| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- #include "common.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include <vector>
- #include <string>
- #include <thread>
- static const size_t tensor_alignment = 32;
- struct lora_info {
- std::string filename;
- float scale;
- };
- struct export_lora_params {
- std::string fn_model_base;
- std::string fn_model_out;
- std::vector<struct lora_info> lora;
- int n_threads;
- };
- struct lora_data {
- struct lora_info info;
- std::vector<uint8_t> data;
- struct ggml_context * ctx;
- uint32_t lora_r;
- uint32_t lora_alpha;
- };
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- size = 0;
- } else {
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, size, 1, fp);
- if (ferror(fp)) {
- die_fmt("read error: %s", strerror(errno));
- }
- if (ret != 1) {
- die("unexpectedly reached end of file");
- }
- }
- std::uint32_t read_u32() {
- std::uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- std::string read_string(std::uint32_t len) {
- std::vector<char> chars(len);
- read_raw(chars.data(), len);
- return std::string(chars.data(), len);
- }
- void write_raw(const void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, size, 1, fp);
- if (ret != 1) {
- die_fmt("write error: %s", strerror(errno));
- }
- }
- void write_u32(std::uint32_t val) {
- write_raw(&val, sizeof(val));
- }
- bool eof() {
- return tell() >= size;
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- static struct export_lora_params get_default_export_lora_params() {
- struct export_lora_params result;
- result.fn_model_base = "";
- result.fn_model_out = "";
- result.n_threads = GGML_DEFAULT_N_THREADS;
- return result;
- }
- static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
- fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
- fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
- fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
- }
- static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
- bool invalid_param = false;
- std::string arg;
- struct export_lora_params default_params = get_default_export_lora_params();
- const std::string arg_prefix = "--";
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg == "-m" || arg == "--model-base") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_model_base = argv[i];
- } else if (arg == "-o" || arg == "--model-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_model_out = argv[i];
- } else if (arg == "-l" || arg == "--lora") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- struct lora_info lora;
- lora.filename = argv[i];
- lora.scale = 1.0f;
- params->lora.push_back(lora);
- } else if (arg == "-s" || arg == "--lora-scaled") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- struct lora_info lora;
- lora.filename = argv[i];
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- lora.scale = std::stof(argv[i]);
- params->lora.push_back(lora);
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_threads = std::stoi(argv[i]);
- if (params->n_threads <= 0) {
- params->n_threads = std::thread::hardware_concurrency();
- }
- } else {
- fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
- export_lora_print_usage(argc, argv, &default_params);
- exit(1);
- }
- }
- if (params->fn_model_base == default_params.fn_model_base) {
- fprintf(stderr, "error: please specify a filename for model-base.\n");
- export_lora_print_usage(argc, argv, &default_params);
- exit(1);
- }
- if (params->fn_model_out == default_params.fn_model_out) {
- fprintf(stderr, "error: please specify a filename for model-out.\n");
- export_lora_print_usage(argc, argv, &default_params);
- exit(1);
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
- export_lora_print_usage(argc, argv, &default_params);
- exit(1);
- }
- return true;
- }
- static void free_lora(struct lora_data * lora) {
- if (lora->ctx != NULL) {
- ggml_free(lora->ctx);
- }
- delete lora;
- }
- static struct lora_data * load_lora(struct lora_info * info) {
- struct lora_data * result = new struct lora_data;
- result->info = *info;
- result->ctx = NULL;
- result->lora_r = 1;
- result->lora_alpha = 1;
- struct llama_file file(info->filename.c_str(), "rb");
- if (file.fp == NULL) {
- fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
- info->filename.c_str());
- free_lora(result);
- return NULL;
- }
- struct ggml_init_params params_ggml;
- params_ggml.mem_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
- params_ggml.mem_buffer = NULL;
- params_ggml.no_alloc = true;
- result->ctx = ggml_init(params_ggml);
- uint32_t magic = file.read_u32();
- if (magic != LLAMA_FILE_MAGIC_GGLA) {
- die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
- }
- uint32_t version = file.read_u32();
- if (version != 1) {
- die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
- }
- result->lora_r = file.read_u32();
- result->lora_alpha = file.read_u32();
- // read tensor infos from file
- std::vector<char> name_buf;
- std::vector<struct ggml_tensor *> tensors;
- std::vector<size_t> tensors_offset;
- size_t total_nbytes_pad = 0;
- while(!file.eof()) {
- int64_t ne[4] = {1,1,1,1};
- uint32_t n_dims = file.read_u32();
- uint32_t namelen = file.read_u32();
- uint32_t type = file.read_u32();
- for (uint32_t k = 0; k < n_dims; ++k) {
- ne[k] = (int64_t)file.read_u32();
- }
- name_buf.clear();
- name_buf.resize(namelen + 1, '\0');
- file.read_raw(name_buf.data(), namelen);
- file.seek((0-file.tell()) & 31, SEEK_CUR);
- size_t offset = file.tell();
- struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
- ggml_set_name(tensor, name_buf.data());
- size_t nbytes = ggml_nbytes(tensor);
- size_t nbytes_pad = ggml_nbytes_pad(tensor);
- total_nbytes_pad += nbytes_pad;
- tensors.push_back(tensor);
- tensors_offset.push_back(offset);
- file.seek(nbytes, SEEK_CUR);
- }
- // read tensor data
- result->data.resize(total_nbytes_pad);
- size_t data_offset = 0;
- for (size_t i = 0; i < tensors.size(); ++i) {
- struct ggml_tensor * tensor = tensors[i];
- size_t offset = tensors_offset[i];
- size_t nbytes = ggml_nbytes(tensor);
- size_t nbytes_pad = ggml_nbytes_pad(tensor);
- file.seek(offset, SEEK_SET);
- tensor->data = result->data.data() + data_offset;
- file.read_raw(tensor->data, nbytes);
- data_offset += nbytes_pad;
- }
- return result;
- }
- static struct ggml_cgraph * build_graph_lora(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor,
- struct ggml_tensor * lora_a,
- struct ggml_tensor * lora_b,
- float scaling
- ) {
- struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
- if (scaling != 1.0f) {
- ab = ggml_scale(ctx, ab, scaling);
- }
- struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
- struct ggml_cgraph * gf = ggml_new_graph(ctx);
- ggml_build_forward_expand (gf, res);
- return gf;
- }
- static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
- if (lora->ctx == NULL) {
- return false;
- }
- std::string name = ggml_get_name(tensor);
- std::string name_a = name + std::string(".loraA");
- std::string name_b = name + std::string(".loraB");
- struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
- struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
- if (lora_a == NULL || lora_b == NULL) {
- return false;
- }
- float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
- struct ggml_init_params params;
- params.mem_size = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
- params.mem_buffer = NULL;
- params.no_alloc = true;
- struct ggml_context * ctx = NULL;
- struct ggml_allocr * alloc = NULL;
- struct ggml_cgraph * gf = NULL;
- ctx = ggml_init(params);
- alloc = ggml_allocr_new_measure(tensor_alignment);
- gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
- size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
- ggml_allocr_free(alloc);
- ggml_free(ctx);
- static std::vector<uint8_t> data_compute;
- data_compute.resize(alloc_size + tensor_alignment);
- ctx = ggml_init(params);
- alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
- gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
- ggml_allocr_alloc_graph(alloc, gf);
- ggml_allocr_free(alloc);
- struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
- static std::vector<uint8_t> data_work;
- data_work.resize(cplan.work_size);
- cplan.work_data = data_work.data();
- ggml_graph_compute(gf, &cplan);
- ggml_free(ctx);
- return true;
- }
- static void export_lora(struct export_lora_params * params) {
- // load all loras
- std::vector<struct lora_data *> loras;
- for (size_t i = 0; i < params->lora.size(); ++i) {
- struct lora_data * lora = load_lora(¶ms->lora[i]);
- if (lora != NULL) {
- loras.push_back(lora);
- }
- }
- if (loras.size() == 0) {
- fprintf(stderr, "warning: no lora adapters will be applied.\n");
- }
- // open input file
- struct llama_file fin(params->fn_model_base.c_str(), "rb");
- if (!fin.fp) {
- die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
- }
- // open base model gguf, read tensors without their data
- struct ggml_context * ctx_in;
- struct gguf_init_params params_gguf;
- params_gguf.no_alloc = true;
- params_gguf.ctx = &ctx_in;
- struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
- // create new gguf
- struct gguf_context * gguf_out = gguf_init_empty();
- // copy meta data from base model: kv and tensors
- gguf_set_kv(gguf_out, gguf_in);
- int n_tensors = gguf_get_n_tensors(gguf_in);
- for (int i=0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(gguf_in, i);
- struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
- gguf_add_tensor(gguf_out, tensor);
- }
- // create output file
- struct llama_file fout(params->fn_model_out.c_str(), "wb");
- if (!fout.fp) {
- die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
- }
- // write gguf meta data
- std::vector<uint8_t> meta;
- meta.resize(gguf_get_meta_size(gguf_out));
- gguf_get_meta_data(gguf_out, meta.data());
- fout.write_raw(meta.data(), meta.size());
- std::vector<uint8_t> data;
- std::vector<uint8_t> padding;
- for (int i=0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(gguf_in, i);
- struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
- // read tensor data
- data.resize(ggml_nbytes(tensor));
- tensor->data = data.data();
- size_t offset = gguf_get_tensor_offset(gguf_in, i);
- fin.seek(offset + meta.size(), SEEK_SET);
- fin.read_raw(data.data(), data.size());
- // apply all loras
- for (size_t k = 0; k < loras.size(); ++k) {
- apply_lora(tensor, loras[k], params->n_threads);
- }
- // write tensor data + padding
- padding.clear();
- padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
- GGML_ASSERT(fout.tell() == offset + meta.size());
- // fout.seek(offset + meta.size(), SEEK_SET);
- fout.write_raw(data.data(), data.size());
- fout.write_raw(padding.data(), padding.size());
- if (i % 2 == 0) {
- printf(".");
- }
- }
- printf("\n");
- // close gguf
- gguf_free(gguf_out);
- gguf_free(gguf_in);
- // free loras
- for (size_t i = 0; i < loras.size(); ++i) {
- free_lora(loras[i]);
- }
- }
- int main(int argc, char ** argv) {
- struct export_lora_params params = get_default_export_lora_params();
- if (!export_lora_params_parse(argc, argv, ¶ms)) {
- return 1;
- }
- export_lora(¶ms);
- return 0;
- }
|