convert_hf_to_gguf.py 243 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  155. f"Missing tensors: {missing}")
  156. else:
  157. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  158. f"Missing tensors: {missing}\n"
  159. f"Extra tensors: {extra}")
  160. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  161. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  162. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  163. name: str = gguf.TENSOR_NAMES[key]
  164. if "{bid}" in name:
  165. assert bid is not None
  166. name = name.format(bid=bid)
  167. return name + suffix
  168. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  169. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  170. return False
  171. key_name: str = gguf.TENSOR_NAMES[key]
  172. if "{bid}" in key_name:
  173. if bid is None:
  174. return False
  175. key_name = key_name.format(bid=bid)
  176. else:
  177. if bid is not None:
  178. return False
  179. return name == (key_name + suffix)
  180. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  181. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  182. if new_name is None:
  183. raise ValueError(f"Can not map tensor {name!r}")
  184. return new_name
  185. def set_gguf_parameters(self):
  186. self.gguf_writer.add_block_count(self.block_count)
  187. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  188. self.gguf_writer.add_context_length(n_ctx)
  189. logger.info(f"gguf: context length = {n_ctx}")
  190. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  191. self.gguf_writer.add_embedding_length(n_embd)
  192. logger.info(f"gguf: embedding length = {n_embd}")
  193. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  194. self.gguf_writer.add_feed_forward_length(n_ff)
  195. logger.info(f"gguf: feed forward length = {n_ff}")
  196. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  197. self.gguf_writer.add_head_count(n_head)
  198. logger.info(f"gguf: head count = {n_head}")
  199. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  200. self.gguf_writer.add_head_count_kv(n_head_kv)
  201. logger.info(f"gguf: key-value head count = {n_head_kv}")
  202. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  203. self.gguf_writer.add_rope_freq_base(rope_theta)
  204. logger.info(f"gguf: rope theta = {rope_theta}")
  205. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  206. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  207. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  208. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  209. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  210. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  211. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  212. self.gguf_writer.add_expert_count(n_experts)
  213. logger.info(f"gguf: expert count = {n_experts}")
  214. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  215. self.gguf_writer.add_expert_used_count(n_experts_used)
  216. logger.info(f"gguf: experts used count = {n_experts_used}")
  217. if (head_dim := self.hparams.get("head_dim")) is not None:
  218. self.gguf_writer.add_key_length(head_dim)
  219. self.gguf_writer.add_value_length(head_dim)
  220. self.gguf_writer.add_file_type(self.ftype)
  221. logger.info(f"gguf: file type = {self.ftype}")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.OUTPUT,
  287. )
  288. ):
  289. if self.ftype in (
  290. gguf.LlamaFileType.MOSTLY_TQ1_0,
  291. gguf.LlamaFileType.MOSTLY_TQ2_0,
  292. ):
  293. # TODO: use Q4_K and Q6_K
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  296. if isinstance(data_qtype, bool):
  297. if self.ftype == gguf.LlamaFileType.ALL_F32:
  298. data_qtype = gguf.GGMLQuantizationType.F32
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  300. data_qtype = gguf.GGMLQuantizationType.F16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  302. data_qtype = gguf.GGMLQuantizationType.BF16
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  304. data_qtype = gguf.GGMLQuantizationType.Q8_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  308. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  309. else:
  310. raise ValueError(f"Unknown file type: {self.ftype.name}")
  311. try:
  312. data = gguf.quants.quantize(data, data_qtype)
  313. except gguf.QuantError as e:
  314. logger.warning("%s, %s", e, "falling back to F16")
  315. data_qtype = gguf.GGMLQuantizationType.F16
  316. data = gguf.quants.quantize(data, data_qtype)
  317. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  318. # reverse shape to make it similar to the internal ggml dimension order
  319. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  320. # n_dims is implicit in the shape
  321. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  322. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  323. def set_type(self):
  324. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  325. def prepare_metadata(self, vocab_only: bool):
  326. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  327. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  328. # Fallback to model directory name if metadata name is still missing
  329. if self.metadata.name is None:
  330. self.metadata.name = self.dir_model.name
  331. # Generate parameter weight class (useful for leader boards) if not yet determined
  332. if self.metadata.size_label is None and total_params > 0:
  333. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  334. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  335. output_type: str = self.ftype.name.partition("_")[2]
  336. # Filename Output
  337. if self.fname_out.is_dir():
  338. # Generate default filename based on model specification and available metadata
  339. if not vocab_only:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  341. else:
  342. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  343. # Use the default filename
  344. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  345. else:
  346. # Output path is a custom defined templated filename
  347. # Note: `not is_dir()` is used because `.is_file()` will not detect
  348. # file template strings as it doesn't actually exist as a file
  349. # Process templated file name with the output ftype, useful with the "auto" ftype
  350. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  351. self.set_type()
  352. logger.info("Set meta model")
  353. self.metadata.set_gguf_meta_model(self.gguf_writer)
  354. logger.info("Set model parameters")
  355. self.set_gguf_parameters()
  356. logger.info("Set model tokenizer")
  357. self.set_vocab()
  358. logger.info("Set model quantization version")
  359. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  360. def write(self):
  361. self.prepare_tensors()
  362. self.prepare_metadata(vocab_only=False)
  363. self.gguf_writer.write_header_to_file(path=self.fname_out)
  364. self.gguf_writer.write_kv_data_to_file()
  365. self.gguf_writer.write_tensors_to_file(progress=True)
  366. self.gguf_writer.close()
  367. def write_vocab(self):
  368. if len(self.gguf_writer.tensors) != 1:
  369. raise ValueError('Splitting the vocabulary is not supported')
  370. self.prepare_metadata(vocab_only=True)
  371. self.gguf_writer.write_header_to_file(path=self.fname_out)
  372. self.gguf_writer.write_kv_data_to_file()
  373. self.gguf_writer.close()
  374. @staticmethod
  375. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  376. part_names: list[str] = []
  377. for filename in os.listdir(dir_model):
  378. if filename.startswith(prefix) and filename.endswith(suffix):
  379. part_names.append(filename)
  380. part_names.sort()
  381. return part_names
  382. @staticmethod
  383. def load_hparams(dir_model: Path):
  384. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  385. return json.load(f)
  386. @classmethod
  387. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  388. assert names
  389. def func(modelcls: AnyModel) -> AnyModel:
  390. for name in names:
  391. cls._model_classes[name] = modelcls
  392. return modelcls
  393. return func
  394. @classmethod
  395. def print_registered_models(cls):
  396. for name in sorted(cls._model_classes.keys()):
  397. logger.error(f"- {name}")
  398. @classmethod
  399. def from_model_architecture(cls, arch: str) -> type[Model]:
  400. try:
  401. return cls._model_classes[arch]
  402. except KeyError:
  403. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  404. def does_token_look_special(self, token: str | bytes) -> bool:
  405. if isinstance(token, (bytes, bytearray)):
  406. token_text = token.decode(encoding="utf-8")
  407. elif isinstance(token, memoryview):
  408. token_text = token.tobytes().decode(encoding="utf-8")
  409. else:
  410. token_text = token
  411. # Some models mark some added tokens which ought to be control tokens as not special.
  412. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  413. seems_special = token_text in (
  414. "<pad>", # deepseek-coder
  415. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  416. )
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  418. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  419. # TODO: should these be marked as UNUSED instead? (maybe not)
  420. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  421. return seems_special
  422. # used for GPT-2 BPE and WordPiece vocabs
  423. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  424. tokens: list[str] = []
  425. toktypes: list[int] = []
  426. from transformers import AutoTokenizer
  427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  428. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  429. assert max(tokenizer.vocab.values()) < vocab_size
  430. tokpre = self.get_vocab_base_pre(tokenizer)
  431. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  432. added_vocab = tokenizer.get_added_vocab()
  433. for i in range(vocab_size):
  434. if i not in reverse_vocab:
  435. tokens.append(f"[PAD{i}]")
  436. toktypes.append(gguf.TokenType.UNUSED)
  437. else:
  438. token: str = reverse_vocab[i]
  439. if token in added_vocab:
  440. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  441. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  442. if not tokenizer.added_tokens_decoder[i].normalized:
  443. previous_token = token
  444. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  445. if previous_token != token:
  446. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  447. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  448. toktypes.append(gguf.TokenType.CONTROL)
  449. else:
  450. # NOTE: this was added for Gemma.
  451. # Encoding and decoding the tokens above isn't sufficient for this case.
  452. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  453. toktypes.append(gguf.TokenType.USER_DEFINED)
  454. else:
  455. toktypes.append(gguf.TokenType.NORMAL)
  456. tokens.append(token)
  457. return tokens, toktypes, tokpre
  458. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  459. # do not modify it manually!
  460. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  461. # Marker: Start get_vocab_base_pre
  462. def get_vocab_base_pre(self, tokenizer) -> str:
  463. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  464. # is specific for the BPE pre-tokenizer used by the model
  465. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  466. # use in llama.cpp to implement the same pre-tokenizer
  467. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  468. chktok = tokenizer.encode(chktxt)
  469. chkhsh = sha256(str(chktok).encode()).hexdigest()
  470. logger.debug(f"chktok: {chktok}")
  471. logger.debug(f"chkhsh: {chkhsh}")
  472. res = None
  473. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  474. # or pull the latest version of the model from Huggingface
  475. # don't edit the hashes manually!
  476. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  477. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  478. res = "llama-bpe"
  479. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  480. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  481. res = "deepseek-llm"
  482. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  483. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  484. res = "deepseek-coder"
  485. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  486. # ref: https://huggingface.co/tiiuae/falcon-7b
  487. res = "falcon"
  488. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  489. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  490. res = "falcon3"
  491. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  492. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  493. res = "bert-bge"
  494. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  495. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  496. res = "bert-bge-large"
  497. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  498. # ref: https://huggingface.co/mosaicml/mpt-7b
  499. res = "mpt"
  500. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  501. # ref: https://huggingface.co/bigcode/starcoder2-3b
  502. res = "starcoder"
  503. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  504. # ref: https://huggingface.co/openai-community/gpt2
  505. res = "gpt-2"
  506. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  507. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  508. res = "stablelm2"
  509. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  510. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  511. res = "refact"
  512. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  513. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  514. res = "command-r"
  515. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  516. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  517. res = "qwen2"
  518. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  519. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  520. res = "olmo"
  521. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  522. # ref: https://huggingface.co/databricks/dbrx-base
  523. res = "dbrx"
  524. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  525. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  526. res = "jina-v1-en"
  527. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  528. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  529. res = "jina-v2-en"
  530. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  531. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  532. res = "jina-v2-es"
  533. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  534. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  535. res = "jina-v2-de"
  536. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  537. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  538. res = "smaug-bpe"
  539. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  540. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  541. res = "poro-chat"
  542. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  543. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  544. res = "jina-v2-code"
  545. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  546. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  547. res = "chatglm-bpe"
  548. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  549. # ref: https://huggingface.co/LumiOpen/Viking-7B
  550. res = "viking"
  551. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  552. # ref: https://huggingface.co/core42/jais-13b
  553. res = "jais"
  554. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  555. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  556. res = "codeshell"
  557. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  558. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  559. res = "tekken"
  560. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  561. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  562. res = "smollm"
  563. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  564. # ref: https://huggingface.co/bigscience/bloom
  565. res = "bloom"
  566. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  567. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  568. res = "gpt3-finnish"
  569. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  570. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  571. res = "exaone"
  572. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  573. # ref: https://huggingface.co/microsoft/phi-2
  574. res = "phi-2"
  575. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  576. # ref: https://huggingface.co/facebook/chameleon-7b
  577. res = "chameleon"
  578. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  579. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  580. res = "minerva-7b"
  581. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  582. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  583. res = "roberta-bpe"
  584. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  585. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  586. res = "gigachat"
  587. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  588. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  589. res = "megrez"
  590. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  591. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  592. res = "deepseek-v3"
  593. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  594. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  595. res = "deepseek-r1-qwen"
  596. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  597. # ref: https://huggingface.co/Xenova/gpt-4o
  598. res = "gpt-4o"
  599. if res is None:
  600. logger.warning("\n")
  601. logger.warning("**************************************************************************************")
  602. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  603. logger.warning("** There are 2 possible reasons for this:")
  604. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  605. logger.warning("** - the pre-tokenization config has changed upstream")
  606. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  607. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  608. logger.warning("**")
  609. logger.warning(f"** chkhsh: {chkhsh}")
  610. logger.warning("**************************************************************************************")
  611. logger.warning("\n")
  612. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  613. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  614. logger.debug(f"chkhsh: {chkhsh}")
  615. return res
  616. # Marker: End get_vocab_base_pre
  617. def _set_vocab_none(self) -> None:
  618. self.gguf_writer.add_tokenizer_model("none")
  619. def _set_vocab_gpt2(self) -> None:
  620. tokens, toktypes, tokpre = self.get_vocab_base()
  621. self.gguf_writer.add_tokenizer_model("gpt2")
  622. self.gguf_writer.add_tokenizer_pre(tokpre)
  623. self.gguf_writer.add_token_list(tokens)
  624. self.gguf_writer.add_token_types(toktypes)
  625. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  626. special_vocab.add_to_gguf(self.gguf_writer)
  627. def _set_vocab_qwen(self):
  628. dir_model = self.dir_model
  629. hparams = self.hparams
  630. tokens: list[str] = []
  631. toktypes: list[int] = []
  632. from transformers import AutoTokenizer
  633. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  634. vocab_size = hparams["vocab_size"]
  635. assert max(tokenizer.get_vocab().values()) < vocab_size
  636. tokpre = self.get_vocab_base_pre(tokenizer)
  637. merges = []
  638. vocab = {}
  639. mergeable_ranks = tokenizer.mergeable_ranks
  640. for token, rank in mergeable_ranks.items():
  641. vocab[QwenModel.token_bytes_to_string(token)] = rank
  642. if len(token) == 1:
  643. continue
  644. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  645. assert len(merged) == 2
  646. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  647. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  648. added_vocab = tokenizer.special_tokens
  649. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  650. for i in range(vocab_size):
  651. if i not in reverse_vocab:
  652. tokens.append(f"[PAD{i}]")
  653. toktypes.append(gguf.TokenType.UNUSED)
  654. elif reverse_vocab[i] in added_vocab:
  655. tokens.append(reverse_vocab[i])
  656. toktypes.append(gguf.TokenType.CONTROL)
  657. else:
  658. tokens.append(reverse_vocab[i])
  659. toktypes.append(gguf.TokenType.NORMAL)
  660. self.gguf_writer.add_tokenizer_model("gpt2")
  661. self.gguf_writer.add_tokenizer_pre(tokpre)
  662. self.gguf_writer.add_token_list(tokens)
  663. self.gguf_writer.add_token_types(toktypes)
  664. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  665. special_vocab.merges = merges
  666. # only add special tokens when they were not already loaded from config.json
  667. if len(special_vocab.special_token_ids) == 0:
  668. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  669. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  670. # this one is usually not in config.json anyway
  671. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  672. special_vocab.add_to_gguf(self.gguf_writer)
  673. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  674. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  675. self.gguf_writer.add_tokenizer_model("llama")
  676. self.gguf_writer.add_tokenizer_pre("default")
  677. self.gguf_writer.add_token_list(tokens)
  678. self.gguf_writer.add_token_scores(scores)
  679. self.gguf_writer.add_token_types(toktypes)
  680. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  681. special_vocab.add_to_gguf(self.gguf_writer)
  682. def _create_vocab_sentencepiece(self):
  683. from sentencepiece import SentencePieceProcessor
  684. tokenizer_path = self.dir_model / 'tokenizer.model'
  685. if not tokenizer_path.is_file():
  686. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  687. tokenizer = SentencePieceProcessor()
  688. tokenizer.LoadFromFile(str(tokenizer_path))
  689. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  690. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  691. scores: list[float] = [-10000.0] * vocab_size
  692. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  693. for token_id in range(tokenizer.vocab_size()):
  694. piece = tokenizer.IdToPiece(token_id)
  695. text = piece.encode("utf-8")
  696. score = tokenizer.GetScore(token_id)
  697. toktype = SentencePieceTokenTypes.NORMAL
  698. if tokenizer.IsUnknown(token_id):
  699. toktype = SentencePieceTokenTypes.UNKNOWN
  700. elif tokenizer.IsControl(token_id):
  701. toktype = SentencePieceTokenTypes.CONTROL
  702. elif tokenizer.IsUnused(token_id):
  703. toktype = SentencePieceTokenTypes.UNUSED
  704. elif tokenizer.IsByte(token_id):
  705. toktype = SentencePieceTokenTypes.BYTE
  706. tokens[token_id] = text
  707. scores[token_id] = score
  708. toktypes[token_id] = toktype
  709. added_tokens_file = self.dir_model / 'added_tokens.json'
  710. if added_tokens_file.is_file():
  711. with open(added_tokens_file, "r", encoding="utf-8") as f:
  712. added_tokens_json = json.load(f)
  713. for key in added_tokens_json:
  714. token_id = added_tokens_json[key]
  715. if token_id >= vocab_size:
  716. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  717. continue
  718. tokens[token_id] = key.encode("utf-8")
  719. scores[token_id] = -1000.0
  720. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  721. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  722. if tokenizer_config_file.is_file():
  723. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  724. tokenizer_config_json = json.load(f)
  725. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  726. for token_id, token_data in added_tokens_decoder.items():
  727. token_id = int(token_id)
  728. token: str = token_data["content"]
  729. if token_id >= vocab_size:
  730. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  731. continue
  732. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  733. if tokens[token_id] != token.encode("utf-8"):
  734. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  735. if token_data.get("special") or self.does_token_look_special(token):
  736. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  737. else:
  738. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  739. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  740. scores[token_id] = -1000.0
  741. tokens[token_id] = token.encode("utf-8")
  742. if vocab_size > len(tokens):
  743. pad_count = vocab_size - len(tokens)
  744. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  745. for i in range(1, pad_count + 1):
  746. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  747. scores.append(-1000.0)
  748. toktypes.append(SentencePieceTokenTypes.UNUSED)
  749. return tokens, scores, toktypes
  750. def _set_vocab_llama_hf(self):
  751. vocab = gguf.LlamaHfVocab(self.dir_model)
  752. tokens = []
  753. scores = []
  754. toktypes = []
  755. for text, score, toktype in vocab.all_tokens():
  756. tokens.append(text)
  757. scores.append(score)
  758. toktypes.append(toktype)
  759. assert len(tokens) == vocab.vocab_size
  760. self.gguf_writer.add_tokenizer_model("llama")
  761. self.gguf_writer.add_tokenizer_pre("default")
  762. self.gguf_writer.add_token_list(tokens)
  763. self.gguf_writer.add_token_scores(scores)
  764. self.gguf_writer.add_token_types(toktypes)
  765. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  766. special_vocab.add_to_gguf(self.gguf_writer)
  767. def _set_vocab_rwkv_world(self):
  768. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  769. vocab_size = self.hparams.get("vocab_size", 65536)
  770. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  771. toktypes: list[int] = [gguf.TokenType.CONTROL]
  772. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  773. lines = f.readlines()
  774. for line in lines:
  775. parts = line.split(' ')
  776. assert len(parts) >= 3
  777. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  778. token = token.encode("utf-8") if isinstance(token, str) else token
  779. assert isinstance(token, bytes)
  780. assert len(token) == token_len
  781. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  782. tokens.append(token_text.encode("utf-8"))
  783. toktypes.append(gguf.TokenType.NORMAL)
  784. remainder = vocab_size - len(tokens)
  785. assert remainder >= 0
  786. for i in range(len(tokens), vocab_size):
  787. tokens.append(f"[PAD{i}]".encode("utf-8"))
  788. toktypes.append(gguf.TokenType.UNUSED)
  789. self.gguf_writer.add_tokenizer_model("rwkv")
  790. self.gguf_writer.add_token_list(tokens)
  791. self.gguf_writer.add_token_types(toktypes)
  792. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  793. special_vocab.chat_template = "rwkv-world"
  794. # hack: Add '\n\n' as the EOT token to make it chat normally
  795. special_vocab._set_special_token("eot", 261)
  796. special_vocab.add_to_gguf(self.gguf_writer)
  797. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  798. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  799. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  800. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  801. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  802. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  803. assert field # tokenizer model
  804. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  805. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  806. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  807. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  808. assert field # token list
  809. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  810. if model_name == "llama-spm":
  811. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  812. assert field # token scores
  813. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  814. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  815. assert field # token types
  816. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  817. if model_name != "llama-spm":
  818. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  819. assert field # token merges
  820. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  821. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  822. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  823. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  824. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  825. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  826. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  827. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  828. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  829. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  830. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  831. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  832. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  833. @Model.register("GPTNeoXForCausalLM")
  834. class GPTNeoXModel(Model):
  835. model_arch = gguf.MODEL_ARCH.GPTNEOX
  836. def set_gguf_parameters(self):
  837. block_count = self.hparams["num_hidden_layers"]
  838. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  839. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  840. self.gguf_writer.add_block_count(block_count)
  841. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  842. self.gguf_writer.add_rope_dimension_count(
  843. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  844. )
  845. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  846. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  847. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  848. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  849. del bid # unused
  850. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  851. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  852. tensors: list[tuple[str, Tensor]] = []
  853. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  854. # Map bloom-style qkv_linear to gpt-style qkv_linear
  855. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  856. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  857. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  858. data_torch = torch.cat(
  859. (
  860. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  861. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  862. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  863. ),
  864. dim=0,
  865. )
  866. logger.info("re-format attention.linear_qkv.weight")
  867. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  868. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  869. data_torch = torch.cat(
  870. (
  871. qkv_bias[:, 0, :].reshape((n_embed,)),
  872. qkv_bias[:, 1, :].reshape((n_embed,)),
  873. qkv_bias[:, 2, :].reshape((n_embed,)),
  874. ),
  875. dim=0,
  876. )
  877. logger.info("re-format attention.linear_qkv.bias")
  878. tensors.append((self.map_tensor_name(name), data_torch))
  879. return tensors
  880. @Model.register("BloomForCausalLM", "BloomModel")
  881. class BloomModel(Model):
  882. model_arch = gguf.MODEL_ARCH.BLOOM
  883. def set_gguf_parameters(self):
  884. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  885. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  886. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  887. self.gguf_writer.add_embedding_length(n_embed)
  888. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  889. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  890. self.gguf_writer.add_head_count(n_head)
  891. self.gguf_writer.add_head_count_kv(n_head)
  892. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  893. self.gguf_writer.add_file_type(self.ftype)
  894. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  895. del bid # unused
  896. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  897. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  898. name = re.sub(r'transformer\.', '', name)
  899. tensors: list[tuple[str, Tensor]] = []
  900. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  901. # Map bloom-style qkv_linear to gpt-style qkv_linear
  902. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  903. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  904. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  905. data_torch = torch.cat(
  906. (
  907. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  908. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  909. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  910. ),
  911. dim=0,
  912. )
  913. logger.info("re-format attention.linear_qkv.weight")
  914. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  915. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  916. data_torch = torch.cat(
  917. (
  918. qkv_bias[:, 0, :].reshape((n_embed,)),
  919. qkv_bias[:, 1, :].reshape((n_embed,)),
  920. qkv_bias[:, 2, :].reshape((n_embed,)),
  921. ),
  922. dim=0,
  923. )
  924. logger.info("re-format attention.linear_qkv.bias")
  925. tensors.append((self.map_tensor_name(name), data_torch))
  926. return tensors
  927. @Model.register("MPTForCausalLM")
  928. class MPTModel(Model):
  929. model_arch = gguf.MODEL_ARCH.MPT
  930. def set_vocab(self):
  931. try:
  932. self._set_vocab_gpt2()
  933. except Exception:
  934. # Fallback for SEA-LION model
  935. self._set_vocab_sentencepiece()
  936. self.gguf_writer.add_add_bos_token(False)
  937. self.gguf_writer.add_pad_token_id(3)
  938. self.gguf_writer.add_eos_token_id(1)
  939. self.gguf_writer.add_unk_token_id(0)
  940. def set_gguf_parameters(self):
  941. block_count = self.hparams["n_layers"]
  942. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  943. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  944. self.gguf_writer.add_block_count(block_count)
  945. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  946. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  947. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  948. self.gguf_writer.add_head_count_kv(kv_n_heads)
  949. self.gguf_writer.add_layer_norm_eps(1e-5)
  950. if self.hparams["attn_config"]["clip_qkv"] is not None:
  951. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  952. if self.hparams["attn_config"]["alibi"]:
  953. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  954. else:
  955. self.gguf_writer.add_max_alibi_bias(0.0)
  956. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  957. del bid # unused
  958. if "scales" in name:
  959. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  960. new_name = new_name.replace("scales", "act.scales")
  961. else:
  962. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  963. return [(new_name, data_torch)]
  964. @Model.register("OrionForCausalLM")
  965. class OrionModel(Model):
  966. model_arch = gguf.MODEL_ARCH.ORION
  967. def set_vocab(self):
  968. self._set_vocab_sentencepiece()
  969. def set_gguf_parameters(self):
  970. block_count = self.hparams["num_hidden_layers"]
  971. head_count = self.hparams["num_attention_heads"]
  972. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  973. ctx_length = 0
  974. if "max_sequence_length" in self.hparams:
  975. ctx_length = self.hparams["max_sequence_length"]
  976. elif "max_position_embeddings" in self.hparams:
  977. ctx_length = self.hparams["max_position_embeddings"]
  978. elif "model_max_length" in self.hparams:
  979. ctx_length = self.hparams["model_max_length"]
  980. else:
  981. raise ValueError("gguf: can not find ctx length parameter.")
  982. self.gguf_writer.add_file_type(self.ftype)
  983. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  984. self.gguf_writer.add_context_length(ctx_length)
  985. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  986. self.gguf_writer.add_block_count(block_count)
  987. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  988. self.gguf_writer.add_head_count(head_count)
  989. self.gguf_writer.add_head_count_kv(head_count_kv)
  990. # note: config provides rms norm but it is actually layer norm
  991. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  992. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  993. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  994. class BaichuanModel(Model):
  995. model_arch = gguf.MODEL_ARCH.BAICHUAN
  996. def set_vocab(self):
  997. self._set_vocab_sentencepiece()
  998. def set_gguf_parameters(self):
  999. block_count = self.hparams["num_hidden_layers"]
  1000. head_count = self.hparams["num_attention_heads"]
  1001. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1002. ctx_length = 0
  1003. if "max_sequence_length" in self.hparams:
  1004. ctx_length = self.hparams["max_sequence_length"]
  1005. elif "max_position_embeddings" in self.hparams:
  1006. ctx_length = self.hparams["max_position_embeddings"]
  1007. elif "model_max_length" in self.hparams:
  1008. ctx_length = self.hparams["model_max_length"]
  1009. else:
  1010. raise ValueError("gguf: can not find ctx length parameter.")
  1011. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1012. self.gguf_writer.add_context_length(ctx_length)
  1013. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1014. self.gguf_writer.add_block_count(block_count)
  1015. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1016. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1017. self.gguf_writer.add_head_count(head_count)
  1018. self.gguf_writer.add_head_count_kv(head_count_kv)
  1019. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1020. self.gguf_writer.add_file_type(self.ftype)
  1021. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1022. if self.hparams["rope_scaling"].get("type") == "linear":
  1023. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1024. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1025. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1026. head_count = self.hparams["num_attention_heads"]
  1027. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1028. tensors: list[tuple[str, Tensor]] = []
  1029. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1030. logger.info(f"Unpacking and permuting layer {bid}")
  1031. tensors = [
  1032. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1033. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1034. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1035. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1036. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1037. self._reverse_hf_part(data_torch, 2)),
  1038. ]
  1039. else:
  1040. tensors = [(self.map_tensor_name(name), data_torch)]
  1041. return tensors
  1042. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1043. if n_kv_head is not None and n_head != n_kv_head:
  1044. n_head //= n_kv_head
  1045. return (
  1046. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1047. .swapaxes(1, 2)
  1048. .reshape(weights.shape)
  1049. )
  1050. def _reverse_hf_permute_part(
  1051. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1052. ) -> Tensor:
  1053. r = weights.shape[0] // 3
  1054. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1055. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1056. r = weights.shape[0] // 3
  1057. return weights[r * n_part:r * n_part + r, ...]
  1058. @Model.register("XverseForCausalLM")
  1059. class XverseModel(Model):
  1060. model_arch = gguf.MODEL_ARCH.XVERSE
  1061. def set_vocab(self):
  1062. assert (self.dir_model / "tokenizer.json").is_file()
  1063. dir_model = self.dir_model
  1064. hparams = self.hparams
  1065. tokens: list[bytes] = []
  1066. toktypes: list[int] = []
  1067. from transformers import AutoTokenizer
  1068. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1069. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1070. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1071. # because vocab_size is the count of items, and indexes start at 0.
  1072. max_vocab_index = max(tokenizer.get_vocab().values())
  1073. if max_vocab_index >= vocab_size:
  1074. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1075. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1076. added_vocab = tokenizer.get_added_vocab()
  1077. for token_id in range(vocab_size):
  1078. token_text = reverse_vocab[token_id].encode('utf-8')
  1079. # replace "\x00" to string with length > 0
  1080. if token_text == b"\x00":
  1081. toktype = gguf.TokenType.BYTE # special
  1082. token_text = f"<{token_text}>".encode('utf-8')
  1083. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1084. toktype = gguf.TokenType.BYTE # special
  1085. elif reverse_vocab[token_id] in added_vocab:
  1086. if tokenizer.added_tokens_decoder[token_id].special:
  1087. toktype = gguf.TokenType.CONTROL
  1088. else:
  1089. toktype = gguf.TokenType.USER_DEFINED
  1090. else:
  1091. toktype = gguf.TokenType.NORMAL
  1092. tokens.append(token_text)
  1093. toktypes.append(toktype)
  1094. self.gguf_writer.add_tokenizer_model("llama")
  1095. self.gguf_writer.add_tokenizer_pre("default")
  1096. self.gguf_writer.add_token_list(tokens)
  1097. self.gguf_writer.add_token_types(toktypes)
  1098. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1099. special_vocab.add_to_gguf(self.gguf_writer)
  1100. def set_gguf_parameters(self):
  1101. block_count = self.hparams["num_hidden_layers"]
  1102. head_count = self.hparams["num_attention_heads"]
  1103. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1104. ctx_length = 0
  1105. if "max_sequence_length" in self.hparams:
  1106. ctx_length = self.hparams["max_sequence_length"]
  1107. elif "max_position_embeddings" in self.hparams:
  1108. ctx_length = self.hparams["max_position_embeddings"]
  1109. elif "model_max_length" in self.hparams:
  1110. ctx_length = self.hparams["model_max_length"]
  1111. else:
  1112. raise ValueError("gguf: can not find ctx length parameter.")
  1113. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1114. self.gguf_writer.add_context_length(ctx_length)
  1115. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1116. self.gguf_writer.add_block_count(block_count)
  1117. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1118. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1119. self.gguf_writer.add_head_count(head_count)
  1120. self.gguf_writer.add_head_count_kv(head_count_kv)
  1121. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1122. self.gguf_writer.add_file_type(self.ftype)
  1123. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1124. if self.hparams["rope_scaling"].get("type") == "linear":
  1125. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1126. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1128. del bid # unused
  1129. head_count = self.hparams["num_attention_heads"]
  1130. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1131. # HF models permute some of the tensors, so we need to undo that
  1132. if name.endswith("q_proj.weight"):
  1133. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1134. if name.endswith("k_proj.weight"):
  1135. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1136. return [(self.map_tensor_name(name), data_torch)]
  1137. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1138. if n_kv_head is not None and n_head != n_kv_head:
  1139. n_head //= n_kv_head
  1140. return (
  1141. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1142. .swapaxes(1, 2)
  1143. .reshape(weights.shape)
  1144. )
  1145. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1146. class FalconModel(Model):
  1147. model_arch = gguf.MODEL_ARCH.FALCON
  1148. def set_gguf_parameters(self):
  1149. block_count = self.hparams.get("num_hidden_layers")
  1150. if block_count is None:
  1151. block_count = self.hparams["n_layer"] # old name
  1152. n_head = self.hparams.get("num_attention_heads")
  1153. if n_head is None:
  1154. n_head = self.hparams["n_head"] # old name
  1155. n_head_kv = self.hparams.get("num_kv_heads")
  1156. if n_head_kv is None:
  1157. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1158. self.gguf_writer.add_context_length(2048) # not in config.json
  1159. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1160. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1161. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1162. self.gguf_writer.add_block_count(block_count)
  1163. self.gguf_writer.add_head_count(n_head)
  1164. self.gguf_writer.add_head_count_kv(n_head_kv)
  1165. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1166. self.gguf_writer.add_file_type(self.ftype)
  1167. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1168. del bid # unused
  1169. # QKV tensor transform
  1170. # The original query_key_value tensor contains n_head_kv "kv groups",
  1171. # each consisting of n_head/n_head_kv query weights followed by one key
  1172. # and one value weight (shared by all query heads in the kv group).
  1173. # This layout makes it a big pain to work with in GGML.
  1174. # So we rearrange them here,, so that we have n_head query weights
  1175. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1176. # in contiguous fashion.
  1177. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1178. if "query_key_value" in name:
  1179. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1180. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1181. head_dim = self.hparams["hidden_size"] // n_head
  1182. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1183. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1184. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1185. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1186. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1187. return [(self.map_tensor_name(name), data_torch)]
  1188. @Model.register("GPTBigCodeForCausalLM")
  1189. class StarCoderModel(Model):
  1190. model_arch = gguf.MODEL_ARCH.STARCODER
  1191. def set_gguf_parameters(self):
  1192. block_count = self.hparams["n_layer"]
  1193. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1194. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1195. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1196. self.gguf_writer.add_block_count(block_count)
  1197. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1198. self.gguf_writer.add_head_count_kv(1)
  1199. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1200. self.gguf_writer.add_file_type(self.ftype)
  1201. @Model.register("GPTRefactForCausalLM")
  1202. class RefactModel(Model):
  1203. model_arch = gguf.MODEL_ARCH.REFACT
  1204. def set_vocab(self):
  1205. super().set_vocab()
  1206. # TODO: how to determine special FIM tokens automatically?
  1207. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1208. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1209. special_vocab._set_special_token("prefix", 1)
  1210. special_vocab._set_special_token("suffix", 3)
  1211. special_vocab._set_special_token("middle", 2)
  1212. special_vocab.chat_template = None # do not add it twice
  1213. special_vocab.add_to_gguf(self.gguf_writer)
  1214. def set_gguf_parameters(self):
  1215. hidden_dim = self.hparams["n_embd"]
  1216. inner_dim = 4 * hidden_dim
  1217. hidden_dim = int(2 * inner_dim / 3)
  1218. multiple_of = 256
  1219. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1220. block_count = self.hparams["n_layer"]
  1221. # refact uses Alibi. So this is from config.json which might be used by training.
  1222. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1223. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1224. self.gguf_writer.add_feed_forward_length(ff_dim)
  1225. self.gguf_writer.add_block_count(block_count)
  1226. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1227. self.gguf_writer.add_head_count_kv(1)
  1228. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1229. self.gguf_writer.add_file_type(self.ftype)
  1230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1231. hidden_dim = self.hparams["n_embd"]
  1232. inner_dim = 4 * hidden_dim
  1233. hidden_dim = int(2 * inner_dim / 3)
  1234. multiple_of = 256
  1235. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1236. n_head = self.hparams["n_head"]
  1237. n_head_kv = 1
  1238. head_dim = self.hparams["n_embd"] // n_head
  1239. tensors: list[tuple[str, Tensor]] = []
  1240. if bid is not None:
  1241. if name == f"transformer.h.{bid}.attn.kv.weight":
  1242. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1243. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1244. elif name == f"transformer.h.{bid}.attn.q.weight":
  1245. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1246. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1247. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1248. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1249. if len(tensors) == 0:
  1250. tensors.append((self.map_tensor_name(name), data_torch))
  1251. return tensors
  1252. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1253. class StableLMModel(Model):
  1254. model_arch = gguf.MODEL_ARCH.STABLELM
  1255. def set_vocab(self):
  1256. if (self.dir_model / "tokenizer.json").is_file():
  1257. self._set_vocab_gpt2()
  1258. else:
  1259. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1260. self._set_vocab_qwen()
  1261. def set_gguf_parameters(self):
  1262. hparams = self.hparams
  1263. block_count = hparams["num_hidden_layers"]
  1264. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1265. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1266. self.gguf_writer.add_block_count(block_count)
  1267. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1268. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1269. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1270. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1271. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1272. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1273. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1274. self.gguf_writer.add_file_type(self.ftype)
  1275. _q_norms: list[dict[str, Tensor]] | None = None
  1276. _k_norms: list[dict[str, Tensor]] | None = None
  1277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1278. n_head = self.hparams["num_attention_heads"]
  1279. n_kv_head = self.hparams["num_key_value_heads"]
  1280. if name.find("q_layernorm.norms") != -1:
  1281. assert bid is not None
  1282. if self._q_norms is None:
  1283. self._q_norms = [{} for _ in range(self.block_count)]
  1284. self._q_norms[bid][name] = data_torch
  1285. if len(self._q_norms[bid]) >= n_head:
  1286. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1287. else:
  1288. return []
  1289. if name.find("k_layernorm.norms") != -1:
  1290. assert bid is not None
  1291. if self._k_norms is None:
  1292. self._k_norms = [{} for _ in range(self.block_count)]
  1293. self._k_norms[bid][name] = data_torch
  1294. if len(self._k_norms[bid]) >= n_kv_head:
  1295. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1296. else:
  1297. return []
  1298. return [(self.map_tensor_name(name), data_torch)]
  1299. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1300. datas: list[Tensor] = []
  1301. # extract the norms in order
  1302. for xid in range(n_head):
  1303. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1304. datas.append(norms[ename])
  1305. del norms[ename]
  1306. data_torch = torch.stack(datas, dim=0)
  1307. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1308. new_name = self.map_tensor_name(merged_name)
  1309. return [(new_name, data_torch)]
  1310. def prepare_tensors(self):
  1311. super().prepare_tensors()
  1312. if self._q_norms is not None or self._k_norms is not None:
  1313. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1314. norms = (
  1315. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1316. ) + (
  1317. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1318. )
  1319. if len(norms) > 0:
  1320. raise ValueError(f"Unprocessed norms: {norms}")
  1321. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1322. class LlamaModel(Model):
  1323. model_arch = gguf.MODEL_ARCH.LLAMA
  1324. def set_vocab(self):
  1325. try:
  1326. self._set_vocab_sentencepiece()
  1327. except FileNotFoundError:
  1328. try:
  1329. self._set_vocab_llama_hf()
  1330. except (FileNotFoundError, TypeError):
  1331. # Llama 3
  1332. self._set_vocab_gpt2()
  1333. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1334. if self.hparams.get("vocab_size", 32000) == 32016:
  1335. special_vocab = gguf.SpecialVocab(
  1336. self.dir_model, load_merges=False,
  1337. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1338. )
  1339. special_vocab._set_special_token("prefix", 32007)
  1340. special_vocab._set_special_token("suffix", 32008)
  1341. special_vocab._set_special_token("middle", 32009)
  1342. special_vocab._set_special_token("eot", 32010)
  1343. special_vocab.add_to_gguf(self.gguf_writer)
  1344. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1345. if tokenizer_config_file.is_file():
  1346. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1347. tokenizer_config_json = json.load(f)
  1348. if "add_prefix_space" in tokenizer_config_json:
  1349. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1350. # Apply to granite small models only
  1351. if self.hparams.get("vocab_size", 32000) == 49152:
  1352. self.gguf_writer.add_add_bos_token(False)
  1353. def set_gguf_parameters(self):
  1354. super().set_gguf_parameters()
  1355. hparams = self.hparams
  1356. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1357. if "head_dim" in hparams:
  1358. rope_dim = hparams["head_dim"]
  1359. else:
  1360. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1361. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1362. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1363. if self.hparams["rope_scaling"].get("type") == "linear":
  1364. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1365. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1366. @staticmethod
  1367. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1368. if n_head_kv is not None and n_head != n_head_kv:
  1369. n_head = n_head_kv
  1370. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1371. .swapaxes(1, 2)
  1372. .reshape(weights.shape))
  1373. _experts: list[dict[str, Tensor]] | None = None
  1374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1375. n_head = self.hparams["num_attention_heads"]
  1376. n_kv_head = self.hparams.get("num_key_value_heads")
  1377. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1378. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1379. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1380. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1381. # process the experts separately
  1382. if name.find("block_sparse_moe.experts") != -1:
  1383. n_experts = self.hparams["num_local_experts"]
  1384. assert bid is not None
  1385. if self._experts is None:
  1386. self._experts = [{} for _ in range(self.block_count)]
  1387. self._experts[bid][name] = data_torch
  1388. if len(self._experts[bid]) >= n_experts * 3:
  1389. tensors: list[tuple[str, Tensor]] = []
  1390. # merge the experts into a single 3d tensor
  1391. for wid in ["w1", "w2", "w3"]:
  1392. datas: list[Tensor] = []
  1393. for xid in range(n_experts):
  1394. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1395. datas.append(self._experts[bid][ename])
  1396. del self._experts[bid][ename]
  1397. data_torch = torch.stack(datas, dim=0)
  1398. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1399. new_name = self.map_tensor_name(merged_name)
  1400. tensors.append((new_name, data_torch))
  1401. return tensors
  1402. else:
  1403. return []
  1404. return [(self.map_tensor_name(name), data_torch)]
  1405. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1406. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1407. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1408. base = self.hparams.get("rope_theta", 10000.0)
  1409. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1410. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1411. factor = rope_scaling.get("factor", 8.0)
  1412. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1413. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1414. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1415. low_freq_wavelen = old_context_len / low_freq_factor
  1416. high_freq_wavelen = old_context_len / high_freq_factor
  1417. assert low_freq_wavelen != high_freq_wavelen
  1418. rope_factors = []
  1419. for freq in freqs:
  1420. wavelen = 2 * math.pi / freq
  1421. if wavelen < high_freq_wavelen:
  1422. rope_factors.append(1)
  1423. elif wavelen > low_freq_wavelen:
  1424. rope_factors.append(factor)
  1425. else:
  1426. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1427. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1428. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1429. def prepare_tensors(self):
  1430. super().prepare_tensors()
  1431. if self._experts is not None:
  1432. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1433. experts = [k for d in self._experts for k in d.keys()]
  1434. if len(experts) > 0:
  1435. raise ValueError(f"Unprocessed experts: {experts}")
  1436. @Model.register("Mistral3ForConditionalGeneration")
  1437. class Mistral3Model(LlamaModel):
  1438. model_arch = gguf.MODEL_ARCH.LLAMA
  1439. # we need to merge the text_config into the root level of hparams
  1440. def __init__(self, *args, **kwargs):
  1441. hparams = Model.load_hparams(kwargs["dir_model"])
  1442. if "text_config" in hparams:
  1443. hparams = {**hparams, **hparams["text_config"]}
  1444. kwargs["hparams"] = hparams
  1445. super().__init__(*args, **kwargs)
  1446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1447. name = name.replace("language_model.", "")
  1448. if "multi_modal_projector" in name or "vision_tower" in name:
  1449. return []
  1450. return super().modify_tensors(data_torch, name, bid)
  1451. @Model.register("DeciLMForCausalLM")
  1452. class DeciModel(Model):
  1453. model_arch = gguf.MODEL_ARCH.DECI
  1454. @staticmethod
  1455. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1456. # DeciLM-specific code
  1457. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1458. return DeciModel._find_multiple(intermediate_size, 256)
  1459. @staticmethod
  1460. def _find_multiple(n: int, k: int) -> int:
  1461. # DeciLM-specific code
  1462. if n % k == 0:
  1463. return n
  1464. return n + k - (n % k)
  1465. def __init__(self, *args, **kwargs):
  1466. super().__init__(*args, **kwargs)
  1467. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1468. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1469. assert self.block_count == len(_block_configs)
  1470. self._num_kv_heads = list()
  1471. self._num_heads = list()
  1472. _ffn_multipliers = list()
  1473. # ***linear attention layer***
  1474. # if n_heads_in_group is None and replace_with_linear is True
  1475. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1476. # ***attention-free layer***
  1477. # if n_heads_in_group is None and replace_with_linear is False
  1478. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1479. # ***normal attention-layer***
  1480. # if n_heads_in_group is not None, then
  1481. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1482. # _num_heads[il] is num_attention_head
  1483. for il in range(len(_block_configs)):
  1484. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1485. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1486. self._num_kv_heads.append(0)
  1487. self._num_heads.append(self.hparams["num_attention_heads"])
  1488. else:
  1489. self._num_kv_heads.append(0)
  1490. self._num_heads.append(0)
  1491. else:
  1492. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1493. self._num_heads.append(self.hparams["num_attention_heads"])
  1494. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1495. assert self.block_count == len(self._num_kv_heads)
  1496. assert self.block_count == len(self._num_heads)
  1497. assert self.block_count == len(_ffn_multipliers)
  1498. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1499. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1500. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1501. self._ffn_dims: list[int] = [
  1502. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1503. for multiplier in _ffn_multipliers
  1504. ]
  1505. def set_vocab(self):
  1506. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1507. # eos_token from '|eot_id|' to '|end_of_text|'
  1508. if self.hparams.get("vocab_size", 128256) == 128256:
  1509. tokens, toktypes, tokpre = self.get_vocab_base()
  1510. self.gguf_writer.add_tokenizer_model("gpt2")
  1511. self.gguf_writer.add_tokenizer_pre(tokpre)
  1512. self.gguf_writer.add_token_list(tokens)
  1513. self.gguf_writer.add_token_types(toktypes)
  1514. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1515. special_vocab.add_to_gguf(self.gguf_writer)
  1516. else:
  1517. # DeciLM-7B
  1518. self._set_vocab_llama_hf()
  1519. def set_gguf_parameters(self):
  1520. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1521. assert self.block_count == len(self._num_kv_heads)
  1522. assert self.block_count == len(self._num_heads)
  1523. assert self.block_count == len(self._ffn_dims)
  1524. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1525. self.gguf_writer.add_rope_freq_base(rope_theta)
  1526. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1527. self.gguf_writer.add_head_count(self._num_heads)
  1528. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1529. self.gguf_writer.add_block_count(self.block_count)
  1530. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1531. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1532. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1533. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1534. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1535. self.gguf_writer.add_file_type(self.ftype)
  1536. else: # DeciLM-7B
  1537. super().set_gguf_parameters()
  1538. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1539. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1540. assert self.block_count == len(self._num_kv_heads)
  1541. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1542. hparams = self.hparams
  1543. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1544. if "head_dim" in hparams:
  1545. rope_dim = hparams["head_dim"]
  1546. else:
  1547. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1548. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1549. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1550. if self.hparams["rope_scaling"].get("type") == "linear":
  1551. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1552. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1553. @staticmethod
  1554. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1555. if n_head_kv is not None and n_head != n_head_kv:
  1556. n_head = n_head_kv
  1557. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1558. .swapaxes(1, 2)
  1559. .reshape(weights.shape))
  1560. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1561. n_head = self.hparams["num_attention_heads"]
  1562. if bid is not None:
  1563. if "num_key_value_heads_per_layer" in self.hparams:
  1564. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1565. elif "block_configs" in self.hparams:
  1566. n_kv_head = self._num_kv_heads[bid]
  1567. n_head = self._num_heads[bid]
  1568. else:
  1569. n_kv_head = self.hparams.get("num_key_value_heads")
  1570. else:
  1571. n_kv_head = self.hparams.get("num_key_value_heads")
  1572. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1573. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1574. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1575. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1576. return [(self.map_tensor_name(name), data_torch)]
  1577. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1578. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1579. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1580. base = self.hparams.get("rope_theta", 10000.0)
  1581. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1582. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1583. factor = rope_scaling.get("factor", 8.0)
  1584. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1585. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1586. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1587. low_freq_wavelen = old_context_len / low_freq_factor
  1588. high_freq_wavelen = old_context_len / high_freq_factor
  1589. assert low_freq_wavelen != high_freq_wavelen
  1590. rope_factors = []
  1591. for freq in freqs:
  1592. wavelen = 2 * math.pi / freq
  1593. if wavelen < high_freq_wavelen:
  1594. rope_factors.append(1)
  1595. elif wavelen > low_freq_wavelen:
  1596. rope_factors.append(factor)
  1597. else:
  1598. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1599. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1600. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1601. def prepare_tensors(self):
  1602. super().prepare_tensors()
  1603. @Model.register("BitnetForCausalLM")
  1604. class BitnetModel(Model):
  1605. model_arch = gguf.MODEL_ARCH.BITNET
  1606. def set_vocab(self):
  1607. self._set_vocab_sentencepiece()
  1608. def set_gguf_parameters(self):
  1609. super().set_gguf_parameters()
  1610. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1611. self.gguf_writer.add_rope_scaling_factor(1.0)
  1612. def weight_quant(self, weight: Tensor) -> Tensor:
  1613. dtype = weight.dtype
  1614. weight = weight.float()
  1615. scale = weight.abs().mean().clamp(min=1e-5)
  1616. iscale = 1 / scale
  1617. # TODO: multiply by the scale directly instead of inverting it twice
  1618. # (this is also unnecessarily doubly inverted upstream)
  1619. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1620. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1621. return result.type(dtype)
  1622. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1623. new_name = self.map_tensor_name(name)
  1624. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1625. gguf.MODEL_TENSOR.ATTN_Q,
  1626. gguf.MODEL_TENSOR.ATTN_K,
  1627. gguf.MODEL_TENSOR.ATTN_V,
  1628. gguf.MODEL_TENSOR.ATTN_OUT,
  1629. gguf.MODEL_TENSOR.FFN_UP,
  1630. gguf.MODEL_TENSOR.FFN_DOWN,
  1631. gguf.MODEL_TENSOR.FFN_GATE,
  1632. ]):
  1633. # transform weight into 1/0/-1 (in fp32)
  1634. data_torch = self.weight_quant(data_torch)
  1635. yield (new_name, data_torch)
  1636. @Model.register("GrokForCausalLM")
  1637. class GrokModel(Model):
  1638. model_arch = gguf.MODEL_ARCH.GROK
  1639. def set_vocab(self):
  1640. self._set_vocab_sentencepiece()
  1641. def __init__(self, *args, **kwargs):
  1642. super().__init__(*args, **kwargs)
  1643. def set_gguf_parameters(self):
  1644. super().set_gguf_parameters()
  1645. _experts: list[dict[str, Tensor]] | None = None
  1646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1647. # process the experts separately
  1648. if name.find(".moe.") != -1:
  1649. n_experts = self.hparams["num_local_experts"]
  1650. assert bid is not None
  1651. if self._experts is None:
  1652. self._experts = [{} for _ in range(self.block_count)]
  1653. self._experts[bid][name] = data_torch
  1654. if len(self._experts[bid]) >= n_experts * 3:
  1655. tensors: list[tuple[str, Tensor]] = []
  1656. # merge the experts into a single 3d tensor
  1657. for wid in ["linear", "linear_1", "linear_v"]:
  1658. datas: list[Tensor] = []
  1659. for xid in range(n_experts):
  1660. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1661. datas.append(self._experts[bid][ename])
  1662. del self._experts[bid][ename]
  1663. data_torch = torch.stack(datas, dim=0)
  1664. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1665. new_name = self.map_tensor_name(merged_name)
  1666. tensors.append((new_name, data_torch))
  1667. return tensors
  1668. else:
  1669. return []
  1670. return [(self.map_tensor_name(name), data_torch)]
  1671. @Model.register("DbrxForCausalLM")
  1672. class DbrxModel(Model):
  1673. model_arch = gguf.MODEL_ARCH.DBRX
  1674. def set_gguf_parameters(self):
  1675. ffn_config = self.hparams["ffn_config"]
  1676. attn_config = self.hparams["attn_config"]
  1677. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1678. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1679. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1680. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1681. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1682. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1683. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1684. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1685. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1686. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1687. self.gguf_writer.add_layer_norm_eps(1e-5)
  1688. self.gguf_writer.add_file_type(self.ftype)
  1689. logger.info(f"gguf: file type = {self.ftype}")
  1690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1691. del bid # unused
  1692. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1693. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1694. n_embd = self.hparams["d_model"]
  1695. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1696. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1697. # But llama.cpp moe graph works differently
  1698. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1699. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1700. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1701. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1702. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1703. experts = False
  1704. for exp_tensor_name in exp_tensor_names.keys():
  1705. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1706. experts = True
  1707. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1708. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1709. data_torch = data_torch.permute(*permute_tensor)
  1710. break
  1711. # map tensor names
  1712. # In MoE models the ffn tensors are typically most of the model weights,
  1713. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1714. # Every other model has the weight names ending in .weight,
  1715. # let's assume that is the convention which is not the case for dbrx:
  1716. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1717. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1718. return [(new_name, data_torch)]
  1719. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1720. del name, new_name, bid # unused
  1721. return n_dims > 1
  1722. @Model.register("MiniCPMForCausalLM")
  1723. class MiniCPMModel(Model):
  1724. model_arch = gguf.MODEL_ARCH.MINICPM
  1725. def set_gguf_parameters(self):
  1726. super().set_gguf_parameters()
  1727. embedding_scale = float(self.hparams["scale_emb"])
  1728. self.gguf_writer.add_embedding_scale(embedding_scale)
  1729. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1730. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1731. self.gguf_writer.add_residual_scale(residual_scale)
  1732. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1733. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1734. self.gguf_writer.add_logit_scale(logit_scale)
  1735. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1736. if self.hparams.get("rope_scaling") is not None:
  1737. if self.hparams["rope_scaling"].get("type") == "longrope":
  1738. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1739. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1740. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1741. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1742. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1743. if rope_scaling is not None:
  1744. long_factors = rope_scaling.get('long_factor', None)
  1745. short_factors = rope_scaling.get('short_factor', None)
  1746. if long_factors is None or short_factors is None:
  1747. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1748. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1749. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1750. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1751. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1752. def set_vocab(self):
  1753. self._set_vocab_sentencepiece()
  1754. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1755. del bid # unused
  1756. n_head = self.hparams["num_attention_heads"]
  1757. n_kv_head = self.hparams.get("num_key_value_heads")
  1758. # HF models permute some of the tensors, so we need to undo that
  1759. if name.endswith(("q_proj.weight")):
  1760. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1761. if name.endswith(("k_proj.weight")):
  1762. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1763. return [(self.map_tensor_name(name), data_torch)]
  1764. @Model.register("MiniCPM3ForCausalLM")
  1765. class MiniCPM3Model(Model):
  1766. model_arch = gguf.MODEL_ARCH.MINICPM3
  1767. def set_gguf_parameters(self):
  1768. hparams = self.hparams
  1769. self.gguf_writer.add_file_type(self.ftype)
  1770. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1771. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1772. self.gguf_writer.add_block_count(self.block_count)
  1773. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1774. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1775. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1776. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1777. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1778. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1779. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1780. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1781. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1782. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1783. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1784. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1785. if rope_scaling is not None:
  1786. rope_dims = self.hparams["qk_rope_head_dim"]
  1787. long_factors = rope_scaling.get('long_factor', None)
  1788. short_factors = rope_scaling.get('short_factor', None)
  1789. if long_factors is None or short_factors is None:
  1790. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1791. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1792. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1793. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1794. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1795. def set_vocab(self):
  1796. self._set_vocab_sentencepiece()
  1797. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1798. if n_kv_head is not None and n_head != n_kv_head:
  1799. n_head //= n_kv_head
  1800. return (
  1801. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1802. .swapaxes(1, 2)
  1803. .reshape(weights.shape)
  1804. )
  1805. @Model.register("QWenLMHeadModel")
  1806. class QwenModel(Model):
  1807. model_arch = gguf.MODEL_ARCH.QWEN
  1808. @staticmethod
  1809. def token_bytes_to_string(b):
  1810. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1811. byte_encoder = bytes_to_unicode()
  1812. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1813. @staticmethod
  1814. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1815. parts = [bytes([b]) for b in token]
  1816. while True:
  1817. min_idx = None
  1818. min_rank = None
  1819. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1820. rank = mergeable_ranks.get(pair[0] + pair[1])
  1821. if rank is not None and (min_rank is None or rank < min_rank):
  1822. min_idx = i
  1823. min_rank = rank
  1824. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1825. break
  1826. assert min_idx is not None
  1827. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1828. return parts
  1829. def set_vocab(self):
  1830. self._set_vocab_qwen()
  1831. def set_gguf_parameters(self):
  1832. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1833. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1834. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1835. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1836. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1837. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1838. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1839. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1840. self.gguf_writer.add_file_type(self.ftype)
  1841. @Model.register("Qwen2ForCausalLM")
  1842. class Qwen2Model(Model):
  1843. model_arch = gguf.MODEL_ARCH.QWEN2
  1844. def set_vocab(self):
  1845. try:
  1846. self._set_vocab_sentencepiece()
  1847. except FileNotFoundError:
  1848. self._set_vocab_gpt2()
  1849. def set_gguf_parameters(self):
  1850. super().set_gguf_parameters()
  1851. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1852. if self.hparams["rope_scaling"].get("type") == "yarn":
  1853. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1854. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1855. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1856. @Model.register("Qwen2VLForConditionalGeneration")
  1857. class Qwen2VLModel(Model):
  1858. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1859. def set_gguf_parameters(self):
  1860. super().set_gguf_parameters()
  1861. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1862. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1863. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1864. def set_vocab(self):
  1865. try:
  1866. self._set_vocab_sentencepiece()
  1867. except FileNotFoundError:
  1868. self._set_vocab_gpt2()
  1869. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1870. for name, data in super().get_tensors():
  1871. if name.startswith("visual."):
  1872. continue
  1873. yield name, data
  1874. @Model.register("WavTokenizerDec")
  1875. class WavTokenizerDecModel(Model):
  1876. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1877. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1878. del bid # unused
  1879. if \
  1880. name.endswith("codebook.cluster_size") or \
  1881. name.endswith("codebook.embed_avg") or \
  1882. name.endswith("codebook.inited"):
  1883. logger.debug(f"Skipping {name!r}")
  1884. return []
  1885. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1886. return [(self.map_tensor_name(name), data_torch)]
  1887. def set_vocab(self):
  1888. self._set_vocab_none()
  1889. def set_gguf_parameters(self):
  1890. super().set_gguf_parameters()
  1891. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1892. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1893. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1894. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1895. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1896. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1897. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1898. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1899. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1900. self.gguf_writer.add_causal_attention(False)
  1901. @Model.register("Qwen2MoeForCausalLM")
  1902. class Qwen2MoeModel(Model):
  1903. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1904. def set_gguf_parameters(self):
  1905. super().set_gguf_parameters()
  1906. if (n_experts := self.hparams.get("num_experts")) is not None:
  1907. self.gguf_writer.add_expert_count(n_experts)
  1908. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1909. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1910. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1911. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1912. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1913. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1914. _experts: list[dict[str, Tensor]] | None = None
  1915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1916. # process the experts separately
  1917. if name.find("experts") != -1:
  1918. n_experts = self.hparams["num_experts"]
  1919. assert bid is not None
  1920. if self._experts is None:
  1921. self._experts = [{} for _ in range(self.block_count)]
  1922. self._experts[bid][name] = data_torch
  1923. if len(self._experts[bid]) >= n_experts * 3:
  1924. tensors: list[tuple[str, Tensor]] = []
  1925. # merge the experts into a single 3d tensor
  1926. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1927. datas: list[Tensor] = []
  1928. for xid in range(n_experts):
  1929. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1930. datas.append(self._experts[bid][ename])
  1931. del self._experts[bid][ename]
  1932. data_torch = torch.stack(datas, dim=0)
  1933. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1934. new_name = self.map_tensor_name(merged_name)
  1935. tensors.append((new_name, data_torch))
  1936. return tensors
  1937. else:
  1938. return []
  1939. return [(self.map_tensor_name(name), data_torch)]
  1940. def prepare_tensors(self):
  1941. super().prepare_tensors()
  1942. if self._experts is not None:
  1943. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1944. experts = [k for d in self._experts for k in d.keys()]
  1945. if len(experts) > 0:
  1946. raise ValueError(f"Unprocessed experts: {experts}")
  1947. @Model.register("GPT2LMHeadModel")
  1948. class GPT2Model(Model):
  1949. model_arch = gguf.MODEL_ARCH.GPT2
  1950. def set_gguf_parameters(self):
  1951. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1952. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1953. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1954. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1955. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1956. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1957. self.gguf_writer.add_file_type(self.ftype)
  1958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1959. del bid # unused
  1960. tensors: list[tuple[str, Tensor]] = []
  1961. # we don't need these
  1962. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1963. return tensors
  1964. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1965. data_torch = data_torch.transpose(1, 0)
  1966. new_name = self.map_tensor_name(name)
  1967. tensors.append((new_name, data_torch))
  1968. return tensors
  1969. @Model.register("PhiForCausalLM")
  1970. class Phi2Model(Model):
  1971. model_arch = gguf.MODEL_ARCH.PHI2
  1972. def set_gguf_parameters(self):
  1973. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1974. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1975. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1976. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1977. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1978. self.gguf_writer.add_embedding_length(n_embd)
  1979. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1980. self.gguf_writer.add_block_count(block_count)
  1981. self.gguf_writer.add_head_count(n_head)
  1982. self.gguf_writer.add_head_count_kv(n_head)
  1983. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1984. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1985. self.gguf_writer.add_file_type(self.ftype)
  1986. self.gguf_writer.add_add_bos_token(False)
  1987. @Model.register("Phi3ForCausalLM")
  1988. class Phi3MiniModel(Model):
  1989. model_arch = gguf.MODEL_ARCH.PHI3
  1990. def set_vocab(self):
  1991. # Phi-4 model uses GPT2Tokenizer
  1992. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1993. if tokenizer_config_file.is_file():
  1994. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1995. tokenizer_config_json = json.load(f)
  1996. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1997. if tokenizer_class == 'GPT2Tokenizer':
  1998. return self._set_vocab_gpt2()
  1999. from sentencepiece import SentencePieceProcessor
  2000. tokenizer_path = self.dir_model / 'tokenizer.model'
  2001. if not tokenizer_path.is_file():
  2002. raise ValueError(f'Error: Missing {tokenizer_path}')
  2003. tokenizer = SentencePieceProcessor()
  2004. tokenizer.LoadFromFile(str(tokenizer_path))
  2005. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2006. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2007. scores: list[float] = [-10000.0] * vocab_size
  2008. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2009. for token_id in range(tokenizer.vocab_size()):
  2010. piece = tokenizer.IdToPiece(token_id)
  2011. text = piece.encode("utf-8")
  2012. score = tokenizer.GetScore(token_id)
  2013. toktype = SentencePieceTokenTypes.NORMAL
  2014. if tokenizer.IsUnknown(token_id):
  2015. toktype = SentencePieceTokenTypes.UNKNOWN
  2016. elif tokenizer.IsControl(token_id):
  2017. toktype = SentencePieceTokenTypes.CONTROL
  2018. elif tokenizer.IsUnused(token_id):
  2019. toktype = SentencePieceTokenTypes.UNUSED
  2020. elif tokenizer.IsByte(token_id):
  2021. toktype = SentencePieceTokenTypes.BYTE
  2022. tokens[token_id] = text
  2023. scores[token_id] = score
  2024. toktypes[token_id] = toktype
  2025. added_tokens_file = self.dir_model / 'added_tokens.json'
  2026. if added_tokens_file.is_file():
  2027. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2028. added_tokens_json = json.load(f)
  2029. for key in added_tokens_json:
  2030. token_id = added_tokens_json[key]
  2031. if token_id >= vocab_size:
  2032. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2033. continue
  2034. tokens[token_id] = key.encode("utf-8")
  2035. scores[token_id] = -1000.0
  2036. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2037. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2038. if tokenizer_config_file.is_file():
  2039. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2040. tokenizer_config_json = json.load(f)
  2041. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2042. for token_id, foken_data in added_tokens_decoder.items():
  2043. token_id = int(token_id)
  2044. token = foken_data["content"].encode("utf-8")
  2045. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2046. if tokens[token_id] != token:
  2047. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2048. tokens[token_id] = token
  2049. scores[token_id] = -1000.0
  2050. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2051. if foken_data.get("special"):
  2052. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2053. tokenizer_file = self.dir_model / 'tokenizer.json'
  2054. if tokenizer_file.is_file():
  2055. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2056. tokenizer_json = json.load(f)
  2057. added_tokens = tokenizer_json.get("added_tokens", [])
  2058. for foken_data in added_tokens:
  2059. token_id = int(foken_data["id"])
  2060. token = foken_data["content"].encode("utf-8")
  2061. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2062. if tokens[token_id] != token:
  2063. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2064. tokens[token_id] = token
  2065. scores[token_id] = -1000.0
  2066. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2067. if foken_data.get("special"):
  2068. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2069. self.gguf_writer.add_tokenizer_model("llama")
  2070. self.gguf_writer.add_tokenizer_pre("default")
  2071. self.gguf_writer.add_token_list(tokens)
  2072. self.gguf_writer.add_token_scores(scores)
  2073. self.gguf_writer.add_token_types(toktypes)
  2074. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2075. special_vocab.add_to_gguf(self.gguf_writer)
  2076. def set_gguf_parameters(self):
  2077. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2078. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2079. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2080. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2081. rms_eps = self.find_hparam(["rms_norm_eps"])
  2082. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2083. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2084. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2085. rope_dims = int(rot_pct * n_embd) // n_head
  2086. self.gguf_writer.add_context_length(max_pos_embds)
  2087. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2088. self.gguf_writer.add_embedding_length(n_embd)
  2089. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2090. self.gguf_writer.add_block_count(block_count)
  2091. self.gguf_writer.add_head_count(n_head)
  2092. self.gguf_writer.add_head_count_kv(n_head_kv)
  2093. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2094. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2095. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2096. self.gguf_writer.add_file_type(self.ftype)
  2097. sliding_window = self.hparams.get("sliding_window")
  2098. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2099. if sliding_window is None:
  2100. sliding_window = 0
  2101. self.gguf_writer.add_sliding_window(sliding_window)
  2102. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2103. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2104. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2105. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2106. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2107. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2108. rope_dims = int(rot_pct * n_embd) // n_head
  2109. # write rope scaling for long context (128k) model
  2110. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2111. if rope_scaling is None:
  2112. return
  2113. scale = max_pos_embds / orig_max_pos_embds
  2114. rope_scaling_type = rope_scaling.get('type', '').lower()
  2115. if len(rope_scaling_type) == 0:
  2116. raise KeyError('Missing the required key rope_scaling.type')
  2117. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2118. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2119. elif rope_scaling_type == 'yarn':
  2120. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2121. else:
  2122. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2123. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2124. long_factors = rope_scaling.get('long_factor', None)
  2125. short_factors = rope_scaling.get('short_factor', None)
  2126. if long_factors is None or short_factors is None:
  2127. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2128. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2129. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2130. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2131. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2132. @Model.register("PhiMoEForCausalLM")
  2133. class PhiMoeModel(Phi3MiniModel):
  2134. model_arch = gguf.MODEL_ARCH.PHIMOE
  2135. _experts: list[dict[str, Tensor]] | None = None
  2136. def set_gguf_parameters(self):
  2137. super().set_gguf_parameters()
  2138. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2139. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2141. # process the experts separately
  2142. if name.find("block_sparse_moe.experts") != -1:
  2143. n_experts = self.hparams["num_local_experts"]
  2144. assert bid is not None
  2145. if self._experts is None:
  2146. self._experts = [{} for _ in range(self.block_count)]
  2147. self._experts[bid][name] = data_torch
  2148. if len(self._experts[bid]) >= n_experts * 3:
  2149. tensors: list[tuple[str, Tensor]] = []
  2150. # merge the experts into a single 3d tensor
  2151. for w_name in ["w1", "w2", "w3"]:
  2152. datas: list[Tensor] = []
  2153. for xid in range(n_experts):
  2154. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2155. datas.append(self._experts[bid][ename])
  2156. del self._experts[bid][ename]
  2157. data_torch = torch.stack(datas, dim=0)
  2158. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2159. new_name = self.map_tensor_name(merged_name)
  2160. tensors.append((new_name, data_torch))
  2161. return tensors
  2162. else:
  2163. return []
  2164. return [(self.map_tensor_name(name), data_torch)]
  2165. def prepare_tensors(self):
  2166. super().prepare_tensors()
  2167. if self._experts is not None:
  2168. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2169. experts = [k for d in self._experts for k in d.keys()]
  2170. if len(experts) > 0:
  2171. raise ValueError(f"Unprocessed experts: {experts}")
  2172. @Model.register("PlamoForCausalLM")
  2173. class PlamoModel(Model):
  2174. model_arch = gguf.MODEL_ARCH.PLAMO
  2175. def set_vocab(self):
  2176. self._set_vocab_sentencepiece()
  2177. def set_gguf_parameters(self):
  2178. hparams = self.hparams
  2179. block_count = hparams["num_hidden_layers"]
  2180. self.gguf_writer.add_context_length(4096) # not in config.json
  2181. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2182. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2183. self.gguf_writer.add_block_count(block_count)
  2184. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2185. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2186. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2187. self.gguf_writer.add_file_type(self.ftype)
  2188. def shuffle_attn_q_weight(self, data_torch):
  2189. assert data_torch.size() == (5120, 5120)
  2190. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2191. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2192. data_torch = torch.reshape(data_torch, (5120, 5120))
  2193. return data_torch
  2194. def shuffle_attn_output_weight(self, data_torch):
  2195. assert data_torch.size() == (5120, 5120)
  2196. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2197. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2198. data_torch = torch.reshape(data_torch, (5120, 5120))
  2199. return data_torch
  2200. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2201. del bid # unused
  2202. new_name = self.map_tensor_name(name)
  2203. # shuffle for broadcasting of gqa in ggml_mul_mat
  2204. if new_name.endswith("attn_q.weight"):
  2205. data_torch = self.shuffle_attn_q_weight(data_torch)
  2206. elif new_name.endswith("attn_output.weight"):
  2207. data_torch = self.shuffle_attn_output_weight(data_torch)
  2208. return [(new_name, data_torch)]
  2209. @Model.register("CodeShellForCausalLM")
  2210. class CodeShellModel(Model):
  2211. model_arch = gguf.MODEL_ARCH.CODESHELL
  2212. def set_gguf_parameters(self):
  2213. block_count = self.hparams["n_layer"]
  2214. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2215. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2216. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2217. self.gguf_writer.add_block_count(block_count)
  2218. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2219. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2220. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2221. self.gguf_writer.add_file_type(self.ftype)
  2222. self.gguf_writer.add_rope_freq_base(10000.0)
  2223. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2224. self.gguf_writer.add_rope_scaling_factor(1.0)
  2225. _has_tok_embd = False
  2226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2227. del bid # unused
  2228. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2229. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2230. new_name = self.map_tensor_name(name)
  2231. # assuming token_embd.weight is seen before output.weight
  2232. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2233. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2234. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2235. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2236. self.tensor_names.remove("transformer.wte.weight")
  2237. elif new_name == tok_embd_name:
  2238. self._has_tok_embd = True
  2239. return [(new_name, data_torch)]
  2240. @Model.register("InternLM2ForCausalLM")
  2241. class InternLM2Model(Model):
  2242. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2243. def set_vocab(self):
  2244. # (TODO): Is there a better way?
  2245. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2246. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2247. # recognized as an empty string in C++.
  2248. from sentencepiece import SentencePieceProcessor
  2249. from sentencepiece import sentencepiece_model_pb2 as model
  2250. tokenizer_path = self.dir_model / 'tokenizer.model'
  2251. tokens: list[bytes] = []
  2252. scores: list[float] = []
  2253. toktypes: list[int] = []
  2254. if not tokenizer_path.is_file():
  2255. logger.error(f'Error: Missing {tokenizer_path}')
  2256. sys.exit(1)
  2257. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2258. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2259. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2260. tokenizer = SentencePieceProcessor()
  2261. tokenizer.LoadFromFile(str(tokenizer_path))
  2262. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2263. for token_id in range(vocab_size):
  2264. piece = tokenizer.IdToPiece(token_id)
  2265. text = piece.encode("utf-8")
  2266. score = tokenizer.GetScore(token_id)
  2267. if text == b"\x00":
  2268. # (TODO): fixme
  2269. # Hack here and replace the \x00 characters.
  2270. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2271. text = "🐉".encode("utf-8")
  2272. toktype = SentencePieceTokenTypes.NORMAL
  2273. if tokenizer.IsUnknown(token_id):
  2274. toktype = SentencePieceTokenTypes.UNKNOWN
  2275. elif tokenizer.IsControl(token_id):
  2276. toktype = SentencePieceTokenTypes.CONTROL
  2277. elif tokenizer.IsUnused(token_id):
  2278. toktype = SentencePieceTokenTypes.UNUSED
  2279. elif tokenizer.IsByte(token_id):
  2280. toktype = SentencePieceTokenTypes.BYTE
  2281. # take care of ununsed raw token
  2282. if piece.startswith('[UNUSED'):
  2283. toktype = SentencePieceTokenTypes.UNUSED
  2284. tokens.append(text)
  2285. scores.append(score)
  2286. toktypes.append(toktype)
  2287. added_tokens_file = self.dir_model / 'added_tokens.json'
  2288. if added_tokens_file.is_file():
  2289. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2290. added_tokens_json = json.load(f)
  2291. for key in added_tokens_json:
  2292. tokens.append(key.encode("utf-8"))
  2293. scores.append(-1000.0)
  2294. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2295. chat_eos_token = '<|im_end|>'
  2296. chat_eos_token_id = None
  2297. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2298. if tokenizer_config_file.is_file():
  2299. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2300. tokenizer_config_json = json.load(f)
  2301. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2302. for token_id, foken_data in added_tokens_decoder.items():
  2303. token_id = int(token_id)
  2304. token = foken_data["content"]
  2305. if token == chat_eos_token:
  2306. chat_eos_token_id = token_id
  2307. token = token.encode("utf-8")
  2308. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2309. if tokens[token_id] != token:
  2310. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2311. tokens[token_id] = token
  2312. scores[token_id] = -1000.0
  2313. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2314. if foken_data.get("special"):
  2315. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2316. tokenizer_file = self.dir_model / 'tokenizer.json'
  2317. if tokenizer_file.is_file():
  2318. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2319. tokenizer_json = json.load(f)
  2320. added_tokens = tokenizer_json.get("added_tokens", [])
  2321. for foken_data in added_tokens:
  2322. token_id = int(foken_data["id"])
  2323. token = foken_data["content"]
  2324. if token == chat_eos_token:
  2325. chat_eos_token_id = token_id
  2326. token = token.encode("utf-8")
  2327. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2328. if tokens[token_id] != token:
  2329. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2330. tokens[token_id] = token
  2331. scores[token_id] = -1000.0
  2332. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2333. if foken_data.get("special"):
  2334. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2335. self.gguf_writer.add_tokenizer_model("llama")
  2336. self.gguf_writer.add_tokenizer_pre("default")
  2337. self.gguf_writer.add_token_list(tokens)
  2338. self.gguf_writer.add_token_scores(scores)
  2339. self.gguf_writer.add_token_types(toktypes)
  2340. self.gguf_writer.add_add_space_prefix(add_prefix)
  2341. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2342. old_eos = special_vocab.special_token_ids["eos"]
  2343. if chat_eos_token_id is not None:
  2344. # For the chat model, we replace the eos with '<|im_end|>'.
  2345. # TODO: this is a hack, should be fixed
  2346. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2347. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2348. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2349. " in chat mode so that the conversation can end normally.")
  2350. special_vocab.add_to_gguf(self.gguf_writer)
  2351. def set_gguf_parameters(self):
  2352. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2353. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2354. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2355. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2356. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2357. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2358. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2359. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2360. self.gguf_writer.add_file_type(self.ftype)
  2361. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2362. if self.hparams["rope_scaling"].get("type") == "linear":
  2363. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2364. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2366. num_heads = self.hparams["num_attention_heads"]
  2367. num_kv_heads = self.hparams["num_key_value_heads"]
  2368. n_embd = self.hparams["hidden_size"]
  2369. q_per_kv = num_heads // num_kv_heads
  2370. head_dim = n_embd // num_heads
  2371. num_groups = num_heads // q_per_kv
  2372. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2373. qkv = data_torch
  2374. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2375. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2376. # The model weights of q and k equire additional reshape.
  2377. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2378. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2379. v = v.reshape((-1, v.shape[-1]))
  2380. return [
  2381. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2382. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2383. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2384. ]
  2385. else:
  2386. return [(self.map_tensor_name(name), data_torch)]
  2387. @Model.register("InternLM3ForCausalLM")
  2388. class InternLM3Model(Model):
  2389. model_arch = gguf.MODEL_ARCH.LLAMA
  2390. def set_vocab(self):
  2391. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2392. self.gguf_writer.add_tokenizer_model("llama")
  2393. self.gguf_writer.add_tokenizer_pre("default")
  2394. self.gguf_writer.add_token_list(tokens)
  2395. self.gguf_writer.add_token_scores(scores)
  2396. self.gguf_writer.add_token_types(toktypes)
  2397. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2398. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2399. if tokenizer_config_file.is_file():
  2400. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2401. tokenizer_config_json = json.load(f)
  2402. if "add_prefix_space" in tokenizer_config_json:
  2403. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2404. if "added_tokens_decoder" in tokenizer_config_json:
  2405. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2406. if token_data.get("special"):
  2407. token_id = int(token_id)
  2408. token = token_data["content"]
  2409. special_vocab._set_special_token(token, token_id)
  2410. # update eos token
  2411. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2412. special_vocab.special_token_ids["eos"] = token_id
  2413. special_vocab.add_to_gguf(self.gguf_writer)
  2414. def set_gguf_parameters(self):
  2415. super().set_gguf_parameters()
  2416. hparams = self.hparams
  2417. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2418. if "head_dim" in hparams:
  2419. rope_dim = hparams["head_dim"]
  2420. else:
  2421. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2422. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2423. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2424. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2425. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2426. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2427. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2428. n_head = self.hparams["num_attention_heads"]
  2429. n_kv_head = self.hparams.get("num_key_value_heads")
  2430. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2431. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2432. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2433. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2434. return [(self.map_tensor_name(name), data_torch)]
  2435. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2436. class BertModel(Model):
  2437. model_arch = gguf.MODEL_ARCH.BERT
  2438. def __init__(self, *args, **kwargs):
  2439. super().__init__(*args, **kwargs)
  2440. self.vocab_size = None
  2441. def set_gguf_parameters(self):
  2442. super().set_gguf_parameters()
  2443. self.gguf_writer.add_causal_attention(False)
  2444. # get pooling path
  2445. pooling_path = None
  2446. module_path = self.dir_model / "modules.json"
  2447. if module_path.is_file():
  2448. with open(module_path, encoding="utf-8") as f:
  2449. modules = json.load(f)
  2450. for mod in modules:
  2451. if mod["type"] == "sentence_transformers.models.Pooling":
  2452. pooling_path = mod["path"]
  2453. break
  2454. # get pooling type
  2455. if pooling_path is not None:
  2456. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2457. pooling = json.load(f)
  2458. if pooling["pooling_mode_mean_tokens"]:
  2459. pooling_type = gguf.PoolingType.MEAN
  2460. elif pooling["pooling_mode_cls_token"]:
  2461. pooling_type = gguf.PoolingType.CLS
  2462. else:
  2463. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2464. self.gguf_writer.add_pooling_type(pooling_type)
  2465. def set_vocab(self):
  2466. tokens, toktypes, tokpre = self.get_vocab_base()
  2467. self.vocab_size = len(tokens)
  2468. # we need this to validate the size of the token_type embeddings
  2469. # though currently we are passing all zeros to the token_type embeddings
  2470. # "Sequence A" or "Sequence B"
  2471. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2472. # convert to phantom space vocab
  2473. def phantom(tok):
  2474. if tok.startswith("[") and tok.endswith("]"):
  2475. return tok
  2476. if tok.startswith("##"):
  2477. return tok[2:]
  2478. return "\u2581" + tok
  2479. tokens = list(map(phantom, tokens))
  2480. # add vocab to gguf
  2481. self.gguf_writer.add_tokenizer_model("bert")
  2482. self.gguf_writer.add_tokenizer_pre(tokpre)
  2483. self.gguf_writer.add_token_list(tokens)
  2484. self.gguf_writer.add_token_types(toktypes)
  2485. # handle special tokens
  2486. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2487. special_vocab.add_to_gguf(self.gguf_writer)
  2488. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2489. del bid # unused
  2490. if name.startswith("bert."):
  2491. name = name[5:]
  2492. if name.endswith(".gamma"):
  2493. name = name[:-6] + ".weight"
  2494. if name.endswith(".beta"):
  2495. name = name[:-5] + ".bias"
  2496. # we are only using BERT for embeddings so we don't need the pooling layer
  2497. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2498. return [] # we don't need these
  2499. if name.startswith("cls.predictions"):
  2500. return []
  2501. if name.startswith("cls.seq_relationship"):
  2502. return []
  2503. return [(self.map_tensor_name(name), data_torch)]
  2504. @Model.register("RobertaModel")
  2505. class RobertaModel(BertModel):
  2506. model_arch = gguf.MODEL_ARCH.BERT
  2507. def __init__(self, *args, **kwargs):
  2508. super().__init__(*args, **kwargs)
  2509. # we need the pad_token_id to know how to chop down position_embd matrix
  2510. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2511. self._position_offset = 1 + pad_token_id
  2512. if "max_position_embeddings" in self.hparams:
  2513. self.hparams["max_position_embeddings"] -= self._position_offset
  2514. else:
  2515. self._position_offset = None
  2516. def set_vocab(self):
  2517. """Support BPE tokenizers for roberta models"""
  2518. bpe_tok_path = self.dir_model / "tokenizer.json"
  2519. if bpe_tok_path.exists():
  2520. self._set_vocab_gpt2()
  2521. self.gguf_writer.add_add_bos_token(True)
  2522. self.gguf_writer.add_add_eos_token(True)
  2523. # we need this to validate the size of the token_type embeddings
  2524. # though currently we are passing all zeros to the token_type embeddings
  2525. # "Sequence A" or "Sequence B"
  2526. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2527. else:
  2528. return super().set_vocab()
  2529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2530. # if name starts with "roberta.", remove the prefix
  2531. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2532. if name.startswith("roberta."):
  2533. name = name[8:]
  2534. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2535. if name == "embeddings.position_embeddings.weight":
  2536. if self._position_offset is not None:
  2537. data_torch = data_torch[self._position_offset:,:]
  2538. return super().modify_tensors(data_torch, name, bid)
  2539. @Model.register("NomicBertModel")
  2540. class NomicBertModel(BertModel):
  2541. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2542. def __init__(self, *args, **kwargs):
  2543. super().__init__(*args, **kwargs)
  2544. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2545. self.hparams["n_ctx"] = 2048
  2546. # SwigLU activation
  2547. assert self.hparams["activation_function"] == "swiglu"
  2548. # this doesn't do anything in the HF version
  2549. assert self.hparams["causal"] is False
  2550. # no bias tensors
  2551. assert self.hparams["qkv_proj_bias"] is False
  2552. assert self.hparams["mlp_fc1_bias"] is False
  2553. assert self.hparams["mlp_fc2_bias"] is False
  2554. # norm at end of layer
  2555. assert self.hparams["prenorm"] is False
  2556. # standard RoPE
  2557. assert self.hparams["rotary_emb_fraction"] == 1.0
  2558. assert self.hparams["rotary_emb_interleaved"] is False
  2559. assert self.hparams["rotary_emb_scale_base"] is None
  2560. def set_gguf_parameters(self):
  2561. super().set_gguf_parameters()
  2562. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2563. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2564. class XLMRobertaModel(BertModel):
  2565. model_arch = gguf.MODEL_ARCH.BERT
  2566. def __init__(self, *args, **kwargs):
  2567. super().__init__(*args, **kwargs)
  2568. # we need the pad_token_id to know how to chop down position_embd matrix
  2569. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2570. self._position_offset = 1 + pad_token_id
  2571. if "max_position_embeddings" in self.hparams:
  2572. self.hparams["max_position_embeddings"] -= self._position_offset
  2573. else:
  2574. self._position_offset = None
  2575. def set_vocab(self):
  2576. # to avoid TypeError: Descriptors cannot be created directly
  2577. # exception when importing sentencepiece_model_pb2
  2578. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2579. from sentencepiece import SentencePieceProcessor
  2580. from sentencepiece import sentencepiece_model_pb2 as model
  2581. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2582. if not tokenizer_path.is_file():
  2583. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2584. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2585. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2586. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2587. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2588. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2589. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2590. tokenizer = SentencePieceProcessor()
  2591. tokenizer.LoadFromFile(str(tokenizer_path))
  2592. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2593. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2594. scores: list[float] = [-10000.0] * vocab_size
  2595. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2596. for token_id in range(tokenizer.vocab_size()):
  2597. piece = tokenizer.IdToPiece(token_id)
  2598. text = piece.encode("utf-8")
  2599. score = tokenizer.GetScore(token_id)
  2600. toktype = SentencePieceTokenTypes.NORMAL
  2601. if tokenizer.IsUnknown(token_id):
  2602. toktype = SentencePieceTokenTypes.UNKNOWN
  2603. elif tokenizer.IsControl(token_id):
  2604. toktype = SentencePieceTokenTypes.CONTROL
  2605. elif tokenizer.IsUnused(token_id):
  2606. toktype = SentencePieceTokenTypes.UNUSED
  2607. elif tokenizer.IsByte(token_id):
  2608. toktype = SentencePieceTokenTypes.BYTE
  2609. tokens[token_id] = text
  2610. scores[token_id] = score
  2611. toktypes[token_id] = toktype
  2612. if vocab_size > len(tokens):
  2613. pad_count = vocab_size - len(tokens)
  2614. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2615. for i in range(1, pad_count + 1):
  2616. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2617. scores.append(-1000.0)
  2618. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2619. # realign tokens (see HF tokenizer code)
  2620. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2621. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2622. toktypes = [
  2623. SentencePieceTokenTypes.CONTROL,
  2624. SentencePieceTokenTypes.CONTROL,
  2625. SentencePieceTokenTypes.CONTROL,
  2626. SentencePieceTokenTypes.UNKNOWN,
  2627. ] + toktypes[3:-1]
  2628. self.gguf_writer.add_tokenizer_model("t5")
  2629. self.gguf_writer.add_tokenizer_pre("default")
  2630. self.gguf_writer.add_token_list(tokens)
  2631. self.gguf_writer.add_token_scores(scores)
  2632. self.gguf_writer.add_token_types(toktypes)
  2633. self.gguf_writer.add_add_space_prefix(add_prefix)
  2634. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2635. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2636. if precompiled_charsmap:
  2637. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2638. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2639. special_vocab.add_to_gguf(self.gguf_writer)
  2640. self.gguf_writer.add_add_bos_token(True)
  2641. self.gguf_writer.add_add_eos_token(True)
  2642. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2643. # if name starts with "roberta.", remove the prefix
  2644. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2645. if name.startswith("roberta."):
  2646. name = name[8:]
  2647. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2648. if name == "embeddings.position_embeddings.weight":
  2649. if self._position_offset is not None:
  2650. data_torch = data_torch[self._position_offset:,:]
  2651. return super().modify_tensors(data_torch, name, bid)
  2652. @Model.register("GemmaForCausalLM")
  2653. class GemmaModel(Model):
  2654. model_arch = gguf.MODEL_ARCH.GEMMA
  2655. def set_vocab(self):
  2656. self._set_vocab_sentencepiece()
  2657. # TODO: these special tokens should be exported only for the CodeGemma family
  2658. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2659. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2660. special_vocab._set_special_token("prefix", 67)
  2661. special_vocab._set_special_token("suffix", 69)
  2662. special_vocab._set_special_token("middle", 68)
  2663. special_vocab._set_special_token("fsep", 70)
  2664. special_vocab._set_special_token("eot", 107)
  2665. special_vocab.chat_template = None # do not add it twice
  2666. special_vocab.add_to_gguf(self.gguf_writer)
  2667. self.gguf_writer.add_add_space_prefix(False)
  2668. def set_gguf_parameters(self):
  2669. hparams = self.hparams
  2670. block_count = hparams["num_hidden_layers"]
  2671. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2672. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2673. self.gguf_writer.add_block_count(block_count)
  2674. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2675. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2676. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2677. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2678. self.gguf_writer.add_key_length(hparams["head_dim"])
  2679. self.gguf_writer.add_value_length(hparams["head_dim"])
  2680. self.gguf_writer.add_file_type(self.ftype)
  2681. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2682. del bid # unused
  2683. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2684. # To prevent errors, skip loading lm_head.weight.
  2685. if name == "lm_head.weight":
  2686. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2687. return []
  2688. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2689. if name.endswith("norm.weight"):
  2690. data_torch = data_torch + 1
  2691. return [(self.map_tensor_name(name), data_torch)]
  2692. @Model.register("Gemma2ForCausalLM")
  2693. class Gemma2Model(Model):
  2694. model_arch = gguf.MODEL_ARCH.GEMMA2
  2695. def set_vocab(self):
  2696. self._set_vocab_sentencepiece()
  2697. self.gguf_writer.add_add_space_prefix(False)
  2698. def set_gguf_parameters(self):
  2699. hparams = self.hparams
  2700. block_count = hparams["num_hidden_layers"]
  2701. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2702. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2703. self.gguf_writer.add_block_count(block_count)
  2704. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2705. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2706. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2707. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2708. self.gguf_writer.add_key_length(hparams["head_dim"])
  2709. self.gguf_writer.add_value_length(hparams["head_dim"])
  2710. self.gguf_writer.add_file_type(self.ftype)
  2711. self.gguf_writer.add_attn_logit_softcapping(
  2712. self.hparams["attn_logit_softcapping"]
  2713. )
  2714. self.gguf_writer.add_final_logit_softcapping(
  2715. self.hparams["final_logit_softcapping"]
  2716. )
  2717. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2719. del bid # unused
  2720. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2721. # To prevent errors, skip loading lm_head.weight.
  2722. if name == "lm_head.weight":
  2723. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2724. return []
  2725. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2726. if name.endswith("norm.weight"):
  2727. data_torch = data_torch + 1
  2728. return [(self.map_tensor_name(name), data_torch)]
  2729. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2730. class Gemma3Model(Model):
  2731. model_arch = gguf.MODEL_ARCH.GEMMA3
  2732. has_vision: bool = False
  2733. # we need to merge the text_config into the root level of hparams
  2734. def __init__(self, *args, **kwargs):
  2735. hparams = Model.load_hparams(kwargs["dir_model"])
  2736. if "text_config" in hparams:
  2737. hparams = {**hparams, **hparams["text_config"]}
  2738. kwargs["hparams"] = hparams
  2739. super().__init__(*args, **kwargs)
  2740. if "vision_config" in hparams:
  2741. logger.info("Has vision encoder, but it will be ignored")
  2742. self.has_vision = True
  2743. def write(self):
  2744. super().write()
  2745. if self.has_vision:
  2746. logger.info("NOTE: this script only convert the language model to GGUF")
  2747. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2748. def set_vocab(self):
  2749. self._set_vocab_sentencepiece()
  2750. self.gguf_writer.add_add_space_prefix(False)
  2751. def set_gguf_parameters(self):
  2752. hparams = self.hparams
  2753. block_count = hparams["num_hidden_layers"]
  2754. # some default values are not specified in the hparams
  2755. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2756. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2757. self.gguf_writer.add_block_count(block_count)
  2758. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2759. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2760. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2761. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2762. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2763. self.gguf_writer.add_file_type(self.ftype)
  2764. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2765. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2766. assert hparams.get("attn_logit_softcapping") is None
  2767. assert hparams.get("final_logit_softcapping") is None
  2768. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2769. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2770. if hparams.get("rope_scaling") is not None:
  2771. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2772. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2773. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2774. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2776. del bid # unused
  2777. if name.startswith("language_model."):
  2778. name = name.replace("language_model.", "")
  2779. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2780. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2781. # ignore vision tensors
  2782. return []
  2783. # remove OOV (out-of-vocabulary) rows in token_embd
  2784. if "embed_tokens.weight" in name:
  2785. vocab = self._create_vocab_sentencepiece()
  2786. tokens = vocab[0]
  2787. data_torch = data_torch[:len(tokens)]
  2788. # ref code in Gemma3RMSNorm
  2789. # output = output * (1.0 + self.weight.float())
  2790. if name.endswith("norm.weight"):
  2791. data_torch = data_torch + 1
  2792. return [(self.map_tensor_name(name), data_torch)]
  2793. @Model.register("Starcoder2ForCausalLM")
  2794. class StarCoder2Model(Model):
  2795. model_arch = gguf.MODEL_ARCH.STARCODER2
  2796. @Model.register("Rwkv6ForCausalLM")
  2797. class Rwkv6Model(Model):
  2798. model_arch = gguf.MODEL_ARCH.RWKV6
  2799. def set_vocab(self):
  2800. self._set_vocab_rwkv_world()
  2801. def set_gguf_parameters(self):
  2802. block_count = self.hparams["num_hidden_layers"]
  2803. head_size = self.hparams["head_size"]
  2804. hidden_size = self.hparams["hidden_size"]
  2805. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2806. rescale_every_n_layers = self.hparams["rescale_every"]
  2807. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2808. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2809. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2810. # RWKV isn't context limited
  2811. self.gguf_writer.add_context_length(1048576)
  2812. self.gguf_writer.add_embedding_length(hidden_size)
  2813. self.gguf_writer.add_block_count(block_count)
  2814. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2815. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2816. self.gguf_writer.add_wkv_head_size(head_size)
  2817. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2818. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2819. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2820. self.gguf_writer.add_file_type(self.ftype)
  2821. # required by llama.cpp, unused
  2822. self.gguf_writer.add_head_count(0)
  2823. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2824. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2825. new_name = self.map_tensor_name(name)
  2826. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2827. new_name += ".weight"
  2828. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2829. data_torch = data_torch.transpose(0, 1)
  2830. if new_name.endswith("time_mix_w2.weight"):
  2831. data_torch = data_torch.permute(0, 2, 1)
  2832. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2833. data_torch = data_torch.squeeze()
  2834. try:
  2835. rescale_every_n_layers = self.hparams["rescale_every"]
  2836. if rescale_every_n_layers > 0:
  2837. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2838. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2839. except KeyError:
  2840. pass
  2841. # concat time_mix_lerp weights to reduce some cpu overhead
  2842. # also reduces the number of tensors in the model
  2843. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2844. try:
  2845. self.lerp_weights[bid][new_name] = data_torch
  2846. except KeyError:
  2847. self.lerp_weights[bid] = {new_name: data_torch}
  2848. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2849. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2850. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2851. yield (new_name, data)
  2852. return
  2853. yield (new_name, data_torch)
  2854. @Model.register("RWKV6Qwen2ForCausalLM")
  2855. class RWKV6Qwen2Model(Rwkv6Model):
  2856. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2857. def set_vocab(self):
  2858. try:
  2859. self._set_vocab_sentencepiece()
  2860. except FileNotFoundError:
  2861. self._set_vocab_gpt2()
  2862. def set_gguf_parameters(self):
  2863. block_count = self.hparams["num_hidden_layers"]
  2864. num_attention_heads = self.hparams["num_attention_heads"]
  2865. num_key_value_heads = self.hparams["num_key_value_heads"]
  2866. hidden_size = self.hparams["hidden_size"]
  2867. head_size = hidden_size // num_attention_heads
  2868. rms_norm_eps = self.hparams["rms_norm_eps"]
  2869. intermediate_size = self.hparams["intermediate_size"]
  2870. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2871. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2872. # RWKV isn't context limited
  2873. self.gguf_writer.add_context_length(1048576)
  2874. self.gguf_writer.add_embedding_length(hidden_size)
  2875. self.gguf_writer.add_block_count(block_count)
  2876. self.gguf_writer.add_wkv_head_size(head_size)
  2877. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2878. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2879. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2880. self.gguf_writer.add_file_type(self.ftype)
  2881. # special parameters for time_mixing in RWKV6QWEN2
  2882. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2883. self.gguf_writer.add_token_shift_count(1)
  2884. # RWKV6QWEN2 use grouped key/value like GQA
  2885. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2886. # required by llama.cpp, unused
  2887. self.gguf_writer.add_head_count(0)
  2888. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2889. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2890. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2891. data = data.view(5, -1, data.shape[-1])
  2892. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2893. # permute them here to avoid code changes
  2894. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2895. if "w2" in new_name:
  2896. data = data.view(5, -1, data.shape[-1])
  2897. yield (new_name, data)
  2898. continue
  2899. yield (new_name, data)
  2900. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2901. class Rwkv7Model(Model):
  2902. model_arch = gguf.MODEL_ARCH.RWKV7
  2903. def set_vocab(self):
  2904. self._set_vocab_rwkv_world()
  2905. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2906. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2907. def set_gguf_parameters(self):
  2908. block_count = self.hparams["num_hidden_layers"]
  2909. try:
  2910. head_size = self.hparams["head_size"]
  2911. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2912. except KeyError:
  2913. head_size = self.hparams["head_dim"]
  2914. layer_norm_eps = self.hparams["norm_eps"]
  2915. hidden_size = self.hparams["hidden_size"]
  2916. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2917. # ICLR: In-Context-Learning-Rate
  2918. try:
  2919. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2920. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2921. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2922. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2923. except KeyError:
  2924. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2925. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2926. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2927. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2928. # RWKV isn't context limited
  2929. self.gguf_writer.add_context_length(1048576)
  2930. self.gguf_writer.add_embedding_length(hidden_size)
  2931. self.gguf_writer.add_block_count(block_count)
  2932. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2933. self.gguf_writer.add_wkv_head_size(head_size)
  2934. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  2935. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  2936. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  2937. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  2938. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2939. self.gguf_writer.add_file_type(self.ftype)
  2940. # required by llama.cpp, unused
  2941. self.gguf_writer.add_head_count(0)
  2942. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2943. lora_needs_transpose: bool = True
  2944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2945. # unify tensor names here to make life easier
  2946. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  2947. name = name.replace("self_attn", "attention").replace("attn", "attention")
  2948. name = name.replace("time_mixer.", "")
  2949. # lora layer names in fla-hub's impl
  2950. if "_lora.lora" in name:
  2951. self.lora_needs_transpose = False
  2952. name = name.replace("_lora.lora.0.weight", "1.weight")
  2953. name = name.replace("_lora.lora.2.weight", "2.weight")
  2954. name = name.replace("_lora.lora.2.bias", "0.weight")
  2955. name = name.replace("feed_forward_norm", "ln2")
  2956. name = name.replace("g_norm", "ln_x")
  2957. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  2958. # some models have dummy v0/v1/v2 on first layer while others don't
  2959. # ignore them all since they are not used
  2960. return
  2961. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  2962. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  2963. if bid is not None and "attention.x_" in name:
  2964. if "attention.x_x" in name:
  2965. # already concatenated
  2966. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2967. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  2968. yield (new_name, data)
  2969. else:
  2970. try:
  2971. self.lerp_weights[bid][name] = data_torch
  2972. except KeyError:
  2973. self.lerp_weights[bid] = {name: data_torch}
  2974. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  2975. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2976. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  2977. yield (new_name, data)
  2978. return
  2979. else:
  2980. data_torch = data_torch.squeeze()
  2981. new_name = self.map_tensor_name(name)
  2982. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2983. new_name += ".weight"
  2984. if self.lora_needs_transpose and any(
  2985. new_name.endswith(t) for t in [
  2986. "time_mix_w1.weight", "time_mix_w2.weight",
  2987. "time_mix_a1.weight", "time_mix_a2.weight",
  2988. "time_mix_v1.weight", "time_mix_v2.weight",
  2989. "time_mix_g1.weight", "time_mix_g2.weight",
  2990. ]
  2991. ):
  2992. data_torch = data_torch.transpose(0, 1)
  2993. if 'r_k' in new_name:
  2994. data_torch = data_torch.flatten()
  2995. if bid == 0 and "time_mix_a" in new_name:
  2996. # dummy v0/v1/v2 on first layer
  2997. # easist way to make llama happy
  2998. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  2999. yield (new_name, data_torch)
  3000. @Model.register("RwkvHybridForCausalLM")
  3001. class ARwkv7Model(Rwkv7Model):
  3002. model_arch = gguf.MODEL_ARCH.ARWKV7
  3003. def set_vocab(self):
  3004. try:
  3005. self._set_vocab_sentencepiece()
  3006. except FileNotFoundError:
  3007. self._set_vocab_gpt2()
  3008. def set_gguf_parameters(self):
  3009. block_count = self.hparams["num_hidden_layers"]
  3010. hidden_size = self.hparams["hidden_size"]
  3011. head_size = self.hparams["head_size"]
  3012. rms_norm_eps = self.hparams["rms_norm_eps"]
  3013. intermediate_size = self.hparams["intermediate_size"]
  3014. wkv_has_gate = self.hparams["wkv_has_gate"]
  3015. assert self.hparams["wkv_version"] == 7
  3016. # ICLR: In-Context-Learning-Rate
  3017. lora_rank_decay = 64
  3018. lora_rank_iclr = 64
  3019. lora_rank_value_residual_mix = 32
  3020. lora_rank_gate = 128 if wkv_has_gate else 0
  3021. # RWKV isn't context limited
  3022. self.gguf_writer.add_context_length(1048576)
  3023. self.gguf_writer.add_embedding_length(hidden_size)
  3024. self.gguf_writer.add_block_count(block_count)
  3025. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3026. self.gguf_writer.add_wkv_head_size(head_size)
  3027. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3028. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3029. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3030. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3031. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3032. self.gguf_writer.add_file_type(self.ftype)
  3033. self.gguf_writer.add_token_shift_count(1)
  3034. # required by llama.cpp, unused
  3035. self.gguf_writer.add_head_count(0)
  3036. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3037. class MambaModel(Model):
  3038. model_arch = gguf.MODEL_ARCH.MAMBA
  3039. def set_vocab(self):
  3040. vocab_size = self.hparams["vocab_size"]
  3041. # Round vocab size to next multiple of 8
  3042. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3043. # pad using ceiling division
  3044. # ref: https://stackoverflow.com/a/17511341/22827863
  3045. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3046. self.hparams["vocab_size"] = vocab_size
  3047. if (self.dir_model / "tokenizer.json").is_file():
  3048. self._set_vocab_gpt2()
  3049. elif (self.dir_model / "tokenizer.model").is_file():
  3050. self._set_vocab_sentencepiece()
  3051. else:
  3052. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3053. self._set_vocab_builtin("gpt-neox", vocab_size)
  3054. def set_gguf_parameters(self):
  3055. d_model = self.find_hparam(["hidden_size", "d_model"])
  3056. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3057. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3058. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3059. # ceiling division
  3060. # ref: https://stackoverflow.com/a/17511341/22827863
  3061. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3062. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3063. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3064. use_dt_b_c_norm = False
  3065. # For falconmamba we do apply RMS norm on B / DT and C layers
  3066. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3067. use_dt_b_c_norm = True
  3068. # Fail early for models which don't have a block expansion factor of 2
  3069. assert d_inner == 2 * d_model
  3070. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3071. self.gguf_writer.add_embedding_length(d_model)
  3072. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3073. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3074. self.gguf_writer.add_block_count(self.block_count)
  3075. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3076. self.gguf_writer.add_ssm_inner_size(d_inner)
  3077. self.gguf_writer.add_ssm_state_size(d_state)
  3078. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3079. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3080. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3081. self.gguf_writer.add_file_type(self.ftype)
  3082. _tok_embd = None
  3083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3084. del bid # unused
  3085. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3086. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3087. new_name = self.map_tensor_name(name)
  3088. if name.endswith(".A_log"):
  3089. logger.debug("A_log --> A ==> " + new_name)
  3090. data_torch = -torch.exp(data_torch)
  3091. # assuming token_embd.weight is seen before output.weight
  3092. if self._tok_embd is not None and new_name == output_name:
  3093. if torch.equal(self._tok_embd, data_torch):
  3094. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3095. return []
  3096. elif new_name == tok_embd_name:
  3097. self._tok_embd = data_torch
  3098. return [(new_name, data_torch)]
  3099. @Model.register("CohereForCausalLM")
  3100. class CommandR2Model(Model):
  3101. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3102. def __init__(self, *args, **kwargs):
  3103. super().__init__(*args, **kwargs)
  3104. # max_position_embeddings = 8192 in config.json but model was actually
  3105. # trained on 128k context length
  3106. # aya-23 models don't have model_max_length specified
  3107. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3108. def set_gguf_parameters(self):
  3109. super().set_gguf_parameters()
  3110. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3111. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3112. @Model.register("Cohere2ForCausalLM")
  3113. class Cohere2Model(Model):
  3114. model_arch = gguf.MODEL_ARCH.COHERE2
  3115. def set_gguf_parameters(self):
  3116. super().set_gguf_parameters()
  3117. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3118. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3119. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3120. rotary_pct = self.hparams["rotary_pct"]
  3121. hidden_size = self.hparams["hidden_size"]
  3122. num_attention_heads = self.hparams["num_attention_heads"]
  3123. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3124. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3125. @Model.register("OlmoForCausalLM")
  3126. @Model.register("OLMoForCausalLM")
  3127. class OlmoModel(Model):
  3128. model_arch = gguf.MODEL_ARCH.OLMO
  3129. def set_gguf_parameters(self):
  3130. super().set_gguf_parameters()
  3131. self.gguf_writer.add_layer_norm_eps(1e-5)
  3132. clip_qkv = self.hparams.get("clip_qkv")
  3133. if clip_qkv is not None:
  3134. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3135. # Same as super class, but permuting q_proj, k_proj
  3136. # Copied from: LlamaModel
  3137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3138. del bid # unused
  3139. n_head = self.hparams["num_attention_heads"]
  3140. n_kv_head = self.hparams.get("num_key_value_heads")
  3141. if name.endswith("q_proj.weight"):
  3142. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3143. if name.endswith("k_proj.weight"):
  3144. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3145. return [(self.map_tensor_name(name), data_torch)]
  3146. @Model.register("Olmo2ForCausalLM")
  3147. class Olmo2Model(Model):
  3148. model_arch = gguf.MODEL_ARCH.OLMO2
  3149. @Model.register("OlmoeForCausalLM")
  3150. class OlmoeModel(Model):
  3151. model_arch = gguf.MODEL_ARCH.OLMOE
  3152. def set_gguf_parameters(self):
  3153. super().set_gguf_parameters()
  3154. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3155. if (n_experts := self.hparams.get("num_experts")) is not None:
  3156. self.gguf_writer.add_expert_count(n_experts)
  3157. _experts: list[dict[str, Tensor]] | None = None
  3158. # Copied from: Qwen2MoeModel
  3159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3160. # process the experts separately
  3161. if name.find("experts") != -1:
  3162. n_experts = self.hparams["num_experts"]
  3163. assert bid is not None
  3164. if self._experts is None:
  3165. self._experts = [{} for _ in range(self.block_count)]
  3166. self._experts[bid][name] = data_torch
  3167. if len(self._experts[bid]) >= n_experts * 3:
  3168. tensors: list[tuple[str, Tensor]] = []
  3169. # merge the experts into a single 3d tensor
  3170. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3171. datas: list[Tensor] = []
  3172. for xid in range(n_experts):
  3173. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3174. datas.append(self._experts[bid][ename])
  3175. del self._experts[bid][ename]
  3176. data_torch = torch.stack(datas, dim=0)
  3177. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3178. new_name = self.map_tensor_name(merged_name)
  3179. tensors.append((new_name, data_torch))
  3180. return tensors
  3181. else:
  3182. return []
  3183. return [(self.map_tensor_name(name), data_torch)]
  3184. # Copied from: Qwen2MoeModel
  3185. def prepare_tensors(self):
  3186. super().prepare_tensors()
  3187. if self._experts is not None:
  3188. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3189. experts = [k for d in self._experts for k in d.keys()]
  3190. if len(experts) > 0:
  3191. raise ValueError(f"Unprocessed experts: {experts}")
  3192. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3193. class JinaBertV2Model(BertModel):
  3194. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3195. def __init__(self, *args, **kwargs):
  3196. super().__init__(*args, **kwargs)
  3197. self.intermediate_size = self.hparams["intermediate_size"]
  3198. def get_tensors(self):
  3199. for name, data in super().get_tensors():
  3200. if 'gated_layer' in name:
  3201. d1 = data[:self.intermediate_size, :]
  3202. name1 = name.replace('gated_layers', 'gated_layers_w')
  3203. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3204. d2 = data[self.intermediate_size:, :]
  3205. name2 = name.replace('gated_layers', 'gated_layers_v')
  3206. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3207. yield name1, d1
  3208. yield name2, d2
  3209. continue
  3210. yield name, data
  3211. def set_vocab(self):
  3212. tokenizer_class = 'BertTokenizer'
  3213. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3214. tokenizer_class = json.load(f)['tokenizer_class']
  3215. if tokenizer_class == 'BertTokenizer':
  3216. super().set_vocab()
  3217. elif tokenizer_class == 'RobertaTokenizer':
  3218. self._set_vocab_gpt2()
  3219. self.gguf_writer.add_token_type_count(2)
  3220. else:
  3221. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3222. self.gguf_writer.add_add_bos_token(True)
  3223. self.gguf_writer.add_add_eos_token(True)
  3224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3225. # if name starts with "bert.", remove the prefix
  3226. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3227. if name.startswith("bert."):
  3228. name = name[5:]
  3229. return super().modify_tensors(data_torch, name, bid)
  3230. @Model.register("OpenELMForCausalLM")
  3231. class OpenELMModel(Model):
  3232. model_arch = gguf.MODEL_ARCH.OPENELM
  3233. @staticmethod
  3234. def _make_divisible(v: float | int, divisor: int) -> int:
  3235. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3236. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3237. # Make sure that round down does not go down by more than 10%.
  3238. if new_v < 0.9 * v:
  3239. new_v += divisor
  3240. return new_v
  3241. def __init__(self, *args, **kwargs):
  3242. super().__init__(*args, **kwargs)
  3243. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3244. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3245. self._n_embd: int = self.hparams["model_dim"]
  3246. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3247. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3248. self._ffn_dims: list[int] = [
  3249. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3250. for multiplier in ffn_multipliers
  3251. ]
  3252. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3253. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3254. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3255. def set_vocab(self):
  3256. try:
  3257. self._set_vocab_sentencepiece()
  3258. except FileNotFoundError:
  3259. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3260. def set_gguf_parameters(self):
  3261. n_embd = self._n_embd
  3262. head_dim = self.hparams["head_dim"]
  3263. rot_pct = 1.0
  3264. assert self.block_count == len(self._num_kv_heads)
  3265. assert self.block_count == len(self._num_query_heads)
  3266. assert self.block_count == len(self._ffn_dims)
  3267. self.gguf_writer.add_block_count(self.block_count)
  3268. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3269. self.gguf_writer.add_embedding_length(n_embd)
  3270. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3271. self.gguf_writer.add_head_count(self._num_query_heads)
  3272. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3273. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3274. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3275. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3276. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3277. self.gguf_writer.add_key_length(head_dim)
  3278. self.gguf_writer.add_value_length(head_dim)
  3279. self.gguf_writer.add_file_type(self.ftype)
  3280. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3281. if "n_layers" in keys:
  3282. return self.hparams["num_transformer_layers"]
  3283. return super().find_hparam(keys, optional)
  3284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3285. # split ff
  3286. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3287. ff_dim = self._ffn_dims[bid]
  3288. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3289. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3290. return
  3291. yield (self.map_tensor_name(name), data_torch)
  3292. @Model.register("ArcticForCausalLM")
  3293. class ArcticModel(Model):
  3294. model_arch = gguf.MODEL_ARCH.ARCTIC
  3295. def set_vocab(self):
  3296. # The reason for using a custom implementation here is that the
  3297. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3298. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3299. from sentencepiece import SentencePieceProcessor
  3300. tokenizer_path = self.dir_model / 'tokenizer.model'
  3301. if not tokenizer_path.is_file():
  3302. logger.error(f'Error: Missing {tokenizer_path}')
  3303. sys.exit(1)
  3304. # Read the whole vocabulary from the tokenizer.model file
  3305. tokenizer = SentencePieceProcessor()
  3306. tokenizer.LoadFromFile(str(tokenizer_path))
  3307. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3308. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3309. scores: list[float] = [-10000.0] * vocab_size
  3310. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3311. for token_id in range(tokenizer.vocab_size()):
  3312. piece = tokenizer.IdToPiece(token_id)
  3313. text = piece.encode("utf-8")
  3314. score = tokenizer.GetScore(token_id)
  3315. toktype = SentencePieceTokenTypes.NORMAL
  3316. if tokenizer.IsUnknown(token_id):
  3317. toktype = SentencePieceTokenTypes.UNKNOWN
  3318. elif tokenizer.IsControl(token_id):
  3319. toktype = SentencePieceTokenTypes.CONTROL
  3320. elif tokenizer.IsUnused(token_id):
  3321. toktype = SentencePieceTokenTypes.UNUSED
  3322. elif tokenizer.IsByte(token_id):
  3323. toktype = SentencePieceTokenTypes.BYTE
  3324. tokens[token_id] = text
  3325. scores[token_id] = score
  3326. toktypes[token_id] = toktype
  3327. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3328. # of information about added/redefined tokens and modify them accordingly.
  3329. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3330. if tokenizer_config_file.is_file():
  3331. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3332. tokenizer_config_json = json.load(f)
  3333. if "added_tokens_decoder" in tokenizer_config_json:
  3334. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3335. for token_id, token_json in added_tokens_decoder.items():
  3336. token_id = int(token_id)
  3337. if token_id >= vocab_size:
  3338. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3339. continue
  3340. token_content = token_json["content"]
  3341. token_type = SentencePieceTokenTypes.USER_DEFINED
  3342. token_score = -10000.0
  3343. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3344. # Set the score to 0.0 as in the original tokenizer.model
  3345. if ("special" in token_json) and token_json["special"]:
  3346. if token_content == tokenizer_config_json["unk_token"]:
  3347. token_type = SentencePieceTokenTypes.UNKNOWN
  3348. else:
  3349. token_type = SentencePieceTokenTypes.CONTROL
  3350. token_score = 0.0
  3351. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3352. tokens[token_id] = token_content.encode("utf-8")
  3353. toktypes[token_id] = token_type
  3354. scores[token_id] = token_score
  3355. self.gguf_writer.add_tokenizer_model("llama")
  3356. self.gguf_writer.add_tokenizer_pre("default")
  3357. self.gguf_writer.add_token_list(tokens)
  3358. self.gguf_writer.add_token_scores(scores)
  3359. self.gguf_writer.add_token_types(toktypes)
  3360. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3361. special_vocab.add_to_gguf(self.gguf_writer)
  3362. def set_gguf_parameters(self):
  3363. super().set_gguf_parameters()
  3364. hparams = self.hparams
  3365. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3366. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3367. _experts: list[dict[str, Tensor]] | None = None
  3368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3369. n_head = self.hparams["num_attention_heads"]
  3370. n_kv_head = self.hparams.get("num_key_value_heads")
  3371. if name.endswith("q_proj.weight"):
  3372. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3373. if name.endswith("k_proj.weight"):
  3374. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3375. # process the experts separately
  3376. if name.find("block_sparse_moe.experts") != -1:
  3377. n_experts = self.hparams["num_local_experts"]
  3378. assert bid is not None
  3379. if self._experts is None:
  3380. self._experts = [{} for _ in range(self.block_count)]
  3381. self._experts[bid][name] = data_torch
  3382. if len(self._experts[bid]) >= n_experts * 3:
  3383. tensors: list[tuple[str, Tensor]] = []
  3384. # merge the experts into a single 3d tensor
  3385. for wid in ["w1", "w2", "w3"]:
  3386. datas: list[Tensor] = []
  3387. for xid in range(n_experts):
  3388. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3389. datas.append(self._experts[bid][ename])
  3390. del self._experts[bid][ename]
  3391. data_torch = torch.stack(datas, dim=0)
  3392. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3393. new_name = self.map_tensor_name(merged_name)
  3394. tensors.append((new_name, data_torch))
  3395. return tensors
  3396. else:
  3397. return []
  3398. return [(self.map_tensor_name(name), data_torch)]
  3399. def prepare_tensors(self):
  3400. super().prepare_tensors()
  3401. if self._experts is not None:
  3402. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3403. experts = [k for d in self._experts for k in d.keys()]
  3404. if len(experts) > 0:
  3405. raise ValueError(f"Unprocessed experts: {experts}")
  3406. @Model.register("DeepseekForCausalLM")
  3407. class DeepseekModel(Model):
  3408. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3409. def set_vocab(self):
  3410. try:
  3411. self._set_vocab_sentencepiece()
  3412. except FileNotFoundError:
  3413. self._set_vocab_gpt2()
  3414. def set_gguf_parameters(self):
  3415. super().set_gguf_parameters()
  3416. hparams = self.hparams
  3417. if "head_dim" in hparams:
  3418. rope_dim = hparams["head_dim"]
  3419. else:
  3420. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3421. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3422. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3423. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3424. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3425. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3426. self.gguf_writer.add_expert_weights_scale(1.0)
  3427. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3428. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3429. _experts: list[dict[str, Tensor]] | None = None
  3430. @staticmethod
  3431. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3432. if n_head_kv is not None and n_head != n_head_kv:
  3433. n_head = n_head_kv
  3434. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3435. .swapaxes(1, 2)
  3436. .reshape(weights.shape))
  3437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3438. n_head = self.hparams["num_attention_heads"]
  3439. n_kv_head = self.hparams.get("num_key_value_heads")
  3440. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3441. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3442. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3443. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3444. # process the experts separately
  3445. if name.find("mlp.experts") != -1:
  3446. n_experts = self.hparams["n_routed_experts"]
  3447. assert bid is not None
  3448. if self._experts is None:
  3449. self._experts = [{} for _ in range(self.block_count)]
  3450. self._experts[bid][name] = data_torch
  3451. if len(self._experts[bid]) >= n_experts * 3:
  3452. tensors: list[tuple[str, Tensor]] = []
  3453. # merge the experts into a single 3d tensor
  3454. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3455. datas: list[Tensor] = []
  3456. for xid in range(n_experts):
  3457. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3458. datas.append(self._experts[bid][ename])
  3459. del self._experts[bid][ename]
  3460. data_torch = torch.stack(datas, dim=0)
  3461. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3462. new_name = self.map_tensor_name(merged_name)
  3463. tensors.append((new_name, data_torch))
  3464. return tensors
  3465. else:
  3466. return []
  3467. return [(self.map_tensor_name(name), data_torch)]
  3468. def prepare_tensors(self):
  3469. super().prepare_tensors()
  3470. if self._experts is not None:
  3471. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3472. experts = [k for d in self._experts for k in d.keys()]
  3473. if len(experts) > 0:
  3474. raise ValueError(f"Unprocessed experts: {experts}")
  3475. @Model.register("DeepseekV2ForCausalLM")
  3476. @Model.register("DeepseekV3ForCausalLM")
  3477. class DeepseekV2Model(Model):
  3478. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3479. def set_vocab(self):
  3480. self._set_vocab_gpt2()
  3481. def set_gguf_parameters(self):
  3482. super().set_gguf_parameters()
  3483. hparams = self.hparams
  3484. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3485. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3486. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3487. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3488. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3489. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3490. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3491. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3492. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3493. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3494. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3495. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3496. if hparams["scoring_func"] == "sigmoid":
  3497. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3498. elif hparams["scoring_func"] == "softmax":
  3499. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3500. else:
  3501. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3502. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3503. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3504. if self.hparams["rope_scaling"].get("type") == "yarn":
  3505. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3506. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3507. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3508. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3509. _experts: list[dict[str, Tensor]] | None = None
  3510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3511. # rename e_score_correction_bias tensors
  3512. if name.endswith("e_score_correction_bias"):
  3513. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3514. # skip Multi-Token Prediction (MTP) layers
  3515. block_count = self.hparams["num_hidden_layers"]
  3516. match = re.match(r"model.layers.(\d+)", name)
  3517. if match and int(match.group(1)) >= block_count:
  3518. return []
  3519. # process the experts separately
  3520. if name.find("mlp.experts") != -1:
  3521. n_experts = self.hparams["n_routed_experts"]
  3522. assert bid is not None
  3523. if self._experts is None:
  3524. self._experts = [{} for _ in range(self.block_count)]
  3525. self._experts[bid][name] = data_torch
  3526. if len(self._experts[bid]) >= n_experts * 3:
  3527. tensors: list[tuple[str, Tensor]] = []
  3528. # merge the experts into a single 3d tensor
  3529. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3530. datas: list[Tensor] = []
  3531. for xid in range(n_experts):
  3532. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3533. datas.append(self._experts[bid][ename])
  3534. del self._experts[bid][ename]
  3535. data_torch = torch.stack(datas, dim=0)
  3536. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3537. new_name = self.map_tensor_name(merged_name)
  3538. tensors.append((new_name, data_torch))
  3539. return tensors
  3540. else:
  3541. return []
  3542. return [(self.map_tensor_name(name), data_torch)]
  3543. def prepare_tensors(self):
  3544. super().prepare_tensors()
  3545. if self._experts is not None:
  3546. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3547. experts = [k for d in self._experts for k in d.keys()]
  3548. if len(experts) > 0:
  3549. raise ValueError(f"Unprocessed experts: {experts}")
  3550. @Model.register("T5WithLMHeadModel")
  3551. @Model.register("T5ForConditionalGeneration")
  3552. @Model.register("MT5ForConditionalGeneration")
  3553. @Model.register("UMT5ForConditionalGeneration")
  3554. class T5Model(Model):
  3555. model_arch = gguf.MODEL_ARCH.T5
  3556. def __init__(self, *args, **kwargs):
  3557. super().__init__(*args, **kwargs)
  3558. self.shared_token_embeddings_found = False
  3559. def set_vocab(self):
  3560. # to avoid TypeError: Descriptors cannot be created directly
  3561. # exception when importing sentencepiece_model_pb2
  3562. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3563. from sentencepiece import SentencePieceProcessor
  3564. from sentencepiece import sentencepiece_model_pb2 as model
  3565. tokenizer_path = self.dir_model / 'tokenizer.model'
  3566. # many older models use spiece.model tokenizer model filename
  3567. if not tokenizer_path.is_file():
  3568. tokenizer_path = self.dir_model / 'spiece.model'
  3569. if not tokenizer_path.is_file():
  3570. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3571. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3572. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3573. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3574. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3575. # assure the tokenizer model file name is correct
  3576. assert tokenizer_path.name == 'tokenizer.model'
  3577. return self._set_vocab_sentencepiece()
  3578. else:
  3579. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3580. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3581. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3582. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3583. tokenizer = SentencePieceProcessor()
  3584. tokenizer.LoadFromFile(str(tokenizer_path))
  3585. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3586. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3587. scores: list[float] = [-10000.0] * vocab_size
  3588. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3589. for token_id in range(tokenizer.vocab_size()):
  3590. piece = tokenizer.IdToPiece(token_id)
  3591. text = piece.encode("utf-8")
  3592. score = tokenizer.GetScore(token_id)
  3593. toktype = SentencePieceTokenTypes.NORMAL
  3594. if tokenizer.IsUnknown(token_id):
  3595. toktype = SentencePieceTokenTypes.UNKNOWN
  3596. elif tokenizer.IsControl(token_id):
  3597. toktype = SentencePieceTokenTypes.CONTROL
  3598. elif tokenizer.IsUnused(token_id):
  3599. toktype = SentencePieceTokenTypes.UNUSED
  3600. elif tokenizer.IsByte(token_id):
  3601. toktype = SentencePieceTokenTypes.BYTE
  3602. tokens[token_id] = text
  3603. scores[token_id] = score
  3604. toktypes[token_id] = toktype
  3605. added_tokens_file = self.dir_model / 'added_tokens.json'
  3606. if added_tokens_file.is_file():
  3607. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3608. added_tokens_json = json.load(f)
  3609. for key in added_tokens_json:
  3610. token_id = added_tokens_json[key]
  3611. if token_id >= vocab_size:
  3612. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3613. continue
  3614. tokens[token_id] = key.encode("utf-8")
  3615. scores[token_id] = -1000.0
  3616. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3617. if vocab_size > len(tokens):
  3618. pad_count = vocab_size - len(tokens)
  3619. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3620. for i in range(1, pad_count + 1):
  3621. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3622. scores.append(-1000.0)
  3623. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3624. self.gguf_writer.add_tokenizer_model("t5")
  3625. self.gguf_writer.add_tokenizer_pre("default")
  3626. self.gguf_writer.add_token_list(tokens)
  3627. self.gguf_writer.add_token_scores(scores)
  3628. self.gguf_writer.add_token_types(toktypes)
  3629. self.gguf_writer.add_add_space_prefix(add_prefix)
  3630. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3631. if precompiled_charsmap:
  3632. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3633. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3634. special_vocab.add_to_gguf(self.gguf_writer)
  3635. self.gguf_writer.add_add_bos_token(False)
  3636. self.gguf_writer.add_add_eos_token(True)
  3637. def set_gguf_parameters(self):
  3638. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3639. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3640. n_ctx = 512
  3641. self.gguf_writer.add_context_length(n_ctx)
  3642. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3643. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3644. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3645. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3646. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3647. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3648. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3649. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3650. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3651. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3652. self.gguf_writer.add_file_type(self.ftype)
  3653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3654. del bid # unused
  3655. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3656. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3657. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3658. # and decoder and ignore the remaining ones.
  3659. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3660. if not self.shared_token_embeddings_found:
  3661. name = "shared.weight"
  3662. self.shared_token_embeddings_found = True
  3663. else:
  3664. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3665. return []
  3666. return [(self.map_tensor_name(name), data_torch)]
  3667. @Model.register("T5EncoderModel")
  3668. class T5EncoderModel(Model):
  3669. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3670. def __init__(self, *args, **kwargs):
  3671. super().__init__(*args, **kwargs)
  3672. self.shared_token_embeddings_found = False
  3673. def set_vocab(self):
  3674. # to avoid TypeError: Descriptors cannot be created directly
  3675. # exception when importing sentencepiece_model_pb2
  3676. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3677. from sentencepiece import SentencePieceProcessor
  3678. from sentencepiece import sentencepiece_model_pb2 as model
  3679. tokenizer_path = self.dir_model / 'tokenizer.model'
  3680. # many older models use spiece.model tokenizer model filename
  3681. if not tokenizer_path.is_file():
  3682. tokenizer_path = self.dir_model / 'spiece.model'
  3683. if not tokenizer_path.is_file():
  3684. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3685. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3686. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3687. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3688. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3689. # assure the tokenizer model file name is correct
  3690. assert tokenizer_path.name == 'tokenizer.model'
  3691. return self._set_vocab_sentencepiece()
  3692. else:
  3693. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3694. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3695. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3696. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3697. tokenizer = SentencePieceProcessor()
  3698. tokenizer.LoadFromFile(str(tokenizer_path))
  3699. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3700. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3701. scores: list[float] = [-10000.0] * vocab_size
  3702. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3703. for token_id in range(tokenizer.vocab_size()):
  3704. piece = tokenizer.IdToPiece(token_id)
  3705. text = piece.encode("utf-8")
  3706. score = tokenizer.GetScore(token_id)
  3707. toktype = SentencePieceTokenTypes.NORMAL
  3708. if tokenizer.IsUnknown(token_id):
  3709. toktype = SentencePieceTokenTypes.UNKNOWN
  3710. elif tokenizer.IsControl(token_id):
  3711. toktype = SentencePieceTokenTypes.CONTROL
  3712. elif tokenizer.IsUnused(token_id):
  3713. toktype = SentencePieceTokenTypes.UNUSED
  3714. elif tokenizer.IsByte(token_id):
  3715. toktype = SentencePieceTokenTypes.BYTE
  3716. tokens[token_id] = text
  3717. scores[token_id] = score
  3718. toktypes[token_id] = toktype
  3719. added_tokens_file = self.dir_model / 'added_tokens.json'
  3720. if added_tokens_file.is_file():
  3721. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3722. added_tokens_json = json.load(f)
  3723. for key in added_tokens_json:
  3724. token_id = added_tokens_json[key]
  3725. if token_id >= vocab_size:
  3726. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3727. continue
  3728. tokens[token_id] = key.encode("utf-8")
  3729. scores[token_id] = -1000.0
  3730. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3731. if vocab_size > len(tokens):
  3732. pad_count = vocab_size - len(tokens)
  3733. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3734. for i in range(1, pad_count + 1):
  3735. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3736. scores.append(-1000.0)
  3737. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3738. self.gguf_writer.add_tokenizer_model("t5")
  3739. self.gguf_writer.add_tokenizer_pre("default")
  3740. self.gguf_writer.add_token_list(tokens)
  3741. self.gguf_writer.add_token_scores(scores)
  3742. self.gguf_writer.add_token_types(toktypes)
  3743. self.gguf_writer.add_add_space_prefix(add_prefix)
  3744. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3745. if precompiled_charsmap:
  3746. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3747. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3748. special_vocab.add_to_gguf(self.gguf_writer)
  3749. self.gguf_writer.add_add_bos_token(False)
  3750. self.gguf_writer.add_add_eos_token(True)
  3751. def set_gguf_parameters(self):
  3752. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3753. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3754. n_ctx = 512
  3755. self.gguf_writer.add_context_length(n_ctx)
  3756. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3757. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3758. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3759. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3760. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3761. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3762. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3763. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3765. self.gguf_writer.add_file_type(self.ftype)
  3766. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3767. del bid # unused
  3768. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3769. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3770. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3771. # and decoder and ignore the remaining ones.
  3772. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3773. if not self.shared_token_embeddings_found:
  3774. name = "shared.weight"
  3775. self.shared_token_embeddings_found = True
  3776. else:
  3777. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3778. return []
  3779. return [(self.map_tensor_name(name), data_torch)]
  3780. @Model.register("JAISLMHeadModel")
  3781. class JaisModel(Model):
  3782. model_arch = gguf.MODEL_ARCH.JAIS
  3783. def __init__(self, *args, **kwargs):
  3784. super().__init__(*args, **kwargs)
  3785. # SwigLU activation
  3786. assert self.hparams["activation_function"] == "swiglu"
  3787. # ALiBi position embedding
  3788. assert self.hparams["position_embedding_type"] == "alibi"
  3789. # Embeddings scale
  3790. self.embeddings_scale = 1.0
  3791. if 'mup_embeddings_scale' in self.hparams:
  3792. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3793. elif 'embeddings_scale' in self.hparams:
  3794. self.embeddings_scale = self.hparams['embeddings_scale']
  3795. else:
  3796. assert False
  3797. self.width_scale = 1.0
  3798. if 'mup_output_alpha' in self.hparams:
  3799. assert 'mup_width_scale' in self.hparams
  3800. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3801. elif 'width_scale' in self.hparams:
  3802. self.width_scale = self.hparams['width_scale']
  3803. else:
  3804. assert False
  3805. self.max_alibi_bias = 8.0
  3806. def set_vocab(self):
  3807. self._set_vocab_gpt2()
  3808. def set_gguf_parameters(self):
  3809. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3810. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3811. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3812. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3813. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3814. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3815. self.gguf_writer.add_file_type(self.ftype)
  3816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3817. del bid # unused
  3818. tensors: list[tuple[str, Tensor]] = []
  3819. # we don't need these
  3820. if name.endswith((".attn.bias")):
  3821. return tensors
  3822. if name.endswith(("relative_pe.slopes")):
  3823. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3824. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3825. # but Jais's PyTorch model simply precalculates the slope values and places them
  3826. # in relative_pes.slopes
  3827. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3828. first_val = float(data_torch[0].item())
  3829. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3830. return tensors
  3831. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3832. data_torch = data_torch.transpose(1, 0)
  3833. new_name = self.map_tensor_name(name)
  3834. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3835. tensors.append((new_name, data_torch * self.embeddings_scale))
  3836. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3837. tensors.append((new_name, data_torch * self.width_scale))
  3838. else:
  3839. tensors.append((new_name, data_torch))
  3840. return tensors
  3841. def prepare_tensors(self):
  3842. super().prepare_tensors()
  3843. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3844. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3845. class ChatGLMModel(Model):
  3846. model_arch = gguf.MODEL_ARCH.CHATGLM
  3847. def set_vocab_chatglm3(self):
  3848. dir_model = self.dir_model
  3849. hparams = self.hparams
  3850. tokens: list[bytes] = []
  3851. toktypes: list[int] = []
  3852. scores: list[float] = []
  3853. from transformers import AutoTokenizer
  3854. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3855. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3856. assert max(tokenizer.get_vocab().values()) < vocab_size
  3857. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3858. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3859. for token_id in range(vocab_size):
  3860. piece = tokenizer._convert_id_to_token(token_id)
  3861. if token_id == 0:
  3862. piece = "<unk>"
  3863. elif token_id == 1:
  3864. piece = "<bos>"
  3865. elif token_id == 2:
  3866. piece = "<eos>"
  3867. text = piece.encode("utf-8")
  3868. score = 0.0
  3869. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3870. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3871. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3872. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3873. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3874. if piece in special_tokens:
  3875. toktype = SentencePieceTokenTypes.CONTROL
  3876. elif len(piece) == 0:
  3877. text = f"[PAD{token_id}]".encode("utf-8")
  3878. toktype = SentencePieceTokenTypes.UNUSED
  3879. else:
  3880. toktype = SentencePieceTokenTypes.USER_DEFINED
  3881. tokens.append(text)
  3882. scores.append(score)
  3883. toktypes.append(toktype)
  3884. continue
  3885. toktype = SentencePieceTokenTypes.NORMAL
  3886. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3887. toktype = SentencePieceTokenTypes.UNKNOWN
  3888. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3889. toktype = SentencePieceTokenTypes.CONTROL
  3890. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3891. toktype = SentencePieceTokenTypes.UNUSED
  3892. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3893. toktype = SentencePieceTokenTypes.BYTE
  3894. tokens.append(text)
  3895. scores.append(score)
  3896. toktypes.append(toktype)
  3897. self.gguf_writer.add_tokenizer_model("llama")
  3898. # glm3 needs prefix and suffix formatted as:
  3899. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3900. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3901. self.gguf_writer.add_token_list(tokens)
  3902. self.gguf_writer.add_token_scores(scores)
  3903. self.gguf_writer.add_token_types(toktypes)
  3904. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3905. special_vocab.add_to_gguf(self.gguf_writer)
  3906. @staticmethod
  3907. def token_bytes_to_string(b):
  3908. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3909. byte_encoder = bytes_to_unicode()
  3910. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3911. @staticmethod
  3912. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3913. parts = [bytes([b]) for b in token]
  3914. while True:
  3915. min_idx = None
  3916. min_rank = None
  3917. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3918. rank = mergeable_ranks.get(pair[0] + pair[1])
  3919. if rank is not None and (min_rank is None or rank < min_rank):
  3920. min_idx = i
  3921. min_rank = rank
  3922. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3923. break
  3924. assert min_idx is not None
  3925. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3926. return parts
  3927. def set_vocab(self):
  3928. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3929. self.set_vocab_chatglm3()
  3930. return
  3931. dir_model = self.dir_model
  3932. hparams = self.hparams
  3933. tokens: list[str] = []
  3934. toktypes: list[int] = []
  3935. from transformers import AutoTokenizer
  3936. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3937. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3938. assert max(tokenizer.get_vocab().values()) < vocab_size
  3939. tokens, toktypes, tokpre = self.get_vocab_base()
  3940. self.gguf_writer.add_tokenizer_model("gpt2")
  3941. self.gguf_writer.add_tokenizer_pre(tokpre)
  3942. self.gguf_writer.add_token_list(tokens)
  3943. self.gguf_writer.add_token_types(toktypes)
  3944. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3945. # only add special tokens when they were not already loaded from config.json
  3946. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3947. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3948. # this one is usually not in config.json anyway
  3949. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3950. special_vocab.add_to_gguf(self.gguf_writer)
  3951. def set_gguf_parameters(self):
  3952. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3953. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3954. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3955. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3956. self.gguf_writer.add_embedding_length(n_embed)
  3957. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3958. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3959. self.gguf_writer.add_head_count(n_head)
  3960. self.gguf_writer.add_head_count_kv(n_head_kv)
  3961. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3962. self.gguf_writer.add_file_type(self.ftype)
  3963. if "attention_dim" in self.hparams:
  3964. rope_dim = self.hparams["attention_dim"]
  3965. else:
  3966. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3967. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3968. self.gguf_writer.add_add_bos_token(False)
  3969. rope_freq = 10000
  3970. if "rope_ratio" in self.hparams:
  3971. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3972. self.gguf_writer.add_rope_freq_base(rope_freq)
  3973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3974. del bid # unused
  3975. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  3976. return []
  3977. name = name.removeprefix("transformer.")
  3978. return [(self.map_tensor_name(name), data_torch)]
  3979. @Model.register("NemotronForCausalLM")
  3980. class NemotronModel(Model):
  3981. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3982. def set_vocab(self):
  3983. self._set_vocab_sentencepiece()
  3984. self.gguf_writer.add_pad_token_id(0)
  3985. self.gguf_writer.add_unk_token_id(1)
  3986. def set_gguf_parameters(self):
  3987. super().set_gguf_parameters()
  3988. hparams = self.hparams
  3989. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3990. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3991. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3992. # * Partial RoPE
  3993. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3994. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3995. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3996. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3997. # * RopeScaling for Nemotron
  3998. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3999. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4000. else:
  4001. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4002. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4004. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4005. # model.layers.{l}.input_layernorm.weight
  4006. # model.layers.{l}.post_attention_layernorm.weight
  4007. # model.norm.weight
  4008. if name.endswith("norm.weight"):
  4009. data_torch = data_torch + 1
  4010. return [(self.map_tensor_name(name), data_torch)]
  4011. @Model.register("ExaoneForCausalLM")
  4012. class ExaoneModel(Model):
  4013. model_arch = gguf.MODEL_ARCH.EXAONE
  4014. def set_gguf_parameters(self):
  4015. hparams = self.hparams
  4016. assert (hparams["activation_function"] == "silu")
  4017. max_position_embeddings = hparams["max_position_embeddings"]
  4018. embed_dim = hparams["hidden_size"]
  4019. num_heads = hparams["num_attention_heads"]
  4020. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4021. layer_norm_eps = hparams["layer_norm_epsilon"]
  4022. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4023. num_layers = hparams["num_layers"]
  4024. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4025. # attention_dropout_rate = hparams["attention_dropout"]
  4026. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4027. # embed_dropout_rate = hparams["embed_dropout"]
  4028. self.gguf_writer.add_embedding_length(embed_dim)
  4029. self.gguf_writer.add_head_count(num_heads)
  4030. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4031. self.gguf_writer.add_context_length(max_position_embeddings)
  4032. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4033. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4034. self.gguf_writer.add_block_count(num_layers)
  4035. self.gguf_writer.add_file_type(self.ftype)
  4036. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4037. self.gguf_writer.add_rope_freq_base(rope_theta)
  4038. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4039. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4040. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4041. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4042. if hparams["rope_scaling"].get("type") == "linear":
  4043. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4044. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4045. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4046. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4047. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4048. base = self.hparams.get("rope_theta", 10000.0)
  4049. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4050. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4051. factor = rope_scaling.get("factor", 8.0)
  4052. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4053. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4054. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4055. low_freq_wavelen = old_context_len / low_freq_factor
  4056. high_freq_wavelen = old_context_len / high_freq_factor
  4057. assert low_freq_wavelen != high_freq_wavelen
  4058. rope_factors = []
  4059. for freq in freqs:
  4060. wavelen = 2 * math.pi / freq
  4061. if wavelen < high_freq_wavelen:
  4062. rope_factors.append(1)
  4063. elif wavelen > low_freq_wavelen:
  4064. rope_factors.append(factor)
  4065. else:
  4066. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4067. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4068. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4069. @Model.register("GraniteForCausalLM")
  4070. class GraniteModel(LlamaModel):
  4071. """Conversion for IBM's GraniteForCausalLM"""
  4072. model_arch = gguf.MODEL_ARCH.GRANITE
  4073. def set_gguf_parameters(self):
  4074. """Granite uses standard llama parameters with the following differences:
  4075. - No head_dim support
  4076. - New multiplier params:
  4077. - attention_scale
  4078. - embedding_scale
  4079. - residual_scale
  4080. - logits_scaling
  4081. """
  4082. if head_dim := self.hparams.pop("head_dim", None):
  4083. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4084. super().set_gguf_parameters()
  4085. # NOTE: Convert _multiplier params to _scale params for naming
  4086. # consistency
  4087. if attention_scale := self.hparams.get("attention_multiplier"):
  4088. self.gguf_writer.add_attention_scale(attention_scale)
  4089. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4090. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4091. self.gguf_writer.add_embedding_scale(embedding_scale)
  4092. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4093. if residual_scale := self.hparams.get("residual_multiplier"):
  4094. self.gguf_writer.add_residual_scale(residual_scale)
  4095. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4096. if logits_scale := self.hparams.get("logits_scaling"):
  4097. self.gguf_writer.add_logit_scale(logits_scale)
  4098. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4099. @Model.register("GraniteMoeForCausalLM")
  4100. class GraniteMoeModel(GraniteModel):
  4101. """Conversion for IBM's GraniteMoeForCausalLM"""
  4102. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4104. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4105. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4106. the hidden size that is then split during forward. To keep compatibility
  4107. with existing mixtral support, we pull them apart here.
  4108. """
  4109. if name.endswith("block_sparse_moe.input_linear.weight"):
  4110. ffn_dim = self.hparams["intermediate_size"]
  4111. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4112. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4113. return [
  4114. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4115. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4116. ]
  4117. return super().modify_tensors(data_torch, name, bid)
  4118. @Model.register("ChameleonForConditionalGeneration")
  4119. @Model.register("ChameleonForCausalLM") # obsolete
  4120. class ChameleonModel(Model):
  4121. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4122. def set_gguf_parameters(self):
  4123. super().set_gguf_parameters()
  4124. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4125. def set_vocab(self):
  4126. self._set_vocab_gpt2()
  4127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4128. # ignore image tokenizer for now
  4129. # TODO: remove this once image support is implemented for Chameleon
  4130. if name.startswith("model.vqmodel"):
  4131. return []
  4132. n_head = self.hparams["num_attention_heads"]
  4133. n_kv_head = self.hparams.get("num_key_value_heads")
  4134. hidden_dim = self.hparams.get("hidden_size")
  4135. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4136. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4137. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4138. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4139. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4140. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4141. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4142. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4143. return [(self.map_tensor_name(name), data_torch)]
  4144. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4145. @staticmethod
  4146. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4147. head_dim = hidden_dim // n_heads
  4148. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4149. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4150. return data_torch
  4151. ###### CONVERSION LOGIC ######
  4152. # tree of lazy tensors
  4153. class LazyTorchTensor(gguf.LazyBase):
  4154. _tensor_type = torch.Tensor
  4155. # to keep the type-checker happy
  4156. dtype: torch.dtype
  4157. shape: torch.Size
  4158. # only used when converting a torch.Tensor to a np.ndarray
  4159. _dtype_map: dict[torch.dtype, type] = {
  4160. torch.float16: np.float16,
  4161. torch.float32: np.float32,
  4162. }
  4163. # used for safetensors slices
  4164. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4165. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4166. _dtype_str_map: dict[str, torch.dtype] = {
  4167. "F64": torch.float64,
  4168. "F32": torch.float32,
  4169. "BF16": torch.bfloat16,
  4170. "F16": torch.float16,
  4171. # "U64": torch.uint64,
  4172. "I64": torch.int64,
  4173. # "U32": torch.uint32,
  4174. "I32": torch.int32,
  4175. # "U16": torch.uint16,
  4176. "I16": torch.int16,
  4177. "U8": torch.uint8,
  4178. "I8": torch.int8,
  4179. "BOOL": torch.bool,
  4180. "F8_E4M3": torch.float8_e4m3fn,
  4181. "F8_E5M2": torch.float8_e5m2,
  4182. }
  4183. def numpy(self) -> gguf.LazyNumpyTensor:
  4184. dtype = self._dtype_map[self.dtype]
  4185. return gguf.LazyNumpyTensor(
  4186. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4187. args=(self,),
  4188. func=(lambda s: s.numpy())
  4189. )
  4190. @classmethod
  4191. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4192. return torch.empty(size=shape, dtype=dtype, device="meta")
  4193. @classmethod
  4194. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4195. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4196. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4197. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4198. return cast(torch.Tensor, lazy)
  4199. @classmethod
  4200. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4201. del types # unused
  4202. if kwargs is None:
  4203. kwargs = {}
  4204. if func is torch.Tensor.numpy:
  4205. return args[0].numpy()
  4206. return cls._wrap_fn(func)(*args, **kwargs)
  4207. def parse_args() -> argparse.Namespace:
  4208. parser = argparse.ArgumentParser(
  4209. description="Convert a huggingface model to a GGML compatible file")
  4210. parser.add_argument(
  4211. "--vocab-only", action="store_true",
  4212. help="extract only the vocab",
  4213. )
  4214. parser.add_argument(
  4215. "--outfile", type=Path,
  4216. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4217. )
  4218. parser.add_argument(
  4219. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4220. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4221. )
  4222. parser.add_argument(
  4223. "--bigendian", action="store_true",
  4224. help="model is executed on big endian machine",
  4225. )
  4226. parser.add_argument(
  4227. "model", type=Path,
  4228. help="directory containing model file",
  4229. nargs="?",
  4230. )
  4231. parser.add_argument(
  4232. "--use-temp-file", action="store_true",
  4233. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4234. )
  4235. parser.add_argument(
  4236. "--no-lazy", action="store_true",
  4237. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4238. )
  4239. parser.add_argument(
  4240. "--model-name", type=str, default=None,
  4241. help="name of the model",
  4242. )
  4243. parser.add_argument(
  4244. "--verbose", action="store_true",
  4245. help="increase output verbosity",
  4246. )
  4247. parser.add_argument(
  4248. "--split-max-tensors", type=int, default=0,
  4249. help="max tensors in each split",
  4250. )
  4251. parser.add_argument(
  4252. "--split-max-size", type=str, default="0",
  4253. help="max size per split N(M|G)",
  4254. )
  4255. parser.add_argument(
  4256. "--dry-run", action="store_true",
  4257. help="only print out a split plan and exit, without writing any new files",
  4258. )
  4259. parser.add_argument(
  4260. "--no-tensor-first-split", action="store_true",
  4261. help="do not add tensors to the first split (disabled by default)"
  4262. )
  4263. parser.add_argument(
  4264. "--metadata", type=Path,
  4265. help="Specify the path for an authorship metadata override file"
  4266. )
  4267. parser.add_argument(
  4268. "--print-supported-models", action="store_true",
  4269. help="Print the supported models"
  4270. )
  4271. args = parser.parse_args()
  4272. if not args.print_supported_models and args.model is None:
  4273. parser.error("the following arguments are required: model")
  4274. return args
  4275. def split_str_to_n_bytes(split_str: str) -> int:
  4276. if split_str.endswith("K"):
  4277. n = int(split_str[:-1]) * 1000
  4278. elif split_str.endswith("M"):
  4279. n = int(split_str[:-1]) * 1000 * 1000
  4280. elif split_str.endswith("G"):
  4281. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4282. elif split_str.isnumeric():
  4283. n = int(split_str)
  4284. else:
  4285. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4286. if n < 0:
  4287. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4288. return n
  4289. def main() -> None:
  4290. args = parse_args()
  4291. if args.print_supported_models:
  4292. logger.error("Supported models:")
  4293. Model.print_registered_models()
  4294. sys.exit(0)
  4295. if args.verbose:
  4296. logging.basicConfig(level=logging.DEBUG)
  4297. else:
  4298. logging.basicConfig(level=logging.INFO)
  4299. dir_model = args.model
  4300. if not dir_model.is_dir():
  4301. logger.error(f'Error: {args.model} is not a directory')
  4302. sys.exit(1)
  4303. ftype_map: dict[str, gguf.LlamaFileType] = {
  4304. "f32": gguf.LlamaFileType.ALL_F32,
  4305. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4306. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4307. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4308. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4309. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4310. "auto": gguf.LlamaFileType.GUESSED,
  4311. }
  4312. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4313. if args.use_temp_file and is_split:
  4314. logger.error("Error: Cannot use temp file when splitting")
  4315. sys.exit(1)
  4316. if args.outfile is not None:
  4317. fname_out = args.outfile
  4318. else:
  4319. fname_out = dir_model
  4320. logger.info(f"Loading model: {dir_model.name}")
  4321. hparams = Model.load_hparams(dir_model)
  4322. with torch.inference_mode():
  4323. output_type = ftype_map[args.outtype]
  4324. model_architecture = hparams["architectures"][0]
  4325. try:
  4326. model_class = Model.from_model_architecture(model_architecture)
  4327. except NotImplementedError:
  4328. logger.error(f"Model {model_architecture} is not supported")
  4329. sys.exit(1)
  4330. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4331. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4332. eager=args.no_lazy,
  4333. metadata_override=args.metadata, model_name=args.model_name,
  4334. split_max_tensors=args.split_max_tensors,
  4335. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4336. small_first_shard=args.no_tensor_first_split)
  4337. if args.vocab_only:
  4338. logger.info("Exporting model vocab...")
  4339. model_instance.write_vocab()
  4340. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4341. else:
  4342. logger.info("Exporting model...")
  4343. model_instance.write()
  4344. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4345. logger.info(f"Model successfully exported to {out_path}")
  4346. if __name__ == '__main__':
  4347. main()