convert_hf_to_gguf.py 224 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.POSNET_NORM1,
  274. gguf.MODEL_TENSOR.POSNET_NORM2,
  275. )
  276. )
  277. or not new_name.endswith(".weight")
  278. ):
  279. data_qtype = gguf.GGMLQuantizationType.F32
  280. if data_qtype is False and any(
  281. self.match_model_tensor_name(new_name, key, bid)
  282. for key in (
  283. gguf.MODEL_TENSOR.TOKEN_EMBD,
  284. gguf.MODEL_TENSOR.OUTPUT,
  285. )
  286. ):
  287. if self.ftype in (
  288. gguf.LlamaFileType.MOSTLY_TQ1_0,
  289. gguf.LlamaFileType.MOSTLY_TQ2_0,
  290. ):
  291. # TODO: use Q4_K and Q6_K
  292. data_qtype = gguf.GGMLQuantizationType.F16
  293. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  294. if isinstance(data_qtype, bool):
  295. if self.ftype == gguf.LlamaFileType.ALL_F32:
  296. data_qtype = gguf.GGMLQuantizationType.F32
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  300. data_qtype = gguf.GGMLQuantizationType.BF16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  302. data_qtype = gguf.GGMLQuantizationType.Q8_0
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  304. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  307. else:
  308. raise ValueError(f"Unknown file type: {self.ftype.name}")
  309. try:
  310. data = gguf.quants.quantize(data, data_qtype)
  311. except gguf.QuantError as e:
  312. logger.warning("%s, %s", e, "falling back to F16")
  313. data_qtype = gguf.GGMLQuantizationType.F16
  314. data = gguf.quants.quantize(data, data_qtype)
  315. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  316. # reverse shape to make it similar to the internal ggml dimension order
  317. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  318. # n_dims is implicit in the shape
  319. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  320. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  321. def set_type(self):
  322. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  323. def prepare_metadata(self, vocab_only: bool):
  324. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  325. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  326. # Fallback to model directory name if metadata name is still missing
  327. if self.metadata.name is None:
  328. self.metadata.name = self.dir_model.name
  329. # Generate parameter weight class (useful for leader boards) if not yet determined
  330. if self.metadata.size_label is None and total_params > 0:
  331. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  332. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  333. output_type: str = self.ftype.name.partition("_")[2]
  334. # Filename Output
  335. if self.fname_out.is_dir():
  336. # Generate default filename based on model specification and available metadata
  337. if not vocab_only:
  338. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  339. else:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  341. # Use the default filename
  342. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  343. else:
  344. # Output path is a custom defined templated filename
  345. # Note: `not is_dir()` is used because `.is_file()` will not detect
  346. # file template strings as it doesn't actually exist as a file
  347. # Process templated file name with the output ftype, useful with the "auto" ftype
  348. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  349. self.set_type()
  350. logger.info("Set meta model")
  351. self.metadata.set_gguf_meta_model(self.gguf_writer)
  352. logger.info("Set model parameters")
  353. self.set_gguf_parameters()
  354. logger.info("Set model tokenizer")
  355. self.set_vocab()
  356. logger.info("Set model quantization version")
  357. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  358. def write(self):
  359. self.prepare_tensors()
  360. self.prepare_metadata(vocab_only=False)
  361. self.gguf_writer.write_header_to_file(path=self.fname_out)
  362. self.gguf_writer.write_kv_data_to_file()
  363. self.gguf_writer.write_tensors_to_file(progress=True)
  364. self.gguf_writer.close()
  365. def write_vocab(self):
  366. if len(self.gguf_writer.tensors) != 1:
  367. raise ValueError('Splitting the vocabulary is not supported')
  368. self.prepare_metadata(vocab_only=True)
  369. self.gguf_writer.write_header_to_file(path=self.fname_out)
  370. self.gguf_writer.write_kv_data_to_file()
  371. self.gguf_writer.close()
  372. @staticmethod
  373. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  374. part_names: list[str] = []
  375. for filename in os.listdir(dir_model):
  376. if filename.startswith(prefix) and filename.endswith(suffix):
  377. part_names.append(filename)
  378. part_names.sort()
  379. return part_names
  380. @staticmethod
  381. def load_hparams(dir_model: Path):
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. return json.load(f)
  384. @classmethod
  385. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  386. assert names
  387. def func(modelcls: AnyModel) -> AnyModel:
  388. for name in names:
  389. cls._model_classes[name] = modelcls
  390. return modelcls
  391. return func
  392. @classmethod
  393. def from_model_architecture(cls, arch: str) -> type[Model]:
  394. try:
  395. return cls._model_classes[arch]
  396. except KeyError:
  397. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  398. def does_token_look_special(self, token: str | bytes) -> bool:
  399. if isinstance(token, (bytes, bytearray)):
  400. token_text = token.decode(encoding="utf-8")
  401. elif isinstance(token, memoryview):
  402. token_text = token.tobytes().decode(encoding="utf-8")
  403. else:
  404. token_text = token
  405. # Some models mark some added tokens which ought to be control tokens as not special.
  406. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  407. seems_special = token_text in (
  408. "<pad>", # deepseek-coder
  409. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  410. )
  411. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  412. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  413. # TODO: should these be marked as UNUSED instead? (maybe not)
  414. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  415. return seems_special
  416. # used for GPT-2 BPE and WordPiece vocabs
  417. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  418. tokens: list[str] = []
  419. toktypes: list[int] = []
  420. from transformers import AutoTokenizer
  421. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  422. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  423. assert max(tokenizer.vocab.values()) < vocab_size
  424. tokpre = self.get_vocab_base_pre(tokenizer)
  425. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  426. added_vocab = tokenizer.get_added_vocab()
  427. for i in range(vocab_size):
  428. if i not in reverse_vocab:
  429. tokens.append(f"[PAD{i}]")
  430. toktypes.append(gguf.TokenType.UNUSED)
  431. else:
  432. token: str = reverse_vocab[i]
  433. if token in added_vocab:
  434. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  435. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  436. if not tokenizer.added_tokens_decoder[i].normalized:
  437. previous_token = token
  438. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  439. if previous_token != token:
  440. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  441. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  442. toktypes.append(gguf.TokenType.CONTROL)
  443. else:
  444. # NOTE: this was added for Gemma.
  445. # Encoding and decoding the tokens above isn't sufficient for this case.
  446. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  447. toktypes.append(gguf.TokenType.USER_DEFINED)
  448. else:
  449. toktypes.append(gguf.TokenType.NORMAL)
  450. tokens.append(token)
  451. return tokens, toktypes, tokpre
  452. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  453. # do not modify it manually!
  454. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  455. # Marker: Start get_vocab_base_pre
  456. def get_vocab_base_pre(self, tokenizer) -> str:
  457. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  458. # is specific for the BPE pre-tokenizer used by the model
  459. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  460. # use in llama.cpp to implement the same pre-tokenizer
  461. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  462. chktok = tokenizer.encode(chktxt)
  463. chkhsh = sha256(str(chktok).encode()).hexdigest()
  464. logger.debug(f"chktok: {chktok}")
  465. logger.debug(f"chkhsh: {chkhsh}")
  466. res = None
  467. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  468. # or pull the latest version of the model from Huggingface
  469. # don't edit the hashes manually!
  470. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  471. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  472. res = "llama-bpe"
  473. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  474. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  475. res = "deepseek-llm"
  476. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  477. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  478. res = "deepseek-coder"
  479. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  480. # ref: https://huggingface.co/tiiuae/falcon-7b
  481. res = "falcon"
  482. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  483. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  484. res = "falcon3"
  485. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  486. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  487. res = "bert-bge"
  488. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  489. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  490. res = "bert-bge-large"
  491. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  492. # ref: https://huggingface.co/mosaicml/mpt-7b
  493. res = "mpt"
  494. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  495. # ref: https://huggingface.co/bigcode/starcoder2-3b
  496. res = "starcoder"
  497. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  498. # ref: https://huggingface.co/openai-community/gpt2
  499. res = "gpt-2"
  500. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  501. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  502. res = "stablelm2"
  503. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  504. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  505. res = "refact"
  506. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  507. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  508. res = "command-r"
  509. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  510. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  511. res = "qwen2"
  512. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  513. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  514. res = "olmo"
  515. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  516. # ref: https://huggingface.co/databricks/dbrx-base
  517. res = "dbrx"
  518. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  519. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  520. res = "jina-v1-en"
  521. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  522. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  523. res = "jina-v2-en"
  524. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  525. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  526. res = "jina-v2-es"
  527. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  528. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  529. res = "jina-v2-de"
  530. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  531. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  532. res = "smaug-bpe"
  533. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  534. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  535. res = "poro-chat"
  536. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  537. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  538. res = "jina-v2-code"
  539. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  540. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  541. res = "chatglm-bpe"
  542. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  543. # ref: https://huggingface.co/LumiOpen/Viking-7B
  544. res = "viking"
  545. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  546. # ref: https://huggingface.co/core42/jais-13b
  547. res = "jais"
  548. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  549. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  550. res = "codeshell"
  551. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  552. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  553. res = "tekken"
  554. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  555. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  556. res = "smollm"
  557. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  558. # ref: https://huggingface.co/bigscience/bloom
  559. res = "bloom"
  560. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  561. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  562. res = "gpt3-finnish"
  563. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  564. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  565. res = "exaone"
  566. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  567. # ref: https://huggingface.co/microsoft/phi-2
  568. res = "phi-2"
  569. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  570. # ref: https://huggingface.co/facebook/chameleon-7b
  571. res = "chameleon"
  572. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  573. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  574. res = "minerva-7b"
  575. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  576. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  577. res = "roberta-bpe"
  578. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  579. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  580. res = "gigachat"
  581. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  582. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  583. res = "megrez"
  584. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  585. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  586. res = "deepseek-v3"
  587. if res is None:
  588. logger.warning("\n")
  589. logger.warning("**************************************************************************************")
  590. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  591. logger.warning("** There are 2 possible reasons for this:")
  592. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  593. logger.warning("** - the pre-tokenization config has changed upstream")
  594. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  595. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  596. logger.warning("**")
  597. logger.warning(f"** chkhsh: {chkhsh}")
  598. logger.warning("**************************************************************************************")
  599. logger.warning("\n")
  600. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  601. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  602. logger.debug(f"chkhsh: {chkhsh}")
  603. return res
  604. # Marker: End get_vocab_base_pre
  605. def _set_vocab_none(self) -> None:
  606. self.gguf_writer.add_tokenizer_model("none")
  607. def _set_vocab_gpt2(self) -> None:
  608. tokens, toktypes, tokpre = self.get_vocab_base()
  609. self.gguf_writer.add_tokenizer_model("gpt2")
  610. self.gguf_writer.add_tokenizer_pre(tokpre)
  611. self.gguf_writer.add_token_list(tokens)
  612. self.gguf_writer.add_token_types(toktypes)
  613. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  614. special_vocab.add_to_gguf(self.gguf_writer)
  615. def _set_vocab_qwen(self):
  616. dir_model = self.dir_model
  617. hparams = self.hparams
  618. tokens: list[str] = []
  619. toktypes: list[int] = []
  620. from transformers import AutoTokenizer
  621. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  622. vocab_size = hparams["vocab_size"]
  623. assert max(tokenizer.get_vocab().values()) < vocab_size
  624. tokpre = self.get_vocab_base_pre(tokenizer)
  625. merges = []
  626. vocab = {}
  627. mergeable_ranks = tokenizer.mergeable_ranks
  628. for token, rank in mergeable_ranks.items():
  629. vocab[QwenModel.token_bytes_to_string(token)] = rank
  630. if len(token) == 1:
  631. continue
  632. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  633. assert len(merged) == 2
  634. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  635. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  636. added_vocab = tokenizer.special_tokens
  637. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  638. for i in range(vocab_size):
  639. if i not in reverse_vocab:
  640. tokens.append(f"[PAD{i}]")
  641. toktypes.append(gguf.TokenType.UNUSED)
  642. elif reverse_vocab[i] in added_vocab:
  643. tokens.append(reverse_vocab[i])
  644. toktypes.append(gguf.TokenType.CONTROL)
  645. else:
  646. tokens.append(reverse_vocab[i])
  647. toktypes.append(gguf.TokenType.NORMAL)
  648. self.gguf_writer.add_tokenizer_model("gpt2")
  649. self.gguf_writer.add_tokenizer_pre(tokpre)
  650. self.gguf_writer.add_token_list(tokens)
  651. self.gguf_writer.add_token_types(toktypes)
  652. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  653. special_vocab.merges = merges
  654. # only add special tokens when they were not already loaded from config.json
  655. if len(special_vocab.special_token_ids) == 0:
  656. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  657. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  658. # this one is usually not in config.json anyway
  659. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  660. special_vocab.add_to_gguf(self.gguf_writer)
  661. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  662. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  663. self.gguf_writer.add_tokenizer_model("llama")
  664. self.gguf_writer.add_tokenizer_pre("default")
  665. self.gguf_writer.add_token_list(tokens)
  666. self.gguf_writer.add_token_scores(scores)
  667. self.gguf_writer.add_token_types(toktypes)
  668. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  669. special_vocab.add_to_gguf(self.gguf_writer)
  670. def _create_vocab_sentencepiece(self):
  671. from sentencepiece import SentencePieceProcessor
  672. tokenizer_path = self.dir_model / 'tokenizer.model'
  673. if not tokenizer_path.is_file():
  674. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  675. tokenizer = SentencePieceProcessor()
  676. tokenizer.LoadFromFile(str(tokenizer_path))
  677. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  678. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  679. scores: list[float] = [-10000.0] * vocab_size
  680. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  681. for token_id in range(tokenizer.vocab_size()):
  682. piece = tokenizer.IdToPiece(token_id)
  683. text = piece.encode("utf-8")
  684. score = tokenizer.GetScore(token_id)
  685. toktype = SentencePieceTokenTypes.NORMAL
  686. if tokenizer.IsUnknown(token_id):
  687. toktype = SentencePieceTokenTypes.UNKNOWN
  688. elif tokenizer.IsControl(token_id):
  689. toktype = SentencePieceTokenTypes.CONTROL
  690. elif tokenizer.IsUnused(token_id):
  691. toktype = SentencePieceTokenTypes.UNUSED
  692. elif tokenizer.IsByte(token_id):
  693. toktype = SentencePieceTokenTypes.BYTE
  694. tokens[token_id] = text
  695. scores[token_id] = score
  696. toktypes[token_id] = toktype
  697. added_tokens_file = self.dir_model / 'added_tokens.json'
  698. if added_tokens_file.is_file():
  699. with open(added_tokens_file, "r", encoding="utf-8") as f:
  700. added_tokens_json = json.load(f)
  701. for key in added_tokens_json:
  702. token_id = added_tokens_json[key]
  703. if token_id >= vocab_size:
  704. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  705. continue
  706. tokens[token_id] = key.encode("utf-8")
  707. scores[token_id] = -1000.0
  708. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  709. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  710. if tokenizer_config_file.is_file():
  711. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  712. tokenizer_config_json = json.load(f)
  713. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  714. for token_id, token_data in added_tokens_decoder.items():
  715. token_id = int(token_id)
  716. token: str = token_data["content"]
  717. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  718. if tokens[token_id] != token.encode("utf-8"):
  719. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  720. if token_data.get("special") or self.does_token_look_special(token):
  721. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  722. else:
  723. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  724. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  725. scores[token_id] = -1000.0
  726. tokens[token_id] = token.encode("utf-8")
  727. if vocab_size > len(tokens):
  728. pad_count = vocab_size - len(tokens)
  729. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  730. for i in range(1, pad_count + 1):
  731. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  732. scores.append(-1000.0)
  733. toktypes.append(SentencePieceTokenTypes.UNUSED)
  734. return tokens, scores, toktypes
  735. def _set_vocab_llama_hf(self):
  736. vocab = gguf.LlamaHfVocab(self.dir_model)
  737. tokens = []
  738. scores = []
  739. toktypes = []
  740. for text, score, toktype in vocab.all_tokens():
  741. tokens.append(text)
  742. scores.append(score)
  743. toktypes.append(toktype)
  744. assert len(tokens) == vocab.vocab_size
  745. self.gguf_writer.add_tokenizer_model("llama")
  746. self.gguf_writer.add_tokenizer_pre("default")
  747. self.gguf_writer.add_token_list(tokens)
  748. self.gguf_writer.add_token_scores(scores)
  749. self.gguf_writer.add_token_types(toktypes)
  750. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  751. special_vocab.add_to_gguf(self.gguf_writer)
  752. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  753. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  754. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  755. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  756. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  757. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  758. assert field # tokenizer model
  759. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  760. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  761. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  762. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  763. assert field # token list
  764. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  765. if model_name == "llama-spm":
  766. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  767. assert field # token scores
  768. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  769. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  770. assert field # token types
  771. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  772. if model_name != "llama-spm":
  773. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  774. assert field # token merges
  775. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  776. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  777. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  778. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  779. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  780. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  781. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  782. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  783. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  784. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  785. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  786. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  787. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  788. @Model.register("GPTNeoXForCausalLM")
  789. class GPTNeoXModel(Model):
  790. model_arch = gguf.MODEL_ARCH.GPTNEOX
  791. def set_gguf_parameters(self):
  792. block_count = self.hparams["num_hidden_layers"]
  793. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  794. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  795. self.gguf_writer.add_block_count(block_count)
  796. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  797. self.gguf_writer.add_rope_dimension_count(
  798. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  799. )
  800. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  801. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  802. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  803. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  804. del bid # unused
  805. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  806. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  807. tensors: list[tuple[str, Tensor]] = []
  808. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  809. # Map bloom-style qkv_linear to gpt-style qkv_linear
  810. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  811. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  812. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  813. data_torch = torch.cat(
  814. (
  815. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  816. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  817. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  818. ),
  819. dim=0,
  820. )
  821. logger.info("re-format attention.linear_qkv.weight")
  822. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  823. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  824. data_torch = torch.cat(
  825. (
  826. qkv_bias[:, 0, :].reshape((n_embed,)),
  827. qkv_bias[:, 1, :].reshape((n_embed,)),
  828. qkv_bias[:, 2, :].reshape((n_embed,)),
  829. ),
  830. dim=0,
  831. )
  832. logger.info("re-format attention.linear_qkv.bias")
  833. tensors.append((self.map_tensor_name(name), data_torch))
  834. return tensors
  835. @Model.register("BloomForCausalLM", "BloomModel")
  836. class BloomModel(Model):
  837. model_arch = gguf.MODEL_ARCH.BLOOM
  838. def set_gguf_parameters(self):
  839. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  840. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  841. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  842. self.gguf_writer.add_embedding_length(n_embed)
  843. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  844. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  845. self.gguf_writer.add_head_count(n_head)
  846. self.gguf_writer.add_head_count_kv(n_head)
  847. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  848. self.gguf_writer.add_file_type(self.ftype)
  849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  850. del bid # unused
  851. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  852. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  853. name = re.sub(r'transformer\.', '', name)
  854. tensors: list[tuple[str, Tensor]] = []
  855. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  856. # Map bloom-style qkv_linear to gpt-style qkv_linear
  857. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  858. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  859. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  860. data_torch = torch.cat(
  861. (
  862. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  863. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  864. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  865. ),
  866. dim=0,
  867. )
  868. logger.info("re-format attention.linear_qkv.weight")
  869. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  870. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  871. data_torch = torch.cat(
  872. (
  873. qkv_bias[:, 0, :].reshape((n_embed,)),
  874. qkv_bias[:, 1, :].reshape((n_embed,)),
  875. qkv_bias[:, 2, :].reshape((n_embed,)),
  876. ),
  877. dim=0,
  878. )
  879. logger.info("re-format attention.linear_qkv.bias")
  880. tensors.append((self.map_tensor_name(name), data_torch))
  881. if name == "word_embeddings.weight":
  882. assert self.tensor_names is not None
  883. # TODO: tie them at runtime, don't duplicate in the model file
  884. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  885. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  886. return tensors
  887. @Model.register("MPTForCausalLM")
  888. class MPTModel(Model):
  889. model_arch = gguf.MODEL_ARCH.MPT
  890. def set_vocab(self):
  891. try:
  892. self._set_vocab_gpt2()
  893. except Exception:
  894. # Fallback for SEA-LION model
  895. self._set_vocab_sentencepiece()
  896. self.gguf_writer.add_add_bos_token(False)
  897. self.gguf_writer.add_pad_token_id(3)
  898. self.gguf_writer.add_eos_token_id(1)
  899. self.gguf_writer.add_unk_token_id(0)
  900. def set_gguf_parameters(self):
  901. block_count = self.hparams["n_layers"]
  902. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  903. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  904. self.gguf_writer.add_block_count(block_count)
  905. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  906. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  907. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  908. self.gguf_writer.add_head_count_kv(kv_n_heads)
  909. self.gguf_writer.add_layer_norm_eps(1e-5)
  910. if self.hparams["attn_config"]["clip_qkv"] is not None:
  911. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  912. if self.hparams["attn_config"]["alibi"]:
  913. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  914. else:
  915. self.gguf_writer.add_max_alibi_bias(0.0)
  916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  917. del bid # unused
  918. if "scales" in name:
  919. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  920. new_name = new_name.replace("scales", "act.scales")
  921. else:
  922. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  923. return [(new_name, data_torch)]
  924. @Model.register("OrionForCausalLM")
  925. class OrionModel(Model):
  926. model_arch = gguf.MODEL_ARCH.ORION
  927. def set_vocab(self):
  928. self._set_vocab_sentencepiece()
  929. def set_gguf_parameters(self):
  930. block_count = self.hparams["num_hidden_layers"]
  931. head_count = self.hparams["num_attention_heads"]
  932. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  933. ctx_length = 0
  934. if "max_sequence_length" in self.hparams:
  935. ctx_length = self.hparams["max_sequence_length"]
  936. elif "max_position_embeddings" in self.hparams:
  937. ctx_length = self.hparams["max_position_embeddings"]
  938. elif "model_max_length" in self.hparams:
  939. ctx_length = self.hparams["model_max_length"]
  940. else:
  941. raise ValueError("gguf: can not find ctx length parameter.")
  942. self.gguf_writer.add_file_type(self.ftype)
  943. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  944. self.gguf_writer.add_context_length(ctx_length)
  945. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  946. self.gguf_writer.add_block_count(block_count)
  947. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  948. self.gguf_writer.add_head_count(head_count)
  949. self.gguf_writer.add_head_count_kv(head_count_kv)
  950. # note: config provides rms norm but it is actually layer norm
  951. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  952. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  953. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  954. class BaichuanModel(Model):
  955. model_arch = gguf.MODEL_ARCH.BAICHUAN
  956. def set_vocab(self):
  957. self._set_vocab_sentencepiece()
  958. def set_gguf_parameters(self):
  959. block_count = self.hparams["num_hidden_layers"]
  960. head_count = self.hparams["num_attention_heads"]
  961. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  962. ctx_length = 0
  963. if "max_sequence_length" in self.hparams:
  964. ctx_length = self.hparams["max_sequence_length"]
  965. elif "max_position_embeddings" in self.hparams:
  966. ctx_length = self.hparams["max_position_embeddings"]
  967. elif "model_max_length" in self.hparams:
  968. ctx_length = self.hparams["model_max_length"]
  969. else:
  970. raise ValueError("gguf: can not find ctx length parameter.")
  971. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  972. self.gguf_writer.add_context_length(ctx_length)
  973. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  974. self.gguf_writer.add_block_count(block_count)
  975. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  976. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  977. self.gguf_writer.add_head_count(head_count)
  978. self.gguf_writer.add_head_count_kv(head_count_kv)
  979. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  980. self.gguf_writer.add_file_type(self.ftype)
  981. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  982. if self.hparams["rope_scaling"].get("type") == "linear":
  983. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  984. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  985. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  986. head_count = self.hparams["num_attention_heads"]
  987. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  988. tensors: list[tuple[str, Tensor]] = []
  989. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  990. logger.info(f"Unpacking and permuting layer {bid}")
  991. tensors = [
  992. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  993. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  994. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  995. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  996. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  997. self._reverse_hf_part(data_torch, 2)),
  998. ]
  999. else:
  1000. tensors = [(self.map_tensor_name(name), data_torch)]
  1001. return tensors
  1002. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1003. if n_kv_head is not None and n_head != n_kv_head:
  1004. n_head //= n_kv_head
  1005. return (
  1006. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1007. .swapaxes(1, 2)
  1008. .reshape(weights.shape)
  1009. )
  1010. def _reverse_hf_permute_part(
  1011. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1012. ) -> Tensor:
  1013. r = weights.shape[0] // 3
  1014. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1015. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1016. r = weights.shape[0] // 3
  1017. return weights[r * n_part:r * n_part + r, ...]
  1018. @Model.register("XverseForCausalLM")
  1019. class XverseModel(Model):
  1020. model_arch = gguf.MODEL_ARCH.XVERSE
  1021. def set_vocab(self):
  1022. assert (self.dir_model / "tokenizer.json").is_file()
  1023. dir_model = self.dir_model
  1024. hparams = self.hparams
  1025. tokens: list[bytes] = []
  1026. toktypes: list[int] = []
  1027. from transformers import AutoTokenizer
  1028. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1029. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1030. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1031. # because vocab_size is the count of items, and indexes start at 0.
  1032. max_vocab_index = max(tokenizer.get_vocab().values())
  1033. if max_vocab_index >= vocab_size:
  1034. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1035. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1036. added_vocab = tokenizer.get_added_vocab()
  1037. for token_id in range(vocab_size):
  1038. token_text = reverse_vocab[token_id].encode('utf-8')
  1039. # replace "\x00" to string with length > 0
  1040. if token_text == b"\x00":
  1041. toktype = gguf.TokenType.BYTE # special
  1042. token_text = f"<{token_text}>".encode('utf-8')
  1043. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1044. toktype = gguf.TokenType.BYTE # special
  1045. elif reverse_vocab[token_id] in added_vocab:
  1046. if tokenizer.added_tokens_decoder[token_id].special:
  1047. toktype = gguf.TokenType.CONTROL
  1048. else:
  1049. toktype = gguf.TokenType.USER_DEFINED
  1050. else:
  1051. toktype = gguf.TokenType.NORMAL
  1052. tokens.append(token_text)
  1053. toktypes.append(toktype)
  1054. self.gguf_writer.add_tokenizer_model("llama")
  1055. self.gguf_writer.add_tokenizer_pre("default")
  1056. self.gguf_writer.add_token_list(tokens)
  1057. self.gguf_writer.add_token_types(toktypes)
  1058. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1059. special_vocab.add_to_gguf(self.gguf_writer)
  1060. def set_gguf_parameters(self):
  1061. block_count = self.hparams["num_hidden_layers"]
  1062. head_count = self.hparams["num_attention_heads"]
  1063. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1064. ctx_length = 0
  1065. if "max_sequence_length" in self.hparams:
  1066. ctx_length = self.hparams["max_sequence_length"]
  1067. elif "max_position_embeddings" in self.hparams:
  1068. ctx_length = self.hparams["max_position_embeddings"]
  1069. elif "model_max_length" in self.hparams:
  1070. ctx_length = self.hparams["model_max_length"]
  1071. else:
  1072. raise ValueError("gguf: can not find ctx length parameter.")
  1073. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1074. self.gguf_writer.add_context_length(ctx_length)
  1075. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1076. self.gguf_writer.add_block_count(block_count)
  1077. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1078. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1079. self.gguf_writer.add_head_count(head_count)
  1080. self.gguf_writer.add_head_count_kv(head_count_kv)
  1081. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1082. self.gguf_writer.add_file_type(self.ftype)
  1083. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1084. if self.hparams["rope_scaling"].get("type") == "linear":
  1085. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1086. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1087. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1088. del bid # unused
  1089. head_count = self.hparams["num_attention_heads"]
  1090. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1091. # HF models permute some of the tensors, so we need to undo that
  1092. if name.endswith("q_proj.weight"):
  1093. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1094. if name.endswith("k_proj.weight"):
  1095. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1096. return [(self.map_tensor_name(name), data_torch)]
  1097. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1098. if n_kv_head is not None and n_head != n_kv_head:
  1099. n_head //= n_kv_head
  1100. return (
  1101. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1102. .swapaxes(1, 2)
  1103. .reshape(weights.shape)
  1104. )
  1105. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1106. class FalconModel(Model):
  1107. model_arch = gguf.MODEL_ARCH.FALCON
  1108. def set_gguf_parameters(self):
  1109. block_count = self.hparams.get("num_hidden_layers")
  1110. if block_count is None:
  1111. block_count = self.hparams["n_layer"] # old name
  1112. n_head = self.hparams.get("num_attention_heads")
  1113. if n_head is None:
  1114. n_head = self.hparams["n_head"] # old name
  1115. n_head_kv = self.hparams.get("num_kv_heads")
  1116. if n_head_kv is None:
  1117. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1118. self.gguf_writer.add_context_length(2048) # not in config.json
  1119. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1120. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1121. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1122. self.gguf_writer.add_block_count(block_count)
  1123. self.gguf_writer.add_head_count(n_head)
  1124. self.gguf_writer.add_head_count_kv(n_head_kv)
  1125. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1126. self.gguf_writer.add_file_type(self.ftype)
  1127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1128. del bid # unused
  1129. # QKV tensor transform
  1130. # The original query_key_value tensor contains n_head_kv "kv groups",
  1131. # each consisting of n_head/n_head_kv query weights followed by one key
  1132. # and one value weight (shared by all query heads in the kv group).
  1133. # This layout makes it a big pain to work with in GGML.
  1134. # So we rearrange them here,, so that we have n_head query weights
  1135. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1136. # in contiguous fashion.
  1137. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1138. if "query_key_value" in name:
  1139. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1140. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1141. head_dim = self.hparams["hidden_size"] // n_head
  1142. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1143. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1144. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1145. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1146. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1147. return [(self.map_tensor_name(name), data_torch)]
  1148. @Model.register("GPTBigCodeForCausalLM")
  1149. class StarCoderModel(Model):
  1150. model_arch = gguf.MODEL_ARCH.STARCODER
  1151. def set_gguf_parameters(self):
  1152. block_count = self.hparams["n_layer"]
  1153. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1154. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1155. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1156. self.gguf_writer.add_block_count(block_count)
  1157. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1158. self.gguf_writer.add_head_count_kv(1)
  1159. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1160. self.gguf_writer.add_file_type(self.ftype)
  1161. @Model.register("GPTRefactForCausalLM")
  1162. class RefactModel(Model):
  1163. model_arch = gguf.MODEL_ARCH.REFACT
  1164. def set_vocab(self):
  1165. super().set_vocab()
  1166. # TODO: how to determine special FIM tokens automatically?
  1167. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1168. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1169. special_vocab._set_special_token("prefix", 1)
  1170. special_vocab._set_special_token("suffix", 3)
  1171. special_vocab._set_special_token("middle", 2)
  1172. special_vocab.chat_template = None # do not add it twice
  1173. special_vocab.add_to_gguf(self.gguf_writer)
  1174. def set_gguf_parameters(self):
  1175. hidden_dim = self.hparams["n_embd"]
  1176. inner_dim = 4 * hidden_dim
  1177. hidden_dim = int(2 * inner_dim / 3)
  1178. multiple_of = 256
  1179. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1180. block_count = self.hparams["n_layer"]
  1181. # refact uses Alibi. So this is from config.json which might be used by training.
  1182. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1183. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1184. self.gguf_writer.add_feed_forward_length(ff_dim)
  1185. self.gguf_writer.add_block_count(block_count)
  1186. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1187. self.gguf_writer.add_head_count_kv(1)
  1188. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1189. self.gguf_writer.add_file_type(self.ftype)
  1190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1191. hidden_dim = self.hparams["n_embd"]
  1192. inner_dim = 4 * hidden_dim
  1193. hidden_dim = int(2 * inner_dim / 3)
  1194. multiple_of = 256
  1195. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1196. n_head = self.hparams["n_head"]
  1197. n_head_kv = 1
  1198. head_dim = self.hparams["n_embd"] // n_head
  1199. tensors: list[tuple[str, Tensor]] = []
  1200. if bid is not None:
  1201. if name == f"transformer.h.{bid}.attn.kv.weight":
  1202. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1203. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1204. elif name == f"transformer.h.{bid}.attn.q.weight":
  1205. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1206. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1207. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1208. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1209. if len(tensors) == 0:
  1210. tensors.append((self.map_tensor_name(name), data_torch))
  1211. return tensors
  1212. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1213. class StableLMModel(Model):
  1214. model_arch = gguf.MODEL_ARCH.STABLELM
  1215. def set_vocab(self):
  1216. if (self.dir_model / "tokenizer.json").is_file():
  1217. self._set_vocab_gpt2()
  1218. else:
  1219. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1220. self._set_vocab_qwen()
  1221. def set_gguf_parameters(self):
  1222. hparams = self.hparams
  1223. block_count = hparams["num_hidden_layers"]
  1224. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1225. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1226. self.gguf_writer.add_block_count(block_count)
  1227. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1228. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1229. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1230. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1231. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1232. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1233. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1234. self.gguf_writer.add_file_type(self.ftype)
  1235. _q_norms: list[dict[str, Tensor]] | None = None
  1236. _k_norms: list[dict[str, Tensor]] | None = None
  1237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1238. n_head = self.hparams["num_attention_heads"]
  1239. n_kv_head = self.hparams["num_key_value_heads"]
  1240. if name.find("q_layernorm.norms") != -1:
  1241. assert bid is not None
  1242. if self._q_norms is None:
  1243. self._q_norms = [{} for _ in range(self.block_count)]
  1244. self._q_norms[bid][name] = data_torch
  1245. if len(self._q_norms[bid]) >= n_head:
  1246. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1247. else:
  1248. return []
  1249. if name.find("k_layernorm.norms") != -1:
  1250. assert bid is not None
  1251. if self._k_norms is None:
  1252. self._k_norms = [{} for _ in range(self.block_count)]
  1253. self._k_norms[bid][name] = data_torch
  1254. if len(self._k_norms[bid]) >= n_kv_head:
  1255. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1256. else:
  1257. return []
  1258. return [(self.map_tensor_name(name), data_torch)]
  1259. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1260. datas: list[Tensor] = []
  1261. # extract the norms in order
  1262. for xid in range(n_head):
  1263. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1264. datas.append(norms[ename])
  1265. del norms[ename]
  1266. data_torch = torch.stack(datas, dim=0)
  1267. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1268. new_name = self.map_tensor_name(merged_name)
  1269. return [(new_name, data_torch)]
  1270. def prepare_tensors(self):
  1271. super().prepare_tensors()
  1272. if self._q_norms is not None or self._k_norms is not None:
  1273. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1274. norms = (
  1275. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1276. ) + (
  1277. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1278. )
  1279. if len(norms) > 0:
  1280. raise ValueError(f"Unprocessed norms: {norms}")
  1281. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1282. class LlamaModel(Model):
  1283. model_arch = gguf.MODEL_ARCH.LLAMA
  1284. def set_vocab(self):
  1285. try:
  1286. self._set_vocab_sentencepiece()
  1287. except FileNotFoundError:
  1288. try:
  1289. self._set_vocab_llama_hf()
  1290. except (FileNotFoundError, TypeError):
  1291. # Llama 3
  1292. self._set_vocab_gpt2()
  1293. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1294. if self.hparams.get("vocab_size", 32000) == 32016:
  1295. special_vocab = gguf.SpecialVocab(
  1296. self.dir_model, load_merges=False,
  1297. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1298. )
  1299. special_vocab._set_special_token("prefix", 32007)
  1300. special_vocab._set_special_token("suffix", 32008)
  1301. special_vocab._set_special_token("middle", 32009)
  1302. special_vocab._set_special_token("eot", 32010)
  1303. special_vocab.add_to_gguf(self.gguf_writer)
  1304. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1305. if tokenizer_config_file.is_file():
  1306. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1307. tokenizer_config_json = json.load(f)
  1308. if "add_prefix_space" in tokenizer_config_json:
  1309. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1310. # Apply to granite small models only
  1311. if self.hparams.get("vocab_size", 32000) == 49152:
  1312. self.gguf_writer.add_add_bos_token(False)
  1313. def set_gguf_parameters(self):
  1314. super().set_gguf_parameters()
  1315. hparams = self.hparams
  1316. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1317. if "head_dim" in hparams:
  1318. rope_dim = hparams["head_dim"]
  1319. else:
  1320. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1321. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1322. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1323. if self.hparams["rope_scaling"].get("type") == "linear":
  1324. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1325. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1326. @staticmethod
  1327. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1328. if n_head_kv is not None and n_head != n_head_kv:
  1329. n_head = n_head_kv
  1330. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1331. .swapaxes(1, 2)
  1332. .reshape(weights.shape))
  1333. _experts: list[dict[str, Tensor]] | None = None
  1334. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1335. n_head = self.hparams["num_attention_heads"]
  1336. n_kv_head = self.hparams.get("num_key_value_heads")
  1337. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1338. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1339. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1340. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1341. # process the experts separately
  1342. if name.find("block_sparse_moe.experts") != -1:
  1343. n_experts = self.hparams["num_local_experts"]
  1344. assert bid is not None
  1345. if self._experts is None:
  1346. self._experts = [{} for _ in range(self.block_count)]
  1347. self._experts[bid][name] = data_torch
  1348. if len(self._experts[bid]) >= n_experts * 3:
  1349. tensors: list[tuple[str, Tensor]] = []
  1350. # merge the experts into a single 3d tensor
  1351. for wid in ["w1", "w2", "w3"]:
  1352. datas: list[Tensor] = []
  1353. for xid in range(n_experts):
  1354. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1355. datas.append(self._experts[bid][ename])
  1356. del self._experts[bid][ename]
  1357. data_torch = torch.stack(datas, dim=0)
  1358. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1359. new_name = self.map_tensor_name(merged_name)
  1360. tensors.append((new_name, data_torch))
  1361. return tensors
  1362. else:
  1363. return []
  1364. return [(self.map_tensor_name(name), data_torch)]
  1365. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1366. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1367. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1368. base = self.hparams.get("rope_theta", 10000.0)
  1369. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1370. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1371. factor = rope_scaling.get("factor", 8.0)
  1372. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1373. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1374. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1375. low_freq_wavelen = old_context_len / low_freq_factor
  1376. high_freq_wavelen = old_context_len / high_freq_factor
  1377. assert low_freq_wavelen != high_freq_wavelen
  1378. rope_factors = []
  1379. for freq in freqs:
  1380. wavelen = 2 * math.pi / freq
  1381. if wavelen < high_freq_wavelen:
  1382. rope_factors.append(1)
  1383. elif wavelen > low_freq_wavelen:
  1384. rope_factors.append(factor)
  1385. else:
  1386. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1387. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1388. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1389. def prepare_tensors(self):
  1390. super().prepare_tensors()
  1391. if self._experts is not None:
  1392. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1393. experts = [k for d in self._experts for k in d.keys()]
  1394. if len(experts) > 0:
  1395. raise ValueError(f"Unprocessed experts: {experts}")
  1396. @Model.register("DeciLMForCausalLM")
  1397. class DeciModel(Model):
  1398. model_arch = gguf.MODEL_ARCH.DECI
  1399. @staticmethod
  1400. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1401. # DeciLM-specific code
  1402. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1403. return DeciModel._find_multiple(intermediate_size, 256)
  1404. @staticmethod
  1405. def _find_multiple(n: int, k: int) -> int:
  1406. # DeciLM-specific code
  1407. if n % k == 0:
  1408. return n
  1409. return n + k - (n % k)
  1410. def __init__(self, *args, **kwargs):
  1411. super().__init__(*args, **kwargs)
  1412. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1413. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1414. assert self.block_count == len(_block_configs)
  1415. self._num_kv_heads = list()
  1416. self._num_heads = list()
  1417. _ffn_multipliers = list()
  1418. # ***linear attention layer***
  1419. # if n_heads_in_group is None and replace_with_linear is True
  1420. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1421. # ***attention-free layer***
  1422. # if n_heads_in_group is None and replace_with_linear is False
  1423. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1424. # ***normal attention-layer***
  1425. # if n_heads_in_group is not None, then
  1426. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1427. # _num_heads[il] is num_attention_head
  1428. for il in range(len(_block_configs)):
  1429. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1430. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1431. self._num_kv_heads.append(0)
  1432. self._num_heads.append(self.hparams["num_attention_heads"])
  1433. else:
  1434. self._num_kv_heads.append(0)
  1435. self._num_heads.append(0)
  1436. else:
  1437. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1438. self._num_heads.append(self.hparams["num_attention_heads"])
  1439. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1440. assert self.block_count == len(self._num_kv_heads)
  1441. assert self.block_count == len(self._num_heads)
  1442. assert self.block_count == len(_ffn_multipliers)
  1443. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1444. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1445. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1446. self._ffn_dims: list[int] = [
  1447. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1448. for multiplier in _ffn_multipliers
  1449. ]
  1450. def set_vocab(self):
  1451. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1452. # eos_token from '|eot_id|' to '|end_of_text|'
  1453. if self.hparams.get("vocab_size", 128256) == 128256:
  1454. tokens, toktypes, tokpre = self.get_vocab_base()
  1455. self.gguf_writer.add_tokenizer_model("gpt2")
  1456. self.gguf_writer.add_tokenizer_pre(tokpre)
  1457. self.gguf_writer.add_token_list(tokens)
  1458. self.gguf_writer.add_token_types(toktypes)
  1459. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1460. special_vocab.add_to_gguf(self.gguf_writer)
  1461. else:
  1462. # DeciLM-7B
  1463. self._set_vocab_llama_hf()
  1464. def set_gguf_parameters(self):
  1465. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1466. assert self.block_count == len(self._num_kv_heads)
  1467. assert self.block_count == len(self._num_heads)
  1468. assert self.block_count == len(self._ffn_dims)
  1469. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1470. self.gguf_writer.add_rope_freq_base(rope_theta)
  1471. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1472. self.gguf_writer.add_head_count(self._num_heads)
  1473. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1474. self.gguf_writer.add_block_count(self.block_count)
  1475. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1476. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1477. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1478. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1479. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1480. self.gguf_writer.add_file_type(self.ftype)
  1481. else: # DeciLM-7B
  1482. super().set_gguf_parameters()
  1483. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1484. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1485. assert self.block_count == len(self._num_kv_heads)
  1486. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1487. hparams = self.hparams
  1488. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1489. if "head_dim" in hparams:
  1490. rope_dim = hparams["head_dim"]
  1491. else:
  1492. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1493. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1494. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1495. if self.hparams["rope_scaling"].get("type") == "linear":
  1496. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1497. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1498. @staticmethod
  1499. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1500. if n_head_kv is not None and n_head != n_head_kv:
  1501. n_head = n_head_kv
  1502. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1503. .swapaxes(1, 2)
  1504. .reshape(weights.shape))
  1505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1506. n_head = self.hparams["num_attention_heads"]
  1507. if bid is not None:
  1508. if "num_key_value_heads_per_layer" in self.hparams:
  1509. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1510. elif "block_configs" in self.hparams:
  1511. n_kv_head = self._num_kv_heads[bid]
  1512. n_head = self._num_heads[bid]
  1513. else:
  1514. n_kv_head = self.hparams.get("num_key_value_heads")
  1515. else:
  1516. n_kv_head = self.hparams.get("num_key_value_heads")
  1517. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1518. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1519. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1520. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1521. return [(self.map_tensor_name(name), data_torch)]
  1522. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1523. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1524. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1525. base = self.hparams.get("rope_theta", 10000.0)
  1526. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1527. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1528. factor = rope_scaling.get("factor", 8.0)
  1529. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1530. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1531. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1532. low_freq_wavelen = old_context_len / low_freq_factor
  1533. high_freq_wavelen = old_context_len / high_freq_factor
  1534. assert low_freq_wavelen != high_freq_wavelen
  1535. rope_factors = []
  1536. for freq in freqs:
  1537. wavelen = 2 * math.pi / freq
  1538. if wavelen < high_freq_wavelen:
  1539. rope_factors.append(1)
  1540. elif wavelen > low_freq_wavelen:
  1541. rope_factors.append(factor)
  1542. else:
  1543. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1544. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1545. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1546. def prepare_tensors(self):
  1547. super().prepare_tensors()
  1548. @Model.register("BitnetForCausalLM")
  1549. class BitnetModel(Model):
  1550. model_arch = gguf.MODEL_ARCH.BITNET
  1551. def set_vocab(self):
  1552. self._set_vocab_sentencepiece()
  1553. def set_gguf_parameters(self):
  1554. super().set_gguf_parameters()
  1555. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1556. self.gguf_writer.add_rope_scaling_factor(1.0)
  1557. def weight_quant(self, weight: Tensor) -> Tensor:
  1558. dtype = weight.dtype
  1559. weight = weight.float()
  1560. scale = weight.abs().mean().clamp(min=1e-5)
  1561. iscale = 1 / scale
  1562. # TODO: multiply by the scale directly instead of inverting it twice
  1563. # (this is also unnecessarily doubly inverted upstream)
  1564. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1565. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1566. return result.type(dtype)
  1567. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1568. new_name = self.map_tensor_name(name)
  1569. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1570. gguf.MODEL_TENSOR.ATTN_Q,
  1571. gguf.MODEL_TENSOR.ATTN_K,
  1572. gguf.MODEL_TENSOR.ATTN_V,
  1573. gguf.MODEL_TENSOR.ATTN_OUT,
  1574. gguf.MODEL_TENSOR.FFN_UP,
  1575. gguf.MODEL_TENSOR.FFN_DOWN,
  1576. gguf.MODEL_TENSOR.FFN_GATE,
  1577. ]):
  1578. # transform weight into 1/0/-1 (in fp32)
  1579. data_torch = self.weight_quant(data_torch)
  1580. yield (new_name, data_torch)
  1581. @Model.register("GrokForCausalLM")
  1582. class GrokModel(Model):
  1583. model_arch = gguf.MODEL_ARCH.GROK
  1584. def set_vocab(self):
  1585. self._set_vocab_sentencepiece()
  1586. def __init__(self, *args, **kwargs):
  1587. super().__init__(*args, **kwargs)
  1588. def set_gguf_parameters(self):
  1589. super().set_gguf_parameters()
  1590. _experts: list[dict[str, Tensor]] | None = None
  1591. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1592. # process the experts separately
  1593. if name.find(".moe.") != -1:
  1594. n_experts = self.hparams["num_local_experts"]
  1595. assert bid is not None
  1596. if self._experts is None:
  1597. self._experts = [{} for _ in range(self.block_count)]
  1598. self._experts[bid][name] = data_torch
  1599. if len(self._experts[bid]) >= n_experts * 3:
  1600. tensors: list[tuple[str, Tensor]] = []
  1601. # merge the experts into a single 3d tensor
  1602. for wid in ["linear", "linear_1", "linear_v"]:
  1603. datas: list[Tensor] = []
  1604. for xid in range(n_experts):
  1605. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1606. datas.append(self._experts[bid][ename])
  1607. del self._experts[bid][ename]
  1608. data_torch = torch.stack(datas, dim=0)
  1609. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1610. new_name = self.map_tensor_name(merged_name)
  1611. tensors.append((new_name, data_torch))
  1612. return tensors
  1613. else:
  1614. return []
  1615. return [(self.map_tensor_name(name), data_torch)]
  1616. @Model.register("DbrxForCausalLM")
  1617. class DbrxModel(Model):
  1618. model_arch = gguf.MODEL_ARCH.DBRX
  1619. def set_gguf_parameters(self):
  1620. ffn_config = self.hparams["ffn_config"]
  1621. attn_config = self.hparams["attn_config"]
  1622. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1623. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1624. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1625. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1626. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1627. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1628. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1629. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1630. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1631. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1632. self.gguf_writer.add_layer_norm_eps(1e-5)
  1633. self.gguf_writer.add_file_type(self.ftype)
  1634. logger.info(f"gguf: file type = {self.ftype}")
  1635. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1636. del bid # unused
  1637. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1638. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1639. n_embd = self.hparams["d_model"]
  1640. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1641. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1642. # But llama.cpp moe graph works differently
  1643. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1644. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1645. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1646. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1647. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1648. experts = False
  1649. for exp_tensor_name in exp_tensor_names.keys():
  1650. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1651. experts = True
  1652. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1653. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1654. data_torch = data_torch.permute(*permute_tensor)
  1655. break
  1656. # map tensor names
  1657. # In MoE models the ffn tensors are typically most of the model weights,
  1658. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1659. # Every other model has the weight names ending in .weight,
  1660. # let's assume that is the convention which is not the case for dbrx:
  1661. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1662. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1663. return [(new_name, data_torch)]
  1664. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1665. del name, new_name, bid # unused
  1666. return n_dims > 1
  1667. @Model.register("MiniCPMForCausalLM")
  1668. class MiniCPMModel(Model):
  1669. model_arch = gguf.MODEL_ARCH.MINICPM
  1670. def set_gguf_parameters(self):
  1671. super().set_gguf_parameters()
  1672. embedding_scale = float(self.hparams["scale_emb"])
  1673. self.gguf_writer.add_embedding_scale(embedding_scale)
  1674. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1675. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1676. self.gguf_writer.add_residual_scale(residual_scale)
  1677. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1678. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1679. self.gguf_writer.add_logit_scale(logit_scale)
  1680. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1681. if self.hparams.get("rope_scaling") is not None:
  1682. if self.hparams["rope_scaling"].get("type") == "longrope":
  1683. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1684. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1685. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1686. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1687. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1688. if rope_scaling is not None:
  1689. long_factors = rope_scaling.get('long_factor', None)
  1690. short_factors = rope_scaling.get('short_factor', None)
  1691. if long_factors is None or short_factors is None:
  1692. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1693. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1694. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1695. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1696. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1697. def set_vocab(self):
  1698. self._set_vocab_sentencepiece()
  1699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1700. del bid # unused
  1701. n_head = self.hparams["num_attention_heads"]
  1702. n_kv_head = self.hparams.get("num_key_value_heads")
  1703. # HF models permute some of the tensors, so we need to undo that
  1704. if name.endswith(("q_proj.weight")):
  1705. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1706. if name.endswith(("k_proj.weight")):
  1707. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1708. return [(self.map_tensor_name(name), data_torch)]
  1709. @Model.register("MiniCPM3ForCausalLM")
  1710. class MiniCPM3Model(Model):
  1711. model_arch = gguf.MODEL_ARCH.MINICPM3
  1712. def set_gguf_parameters(self):
  1713. hparams = self.hparams
  1714. self.gguf_writer.add_file_type(self.ftype)
  1715. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1716. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1717. self.gguf_writer.add_block_count(self.block_count)
  1718. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1719. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1720. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1721. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1722. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1723. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1724. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1725. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1726. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1727. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1728. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1729. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1730. if rope_scaling is not None:
  1731. rope_dims = self.hparams["qk_rope_head_dim"]
  1732. long_factors = rope_scaling.get('long_factor', None)
  1733. short_factors = rope_scaling.get('short_factor', None)
  1734. if long_factors is None or short_factors is None:
  1735. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1736. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1737. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1738. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1739. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1740. def set_vocab(self):
  1741. self._set_vocab_sentencepiece()
  1742. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1743. if n_kv_head is not None and n_head != n_kv_head:
  1744. n_head //= n_kv_head
  1745. return (
  1746. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1747. .swapaxes(1, 2)
  1748. .reshape(weights.shape)
  1749. )
  1750. @Model.register("QWenLMHeadModel")
  1751. class QwenModel(Model):
  1752. model_arch = gguf.MODEL_ARCH.QWEN
  1753. @staticmethod
  1754. def token_bytes_to_string(b):
  1755. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1756. byte_encoder = bytes_to_unicode()
  1757. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1758. @staticmethod
  1759. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1760. parts = [bytes([b]) for b in token]
  1761. while True:
  1762. min_idx = None
  1763. min_rank = None
  1764. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1765. rank = mergeable_ranks.get(pair[0] + pair[1])
  1766. if rank is not None and (min_rank is None or rank < min_rank):
  1767. min_idx = i
  1768. min_rank = rank
  1769. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1770. break
  1771. assert min_idx is not None
  1772. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1773. return parts
  1774. def set_vocab(self):
  1775. self._set_vocab_qwen()
  1776. def set_gguf_parameters(self):
  1777. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1778. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1779. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1780. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1781. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1782. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1783. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1784. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1785. self.gguf_writer.add_file_type(self.ftype)
  1786. @Model.register("Qwen2ForCausalLM")
  1787. class Qwen2Model(Model):
  1788. model_arch = gguf.MODEL_ARCH.QWEN2
  1789. def set_vocab(self):
  1790. try:
  1791. self._set_vocab_sentencepiece()
  1792. except FileNotFoundError:
  1793. self._set_vocab_gpt2()
  1794. def set_gguf_parameters(self):
  1795. super().set_gguf_parameters()
  1796. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1797. if self.hparams["rope_scaling"].get("type") == "yarn":
  1798. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1799. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1800. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1801. @Model.register("Qwen2VLForConditionalGeneration")
  1802. class Qwen2VLModel(Model):
  1803. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1804. def set_gguf_parameters(self):
  1805. super().set_gguf_parameters()
  1806. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1807. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1808. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1809. def set_vocab(self):
  1810. try:
  1811. self._set_vocab_sentencepiece()
  1812. except FileNotFoundError:
  1813. self._set_vocab_gpt2()
  1814. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1815. for name, data in super().get_tensors():
  1816. if name.startswith("visual."):
  1817. continue
  1818. yield name, data
  1819. @Model.register("WavTokenizerDec")
  1820. class WavTokenizerDecModel(Model):
  1821. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1822. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1823. del bid # unused
  1824. if \
  1825. name.endswith("codebook.cluster_size") or \
  1826. name.endswith("codebook.embed_avg") or \
  1827. name.endswith("codebook.inited"):
  1828. logger.debug(f"Skipping {name!r}")
  1829. return []
  1830. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1831. return [(self.map_tensor_name(name), data_torch)]
  1832. def set_vocab(self):
  1833. self._set_vocab_none()
  1834. def set_gguf_parameters(self):
  1835. super().set_gguf_parameters()
  1836. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1837. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1838. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1839. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1840. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1841. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1842. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1843. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1844. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1845. self.gguf_writer.add_causal_attention(False)
  1846. @Model.register("Qwen2MoeForCausalLM")
  1847. class Qwen2MoeModel(Model):
  1848. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1849. def set_gguf_parameters(self):
  1850. super().set_gguf_parameters()
  1851. if (n_experts := self.hparams.get("num_experts")) is not None:
  1852. self.gguf_writer.add_expert_count(n_experts)
  1853. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1854. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1855. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1856. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1857. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1858. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1859. _experts: list[dict[str, Tensor]] | None = None
  1860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1861. # process the experts separately
  1862. if name.find("experts") != -1:
  1863. n_experts = self.hparams["num_experts"]
  1864. assert bid is not None
  1865. if self._experts is None:
  1866. self._experts = [{} for _ in range(self.block_count)]
  1867. self._experts[bid][name] = data_torch
  1868. if len(self._experts[bid]) >= n_experts * 3:
  1869. tensors: list[tuple[str, Tensor]] = []
  1870. # merge the experts into a single 3d tensor
  1871. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1872. datas: list[Tensor] = []
  1873. for xid in range(n_experts):
  1874. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1875. datas.append(self._experts[bid][ename])
  1876. del self._experts[bid][ename]
  1877. data_torch = torch.stack(datas, dim=0)
  1878. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1879. new_name = self.map_tensor_name(merged_name)
  1880. tensors.append((new_name, data_torch))
  1881. return tensors
  1882. else:
  1883. return []
  1884. return [(self.map_tensor_name(name), data_torch)]
  1885. def prepare_tensors(self):
  1886. super().prepare_tensors()
  1887. if self._experts is not None:
  1888. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1889. experts = [k for d in self._experts for k in d.keys()]
  1890. if len(experts) > 0:
  1891. raise ValueError(f"Unprocessed experts: {experts}")
  1892. @Model.register("GPT2LMHeadModel")
  1893. class GPT2Model(Model):
  1894. model_arch = gguf.MODEL_ARCH.GPT2
  1895. def set_gguf_parameters(self):
  1896. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1897. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1898. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1899. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1900. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1901. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1902. self.gguf_writer.add_file_type(self.ftype)
  1903. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1904. del bid # unused
  1905. tensors: list[tuple[str, Tensor]] = []
  1906. # we don't need these
  1907. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1908. return tensors
  1909. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1910. data_torch = data_torch.transpose(1, 0)
  1911. new_name = self.map_tensor_name(name)
  1912. tensors.append((new_name, data_torch))
  1913. # note: GPT2 output is tied to (same as) wte in original model
  1914. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1915. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1916. return tensors
  1917. @Model.register("PhiForCausalLM")
  1918. class Phi2Model(Model):
  1919. model_arch = gguf.MODEL_ARCH.PHI2
  1920. def set_gguf_parameters(self):
  1921. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1922. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1923. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1924. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1925. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1926. self.gguf_writer.add_embedding_length(n_embd)
  1927. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1928. self.gguf_writer.add_block_count(block_count)
  1929. self.gguf_writer.add_head_count(n_head)
  1930. self.gguf_writer.add_head_count_kv(n_head)
  1931. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1932. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1933. self.gguf_writer.add_file_type(self.ftype)
  1934. self.gguf_writer.add_add_bos_token(False)
  1935. @Model.register("Phi3ForCausalLM")
  1936. class Phi3MiniModel(Model):
  1937. model_arch = gguf.MODEL_ARCH.PHI3
  1938. def set_vocab(self):
  1939. # Phi-4 model uses GPT2Tokenizer
  1940. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1941. if tokenizer_config_file.is_file():
  1942. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1943. tokenizer_config_json = json.load(f)
  1944. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1945. if tokenizer_class == 'GPT2Tokenizer':
  1946. return self._set_vocab_gpt2()
  1947. from sentencepiece import SentencePieceProcessor
  1948. tokenizer_path = self.dir_model / 'tokenizer.model'
  1949. if not tokenizer_path.is_file():
  1950. raise ValueError(f'Error: Missing {tokenizer_path}')
  1951. tokenizer = SentencePieceProcessor()
  1952. tokenizer.LoadFromFile(str(tokenizer_path))
  1953. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1954. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1955. scores: list[float] = [-10000.0] * vocab_size
  1956. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1957. for token_id in range(tokenizer.vocab_size()):
  1958. piece = tokenizer.IdToPiece(token_id)
  1959. text = piece.encode("utf-8")
  1960. score = tokenizer.GetScore(token_id)
  1961. toktype = SentencePieceTokenTypes.NORMAL
  1962. if tokenizer.IsUnknown(token_id):
  1963. toktype = SentencePieceTokenTypes.UNKNOWN
  1964. elif tokenizer.IsControl(token_id):
  1965. toktype = SentencePieceTokenTypes.CONTROL
  1966. elif tokenizer.IsUnused(token_id):
  1967. toktype = SentencePieceTokenTypes.UNUSED
  1968. elif tokenizer.IsByte(token_id):
  1969. toktype = SentencePieceTokenTypes.BYTE
  1970. tokens[token_id] = text
  1971. scores[token_id] = score
  1972. toktypes[token_id] = toktype
  1973. added_tokens_file = self.dir_model / 'added_tokens.json'
  1974. if added_tokens_file.is_file():
  1975. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1976. added_tokens_json = json.load(f)
  1977. for key in added_tokens_json:
  1978. token_id = added_tokens_json[key]
  1979. if token_id >= vocab_size:
  1980. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1981. continue
  1982. tokens[token_id] = key.encode("utf-8")
  1983. scores[token_id] = -1000.0
  1984. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1985. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1986. if tokenizer_config_file.is_file():
  1987. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1988. tokenizer_config_json = json.load(f)
  1989. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1990. for token_id, foken_data in added_tokens_decoder.items():
  1991. token_id = int(token_id)
  1992. token = foken_data["content"].encode("utf-8")
  1993. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1994. if tokens[token_id] != token:
  1995. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1996. tokens[token_id] = token
  1997. scores[token_id] = -1000.0
  1998. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1999. if foken_data.get("special"):
  2000. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2001. tokenizer_file = self.dir_model / 'tokenizer.json'
  2002. if tokenizer_file.is_file():
  2003. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2004. tokenizer_json = json.load(f)
  2005. added_tokens = tokenizer_json.get("added_tokens", [])
  2006. for foken_data in added_tokens:
  2007. token_id = int(foken_data["id"])
  2008. token = foken_data["content"].encode("utf-8")
  2009. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2010. if tokens[token_id] != token:
  2011. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2012. tokens[token_id] = token
  2013. scores[token_id] = -1000.0
  2014. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2015. if foken_data.get("special"):
  2016. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2017. self.gguf_writer.add_tokenizer_model("llama")
  2018. self.gguf_writer.add_tokenizer_pre("default")
  2019. self.gguf_writer.add_token_list(tokens)
  2020. self.gguf_writer.add_token_scores(scores)
  2021. self.gguf_writer.add_token_types(toktypes)
  2022. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2023. special_vocab.add_to_gguf(self.gguf_writer)
  2024. def set_gguf_parameters(self):
  2025. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2026. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2027. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2028. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2029. rms_eps = self.find_hparam(["rms_norm_eps"])
  2030. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2031. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2032. rope_dims = n_embd // n_head
  2033. self.gguf_writer.add_context_length(max_pos_embds)
  2034. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2035. self.gguf_writer.add_embedding_length(n_embd)
  2036. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2037. self.gguf_writer.add_block_count(block_count)
  2038. self.gguf_writer.add_head_count(n_head)
  2039. self.gguf_writer.add_head_count_kv(n_head_kv)
  2040. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2041. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2042. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2043. self.gguf_writer.add_file_type(self.ftype)
  2044. sliding_window = self.hparams.get("sliding_window")
  2045. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2046. if sliding_window is None:
  2047. sliding_window = 0
  2048. self.gguf_writer.add_sliding_window(sliding_window)
  2049. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2050. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2051. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2052. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2053. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2054. rope_dims = n_embd // n_head
  2055. # write rope scaling for long context (128k) model
  2056. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2057. if rope_scaling is None:
  2058. return
  2059. scale = max_pos_embds / orig_max_pos_embds
  2060. rope_scaling_type = rope_scaling.get('type', '').lower()
  2061. if len(rope_scaling_type) == 0:
  2062. raise KeyError('Missing the required key rope_scaling.type')
  2063. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2064. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2065. elif rope_scaling_type == 'yarn':
  2066. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2067. else:
  2068. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2069. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2070. long_factors = rope_scaling.get('long_factor', None)
  2071. short_factors = rope_scaling.get('short_factor', None)
  2072. if long_factors is None or short_factors is None:
  2073. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2074. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2075. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2076. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2077. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2078. @Model.register("PhiMoEForCausalLM")
  2079. class PhiMoeModel(Phi3MiniModel):
  2080. model_arch = gguf.MODEL_ARCH.PHIMOE
  2081. _experts: list[dict[str, Tensor]] | None = None
  2082. def set_gguf_parameters(self):
  2083. super().set_gguf_parameters()
  2084. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2085. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2087. # process the experts separately
  2088. if name.find("block_sparse_moe.experts") != -1:
  2089. n_experts = self.hparams["num_local_experts"]
  2090. assert bid is not None
  2091. if self._experts is None:
  2092. self._experts = [{} for _ in range(self.block_count)]
  2093. self._experts[bid][name] = data_torch
  2094. if len(self._experts[bid]) >= n_experts * 3:
  2095. tensors: list[tuple[str, Tensor]] = []
  2096. # merge the experts into a single 3d tensor
  2097. for w_name in ["w1", "w2", "w3"]:
  2098. datas: list[Tensor] = []
  2099. for xid in range(n_experts):
  2100. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2101. datas.append(self._experts[bid][ename])
  2102. del self._experts[bid][ename]
  2103. data_torch = torch.stack(datas, dim=0)
  2104. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2105. new_name = self.map_tensor_name(merged_name)
  2106. tensors.append((new_name, data_torch))
  2107. return tensors
  2108. else:
  2109. return []
  2110. return [(self.map_tensor_name(name), data_torch)]
  2111. def prepare_tensors(self):
  2112. super().prepare_tensors()
  2113. if self._experts is not None:
  2114. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2115. experts = [k for d in self._experts for k in d.keys()]
  2116. if len(experts) > 0:
  2117. raise ValueError(f"Unprocessed experts: {experts}")
  2118. @Model.register("PlamoForCausalLM")
  2119. class PlamoModel(Model):
  2120. model_arch = gguf.MODEL_ARCH.PLAMO
  2121. def set_vocab(self):
  2122. self._set_vocab_sentencepiece()
  2123. def set_gguf_parameters(self):
  2124. hparams = self.hparams
  2125. block_count = hparams["num_hidden_layers"]
  2126. self.gguf_writer.add_context_length(4096) # not in config.json
  2127. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2128. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2129. self.gguf_writer.add_block_count(block_count)
  2130. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2131. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2132. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2133. self.gguf_writer.add_file_type(self.ftype)
  2134. def shuffle_attn_q_weight(self, data_torch):
  2135. assert data_torch.size() == (5120, 5120)
  2136. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2137. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2138. data_torch = torch.reshape(data_torch, (5120, 5120))
  2139. return data_torch
  2140. def shuffle_attn_output_weight(self, data_torch):
  2141. assert data_torch.size() == (5120, 5120)
  2142. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2143. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2144. data_torch = torch.reshape(data_torch, (5120, 5120))
  2145. return data_torch
  2146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2147. del bid # unused
  2148. new_name = self.map_tensor_name(name)
  2149. # shuffle for broadcasting of gqa in ggml_mul_mat
  2150. if new_name.endswith("attn_q.weight"):
  2151. data_torch = self.shuffle_attn_q_weight(data_torch)
  2152. elif new_name.endswith("attn_output.weight"):
  2153. data_torch = self.shuffle_attn_output_weight(data_torch)
  2154. return [(new_name, data_torch)]
  2155. @Model.register("CodeShellForCausalLM")
  2156. class CodeShellModel(Model):
  2157. model_arch = gguf.MODEL_ARCH.CODESHELL
  2158. def set_gguf_parameters(self):
  2159. block_count = self.hparams["n_layer"]
  2160. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2161. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2162. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2163. self.gguf_writer.add_block_count(block_count)
  2164. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2165. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2166. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2167. self.gguf_writer.add_file_type(self.ftype)
  2168. self.gguf_writer.add_rope_freq_base(10000.0)
  2169. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2170. self.gguf_writer.add_rope_scaling_factor(1.0)
  2171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2172. del bid # unused
  2173. new_name = self.map_tensor_name(name)
  2174. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  2175. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2176. assert self.tensor_names is not None
  2177. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  2178. # copy tok_embd.weight to output.weight
  2179. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  2180. return tensors
  2181. @Model.register("InternLM2ForCausalLM")
  2182. class InternLM2Model(Model):
  2183. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2184. def set_vocab(self):
  2185. # (TODO): Is there a better way?
  2186. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2187. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2188. # recognized as an empty string in C++.
  2189. from sentencepiece import SentencePieceProcessor
  2190. from sentencepiece import sentencepiece_model_pb2 as model
  2191. tokenizer_path = self.dir_model / 'tokenizer.model'
  2192. tokens: list[bytes] = []
  2193. scores: list[float] = []
  2194. toktypes: list[int] = []
  2195. if not tokenizer_path.is_file():
  2196. logger.error(f'Error: Missing {tokenizer_path}')
  2197. sys.exit(1)
  2198. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2199. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2200. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2201. tokenizer = SentencePieceProcessor()
  2202. tokenizer.LoadFromFile(str(tokenizer_path))
  2203. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2204. for token_id in range(vocab_size):
  2205. piece = tokenizer.IdToPiece(token_id)
  2206. text = piece.encode("utf-8")
  2207. score = tokenizer.GetScore(token_id)
  2208. if text == b"\x00":
  2209. # (TODO): fixme
  2210. # Hack here and replace the \x00 characters.
  2211. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2212. text = "🐉".encode("utf-8")
  2213. toktype = SentencePieceTokenTypes.NORMAL
  2214. if tokenizer.IsUnknown(token_id):
  2215. toktype = SentencePieceTokenTypes.UNKNOWN
  2216. elif tokenizer.IsControl(token_id):
  2217. toktype = SentencePieceTokenTypes.CONTROL
  2218. elif tokenizer.IsUnused(token_id):
  2219. toktype = SentencePieceTokenTypes.UNUSED
  2220. elif tokenizer.IsByte(token_id):
  2221. toktype = SentencePieceTokenTypes.BYTE
  2222. # take care of ununsed raw token
  2223. if piece.startswith('[UNUSED'):
  2224. toktype = SentencePieceTokenTypes.UNUSED
  2225. tokens.append(text)
  2226. scores.append(score)
  2227. toktypes.append(toktype)
  2228. added_tokens_file = self.dir_model / 'added_tokens.json'
  2229. if added_tokens_file.is_file():
  2230. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2231. added_tokens_json = json.load(f)
  2232. for key in added_tokens_json:
  2233. tokens.append(key.encode("utf-8"))
  2234. scores.append(-1000.0)
  2235. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2236. chat_eos_token = '<|im_end|>'
  2237. chat_eos_token_id = None
  2238. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2239. if tokenizer_config_file.is_file():
  2240. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2241. tokenizer_config_json = json.load(f)
  2242. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2243. for token_id, foken_data in added_tokens_decoder.items():
  2244. token_id = int(token_id)
  2245. token = foken_data["content"]
  2246. if token == chat_eos_token:
  2247. chat_eos_token_id = token_id
  2248. token = token.encode("utf-8")
  2249. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2250. if tokens[token_id] != token:
  2251. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2252. tokens[token_id] = token
  2253. scores[token_id] = -1000.0
  2254. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2255. if foken_data.get("special"):
  2256. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2257. tokenizer_file = self.dir_model / 'tokenizer.json'
  2258. if tokenizer_file.is_file():
  2259. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2260. tokenizer_json = json.load(f)
  2261. added_tokens = tokenizer_json.get("added_tokens", [])
  2262. for foken_data in added_tokens:
  2263. token_id = int(foken_data["id"])
  2264. token = foken_data["content"]
  2265. if token == chat_eos_token:
  2266. chat_eos_token_id = token_id
  2267. token = token.encode("utf-8")
  2268. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2269. if tokens[token_id] != token:
  2270. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2271. tokens[token_id] = token
  2272. scores[token_id] = -1000.0
  2273. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2274. if foken_data.get("special"):
  2275. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2276. self.gguf_writer.add_tokenizer_model("llama")
  2277. self.gguf_writer.add_tokenizer_pre("default")
  2278. self.gguf_writer.add_token_list(tokens)
  2279. self.gguf_writer.add_token_scores(scores)
  2280. self.gguf_writer.add_token_types(toktypes)
  2281. self.gguf_writer.add_add_space_prefix(add_prefix)
  2282. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2283. old_eos = special_vocab.special_token_ids["eos"]
  2284. if chat_eos_token_id is not None:
  2285. # For the chat model, we replace the eos with '<|im_end|>'.
  2286. # TODO: this is a hack, should be fixed
  2287. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2288. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2289. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2290. " in chat mode so that the conversation can end normally.")
  2291. special_vocab.add_to_gguf(self.gguf_writer)
  2292. def set_gguf_parameters(self):
  2293. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2294. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2295. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2296. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2297. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2298. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2299. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2300. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2301. self.gguf_writer.add_file_type(self.ftype)
  2302. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2303. if self.hparams["rope_scaling"].get("type") == "linear":
  2304. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2305. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2306. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2307. num_heads = self.hparams["num_attention_heads"]
  2308. num_kv_heads = self.hparams["num_key_value_heads"]
  2309. n_embd = self.hparams["hidden_size"]
  2310. q_per_kv = num_heads // num_kv_heads
  2311. head_dim = n_embd // num_heads
  2312. num_groups = num_heads // q_per_kv
  2313. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2314. qkv = data_torch
  2315. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2316. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2317. # The model weights of q and k equire additional reshape.
  2318. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2319. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2320. v = v.reshape((-1, v.shape[-1]))
  2321. return [
  2322. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2323. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2324. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2325. ]
  2326. else:
  2327. return [(self.map_tensor_name(name), data_torch)]
  2328. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2329. class BertModel(Model):
  2330. model_arch = gguf.MODEL_ARCH.BERT
  2331. def __init__(self, *args, **kwargs):
  2332. super().__init__(*args, **kwargs)
  2333. self.vocab_size = None
  2334. def set_gguf_parameters(self):
  2335. super().set_gguf_parameters()
  2336. self.gguf_writer.add_causal_attention(False)
  2337. # get pooling path
  2338. pooling_path = None
  2339. module_path = self.dir_model / "modules.json"
  2340. if module_path.is_file():
  2341. with open(module_path, encoding="utf-8") as f:
  2342. modules = json.load(f)
  2343. for mod in modules:
  2344. if mod["type"] == "sentence_transformers.models.Pooling":
  2345. pooling_path = mod["path"]
  2346. break
  2347. # get pooling type
  2348. if pooling_path is not None:
  2349. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2350. pooling = json.load(f)
  2351. if pooling["pooling_mode_mean_tokens"]:
  2352. pooling_type = gguf.PoolingType.MEAN
  2353. elif pooling["pooling_mode_cls_token"]:
  2354. pooling_type = gguf.PoolingType.CLS
  2355. else:
  2356. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2357. self.gguf_writer.add_pooling_type(pooling_type)
  2358. def set_vocab(self):
  2359. tokens, toktypes, tokpre = self.get_vocab_base()
  2360. self.vocab_size = len(tokens)
  2361. # we need this to validate the size of the token_type embeddings
  2362. # though currently we are passing all zeros to the token_type embeddings
  2363. # "Sequence A" or "Sequence B"
  2364. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2365. # convert to phantom space vocab
  2366. def phantom(tok):
  2367. if tok.startswith("[") and tok.endswith("]"):
  2368. return tok
  2369. if tok.startswith("##"):
  2370. return tok[2:]
  2371. return "\u2581" + tok
  2372. tokens = list(map(phantom, tokens))
  2373. # add vocab to gguf
  2374. self.gguf_writer.add_tokenizer_model("bert")
  2375. self.gguf_writer.add_tokenizer_pre(tokpre)
  2376. self.gguf_writer.add_token_list(tokens)
  2377. self.gguf_writer.add_token_types(toktypes)
  2378. # handle special tokens
  2379. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2380. special_vocab.add_to_gguf(self.gguf_writer)
  2381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2382. del bid # unused
  2383. if name.startswith("bert."):
  2384. name = name[5:]
  2385. if name.endswith(".gamma"):
  2386. name = name[:-6] + ".weight"
  2387. if name.endswith(".beta"):
  2388. name = name[:-5] + ".bias"
  2389. # we are only using BERT for embeddings so we don't need the pooling layer
  2390. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2391. return [] # we don't need these
  2392. if name.startswith("cls.predictions"):
  2393. return []
  2394. if name.startswith("cls.seq_relationship"):
  2395. return []
  2396. return [(self.map_tensor_name(name), data_torch)]
  2397. @Model.register("RobertaModel")
  2398. class RobertaModel(BertModel):
  2399. model_arch = gguf.MODEL_ARCH.BERT
  2400. def __init__(self, *args, **kwargs):
  2401. super().__init__(*args, **kwargs)
  2402. # we need the pad_token_id to know how to chop down position_embd matrix
  2403. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2404. self._position_offset = 1 + pad_token_id
  2405. if "max_position_embeddings" in self.hparams:
  2406. self.hparams["max_position_embeddings"] -= self._position_offset
  2407. else:
  2408. self._position_offset = None
  2409. def set_vocab(self):
  2410. """Support BPE tokenizers for roberta models"""
  2411. bpe_tok_path = self.dir_model / "tokenizer.json"
  2412. if bpe_tok_path.exists():
  2413. self._set_vocab_gpt2()
  2414. self.gguf_writer.add_add_bos_token(True)
  2415. self.gguf_writer.add_add_eos_token(True)
  2416. # we need this to validate the size of the token_type embeddings
  2417. # though currently we are passing all zeros to the token_type embeddings
  2418. # "Sequence A" or "Sequence B"
  2419. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2420. else:
  2421. return super().set_vocab()
  2422. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2423. # if name starts with "roberta.", remove the prefix
  2424. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2425. if name.startswith("roberta."):
  2426. name = name[8:]
  2427. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2428. if name == "embeddings.position_embeddings.weight":
  2429. if self._position_offset is not None:
  2430. data_torch = data_torch[self._position_offset:,:]
  2431. return super().modify_tensors(data_torch, name, bid)
  2432. @Model.register("NomicBertModel")
  2433. class NomicBertModel(BertModel):
  2434. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2435. def __init__(self, *args, **kwargs):
  2436. super().__init__(*args, **kwargs)
  2437. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2438. self.hparams["n_ctx"] = 2048
  2439. # SwigLU activation
  2440. assert self.hparams["activation_function"] == "swiglu"
  2441. # this doesn't do anything in the HF version
  2442. assert self.hparams["causal"] is False
  2443. # no bias tensors
  2444. assert self.hparams["qkv_proj_bias"] is False
  2445. assert self.hparams["mlp_fc1_bias"] is False
  2446. assert self.hparams["mlp_fc2_bias"] is False
  2447. # norm at end of layer
  2448. assert self.hparams["prenorm"] is False
  2449. # standard RoPE
  2450. assert self.hparams["rotary_emb_fraction"] == 1.0
  2451. assert self.hparams["rotary_emb_interleaved"] is False
  2452. assert self.hparams["rotary_emb_scale_base"] is None
  2453. def set_gguf_parameters(self):
  2454. super().set_gguf_parameters()
  2455. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2456. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2457. class XLMRobertaModel(BertModel):
  2458. model_arch = gguf.MODEL_ARCH.BERT
  2459. def __init__(self, *args, **kwargs):
  2460. super().__init__(*args, **kwargs)
  2461. # we need the pad_token_id to know how to chop down position_embd matrix
  2462. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2463. self._position_offset = 1 + pad_token_id
  2464. if "max_position_embeddings" in self.hparams:
  2465. self.hparams["max_position_embeddings"] -= self._position_offset
  2466. else:
  2467. self._position_offset = None
  2468. def set_vocab(self):
  2469. # to avoid TypeError: Descriptors cannot be created directly
  2470. # exception when importing sentencepiece_model_pb2
  2471. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2472. from sentencepiece import SentencePieceProcessor
  2473. from sentencepiece import sentencepiece_model_pb2 as model
  2474. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2475. if not tokenizer_path.is_file():
  2476. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2477. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2478. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2479. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2480. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2481. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2482. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2483. tokenizer = SentencePieceProcessor()
  2484. tokenizer.LoadFromFile(str(tokenizer_path))
  2485. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2486. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2487. scores: list[float] = [-10000.0] * vocab_size
  2488. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2489. for token_id in range(tokenizer.vocab_size()):
  2490. piece = tokenizer.IdToPiece(token_id)
  2491. text = piece.encode("utf-8")
  2492. score = tokenizer.GetScore(token_id)
  2493. toktype = SentencePieceTokenTypes.NORMAL
  2494. if tokenizer.IsUnknown(token_id):
  2495. toktype = SentencePieceTokenTypes.UNKNOWN
  2496. elif tokenizer.IsControl(token_id):
  2497. toktype = SentencePieceTokenTypes.CONTROL
  2498. elif tokenizer.IsUnused(token_id):
  2499. toktype = SentencePieceTokenTypes.UNUSED
  2500. elif tokenizer.IsByte(token_id):
  2501. toktype = SentencePieceTokenTypes.BYTE
  2502. tokens[token_id] = text
  2503. scores[token_id] = score
  2504. toktypes[token_id] = toktype
  2505. if vocab_size > len(tokens):
  2506. pad_count = vocab_size - len(tokens)
  2507. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2508. for i in range(1, pad_count + 1):
  2509. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2510. scores.append(-1000.0)
  2511. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2512. # realign tokens (see HF tokenizer code)
  2513. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2514. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2515. toktypes = [
  2516. SentencePieceTokenTypes.CONTROL,
  2517. SentencePieceTokenTypes.CONTROL,
  2518. SentencePieceTokenTypes.CONTROL,
  2519. SentencePieceTokenTypes.UNKNOWN,
  2520. ] + toktypes[3:-1]
  2521. self.gguf_writer.add_tokenizer_model("t5")
  2522. self.gguf_writer.add_tokenizer_pre("default")
  2523. self.gguf_writer.add_token_list(tokens)
  2524. self.gguf_writer.add_token_scores(scores)
  2525. self.gguf_writer.add_token_types(toktypes)
  2526. self.gguf_writer.add_add_space_prefix(add_prefix)
  2527. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2528. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2529. if precompiled_charsmap:
  2530. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2531. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2532. special_vocab.add_to_gguf(self.gguf_writer)
  2533. self.gguf_writer.add_add_bos_token(True)
  2534. self.gguf_writer.add_add_eos_token(True)
  2535. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2536. # if name starts with "roberta.", remove the prefix
  2537. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2538. if name.startswith("roberta."):
  2539. name = name[8:]
  2540. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2541. if name == "embeddings.position_embeddings.weight":
  2542. if self._position_offset is not None:
  2543. data_torch = data_torch[self._position_offset:,:]
  2544. return super().modify_tensors(data_torch, name, bid)
  2545. @Model.register("GemmaForCausalLM")
  2546. class GemmaModel(Model):
  2547. model_arch = gguf.MODEL_ARCH.GEMMA
  2548. def set_vocab(self):
  2549. self._set_vocab_sentencepiece()
  2550. # TODO: these special tokens should be exported only for the CodeGemma family
  2551. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2552. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2553. special_vocab._set_special_token("prefix", 67)
  2554. special_vocab._set_special_token("suffix", 69)
  2555. special_vocab._set_special_token("middle", 68)
  2556. special_vocab._set_special_token("fsep", 70)
  2557. special_vocab._set_special_token("eot", 107)
  2558. special_vocab.chat_template = None # do not add it twice
  2559. special_vocab.add_to_gguf(self.gguf_writer)
  2560. self.gguf_writer.add_add_space_prefix(False)
  2561. def set_gguf_parameters(self):
  2562. hparams = self.hparams
  2563. block_count = hparams["num_hidden_layers"]
  2564. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2565. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2566. self.gguf_writer.add_block_count(block_count)
  2567. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2568. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2569. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2570. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2571. self.gguf_writer.add_key_length(hparams["head_dim"])
  2572. self.gguf_writer.add_value_length(hparams["head_dim"])
  2573. self.gguf_writer.add_file_type(self.ftype)
  2574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2575. del bid # unused
  2576. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2577. # To prevent errors, skip loading lm_head.weight.
  2578. if name == "lm_head.weight":
  2579. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2580. return []
  2581. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2582. if name.endswith("norm.weight"):
  2583. data_torch = data_torch + 1
  2584. return [(self.map_tensor_name(name), data_torch)]
  2585. @Model.register("Gemma2ForCausalLM")
  2586. class Gemma2Model(Model):
  2587. model_arch = gguf.MODEL_ARCH.GEMMA2
  2588. def set_vocab(self):
  2589. self._set_vocab_sentencepiece()
  2590. self.gguf_writer.add_add_space_prefix(False)
  2591. def set_gguf_parameters(self):
  2592. hparams = self.hparams
  2593. block_count = hparams["num_hidden_layers"]
  2594. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2595. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2596. self.gguf_writer.add_block_count(block_count)
  2597. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2598. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2599. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2600. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2601. self.gguf_writer.add_key_length(hparams["head_dim"])
  2602. self.gguf_writer.add_value_length(hparams["head_dim"])
  2603. self.gguf_writer.add_file_type(self.ftype)
  2604. self.gguf_writer.add_attn_logit_softcapping(
  2605. self.hparams["attn_logit_softcapping"]
  2606. )
  2607. self.gguf_writer.add_final_logit_softcapping(
  2608. self.hparams["final_logit_softcapping"]
  2609. )
  2610. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2612. del bid # unused
  2613. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2614. # To prevent errors, skip loading lm_head.weight.
  2615. if name == "lm_head.weight":
  2616. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2617. return []
  2618. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2619. if name.endswith("norm.weight"):
  2620. data_torch = data_torch + 1
  2621. return [(self.map_tensor_name(name), data_torch)]
  2622. @Model.register("Starcoder2ForCausalLM")
  2623. class StarCoder2Model(Model):
  2624. model_arch = gguf.MODEL_ARCH.STARCODER2
  2625. @Model.register("Rwkv6ForCausalLM")
  2626. class Rwkv6Model(Model):
  2627. model_arch = gguf.MODEL_ARCH.RWKV6
  2628. def set_vocab(self):
  2629. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2630. vocab_size = self.hparams.get("vocab_size", 65536)
  2631. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2632. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2633. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2634. lines = f.readlines()
  2635. for line in lines:
  2636. parts = line.split(' ')
  2637. assert len(parts) >= 3
  2638. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2639. token = token.encode("utf-8") if isinstance(token, str) else token
  2640. assert isinstance(token, bytes)
  2641. assert len(token) == token_len
  2642. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2643. tokens.append(token_text.encode("utf-8"))
  2644. toktypes.append(gguf.TokenType.NORMAL)
  2645. remainder = vocab_size - len(tokens)
  2646. assert remainder >= 0
  2647. for i in range(len(tokens), vocab_size):
  2648. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2649. toktypes.append(gguf.TokenType.UNUSED)
  2650. self.gguf_writer.add_tokenizer_model("rwkv")
  2651. self.gguf_writer.add_token_list(tokens)
  2652. self.gguf_writer.add_token_types(toktypes)
  2653. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2654. special_vocab.chat_template = "rwkv-world"
  2655. # hack: Add '\n\n' as the EOT token to make it chat normally
  2656. special_vocab._set_special_token("eot", 261)
  2657. special_vocab.add_to_gguf(self.gguf_writer)
  2658. def set_gguf_parameters(self):
  2659. block_count = self.hparams["num_hidden_layers"]
  2660. head_size = self.hparams["head_size"]
  2661. hidden_size = self.hparams["hidden_size"]
  2662. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2663. rescale_every_n_layers = self.hparams["rescale_every"]
  2664. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2665. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2666. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2667. # RWKV isn't context limited
  2668. self.gguf_writer.add_context_length(1048576)
  2669. self.gguf_writer.add_embedding_length(hidden_size)
  2670. self.gguf_writer.add_block_count(block_count)
  2671. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2672. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2673. self.gguf_writer.add_wkv_head_size(head_size)
  2674. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2675. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2676. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2677. self.gguf_writer.add_file_type(self.ftype)
  2678. # required by llama.cpp, unused
  2679. self.gguf_writer.add_head_count(0)
  2680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2681. new_name = self.map_tensor_name(name)
  2682. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2683. new_name += ".weight"
  2684. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2685. data_torch = data_torch.transpose(0, 1)
  2686. if new_name.endswith("time_mix_w2.weight"):
  2687. data_torch = data_torch.permute(0, 2, 1)
  2688. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2689. data_torch = data_torch.squeeze()
  2690. rescale_every_n_layers = self.hparams["rescale_every"]
  2691. if rescale_every_n_layers > 0:
  2692. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2693. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2694. yield (new_name, data_torch)
  2695. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2696. class MambaModel(Model):
  2697. model_arch = gguf.MODEL_ARCH.MAMBA
  2698. def set_vocab(self):
  2699. vocab_size = self.hparams["vocab_size"]
  2700. # Round vocab size to next multiple of 8
  2701. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2702. # pad using ceiling division
  2703. # ref: https://stackoverflow.com/a/17511341/22827863
  2704. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2705. self.hparams["vocab_size"] = vocab_size
  2706. if (self.dir_model / "tokenizer.json").is_file():
  2707. self._set_vocab_gpt2()
  2708. elif (self.dir_model / "tokenizer.model").is_file():
  2709. self._set_vocab_sentencepiece()
  2710. else:
  2711. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2712. self._set_vocab_builtin("gpt-neox", vocab_size)
  2713. def set_gguf_parameters(self):
  2714. d_model = self.find_hparam(["hidden_size", "d_model"])
  2715. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2716. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2717. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2718. # ceiling division
  2719. # ref: https://stackoverflow.com/a/17511341/22827863
  2720. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2721. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2722. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2723. use_dt_b_c_norm = False
  2724. # For falconmamba we do apply RMS norm on B / DT and C layers
  2725. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2726. use_dt_b_c_norm = True
  2727. # Fail early for models which don't have a block expansion factor of 2
  2728. assert d_inner == 2 * d_model
  2729. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2730. self.gguf_writer.add_embedding_length(d_model)
  2731. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2732. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2733. self.gguf_writer.add_block_count(self.block_count)
  2734. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2735. self.gguf_writer.add_ssm_inner_size(d_inner)
  2736. self.gguf_writer.add_ssm_state_size(d_state)
  2737. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2738. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2739. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2740. self.gguf_writer.add_file_type(self.ftype)
  2741. _tok_embd = None
  2742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2743. del bid # unused
  2744. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2745. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2746. new_name = self.map_tensor_name(name)
  2747. if name.endswith(".A_log"):
  2748. logger.debug("A_log --> A ==> " + new_name)
  2749. data_torch = -torch.exp(data_torch)
  2750. # assuming token_embd.weight is seen before output.weight
  2751. if self._tok_embd is not None and new_name == output_name:
  2752. if torch.equal(self._tok_embd, data_torch):
  2753. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2754. return []
  2755. elif new_name == tok_embd_name:
  2756. self._tok_embd = data_torch
  2757. return [(new_name, data_torch)]
  2758. @Model.register("CohereForCausalLM")
  2759. class CommandR2Model(Model):
  2760. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2761. def __init__(self, *args, **kwargs):
  2762. super().__init__(*args, **kwargs)
  2763. # max_position_embeddings = 8192 in config.json but model was actually
  2764. # trained on 128k context length
  2765. # aya-23 models don't have model_max_length specified
  2766. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2767. def set_gguf_parameters(self):
  2768. super().set_gguf_parameters()
  2769. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2770. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2771. @Model.register("Cohere2ForCausalLM")
  2772. class Cohere2Model(Model):
  2773. model_arch = gguf.MODEL_ARCH.COHERE2
  2774. def set_gguf_parameters(self):
  2775. super().set_gguf_parameters()
  2776. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2777. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2778. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  2779. rotary_pct = self.hparams["rotary_pct"]
  2780. hidden_size = self.hparams["hidden_size"]
  2781. num_attention_heads = self.hparams["num_attention_heads"]
  2782. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  2783. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2784. @Model.register("OlmoForCausalLM")
  2785. @Model.register("OLMoForCausalLM")
  2786. class OlmoModel(Model):
  2787. model_arch = gguf.MODEL_ARCH.OLMO
  2788. def set_gguf_parameters(self):
  2789. super().set_gguf_parameters()
  2790. self.gguf_writer.add_layer_norm_eps(1e-5)
  2791. clip_qkv = self.hparams.get("clip_qkv")
  2792. if clip_qkv is not None:
  2793. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2794. # Same as super class, but permuting q_proj, k_proj
  2795. # Copied from: LlamaModel
  2796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2797. del bid # unused
  2798. n_head = self.hparams["num_attention_heads"]
  2799. n_kv_head = self.hparams.get("num_key_value_heads")
  2800. if name.endswith("q_proj.weight"):
  2801. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2802. if name.endswith("k_proj.weight"):
  2803. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2804. return [(self.map_tensor_name(name), data_torch)]
  2805. @Model.register("Olmo2ForCausalLM")
  2806. class Olmo2Model(Model):
  2807. model_arch = gguf.MODEL_ARCH.OLMO2
  2808. @Model.register("OlmoeForCausalLM")
  2809. class OlmoeModel(Model):
  2810. model_arch = gguf.MODEL_ARCH.OLMOE
  2811. def set_gguf_parameters(self):
  2812. super().set_gguf_parameters()
  2813. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2814. if (n_experts := self.hparams.get("num_experts")) is not None:
  2815. self.gguf_writer.add_expert_count(n_experts)
  2816. _experts: list[dict[str, Tensor]] | None = None
  2817. # Copied from: Qwen2MoeModel
  2818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2819. # process the experts separately
  2820. if name.find("experts") != -1:
  2821. n_experts = self.hparams["num_experts"]
  2822. assert bid is not None
  2823. if self._experts is None:
  2824. self._experts = [{} for _ in range(self.block_count)]
  2825. self._experts[bid][name] = data_torch
  2826. if len(self._experts[bid]) >= n_experts * 3:
  2827. tensors: list[tuple[str, Tensor]] = []
  2828. # merge the experts into a single 3d tensor
  2829. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2830. datas: list[Tensor] = []
  2831. for xid in range(n_experts):
  2832. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2833. datas.append(self._experts[bid][ename])
  2834. del self._experts[bid][ename]
  2835. data_torch = torch.stack(datas, dim=0)
  2836. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2837. new_name = self.map_tensor_name(merged_name)
  2838. tensors.append((new_name, data_torch))
  2839. return tensors
  2840. else:
  2841. return []
  2842. return [(self.map_tensor_name(name), data_torch)]
  2843. # Copied from: Qwen2MoeModel
  2844. def prepare_tensors(self):
  2845. super().prepare_tensors()
  2846. if self._experts is not None:
  2847. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2848. experts = [k for d in self._experts for k in d.keys()]
  2849. if len(experts) > 0:
  2850. raise ValueError(f"Unprocessed experts: {experts}")
  2851. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2852. class JinaBertV2Model(BertModel):
  2853. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2854. def __init__(self, *args, **kwargs):
  2855. super().__init__(*args, **kwargs)
  2856. self.intermediate_size = self.hparams["intermediate_size"]
  2857. def get_tensors(self):
  2858. for name, data in super().get_tensors():
  2859. if 'gated_layer' in name:
  2860. d1 = data[:self.intermediate_size, :]
  2861. name1 = name.replace('gated_layers', 'gated_layers_w')
  2862. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2863. d2 = data[self.intermediate_size:, :]
  2864. name2 = name.replace('gated_layers', 'gated_layers_v')
  2865. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2866. yield name1, d1
  2867. yield name2, d2
  2868. continue
  2869. yield name, data
  2870. def set_vocab(self):
  2871. tokenizer_class = 'BertTokenizer'
  2872. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2873. tokenizer_class = json.load(f)['tokenizer_class']
  2874. if tokenizer_class == 'BertTokenizer':
  2875. super().set_vocab()
  2876. elif tokenizer_class == 'RobertaTokenizer':
  2877. self._set_vocab_gpt2()
  2878. self.gguf_writer.add_token_type_count(2)
  2879. else:
  2880. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2881. self.gguf_writer.add_add_bos_token(True)
  2882. self.gguf_writer.add_add_eos_token(True)
  2883. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2884. # if name starts with "bert.", remove the prefix
  2885. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2886. if name.startswith("bert."):
  2887. name = name[5:]
  2888. return super().modify_tensors(data_torch, name, bid)
  2889. @Model.register("OpenELMForCausalLM")
  2890. class OpenELMModel(Model):
  2891. model_arch = gguf.MODEL_ARCH.OPENELM
  2892. @staticmethod
  2893. def _make_divisible(v: float | int, divisor: int) -> int:
  2894. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2895. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2896. # Make sure that round down does not go down by more than 10%.
  2897. if new_v < 0.9 * v:
  2898. new_v += divisor
  2899. return new_v
  2900. def __init__(self, *args, **kwargs):
  2901. super().__init__(*args, **kwargs)
  2902. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2903. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2904. self._n_embd: int = self.hparams["model_dim"]
  2905. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2906. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2907. self._ffn_dims: list[int] = [
  2908. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2909. for multiplier in ffn_multipliers
  2910. ]
  2911. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2912. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2913. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2914. def set_vocab(self):
  2915. try:
  2916. self._set_vocab_sentencepiece()
  2917. except FileNotFoundError:
  2918. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2919. def set_gguf_parameters(self):
  2920. n_embd = self._n_embd
  2921. head_dim = self.hparams["head_dim"]
  2922. rot_pct = 1.0
  2923. assert self.block_count == len(self._num_kv_heads)
  2924. assert self.block_count == len(self._num_query_heads)
  2925. assert self.block_count == len(self._ffn_dims)
  2926. self.gguf_writer.add_block_count(self.block_count)
  2927. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2928. self.gguf_writer.add_embedding_length(n_embd)
  2929. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2930. self.gguf_writer.add_head_count(self._num_query_heads)
  2931. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2932. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2933. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2934. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2935. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2936. self.gguf_writer.add_key_length(head_dim)
  2937. self.gguf_writer.add_value_length(head_dim)
  2938. self.gguf_writer.add_file_type(self.ftype)
  2939. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2940. if "n_layers" in keys:
  2941. return self.hparams["num_transformer_layers"]
  2942. return super().find_hparam(keys, optional)
  2943. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2944. # split ff
  2945. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2946. ff_dim = self._ffn_dims[bid]
  2947. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2948. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2949. return
  2950. yield (self.map_tensor_name(name), data_torch)
  2951. @Model.register("ArcticForCausalLM")
  2952. class ArcticModel(Model):
  2953. model_arch = gguf.MODEL_ARCH.ARCTIC
  2954. def set_vocab(self):
  2955. # The reason for using a custom implementation here is that the
  2956. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2957. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2958. from sentencepiece import SentencePieceProcessor
  2959. tokenizer_path = self.dir_model / 'tokenizer.model'
  2960. if not tokenizer_path.is_file():
  2961. logger.error(f'Error: Missing {tokenizer_path}')
  2962. sys.exit(1)
  2963. # Read the whole vocabulary from the tokenizer.model file
  2964. tokenizer = SentencePieceProcessor()
  2965. tokenizer.LoadFromFile(str(tokenizer_path))
  2966. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2967. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2968. scores: list[float] = [-10000.0] * vocab_size
  2969. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2970. for token_id in range(tokenizer.vocab_size()):
  2971. piece = tokenizer.IdToPiece(token_id)
  2972. text = piece.encode("utf-8")
  2973. score = tokenizer.GetScore(token_id)
  2974. toktype = SentencePieceTokenTypes.NORMAL
  2975. if tokenizer.IsUnknown(token_id):
  2976. toktype = SentencePieceTokenTypes.UNKNOWN
  2977. elif tokenizer.IsControl(token_id):
  2978. toktype = SentencePieceTokenTypes.CONTROL
  2979. elif tokenizer.IsUnused(token_id):
  2980. toktype = SentencePieceTokenTypes.UNUSED
  2981. elif tokenizer.IsByte(token_id):
  2982. toktype = SentencePieceTokenTypes.BYTE
  2983. tokens[token_id] = text
  2984. scores[token_id] = score
  2985. toktypes[token_id] = toktype
  2986. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2987. # of information about added/redefined tokens and modify them accordingly.
  2988. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2989. if tokenizer_config_file.is_file():
  2990. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2991. tokenizer_config_json = json.load(f)
  2992. if "added_tokens_decoder" in tokenizer_config_json:
  2993. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2994. for token_id, token_json in added_tokens_decoder.items():
  2995. token_id = int(token_id)
  2996. if token_id >= vocab_size:
  2997. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2998. continue
  2999. token_content = token_json["content"]
  3000. token_type = SentencePieceTokenTypes.USER_DEFINED
  3001. token_score = -10000.0
  3002. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3003. # Set the score to 0.0 as in the original tokenizer.model
  3004. if ("special" in token_json) and token_json["special"]:
  3005. if token_content == tokenizer_config_json["unk_token"]:
  3006. token_type = SentencePieceTokenTypes.UNKNOWN
  3007. else:
  3008. token_type = SentencePieceTokenTypes.CONTROL
  3009. token_score = 0.0
  3010. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3011. tokens[token_id] = token_content.encode("utf-8")
  3012. toktypes[token_id] = token_type
  3013. scores[token_id] = token_score
  3014. self.gguf_writer.add_tokenizer_model("llama")
  3015. self.gguf_writer.add_tokenizer_pre("default")
  3016. self.gguf_writer.add_token_list(tokens)
  3017. self.gguf_writer.add_token_scores(scores)
  3018. self.gguf_writer.add_token_types(toktypes)
  3019. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3020. special_vocab.add_to_gguf(self.gguf_writer)
  3021. def set_gguf_parameters(self):
  3022. super().set_gguf_parameters()
  3023. hparams = self.hparams
  3024. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3025. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3026. _experts: list[dict[str, Tensor]] | None = None
  3027. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3028. n_head = self.hparams["num_attention_heads"]
  3029. n_kv_head = self.hparams.get("num_key_value_heads")
  3030. if name.endswith("q_proj.weight"):
  3031. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3032. if name.endswith("k_proj.weight"):
  3033. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3034. # process the experts separately
  3035. if name.find("block_sparse_moe.experts") != -1:
  3036. n_experts = self.hparams["num_local_experts"]
  3037. assert bid is not None
  3038. if self._experts is None:
  3039. self._experts = [{} for _ in range(self.block_count)]
  3040. self._experts[bid][name] = data_torch
  3041. if len(self._experts[bid]) >= n_experts * 3:
  3042. tensors: list[tuple[str, Tensor]] = []
  3043. # merge the experts into a single 3d tensor
  3044. for wid in ["w1", "w2", "w3"]:
  3045. datas: list[Tensor] = []
  3046. for xid in range(n_experts):
  3047. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3048. datas.append(self._experts[bid][ename])
  3049. del self._experts[bid][ename]
  3050. data_torch = torch.stack(datas, dim=0)
  3051. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3052. new_name = self.map_tensor_name(merged_name)
  3053. tensors.append((new_name, data_torch))
  3054. return tensors
  3055. else:
  3056. return []
  3057. return [(self.map_tensor_name(name), data_torch)]
  3058. def prepare_tensors(self):
  3059. super().prepare_tensors()
  3060. if self._experts is not None:
  3061. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3062. experts = [k for d in self._experts for k in d.keys()]
  3063. if len(experts) > 0:
  3064. raise ValueError(f"Unprocessed experts: {experts}")
  3065. @Model.register("DeepseekForCausalLM")
  3066. class DeepseekModel(Model):
  3067. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3068. def set_vocab(self):
  3069. try:
  3070. self._set_vocab_sentencepiece()
  3071. except FileNotFoundError:
  3072. self._set_vocab_gpt2()
  3073. def set_gguf_parameters(self):
  3074. super().set_gguf_parameters()
  3075. hparams = self.hparams
  3076. if "head_dim" in hparams:
  3077. rope_dim = hparams["head_dim"]
  3078. else:
  3079. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3080. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3081. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3082. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3083. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3084. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3085. self.gguf_writer.add_expert_weights_scale(1.0)
  3086. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3087. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3088. _experts: list[dict[str, Tensor]] | None = None
  3089. @staticmethod
  3090. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3091. if n_head_kv is not None and n_head != n_head_kv:
  3092. n_head = n_head_kv
  3093. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3094. .swapaxes(1, 2)
  3095. .reshape(weights.shape))
  3096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3097. n_head = self.hparams["num_attention_heads"]
  3098. n_kv_head = self.hparams.get("num_key_value_heads")
  3099. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3100. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3101. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3102. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3103. # process the experts separately
  3104. if name.find("mlp.experts") != -1:
  3105. n_experts = self.hparams["n_routed_experts"]
  3106. assert bid is not None
  3107. if self._experts is None:
  3108. self._experts = [{} for _ in range(self.block_count)]
  3109. self._experts[bid][name] = data_torch
  3110. if len(self._experts[bid]) >= n_experts * 3:
  3111. tensors: list[tuple[str, Tensor]] = []
  3112. # merge the experts into a single 3d tensor
  3113. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3114. datas: list[Tensor] = []
  3115. for xid in range(n_experts):
  3116. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3117. datas.append(self._experts[bid][ename])
  3118. del self._experts[bid][ename]
  3119. data_torch = torch.stack(datas, dim=0)
  3120. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3121. new_name = self.map_tensor_name(merged_name)
  3122. tensors.append((new_name, data_torch))
  3123. return tensors
  3124. else:
  3125. return []
  3126. return [(self.map_tensor_name(name), data_torch)]
  3127. def prepare_tensors(self):
  3128. super().prepare_tensors()
  3129. if self._experts is not None:
  3130. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3131. experts = [k for d in self._experts for k in d.keys()]
  3132. if len(experts) > 0:
  3133. raise ValueError(f"Unprocessed experts: {experts}")
  3134. @Model.register("DeepseekV2ForCausalLM")
  3135. @Model.register("DeepseekV3ForCausalLM")
  3136. class DeepseekV2Model(Model):
  3137. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3138. def set_vocab(self):
  3139. self._set_vocab_gpt2()
  3140. def set_gguf_parameters(self):
  3141. super().set_gguf_parameters()
  3142. hparams = self.hparams
  3143. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3144. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3145. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3146. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3147. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3148. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3149. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3150. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3151. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3152. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3153. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3154. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3155. if hparams["scoring_func"] == "sigmoid":
  3156. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3157. elif hparams["scoring_func"] == "softmax":
  3158. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3159. else:
  3160. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3161. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3162. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3163. if self.hparams["rope_scaling"].get("type") == "yarn":
  3164. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3165. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3166. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3167. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3168. _experts: list[dict[str, Tensor]] | None = None
  3169. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3170. # rename e_score_correction_bias tensors
  3171. if name.endswith("e_score_correction_bias"):
  3172. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3173. # skip Multi-Token Prediction (MTP) layers
  3174. block_count = self.hparams["num_hidden_layers"]
  3175. match = re.match(r"model.layers.(\d+)", name)
  3176. if match and int(match.group(1)) >= block_count:
  3177. return []
  3178. # process the experts separately
  3179. if name.find("mlp.experts") != -1:
  3180. n_experts = self.hparams["n_routed_experts"]
  3181. assert bid is not None
  3182. if self._experts is None:
  3183. self._experts = [{} for _ in range(self.block_count)]
  3184. self._experts[bid][name] = data_torch
  3185. if len(self._experts[bid]) >= n_experts * 3:
  3186. tensors: list[tuple[str, Tensor]] = []
  3187. # merge the experts into a single 3d tensor
  3188. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3189. datas: list[Tensor] = []
  3190. for xid in range(n_experts):
  3191. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3192. datas.append(self._experts[bid][ename])
  3193. del self._experts[bid][ename]
  3194. data_torch = torch.stack(datas, dim=0)
  3195. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3196. new_name = self.map_tensor_name(merged_name)
  3197. tensors.append((new_name, data_torch))
  3198. return tensors
  3199. else:
  3200. return []
  3201. return [(self.map_tensor_name(name), data_torch)]
  3202. def prepare_tensors(self):
  3203. super().prepare_tensors()
  3204. if self._experts is not None:
  3205. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3206. experts = [k for d in self._experts for k in d.keys()]
  3207. if len(experts) > 0:
  3208. raise ValueError(f"Unprocessed experts: {experts}")
  3209. @Model.register("T5WithLMHeadModel")
  3210. @Model.register("T5ForConditionalGeneration")
  3211. @Model.register("MT5ForConditionalGeneration")
  3212. @Model.register("UMT5ForConditionalGeneration")
  3213. class T5Model(Model):
  3214. model_arch = gguf.MODEL_ARCH.T5
  3215. def __init__(self, *args, **kwargs):
  3216. super().__init__(*args, **kwargs)
  3217. self.shared_token_embeddings_found = False
  3218. def set_vocab(self):
  3219. # to avoid TypeError: Descriptors cannot be created directly
  3220. # exception when importing sentencepiece_model_pb2
  3221. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3222. from sentencepiece import SentencePieceProcessor
  3223. from sentencepiece import sentencepiece_model_pb2 as model
  3224. tokenizer_path = self.dir_model / 'tokenizer.model'
  3225. # many older models use spiece.model tokenizer model filename
  3226. if not tokenizer_path.is_file():
  3227. tokenizer_path = self.dir_model / 'spiece.model'
  3228. if not tokenizer_path.is_file():
  3229. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3230. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3231. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3232. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3233. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3234. # assure the tokenizer model file name is correct
  3235. assert tokenizer_path.name == 'tokenizer.model'
  3236. return self._set_vocab_sentencepiece()
  3237. else:
  3238. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3239. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3240. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3241. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3242. tokenizer = SentencePieceProcessor()
  3243. tokenizer.LoadFromFile(str(tokenizer_path))
  3244. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3245. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3246. scores: list[float] = [-10000.0] * vocab_size
  3247. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3248. for token_id in range(tokenizer.vocab_size()):
  3249. piece = tokenizer.IdToPiece(token_id)
  3250. text = piece.encode("utf-8")
  3251. score = tokenizer.GetScore(token_id)
  3252. toktype = SentencePieceTokenTypes.NORMAL
  3253. if tokenizer.IsUnknown(token_id):
  3254. toktype = SentencePieceTokenTypes.UNKNOWN
  3255. elif tokenizer.IsControl(token_id):
  3256. toktype = SentencePieceTokenTypes.CONTROL
  3257. elif tokenizer.IsUnused(token_id):
  3258. toktype = SentencePieceTokenTypes.UNUSED
  3259. elif tokenizer.IsByte(token_id):
  3260. toktype = SentencePieceTokenTypes.BYTE
  3261. tokens[token_id] = text
  3262. scores[token_id] = score
  3263. toktypes[token_id] = toktype
  3264. added_tokens_file = self.dir_model / 'added_tokens.json'
  3265. if added_tokens_file.is_file():
  3266. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3267. added_tokens_json = json.load(f)
  3268. for key in added_tokens_json:
  3269. token_id = added_tokens_json[key]
  3270. if token_id >= vocab_size:
  3271. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3272. continue
  3273. tokens[token_id] = key.encode("utf-8")
  3274. scores[token_id] = -1000.0
  3275. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3276. if vocab_size > len(tokens):
  3277. pad_count = vocab_size - len(tokens)
  3278. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3279. for i in range(1, pad_count + 1):
  3280. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3281. scores.append(-1000.0)
  3282. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3283. self.gguf_writer.add_tokenizer_model("t5")
  3284. self.gguf_writer.add_tokenizer_pre("default")
  3285. self.gguf_writer.add_token_list(tokens)
  3286. self.gguf_writer.add_token_scores(scores)
  3287. self.gguf_writer.add_token_types(toktypes)
  3288. self.gguf_writer.add_add_space_prefix(add_prefix)
  3289. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3290. if precompiled_charsmap:
  3291. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3292. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3293. special_vocab.add_to_gguf(self.gguf_writer)
  3294. self.gguf_writer.add_add_bos_token(False)
  3295. self.gguf_writer.add_add_eos_token(True)
  3296. def set_gguf_parameters(self):
  3297. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3298. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3299. n_ctx = 512
  3300. self.gguf_writer.add_context_length(n_ctx)
  3301. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3302. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3303. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3304. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3305. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3306. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3307. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3308. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3309. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3310. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3311. self.gguf_writer.add_file_type(self.ftype)
  3312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3313. del bid # unused
  3314. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3315. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3316. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3317. # and decoder and ignore the remaining ones.
  3318. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3319. if not self.shared_token_embeddings_found:
  3320. name = "shared.weight"
  3321. self.shared_token_embeddings_found = True
  3322. else:
  3323. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3324. return []
  3325. return [(self.map_tensor_name(name), data_torch)]
  3326. @Model.register("T5EncoderModel")
  3327. class T5EncoderModel(Model):
  3328. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3329. def __init__(self, *args, **kwargs):
  3330. super().__init__(*args, **kwargs)
  3331. self.shared_token_embeddings_found = False
  3332. def set_vocab(self):
  3333. # to avoid TypeError: Descriptors cannot be created directly
  3334. # exception when importing sentencepiece_model_pb2
  3335. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3336. from sentencepiece import SentencePieceProcessor
  3337. from sentencepiece import sentencepiece_model_pb2 as model
  3338. tokenizer_path = self.dir_model / 'tokenizer.model'
  3339. # many older models use spiece.model tokenizer model filename
  3340. if not tokenizer_path.is_file():
  3341. tokenizer_path = self.dir_model / 'spiece.model'
  3342. if not tokenizer_path.is_file():
  3343. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3344. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3345. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3346. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3347. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3348. # assure the tokenizer model file name is correct
  3349. assert tokenizer_path.name == 'tokenizer.model'
  3350. return self._set_vocab_sentencepiece()
  3351. else:
  3352. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3353. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3354. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3355. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3356. tokenizer = SentencePieceProcessor()
  3357. tokenizer.LoadFromFile(str(tokenizer_path))
  3358. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3359. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3360. scores: list[float] = [-10000.0] * vocab_size
  3361. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3362. for token_id in range(tokenizer.vocab_size()):
  3363. piece = tokenizer.IdToPiece(token_id)
  3364. text = piece.encode("utf-8")
  3365. score = tokenizer.GetScore(token_id)
  3366. toktype = SentencePieceTokenTypes.NORMAL
  3367. if tokenizer.IsUnknown(token_id):
  3368. toktype = SentencePieceTokenTypes.UNKNOWN
  3369. elif tokenizer.IsControl(token_id):
  3370. toktype = SentencePieceTokenTypes.CONTROL
  3371. elif tokenizer.IsUnused(token_id):
  3372. toktype = SentencePieceTokenTypes.UNUSED
  3373. elif tokenizer.IsByte(token_id):
  3374. toktype = SentencePieceTokenTypes.BYTE
  3375. tokens[token_id] = text
  3376. scores[token_id] = score
  3377. toktypes[token_id] = toktype
  3378. added_tokens_file = self.dir_model / 'added_tokens.json'
  3379. if added_tokens_file.is_file():
  3380. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3381. added_tokens_json = json.load(f)
  3382. for key in added_tokens_json:
  3383. token_id = added_tokens_json[key]
  3384. if token_id >= vocab_size:
  3385. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3386. continue
  3387. tokens[token_id] = key.encode("utf-8")
  3388. scores[token_id] = -1000.0
  3389. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3390. if vocab_size > len(tokens):
  3391. pad_count = vocab_size - len(tokens)
  3392. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3393. for i in range(1, pad_count + 1):
  3394. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3395. scores.append(-1000.0)
  3396. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3397. self.gguf_writer.add_tokenizer_model("t5")
  3398. self.gguf_writer.add_tokenizer_pre("default")
  3399. self.gguf_writer.add_token_list(tokens)
  3400. self.gguf_writer.add_token_scores(scores)
  3401. self.gguf_writer.add_token_types(toktypes)
  3402. self.gguf_writer.add_add_space_prefix(add_prefix)
  3403. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3404. if precompiled_charsmap:
  3405. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3406. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3407. special_vocab.add_to_gguf(self.gguf_writer)
  3408. self.gguf_writer.add_add_bos_token(False)
  3409. self.gguf_writer.add_add_eos_token(True)
  3410. def set_gguf_parameters(self):
  3411. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3412. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3413. n_ctx = 512
  3414. self.gguf_writer.add_context_length(n_ctx)
  3415. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3416. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3417. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3418. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3419. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3420. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3421. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3422. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3423. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3424. self.gguf_writer.add_file_type(self.ftype)
  3425. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3426. del bid # unused
  3427. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3428. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3429. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3430. # and decoder and ignore the remaining ones.
  3431. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3432. if not self.shared_token_embeddings_found:
  3433. name = "shared.weight"
  3434. self.shared_token_embeddings_found = True
  3435. else:
  3436. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3437. return []
  3438. return [(self.map_tensor_name(name), data_torch)]
  3439. @Model.register("JAISLMHeadModel")
  3440. class JaisModel(Model):
  3441. model_arch = gguf.MODEL_ARCH.JAIS
  3442. def __init__(self, *args, **kwargs):
  3443. super().__init__(*args, **kwargs)
  3444. # SwigLU activation
  3445. assert self.hparams["activation_function"] == "swiglu"
  3446. # ALiBi position embedding
  3447. assert self.hparams["position_embedding_type"] == "alibi"
  3448. # Embeddings scale
  3449. self.embeddings_scale = 1.0
  3450. if 'mup_embeddings_scale' in self.hparams:
  3451. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3452. elif 'embeddings_scale' in self.hparams:
  3453. self.embeddings_scale = self.hparams['embeddings_scale']
  3454. else:
  3455. assert False
  3456. self.width_scale = 1.0
  3457. if 'mup_output_alpha' in self.hparams:
  3458. assert 'mup_width_scale' in self.hparams
  3459. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3460. elif 'width_scale' in self.hparams:
  3461. self.width_scale = self.hparams['width_scale']
  3462. else:
  3463. assert False
  3464. self.max_alibi_bias = 8.0
  3465. def set_vocab(self):
  3466. self._set_vocab_gpt2()
  3467. def set_gguf_parameters(self):
  3468. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3469. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3470. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3471. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3472. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3473. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3474. self.gguf_writer.add_file_type(self.ftype)
  3475. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3476. del bid # unused
  3477. tensors: list[tuple[str, Tensor]] = []
  3478. # we don't need these
  3479. if name.endswith((".attn.bias")):
  3480. return tensors
  3481. if name.endswith(("relative_pe.slopes")):
  3482. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3483. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3484. # but Jais's PyTorch model simply precalculates the slope values and places them
  3485. # in relative_pes.slopes
  3486. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3487. first_val = float(data_torch[0].item())
  3488. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3489. return tensors
  3490. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3491. data_torch = data_torch.transpose(1, 0)
  3492. new_name = self.map_tensor_name(name)
  3493. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3494. tensors.append((new_name, data_torch * self.embeddings_scale))
  3495. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3496. tensors.append((new_name, data_torch * self.width_scale))
  3497. else:
  3498. tensors.append((new_name, data_torch))
  3499. return tensors
  3500. def prepare_tensors(self):
  3501. super().prepare_tensors()
  3502. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3503. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3504. class ChatGLMModel(Model):
  3505. model_arch = gguf.MODEL_ARCH.CHATGLM
  3506. def set_vocab_chatglm3(self):
  3507. dir_model = self.dir_model
  3508. hparams = self.hparams
  3509. tokens: list[bytes] = []
  3510. toktypes: list[int] = []
  3511. scores: list[float] = []
  3512. from transformers import AutoTokenizer
  3513. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3514. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3515. assert max(tokenizer.get_vocab().values()) < vocab_size
  3516. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3517. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3518. for token_id in range(vocab_size):
  3519. piece = tokenizer._convert_id_to_token(token_id)
  3520. if token_id == 0:
  3521. piece = "<unk>"
  3522. elif token_id == 1:
  3523. piece = "<bos>"
  3524. elif token_id == 2:
  3525. piece = "<eos>"
  3526. text = piece.encode("utf-8")
  3527. score = 0.0
  3528. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3529. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3530. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3531. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3532. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3533. if piece in special_tokens:
  3534. toktype = SentencePieceTokenTypes.CONTROL
  3535. elif len(piece) == 0:
  3536. text = f"[PAD{token_id}]".encode("utf-8")
  3537. toktype = SentencePieceTokenTypes.UNUSED
  3538. else:
  3539. toktype = SentencePieceTokenTypes.USER_DEFINED
  3540. tokens.append(text)
  3541. scores.append(score)
  3542. toktypes.append(toktype)
  3543. continue
  3544. toktype = SentencePieceTokenTypes.NORMAL
  3545. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3546. toktype = SentencePieceTokenTypes.UNKNOWN
  3547. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3548. toktype = SentencePieceTokenTypes.CONTROL
  3549. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3550. toktype = SentencePieceTokenTypes.UNUSED
  3551. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3552. toktype = SentencePieceTokenTypes.BYTE
  3553. tokens.append(text)
  3554. scores.append(score)
  3555. toktypes.append(toktype)
  3556. self.gguf_writer.add_tokenizer_model("llama")
  3557. # glm3 needs prefix and suffix formatted as:
  3558. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3559. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3560. self.gguf_writer.add_token_list(tokens)
  3561. self.gguf_writer.add_token_scores(scores)
  3562. self.gguf_writer.add_token_types(toktypes)
  3563. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3564. special_vocab.add_to_gguf(self.gguf_writer)
  3565. @staticmethod
  3566. def token_bytes_to_string(b):
  3567. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3568. byte_encoder = bytes_to_unicode()
  3569. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3570. @staticmethod
  3571. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3572. parts = [bytes([b]) for b in token]
  3573. while True:
  3574. min_idx = None
  3575. min_rank = None
  3576. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3577. rank = mergeable_ranks.get(pair[0] + pair[1])
  3578. if rank is not None and (min_rank is None or rank < min_rank):
  3579. min_idx = i
  3580. min_rank = rank
  3581. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3582. break
  3583. assert min_idx is not None
  3584. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3585. return parts
  3586. def set_vocab(self):
  3587. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3588. self.set_vocab_chatglm3()
  3589. return
  3590. dir_model = self.dir_model
  3591. hparams = self.hparams
  3592. tokens: list[str] = []
  3593. toktypes: list[int] = []
  3594. from transformers import AutoTokenizer
  3595. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3596. vocab_size = hparams["padded_vocab_size"]
  3597. assert max(tokenizer.get_vocab().values()) < vocab_size
  3598. tokpre = self.get_vocab_base_pre(tokenizer)
  3599. merges = []
  3600. vocab = {}
  3601. mergeable_ranks = tokenizer.mergeable_ranks
  3602. for token, rank in mergeable_ranks.items():
  3603. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3604. if len(token) == 1:
  3605. continue
  3606. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3607. assert len(merged) >= 2 and len(merged) <= 7
  3608. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3609. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3610. added_vocab = tokenizer.get_added_vocab()
  3611. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3612. for i in range(vocab_size):
  3613. if i not in reverse_vocab:
  3614. tokens.append(f"[PAD{i}]")
  3615. toktypes.append(gguf.TokenType.UNUSED)
  3616. elif reverse_vocab[i] in added_vocab:
  3617. tokens.append(reverse_vocab[i])
  3618. if tokenizer.added_tokens_decoder[i].special:
  3619. toktypes.append(gguf.TokenType.CONTROL)
  3620. else:
  3621. toktypes.append(gguf.TokenType.USER_DEFINED)
  3622. else:
  3623. tokens.append(reverse_vocab[i])
  3624. toktypes.append(gguf.TokenType.NORMAL)
  3625. self.gguf_writer.add_tokenizer_model("gpt2")
  3626. self.gguf_writer.add_tokenizer_pre(tokpre)
  3627. self.gguf_writer.add_token_list(tokens)
  3628. self.gguf_writer.add_token_types(toktypes)
  3629. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3630. special_vocab.merges = merges
  3631. # only add special tokens when they were not already loaded from config.json
  3632. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3633. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3634. # this one is usually not in config.json anyway
  3635. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3636. special_vocab.add_to_gguf(self.gguf_writer)
  3637. def set_gguf_parameters(self):
  3638. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3639. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3640. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3641. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3642. self.gguf_writer.add_embedding_length(n_embed)
  3643. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3644. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3645. self.gguf_writer.add_head_count(n_head)
  3646. self.gguf_writer.add_head_count_kv(n_head_kv)
  3647. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3648. self.gguf_writer.add_file_type(self.ftype)
  3649. self.gguf_writer.add_rope_dimension_count(64)
  3650. self.gguf_writer.add_add_bos_token(False)
  3651. rope_freq = 10000
  3652. if "rope_ratio" in self.hparams:
  3653. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3654. self.gguf_writer.add_rope_freq_base(rope_freq)
  3655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3656. del bid # unused
  3657. if name.endswith(".rotary_pos_emb.inv_freq"):
  3658. return []
  3659. name = name.removeprefix("transformer.")
  3660. return [(self.map_tensor_name(name), data_torch)]
  3661. @Model.register("NemotronForCausalLM")
  3662. class NemotronModel(Model):
  3663. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3664. def set_vocab(self):
  3665. self._set_vocab_sentencepiece()
  3666. self.gguf_writer.add_pad_token_id(0)
  3667. self.gguf_writer.add_unk_token_id(1)
  3668. def set_gguf_parameters(self):
  3669. super().set_gguf_parameters()
  3670. hparams = self.hparams
  3671. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3672. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3673. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3674. # * Partial RoPE
  3675. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3676. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3677. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3678. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3679. # * RopeScaling for Nemotron
  3680. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3681. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3682. else:
  3683. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3684. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3685. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3686. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3687. # model.layers.{l}.input_layernorm.weight
  3688. # model.layers.{l}.post_attention_layernorm.weight
  3689. # model.norm.weight
  3690. if name.endswith("norm.weight"):
  3691. data_torch = data_torch + 1
  3692. return [(self.map_tensor_name(name), data_torch)]
  3693. @Model.register("ExaoneForCausalLM")
  3694. class ExaoneModel(Model):
  3695. model_arch = gguf.MODEL_ARCH.EXAONE
  3696. def set_gguf_parameters(self):
  3697. hparams = self.hparams
  3698. assert (hparams["activation_function"] == "silu")
  3699. max_position_embeddings = hparams["max_position_embeddings"]
  3700. embed_dim = hparams["hidden_size"]
  3701. num_heads = hparams["num_attention_heads"]
  3702. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3703. layer_norm_eps = hparams["layer_norm_epsilon"]
  3704. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3705. num_layers = hparams["num_layers"]
  3706. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3707. # attention_dropout_rate = hparams["attention_dropout"]
  3708. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3709. # embed_dropout_rate = hparams["embed_dropout"]
  3710. self.gguf_writer.add_embedding_length(embed_dim)
  3711. self.gguf_writer.add_head_count(num_heads)
  3712. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3713. self.gguf_writer.add_context_length(max_position_embeddings)
  3714. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3715. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3716. self.gguf_writer.add_block_count(num_layers)
  3717. self.gguf_writer.add_file_type(self.ftype)
  3718. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3719. self.gguf_writer.add_rope_freq_base(rope_theta)
  3720. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3721. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3722. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3723. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3724. if hparams["rope_scaling"].get("type") == "linear":
  3725. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3726. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3727. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3728. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3729. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3730. base = self.hparams.get("rope_theta", 10000.0)
  3731. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3732. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3733. factor = rope_scaling.get("factor", 8.0)
  3734. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3735. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3736. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3737. low_freq_wavelen = old_context_len / low_freq_factor
  3738. high_freq_wavelen = old_context_len / high_freq_factor
  3739. assert low_freq_wavelen != high_freq_wavelen
  3740. rope_factors = []
  3741. for freq in freqs:
  3742. wavelen = 2 * math.pi / freq
  3743. if wavelen < high_freq_wavelen:
  3744. rope_factors.append(1)
  3745. elif wavelen > low_freq_wavelen:
  3746. rope_factors.append(factor)
  3747. else:
  3748. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3749. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3750. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3751. @Model.register("GraniteForCausalLM")
  3752. class GraniteModel(LlamaModel):
  3753. """Conversion for IBM's GraniteForCausalLM"""
  3754. model_arch = gguf.MODEL_ARCH.GRANITE
  3755. def set_gguf_parameters(self):
  3756. """Granite uses standard llama parameters with the following differences:
  3757. - No head_dim support
  3758. - New multiplier params:
  3759. - attention_scale
  3760. - embedding_scale
  3761. - residual_scale
  3762. - logits_scaling
  3763. """
  3764. if head_dim := self.hparams.pop("head_dim", None):
  3765. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3766. super().set_gguf_parameters()
  3767. # NOTE: Convert _multiplier params to _scale params for naming
  3768. # consistency
  3769. if attention_scale := self.hparams.get("attention_multiplier"):
  3770. self.gguf_writer.add_attention_scale(attention_scale)
  3771. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3772. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3773. self.gguf_writer.add_embedding_scale(embedding_scale)
  3774. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3775. if residual_scale := self.hparams.get("residual_multiplier"):
  3776. self.gguf_writer.add_residual_scale(residual_scale)
  3777. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3778. if logits_scale := self.hparams.get("logits_scaling"):
  3779. self.gguf_writer.add_logit_scale(logits_scale)
  3780. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3781. @Model.register("GraniteMoeForCausalLM")
  3782. class GraniteMoeModel(GraniteModel):
  3783. """Conversion for IBM's GraniteMoeForCausalLM"""
  3784. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3786. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3787. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3788. the hidden size that is then split during forward. To keep compatibility
  3789. with existing mixtral support, we pull them apart here.
  3790. """
  3791. if name.endswith("block_sparse_moe.input_linear.weight"):
  3792. ffn_dim = self.hparams["intermediate_size"]
  3793. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3794. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3795. return [
  3796. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3797. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3798. ]
  3799. return super().modify_tensors(data_torch, name, bid)
  3800. @Model.register("ChameleonForConditionalGeneration")
  3801. @Model.register("ChameleonForCausalLM") # obsolete
  3802. class ChameleonModel(Model):
  3803. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3804. def set_gguf_parameters(self):
  3805. super().set_gguf_parameters()
  3806. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3807. def set_vocab(self):
  3808. self._set_vocab_gpt2()
  3809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3810. # ignore image tokenizer for now
  3811. # TODO: remove this once image support is implemented for Chameleon
  3812. if name.startswith("model.vqmodel"):
  3813. return []
  3814. n_head = self.hparams["num_attention_heads"]
  3815. n_kv_head = self.hparams.get("num_key_value_heads")
  3816. hidden_dim = self.hparams.get("hidden_size")
  3817. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3818. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3819. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3820. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3821. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3822. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3823. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3824. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3825. return [(self.map_tensor_name(name), data_torch)]
  3826. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3827. @staticmethod
  3828. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3829. head_dim = hidden_dim // n_heads
  3830. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3831. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3832. return data_torch
  3833. ###### CONVERSION LOGIC ######
  3834. # tree of lazy tensors
  3835. class LazyTorchTensor(gguf.LazyBase):
  3836. _tensor_type = torch.Tensor
  3837. # to keep the type-checker happy
  3838. dtype: torch.dtype
  3839. shape: torch.Size
  3840. # only used when converting a torch.Tensor to a np.ndarray
  3841. _dtype_map: dict[torch.dtype, type] = {
  3842. torch.float16: np.float16,
  3843. torch.float32: np.float32,
  3844. }
  3845. # used for safetensors slices
  3846. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3847. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3848. _dtype_str_map: dict[str, torch.dtype] = {
  3849. "F64": torch.float64,
  3850. "F32": torch.float32,
  3851. "BF16": torch.bfloat16,
  3852. "F16": torch.float16,
  3853. # "U64": torch.uint64,
  3854. "I64": torch.int64,
  3855. # "U32": torch.uint32,
  3856. "I32": torch.int32,
  3857. # "U16": torch.uint16,
  3858. "I16": torch.int16,
  3859. "U8": torch.uint8,
  3860. "I8": torch.int8,
  3861. "BOOL": torch.bool,
  3862. "F8_E4M3": torch.float8_e4m3fn,
  3863. "F8_E5M2": torch.float8_e5m2,
  3864. }
  3865. def numpy(self) -> gguf.LazyNumpyTensor:
  3866. dtype = self._dtype_map[self.dtype]
  3867. return gguf.LazyNumpyTensor(
  3868. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3869. args=(self,),
  3870. func=(lambda s: s.numpy())
  3871. )
  3872. @classmethod
  3873. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3874. return torch.empty(size=shape, dtype=dtype, device="meta")
  3875. @classmethod
  3876. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3877. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3878. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3879. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3880. return cast(torch.Tensor, lazy)
  3881. @classmethod
  3882. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3883. del types # unused
  3884. if kwargs is None:
  3885. kwargs = {}
  3886. if func is torch.Tensor.numpy:
  3887. return args[0].numpy()
  3888. return cls._wrap_fn(func)(*args, **kwargs)
  3889. def parse_args() -> argparse.Namespace:
  3890. parser = argparse.ArgumentParser(
  3891. description="Convert a huggingface model to a GGML compatible file")
  3892. parser.add_argument(
  3893. "--vocab-only", action="store_true",
  3894. help="extract only the vocab",
  3895. )
  3896. parser.add_argument(
  3897. "--outfile", type=Path,
  3898. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3899. )
  3900. parser.add_argument(
  3901. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3902. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3903. )
  3904. parser.add_argument(
  3905. "--bigendian", action="store_true",
  3906. help="model is executed on big endian machine",
  3907. )
  3908. parser.add_argument(
  3909. "model", type=Path,
  3910. help="directory containing model file",
  3911. )
  3912. parser.add_argument(
  3913. "--use-temp-file", action="store_true",
  3914. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3915. )
  3916. parser.add_argument(
  3917. "--no-lazy", action="store_true",
  3918. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3919. )
  3920. parser.add_argument(
  3921. "--model-name", type=str, default=None,
  3922. help="name of the model",
  3923. )
  3924. parser.add_argument(
  3925. "--verbose", action="store_true",
  3926. help="increase output verbosity",
  3927. )
  3928. parser.add_argument(
  3929. "--split-max-tensors", type=int, default=0,
  3930. help="max tensors in each split",
  3931. )
  3932. parser.add_argument(
  3933. "--split-max-size", type=str, default="0",
  3934. help="max size per split N(M|G)",
  3935. )
  3936. parser.add_argument(
  3937. "--dry-run", action="store_true",
  3938. help="only print out a split plan and exit, without writing any new files",
  3939. )
  3940. parser.add_argument(
  3941. "--no-tensor-first-split", action="store_true",
  3942. help="do not add tensors to the first split (disabled by default)"
  3943. )
  3944. parser.add_argument(
  3945. "--metadata", type=Path,
  3946. help="Specify the path for an authorship metadata override file"
  3947. )
  3948. return parser.parse_args()
  3949. def split_str_to_n_bytes(split_str: str) -> int:
  3950. if split_str.endswith("K"):
  3951. n = int(split_str[:-1]) * 1000
  3952. elif split_str.endswith("M"):
  3953. n = int(split_str[:-1]) * 1000 * 1000
  3954. elif split_str.endswith("G"):
  3955. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3956. elif split_str.isnumeric():
  3957. n = int(split_str)
  3958. else:
  3959. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3960. if n < 0:
  3961. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3962. return n
  3963. def main() -> None:
  3964. args = parse_args()
  3965. if args.verbose:
  3966. logging.basicConfig(level=logging.DEBUG)
  3967. else:
  3968. logging.basicConfig(level=logging.INFO)
  3969. dir_model = args.model
  3970. if not dir_model.is_dir():
  3971. logger.error(f'Error: {args.model} is not a directory')
  3972. sys.exit(1)
  3973. ftype_map: dict[str, gguf.LlamaFileType] = {
  3974. "f32": gguf.LlamaFileType.ALL_F32,
  3975. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3976. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3977. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3978. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3979. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3980. "auto": gguf.LlamaFileType.GUESSED,
  3981. }
  3982. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3983. if args.use_temp_file and is_split:
  3984. logger.error("Error: Cannot use temp file when splitting")
  3985. sys.exit(1)
  3986. if args.outfile is not None:
  3987. fname_out = args.outfile
  3988. else:
  3989. fname_out = dir_model
  3990. logger.info(f"Loading model: {dir_model.name}")
  3991. hparams = Model.load_hparams(dir_model)
  3992. with torch.inference_mode():
  3993. output_type = ftype_map[args.outtype]
  3994. model_architecture = hparams["architectures"][0]
  3995. try:
  3996. model_class = Model.from_model_architecture(model_architecture)
  3997. except NotImplementedError:
  3998. logger.error(f"Model {model_architecture} is not supported")
  3999. sys.exit(1)
  4000. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4001. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4002. eager=args.no_lazy,
  4003. metadata_override=args.metadata, model_name=args.model_name,
  4004. split_max_tensors=args.split_max_tensors,
  4005. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4006. small_first_shard=args.no_tensor_first_split)
  4007. if args.vocab_only:
  4008. logger.info("Exporting model vocab...")
  4009. model_instance.write_vocab()
  4010. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4011. else:
  4012. logger.info("Exporting model...")
  4013. model_instance.write()
  4014. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4015. logger.info(f"Model successfully exported to {out_path}")
  4016. if __name__ == '__main__':
  4017. main()