quantize.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cstdio>
  4. #include <cstring>
  5. #include <vector>
  6. #include <string>
  7. #include <unordered_map>
  8. #include <fstream>
  9. #include <cmath>
  10. struct quant_option {
  11. std::string name;
  12. llama_ftype ftype;
  13. std::string desc;
  14. };
  15. static const std::vector<struct quant_option> QUANT_OPTIONS = {
  16. { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
  17. { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
  18. { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
  19. { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
  20. { "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
  21. { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
  22. { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
  23. { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
  24. { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
  25. { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
  26. { "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
  27. { "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
  28. { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
  29. { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
  30. { "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
  31. { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
  32. { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
  33. { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
  34. { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
  35. { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
  36. { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
  37. { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
  38. { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
  39. { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
  40. { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
  41. { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
  42. { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
  43. { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
  44. { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
  45. { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
  46. { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
  47. { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
  48. { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
  49. { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
  50. { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
  51. // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
  52. { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
  53. };
  54. static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
  55. static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
  56. static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
  57. static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
  58. static bool striequals(const char * a, const char * b) {
  59. while (*a && *b) {
  60. if (std::tolower(*a) != std::tolower(*b)) {
  61. return false;
  62. }
  63. a++; b++;
  64. }
  65. return *a == *b;
  66. }
  67. static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
  68. std::string ftype_str;
  69. for (auto ch : ftype_str_in) {
  70. ftype_str.push_back(std::toupper(ch));
  71. }
  72. for (auto & it : QUANT_OPTIONS) {
  73. if (striequals(it.name.c_str(), ftype_str.c_str())) {
  74. ftype = it.ftype;
  75. ftype_str_out = it.name;
  76. return true;
  77. }
  78. }
  79. try {
  80. int ftype_int = std::stoi(ftype_str);
  81. for (auto & it : QUANT_OPTIONS) {
  82. if (it.ftype == ftype_int) {
  83. ftype = it.ftype;
  84. ftype_str_out = it.name;
  85. return true;
  86. }
  87. }
  88. }
  89. catch (...) {
  90. // stoi failed
  91. }
  92. return false;
  93. }
  94. // usage:
  95. // ./llama-quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
  96. //
  97. [[noreturn]]
  98. static void usage(const char * executable) {
  99. printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
  100. printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
  101. printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
  102. printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
  103. printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
  104. printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
  105. printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
  106. printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
  107. printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
  108. printf(" --keep-split: will generate quantized model in the same shards as input\n");
  109. printf(" --override-kv KEY=TYPE:VALUE\n");
  110. printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
  111. printf("Note: --include-weights and --exclude-weights cannot be used together\n");
  112. printf("\nAllowed quantization types:\n");
  113. for (auto & it : QUANT_OPTIONS) {
  114. if (it.name != "COPY") {
  115. printf(" %2d or ", it.ftype);
  116. } else {
  117. printf(" ");
  118. }
  119. printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
  120. }
  121. exit(1);
  122. }
  123. static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
  124. std::ifstream in(imatrix_file.c_str(), std::ios::binary);
  125. if (!in) {
  126. printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
  127. exit(1);
  128. }
  129. int n_entries;
  130. in.read((char *)&n_entries, sizeof(n_entries));
  131. if (in.fail() || n_entries < 1) {
  132. printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
  133. exit(1);
  134. }
  135. for (int i = 0; i < n_entries; ++i) {
  136. int len; in.read((char *)&len, sizeof(len));
  137. std::vector<char> name_as_vec(len+1);
  138. in.read((char *)name_as_vec.data(), len);
  139. if (in.fail()) {
  140. printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
  141. exit(1);
  142. }
  143. name_as_vec[len] = 0;
  144. std::string name{name_as_vec.data()};
  145. auto & e = imatrix_data[name];
  146. int ncall;
  147. in.read((char *)&ncall, sizeof(ncall));
  148. int nval;
  149. in.read((char *)&nval, sizeof(nval));
  150. if (in.fail() || nval < 1) {
  151. printf("%s: failed reading number of values for entry %d\n", __func__, i);
  152. imatrix_data = {};
  153. exit(1);
  154. }
  155. e.resize(nval);
  156. in.read((char *)e.data(), nval*sizeof(float));
  157. if (in.fail()) {
  158. printf("%s: failed reading data for entry %d\n", __func__, i);
  159. imatrix_data = {};
  160. exit(1);
  161. }
  162. if (ncall > 0) {
  163. for (auto& v : e) v /= ncall;
  164. }
  165. if (getenv("LLAMA_TRACE")) {
  166. printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
  167. }
  168. }
  169. // latest imatrix version contains the dataset filename at the end of the file
  170. int m_last_call = 0;
  171. if (in.peek() != EOF) {
  172. in.read((char *)&m_last_call, sizeof(m_last_call));
  173. int dataset_len;
  174. in.read((char *)&dataset_len, sizeof(dataset_len));
  175. std::vector<char> dataset_as_vec(dataset_len);
  176. in.read(dataset_as_vec.data(), dataset_len);
  177. imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
  178. printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
  179. }
  180. printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
  181. return m_last_call;
  182. }
  183. static int prepare_imatrix(const std::string & imatrix_file,
  184. std::string & imatrix_dataset,
  185. const std::vector<std::string> & included_weights,
  186. const std::vector<std::string> & excluded_weights,
  187. std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
  188. int m_last_call = -1;
  189. if (!imatrix_file.empty()) {
  190. m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
  191. }
  192. if (imatrix_data.empty()) {
  193. return m_last_call;
  194. }
  195. if (!excluded_weights.empty()) {
  196. for (auto& name : excluded_weights) {
  197. for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
  198. auto pos = it->first.find(name);
  199. if (pos != std::string::npos) it = imatrix_data.erase(it);
  200. else ++it;
  201. }
  202. }
  203. }
  204. if (!included_weights.empty()) {
  205. std::unordered_map<std::string, std::vector<float>> tmp;
  206. for (auto& name : included_weights) {
  207. for (auto& e : imatrix_data) {
  208. auto pos = e.first.find(name);
  209. if (pos != std::string::npos) {
  210. tmp.emplace(std::move(e));
  211. }
  212. }
  213. }
  214. imatrix_data = std::move(tmp);
  215. }
  216. if (!imatrix_data.empty()) {
  217. printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
  218. }
  219. return m_last_call;
  220. }
  221. static ggml_type parse_ggml_type(const char * arg) {
  222. for (int i = 0; i < GGML_TYPE_COUNT; ++i) {
  223. auto type = (ggml_type)i;
  224. const auto * name = ggml_type_name(type);
  225. if (name && striequals(name, arg)) {
  226. return type;
  227. }
  228. }
  229. fprintf(stderr, "%s: invalid ggml_type '%s'\n", __func__, arg);
  230. return GGML_TYPE_COUNT;
  231. }
  232. int main(int argc, char ** argv) {
  233. if (argc < 3) {
  234. usage(argv[0]);
  235. }
  236. llama_model_quantize_params params = llama_model_quantize_default_params();
  237. int arg_idx = 1;
  238. std::string imatrix_file;
  239. std::vector<std::string> included_weights, excluded_weights;
  240. std::vector<llama_model_kv_override> kv_overrides;
  241. for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
  242. if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
  243. params.quantize_output_tensor = false;
  244. } else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
  245. if (arg_idx < argc-1) {
  246. params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
  247. if (params.output_tensor_type == GGML_TYPE_COUNT) {
  248. usage(argv[0]);
  249. }
  250. } else {
  251. usage(argv[0]);
  252. }
  253. } else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
  254. if (arg_idx < argc-1) {
  255. params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
  256. if (params.token_embedding_type == GGML_TYPE_COUNT) {
  257. usage(argv[0]);
  258. }
  259. } else {
  260. usage(argv[0]);
  261. }
  262. } else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
  263. if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
  264. usage(argv[0]);
  265. }
  266. } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
  267. params.allow_requantize = true;
  268. } else if (strcmp(argv[arg_idx], "--pure") == 0) {
  269. params.pure = true;
  270. } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
  271. if (arg_idx < argc-1) {
  272. imatrix_file = argv[++arg_idx];
  273. } else {
  274. usage(argv[0]);
  275. }
  276. } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
  277. if (arg_idx < argc-1) {
  278. included_weights.emplace_back(argv[++arg_idx]);
  279. } else {
  280. usage(argv[0]);
  281. }
  282. } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
  283. if (arg_idx < argc-1) {
  284. excluded_weights.emplace_back(argv[++arg_idx]);
  285. } else {
  286. usage(argv[0]);
  287. }
  288. } else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
  289. params.keep_split = true;
  290. } else {
  291. usage(argv[0]);
  292. }
  293. }
  294. if (argc - arg_idx < 2) {
  295. printf("%s: bad arguments\n", argv[0]);
  296. usage(argv[0]);
  297. }
  298. if (!included_weights.empty() && !excluded_weights.empty()) {
  299. usage(argv[0]);
  300. }
  301. std::string imatrix_dataset;
  302. std::unordered_map<std::string, std::vector<float>> imatrix_data;
  303. int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
  304. if (!imatrix_data.empty()) {
  305. params.imatrix = &imatrix_data;
  306. {
  307. llama_model_kv_override kvo;
  308. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
  309. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  310. strncpy(kvo.val_str, imatrix_file.c_str(), 127);
  311. kvo.val_str[127] = '\0';
  312. kv_overrides.emplace_back(std::move(kvo));
  313. }
  314. if (!imatrix_dataset.empty()) {
  315. llama_model_kv_override kvo;
  316. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
  317. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  318. strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
  319. kvo.val_str[127] = '\0';
  320. kv_overrides.emplace_back(std::move(kvo));
  321. }
  322. {
  323. llama_model_kv_override kvo;
  324. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
  325. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  326. kvo.val_i64 = imatrix_data.size();
  327. kv_overrides.emplace_back(std::move(kvo));
  328. }
  329. if (m_last_call > 0) {
  330. llama_model_kv_override kvo;
  331. std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
  332. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  333. kvo.val_i64 = m_last_call;
  334. kv_overrides.emplace_back(std::move(kvo));
  335. }
  336. }
  337. if (!kv_overrides.empty()) {
  338. kv_overrides.emplace_back();
  339. kv_overrides.back().key[0] = 0;
  340. params.kv_overrides = &kv_overrides;
  341. }
  342. llama_backend_init();
  343. // parse command line arguments
  344. const std::string fname_inp = argv[arg_idx];
  345. arg_idx++;
  346. std::string fname_out;
  347. std::string ftype_str;
  348. std::string suffix = ".gguf";
  349. if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
  350. std::string fpath;
  351. const size_t pos = fname_inp.find_last_of("/\\");
  352. if (pos != std::string::npos) {
  353. fpath = fname_inp.substr(0, pos + 1);
  354. }
  355. // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
  356. fname_out = fpath + "ggml-model-" + ftype_str;
  357. if (!params.keep_split) {
  358. fname_out += suffix;
  359. }
  360. arg_idx++;
  361. if (ftype_str == "COPY") {
  362. params.only_copy = true;
  363. }
  364. } else {
  365. fname_out = argv[arg_idx];
  366. if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
  367. fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
  368. }
  369. arg_idx++;
  370. if (argc <= arg_idx) {
  371. fprintf(stderr, "%s: missing ftype\n", __func__);
  372. return 1;
  373. }
  374. if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
  375. fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
  376. return 1;
  377. }
  378. if (ftype_str == "COPY") {
  379. params.only_copy = true;
  380. }
  381. arg_idx++;
  382. }
  383. // parse nthreads
  384. if (argc > arg_idx) {
  385. try {
  386. params.nthread = std::stoi(argv[arg_idx]);
  387. }
  388. catch (const std::exception & e) {
  389. fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
  390. return 1;
  391. }
  392. }
  393. if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
  394. params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
  395. params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
  396. params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  397. params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
  398. fprintf(stderr, "\n==========================================================================================================\n");
  399. fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
  400. fprintf(stderr, "==========================================================================================================\n\n\n");
  401. return 1;
  402. }
  403. print_build_info();
  404. fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
  405. if (params.nthread > 0) {
  406. fprintf(stderr, " using %d threads", params.nthread);
  407. }
  408. fprintf(stderr, "\n");
  409. const int64_t t_main_start_us = llama_time_us();
  410. int64_t t_quantize_us = 0;
  411. // load the model
  412. {
  413. const int64_t t_start_us = llama_time_us();
  414. if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
  415. fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
  416. return 1;
  417. }
  418. t_quantize_us = llama_time_us() - t_start_us;
  419. }
  420. // report timing
  421. {
  422. const int64_t t_main_end_us = llama_time_us();
  423. printf("\n");
  424. printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
  425. printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
  426. }
  427. llama_backend_free();
  428. return 0;
  429. }