALUES (");
  789. std::vector<std::string> values = result.get_values();
  790. for (size_t i = 0; i < values.size(); i++) {
  791. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  792. }
  793. fprintf(fout, ");\n");
  794. }
  795. };
  796. struct csv_printer : public printer {
  797. void print_header() override {
  798. std::vector<std::string> fields = test_result::get_fields();
  799. std::vector<std::string> fields_csv = get_fields_csv();
  800. for (size_t i = 0; i < fields.size(); i++) {
  801. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  802. continue;
  803. }
  804. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  805. }
  806. printf("\n");
  807. }
  808. void print_test_result(const test_result & result) override {
  809. std::vector<std::string> values = result.get_values();
  810. std::vector<std::string> fields = test_result::get_fields();
  811. std::vector<std::string> fields_csv = get_fields_csv();
  812. for (size_t i = 0; i < values.size(); i++) {
  813. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  814. continue;
  815. }
  816. // Escape quotes and wrap in quotes for CSV
  817. std::string escaped_value = values[i];
  818. size_t pos = 0;
  819. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  820. escaped_value.replace(pos, 1, "\"\"");
  821. pos += 2;
  822. }
  823. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  824. }
  825. printf("\n");
  826. }
  827. static std::vector<std::string> get_fields_csv() {
  828. return {
  829. "op_name",
  830. "op_params",
  831. "supported",
  832. "error_message",
  833. "test_mode",
  834. "backend_reg_name",
  835. "backend_name",
  836. };
  837. }
  838. };
  839. static std::unique_ptr<printer> create_printer(output_formats format) {
  840. switch (format) {
  841. case CONSOLE:
  842. return std::make_unique<console_printer>();
  843. case SQL:
  844. return std::make_unique<sql_printer>();
  845. case CSV:
  846. return std::make_unique<csv_printer>();
  847. }
  848. GGML_ABORT("invalid output format");
  849. }
  850. struct test_case {
  851. virtual ~test_case() {}
  852. virtual std::string op_desc(ggml_tensor * t) {
  853. return ggml_op_desc(t);
  854. }
  855. virtual std::string vars() {
  856. return "";
  857. }
  858. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  859. virtual double max_nmse_err() {
  860. return 1e-7;
  861. }
  862. virtual double max_maa_err() {
  863. return 1e-4;
  864. }
  865. virtual float grad_eps() {
  866. return 1e-1f;
  867. }
  868. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  869. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  870. virtual bool grad_precise() {
  871. return false;
  872. }
  873. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  874. virtual int64_t grad_nmax() {
  875. return 10000;
  876. }
  877. // No effect if empty.
  878. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  879. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  880. virtual std::vector<float> grad_expect() {
  881. return {};
  882. }
  883. virtual void initialize_tensors(ggml_context * ctx) {
  884. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  885. init_tensor_uniform(t);
  886. }
  887. }
  888. virtual size_t op_size(ggml_tensor * t) {
  889. size_t size = ggml_nbytes(t);
  890. // add source tensors
  891. for (int i = 0; i < GGML_MAX_SRC; i++) {
  892. if (t->src[i] != NULL) {
  893. size += ggml_nbytes(t->src[i]);
  894. }
  895. }
  896. return size;
  897. }
  898. virtual uint64_t op_flops(ggml_tensor * t) {
  899. GGML_UNUSED(t);
  900. return 0;
  901. }
  902. virtual bool run_whole_graph() { return false; }
  903. ggml_cgraph * gf = nullptr;
  904. ggml_cgraph * gb = nullptr;
  905. static const int sentinel_size = 1024;
  906. test_mode mode;
  907. std::vector<ggml_tensor *> sentinels;
  908. std::string current_op_name;
  909. void add_sentinel(ggml_context * ctx) {
  910. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  911. return;
  912. }
  913. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  914. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  915. sentinels.push_back(sentinel);
  916. }
  917. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  918. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  919. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  920. add_sentinel(ctx);
  921. return t;
  922. }
  923. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  924. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  925. add_sentinel(ctx);
  926. return t;
  927. }
  928. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  929. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  930. add_sentinel(ctx);
  931. return t;
  932. }
  933. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  934. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  935. add_sentinel(ctx);
  936. return t;
  937. }
  938. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  939. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  940. add_sentinel(ctx);
  941. return t;
  942. }
  943. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  944. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  945. if (op_names_filter) {
  946. const auto op_name = op_desc(op);
  947. const auto op_full_name = op_name + "(" + vars() + ")";
  948. std::string_view filter(op_names_filter);
  949. while (!filter.empty()) {
  950. auto comma_pos = filter.find_first_of(',');
  951. const auto lparen_pos = filter.find_first_of('(');
  952. if (lparen_pos < comma_pos) {
  953. auto rparen_pos = filter.find_first_of(')');
  954. comma_pos = filter.find_first_of(',', rparen_pos);
  955. const auto op_filter = filter.substr(0, comma_pos);
  956. if (op_filter == op_full_name) {
  957. return true;
  958. }
  959. } else {
  960. const auto op_filter = filter.substr(0, comma_pos);
  961. if (op_filter == op_name) {
  962. return true;
  963. }
  964. }
  965. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  966. }
  967. return false;
  968. } else {
  969. return true;
  970. }
  971. }
  972. test_status_t eval(ggml_backend_t backend1,
  973. ggml_backend_t backend2,
  974. const char * op_names_filter,
  975. printer * output_printer) {
  976. mode = MODE_TEST;
  977. ggml_init_params params = {
  978. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  979. /* .mem_base = */ NULL,
  980. /* .no_alloc = */ true,
  981. };
  982. ggml_context * ctx = ggml_init(params);
  983. GGML_ASSERT(ctx);
  984. gf = ggml_new_graph(ctx);
  985. // pre-graph sentinel
  986. add_sentinel(ctx);
  987. ggml_tensor * out = build_graph(ctx);
  988. current_op_name = op_desc(out);
  989. if (!matches_filter(out, op_names_filter)) {
  990. //printf(" %s: skipping\n", op_desc(out).c_str());
  991. ggml_free(ctx);
  992. return test_status_t::SKIPPED;
  993. }
  994. // check if the backends support the ops
  995. bool supported = true;
  996. for (ggml_backend_t backend : {backend1, backend2}) {
  997. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  998. if (!ggml_backend_supports_op(backend, t)) {
  999. supported = false;
  1000. break;
  1001. }
  1002. }
  1003. }
  1004. if (!supported) {
  1005. // Create test result for unsupported operation
  1006. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1007. false, false, "not supported");
  1008. if (output_printer) {
  1009. output_printer->print_test_result(result);
  1010. }
  1011. ggml_free(ctx);
  1012. return test_status_t::NOT_SUPPORTED;
  1013. }
  1014. // post-graph sentinel
  1015. add_sentinel(ctx);
  1016. // allocate
  1017. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1018. if (buf == NULL) {
  1019. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1020. ggml_free(ctx);
  1021. return test_status_t::FAIL;
  1022. }
  1023. // build graph
  1024. ggml_build_forward_expand(gf, out);
  1025. // add sentinels as graph nodes so that they are checked in the callback
  1026. for (ggml_tensor * sentinel : sentinels) {
  1027. ggml_graph_add_node(gf, sentinel);
  1028. }
  1029. // randomize tensors
  1030. initialize_tensors(ctx);
  1031. // compare
  1032. struct callback_userdata {
  1033. bool ok;
  1034. double max_err;
  1035. ggml_backend_t backend1;
  1036. ggml_backend_t backend2;
  1037. };
  1038. callback_userdata ud {
  1039. true,
  1040. max_nmse_err(),
  1041. backend1,
  1042. backend2
  1043. };
  1044. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1045. callback_userdata * ud = (callback_userdata *) user_data;
  1046. const char * bn1 = ggml_backend_name(ud->backend1);
  1047. const char * bn2 = ggml_backend_name(ud->backend2);
  1048. if (t1->op == GGML_OP_NONE) {
  1049. // sentinels must be unchanged
  1050. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1051. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1052. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1053. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1054. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1055. printf("sentinel mismatch: %s ", t1->name);
  1056. ud->ok = false;
  1057. return true;
  1058. }
  1059. }
  1060. std::vector<float> f1 = tensor_to_float(t1);
  1061. std::vector<float> f2 = tensor_to_float(t2);
  1062. for (size_t i = 0; i < f1.size(); i++) {
  1063. // check for nans
  1064. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1065. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1066. ud->ok = false;
  1067. return true;
  1068. }
  1069. // check for infs: both must be inf of the same sign, or both must be finite
  1070. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1071. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1072. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1073. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1074. ud->ok = false;
  1075. return true;
  1076. }
  1077. } else {
  1078. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1079. ud->ok = false;
  1080. return true;
  1081. }
  1082. }
  1083. }
  1084. double err = nmse(f1.data(), f2.data(), f1.size());
  1085. if (err > ud->max_err) {
  1086. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1087. //for (int i = 0; i < (int) f1.size(); i++) {
  1088. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1089. //}
  1090. //printf("\n");
  1091. //exit(1);
  1092. ud->ok = false;
  1093. }
  1094. return true;
  1095. GGML_UNUSED(index);
  1096. };
  1097. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1098. ggml_backend_buffer_free(buf);
  1099. ggml_free(ctx);
  1100. // Create test result
  1101. bool test_passed = ud.ok && cmp_ok;
  1102. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1103. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1104. error_msg);
  1105. if (output_printer) {
  1106. output_printer->print_test_result(result);
  1107. }
  1108. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1109. }
  1110. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1111. mode = MODE_PERF;
  1112. static const size_t graph_nodes = 8192;
  1113. ggml_init_params params = {
  1114. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1115. /* .mem_base = */ NULL,
  1116. /* .no_alloc = */ true,
  1117. };
  1118. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1119. GGML_ASSERT(ctx);
  1120. ggml_tensor * out = build_graph(ctx.get());
  1121. current_op_name = op_desc(out);
  1122. if (!matches_filter(out, op_names_filter)) {
  1123. //printf(" %s: skipping\n", op_desc(out).c_str());
  1124. return true;
  1125. }
  1126. if (!ggml_backend_supports_op(backend, out)) {
  1127. // Create test result for unsupported performance test
  1128. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1129. "not supported");
  1130. output_printer->print_test_result(result);
  1131. return true;
  1132. }
  1133. // allocate
  1134. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1135. if (buf == NULL) {
  1136. printf("failed to allocate tensors\n");
  1137. return false;
  1138. }
  1139. // randomize tensors
  1140. initialize_tensors(ctx.get());
  1141. // build graph
  1142. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1143. ggml_build_forward_expand(gf, out);
  1144. // warmup run
  1145. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1146. if (status != GGML_STATUS_SUCCESS) {
  1147. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1148. return false;
  1149. }
  1150. // determine number of runs
  1151. int n_runs;
  1152. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1153. if (op_flops(out) > 0) {
  1154. // based on flops
  1155. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1156. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1157. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1158. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1159. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1160. } else {
  1161. // based on memory size
  1162. const size_t GB = 1ULL << 30;
  1163. const size_t target_size_cpu = 8 * GB;
  1164. const size_t target_size_gpu = 32 * GB;
  1165. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1166. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1167. }
  1168. // duplicate the op
  1169. for (int i = 1; i < n_runs; i++) {
  1170. ggml_graph_add_node(gf, out);
  1171. }
  1172. // calculate memory
  1173. size_t mem = n_runs * op_size(out);
  1174. auto tensor_op_size = [](ggml_tensor * t) {
  1175. size_t size = ggml_nbytes(t);
  1176. // add source tensors
  1177. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1178. if (t->src[i] != NULL) {
  1179. size += ggml_nbytes(t->src[i]);
  1180. }
  1181. }
  1182. return size;
  1183. };
  1184. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1185. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1186. continue;
  1187. }
  1188. mem += tensor_op_size(ggml_graph_node(gf, i));
  1189. }
  1190. // run
  1191. int64_t total_time_us = 0;
  1192. int64_t total_mem = 0;
  1193. int total_runs = 0;
  1194. do {
  1195. int64_t start_time = ggml_time_us();
  1196. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1197. if (status != GGML_STATUS_SUCCESS) {
  1198. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1199. return false;
  1200. }
  1201. int64_t end_time = ggml_time_us();
  1202. total_time_us += end_time - start_time;
  1203. total_mem += mem;
  1204. total_runs += n_runs;
  1205. } while (total_time_us < 1000*1000); // run for at least 1 second
  1206. // Create test result
  1207. double avg_time_us = (double) total_time_us / total_runs;
  1208. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1209. double calculated_bandwidth =
  1210. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1211. size_t calculated_memory_kb = op_size(out) / 1024;
  1212. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1213. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1214. if (output_printer) {
  1215. output_printer->print_test_result(result);
  1216. }
  1217. return true;
  1218. }
  1219. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1220. mode = MODE_SUPPORT;
  1221. static const size_t graph_nodes = 8192;
  1222. ggml_init_params params = {
  1223. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1224. /* .mem_base = */ NULL,
  1225. /* .no_alloc = */ true,
  1226. };
  1227. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1228. GGML_ASSERT(ctx);
  1229. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1230. ggml_tensor * out = build_graph(ctx.get());
  1231. current_op_name = op_desc(out);
  1232. if (!matches_filter(out, op_names_filter)) {
  1233. return true;
  1234. }
  1235. bool supported = ggml_backend_supports_op(backend, out);
  1236. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1237. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1238. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1239. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1240. output_printer->print_test_result(result);
  1241. return true;
  1242. }
  1243. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1244. mode = MODE_GRAD;
  1245. const std::vector<float> expect = grad_expect();
  1246. ggml_init_params params = {
  1247. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1248. /* .mem_base = */ NULL,
  1249. /* .no_alloc = */ true,
  1250. };
  1251. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1252. GGML_ASSERT(ctx);
  1253. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1254. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1255. ggml_tensor * out = build_graph(ctx.get());
  1256. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1257. return true;
  1258. }
  1259. if (out->type != GGML_TYPE_F32) {
  1260. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1261. test_status_t::NOT_SUPPORTED,
  1262. out->name + std::string("->type != FP32")));
  1263. return true;
  1264. }
  1265. // Print operation info first
  1266. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1267. // check if the backend supports the ops
  1268. bool supported = true;
  1269. bool any_params = false;
  1270. std::string failure_reason;
  1271. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1272. if (!ggml_backend_supports_op(backend, t)) {
  1273. supported = false;
  1274. failure_reason = ggml_backend_name(backend);
  1275. break;
  1276. }
  1277. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1278. any_params = true;
  1279. if (t->type != GGML_TYPE_F32) {
  1280. supported = false;
  1281. failure_reason = std::string(t->name) + "->type != FP32";
  1282. break;
  1283. }
  1284. }
  1285. }
  1286. if (!any_params) {
  1287. supported = false;
  1288. failure_reason = op_desc(out);
  1289. }
  1290. if (!supported) {
  1291. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1292. test_status_t::NOT_SUPPORTED, failure_reason));
  1293. return true;
  1294. }
  1295. int64_t ngrads = 0;
  1296. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1297. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1298. ngrads += ggml_nelements(t);
  1299. }
  1300. }
  1301. if (ngrads > grad_nmax()) {
  1302. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1303. info.set_large_tensor_skip();
  1304. output_printer->print_operation(info);
  1305. return true;
  1306. }
  1307. if (!ggml_is_scalar(out)) {
  1308. out = ggml_sum(ctx.get(), out);
  1309. ggml_set_name(out, "sum_of_out");
  1310. }
  1311. ggml_set_loss(out);
  1312. ggml_build_forward_expand(gf, out);
  1313. ggml_graph_cpy(gf, gb);
  1314. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1315. if (expect.size() != 1 || expect[0] != 0.0f) {
  1316. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1317. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1318. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1319. }
  1320. }
  1321. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1322. if (!ggml_backend_supports_op(backend, t)) {
  1323. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1324. test_status_t::NOT_SUPPORTED,
  1325. ggml_backend_name(backend)));
  1326. supported = false;
  1327. break;
  1328. }
  1329. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1330. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1331. test_status_t::NOT_SUPPORTED,
  1332. std::string(t->name) + "->type != FP32"));
  1333. supported = false;
  1334. break;
  1335. }
  1336. }
  1337. if (!supported) {
  1338. return true;
  1339. }
  1340. // allocate
  1341. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1342. if (buf == NULL) {
  1343. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1344. info.set_error("allocation", "");
  1345. output_printer->print_operation(info);
  1346. return false;
  1347. }
  1348. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1349. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1350. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1351. if (status != GGML_STATUS_SUCCESS) {
  1352. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1353. return false;
  1354. }
  1355. status = ggml_backend_graph_compute(backend, gb);
  1356. if (status != GGML_STATUS_SUCCESS) {
  1357. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1358. return false;
  1359. }
  1360. bool ok = true;
  1361. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1362. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1363. continue;
  1364. }
  1365. const char * bn = ggml_backend_name(backend);
  1366. const int64_t ne = ggml_nelements(t);
  1367. std::vector<float> ga;
  1368. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1369. if (grad) {
  1370. ga = tensor_to_float(grad);
  1371. } else {
  1372. ga.resize(ne); // default value is 0.0f
  1373. }
  1374. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1375. // check for nans
  1376. if (!std::isfinite(ga[i])) {
  1377. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1378. info.set_gradient_info(i, bn, ga[i]);
  1379. output_printer->print_operation(info);
  1380. ok = false;
  1381. break;
  1382. }
  1383. }
  1384. if (!ok) {
  1385. break;
  1386. }
  1387. std::vector<float> gn(ne); // gradient numeric
  1388. GGML_ASSERT(ga.size() == gn.size());
  1389. std::vector<float> x0 = tensor_to_float(t); // original t data
  1390. GGML_ASSERT(ggml_is_scalar(out));
  1391. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1392. const float eps = grad_eps();
  1393. for (int64_t i = 0; i < ne; ++i) {
  1394. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1395. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1396. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1397. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1398. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1399. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1400. status = ggml_backend_graph_compute(backend, gf);
  1401. if (status != GGML_STATUS_SUCCESS) {
  1402. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1403. return false;
  1404. }
  1405. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1406. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1407. status = ggml_backend_graph_compute(backend, gf);
  1408. if (status != GGML_STATUS_SUCCESS) {
  1409. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1410. return false;
  1411. }
  1412. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1413. if (grad_precise()) {
  1414. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1415. status = ggml_backend_graph_compute(backend, gf);
  1416. if (status != GGML_STATUS_SUCCESS) {
  1417. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1418. return false;
  1419. }
  1420. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1421. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1422. status = ggml_backend_graph_compute(backend, gf);
  1423. if (status != GGML_STATUS_SUCCESS) {
  1424. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1425. return false;
  1426. }
  1427. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1428. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1429. } else {
  1430. gn[i] = (fu - fd) / (2.0f*eps);
  1431. }
  1432. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1433. }
  1434. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1435. if (err > max_maa_err()) {
  1436. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1437. info.set_maa_error(err, max_maa_err());
  1438. output_printer->print_operation(info);
  1439. ok = false;
  1440. break;
  1441. }
  1442. if (!ok) {
  1443. break;
  1444. }
  1445. }
  1446. // Create final test result
  1447. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1448. if (!ok) {
  1449. final_info.set_compare_failure();
  1450. }
  1451. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1452. output_printer->print_operation(final_info);
  1453. if (ok) {
  1454. return true;
  1455. }
  1456. return false;
  1457. }
  1458. };
  1459. // ###################################
  1460. // ## Section 2: GGML Op Defintions ##
  1461. // ###################################
  1462. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1463. // GGML_OP_EXAMPLE
  1464. struct test_example : public test_case {
  1465. // Always define these 2 or variants thereof:
  1466. const ggml_type type; // The type of the input tensors.
  1467. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1468. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1469. // Or they may need additional parameters.
  1470. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1471. // In most cases these are just the properties of the struct that you defined above.
  1472. // This is needed for info prints.
  1473. std::string vars() override {
  1474. return VARS_TO_STR2(type, ne);
  1475. }
  1476. // Define a constructor for the struct.
  1477. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1478. // and just use initializer lists.
  1479. test_example(ggml_type type = GGML_TYPE_F32,
  1480. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1481. : type(type), ne(ne) {}
  1482. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1483. ggml_tensor * build_graph(ggml_context * ctx) override {
  1484. // Step 1: create input tensors that don't depend on any other tensors:
  1485. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1486. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1487. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1488. ggml_set_name(b, "b");
  1489. // Step 2: use the op that you want to test in the GGML compute graph.
  1490. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1491. ggml_set_name(out, "out");
  1492. // Step 3: return the output tensor.
  1493. return out;
  1494. }
  1495. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1496. // immediately after you create the tensors.
  1497. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1498. };
  1499. // GGML_OP_UNARY
  1500. struct test_unary : public test_case {
  1501. const ggml_unary_op op;
  1502. const ggml_type type;
  1503. const std::array<int64_t, 4> ne_a;
  1504. int v; // view (1 : non-contiguous a)
  1505. std::string vars() override {
  1506. return VARS_TO_STR3(type, ne_a, v);
  1507. }
  1508. test_unary(ggml_unary_op op,
  1509. ggml_type type = GGML_TYPE_F32,
  1510. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1511. int v = 0)
  1512. : op(op), type(type), ne_a(ne_a), v(v) {}
  1513. ggml_tensor * build_graph(ggml_context * ctx) override {
  1514. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1515. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1516. ggml_tensor * a;
  1517. if (v & 1) {
  1518. auto ne = ne_a; ne[0] *= 3;
  1519. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1520. if (grad_supported) {
  1521. ggml_set_param(a);
  1522. }
  1523. ggml_set_name(a, "a");
  1524. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1525. ggml_set_name(a, "view_of_a");
  1526. } else {
  1527. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1528. if (grad_supported) {
  1529. ggml_set_param(a);
  1530. }
  1531. ggml_set_name(a, "a");
  1532. }
  1533. ggml_tensor * out = ggml_unary(ctx, a, op);
  1534. ggml_set_name(out, "out");
  1535. return out;
  1536. }
  1537. void initialize_tensors(ggml_context * ctx) override {
  1538. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1539. // test extended range of values to check for NaNs in GELU
  1540. init_tensor_uniform(t, -150.f, 150.f);
  1541. }
  1542. }
  1543. float grad_eps() override {
  1544. return 15.0f;
  1545. }
  1546. std::vector<float> grad_expect() override {
  1547. if (op == GGML_UNARY_OP_ABS) {
  1548. return {-1.0f, 1.0f};
  1549. }
  1550. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1551. return {0.0f};
  1552. }
  1553. if (op == GGML_UNARY_OP_RELU) {
  1554. return {0.0f, 1.0f};
  1555. }
  1556. return {};
  1557. }
  1558. };
  1559. // GGML_OP_GLU
  1560. struct test_glu : public test_case {
  1561. const ggml_glu_op op;
  1562. const ggml_type type;
  1563. const std::array<int64_t, 4> ne_a;
  1564. int v; // view (1 : non-contiguous a)
  1565. bool swapped;
  1566. std::string vars() override {
  1567. return VARS_TO_STR4(type, ne_a, v, swapped);
  1568. }
  1569. test_glu(ggml_glu_op op,
  1570. ggml_type type = GGML_TYPE_F32,
  1571. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1572. int v = 0,
  1573. bool swapped = false)
  1574. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1575. ggml_tensor * build_graph(ggml_context * ctx) override {
  1576. ggml_tensor * a;
  1577. if (v & 1) {
  1578. auto ne = ne_a; ne[0] *= 3;
  1579. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1580. ggml_set_name(a, "a");
  1581. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1582. ggml_set_name(a, "view_of_a");
  1583. } else {
  1584. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1585. ggml_set_name(a, "a");
  1586. }
  1587. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1588. ggml_set_name(out, "out");
  1589. return out;
  1590. }
  1591. void initialize_tensors(ggml_context * ctx) override {
  1592. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1593. // test extended range of values to check for NaNs in GELU
  1594. init_tensor_uniform(t, -150.f, 150.f);
  1595. }
  1596. }
  1597. };
  1598. struct test_glu_split : public test_case {
  1599. const ggml_glu_op op;
  1600. const ggml_type type;
  1601. const std::array<int64_t, 4> ne_a;
  1602. int v; // view (1 : non-contiguous a)
  1603. std::string vars() override {
  1604. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1605. }
  1606. test_glu_split(ggml_glu_op op,
  1607. ggml_type type = GGML_TYPE_F32,
  1608. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1609. int v = 0)
  1610. : op(op), type(type), ne_a(ne_a), v(v) {}
  1611. ggml_tensor * build_graph(ggml_context * ctx) override {
  1612. ggml_tensor * a;
  1613. ggml_tensor * b;
  1614. if (v & 1) {
  1615. auto ne = ne_a; ne[0] *= 3;
  1616. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1617. ggml_set_param(a);
  1618. ggml_set_name(a, "a");
  1619. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1620. ggml_set_name(a, "view_of_a");
  1621. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1622. ggml_set_param(b);
  1623. ggml_set_name(b, "b");
  1624. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1625. ggml_set_name(a, "view_of_b");
  1626. } else {
  1627. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1628. ggml_set_param(a);
  1629. ggml_set_name(a, "a");
  1630. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1631. ggml_set_param(b);
  1632. ggml_set_name(b, "b");
  1633. }
  1634. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1635. ggml_set_name(out, "out");
  1636. return out;
  1637. }
  1638. void initialize_tensors(ggml_context * ctx) override {
  1639. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1640. // test extended range of values to check for NaNs in GELU
  1641. init_tensor_uniform(t, -150.f, 150.f);
  1642. }
  1643. }
  1644. };
  1645. struct test_swiglu_oai : public test_case {
  1646. const ggml_type type;
  1647. const std::array<int64_t, 4> ne_a;
  1648. int v; // view (1 : non-contiguous a)
  1649. float alpha;
  1650. float limit;
  1651. std::string vars() override {
  1652. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1653. }
  1654. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1655. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1656. int v = 0,
  1657. float alpha = 1.702f,
  1658. float limit = 7.0f)
  1659. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1660. ggml_tensor * build_graph(ggml_context * ctx) override {
  1661. ggml_tensor * a;
  1662. ggml_tensor * b;
  1663. if (v & 1) {
  1664. auto ne = ne_a; ne[0] *= 3;
  1665. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1666. ggml_set_param(a);
  1667. ggml_set_name(a, "a");
  1668. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1669. ggml_set_name(a, "view_of_a");
  1670. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1671. ggml_set_param(b);
  1672. ggml_set_name(b, "b");
  1673. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1674. ggml_set_name(a, "view_of_b");
  1675. } else {
  1676. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1677. ggml_set_param(a);
  1678. ggml_set_name(a, "a");
  1679. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1680. ggml_set_param(b);
  1681. ggml_set_name(b, "b");
  1682. }
  1683. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1684. ggml_set_name(out, "out");
  1685. return out;
  1686. }
  1687. void initialize_tensors(ggml_context * ctx) override {
  1688. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1689. // test extended range of values to check for NaNs in GELU
  1690. init_tensor_uniform(t, -150.f, 150.f);
  1691. }
  1692. }
  1693. };
  1694. // GGML_OP_GET_ROWS
  1695. struct test_get_rows : public test_case {
  1696. const ggml_type type;
  1697. const int n; // cols
  1698. const int m; // rows
  1699. const int r; // rows to get
  1700. const int be1; // batch size
  1701. const int be2; // batch size
  1702. const bool v; // view (non-contiguous src1)
  1703. std::string vars() override {
  1704. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1705. }
  1706. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1707. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1708. ggml_tensor * build_graph(ggml_context * ctx) override {
  1709. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1710. ggml_set_name(in, "in");
  1711. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1712. ggml_set_name(rows, "rows");
  1713. if (v) {
  1714. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1715. ggml_set_name(rows, "view_of_rows");
  1716. }
  1717. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1718. if (grad_supported) {
  1719. ggml_set_param(in);
  1720. // rows is a constant input -> no gradients
  1721. }
  1722. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1723. ggml_set_name(out, "out");
  1724. return out;
  1725. }
  1726. void initialize_tensors(ggml_context * ctx) override {
  1727. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1728. if (t->type == GGML_TYPE_I32) {
  1729. if (ggml_is_view_op(t->op)) { continue; }
  1730. // rows
  1731. std::vector<int> data(r*be1*be2);
  1732. for (int i = 0; i < r*be1*be2; i++) {
  1733. data[i] = rand() % m;
  1734. }
  1735. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1736. } else {
  1737. init_tensor_uniform(t);
  1738. }
  1739. }
  1740. }
  1741. };
  1742. // GGML_OP_GET_ROWS_BACK
  1743. struct test_get_rows_back : public test_case {
  1744. const ggml_type type;
  1745. const int n; // cols
  1746. const int m; // rows
  1747. const int r; // rows to get
  1748. const int b; // batch size
  1749. const bool v; // view (non-contiguous src1)
  1750. std::string vars() override {
  1751. return VARS_TO_STR6(type, n, m, r, b, v);
  1752. }
  1753. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1754. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1755. ggml_tensor * build_graph(ggml_context * ctx) override {
  1756. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1757. ggml_set_name(in_forward, "in_forward");
  1758. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1759. ggml_set_name(rows, "rows");
  1760. if (v) {
  1761. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1762. ggml_set_name(rows, "view_of_rows");
  1763. }
  1764. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1765. ggml_set_name(grad, "grad");
  1766. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1767. ggml_set_name(out, "out");
  1768. return out;
  1769. }
  1770. void initialize_tensors(ggml_context * ctx) override {
  1771. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1772. if (t->type == GGML_TYPE_I32) {
  1773. if (ggml_is_view_op(t->op)) { continue; }
  1774. // rows
  1775. std::vector<int> data(r*b);
  1776. for (int i = 0; i < r*b; i++) {
  1777. data[i] = rand() % m;
  1778. }
  1779. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1780. } else {
  1781. init_tensor_uniform(t);
  1782. }
  1783. }
  1784. }
  1785. };
  1786. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1787. std::random_device rd;
  1788. std::default_random_engine rng(rd());
  1789. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1790. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1791. // generate a shuffled subset of row indices
  1792. std::vector<int64_t> data(num_rows);
  1793. for (int i = 0; i < num_rows; i++) {
  1794. data[i] = i;
  1795. }
  1796. std::shuffle(data.begin(), data.end(), rng);
  1797. data.resize(t->ne[0]);
  1798. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1799. if (t->type == GGML_TYPE_I32) {
  1800. // TODO: Make a template or something
  1801. std::vector<int32_t> data_i32(t->ne[0]);
  1802. for (int i = 0; i < t->ne[0]; i++) {
  1803. data_i32[i] = static_cast<int32_t>(data[i]);
  1804. }
  1805. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1806. } else {
  1807. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1808. }
  1809. }
  1810. }
  1811. }
  1812. // GGML_OP_SET_ROWS
  1813. struct test_set_rows : public test_case {
  1814. const ggml_type type;
  1815. const ggml_type type_idx;
  1816. const std::array<int64_t, 4> ne;
  1817. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1818. const int r; // rows to set
  1819. const bool v; // view (non-contiguous src1)
  1820. std::string vars() override {
  1821. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1822. }
  1823. test_set_rows(ggml_type type,
  1824. ggml_type type_idx,
  1825. std::array<int64_t, 4> ne,
  1826. std::array<int, 2> nr23,
  1827. int r, bool v = false)
  1828. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1829. ggml_tensor * build_graph(ggml_context * ctx) override {
  1830. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1831. ggml_set_name(dst, "dst");
  1832. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1833. ggml_set_name(src, "src");
  1834. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1835. ggml_set_name(row_idxs, "row_idxs");
  1836. if (v) {
  1837. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1838. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1839. ggml_set_name(row_idxs, "view_of_rows");
  1840. }
  1841. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1842. ggml_set_name(out, "out");
  1843. return out;
  1844. }
  1845. void initialize_tensors(ggml_context * ctx) override {
  1846. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1847. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1848. if (ggml_is_view_op(t->op)) {
  1849. continue;
  1850. }
  1851. init_set_rows_row_ids(t, ne[1]);
  1852. } else {
  1853. init_tensor_uniform(t);
  1854. }
  1855. }
  1856. }
  1857. double max_nmse_err() override {
  1858. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1859. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1860. // estimate what the max nmse error would be if one quantized value is
  1861. // off by one. The test values are distributed in [-1,1], so it'll be
  1862. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1863. // which is roughly 0.25 times the number of elements.
  1864. double err_estimate = 1.0f/8.0f;
  1865. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1866. err_estimate /= 2.0f;
  1867. }
  1868. if (type == GGML_TYPE_Q8_0) {
  1869. err_estimate /= 8.0f;
  1870. }
  1871. err_estimate *= err_estimate;
  1872. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1873. return err_estimate;
  1874. }
  1875. return 1e-7;
  1876. }
  1877. };
  1878. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1879. struct test_rope_set_rows : public test_case {
  1880. const ggml_type type;
  1881. const ggml_type type_idx;
  1882. const std::array<int64_t, 4> ne;
  1883. int mode;
  1884. std::string vars() override {
  1885. return VARS_TO_STR4(type, type_idx, ne, mode);
  1886. }
  1887. std::string op_desc(ggml_tensor * t) override {
  1888. GGML_UNUSED(t);
  1889. return "ROPE_SET_ROWS";
  1890. }
  1891. bool run_whole_graph() override { return true; }
  1892. test_rope_set_rows(ggml_type type,
  1893. ggml_type type_idx,
  1894. std::array<int64_t, 4> ne,
  1895. int mode)
  1896. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1897. ggml_tensor * build_graph(ggml_context * ctx) override {
  1898. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1899. ggml_set_name(src, "src");
  1900. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1901. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1902. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1903. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1904. ggml_set_name(dst, "dst");
  1905. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1906. ggml_set_name(row_idxs, "row_idxs");
  1907. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1908. ggml_set_name(out, "out");
  1909. return out;
  1910. }
  1911. void initialize_tensors(ggml_context * ctx) override {
  1912. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1913. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1914. if (ggml_is_view_op(t->op)) {
  1915. continue;
  1916. }
  1917. init_set_rows_row_ids(t, ne[2]);
  1918. } else {
  1919. init_tensor_uniform(t);
  1920. }
  1921. }
  1922. }
  1923. };
  1924. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  1925. struct test_rms_norm_mul_rope : public test_case {
  1926. const std::array<int64_t, 4> ne;
  1927. const float eps;
  1928. const bool multi_add; // test a sequence of adds feeding into rms_norm
  1929. const bool set_rows;
  1930. int mode;
  1931. std::string op_desc(ggml_tensor * t) override {
  1932. GGML_UNUSED(t);
  1933. return "RMS_NORM_MUL_ROPE";
  1934. }
  1935. bool run_whole_graph() override { return true; }
  1936. std::string vars() override {
  1937. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  1938. }
  1939. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  1940. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  1941. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  1942. ggml_tensor * build_graph(ggml_context * ctx) override {
  1943. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1944. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1945. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1946. if (multi_add) {
  1947. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  1948. }
  1949. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  1950. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1951. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  1952. ggml_tensor * out;
  1953. if (set_rows) {
  1954. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1955. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1956. ggml_set_name(dst, "dst");
  1957. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  1958. ggml_set_name(row_idxs, "row_idxs");
  1959. out = ggml_set_rows(ctx, dst, view, row_idxs);
  1960. ggml_set_name(out, "out");
  1961. } else {
  1962. out = rope;
  1963. }
  1964. return out;
  1965. }
  1966. void initialize_tensors(ggml_context * ctx) override {
  1967. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1968. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1969. if (ggml_is_view_op(t->op)) {
  1970. continue;
  1971. }
  1972. init_set_rows_row_ids(t, ne[2]);
  1973. } else {
  1974. init_tensor_uniform(t);
  1975. }
  1976. }
  1977. }
  1978. };
  1979. // GGML_OP_ARGMAX
  1980. struct test_argmax : public test_case {
  1981. const ggml_type type;
  1982. const std::array<int64_t, 4> ne;
  1983. std::string vars() override {
  1984. return VARS_TO_STR2(type, ne);
  1985. }
  1986. test_argmax(ggml_type type = GGML_TYPE_F32,
  1987. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1988. : type(type), ne(ne) {}
  1989. ggml_tensor * build_graph(ggml_context * ctx) override {
  1990. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1991. ggml_set_name(a, "a");
  1992. ggml_tensor * out = ggml_argmax(ctx, a);
  1993. ggml_set_name(out, "out");
  1994. return out;
  1995. }
  1996. void initialize_tensors(ggml_context * ctx) override {
  1997. std::random_device rd;
  1998. std::default_random_engine rng(rd());
  1999. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2000. if (t->type == GGML_TYPE_F32) {
  2001. // initialize with unique values to avoid ties
  2002. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2003. std::vector<float> data(t->ne[0]);
  2004. for (int i = 0; i < t->ne[0]; i++) {
  2005. data[i] = i;
  2006. }
  2007. std::shuffle(data.begin(), data.end(), rng);
  2008. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2009. }
  2010. } else {
  2011. init_tensor_uniform(t);
  2012. }
  2013. }
  2014. }
  2015. double max_nmse_err() override {
  2016. return 0.0;
  2017. }
  2018. };
  2019. // GGML_OP_COUNT_EQUAL
  2020. struct test_count_equal : public test_case {
  2021. const ggml_type type;
  2022. const std::array<int64_t, 4> ne;
  2023. std::string vars() override {
  2024. return VARS_TO_STR2(type, ne);
  2025. }
  2026. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2027. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2028. : type(type), ne(ne) {}
  2029. ggml_tensor * build_graph(ggml_context * ctx) override {
  2030. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2031. ggml_set_name(a, "a");
  2032. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2033. ggml_set_name(a_argmax, "a_argmax");
  2034. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2035. ggml_set_name(b, "b");
  2036. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2037. ggml_set_name(b_argmax, "b_argmax");
  2038. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2039. ggml_set_name(out, "out");
  2040. return out;
  2041. }
  2042. double max_nmse_err() override {
  2043. return 0.0;
  2044. }
  2045. void initialize_tensors(ggml_context * ctx) override {
  2046. std::random_device rd;
  2047. std::default_random_engine rng(rd());
  2048. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2049. if (t->type == GGML_TYPE_F32) {
  2050. // initialize with unique values to avoid ties
  2051. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2052. std::vector<float> data(t->ne[0]);
  2053. for (int i = 0; i < t->ne[0]; i++) {
  2054. data[i] = i;
  2055. }
  2056. std::shuffle(data.begin(), data.end(), rng);
  2057. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2058. }
  2059. } else {
  2060. init_tensor_uniform(t);
  2061. }
  2062. }
  2063. }
  2064. };
  2065. // GGML_OP_REPEAT
  2066. struct test_repeat : public test_case {
  2067. const ggml_type type;
  2068. const std::array<int64_t, 4> ne;
  2069. const std::array<int, 4> nr;
  2070. std::string vars() override {
  2071. return VARS_TO_STR3(type, ne, nr);
  2072. }
  2073. size_t op_size(ggml_tensor * t) override {
  2074. return ggml_nbytes(t) * 2;
  2075. }
  2076. test_repeat(ggml_type type = GGML_TYPE_F32,
  2077. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2078. std::array<int, 4> nr = {2, 2, 2, 2})
  2079. : type(type), ne(ne), nr(nr) {}
  2080. ggml_tensor * build_graph(ggml_context * ctx) override {
  2081. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2082. ggml_set_name(target, "target");
  2083. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2084. ggml_set_param(src);
  2085. ggml_set_name(src, "src");
  2086. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2087. ggml_set_name(out, "out");
  2088. return out;
  2089. }
  2090. };
  2091. // GGML_OP_REPEAT_BACK
  2092. struct test_repeat_back : public test_case {
  2093. const ggml_type type;
  2094. const std::array<int64_t, 4> ne;
  2095. const std::array<int, 4> nr;
  2096. const bool v; // whether src is a noncontiguous view
  2097. std::string vars() override {
  2098. return VARS_TO_STR4(type, ne, nr, v);
  2099. }
  2100. size_t op_size(ggml_tensor * t) override {
  2101. return ggml_nbytes(t) * 2;
  2102. }
  2103. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2104. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2105. std::array<int, 4> nr = {2, 2, 2, 2},
  2106. bool v = false)
  2107. : type(type), ne(ne), nr(nr), v(v) {}
  2108. ggml_tensor * build_graph(ggml_context * ctx) override {
  2109. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2110. ggml_set_name(src, "src");
  2111. if (v) {
  2112. GGML_ASSERT(ne[0] % 2 == 0);
  2113. GGML_ASSERT(ne[1] % 2 == 0);
  2114. GGML_ASSERT(ne[2] % 2 == 0);
  2115. GGML_ASSERT(ne[3] % 2 == 0);
  2116. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2117. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2118. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2119. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2120. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2121. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2122. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2123. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2124. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2125. }
  2126. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2127. ggml_set_name(target, "target");
  2128. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2129. ggml_set_name(out, "out");
  2130. return out;
  2131. }
  2132. };
  2133. // GGML_OP_DUP
  2134. struct test_dup : public test_case {
  2135. const ggml_type type;
  2136. const std::array<int64_t, 4> ne;
  2137. const std::array<int64_t, 4> permute;
  2138. bool _use_permute;
  2139. std::string vars() override {
  2140. std::string v = VARS_TO_STR2(type, ne);
  2141. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2142. return v;
  2143. }
  2144. test_dup(ggml_type type = GGML_TYPE_F32,
  2145. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2146. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2147. : type(type), ne(ne), permute(permute),
  2148. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2149. ggml_tensor * build_graph(ggml_context * ctx) override {
  2150. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2151. ggml_set_param(src);
  2152. ggml_set_name(src, "src");
  2153. if (_use_permute) {
  2154. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2155. ggml_set_name(src, "src_permuted");
  2156. }
  2157. ggml_tensor * out = ggml_dup(ctx, src);
  2158. ggml_set_name(out, "out");
  2159. return out;
  2160. }
  2161. };
  2162. // GGML_OP_SET
  2163. struct test_set : public test_case {
  2164. const ggml_type type_src;
  2165. const ggml_type type_dst;
  2166. const std::array<int64_t, 4> ne;
  2167. const int dim;
  2168. std::string vars() override {
  2169. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2170. }
  2171. size_t op_size(ggml_tensor * t) override {
  2172. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2173. }
  2174. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2175. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2176. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2177. ggml_tensor * build_graph(ggml_context * ctx) override {
  2178. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2179. ggml_set_param(src);
  2180. ggml_set_name(src, "src");
  2181. auto ne_dst = ne;
  2182. for (int i = 0; i < dim; ++i) {
  2183. ne_dst[i] *= 2;
  2184. }
  2185. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2186. ggml_set_param(dst);
  2187. ggml_set_name(dst, "dst");
  2188. size_t offset = 0;
  2189. for (int i = 0; i < dim; ++i) {
  2190. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2191. }
  2192. ggml_tensor * out = ggml_set(ctx, dst, src,
  2193. // The backward pass requires setting a contiguous region:
  2194. src->nb[1], src->nb[2], src->nb[3], offset);
  2195. ggml_set_name(out, "out");
  2196. return out;
  2197. }
  2198. };
  2199. // GGML_OP_CPY
  2200. struct test_cpy : public test_case {
  2201. const ggml_type type_src;
  2202. const ggml_type type_dst;
  2203. const std::array<int64_t, 4> ne;
  2204. const std::array<int64_t, 4> permute_src;
  2205. const std::array<int64_t, 4> permute_dst;
  2206. bool _src_use_permute;
  2207. bool _dst_use_permute;
  2208. bool _src_transpose;
  2209. std::string vars() override {
  2210. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2211. }
  2212. double max_nmse_err() override {
  2213. if (type_src == type_dst) {
  2214. return 0.0;
  2215. }
  2216. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2217. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2218. // estimate what the max nmse error would be if one quantized value is
  2219. // off by one. The test values are distributed in [-150,150], so it'll be
  2220. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2221. // which is roughly 0.25*150^2 times the number of elements.
  2222. double err_estimate = 1.0f/8.0f * 150.0f;
  2223. if (type_dst == GGML_TYPE_IQ4_NL) {
  2224. // iq4_nl values are a bit more spread out
  2225. err_estimate *= 2.0f;
  2226. }
  2227. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2228. err_estimate /= 2.0f;
  2229. }
  2230. if (type_dst == GGML_TYPE_Q8_0) {
  2231. err_estimate /= 8.0f;
  2232. }
  2233. err_estimate *= err_estimate;
  2234. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2235. return err_estimate;
  2236. }
  2237. return 1e-6;
  2238. }
  2239. size_t op_size(ggml_tensor * t) override {
  2240. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2241. }
  2242. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2243. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2244. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2245. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2246. bool transpose_src = false)
  2247. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2248. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2249. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2250. _src_transpose(transpose_src){}
  2251. ggml_tensor * build_graph(ggml_context * ctx) override {
  2252. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2253. ggml_set_param(src);
  2254. ggml_set_name(src, "src");
  2255. if (_src_use_permute) {
  2256. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2257. ggml_set_name(src, "src_permuted");
  2258. }
  2259. if (_src_transpose) {
  2260. src = ggml_transpose(ctx, src);
  2261. ggml_set_name(src, "src_transposed");
  2262. }
  2263. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2264. ggml_set_name(dst, "dst");
  2265. if (_dst_use_permute) {
  2266. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2267. ggml_set_name(dst, "dst_permuted");
  2268. }
  2269. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2270. ggml_set_name(out, "out");
  2271. return out;
  2272. }
  2273. void initialize_tensors(ggml_context * ctx) override {
  2274. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2275. // test extended range of values to check if casting between f32 and i32 is consistent
  2276. init_tensor_uniform(t, -150.f, 150.f);
  2277. }
  2278. }
  2279. };
  2280. // GGML_OP_CONT
  2281. struct test_cont : public test_case {
  2282. const ggml_type type;
  2283. const std::array<int64_t, 4> ne;
  2284. std::string vars() override {
  2285. return VARS_TO_STR2(type, ne);
  2286. }
  2287. test_cont(ggml_type type = GGML_TYPE_F32,
  2288. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2289. : type(type), ne(ne) {}
  2290. ggml_tensor * build_graph(ggml_context * ctx) override {
  2291. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2292. ggml_set_param(src);
  2293. ggml_set_name(src, "src");
  2294. src = ggml_transpose(ctx, src);
  2295. ggml_set_name(src, "src_transposed");
  2296. ggml_tensor * out = ggml_cont(ctx, src);
  2297. ggml_set_name(out, "out");
  2298. return out;
  2299. }
  2300. };
  2301. // GGML_OP_ADD
  2302. // GGML_OP_SUB
  2303. // GGML_OP_MUL
  2304. // GGML_OP_DIV
  2305. struct test_bin_bcast : public test_case {
  2306. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2307. op_t op;
  2308. const ggml_type type;
  2309. const std::array<int64_t, 4> ne;
  2310. const std::array<int, 4> nr;
  2311. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2312. bool run_whole_graph() override { return true; }
  2313. std::string vars() override {
  2314. return VARS_TO_STR4(type, ne, nr, nf);
  2315. }
  2316. size_t op_size(ggml_tensor * t) override {
  2317. return ggml_nbytes(t) * 3;
  2318. }
  2319. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2320. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2321. std::array<int, 4> nr = {1, 2, 1, 1},
  2322. int nf = 1)
  2323. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2324. ggml_tensor * build_graph(ggml_context * ctx) override {
  2325. GGML_ASSERT(nf <= 16);
  2326. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2327. ggml_set_name(a, "a");
  2328. ggml_tensor * b[16];
  2329. for (int i = 0; i < nf; ++i) {
  2330. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2331. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2332. }
  2333. // The backward pass supports broadcasting only for GGML_ADD:
  2334. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2335. if (grad_supported) {
  2336. ggml_set_param(a);
  2337. ggml_set_param(b[0]);
  2338. }
  2339. ggml_tensor * out = a;
  2340. for (int i = 0; i < nf; ++i) {
  2341. out = op(ctx, out, b[i]);
  2342. }
  2343. ggml_set_name(out, "out");
  2344. return out;
  2345. }
  2346. void initialize_tensors(ggml_context * ctx) override {
  2347. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2348. if (op == ggml_mul || op == ggml_div) {
  2349. // MUL and DIV have numerical issues around zero:
  2350. init_tensor_uniform(t, 0.9f, 1.1f);
  2351. } else {
  2352. init_tensor_uniform(t);
  2353. }
  2354. }
  2355. }
  2356. float grad_eps() override {
  2357. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2358. }
  2359. bool grad_precise() override {
  2360. return op == ggml_div;
  2361. }
  2362. double max_maa_err() override {
  2363. return op == ggml_add ? 1e-4 : 1e-3;
  2364. }
  2365. };
  2366. // GGML_OP_ADD_ID
  2367. struct test_add_id : public test_case {
  2368. const ggml_type type_a;
  2369. const ggml_type type_b;
  2370. const int64_t n_embd;
  2371. const int64_t n_experts;
  2372. const int64_t n_experts_used;
  2373. const int64_t n_token;
  2374. std::string vars() override {
  2375. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2376. }
  2377. size_t op_size(ggml_tensor * t) override {
  2378. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2379. }
  2380. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2381. ggml_type type_b = GGML_TYPE_F32,
  2382. int64_t n_embd = 128,
  2383. int64_t n_experts = 16,
  2384. int64_t n_experts_used = 8,
  2385. int64_t n_token = 10)
  2386. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2387. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2388. ggml_tensor * build_graph(ggml_context * ctx) override {
  2389. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2390. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2391. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2392. if (n_experts_used != n_experts) {
  2393. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2394. ggml_set_name(ids, "view_of_ids");
  2395. }
  2396. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2397. ggml_set_name(out, "out");
  2398. return out;
  2399. }
  2400. void initialize_tensors(ggml_context * ctx) override {
  2401. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2402. if (t->type == GGML_TYPE_I32) {
  2403. if (ggml_is_view_op(t->op)) { continue; }
  2404. std::random_device rd;
  2405. std::default_random_engine rng(rd());
  2406. // ids
  2407. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2408. std::vector<int32_t> data(t->ne[0]);
  2409. for (int i = 0; i < t->ne[0]; i++) {
  2410. data[i] = i % n_experts;
  2411. }
  2412. std::shuffle(data.begin(), data.end(), rng);
  2413. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2414. }
  2415. } else {
  2416. init_tensor_uniform(t);
  2417. }
  2418. }
  2419. }
  2420. };
  2421. // GGML_OP_ADD1
  2422. struct test_add1 : public test_case {
  2423. const ggml_type type;
  2424. const std::array<int64_t, 4> ne;
  2425. std::string vars() override {
  2426. return VARS_TO_STR2(type, ne);
  2427. }
  2428. test_add1(ggml_type type = GGML_TYPE_F32,
  2429. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2430. : type(type), ne(ne) {}
  2431. ggml_tensor * build_graph(ggml_context * ctx) override {
  2432. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2433. ggml_set_param(a);
  2434. ggml_set_name(a, "a");
  2435. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2436. // ggml_set_param(b); // TODO: implement
  2437. ggml_set_name(b, "b");
  2438. ggml_tensor * out = ggml_add1(ctx, a, b);
  2439. ggml_set_name(out, "out");
  2440. return out;
  2441. }
  2442. float grad_eps() override {
  2443. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2444. }
  2445. };
  2446. // GGML_OP_SCALE
  2447. struct test_scale : public test_case {
  2448. const ggml_type type;
  2449. const std::array<int64_t, 4> ne;
  2450. float scale;
  2451. float bias;
  2452. bool inplace;
  2453. std::string vars() override {
  2454. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2455. }
  2456. test_scale(ggml_type type = GGML_TYPE_F32,
  2457. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2458. float scale = 2.0f,
  2459. float bias = 0.0f,
  2460. bool inplace = false)
  2461. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2462. ggml_tensor * build_graph(ggml_context * ctx) override {
  2463. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2464. ggml_set_param(a);
  2465. ggml_set_name(a, "a");
  2466. ggml_tensor * out;
  2467. if (inplace) {
  2468. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2469. } else {
  2470. out = ggml_scale_bias(ctx, a, scale, bias);
  2471. }
  2472. ggml_set_name(out, "out");
  2473. return out;
  2474. }
  2475. };
  2476. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2477. struct test_softcap : public test_case {
  2478. const ggml_type type;
  2479. const std::array<int64_t, 4> ne;
  2480. float softcap;
  2481. std::string op_desc(ggml_tensor * t) override {
  2482. GGML_UNUSED(t);
  2483. return "SOFTCAP";
  2484. }
  2485. bool run_whole_graph() override { return true; }
  2486. std::string vars() override {
  2487. return VARS_TO_STR3(type, ne, softcap);
  2488. }
  2489. test_softcap(ggml_type type = GGML_TYPE_F32,
  2490. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2491. float softcap = 30.0f)
  2492. : type(type), ne(ne), softcap(softcap) {}
  2493. ggml_tensor * build_graph(ggml_context * ctx) override {
  2494. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2495. ggml_set_param(a);
  2496. ggml_set_name(a, "a");
  2497. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2498. ggml_set_name(out, "out");
  2499. return out;
  2500. }
  2501. };
  2502. // GGML_OP_SILU_BACK
  2503. struct test_silu_back : public test_case {
  2504. const ggml_type type;
  2505. const std::array<int64_t, 4> ne;
  2506. float eps;
  2507. std::string vars() override {
  2508. return VARS_TO_STR3(type, ne, eps);
  2509. }
  2510. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2511. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2512. float eps = 1e-6f)
  2513. : type(type), ne(ne), eps(eps) {}
  2514. ggml_tensor * build_graph(ggml_context * ctx) override {
  2515. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2516. ggml_set_name(a, "a");
  2517. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2518. ggml_set_name(grad, "grad");
  2519. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2520. ggml_set_name(out, "out");
  2521. return out;
  2522. }
  2523. bool grad_precise() override {
  2524. return true;
  2525. }
  2526. };
  2527. // GGML_OP_NORM
  2528. struct test_norm : public test_case {
  2529. const ggml_type type;
  2530. const std::array<int64_t, 4> ne;
  2531. const bool v; // whether a is a non-contiguous view
  2532. const float eps;
  2533. std::string vars() override {
  2534. return VARS_TO_STR4(type, ne, v, eps);
  2535. }
  2536. test_norm(ggml_type type = GGML_TYPE_F32,
  2537. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2538. bool v = false,
  2539. float eps = 1e-6f)
  2540. : type(type), ne(ne), v(v), eps(eps) {}
  2541. ggml_tensor * build_graph(ggml_context * ctx) override {
  2542. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2543. ggml_set_name(a, "a");
  2544. if (v) {
  2545. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2546. ggml_set_name(a, "view of a");
  2547. }
  2548. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2549. ggml_set_name(out, "out");
  2550. return out;
  2551. }
  2552. };
  2553. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2554. struct test_norm_mul_add : public test_case {
  2555. const ggml_type type;
  2556. const std::array<int64_t, 4> ne;
  2557. float eps;
  2558. const bool broadcast;
  2559. std::string op_desc(ggml_tensor * t) override {
  2560. GGML_UNUSED(t);
  2561. return "NORM_MUL_ADD";
  2562. }
  2563. bool run_whole_graph() override { return true; }
  2564. std::string vars() override {
  2565. return VARS_TO_STR4(type, ne, eps, broadcast);
  2566. }
  2567. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2568. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2569. float eps = 1e-5f,
  2570. bool broadcast = false)
  2571. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2572. ggml_tensor * build_graph(ggml_context * ctx) override {
  2573. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2574. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2575. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2576. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2577. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2578. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2579. // Use a, w and b early to avoid OP_NONE in graph
  2580. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2581. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2582. ggml_tensor * m = ggml_mul(ctx, n, w);
  2583. ggml_tensor * out = ggml_add(ctx, m, b);
  2584. ggml_set_name(out, "out");
  2585. return out;
  2586. }
  2587. };
  2588. // GGML_OP_RMS_NORM
  2589. struct test_rms_norm : public test_case {
  2590. const ggml_type type;
  2591. const std::array<int64_t, 4> ne;
  2592. const bool v; // whether a is a non-contiguous view
  2593. const float eps;
  2594. const bool inplace; // whether to do the operation inplace
  2595. std::string vars() override {
  2596. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2597. }
  2598. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2599. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2600. bool v = false,
  2601. float eps = 1e-6f,
  2602. bool inplace = false)
  2603. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2604. ggml_tensor * build_graph(ggml_context * ctx) override {
  2605. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2606. ggml_set_param(a);
  2607. ggml_set_name(a, "a");
  2608. if (v) {
  2609. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2610. ggml_set_name(a, "view of a");
  2611. }
  2612. ggml_tensor * out;
  2613. if (inplace) {
  2614. out = ggml_rms_norm_inplace(ctx, a, eps);
  2615. } else {
  2616. out = ggml_rms_norm(ctx, a, eps);
  2617. }
  2618. ggml_set_name(out, "out");
  2619. return out;
  2620. }
  2621. void initialize_tensors(ggml_context * ctx) override {
  2622. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2623. init_tensor_uniform(t, -10.f, 10.f);
  2624. }
  2625. }
  2626. float grad_eps() override {
  2627. return 1.0f;
  2628. }
  2629. bool grad_precise() override {
  2630. return true;
  2631. }
  2632. };
  2633. // GGML_OP_RMS_NORM_BACK
  2634. struct test_rms_norm_back : public test_case {
  2635. const ggml_type type;
  2636. const std::array<int64_t, 4> ne;
  2637. const float eps;
  2638. std::string vars() override {
  2639. return VARS_TO_STR3(type, ne, eps);
  2640. }
  2641. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2642. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2643. float eps = 1e-6f)
  2644. : type(type), ne(ne), eps(eps) {}
  2645. ggml_tensor * build_graph(ggml_context * ctx) override {
  2646. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2647. ggml_set_name(a, "a");
  2648. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2649. ggml_set_name(b, "b");
  2650. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2651. ggml_set_name(out, "out");
  2652. return out;
  2653. }
  2654. void initialize_tensors(ggml_context * ctx) override {
  2655. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2656. init_tensor_uniform(t, -10.f, 10.f);
  2657. }
  2658. }
  2659. };
  2660. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2661. struct test_rms_norm_mul_add : public test_case {
  2662. const ggml_type type;
  2663. const std::array<int64_t, 4> ne;
  2664. const float eps;
  2665. const bool broadcast;
  2666. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2667. std::string op_desc(ggml_tensor * t) override {
  2668. GGML_UNUSED(t);
  2669. return "RMS_NORM_MUL_ADD";
  2670. }
  2671. bool run_whole_graph() override { return true; }
  2672. std::string vars() override {
  2673. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2674. }
  2675. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2676. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2677. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2678. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2679. ggml_tensor * build_graph(ggml_context * ctx) override {
  2680. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2681. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2682. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2683. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2684. ggml_set_param(a);
  2685. ggml_set_name(a, "a");
  2686. ggml_set_param(b);
  2687. ggml_set_name(b, "b");
  2688. ggml_set_param(c);
  2689. ggml_set_name(c, "c");
  2690. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2691. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2692. if (multi_add) {
  2693. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2694. }
  2695. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2696. ggml_set_name(out, "out");
  2697. return out;
  2698. }
  2699. void initialize_tensors(ggml_context * ctx) override {
  2700. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2701. init_tensor_uniform(t, -10.f, 10.f);
  2702. }
  2703. }
  2704. float grad_eps() override {
  2705. return 1.0f;
  2706. }
  2707. bool grad_precise() override {
  2708. return true;
  2709. }
  2710. };
  2711. // GGML_OP_SSM_CONV
  2712. struct test_ssm_conv : public test_case {
  2713. const ggml_type type;
  2714. const std::array<int64_t, 4> ne_a;
  2715. const std::array<int64_t, 4> ne_b;
  2716. std::string vars() override {
  2717. return VARS_TO_STR3(type, ne_a, ne_b);
  2718. }
  2719. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2720. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2721. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2722. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2723. ggml_tensor * build_graph(ggml_context * ctx) override {
  2724. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2725. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2726. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2727. return out;
  2728. }
  2729. };
  2730. // GGML_OP_SSM_SCAN
  2731. struct test_ssm_scan : public test_case {
  2732. const ggml_type type;
  2733. const int64_t d_state;
  2734. const int64_t head_dim;
  2735. const int64_t n_head;
  2736. const int64_t n_group;
  2737. const int64_t n_seq_tokens;
  2738. const int64_t n_seqs;
  2739. std::string vars() override {
  2740. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2741. }
  2742. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2743. int64_t d_state = 32,
  2744. int64_t head_dim = 1, // non-zero for Mamba-2
  2745. int64_t n_head = 32,
  2746. int64_t n_group = 1,
  2747. int64_t n_seq_tokens = 32,
  2748. int64_t n_seqs = 32)
  2749. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2750. ggml_tensor * build_graph(ggml_context * ctx) override {
  2751. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2752. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2753. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2754. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2755. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2756. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2757. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2758. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2759. return out;
  2760. }
  2761. // similar to test_mul_mat_id
  2762. void initialize_tensors(ggml_context * ctx) override {
  2763. std::random_device rd;
  2764. std::default_random_engine rng(rd());
  2765. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2766. if (t->type == GGML_TYPE_I32) {
  2767. if (ggml_is_view_op(t->op)) { continue; }
  2768. // ids
  2769. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2770. std::vector<int32_t> data(t->ne[0]);
  2771. for (int i = 0; i < t->ne[0]; i++) {
  2772. data[i] = i;
  2773. }
  2774. std::shuffle(data.begin(), data.end(), rng);
  2775. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2776. }
  2777. } else {
  2778. init_tensor_uniform(t);
  2779. }
  2780. }
  2781. }
  2782. };
  2783. // GGML_OP_RWKV_WKV6
  2784. struct test_rwkv_wkv6 : public test_case {
  2785. const ggml_type type;
  2786. const int64_t head_count;
  2787. const int64_t head_size;
  2788. const int64_t n_seq_tokens;
  2789. const int64_t n_seqs;
  2790. std::string vars() override {
  2791. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2792. }
  2793. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2794. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2795. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2796. ggml_tensor * build_graph(ggml_context * ctx) override {
  2797. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2798. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2799. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2800. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2801. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2802. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2803. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2804. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2805. return out;
  2806. }
  2807. };
  2808. // GGML_OP_GATED_LINEAR_ATTN
  2809. struct test_gla : public test_case {
  2810. const ggml_type type;
  2811. const int64_t head_count;
  2812. const int64_t head_size;
  2813. const int64_t n_seq_tokens;
  2814. const int64_t n_seqs;
  2815. std::string vars() override {
  2816. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2817. }
  2818. test_gla(ggml_type type = GGML_TYPE_F32,
  2819. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2820. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2821. ggml_tensor * build_graph(ggml_context * ctx) override {
  2822. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2823. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2824. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2825. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2826. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2827. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2828. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2829. return out;
  2830. }
  2831. };
  2832. // GGML_OP_RWKV_WKV7
  2833. struct test_rwkv_wkv7 : public test_case {
  2834. const ggml_type type;
  2835. const int64_t head_count;
  2836. const int64_t head_size;
  2837. const int64_t n_seq_tokens;
  2838. const int64_t n_seqs;
  2839. std::string vars() override {
  2840. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2841. }
  2842. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2843. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2844. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2845. ggml_tensor * build_graph(ggml_context * ctx) override {
  2846. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2847. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2848. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2849. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2850. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2851. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2852. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2853. // Outputs may become NaN with long seqlen without these normalization
  2854. a = ggml_l2_norm(ctx, a, 1e-7F);
  2855. b = ggml_l2_norm(ctx, b, 1e-7F);
  2856. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2857. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2858. return out;
  2859. }
  2860. };
  2861. // GGML_OP_MUL_MAT
  2862. struct test_mul_mat : public test_case {
  2863. const ggml_type type_a;
  2864. const ggml_type type_b;
  2865. const int64_t m;
  2866. const int64_t n;
  2867. const int64_t k;
  2868. const std::array<int64_t, 2> bs; // dims 3 and 4
  2869. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2870. const std::array<int64_t, 4> per; // permutation of dimensions
  2871. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  2872. const uint32_t o; // number of outputs
  2873. std::string vars() override {
  2874. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  2875. }
  2876. double max_nmse_err() override {
  2877. return 5e-4;
  2878. }
  2879. int64_t grad_nmax() override {
  2880. return 20000;
  2881. }
  2882. uint64_t op_flops(ggml_tensor * t) override {
  2883. GGML_UNUSED(t);
  2884. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2885. }
  2886. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2887. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2888. std::array<int64_t, 2> bs = {10, 10},
  2889. std::array<int64_t, 2> nr = {2, 2},
  2890. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2891. int64_t k_v = 0, uint32_t o = 1)
  2892. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  2893. ggml_tensor * build_graph(ggml_context * ctx) override {
  2894. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2895. ggml_tensor * a;
  2896. ggml_tensor * b;
  2897. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2898. if (npermuted > 0) {
  2899. GGML_ASSERT(npermuted == 2);
  2900. GGML_ASSERT(k_v == 0); // not handled
  2901. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2902. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2903. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2904. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2905. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2906. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2907. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2908. if (!ggml_is_quantized(type_a)) {
  2909. if (bs[1] == 1 && nr[1] == 1) {
  2910. ggml_set_param(a);
  2911. }
  2912. ggml_set_param(b);
  2913. }
  2914. ggml_set_name(a, "a");
  2915. ggml_set_name(b, "b");
  2916. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2917. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2918. ggml_set_name(a, "a_permuted");
  2919. ggml_set_name(b, "b_permuted");
  2920. } else {
  2921. const int64_t k_physical = k_v == 0 ? k : k_v;
  2922. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  2923. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  2924. if (!ggml_is_quantized(type_a)) {
  2925. if (bs[1] == 1 && nr[1] == 1) {
  2926. ggml_set_param(a);
  2927. }
  2928. ggml_set_param(b);
  2929. }
  2930. if (k_v != 0) {
  2931. GGML_ASSERT(k_v > k);
  2932. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2933. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2934. }
  2935. ggml_set_name(a, "a");
  2936. ggml_set_name(b, "b");
  2937. }
  2938. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2939. ggml_set_name(out, "out");
  2940. for (uint32_t i = 1; i < o; ++i) {
  2941. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2942. ggml_set_name(out2, "out2");
  2943. out = ggml_add(ctx, out, out2);
  2944. }
  2945. return out;
  2946. }
  2947. bool run_whole_graph() override { return o > 1; }
  2948. std::string op_desc(ggml_tensor * t) override {
  2949. GGML_UNUSED(t);
  2950. return ggml_op_name(GGML_OP_MUL_MAT);
  2951. }
  2952. };
  2953. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  2954. std::random_device rd;
  2955. std::default_random_engine rng(rd());
  2956. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2957. if (t->type == GGML_TYPE_I32) {
  2958. if (ggml_is_view_op(t->op)) { continue; }
  2959. // ids
  2960. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2961. std::vector<int32_t> data(t->ne[0]);
  2962. for (int i = 0; i < t->ne[0]; i++) {
  2963. data[i] = i % n_mats;
  2964. }
  2965. std::shuffle(data.begin(), data.end(), rng);
  2966. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2967. }
  2968. } else {
  2969. init_tensor_uniform(t);
  2970. }
  2971. }
  2972. }
  2973. // GGML_OP_MUL_MAT_ID
  2974. struct test_mul_mat_id : public test_case {
  2975. const ggml_type type_a;
  2976. const ggml_type type_b;
  2977. const int n_mats;
  2978. const int n_used;
  2979. const bool b; // broadcast b matrix
  2980. const int64_t m;
  2981. const int64_t n;
  2982. const int64_t k;
  2983. std::string vars() override {
  2984. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  2985. }
  2986. double max_nmse_err() override {
  2987. return 5e-4;
  2988. }
  2989. uint64_t op_flops(ggml_tensor * t) override {
  2990. GGML_UNUSED(t);
  2991. return 2 * m * k * n * n_used;
  2992. }
  2993. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2994. int n_mats = 8, int n_used = 2, bool b = false,
  2995. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  2996. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2997. m(m), n(n), k(k) {
  2998. GGML_ASSERT(n_used <= n_mats);
  2999. }
  3000. ggml_tensor * build_graph(ggml_context * ctx) override {
  3001. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3002. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3003. ggml_set_name(as, "as");
  3004. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3005. ggml_set_name(ids, "ids");
  3006. if (n_used != n_mats) {
  3007. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3008. ggml_set_name(ids, "view_of_ids");
  3009. }
  3010. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3011. ggml_set_name(b, "b");
  3012. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3013. ggml_set_name(out, "out");
  3014. return out;
  3015. }
  3016. void initialize_tensors(ggml_context * ctx) override {
  3017. init_mul_mat_id_tensors(ctx, n_mats);
  3018. }
  3019. };
  3020. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3021. struct test_mul_mat_id_fusion : public test_case {
  3022. const ggml_type type_a;
  3023. const ggml_type type_b;
  3024. const int n_mats;
  3025. const int n_used;
  3026. const bool b; // broadcast b matrix
  3027. const int64_t m;
  3028. const int64_t n;
  3029. const int64_t k;
  3030. const uint32_t o; // number of outputs
  3031. const bool mul;
  3032. std::string vars() override {
  3033. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3034. }
  3035. double max_nmse_err() override {
  3036. return 5e-4;
  3037. }
  3038. uint64_t op_flops(ggml_tensor * t) override {
  3039. GGML_UNUSED(t);
  3040. return 2 * m * k * n * n_used;
  3041. }
  3042. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3043. int n_mats = 8, int n_used = 2, bool b = false,
  3044. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3045. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3046. m(m), n(n), k(k), o(o), mul(mul) {
  3047. GGML_ASSERT(n_used <= n_mats);
  3048. }
  3049. ggml_tensor * build_graph(ggml_context * ctx) override {
  3050. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3051. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3052. ggml_set_name(as, "as");
  3053. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3054. ggml_set_name(ids, "ids");
  3055. if (n_used != n_mats) {
  3056. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3057. ggml_set_name(ids, "view_of_ids");
  3058. }
  3059. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3060. ggml_set_name(b, "b");
  3061. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3062. ggml_set_name(out, "out");
  3063. for (uint32_t i = 1; i < o; ++i) {
  3064. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3065. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3066. ggml_set_name(out2, "out2");
  3067. out = ggml_add(ctx, out, out2);
  3068. }
  3069. if (mul) {
  3070. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3071. ne[0] = 1;
  3072. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3073. out = ggml_mul(ctx, out, m);
  3074. }
  3075. return out;
  3076. }
  3077. void initialize_tensors(ggml_context * ctx) override {
  3078. init_mul_mat_id_tensors(ctx, n_mats);
  3079. }
  3080. bool run_whole_graph() override { return true; }
  3081. std::string op_desc(ggml_tensor * t) override {
  3082. GGML_UNUSED(t);
  3083. return "MUL_MAT_ID_FUSION";
  3084. }
  3085. };
  3086. // GGML_OP_OUT_PROD
  3087. struct test_out_prod : public test_case {
  3088. const ggml_type type_a;
  3089. const ggml_type type_b;
  3090. const int64_t m;
  3091. const int64_t n;
  3092. const int64_t k;
  3093. const std::array<int64_t, 2> bs; // dims 3 and 4
  3094. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3095. const bool trans_b;
  3096. std::string vars() override {
  3097. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3098. }
  3099. double max_nmse_err() override {
  3100. return 5e-4;
  3101. }
  3102. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3103. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3104. std::array<int64_t, 2> bs = {10, 10},
  3105. std::array<int64_t, 2> nr = {2, 2},
  3106. bool trans_b = false)
  3107. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3108. ggml_tensor * build_graph(ggml_context * ctx) override {
  3109. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3110. ggml_set_name(a, "a");
  3111. ggml_tensor * b;
  3112. if (trans_b) {
  3113. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3114. b = ggml_transpose(ctx, b);
  3115. } else {
  3116. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3117. }
  3118. ggml_set_name(b, "b");
  3119. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3120. ggml_set_name(out, "out");
  3121. return out;
  3122. }
  3123. };
  3124. // GGML_OP_SQR
  3125. struct test_sqr : public test_case {
  3126. const ggml_type type;
  3127. const std::array<int64_t, 4> ne;
  3128. std::string vars() override {
  3129. return VARS_TO_STR2(type, ne);
  3130. }
  3131. test_sqr(ggml_type type = GGML_TYPE_F32,
  3132. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3133. : type(type), ne(ne) {}
  3134. ggml_tensor * build_graph(ggml_context * ctx) override {
  3135. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3136. ggml_set_param(a);
  3137. ggml_set_name(a, "a");
  3138. ggml_tensor * out = ggml_sqr(ctx, a);
  3139. ggml_set_name(out, "out");
  3140. return out;
  3141. }
  3142. float grad_eps() override {
  3143. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3144. }
  3145. };
  3146. // GGML_OP_SQRT
  3147. struct test_sqrt : public test_case {
  3148. const ggml_type type;
  3149. const std::array<int64_t, 4> ne;
  3150. std::string vars() override {
  3151. return VARS_TO_STR2(type, ne);
  3152. }
  3153. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3154. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3155. : type(type), ne(ne) {}
  3156. ggml_tensor * build_graph(ggml_context * ctx) override {
  3157. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3158. ggml_set_param(a);
  3159. ggml_set_name(a, "a");
  3160. ggml_tensor * out = ggml_sqrt(ctx, a);
  3161. ggml_set_name(out, "out");
  3162. return out;
  3163. }
  3164. void initialize_tensors(ggml_context * ctx) override {
  3165. // fill with positive values
  3166. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3167. init_tensor_uniform(t, 50.0f, 100.0f);
  3168. }
  3169. }
  3170. float grad_eps() override {
  3171. return 20.0f;
  3172. }
  3173. bool grad_precise() override {
  3174. return true;
  3175. }
  3176. };
  3177. // GGML_OP_LOG
  3178. struct test_log : public test_case {
  3179. const ggml_type type;
  3180. const std::array<int64_t, 4> ne;
  3181. std::string vars() override {
  3182. return VARS_TO_STR2(type, ne);
  3183. }
  3184. test_log(ggml_type type = GGML_TYPE_F32,
  3185. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3186. : type(type), ne(ne) {}
  3187. ggml_tensor * build_graph(ggml_context * ctx) override {
  3188. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3189. ggml_set_param(a);
  3190. ggml_set_name(a, "a");
  3191. ggml_tensor * out = ggml_log(ctx, a);
  3192. ggml_set_name(out, "out");
  3193. return out;
  3194. }
  3195. void initialize_tensors(ggml_context * ctx) override {
  3196. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3197. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3198. init_tensor_uniform(t, 0.9f, 1.1f);
  3199. }
  3200. }
  3201. bool grad_precise() override {
  3202. return true;
  3203. }
  3204. };
  3205. // GGML_OP_SIN
  3206. struct test_sin : public test_case {
  3207. const ggml_type type;
  3208. const std::array<int64_t, 4> ne;
  3209. std::string vars() override {
  3210. return VARS_TO_STR2(type, ne);
  3211. }
  3212. test_sin(ggml_type type = GGML_TYPE_F32,
  3213. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3214. : type(type), ne(ne) {}
  3215. ggml_tensor * build_graph(ggml_context * ctx) override {
  3216. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3217. ggml_set_param(a);
  3218. ggml_set_name(a, "a");
  3219. ggml_tensor * out = ggml_sin(ctx, a);
  3220. ggml_set_name(out, "out");
  3221. return out;
  3222. }
  3223. void initialize_tensors(ggml_context * ctx) override {
  3224. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3225. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3226. }
  3227. }
  3228. double max_maa_err() override {
  3229. return 1e-3;
  3230. }
  3231. float grad_eps() override {
  3232. return 0.2f;
  3233. }
  3234. bool grad_precise() override {
  3235. return true;
  3236. }
  3237. };
  3238. // GGML_OP_COS
  3239. struct test_cos : public test_case {
  3240. const ggml_type type;
  3241. const std::array<int64_t, 4> ne;
  3242. std::string vars() override {
  3243. return VARS_TO_STR2(type, ne);
  3244. }
  3245. test_cos(ggml_type type = GGML_TYPE_F32,
  3246. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3247. : type(type), ne(ne) {}
  3248. ggml_tensor * build_graph(ggml_context * ctx) override {
  3249. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3250. ggml_set_param(a);
  3251. ggml_set_name(a, "a");
  3252. ggml_tensor * out = ggml_cos(ctx, a);
  3253. ggml_set_name(out, "out");
  3254. return out;
  3255. }
  3256. void initialize_tensors(ggml_context * ctx) override {
  3257. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3258. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3259. }
  3260. }
  3261. double max_maa_err() override {
  3262. return 1e-3;
  3263. }
  3264. float grad_eps() override {
  3265. return 0.2f;
  3266. }
  3267. bool grad_precise() override {
  3268. return true;
  3269. }
  3270. };
  3271. // GGML_OP_CLAMP
  3272. struct test_clamp : public test_case {
  3273. const ggml_type type;
  3274. const std::array<int64_t, 4> ne;
  3275. float min;
  3276. float max;
  3277. std::string vars() override {
  3278. return VARS_TO_STR4(type, ne, min, max);
  3279. }
  3280. test_clamp(ggml_type type = GGML_TYPE_F32,
  3281. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3282. float min = -0.5f, float max = 0.5f)
  3283. : type(type), ne(ne), min(min), max(max) {}
  3284. ggml_tensor * build_graph(ggml_context * ctx) override {
  3285. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3286. ggml_set_name(a, "a");
  3287. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3288. ggml_set_name(out, "out");
  3289. return out;
  3290. }
  3291. float grad_eps() override {
  3292. return 1e-2f;
  3293. }
  3294. std::vector<float> grad_expect() override {
  3295. return {0.0f, 1.0f};
  3296. }
  3297. };
  3298. // GGML_OP_FLOOR
  3299. struct test_floor : public test_case {
  3300. const ggml_type type;
  3301. const std::array<int64_t, 4> ne;
  3302. std::string vars() override {
  3303. return VARS_TO_STR2(type, ne);
  3304. }
  3305. test_floor(ggml_type type = GGML_TYPE_F32,
  3306. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3307. : type(type), ne(ne) {}
  3308. ggml_tensor * build_graph(ggml_context * ctx) override {
  3309. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3310. ggml_set_param(a);
  3311. ggml_set_name(a, "a");
  3312. ggml_tensor * out = ggml_floor(ctx, a);
  3313. ggml_set_name(out, "out");
  3314. return out;
  3315. }
  3316. void initialize_tensors(ggml_context * ctx) override {
  3317. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3318. init_tensor_uniform(t, -10.0f, 10.0f);
  3319. }
  3320. }
  3321. };
  3322. // GGML_OP_CEIL
  3323. struct test_ceil : public test_case {
  3324. const ggml_type type;
  3325. const std::array<int64_t, 4> ne;
  3326. std::string vars() override {
  3327. return VARS_TO_STR2(type, ne);
  3328. }
  3329. test_ceil(ggml_type type = GGML_TYPE_F32,
  3330. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3331. : type(type), ne(ne) {}
  3332. ggml_tensor * build_graph(ggml_context * ctx) override {
  3333. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3334. ggml_set_param(a);
  3335. ggml_set_name(a, "a");
  3336. ggml_tensor * out = ggml_ceil(ctx, a);
  3337. ggml_set_name(out, "out");
  3338. return out;
  3339. }
  3340. void initialize_tensors(ggml_context * ctx) override {
  3341. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3342. init_tensor_uniform(t, -10.0f, 10.0f);
  3343. }
  3344. }
  3345. };
  3346. // GGML_OP_ROUND
  3347. struct test_round : public test_case {
  3348. const ggml_type type;
  3349. const std::array<int64_t, 4> ne;
  3350. std::string vars() override {
  3351. return VARS_TO_STR2(type, ne);
  3352. }
  3353. test_round(ggml_type type = GGML_TYPE_F32,
  3354. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3355. : type(type), ne(ne) {}
  3356. ggml_tensor * build_graph(ggml_context * ctx) override {
  3357. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3358. ggml_set_param(a);
  3359. ggml_set_name(a, "a");
  3360. ggml_tensor * out = ggml_round(ctx, a);
  3361. ggml_set_name(out, "out");
  3362. return out;
  3363. }
  3364. void initialize_tensors(ggml_context * ctx) override {
  3365. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3366. init_tensor_uniform(t, -10.0f, 10.0f);
  3367. }
  3368. }
  3369. };
  3370. // GGML_OP_TRUNC
  3371. struct test_trunc : public test_case {
  3372. const ggml_type type;
  3373. const std::array<int64_t, 4> ne;
  3374. std::string vars() override {
  3375. return VARS_TO_STR2(type, ne);
  3376. }
  3377. test_trunc(ggml_type type = GGML_TYPE_F32,
  3378. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3379. : type(type), ne(ne) {}
  3380. ggml_tensor * build_graph(ggml_context * ctx) override {
  3381. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3382. ggml_set_param(a);
  3383. ggml_set_name(a, "a");
  3384. ggml_tensor * out = ggml_trunc(ctx, a);
  3385. ggml_set_name(out, "out");
  3386. return out;
  3387. }
  3388. void initialize_tensors(ggml_context * ctx) override {
  3389. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3390. init_tensor_uniform(t, -10.0f, 10.0f);
  3391. }
  3392. }
  3393. };
  3394. // GGML_OP_DIAG_MASK_INF
  3395. struct test_diag_mask_inf : public test_case {
  3396. const ggml_type type;
  3397. const std::array<int64_t, 4> ne;
  3398. const int n_past;
  3399. std::string vars() override {
  3400. return VARS_TO_STR3(type, ne, n_past);
  3401. }
  3402. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3403. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3404. int n_past = 5)
  3405. : type(type), ne(ne), n_past(n_past) {}
  3406. ggml_tensor * build_graph(ggml_context * ctx) override {
  3407. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3408. ggml_set_param(a);
  3409. ggml_set_name(a, "a");
  3410. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3411. ggml_set_name(out, "out");
  3412. return out;
  3413. }
  3414. };
  3415. // GGML_OP_SOFT_MAX
  3416. struct test_soft_max : public test_case {
  3417. const ggml_type type;
  3418. const std::array<int64_t, 4> ne;
  3419. const bool mask;
  3420. const bool sinks;
  3421. const ggml_type m_prec;
  3422. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3423. const float scale;
  3424. const float max_bias;
  3425. const bool inplace;
  3426. std::string vars() override {
  3427. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3428. }
  3429. // the 1024 test with bias occasionally fails:
  3430. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3431. virtual double max_nmse_err() override {
  3432. return 1e-6;
  3433. }
  3434. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3435. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3436. bool mask = false,
  3437. bool sinks = false,
  3438. ggml_type m_prec = GGML_TYPE_F32,
  3439. std::array<int64_t, 2> nr23 = {1, 1},
  3440. float scale = 1.0f,
  3441. float max_bias = 0.0f,
  3442. bool inplace = false)
  3443. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3444. ggml_tensor * build_graph(ggml_context * ctx) override {
  3445. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3446. ggml_set_param(a);
  3447. ggml_set_name(a, "a");
  3448. ggml_tensor * mask = nullptr;
  3449. if (this->mask) {
  3450. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3451. ggml_set_name(mask, "mask");
  3452. }
  3453. ggml_tensor * sinks = nullptr;
  3454. if (this->sinks) {
  3455. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3456. ggml_set_name(sinks, "sinks");
  3457. }
  3458. ggml_tensor * out;
  3459. if (inplace) {
  3460. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3461. } else {
  3462. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3463. }
  3464. ggml_soft_max_add_sinks(out, sinks);
  3465. ggml_set_name(out, "out");
  3466. return out;
  3467. }
  3468. bool grad_precise() override {
  3469. return true;
  3470. }
  3471. };
  3472. // GGML_OP_SOFT_MAX_BACK
  3473. struct test_soft_max_back : public test_case {
  3474. const ggml_type type;
  3475. const std::array<int64_t, 4> ne;
  3476. const float scale;
  3477. const float max_bias;
  3478. std::string vars() override {
  3479. return VARS_TO_STR4(type, ne, scale, max_bias);
  3480. }
  3481. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3482. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3483. float scale = 1.0f,
  3484. float max_bias = 0.0f)
  3485. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3486. ggml_tensor * build_graph(ggml_context * ctx) override {
  3487. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3488. ggml_set_name(a, "a");
  3489. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3490. ggml_set_name(a, "a");
  3491. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3492. ggml_set_name(out, "out");
  3493. return out;
  3494. }
  3495. };
  3496. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3497. struct test_rope : public test_case {
  3498. const ggml_type type;
  3499. const std::array<int64_t, 4> ne_a;
  3500. int n_dims;
  3501. int mode;
  3502. int n_ctx; // used to generate positions
  3503. float fs; // freq_scale
  3504. float ef; // ext_factor
  3505. float af; // attn_factor
  3506. bool ff;
  3507. int v; // view (1 : non-contiguous a)
  3508. bool forward;
  3509. bool inplace;
  3510. std::string vars() override {
  3511. // forward can be inferred from the op, does not need to be printed
  3512. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3513. }
  3514. test_rope(ggml_type type = GGML_TYPE_F32,
  3515. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3516. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3517. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3518. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3519. ggml_tensor * build_graph(ggml_context * ctx) override {
  3520. ggml_tensor * a;
  3521. if (v & 1) {
  3522. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3523. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3524. if (forward) {
  3525. ggml_set_param(a);
  3526. }
  3527. ggml_set_name(a, "a");
  3528. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3529. ggml_set_name(a, "view_of_a");
  3530. } else {
  3531. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3532. if (forward) {
  3533. ggml_set_param(a);
  3534. }
  3535. ggml_set_name(a, "a");
  3536. }
  3537. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3538. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3539. ggml_tensor * pos;
  3540. if (is_mrope || is_vision) {
  3541. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3542. } else {
  3543. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3544. }
  3545. ggml_set_name(pos, "pos");
  3546. ggml_tensor * freq = nullptr;
  3547. if (ff) {
  3548. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3549. ggml_set_name(freq, "freq");
  3550. }
  3551. ggml_tensor * out;
  3552. if (is_mrope) {
  3553. if (is_vision) {
  3554. GGML_ASSERT(n_dims/4 > 0);
  3555. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3556. if (forward) {
  3557. if (inplace) {
  3558. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3559. } else {
  3560. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3561. }
  3562. } else {
  3563. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3564. }
  3565. } else {
  3566. GGML_ASSERT(n_dims/3 > 0);
  3567. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3568. if (forward) {
  3569. if (inplace) {
  3570. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3571. } else {
  3572. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3573. }
  3574. } else {
  3575. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3576. }
  3577. }
  3578. } else {
  3579. if (forward) {
  3580. if (inplace) {
  3581. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3582. } else {
  3583. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3584. }
  3585. } else {
  3586. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3587. }
  3588. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3589. }
  3590. ggml_set_name(out, "out");
  3591. return out;
  3592. }
  3593. void initialize_tensors(ggml_context * ctx) override {
  3594. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3595. if (t->type == GGML_TYPE_I32) {
  3596. // pos
  3597. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3598. std::vector<int> data(num_pos_ids);
  3599. for (int i = 0; i < num_pos_ids; i++) {
  3600. data[i] = rand() % n_ctx;
  3601. }
  3602. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3603. } else {
  3604. if (t->ne[0] == n_dims/2) {
  3605. // frequency factors in the range [0.9f, 1.1f]
  3606. init_tensor_uniform(t, 0.9f, 1.1f);
  3607. } else {
  3608. init_tensor_uniform(t);
  3609. }
  3610. }
  3611. }
  3612. }
  3613. double max_maa_err() override {
  3614. return 1e-3;
  3615. }
  3616. bool grad_precise() override {
  3617. return true;
  3618. }
  3619. };
  3620. // GGML_OP_POOL2D
  3621. struct test_pool2d : public test_case {
  3622. enum ggml_op_pool pool_type;
  3623. const ggml_type type_input;
  3624. const std::array<int64_t, 4> ne_input;
  3625. // kernel size
  3626. const int k0;
  3627. const int k1;
  3628. // stride
  3629. const int s0;
  3630. const int s1;
  3631. // padding
  3632. const int p0;
  3633. const int p1;
  3634. std::string vars() override {
  3635. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3636. }
  3637. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3638. ggml_type type_input = GGML_TYPE_F32,
  3639. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3640. int k0 = 3, int k1 = 3,
  3641. int s0 = 1, int s1 = 1,
  3642. int p0 = 1, int p1 = 1)
  3643. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3644. ggml_tensor * build_graph(ggml_context * ctx) override {
  3645. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3646. ggml_set_param(input);
  3647. ggml_set_name(input, "input");
  3648. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3649. ggml_set_name(out, "out");
  3650. return out;
  3651. }
  3652. };
  3653. // GGML_OP_CONV_TRANSPOSE_1D
  3654. struct test_conv_transpose_1d : public test_case {
  3655. const std::array<int64_t, 4> ne_input;
  3656. const std::array<int64_t, 4> ne_kernel;
  3657. const int s0; // stride
  3658. const int p0; // padding
  3659. const int d0; // dilation
  3660. std::string vars() override {
  3661. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3662. }
  3663. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3664. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3665. int s0 = 1, int p0 = 0, int d0 = 1)
  3666. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3667. ggml_tensor * build_graph(ggml_context * ctx) override {
  3668. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3669. ggml_set_name(input, "input");
  3670. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3671. ggml_set_name(kernel, "kernel");
  3672. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3673. ggml_set_name(out, "out");
  3674. return out;
  3675. }
  3676. };
  3677. // GGML_OP_CONV_TRANSPOSE_2D
  3678. struct test_conv_transpose_2d : public test_case {
  3679. const std::array<int64_t, 4> ne_input;
  3680. const std::array<int64_t, 4> ne_kernel;
  3681. const int stride;
  3682. std::string vars() override {
  3683. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3684. }
  3685. double max_nmse_err() override {
  3686. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3687. }
  3688. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3689. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3690. int stride = 1)
  3691. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3692. ggml_tensor * build_graph(ggml_context * ctx) override {
  3693. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3694. ggml_set_name(input, "input");
  3695. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3696. ggml_set_name(kernel, "kernel");
  3697. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3698. ggml_set_name(out, "out");
  3699. return out;
  3700. }
  3701. };
  3702. // GGML_OP_IM2COL
  3703. struct test_im2col : public test_case {
  3704. const ggml_type type_input;
  3705. const ggml_type type_kernel;
  3706. const ggml_type dst_type;
  3707. const std::array<int64_t, 4> ne_input;
  3708. const std::array<int64_t, 4> ne_kernel;
  3709. // stride
  3710. const int s0;
  3711. const int s1;
  3712. // padding
  3713. const int p0;
  3714. const int p1;
  3715. // dilation
  3716. const int d0;
  3717. const int d1;
  3718. // mode
  3719. const bool is_2D;
  3720. std::string vars() override {
  3721. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3722. }
  3723. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3724. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3725. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3726. int s0 = 1, int s1 = 1,
  3727. int p0 = 1, int p1 = 1,
  3728. int d0 = 1, int d1 = 1,
  3729. bool is_2D = true)
  3730. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3731. ggml_tensor * build_graph(ggml_context * ctx) override {
  3732. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3733. ggml_set_param(input);
  3734. ggml_set_name(input, "input");
  3735. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3736. ggml_set_name(kernel, "kernel");
  3737. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3738. ggml_set_name(out, "out");
  3739. return out;
  3740. }
  3741. };
  3742. // GGML_OP_IM2COL_3D
  3743. struct test_im2col_3d : public test_case {
  3744. const ggml_type type_input;
  3745. const ggml_type type_kernel;
  3746. const ggml_type dst_type;
  3747. const std::array<int64_t, 4> ne_input;
  3748. const std::array<int64_t, 4> ne_kernel;
  3749. // stride
  3750. const int s0;
  3751. const int s1;
  3752. const int s2;
  3753. // padding
  3754. const int p0;
  3755. const int p1;
  3756. const int p2;
  3757. // dilation
  3758. const int d0;
  3759. const int d1;
  3760. const int d2;
  3761. const int64_t IC;
  3762. const bool v;
  3763. std::string vars() override {
  3764. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3765. }
  3766. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3767. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3768. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3769. int64_t IC = 3,
  3770. int s0 = 1, int s1 = 1, int s2 = 1,
  3771. int p0 = 1, int p1 = 1, int p2 = 1,
  3772. int d0 = 1, int d1 = 1, int d2 = 1,
  3773. bool v = false)
  3774. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3775. ggml_tensor * build_graph(ggml_context * ctx) override {
  3776. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3777. ggml_set_param(input);
  3778. ggml_set_name(input, "input");
  3779. if (v) {
  3780. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3781. ggml_set_name(input, "view_of_input");
  3782. }
  3783. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3784. ggml_set_name(kernel, "kernel");
  3785. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3786. ggml_set_name(out, "out");
  3787. return out;
  3788. }
  3789. };
  3790. // CONV_2D
  3791. struct test_conv_2d : public test_case {
  3792. const std::array<int64_t, 4> ne_input;
  3793. const std::array<int64_t, 4> ne_kernel;
  3794. const ggml_type type_kernel;
  3795. const int stride0;
  3796. const int stride1;
  3797. const int padding0;
  3798. const int padding1;
  3799. const int dilation0;
  3800. const int dilation1;
  3801. // Whether the inputs are contiguous in the channel dim or the width dim
  3802. const bool cwhn;
  3803. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3804. // uses ggml_conv_2d:
  3805. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3806. // CONV_2D graph will be built, while
  3807. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3808. // IM2COL -> MUL_MM graph will be built.
  3809. std::string vars() override {
  3810. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3811. }
  3812. double max_nmse_err() override {
  3813. return 5e-4;
  3814. }
  3815. uint64_t op_flops(ggml_tensor * t) override {
  3816. GGML_UNUSED(t);
  3817. // Just counting matmul costs:
  3818. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3819. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3820. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3821. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3822. };
  3823. int64_t W = ne_input[0];
  3824. int64_t H = ne_input[1];
  3825. int64_t KW = ne_kernel[0];
  3826. int64_t KH = ne_kernel[1];
  3827. int64_t Cin = ne_kernel[2];
  3828. int64_t Cout = ne_kernel[3];
  3829. int64_t N = ne_input[3];
  3830. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3831. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3832. int64_t K = Cout;
  3833. int64_t CRS = Cin * KH * KW;
  3834. int64_t NPQ = N * OH * OW;
  3835. return K * NPQ * (2 * CRS - 1);
  3836. }
  3837. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3838. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3839. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3840. ne_input(ne_input),
  3841. ne_kernel(ne_kernel),
  3842. type_kernel(type_kernel),
  3843. stride0(stride0),
  3844. stride1(stride1),
  3845. padding0(padding0),
  3846. padding1(padding1),
  3847. dilation0(dilation0),
  3848. dilation1(dilation1),
  3849. cwhn(cwhn) {}
  3850. ggml_tensor * build_graph(ggml_context * ctx) override {
  3851. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3852. ggml_set_name(input, "input");
  3853. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3854. ggml_set_name(kernel, "kernel");
  3855. if (cwhn) {
  3856. // change memory layout to channel-most-contiguous (CWHN),
  3857. // then permute it back so NE matches the original input
  3858. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3859. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3860. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3861. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3862. }
  3863. ggml_tensor * out =
  3864. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3865. ggml_set_name(out, "out");
  3866. return out;
  3867. }
  3868. };
  3869. // GGML_OP_CONV_2D_DW
  3870. struct test_conv_2d_dw : public test_case {
  3871. const std::array<int64_t, 4> ne_input;
  3872. const std::array<int64_t, 4> ne_kernel;
  3873. const int stride;
  3874. const int padding;
  3875. const int dilation;
  3876. const bool cwhn;
  3877. std::string vars() override {
  3878. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3879. }
  3880. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3881. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3882. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3883. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3884. ggml_tensor * build_graph(ggml_context * ctx) override {
  3885. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3886. ggml_set_name(input, "input");
  3887. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3888. ggml_set_name(kernel, "kernel");
  3889. if (cwhn) {
  3890. // change memory layout to channel-most-contiguous (CWHN),
  3891. // then permute it back so NE matches the original input
  3892. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3893. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3894. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3895. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3896. }
  3897. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3898. ctx, kernel, input,
  3899. stride, stride, padding, padding, dilation, dilation);
  3900. ggml_set_name(out, "out");
  3901. return out;
  3902. }
  3903. };
  3904. // GGML_OP_CONV_3D
  3905. struct test_conv_3d : public test_case {
  3906. // Logical 5D dimensions
  3907. const int64_t N, IC, ID, IH, IW;
  3908. const int64_t OC, KD, KH, KW;
  3909. // Conv params
  3910. const int s0, s1, s2;
  3911. const int p0, p1, p2;
  3912. const int d0, d1, d2;
  3913. // Types
  3914. const ggml_type type_kernel;
  3915. std::string op_desc(ggml_tensor * t) override {
  3916. GGML_UNUSED(t);
  3917. return "CONV_3D";
  3918. }
  3919. std::string vars() override {
  3920. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3921. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3922. }
  3923. double max_nmse_err() override {
  3924. return 5e-4;
  3925. }
  3926. uint64_t op_flops(ggml_tensor * t) override {
  3927. GGML_UNUSED(t);
  3928. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3929. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3930. };
  3931. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3932. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3933. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3934. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3935. }
  3936. test_conv_3d(
  3937. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3938. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3939. int s0, int s1, int s2,
  3940. int p0, int p1, int p2,
  3941. int d0, int d1, int d2,
  3942. ggml_type type_kernel
  3943. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3944. OC(OC), KD(KD), KH(KH), KW(KW),
  3945. s0(s0), s1(s1), s2(s2),
  3946. p0(p0), p1(p1), p2(p2),
  3947. d0(d0), d1(d1), d2(d2),
  3948. type_kernel(type_kernel) {}
  3949. ggml_tensor * build_graph(ggml_context * ctx) override {
  3950. // GGML input tensor is packed as [W, H, D, C*N]
  3951. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3952. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3953. ggml_set_name(input, "input");
  3954. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3955. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3956. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3957. ggml_set_name(kernel, "kernel");
  3958. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3959. ggml_set_name(out, "out");
  3960. return out;
  3961. }
  3962. };
  3963. // GGML_OP_CONCAT
  3964. struct test_concat : public test_case {
  3965. const ggml_type type;
  3966. const std::array<int64_t, 4> ne_a;
  3967. const int64_t ne_b_d;
  3968. const int dim;
  3969. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3970. std::string vars() override {
  3971. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3972. }
  3973. test_concat(ggml_type type = GGML_TYPE_F32,
  3974. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3975. int64_t ne_b_d = 5,
  3976. int dim = 2, int v = 0)
  3977. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3978. ggml_tensor * build_graph(ggml_context * ctx) override {
  3979. auto ne_b = ne_a;
  3980. ne_b[dim] = ne_b_d;
  3981. ggml_tensor * a;
  3982. if (v & 1) {
  3983. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3984. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3985. ggml_set_name(a, "a");
  3986. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3987. ggml_set_name(a, "view_of_a");
  3988. } else {
  3989. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3990. ggml_set_name(a, "a");
  3991. }
  3992. ggml_tensor * b;
  3993. if (v & 2) {
  3994. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3995. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3996. ggml_set_name(b, "b");
  3997. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3998. ggml_set_name(b, "view_of_b");
  3999. } else {
  4000. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4001. ggml_set_name(b, "b");
  4002. }
  4003. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4004. ggml_set_name(out, "out");
  4005. return out;
  4006. }
  4007. };
  4008. // GGML_OP_ARGSORT
  4009. struct test_argsort : public test_case {
  4010. const ggml_type type;
  4011. const std::array<int64_t, 4> ne;
  4012. ggml_sort_order order;
  4013. std::string vars() override {
  4014. return VARS_TO_STR3(type, ne, order);
  4015. }
  4016. test_argsort(ggml_type type = GGML_TYPE_F32,
  4017. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4018. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4019. : type(type), ne(ne), order(order) {}
  4020. ggml_tensor * build_graph(ggml_context * ctx) override {
  4021. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4022. ggml_set_name(a, "a");
  4023. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4024. ggml_set_name(out, "out");
  4025. return out;
  4026. }
  4027. void initialize_tensors(ggml_context * ctx) override {
  4028. std::random_device rd;
  4029. std::default_random_engine rng(rd());
  4030. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4031. if (t->type == GGML_TYPE_I32) {
  4032. // indices
  4033. std::vector<int> data(ggml_nelements(t));
  4034. for (int i = 0; i < ggml_nelements(t); i++) {
  4035. data[i] = rand();
  4036. }
  4037. std::shuffle(data.begin(), data.end(), rng);
  4038. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4039. } else if (t->type == GGML_TYPE_F32) {
  4040. // initialize with unique values to avoid ties
  4041. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4042. std::vector<float> data(t->ne[0]);
  4043. for (int i = 0; i < t->ne[0]; i++) {
  4044. data[i] = i;
  4045. }
  4046. std::shuffle(data.begin(), data.end(), rng);
  4047. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4048. }
  4049. } else {
  4050. GGML_ABORT("fatal error");
  4051. }
  4052. }
  4053. }
  4054. };
  4055. struct test_topk_moe: public test_case {
  4056. const std::array<int64_t, 4> ne;
  4057. const int n_expert_used;
  4058. const bool with_norm;
  4059. const bool delayed_softmax;
  4060. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4061. int n_expert_used = 1,
  4062. bool with_norm = false,
  4063. bool delayed_softmax = false) :
  4064. ne(ne),
  4065. n_expert_used(n_expert_used),
  4066. with_norm(with_norm),
  4067. delayed_softmax(delayed_softmax) {
  4068. GGML_ASSERT(n_expert_used <= ne[0]);
  4069. GGML_ASSERT(!(with_norm && delayed_softmax));
  4070. }
  4071. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  4072. std::string op_desc(ggml_tensor * t) override {
  4073. GGML_UNUSED(t);
  4074. return "TOPK_MOE";
  4075. }
  4076. bool run_whole_graph() override { return true; }
  4077. ggml_tensor * build_graph(ggml_context * ctx) override {
  4078. const int n_expert = ne[0];
  4079. const int n_tokens = ne[1];
  4080. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4081. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  4082. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  4083. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4084. if (delayed_softmax) {
  4085. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4086. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  4087. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4088. }
  4089. if (with_norm) {
  4090. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4091. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  4092. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4093. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  4094. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4095. }
  4096. ggml_set_name(out, "out");
  4097. return out;
  4098. }
  4099. };
  4100. struct test_mul_mat_vec_fusion : public test_case {
  4101. const ggml_type type;
  4102. const ggml_glu_op glu_op;
  4103. const int64_t m;
  4104. const int64_t n;
  4105. const int64_t k;
  4106. const bool use_id;
  4107. const int n_mats;
  4108. const int n_used;
  4109. const bool b; // broadcast b matrix (only for use_id)
  4110. const bool with_bias;
  4111. const bool with_gate;
  4112. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4113. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
  4114. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
  4115. if (use_id) {
  4116. GGML_ASSERT(n_used <= n_mats);
  4117. }
  4118. }
  4119. std::string vars() override {
  4120. return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
  4121. }
  4122. std::string op_desc(ggml_tensor * t) override {
  4123. GGML_UNUSED(t);
  4124. return "MUL_MAT_VEC_FUSION";
  4125. }
  4126. bool run_whole_graph() override { return true; }
  4127. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4128. ggml_tensor * out = nullptr;
  4129. if (with_gate) {
  4130. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4131. constexpr float alpha = 1.702f;
  4132. constexpr float limit = 7.0f;
  4133. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4134. } else {
  4135. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4136. }
  4137. }
  4138. return out;
  4139. }
  4140. ggml_tensor * build_graph(ggml_context * ctx) override {
  4141. if (!use_id) {
  4142. const int channels = 4;
  4143. const int samples = 2;
  4144. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4145. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4146. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4147. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4148. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4149. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4150. if (with_bias) {
  4151. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4152. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4153. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4154. }
  4155. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4156. if (with_bias && with_gate) {
  4157. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4158. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4159. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4160. }
  4161. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4162. ggml_set_name(out, "out");
  4163. return out;
  4164. } else {
  4165. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4166. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4167. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4168. if (n_used != n_mats) {
  4169. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4170. }
  4171. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4172. ggml_set_name(cur, "cur");
  4173. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4174. if (with_bias) {
  4175. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4176. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4177. }
  4178. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4179. if (with_bias && with_gate) {
  4180. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4181. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4182. }
  4183. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4184. ggml_set_name(out, "out");
  4185. return out;
  4186. }
  4187. }
  4188. void initialize_tensors(ggml_context * ctx) override {
  4189. if (!use_id) {
  4190. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4191. init_tensor_uniform(t);
  4192. }
  4193. } else {
  4194. init_mul_mat_id_tensors(ctx, n_mats);
  4195. }
  4196. }
  4197. double max_nmse_err() override {
  4198. return 5e-3;
  4199. }
  4200. };
  4201. // GGML_OP_SUM
  4202. struct test_sum : public test_case {
  4203. const ggml_type type;
  4204. const std::array<int64_t, 4> ne;
  4205. const std::array<int64_t, 4> permute;
  4206. bool _use_permute;
  4207. std::string vars() override {
  4208. std::string v = VARS_TO_STR2(type, ne);
  4209. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4210. return v;
  4211. }
  4212. test_sum(ggml_type type = GGML_TYPE_F32,
  4213. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4214. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4215. : type(type), ne(ne), permute(permute),
  4216. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4217. ggml_tensor * build_graph(ggml_context * ctx) override {
  4218. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4219. ggml_set_param(a);
  4220. ggml_set_name(a, "a");
  4221. if (_use_permute) {
  4222. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4223. ggml_set_name(a, "a_permuted");
  4224. }
  4225. ggml_tensor * out = ggml_sum(ctx, a);
  4226. ggml_set_name(out, "out");
  4227. return out;
  4228. }
  4229. float grad_eps() override {
  4230. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4231. }
  4232. };
  4233. // GGML_OP_SUM_ROWS
  4234. struct test_sum_rows : public test_case {
  4235. const ggml_type type;
  4236. const std::array<int64_t, 4> ne;
  4237. const bool permute;
  4238. const bool slice;
  4239. std::string vars() override {
  4240. return VARS_TO_STR4(type, ne, permute, slice);
  4241. }
  4242. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4243. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4244. bool permute = false, bool slice = false)
  4245. : type(type), ne(ne), permute(permute), slice(slice) {}
  4246. ggml_tensor * build_graph(ggml_context * ctx) override {
  4247. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4248. ggml_set_param(a);
  4249. ggml_set_name(a, "a");
  4250. if (slice) {
  4251. a = ggml_view_4d(ctx, a,
  4252. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4253. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4254. }
  4255. if (permute) {
  4256. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4257. }
  4258. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4259. ggml_set_name(out, "out");
  4260. return out;
  4261. }
  4262. };
  4263. // GGML_OP_MEAN
  4264. struct test_mean : public test_case {
  4265. const ggml_type type;
  4266. const std::array<int64_t, 4> ne;
  4267. std::string vars() override {
  4268. return VARS_TO_STR2(type, ne);
  4269. }
  4270. test_mean(ggml_type type = GGML_TYPE_F32,
  4271. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4272. : type(type), ne(ne) {}
  4273. ggml_tensor * build_graph(ggml_context * ctx) override {
  4274. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4275. ggml_set_param(a);
  4276. ggml_set_name(a, "a");
  4277. ggml_tensor * out = ggml_mean(ctx, a);
  4278. ggml_set_name(out, "out");
  4279. return out;
  4280. }
  4281. float grad_eps() override {
  4282. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4283. }
  4284. };
  4285. // GGML_OP_UPSCALE
  4286. struct test_upscale : public test_case {
  4287. const ggml_type type;
  4288. const std::array<int64_t, 4> ne;
  4289. const int32_t scale_factor;
  4290. const bool transpose;
  4291. const ggml_scale_mode mode;
  4292. std::string vars() override {
  4293. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4294. }
  4295. test_upscale(ggml_type type = GGML_TYPE_F32,
  4296. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4297. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4298. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4299. ggml_tensor * build_graph(ggml_context * ctx) override {
  4300. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4301. ggml_set_name(a, "a");
  4302. if (transpose) {
  4303. a = ggml_transpose(ctx, a);
  4304. ggml_set_name(a, "a_transposed");
  4305. }
  4306. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4307. ggml_set_name(out, "out");
  4308. return out;
  4309. }
  4310. };
  4311. // GGML_OP_UPSCALE (via ggml_interpolate)
  4312. struct test_interpolate : public test_case {
  4313. const ggml_type type;
  4314. const std::array<int64_t, 4> ne;
  4315. const std::array<int64_t, 4> ne_tgt;
  4316. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4317. std::string vars() override {
  4318. ggml_scale_mode mode = (ggml_scale_mode)(this->mode & 0xFF);
  4319. std::string flags = (this->mode & GGML_SCALE_FLAG_ALIGN_CORNERS) ? "align_corners" : "none";
  4320. return VARS_TO_STR5(type, ne, ne_tgt, mode, flags);
  4321. }
  4322. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4323. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4324. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4325. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4326. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4327. ggml_tensor * build_graph(ggml_context * ctx) override {
  4328. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4329. ggml_set_name(a, "a");
  4330. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4331. ggml_set_name(out, "out");
  4332. return out;
  4333. }
  4334. };
  4335. // GGML_OP_GROUP_NORM
  4336. struct test_group_norm : public test_case {
  4337. const ggml_type type;
  4338. const std::array<int64_t, 4> ne;
  4339. const int32_t num_groups;
  4340. const float eps;
  4341. std::string vars() override {
  4342. return VARS_TO_STR4(type, ne, num_groups, eps);
  4343. }
  4344. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4345. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4346. int32_t num_groups = 32,
  4347. float eps = 1e-6f)
  4348. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4349. ggml_tensor * build_graph(ggml_context * ctx) override {
  4350. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4351. ggml_set_name(a, "a");
  4352. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4353. ggml_set_name(out, "out");
  4354. return out;
  4355. }
  4356. };
  4357. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4358. struct test_group_norm_mul_add : public test_case {
  4359. const ggml_type type;
  4360. const std::array<int64_t, 4> ne;
  4361. int num_groups;
  4362. float eps;
  4363. std::string op_desc(ggml_tensor * t) override {
  4364. GGML_UNUSED(t);
  4365. return "GROUP_NORM_MUL_ADD";
  4366. }
  4367. bool run_whole_graph() override { return true; }
  4368. std::string vars() override {
  4369. return VARS_TO_STR4(type, ne, num_groups, eps);
  4370. }
  4371. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4372. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4373. int num_groups = 4,
  4374. float eps = 1e-5f)
  4375. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4376. ggml_tensor * build_graph(ggml_context * ctx) override {
  4377. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4378. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4379. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4380. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4381. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4382. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4383. ggml_tensor * m = ggml_mul(ctx, n, w);
  4384. ggml_tensor * out = ggml_add(ctx, m, b);
  4385. ggml_set_name(out, "out");
  4386. return out;
  4387. }
  4388. };
  4389. // GGML_OP_L2_NORM
  4390. struct test_l2_norm : public test_case {
  4391. const ggml_type type;
  4392. const std::array<int64_t, 4> ne;
  4393. const float eps;
  4394. std::string vars() override {
  4395. return VARS_TO_STR2(type, ne);
  4396. }
  4397. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4398. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4399. float eps = 1e-12f)
  4400. : type(type), ne(ne), eps(eps) {}
  4401. ggml_tensor * build_graph(ggml_context * ctx) override {
  4402. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4403. ggml_set_name(a, "a");
  4404. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4405. ggml_set_name(out, "out");
  4406. return out;
  4407. }
  4408. };
  4409. // GGML_OP_ACC
  4410. struct test_acc : public test_case {
  4411. const ggml_type type;
  4412. const std::array<int64_t, 4> ne_a;
  4413. const std::array<int64_t, 4> ne_b;
  4414. std::string vars() override {
  4415. return VARS_TO_STR3(type, ne_a, ne_b);
  4416. }
  4417. test_acc(ggml_type type = GGML_TYPE_F32,
  4418. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4419. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4420. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4421. ggml_tensor * build_graph(ggml_context * ctx) override {
  4422. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4423. ggml_set_param(a);
  4424. ggml_set_name(a, "a");
  4425. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4426. ggml_set_param(b);
  4427. ggml_set_name(b, "b");
  4428. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4429. ggml_set_name(out, "out");
  4430. return out;
  4431. }
  4432. };
  4433. // GGML_OP_PAD
  4434. struct test_pad : public test_case {
  4435. const ggml_type type;
  4436. const std::array<int64_t, 4> ne_a;
  4437. const int pad_0;
  4438. const int pad_1;
  4439. std::string vars() override {
  4440. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4441. }
  4442. test_pad(ggml_type type = GGML_TYPE_F32,
  4443. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4444. int pad_0 = 1, int pad_1 = 1)
  4445. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4446. ggml_tensor * build_graph(ggml_context * ctx) override {
  4447. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4448. ggml_set_name(a, "a");
  4449. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4450. ggml_set_name(out, "out");
  4451. return out;
  4452. }
  4453. };
  4454. struct test_pad_ext : public test_case {
  4455. const ggml_type type;
  4456. const std::array<int64_t, 4> ne_a;
  4457. const int lp0;
  4458. const int rp0;
  4459. const int lp1;
  4460. const int rp1;
  4461. const int lp2;
  4462. const int rp2;
  4463. const int lp3;
  4464. const int rp3;
  4465. const bool v;
  4466. std::string vars() override {
  4467. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4468. }
  4469. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4470. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4471. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4472. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4473. bool v = false)
  4474. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4475. ggml_tensor * build_graph(ggml_context * ctx) override {
  4476. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4477. ggml_set_name(a, "a");
  4478. if (v) {
  4479. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4480. ggml_set_name(a, "view of a");
  4481. }
  4482. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4483. ggml_set_name(out, "out");
  4484. return out;
  4485. }
  4486. };
  4487. // GGML_OP_PAD_REFLECT_1D
  4488. struct test_pad_reflect_1d : public test_case {
  4489. const ggml_type type;
  4490. const std::array<int64_t, 4> ne_a;
  4491. const int pad_0;
  4492. const int pad_1;
  4493. std::string vars() override {
  4494. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4495. }
  4496. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4497. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4498. int pad_0 = 10, int pad_1 = 9)
  4499. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4500. ggml_tensor * build_graph(ggml_context * ctx) override {
  4501. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4502. ggml_set_name(a, "a");
  4503. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4504. ggml_set_name(out, "out");
  4505. return out;
  4506. }
  4507. };
  4508. // GGML_OP_ROLL
  4509. struct test_roll : public test_case {
  4510. const int shift0;
  4511. const int shift1;
  4512. const int shift3;
  4513. const int shift4;
  4514. std::string vars() override {
  4515. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4516. }
  4517. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4518. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4519. ggml_tensor * build_graph(ggml_context * ctx) override {
  4520. int64_t ne[4] = {10, 5, 4, 3};
  4521. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4522. ggml_set_name(a, "a");
  4523. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4524. ggml_set_name(out, "out");
  4525. return out;
  4526. }
  4527. };
  4528. // GGML_OP_ARANGE
  4529. struct test_arange : public test_case {
  4530. const ggml_type type;
  4531. const float start;
  4532. const float stop;
  4533. const float step;
  4534. std::string vars() override {
  4535. return VARS_TO_STR4(type, start, stop, step);
  4536. }
  4537. test_arange(ggml_type type = GGML_TYPE_F32,
  4538. float start = 0.f, float stop = 10.f, float step = 1.f)
  4539. : type(type), start(start), stop(stop), step(step) {}
  4540. ggml_tensor * build_graph(ggml_context * ctx) override {
  4541. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4542. ggml_set_name(out, "out");
  4543. return out;
  4544. }
  4545. };
  4546. // GGML_OP_TIMESTEP_EMBEDDING
  4547. struct test_timestep_embedding : public test_case {
  4548. const ggml_type type;
  4549. const std::array<int64_t, 4> ne_a;
  4550. const int dim;
  4551. const int max_period;
  4552. std::string vars() override {
  4553. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4554. }
  4555. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4556. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4557. int dim = 320, int max_period=10000)
  4558. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4559. ggml_tensor * build_graph(ggml_context * ctx) override {
  4560. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4561. ggml_set_name(a, "a");
  4562. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4563. ggml_set_name(out, "out");
  4564. return out;
  4565. }
  4566. };
  4567. // GGML_OP_LEAKY_RELU
  4568. struct test_leaky_relu : public test_case {
  4569. const ggml_type type;
  4570. const std::array<int64_t, 4> ne_a;
  4571. const float negative_slope;
  4572. std::string vars() override {
  4573. return VARS_TO_STR3(type, ne_a, negative_slope);
  4574. }
  4575. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4576. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4577. float negative_slope = 0.1f)
  4578. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4579. ggml_tensor * build_graph(ggml_context * ctx) override {
  4580. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4581. ggml_set_name(a, "a");
  4582. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4583. ggml_set_name(out, "out");
  4584. return out;
  4585. }
  4586. };
  4587. // GGML_OP_FLASH_ATTN_EXT
  4588. struct test_flash_attn_ext : public test_case {
  4589. const int64_t hsk; // K head size
  4590. const int64_t hsv; // V head size
  4591. const int64_t nh; // num heads
  4592. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4593. const int64_t kv; // kv size
  4594. const int64_t nb; // batch size
  4595. const bool mask; // use mask
  4596. const bool sinks; // use sinks
  4597. const float max_bias; // ALiBi
  4598. const float logit_softcap; // Gemma 2
  4599. const ggml_prec prec;
  4600. const ggml_type type_KV;
  4601. std::array<int32_t, 4> permute;
  4602. std::string vars() override {
  4603. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4604. }
  4605. double max_nmse_err() override {
  4606. return 5e-4;
  4607. }
  4608. uint64_t op_flops(ggml_tensor * t) override {
  4609. GGML_UNUSED(t);
  4610. // Just counting matmul costs:
  4611. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4612. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4613. }
  4614. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4615. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4616. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4617. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4618. ggml_tensor * build_graph(ggml_context * ctx) override {
  4619. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4620. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4621. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4622. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4623. int64_t ne_perm[4];
  4624. for (int i = 0; i < 4; ++i) {
  4625. ne_perm[permute[i]] = ne[i];
  4626. }
  4627. ggml_tensor * t;
  4628. if (is_view) {
  4629. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4630. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4631. } else {
  4632. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4633. }
  4634. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4635. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4636. }
  4637. return t;
  4638. };
  4639. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4640. ggml_set_name(q, "q");
  4641. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4642. ggml_set_name(k, "k");
  4643. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4644. ggml_set_name(v, "v");
  4645. ggml_tensor * m = nullptr;
  4646. if (mask) {
  4647. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4648. ggml_set_name(m, "m");
  4649. }
  4650. ggml_tensor * s = nullptr;
  4651. if (sinks) {
  4652. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4653. ggml_set_name(s, "s");
  4654. }
  4655. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4656. ggml_flash_attn_ext_add_sinks(out, s);
  4657. ggml_flash_attn_ext_set_prec (out, prec);
  4658. ggml_set_name(out, "out");
  4659. return out;
  4660. }
  4661. void initialize_tensors(ggml_context * ctx) override {
  4662. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4663. if (strcmp(t->name, "s") == 0) {
  4664. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4665. init_tensor_uniform(t, -10.0f, 10.0f);
  4666. } else if (strcmp(t->name, "m") == 0) {
  4667. init_tensor_kq_mask(t);
  4668. } else {
  4669. init_tensor_uniform(t);
  4670. }
  4671. }
  4672. }
  4673. bool grad_precise() override {
  4674. return true;
  4675. }
  4676. };
  4677. // GGML_OP_CROSS_ENTROPY_LOSS
  4678. struct test_cross_entropy_loss : public test_case {
  4679. const ggml_type type;
  4680. const std::array<int64_t, 4> ne;
  4681. std::string vars() override {
  4682. return VARS_TO_STR2(type, ne);
  4683. }
  4684. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4685. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4686. : type(type), ne(ne) {}
  4687. ggml_tensor * build_graph(ggml_context * ctx) override {
  4688. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4689. ggml_set_param(logits);
  4690. ggml_set_name(logits, "logits");
  4691. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4692. // The labels are assumed to be constant -> no gradients.
  4693. ggml_set_name(labels, "labels");
  4694. // Ensure labels add up to 1:
  4695. labels = ggml_soft_max(ctx, labels);
  4696. ggml_set_name(labels, "labels_normalized");
  4697. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4698. ggml_set_name(out, "out");
  4699. return out;
  4700. }
  4701. void initialize_tensors(ggml_context * ctx) override {
  4702. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4703. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4704. init_tensor_uniform(t, -100.0f, 100.0f);
  4705. }
  4706. }
  4707. float grad_eps() override {
  4708. return 1.0f;
  4709. }
  4710. bool grad_precise() override {
  4711. return true;
  4712. }
  4713. };
  4714. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4715. struct test_cross_entropy_loss_back : public test_case {
  4716. const ggml_type type;
  4717. const std::array<int64_t, 4> ne;
  4718. std::string vars() override {
  4719. return VARS_TO_STR2(type, ne);
  4720. }
  4721. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4722. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4723. : type(type), ne(ne) {}
  4724. ggml_tensor * build_graph(ggml_context * ctx) override {
  4725. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4726. ggml_set_name(grad, "grad");
  4727. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4728. ggml_set_name(logits, "logits");
  4729. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4730. ggml_set_name(labels, "labels");
  4731. // Ensure labels add up to 1:
  4732. labels = ggml_soft_max(ctx, labels);
  4733. ggml_set_name(labels, "labels_normalized");
  4734. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4735. ggml_set_name(out, "out");
  4736. return out;
  4737. }
  4738. };
  4739. // GGML_OP_OPT_STEP_ADAMW
  4740. struct test_opt_step_adamw : public test_case {
  4741. const ggml_type type;
  4742. const std::array<int64_t, 4> ne;
  4743. std::string vars() override {
  4744. return VARS_TO_STR2(type, ne);
  4745. }
  4746. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4747. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4748. : type(type), ne(ne) {}
  4749. ggml_tensor * build_graph(ggml_context * ctx) override {
  4750. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4751. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4752. ggml_set_name(a, "a");
  4753. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4754. ggml_set_name(grad, "grad");
  4755. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4756. ggml_set_name(grad_m, "grad_m");
  4757. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4758. ggml_set_name(grad_v, "grad_v");
  4759. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4760. ggml_set_name(adamw_params, "adamw_params");
  4761. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4762. ggml_set_name(out, "out");
  4763. return out;
  4764. }
  4765. void initialize_tensors(ggml_context * ctx) override {
  4766. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4767. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4768. }
  4769. }
  4770. bool grad_precise() override {
  4771. return true;
  4772. }
  4773. };
  4774. struct test_opt_step_sgd : public test_case {
  4775. const ggml_type type;
  4776. const std::array<int64_t, 4> ne;
  4777. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4778. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4779. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4780. : type(type), ne(ne) {}
  4781. ggml_tensor * build_graph(ggml_context * ctx) override {
  4782. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4783. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4784. ggml_set_name(a, "a");
  4785. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4786. ggml_set_name(grad, "grad");
  4787. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4788. ggml_set_name(sgd_params, "sgd_params");
  4789. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4790. ggml_set_name(out, "out");
  4791. return out;
  4792. }
  4793. void initialize_tensors(ggml_context * ctx) override {
  4794. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4795. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4796. }
  4797. }
  4798. bool grad_precise() override {
  4799. return true;
  4800. }
  4801. };
  4802. enum llm_norm_type {
  4803. LLM_NORM,
  4804. LLM_NORM_RMS,
  4805. };
  4806. struct llama_hparams {
  4807. uint32_t n_vocab;
  4808. uint32_t n_embd;
  4809. uint32_t n_head;
  4810. uint32_t n_head_kv;
  4811. static constexpr uint32_t n_layer = 1;
  4812. uint32_t n_rot;
  4813. uint32_t n_embd_head; // dimension of values (d_v)
  4814. uint32_t n_ff;
  4815. float f_norm_eps;
  4816. float f_norm_rms_eps;
  4817. // cparams
  4818. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4819. static constexpr uint32_t n_ctx_orig = n_ctx;
  4820. // batch
  4821. int32_t n_tokens;
  4822. // llm_build_context
  4823. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4824. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4825. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4826. return n_embd_head * n_head_kv;
  4827. }
  4828. };
  4829. // LLM base class
  4830. struct test_llm : public test_case {
  4831. llama_hparams hp;
  4832. protected:
  4833. test_llm(llama_hparams hp)
  4834. : hp(std::move(hp)) {
  4835. }
  4836. public:
  4837. struct ggml_tensor * llm_build_norm(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * cur,
  4840. struct ggml_tensor * mw,
  4841. struct ggml_tensor * mb,
  4842. llm_norm_type type) {
  4843. switch (type) {
  4844. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4845. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4846. }
  4847. cur = ggml_mul(ctx, cur, mw);
  4848. if (mb) {
  4849. cur = ggml_add(ctx, cur, mb);
  4850. }
  4851. return cur;
  4852. }
  4853. void llm_build_kv_store(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * k_l,
  4856. struct ggml_tensor * v_l,
  4857. struct ggml_tensor * k_cur,
  4858. struct ggml_tensor * v_cur) {
  4859. // compute the transposed [n_tokens, n_embd] V matrix
  4860. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4861. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4862. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4863. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4864. ( hp.n_ctx)*ggml_element_size(v_l),
  4865. (hp.kv_head)*ggml_element_size(v_l));
  4866. // important: storing RoPE-ed version of K in the KV cache!
  4867. ggml_cpy(ctx, k_cur, k_cache_view);
  4868. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4869. }
  4870. struct ggml_tensor * llm_build_kqv(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * k_l,
  4873. struct ggml_tensor * v_l,
  4874. struct ggml_tensor * q_cur,
  4875. struct ggml_tensor * kq_mask,
  4876. float kq_scale) {
  4877. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4878. struct ggml_tensor * k =
  4879. ggml_view_3d(ctx, k_l,
  4880. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4881. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4882. ggml_row_size(k_l->type, hp.n_embd_head),
  4883. 0);
  4884. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4885. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4886. // split cached v into n_head heads
  4887. struct ggml_tensor * v =
  4888. ggml_view_3d(ctx, v_l,
  4889. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4890. ggml_element_size(v_l)*hp.n_ctx,
  4891. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4892. 0);
  4893. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4894. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4895. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4896. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4897. cur = ggml_mul_mat(ctx, wo, cur);
  4898. return cur;
  4899. }
  4900. void initialize_tensors(ggml_context * ctx) override {
  4901. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4902. if (t->type == GGML_TYPE_I32) {
  4903. // pos
  4904. std::vector<int> data(hp.n_tokens);
  4905. for (int i = 0; i < hp.n_tokens; i++) {
  4906. data[i] = rand() % hp.n_ctx;
  4907. }
  4908. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4909. } else {
  4910. init_tensor_uniform(t);
  4911. }
  4912. }
  4913. }
  4914. };
  4915. // Llama
  4916. struct test_llama : public test_llm {
  4917. static constexpr float freq_base = 10000.0f;
  4918. static constexpr float freq_scale = 1.0f;
  4919. static constexpr float ext_factor = 0.0f;
  4920. static constexpr float attn_factor = 1.0f;
  4921. static constexpr float beta_fast = 32.0f;
  4922. static constexpr float beta_slow = 1.0f;
  4923. bool fused;
  4924. std::string op_desc(ggml_tensor * t) override {
  4925. GGML_UNUSED(t);
  4926. return "LLAMA";
  4927. }
  4928. std::string vars() override {
  4929. auto n_tokens = hp.n_tokens;
  4930. return VARS_TO_STR1(n_tokens);
  4931. }
  4932. double max_nmse_err() override {
  4933. return 2e-3;
  4934. }
  4935. bool run_whole_graph() override { return fused; }
  4936. test_llama(int n_tokens = 1, bool fused = false)
  4937. : test_llm({
  4938. /*n_vocab =*/ 32000,
  4939. /*n_embd =*/ 3200,
  4940. /*n_head =*/ 32,
  4941. /*n_head_kv =*/ 32,
  4942. /*n_rot =*/ 100,
  4943. /*n_embd_head =*/ 100,
  4944. /*n_ff =*/ 8640,
  4945. /*f_norm_eps =*/ 0.f,
  4946. /*f_norm_rms_eps =*/ 1e-5f,
  4947. /*n_tokens =*/ n_tokens,
  4948. })
  4949. , fused(fused)
  4950. {
  4951. }
  4952. ggml_tensor * build_graph(ggml_context * ctx) override {
  4953. struct ggml_tensor * cur;
  4954. struct ggml_tensor * inpL;
  4955. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4956. // inp_pos - contains the positions
  4957. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4958. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4959. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4960. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4961. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4962. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4963. struct ggml_tensor * inpSA = inpL;
  4964. // norm
  4965. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4966. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4967. // self-attention
  4968. {
  4969. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4970. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4971. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4972. // compute Q and K and RoPE them
  4973. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4974. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4975. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4976. Qcur = ggml_rope_ext(
  4977. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4978. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4979. ext_factor, attn_factor, beta_fast, beta_slow
  4980. );
  4981. Kcur = ggml_rope_ext(
  4982. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4983. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4984. ext_factor, attn_factor, beta_fast, beta_slow
  4985. );
  4986. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4987. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4988. }
  4989. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4990. // feed-forward network
  4991. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4992. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4993. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4994. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4995. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4996. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4997. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4998. cur = ggml_silu(ctx, cur);
  4999. cur = ggml_mul(ctx, cur, tmp);
  5000. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5001. cur = ggml_add(ctx, cur, ffn_inp);
  5002. // input for next layer
  5003. inpL = cur;
  5004. }
  5005. cur = inpL;
  5006. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5007. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5008. // lm_head
  5009. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5010. cur = ggml_mul_mat(ctx, output, cur);
  5011. return cur;
  5012. }
  5013. };
  5014. // Falcon
  5015. struct test_falcon : public test_llm {
  5016. static constexpr float freq_base = 10000.0f;
  5017. static constexpr float freq_scale = 1.0f;
  5018. static constexpr float ext_factor = 0.0f;
  5019. static constexpr float attn_factor = 1.0f;
  5020. static constexpr float beta_fast = 32.0f;
  5021. static constexpr float beta_slow = 1.0f;
  5022. std::string op_desc(ggml_tensor * t) override {
  5023. GGML_UNUSED(t);
  5024. return "FALCON";
  5025. }
  5026. std::string vars() override {
  5027. auto n_tokens = hp.n_tokens;
  5028. return VARS_TO_STR1(n_tokens);
  5029. }
  5030. double max_nmse_err() override {
  5031. return 2e-3;
  5032. }
  5033. test_falcon(int n_tokens = 1)
  5034. : test_llm({
  5035. /*n_vocab =*/ 32000,
  5036. /*n_embd =*/ 3200,
  5037. /*n_head =*/ 50,
  5038. /*n_head_kv =*/ 1,
  5039. /*n_rot =*/ 64,
  5040. /*n_embd_head =*/ 64,
  5041. /*n_ff =*/ 8640,
  5042. /*f_norm_eps =*/ 1e-5f,
  5043. /*f_norm_rms_eps =*/ 0.f,
  5044. /*n_tokens =*/ n_tokens,
  5045. }) {
  5046. }
  5047. ggml_tensor * build_graph(ggml_context * ctx) override {
  5048. struct ggml_tensor * cur;
  5049. struct ggml_tensor * inpL;
  5050. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5051. // inp_pos - contains the positions
  5052. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5053. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5054. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5055. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5056. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5057. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5058. // norm
  5059. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5060. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5061. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5062. // self-attention
  5063. {
  5064. cur = attn_norm;
  5065. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5066. cur = ggml_mul_mat(ctx, wqkv, cur);
  5067. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5068. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5069. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5070. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5071. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5072. // using mode = 2 for neox mode
  5073. Qcur = ggml_rope_ext(
  5074. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5075. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5076. );
  5077. Kcur = ggml_rope_ext(
  5078. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5079. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5080. );
  5081. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5082. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5083. }
  5084. struct ggml_tensor * ffn_inp = cur;
  5085. // feed forward
  5086. {
  5087. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5088. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5089. cur = attn_norm;
  5090. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5091. cur = ggml_gelu(ctx, cur);
  5092. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5093. }
  5094. cur = ggml_add(ctx, cur, ffn_inp);
  5095. cur = ggml_add(ctx, cur, inpL);
  5096. // input for next layer
  5097. inpL = cur;
  5098. }
  5099. cur = inpL;
  5100. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5101. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5102. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5103. // lm_head
  5104. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5105. cur = ggml_mul_mat(ctx, output, cur);
  5106. return cur;
  5107. }
  5108. };
  5109. // ###########################################
  5110. // ## Section 3: GGML Op Test Instantiation ##
  5111. // ###########################################
  5112. static const ggml_type all_types[] = {
  5113. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5114. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5115. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5116. GGML_TYPE_Q8_0,
  5117. GGML_TYPE_MXFP4,
  5118. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5119. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5120. GGML_TYPE_Q6_K,
  5121. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5122. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5123. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5124. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5125. };
  5126. static const ggml_type base_types[] = {
  5127. GGML_TYPE_F32, GGML_TYPE_F16,
  5128. GGML_TYPE_Q8_0, // for I8MM tests
  5129. GGML_TYPE_Q4_0,
  5130. GGML_TYPE_Q4_1, // for I8MM tests
  5131. GGML_TYPE_Q4_K,
  5132. GGML_TYPE_MXFP4, // TODO: or "other"
  5133. GGML_TYPE_IQ2_XXS
  5134. };
  5135. static const ggml_type other_types[] = {
  5136. GGML_TYPE_Q4_1,
  5137. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5138. GGML_TYPE_Q8_0,
  5139. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5140. GGML_TYPE_Q5_K,
  5141. GGML_TYPE_Q6_K,
  5142. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5143. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5144. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5145. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5146. GGML_TYPE_BF16,
  5147. };
  5148. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5149. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5150. std::vector<std::unique_ptr<test_case>> test_cases;
  5151. std::default_random_engine rng(0);
  5152. // unary ops
  5153. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5154. for (int v : {0, 1}) {
  5155. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5156. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5157. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5158. }
  5159. }
  5160. }
  5161. // glu ops
  5162. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5163. for (int v : {0, 1}) {
  5164. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5165. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5166. // SWIGLU_OAI is handled separately
  5167. continue;
  5168. }
  5169. for (bool swapped : {false, true}) {
  5170. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5171. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5172. }
  5173. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5174. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5175. }
  5176. }
  5177. }
  5178. for (int v : {0, 1}) {
  5179. for (float alpha : {.5f, 1.702f}) {
  5180. for (float limit : {2.0f, 7.0f}) {
  5181. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5182. }
  5183. }
  5184. }
  5185. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5186. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5187. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5188. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5189. }
  5190. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5191. for (ggml_type type : all_types) {
  5192. for (int b : {1, 7}) {
  5193. for (bool v : {false, true}) {
  5194. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5195. }
  5196. }
  5197. }
  5198. for (int b : {1, 7}) {
  5199. for (bool v : {false, true}) {
  5200. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5201. }
  5202. }
  5203. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5204. for (ggml_type type : all_types) {
  5205. for (bool v : {false, true}) {
  5206. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5207. }
  5208. }
  5209. for (bool v : {false, true}) {
  5210. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5211. }
  5212. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5213. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5214. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5215. for (ggml_type type : all_types) {
  5216. for (int b : {1, 7}) {
  5217. for (bool v : {false, true}) {
  5218. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5219. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5220. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5221. if (ggml_blck_size(type) == 1) {
  5222. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5223. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5224. }
  5225. }
  5226. }
  5227. }
  5228. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5229. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5230. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5231. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5232. }
  5233. }
  5234. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5235. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5236. for (int k0 : {1, 3}) {
  5237. for (int k1 : {1, 3}) {
  5238. for (int s0 : {1, 2}) {
  5239. for (int s1 : {1, 2}) {
  5240. for (int p0 : {0, 1}) {
  5241. for (int p1 : {0, 1}) {
  5242. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5243. }
  5244. }
  5245. }
  5246. }
  5247. }
  5248. }
  5249. }
  5250. }
  5251. #if 0
  5252. // >4GB im2col destination. Too slow to run by default.
  5253. // Test cases taken from Wan2.1 T2V 1.3B.
  5254. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5255. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5256. #endif
  5257. // im2col 1D
  5258. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5259. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5260. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5261. for (int s0 : {1, 3}) {
  5262. for (int p0 : {0, 3}) {
  5263. for (int d0 : {1, 3}) {
  5264. test_cases.emplace_back(new test_im2col(
  5265. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5266. s0, 0, p0, 0, d0, 0, false));
  5267. }
  5268. }
  5269. }
  5270. // im2col 2D
  5271. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5272. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5273. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5274. for (int s0 : {1, 3}) {
  5275. for (int s1 : {1, 3}) {
  5276. for (int p0 : {0, 3}) {
  5277. for (int p1 : {0, 3}) {
  5278. for (int d0 : {1, 3}) {
  5279. for (int d1 : {1, 3}) {
  5280. test_cases.emplace_back(new test_im2col(
  5281. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5282. s0, s1, p0, p1, d0, d1, true));
  5283. }
  5284. }
  5285. }
  5286. }
  5287. }
  5288. }
  5289. // extra tests for im2col 2D
  5290. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5291. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5292. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5293. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5294. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5295. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5296. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5297. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5298. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5299. // im2col 3D
  5300. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5301. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5302. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5303. for (int s0 : {1, 3}) {
  5304. for (int s1 : {1, 3}) {
  5305. for (int s2 : {1, 3}) {
  5306. for (int p0 : {0, 3}) {
  5307. for (int p1 : {0, 3}) {
  5308. for (int p2 : {0, 3}) {
  5309. for (int d0 : {1, 3}) {
  5310. for (int d1 : {1, 3}) {
  5311. for (int d2 : {1, 3}) {
  5312. for (int IC : {1, 3}) {
  5313. for (bool v : {false, true}) {
  5314. test_cases.emplace_back(new test_im2col_3d(
  5315. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5316. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5317. }
  5318. }
  5319. }
  5320. }
  5321. }
  5322. }
  5323. }
  5324. }
  5325. }
  5326. }
  5327. }
  5328. // Conv_2D test cases
  5329. #ifdef DETAILED_TESTS
  5330. // Probably we do not have enough time to execute these in the pipeline.
  5331. uint32_t iwh_idx = 0;
  5332. uint32_t kwh_idx = 1;
  5333. uint32_t Cout_idx = 2;
  5334. uint32_t Cin_idx = 3;
  5335. uint32_t B_idx = 4;
  5336. std::vector<std::array<int, 5>> cases = {
  5337. //{IWH, KWH, Cout, Cin, B}
  5338. // K=CRS=NPQ=4096 conv_2d matmul performance
  5339. {19, 4, 4096, 256, 16},
  5340. // K=128, CRS=128, NPQ=4096
  5341. { 19, 4, 128, 8, 16},
  5342. // K=130, CRS=128, NPQ=4096
  5343. { 19, 4, 130, 8, 16},
  5344. // Edge case: K x CRS is small
  5345. { 19, 2, 4, 4, 16},
  5346. // A ConvNet's first layer
  5347. { 224, 3, 8, 3, 1 },
  5348. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5349. { 224, 2, 8, 1, 1 },
  5350. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5351. { 224, 2, 8, 1, 8 },
  5352. // A middle layer of a ConvNet
  5353. { 58, 3, 64, 32, 1 },
  5354. // A middle layer of a ConvNet, several images in the batch
  5355. { 58, 3, 64, 32, 8 },
  5356. // A deep layer of a ConvNet, several images in the batch
  5357. { 16, 3, 256, 128, 8 }
  5358. };
  5359. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5360. for (auto act_case : cases) {
  5361. test_cases.emplace_back(new test_conv_2d(
  5362. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5363. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5364. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5365. }
  5366. }
  5367. #endif
  5368. // CONV_2D:
  5369. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5370. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5371. };
  5372. //uint32_t s0 = 3;
  5373. uint32_t s1 = 5;
  5374. uint32_t p0 = 5;
  5375. //uint32_t p1 = 2;
  5376. uint32_t d0 = 2;
  5377. uint32_t d1 = 4;
  5378. for (uint32_t s0 : { 1, 3 }) {
  5379. for (uint32_t p1 : { 2, 5 }) {
  5380. for (uint32_t Cin : { 1, 25 }) {
  5381. for (uint32_t Cout : { 1, 12 }) {
  5382. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5383. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5384. for (uint32_t H : { 1, 133 }) {
  5385. for (uint32_t W : { 1, 141 }) {
  5386. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5387. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5388. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5389. test_cases.emplace_back(new test_conv_2d(
  5390. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5391. }
  5392. }
  5393. }
  5394. }
  5395. }
  5396. }
  5397. }
  5398. }
  5399. }
  5400. }
  5401. // sycl backend will limit task global_range < MAX_INT
  5402. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5403. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5404. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5405. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5406. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5407. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5408. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5409. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5410. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5411. // CONV_3D
  5412. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5413. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5414. };
  5415. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5416. for (int N : {1, 2}) {
  5417. for (int IC : {1, 3}) {
  5418. for (int OC : {1, 4}) {
  5419. for (int s0 : {1, 2}) {
  5420. for (int p1 : {0, 1}) {
  5421. for (int d2 : {1, 2}) {
  5422. int64_t IW = 20, IH = 22, ID = 18;
  5423. int64_t KW = 3, KH = 3, KD = 3;
  5424. int s1 = s0, s2 = s0;
  5425. int p0 = p1, p2 = p1;
  5426. int d0 = d2, d1 = d2;
  5427. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5428. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5429. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5430. continue;
  5431. }
  5432. test_cases.emplace_back(new test_conv_3d(
  5433. N, IC, ID, IH, IW,
  5434. OC, KD, KH, KW,
  5435. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5436. kernel_type));
  5437. // Asymmetric kernel and params
  5438. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5439. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5440. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5441. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5442. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5443. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5444. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5445. continue;
  5446. }
  5447. test_cases.emplace_back(new test_conv_3d(
  5448. N, IC, ID, IH, IW,
  5449. OC, asym_KD, asym_KH, asym_KW,
  5450. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5451. kernel_type));
  5452. }
  5453. }
  5454. }
  5455. }
  5456. }
  5457. }
  5458. // Case with kernel size 1
  5459. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5460. }
  5461. for(uint32_t Cout : {1, 9}){
  5462. for(uint32_t Cin : {1, 7}){
  5463. for(uint32_t K : {1, 3, 1337}){
  5464. for(uint32_t L : {1, 2, 13}){
  5465. for(uint32_t s0: {1, 2, 3}){
  5466. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5467. }
  5468. }
  5469. }
  5470. }
  5471. }
  5472. test_cases.emplace_back(new test_conv_transpose_1d());
  5473. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5474. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5475. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5476. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5477. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5478. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5479. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5480. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5481. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5482. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5483. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5484. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5485. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5486. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5487. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5488. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5489. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5490. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5491. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5492. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5493. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5494. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5495. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5496. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5497. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5498. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5499. }
  5500. for (bool view : {false, true}) {
  5501. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5502. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5503. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5504. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5505. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5506. }
  5507. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5508. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5509. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5510. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5511. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5512. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5513. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5514. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5515. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5516. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5517. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5518. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5519. }
  5520. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5521. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5522. }
  5523. // same-type copy
  5524. for (ggml_type type : all_types) {
  5525. const auto nk = ggml_blck_size(type);
  5526. for (int k = 1; k < 4; ++k) {
  5527. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5528. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5529. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5530. }
  5531. }
  5532. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5533. for (ggml_type type_dst : all_types) {
  5534. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5535. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5536. }
  5537. }
  5538. for (ggml_type type_src : all_types) {
  5539. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5540. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5541. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5542. }
  5543. }
  5544. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5545. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5546. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5547. }
  5548. }
  5549. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5550. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5551. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5552. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5553. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5554. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5555. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5556. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5557. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5558. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5559. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5560. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5561. test_cases.emplace_back(new test_cont());
  5562. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5563. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5564. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5565. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5566. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5567. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5568. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5569. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5570. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5571. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5572. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5573. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5574. }
  5575. };
  5576. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5577. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5578. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5579. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5580. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5581. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5582. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5583. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5584. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5585. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5586. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5587. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5588. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5589. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5590. // test case for k_bin_bcast_unravel in CUDA backend
  5591. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5592. // stable diffusion
  5593. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5594. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5595. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5596. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5597. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5598. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5599. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5600. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5601. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5602. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5603. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5604. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5605. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5606. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5607. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5608. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5609. }
  5610. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5611. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5612. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5613. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5614. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5615. // fusion
  5616. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5617. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5618. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5619. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5620. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5621. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5622. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5623. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5624. test_cases.emplace_back(new test_add1());
  5625. test_cases.emplace_back(new test_scale());
  5626. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5627. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5628. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5629. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5630. test_cases.emplace_back(new test_silu_back());
  5631. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5632. for (bool v : {false, true}) {
  5633. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5634. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5635. }
  5636. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5637. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5638. }
  5639. // in-place tests
  5640. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5641. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5642. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5643. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5644. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5645. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5646. }
  5647. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5648. for (bool multi_add : {false, true}) {
  5649. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5650. }
  5651. }
  5652. for (auto multi_add : {false, true}) {
  5653. for (auto set_rows : {false, true}) {
  5654. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  5655. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5656. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5657. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  5658. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5659. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5660. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5661. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5662. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5663. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5664. }
  5665. }
  5666. }
  5667. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5668. for (int64_t d_conv : {3, 4}) {
  5669. for (int64_t d_inner: {1024, 1536, 2048}) {
  5670. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5671. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5672. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5673. }
  5674. }
  5675. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5676. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5677. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5678. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5679. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5680. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5681. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5682. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5683. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5684. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5685. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5686. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5687. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5688. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5689. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5690. #if 0
  5691. // > 4GB A matrix. Too slow to be enabled by default.
  5692. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5693. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5694. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5695. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5696. #endif
  5697. for (ggml_type type_a : all_types) {
  5698. for (int i = 1; i < 10; ++i) {
  5699. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5700. }
  5701. }
  5702. #if 0
  5703. {
  5704. // Test paths in OpenCL
  5705. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5706. std::vector<int> ks = {896, 1536, 4096};
  5707. for (auto n : ns) {
  5708. for (auto k : ks) {
  5709. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5710. }
  5711. }
  5712. }
  5713. #endif
  5714. #if 1
  5715. for (ggml_type type_a : base_types) {
  5716. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5717. std::vector<int> ks = { 256 };
  5718. if (ggml_blck_size(type_a) == 1) {
  5719. ks.push_back(4);
  5720. }
  5721. for (auto k : ks) {
  5722. // test cases without permutation
  5723. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5724. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5725. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5726. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5727. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5728. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5729. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5730. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5731. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5732. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5733. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5734. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5735. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5736. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5737. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5738. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5739. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5740. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5741. // test cases with permutation
  5742. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5743. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5744. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5745. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5746. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5747. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5748. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5749. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5750. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5751. }
  5752. // test cases with large ne00/ne10 to cover stream-k fixup
  5753. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5754. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5755. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5756. // test cases with large batch size
  5757. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  5758. }
  5759. }
  5760. for (ggml_type type_a : other_types) {
  5761. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5762. if (ggml_blck_size(type_a) != 256) {
  5763. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5764. }
  5765. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5766. }
  5767. }
  5768. #else
  5769. // m = a rows
  5770. // n = b rows
  5771. // k = cols
  5772. std::uniform_int_distribution<> dist_m(1, 128);
  5773. std::uniform_int_distribution<> dist_n(16, 128);
  5774. std::uniform_int_distribution<> dist_k(1, 16);
  5775. for (int i = 0; i < 1000; i++) {
  5776. for (ggml_type type_a : all_types) {
  5777. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5778. int m = dist_m(rng);
  5779. int n = dist_n(rng);
  5780. int k = dist_k(rng) * ggml_blck_size(type_a);
  5781. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5782. }
  5783. }
  5784. }
  5785. #endif
  5786. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5787. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5788. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5789. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5790. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5791. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5792. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5793. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5794. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  5795. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5796. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  5797. #if 0
  5798. // test the mat-mat path for Metal
  5799. for (int k = 1; k < 512; ++k) {
  5800. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5801. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5802. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5803. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5804. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5805. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5806. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5807. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5808. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5809. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5810. }
  5811. #endif
  5812. for (auto bs2 : {1,3}) {
  5813. for (auto bs : {1,2,4,8}) {
  5814. for (auto nr : {1,4}) {
  5815. for (uint32_t m = 0; m < 2; ++m) {
  5816. for (uint32_t k = 0; k < 2; ++k) {
  5817. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5818. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5819. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  5820. }
  5821. }
  5822. }
  5823. }
  5824. }
  5825. }
  5826. // sycl backend will limit task global_range < MAX_INT
  5827. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5828. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5829. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5830. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5831. // test large experts*tokens
  5832. for (bool b : {false, true}) {
  5833. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5834. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5835. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5836. }
  5837. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5838. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5839. // gpt-oss issue with Vulkan mmq_id
  5840. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  5841. for (ggml_type type_a : base_types) {
  5842. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5843. for (int n_mats : {4, 8}) {
  5844. for (int n_used : {1, 2, 4}) {
  5845. for (bool b : {false, true}) {
  5846. for (int n : {1, 4, 5, 17, 32, 129}) {
  5847. int m = 512;
  5848. int k = 256;
  5849. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5850. }
  5851. }
  5852. }
  5853. }
  5854. }
  5855. }
  5856. for (ggml_type type_a : other_types) {
  5857. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5858. for (int n_mats : {4}) {
  5859. for (int n_used : {2}) {
  5860. for (bool b : {false}) {
  5861. for (int n : {1, 32}) {
  5862. int m = 512;
  5863. int k = 256;
  5864. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5865. }
  5866. }
  5867. }
  5868. }
  5869. }
  5870. }
  5871. for (int bs : {1, 4, 512}) {
  5872. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  5873. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5874. // test with mul after (ffn_moe_weighted)
  5875. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  5876. }
  5877. }
  5878. }
  5879. for (ggml_type type_a : base_types) {
  5880. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5881. for (int n : {1, 16}) {
  5882. for (int k : {1, 16}) {
  5883. for (int bs2 : {1, 3}) {
  5884. for (int bs3 : {1, 3}) {
  5885. for (int nr2 : {1, 2}) {
  5886. for (int nr3 : {1, 2}) {
  5887. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5888. }
  5889. }
  5890. }
  5891. }
  5892. }
  5893. }
  5894. }
  5895. }
  5896. // add_id
  5897. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5898. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5899. for (int n_mats : {4, 8}) {
  5900. for (int n_used : {1, 2, 4}) {
  5901. for (int n_embd : {32, 129}) {
  5902. for (int n_token : {1, 32, 129}) {
  5903. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5904. }
  5905. }
  5906. }
  5907. }
  5908. }
  5909. }
  5910. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5911. test_cases.emplace_back(new test_sqr (type));
  5912. test_cases.emplace_back(new test_sqrt (type));
  5913. test_cases.emplace_back(new test_log (type));
  5914. test_cases.emplace_back(new test_sin (type));
  5915. test_cases.emplace_back(new test_cos (type));
  5916. test_cases.emplace_back(new test_clamp (type));
  5917. test_cases.emplace_back(new test_leaky_relu(type));
  5918. test_cases.emplace_back(new test_floor (type));
  5919. test_cases.emplace_back(new test_ceil (type));
  5920. test_cases.emplace_back(new test_round (type));
  5921. test_cases.emplace_back(new test_trunc (type));
  5922. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5923. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5924. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5925. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5926. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5927. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5928. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5929. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  5930. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  5931. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  5932. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  5933. }
  5934. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5935. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5936. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5937. #if 0
  5938. std::uniform_int_distribution<> dist_ne1(1, 50);
  5939. int exponent = 1;
  5940. while (exponent < (1 << 17)) {
  5941. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5942. for (int n = 0; n < 10; ++n) {
  5943. int64_t ne0 = dist_ne0(rng);
  5944. int64_t ne1 = dist_ne1(rng);
  5945. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5946. }
  5947. exponent <<= 1;
  5948. }
  5949. #endif
  5950. for (bool mask : {false, true}) {
  5951. for (bool sinks : {false, true}) {
  5952. for (float max_bias : {0.0f, 8.0f}) {
  5953. if (!mask && max_bias > 0.0f) continue;
  5954. for (float scale : {1.0f, 0.1f}) {
  5955. for (int64_t ne0 : {16, 1024}) {
  5956. for (int64_t ne1 : {16, 1024}) {
  5957. if (mask) {
  5958. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5959. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5960. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5961. if (ne0 <= 32 && ne1 <= 32) {
  5962. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5963. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5964. }
  5965. }
  5966. } else {
  5967. /* The precision of mask here doesn't matter as boolean mask is false */
  5968. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5969. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. // inplace tests
  5976. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  5977. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  5978. }
  5979. }
  5980. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5981. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5982. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5983. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5984. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5985. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5986. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5987. for (float max_bias : {0.0f, 8.0f}) {
  5988. for (float scale : {1.0f, 0.1f}) {
  5989. for (int64_t ne0 : {16, 1024}) {
  5990. for (int64_t ne1 : {16, 1024}) {
  5991. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5992. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5993. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5994. }
  5995. }
  5996. }
  5997. }
  5998. for (bool fw : {true, false}) { // fw == forward
  5999. bool all = true;
  6000. for (float fs : { 1.0f, 1.4245f }) {
  6001. for (float ef : { 0.0f, 0.7465f }) {
  6002. for (float af : { 1.0f, 1.4245f }) {
  6003. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6004. for (bool ff : {false, true}) { // freq_factors
  6005. for (float v : { 0, 1 }) {
  6006. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6007. if (all) {
  6008. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6009. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6010. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6011. }
  6012. if (all) {
  6013. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6014. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6015. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6016. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6017. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6018. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6019. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6020. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6021. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6022. }
  6023. if (all) {
  6024. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6025. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6026. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6027. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6028. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6029. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6030. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6031. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6032. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6033. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6034. }
  6035. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6036. }
  6037. }
  6038. all = false;
  6039. }
  6040. }
  6041. }
  6042. }
  6043. }
  6044. // single inplace test per type/mode/ff
  6045. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6046. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6047. for (bool ff : {false, true}) {
  6048. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6049. }
  6050. }
  6051. }
  6052. for (int v : { 0, 1, 2, 3 }) {
  6053. for (int dim : { 0, 1, 2, 3, }) {
  6054. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6055. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6056. }
  6057. }
  6058. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6059. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  6060. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6061. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6062. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  6063. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // many backends only handle up to 1024
  6064. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6065. }
  6066. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6067. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6068. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6069. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6070. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6071. }
  6072. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6073. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6074. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6075. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6076. }
  6077. test_cases.emplace_back(new test_sum());
  6078. test_cases.emplace_back(new test_sum_rows());
  6079. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6080. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6081. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6082. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6083. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6084. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6085. test_cases.emplace_back(new test_mean());
  6086. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6087. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6088. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6089. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6090. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6091. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6092. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6093. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6094. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6095. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6096. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6097. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6098. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6099. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6100. test_cases.emplace_back(new test_acc());
  6101. test_cases.emplace_back(new test_pad());
  6102. test_cases.emplace_back(new test_pad_ext());
  6103. test_cases.emplace_back(new test_pad_reflect_1d());
  6104. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6105. test_cases.emplace_back(new test_roll());
  6106. test_cases.emplace_back(new test_arange());
  6107. test_cases.emplace_back(new test_timestep_embedding());
  6108. test_cases.emplace_back(new test_leaky_relu());
  6109. for (bool v : {false, true}) {
  6110. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6111. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6112. }
  6113. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6114. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6115. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6116. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6117. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6118. for (bool mask : { true, false } ) {
  6119. for (bool sinks : { true, false } ) {
  6120. for (float max_bias : { 0.0f, 8.0f }) {
  6121. if (!mask && max_bias > 0.0f) continue;
  6122. for (float logit_softcap : {0.0f, 10.0f}) {
  6123. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6124. for (int nh : { 4, }) {
  6125. for (int nr3 : { 1, 3, }) {
  6126. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6127. for (int nr2 : { 1, 4, 16 }) {
  6128. if (nr2 == 16 && hsk != 128) continue;
  6129. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6130. for (int kv : { 113, 512, 1024, }) {
  6131. if (nr2 != 1 && kv != 512) continue;
  6132. for (int nb : { 1, 3, 32, 35, }) {
  6133. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6134. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6135. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6136. test_cases.emplace_back(new test_flash_attn_ext(
  6137. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6138. // run fewer test cases permuted
  6139. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6140. test_cases.emplace_back(new test_flash_attn_ext(
  6141. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6142. }
  6143. }
  6144. }
  6145. }
  6146. }
  6147. }
  6148. }
  6149. }
  6150. }
  6151. }
  6152. }
  6153. }
  6154. }
  6155. }
  6156. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6157. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6158. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6159. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6160. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6161. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6162. for (ggml_type type : base_types) {
  6163. for (bool with_gate : {false, true}) {
  6164. for (bool use_id : {false, true}) {
  6165. for (bool b : {false, true}) {
  6166. if (!use_id && b) {
  6167. continue;
  6168. }
  6169. for (bool with_bias : {false, true}) {
  6170. if (!with_gate && !with_bias) {
  6171. continue;
  6172. }
  6173. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6174. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6175. continue;
  6176. }
  6177. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6178. continue;
  6179. }
  6180. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6181. use_id, 16, 8, b, with_bias, with_gate));
  6182. }
  6183. }
  6184. }
  6185. }
  6186. }
  6187. }
  6188. for (bool with_norm : {false, true}) {
  6189. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6190. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6191. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6192. }
  6193. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6194. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6195. #if 0
  6196. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6197. test_cases.emplace_back(new test_llama(2, true));
  6198. test_cases.emplace_back(new test_llama(1));
  6199. test_cases.emplace_back(new test_llama(2));
  6200. test_cases.emplace_back(new test_falcon(1));
  6201. test_cases.emplace_back(new test_falcon(2));
  6202. #endif
  6203. return test_cases;
  6204. }
  6205. // Test cases for performance evaluation: should be representative of real-world use cases
  6206. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6207. std::vector<std::unique_ptr<test_case>> test_cases;
  6208. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6209. uint32_t iwh_idx = 0;
  6210. uint32_t kwh_idx = 1;
  6211. uint32_t Cout_idx = 2;
  6212. uint32_t Cin_idx = 3;
  6213. uint32_t B_idx = 4;
  6214. std::vector<std::array<int, 5>> cases = {
  6215. //{IWH, KWH, Cout, Cin, B}
  6216. // K=CRS=NPQ=4096 conv2d matmul performance
  6217. {19, 4, 4096, 256, 16},
  6218. // K=128, CRS=128, NPQ=4096
  6219. { 19, 4, 128, 8, 16},
  6220. // K=130, CRS=128, NPQ=4096
  6221. { 19, 4, 130, 8, 16},
  6222. // Edge case: K x CRS is small
  6223. { 19, 2, 4, 4, 16},
  6224. // A ConvNet's first layer
  6225. { 224, 3, 8, 3, 1 },
  6226. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6227. { 224, 2, 8, 1, 1 },
  6228. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6229. { 224, 2, 8, 1, 8 },
  6230. // A middle layer of a ConvNet
  6231. { 58, 3, 64, 32, 1 },
  6232. // A middle layer of a ConvNet, several images in the batch
  6233. { 58, 3, 64, 32, 8 },
  6234. // A deep layer of a ConvNet, several images in the batch
  6235. { 16, 3, 512, 128, 8 },
  6236. };
  6237. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6238. for (auto act_case : cases) {
  6239. // Direct CONV_2D
  6240. test_cases.emplace_back(new test_conv_2d(
  6241. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6242. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6243. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6244. }
  6245. }
  6246. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6247. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6248. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6249. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6250. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6251. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6252. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6253. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6254. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6255. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6256. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6257. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6258. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6259. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6260. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6261. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6262. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6263. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6264. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6265. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6266. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6267. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6268. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6269. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6270. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6271. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6272. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6273. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6274. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6275. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6276. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6277. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6278. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6279. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6280. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6281. for (ggml_type type_a : all_types) {
  6282. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6283. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6284. }
  6285. }
  6286. }
  6287. // qwen3-30b-a3b
  6288. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6289. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6290. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6291. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6292. }
  6293. }
  6294. }
  6295. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6296. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6297. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6298. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6299. }
  6300. }
  6301. }
  6302. // gpt-oss-20b
  6303. for (int bs : {1, 4, 8, 512}) {
  6304. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6305. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6306. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6307. }
  6308. }
  6309. }
  6310. for (int K : {3, 5}) {
  6311. for (int IC : {256, 2560}) {
  6312. for (int IW_IH : {32, 64, 256}) {
  6313. if (IC == 2560 && IW_IH == 256) {
  6314. // too big
  6315. continue;
  6316. }
  6317. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6318. }
  6319. }
  6320. }
  6321. for (int kv : { 4096, 8192, 16384, }) {
  6322. for (int hs : { 64, 128, }) {
  6323. for (int nr : { 1, 4, }) {
  6324. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6325. }
  6326. }
  6327. }
  6328. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6329. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6330. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6331. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6332. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6333. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6334. for (int n_token : {1, 512}) {
  6335. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6336. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6337. }
  6338. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6339. { 8192, 1, 1, 1 },
  6340. { 8192, 8192, 1, 1 },
  6341. { 128, 8192, 1, 1 },
  6342. };
  6343. for (auto it: reduce_rows_cases){
  6344. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6345. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6346. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6347. }
  6348. return test_cases;
  6349. }
  6350. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6351. printer * output_printer) {
  6352. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6353. if (params_filter == nullptr) {
  6354. return;
  6355. }
  6356. std::regex params_filter_regex(params_filter);
  6357. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6358. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6359. it = test_cases.erase(it);
  6360. continue;
  6361. }
  6362. it++;
  6363. }
  6364. };
  6365. if (mode == MODE_TEST) {
  6366. auto test_cases = make_test_cases_eval();
  6367. filter_test_cases(test_cases, params_filter);
  6368. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6369. if (backend_cpu == NULL) {
  6370. test_operation_info info("", "", "CPU");
  6371. info.set_error("backend", "Failed to initialize CPU backend");
  6372. output_printer->print_operation(info);
  6373. return false;
  6374. }
  6375. size_t n_ok = 0;
  6376. size_t tests_run = 0;
  6377. std::vector<std::string> failed_tests;
  6378. for (auto & test : test_cases) {
  6379. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6380. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6381. continue;
  6382. }
  6383. tests_run++;
  6384. if (status == test_status_t::OK) {
  6385. n_ok++;
  6386. } else if (status == test_status_t::FAIL) {
  6387. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6388. }
  6389. }
  6390. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6391. output_printer->print_failed_tests(failed_tests);
  6392. ggml_backend_free(backend_cpu);
  6393. return n_ok == tests_run;
  6394. }
  6395. if (mode == MODE_GRAD) {
  6396. auto test_cases = make_test_cases_eval();
  6397. filter_test_cases(test_cases, params_filter);
  6398. size_t n_ok = 0;
  6399. for (auto & test : test_cases) {
  6400. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6401. n_ok++;
  6402. }
  6403. }
  6404. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6405. return n_ok == test_cases.size();
  6406. }
  6407. if (mode == MODE_PERF) {
  6408. auto test_cases = make_test_cases_perf();
  6409. filter_test_cases(test_cases, params_filter);
  6410. for (auto & test : test_cases) {
  6411. test->eval_perf(backend, op_names_filter, output_printer);
  6412. }
  6413. return true;
  6414. }
  6415. if (mode == MODE_SUPPORT) {
  6416. auto test_cases = make_test_cases_eval();
  6417. filter_test_cases(test_cases, params_filter);
  6418. // Filter out fusion cases
  6419. test_cases.erase(
  6420. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6421. return tc->run_whole_graph();
  6422. }),
  6423. test_cases.end()
  6424. );
  6425. for (auto & test : test_cases) {
  6426. test->eval_support(backend, op_names_filter, output_printer);
  6427. }
  6428. return true;
  6429. }
  6430. GGML_ABORT("fatal error");
  6431. }
  6432. static void list_all_ops() {
  6433. printf("GGML operations:\n");
  6434. std::set<std::string> all_ops;
  6435. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6436. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6437. }
  6438. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6439. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6440. }
  6441. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6442. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6443. }
  6444. for (const auto & op : all_ops) {
  6445. printf(" %s\n", op.c_str());
  6446. }
  6447. printf("\nTotal: %zu operations\n", all_ops.size());
  6448. }
  6449. static void show_test_coverage() {
  6450. std::set<std::string> all_ops;
  6451. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6452. auto op = (enum ggml_op)i;
  6453. if (op == GGML_OP_VIEW ||
  6454. op == GGML_OP_RESHAPE ||
  6455. op == GGML_OP_PERMUTE ||
  6456. op == GGML_OP_TRANSPOSE ||
  6457. op == GGML_OP_CONT ||
  6458. op == GGML_OP_GLU ||
  6459. op == GGML_OP_UNARY) {
  6460. continue;
  6461. }
  6462. all_ops.insert(ggml_op_name(op));
  6463. }
  6464. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6465. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6466. }
  6467. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6468. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6469. }
  6470. auto test_cases = make_test_cases_eval();
  6471. // Filter out fusion cases
  6472. test_cases.erase(
  6473. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6474. return tc->run_whole_graph();
  6475. }),
  6476. test_cases.end()
  6477. );
  6478. std::set<std::string> tested_ops;
  6479. ggml_init_params params = {
  6480. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6481. /* .mem_base = */ NULL,
  6482. /* .no_alloc = */ true,
  6483. };
  6484. for (auto & test_case : test_cases) {
  6485. ggml_context * ctx = ggml_init(params);
  6486. if (ctx) {
  6487. test_case->mode = MODE_TEST;
  6488. ggml_tensor * out = test_case->build_graph(ctx);
  6489. if (out && out->op != GGML_OP_NONE) {
  6490. if (out->op == GGML_OP_UNARY) {
  6491. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6492. } else if (out->op == GGML_OP_GLU) {
  6493. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6494. } else {
  6495. tested_ops.insert(ggml_op_name(out->op));
  6496. }
  6497. }
  6498. ggml_free(ctx);
  6499. }
  6500. }
  6501. std::set<std::string> covered_ops;
  6502. std::set<std::string> uncovered_ops;
  6503. for (const auto & op : all_ops) {
  6504. if (tested_ops.count(op) > 0) {
  6505. covered_ops.insert(op);
  6506. } else {
  6507. uncovered_ops.insert(op);
  6508. }
  6509. }
  6510. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6511. for (const auto & op : covered_ops) {
  6512. printf(" ✓ %s\n", op.c_str());
  6513. }
  6514. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6515. for (const auto & op : uncovered_ops) {
  6516. printf(" ✗ %s\n", op.c_str());
  6517. }
  6518. printf("\nCoverage Summary:\n");
  6519. printf(" Total operations: %zu\n", all_ops.size());
  6520. printf(" Tested operations: %zu\n", covered_ops.size());
  6521. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6522. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6523. }
  6524. static void usage(char ** argv) {
  6525. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6526. printf(" valid modes:\n");
  6527. printf(" - test (default, compare with CPU backend for correctness)\n");
  6528. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6529. printf(" - perf (performance evaluation)\n");
  6530. printf(" - support (probe backend operation support)\n");
  6531. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6532. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6533. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6534. printf(" --list-ops lists all available GGML operations\n");
  6535. printf(" --show-coverage shows test coverage\n");
  6536. }
  6537. int main(int argc, char ** argv) {
  6538. test_mode mode = MODE_TEST;
  6539. output_formats output_format = CONSOLE;
  6540. const char * op_names_filter = nullptr;
  6541. const char * backend_filter = nullptr;
  6542. const char * params_filter = nullptr;
  6543. for (int i = 1; i < argc; i++) {
  6544. if (strcmp(argv[i], "test") == 0) {
  6545. mode = MODE_TEST;
  6546. } else if (strcmp(argv[i], "perf") == 0) {
  6547. mode = MODE_PERF;
  6548. } else if (strcmp(argv[i], "grad") == 0) {
  6549. mode = MODE_GRAD;
  6550. } else if (strcmp(argv[i], "support") == 0) {
  6551. mode = MODE_SUPPORT;
  6552. } else if (strcmp(argv[i], "-o") == 0) {
  6553. if (i + 1 < argc) {
  6554. op_names_filter = argv[++i];
  6555. } else {
  6556. usage(argv);
  6557. return 1;
  6558. }
  6559. } else if (strcmp(argv[i], "-b") == 0) {
  6560. if (i + 1 < argc) {
  6561. backend_filter = argv[++i];
  6562. } else {
  6563. usage(argv);
  6564. return 1;
  6565. }
  6566. } else if (strcmp(argv[i], "-p") == 0) {
  6567. if (i + 1 < argc) {
  6568. params_filter = argv[++i];
  6569. } else {
  6570. usage(argv);
  6571. return 1;
  6572. }
  6573. } else if (strcmp(argv[i], "--output") == 0) {
  6574. if (i + 1 < argc) {
  6575. if (!output_format_from_str(argv[++i], output_format)) {
  6576. usage(argv);
  6577. return 1;
  6578. }
  6579. } else {
  6580. usage(argv);
  6581. return 1;
  6582. }
  6583. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6584. list_all_ops();
  6585. return 0;
  6586. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6587. show_test_coverage();
  6588. return 0;
  6589. } else {
  6590. usage(argv);
  6591. return 1;
  6592. }
  6593. }
  6594. // load and enumerate backends
  6595. ggml_backend_load_all();
  6596. // Create printer for output format
  6597. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6598. if (output_printer) {
  6599. output_printer->print_header();
  6600. }
  6601. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6602. size_t n_ok = 0;
  6603. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6604. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6605. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6606. output_printer->print_backend_init(
  6607. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6608. n_ok++;
  6609. continue;
  6610. }
  6611. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6612. output_printer->print_backend_init(backend_init_info(
  6613. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6614. n_ok++;
  6615. continue;
  6616. }
  6617. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6618. GGML_ASSERT(backend != NULL);
  6619. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6620. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6621. if (ggml_backend_set_n_threads_fn) {
  6622. // TODO: better value for n_threads
  6623. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6624. }
  6625. size_t free, total; // NOLINT
  6626. ggml_backend_dev_memory(dev, &free, &total);
  6627. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6628. false, "", ggml_backend_dev_description(dev),
  6629. total / 1024 / 1024, free / 1024 / 1024, true));
  6630. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6631. if (ok) {
  6632. n_ok++;
  6633. }
  6634. output_printer->print_backend_status(
  6635. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6636. ggml_backend_free(backend);
  6637. }
  6638. ggml_quantize_free();
  6639. if (output_printer) {
  6640. output_printer->print_footer();
  6641. }
  6642. output_printer->print_overall_summary(
  6643. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6644. if (n_ok != ggml_backend_dev_count()) {
  6645. return 1;
  6646. }
  6647. return 0;
  6648. }