ggml.c 520 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_WIN32)
  32. #include <windows.h>
  33. typedef volatile LONG atomic_int;
  34. typedef atomic_int atomic_bool;
  35. static void atomic_store(atomic_int* ptr, LONG val) {
  36. InterlockedExchange(ptr, val);
  37. }
  38. static LONG atomic_load(atomic_int* ptr) {
  39. return InterlockedCompareExchange(ptr, 0, 0);
  40. }
  41. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  42. return InterlockedExchangeAdd(ptr, inc);
  43. }
  44. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  45. return atomic_fetch_add(ptr, -(dec));
  46. }
  47. typedef HANDLE pthread_t;
  48. typedef DWORD thread_ret_t;
  49. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  50. (void) unused;
  51. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  52. if (handle == NULL)
  53. {
  54. return EAGAIN;
  55. }
  56. *out = handle;
  57. return 0;
  58. }
  59. static int pthread_join(pthread_t thread, void* unused) {
  60. (void) unused;
  61. return (int) WaitForSingleObject(thread, INFINITE);
  62. }
  63. static int sched_yield (void) {
  64. Sleep (0);
  65. return 0;
  66. }
  67. #else
  68. #include <pthread.h>
  69. #include <stdatomic.h>
  70. typedef void* thread_ret_t;
  71. #endif
  72. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  73. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  74. #ifndef __FMA__
  75. #define __FMA__
  76. #endif
  77. #ifndef __F16C__
  78. #define __F16C__
  79. #endif
  80. #ifndef __SSE3__
  81. #define __SSE3__
  82. #endif
  83. #endif
  84. #ifdef __HAIKU__
  85. #define static_assert(cond, msg) _Static_assert(cond, msg)
  86. #endif
  87. /*#define GGML_PERF*/
  88. #define GGML_DEBUG 0
  89. #define GGML_GELU_FP16
  90. #define GGML_SILU_FP16
  91. #define GGML_SOFT_MAX_UNROLL 4
  92. #define GGML_VEC_DOT_UNROLL 2
  93. #ifdef GGML_USE_ACCELERATE
  94. // uncomment to use vDSP for soft max computation
  95. // note: not sure if it is actually faster
  96. //#define GGML_SOFT_MAX_ACCELERATE
  97. #endif
  98. #if UINTPTR_MAX == 0xFFFFFFFF
  99. #define GGML_MEM_ALIGN 4
  100. #else
  101. #define GGML_MEM_ALIGN 16
  102. #endif
  103. #if defined(_MSC_VER) || defined(__MINGW32__)
  104. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  105. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  106. #else
  107. inline static void* ggml_aligned_malloc(size_t size) {
  108. void* aligned_memory = NULL;
  109. #ifdef GGML_USE_METAL
  110. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  111. #else
  112. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  113. #endif
  114. if (result != 0) {
  115. // Handle allocation failure
  116. return NULL;
  117. }
  118. return aligned_memory;
  119. }
  120. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  121. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  122. #endif
  123. #define UNUSED(x) (void)(x)
  124. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  125. #if defined(GGML_USE_ACCELERATE)
  126. #include <Accelerate/Accelerate.h>
  127. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  128. #include "ggml-opencl.h"
  129. #endif
  130. #elif defined(GGML_USE_OPENBLAS)
  131. #include <cblas.h>
  132. #elif defined(GGML_USE_CUBLAS)
  133. #include "ggml-cuda.h"
  134. #elif defined(GGML_USE_CLBLAST)
  135. #include "ggml-opencl.h"
  136. #endif
  137. #undef MIN
  138. #undef MAX
  139. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  140. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  141. // floating point type used to accumulate sums
  142. typedef double ggml_float;
  143. // 16-bit float
  144. // on Arm, we use __fp16
  145. // on x86, we use uint16_t
  146. #ifdef __ARM_NEON
  147. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  148. //
  149. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  150. //
  151. #include <arm_neon.h>
  152. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  153. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  154. #define GGML_FP16_TO_FP32(x) ((float) (x))
  155. #define GGML_FP32_TO_FP16(x) (x)
  156. #else
  157. #ifdef __wasm_simd128__
  158. #include <wasm_simd128.h>
  159. #else
  160. #ifdef __POWER9_VECTOR__
  161. #include <altivec.h>
  162. #undef bool
  163. #define bool _Bool
  164. #else
  165. #if defined(_MSC_VER) || defined(__MINGW32__)
  166. #include <intrin.h>
  167. #else
  168. #if !defined(__riscv)
  169. #include <immintrin.h>
  170. #endif
  171. #endif
  172. #endif
  173. #endif
  174. #ifdef __F16C__
  175. #ifdef _MSC_VER
  176. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  177. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  178. #else
  179. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  180. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  181. #endif
  182. #elif defined(__POWER9_VECTOR__)
  183. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  184. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  185. /* the inline asm below is about 12% faster than the lookup method */
  186. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  187. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  188. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  189. register float f;
  190. register double d;
  191. __asm__(
  192. "mtfprd %0,%2\n"
  193. "xscvhpdp %0,%0\n"
  194. "frsp %1,%0\n" :
  195. /* temp */ "=d"(d),
  196. /* out */ "=f"(f):
  197. /* in */ "r"(h));
  198. return f;
  199. }
  200. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  201. register double d;
  202. register ggml_fp16_t r;
  203. __asm__( /* xscvdphp can work on double or single precision */
  204. "xscvdphp %0,%2\n"
  205. "mffprd %1,%0\n" :
  206. /* temp */ "=d"(d),
  207. /* out */ "=r"(r):
  208. /* in */ "f"(f));
  209. return r;
  210. }
  211. #else
  212. // FP16 <-> FP32
  213. // ref: https://github.com/Maratyszcza/FP16
  214. static inline float fp32_from_bits(uint32_t w) {
  215. union {
  216. uint32_t as_bits;
  217. float as_value;
  218. } fp32;
  219. fp32.as_bits = w;
  220. return fp32.as_value;
  221. }
  222. static inline uint32_t fp32_to_bits(float f) {
  223. union {
  224. float as_value;
  225. uint32_t as_bits;
  226. } fp32;
  227. fp32.as_value = f;
  228. return fp32.as_bits;
  229. }
  230. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  231. const uint32_t w = (uint32_t) h << 16;
  232. const uint32_t sign = w & UINT32_C(0x80000000);
  233. const uint32_t two_w = w + w;
  234. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  235. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  236. const float exp_scale = 0x1.0p-112f;
  237. #else
  238. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  239. #endif
  240. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  241. const uint32_t magic_mask = UINT32_C(126) << 23;
  242. const float magic_bias = 0.5f;
  243. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  244. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  245. const uint32_t result = sign |
  246. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  247. return fp32_from_bits(result);
  248. }
  249. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float scale_to_inf = 0x1.0p+112f;
  252. const float scale_to_zero = 0x1.0p-110f;
  253. #else
  254. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  255. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  256. #endif
  257. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  258. const uint32_t w = fp32_to_bits(f);
  259. const uint32_t shl1_w = w + w;
  260. const uint32_t sign = w & UINT32_C(0x80000000);
  261. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  262. if (bias < UINT32_C(0x71000000)) {
  263. bias = UINT32_C(0x71000000);
  264. }
  265. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  266. const uint32_t bits = fp32_to_bits(base);
  267. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  268. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  269. const uint32_t nonsign = exp_bits + mantissa_bits;
  270. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  271. }
  272. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  273. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  274. #endif // __F16C__
  275. #endif // __ARM_NEON
  276. //
  277. // global data
  278. //
  279. // precomputed gelu table for f16 (128 KB)
  280. static ggml_fp16_t table_gelu_f16[1 << 16];
  281. // precomputed silu table for f16 (128 KB)
  282. static ggml_fp16_t table_silu_f16[1 << 16];
  283. // precomputed exp table for f16 (128 KB)
  284. static ggml_fp16_t table_exp_f16[1 << 16];
  285. // precomputed f32 table for f16 (256 KB)
  286. static float table_f32_f16[1 << 16];
  287. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  288. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  289. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  290. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  291. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  292. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  293. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  294. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  295. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  296. // precomputed tables for expanding 8bits to 8 bytes:
  297. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  298. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  299. #endif
  300. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  301. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  302. // This is also true for POWER9.
  303. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  304. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  305. uint16_t s;
  306. memcpy(&s, &f, sizeof(uint16_t));
  307. return table_f32_f16[s];
  308. }
  309. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  310. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  311. #endif
  312. // note: do not use these inside ggml.c
  313. // these are meant to be used via the ggml.h API
  314. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  315. return (float) GGML_FP16_TO_FP32(x);
  316. }
  317. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  318. return GGML_FP32_TO_FP16(x);
  319. }
  320. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  321. for (size_t i = 0; i < n; i++) {
  322. y[i] = GGML_FP16_TO_FP32(x[i]);
  323. }
  324. }
  325. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  326. size_t i = 0;
  327. #if defined(__F16C__)
  328. for (; i + 7 < n; i += 8) {
  329. __m256 x_vec = _mm256_loadu_ps(x + i);
  330. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  331. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  332. }
  333. for(; i + 3 < n; i += 4) {
  334. __m128 x_vec = _mm_loadu_ps(x + i);
  335. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  336. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  337. }
  338. #endif
  339. for (; i < n; i++) {
  340. y[i] = GGML_FP32_TO_FP16(x[i]);
  341. }
  342. }
  343. //
  344. // timing
  345. //
  346. #if defined(_MSC_VER) || defined(__MINGW32__)
  347. static int64_t timer_freq, timer_start;
  348. void ggml_time_init(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceFrequency(&t);
  351. timer_freq = t.QuadPart;
  352. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  353. // and the uptime is high enough.
  354. // We subtract the program start time to reduce the likelihood of that happening.
  355. QueryPerformanceCounter(&t);
  356. timer_start = t.QuadPart;
  357. }
  358. int64_t ggml_time_ms(void) {
  359. LARGE_INTEGER t;
  360. QueryPerformanceCounter(&t);
  361. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  362. }
  363. int64_t ggml_time_us(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceCounter(&t);
  366. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  367. }
  368. #else
  369. void ggml_time_init(void) {}
  370. int64_t ggml_time_ms(void) {
  371. struct timespec ts;
  372. clock_gettime(CLOCK_MONOTONIC, &ts);
  373. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  374. }
  375. int64_t ggml_time_us(void) {
  376. struct timespec ts;
  377. clock_gettime(CLOCK_MONOTONIC, &ts);
  378. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  379. }
  380. #endif
  381. int64_t ggml_cycles(void) {
  382. return clock();
  383. }
  384. int64_t ggml_cycles_per_ms(void) {
  385. return CLOCKS_PER_SEC/1000;
  386. }
  387. #ifdef GGML_PERF
  388. #define ggml_perf_time_ms() ggml_time_ms()
  389. #define ggml_perf_time_us() ggml_time_us()
  390. #define ggml_perf_cycles() ggml_cycles()
  391. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  392. #else
  393. #define ggml_perf_time_ms() 0
  394. #define ggml_perf_time_us() 0
  395. #define ggml_perf_cycles() 0
  396. #define ggml_perf_cycles_per_ms() 0
  397. #endif
  398. //
  399. // cache line
  400. //
  401. #if defined(__cpp_lib_hardware_interference_size)
  402. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  403. #else
  404. #if defined(__POWER9_VECTOR__)
  405. #define CACHE_LINE_SIZE 128
  406. #else
  407. #define CACHE_LINE_SIZE 64
  408. #endif
  409. #endif
  410. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  411. //
  412. // quantization
  413. //
  414. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  415. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  416. // multiply int8_t, add results pairwise twice
  417. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  418. // Get absolute values of x vectors
  419. const __m128i ax = _mm_sign_epi8(x, x);
  420. // Sign the values of the y vectors
  421. const __m128i sy = _mm_sign_epi8(y, x);
  422. // Perform multiplication and create 16-bit values
  423. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  424. const __m128i ones = _mm_set1_epi16(1);
  425. return _mm_madd_epi16(ones, dot);
  426. }
  427. #if __AVX__ || __AVX2__ || __AVX512F__
  428. // horizontally add 8 floats
  429. static inline float hsum_float_8(const __m256 x) {
  430. __m128 res = _mm256_extractf128_ps(x, 1);
  431. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  432. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  433. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  434. return _mm_cvtss_f32(res);
  435. }
  436. // horizontally add 8 int32_t
  437. static inline int hsum_i32_8(const __m256i a) {
  438. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  439. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  440. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  441. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  442. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  443. }
  444. // horizontally add 4 int32_t
  445. static inline int hsum_i32_4(const __m128i a) {
  446. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  447. const __m128i sum64 = _mm_add_epi32(hi64, a);
  448. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  449. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  450. }
  451. #if defined(__AVX2__) || defined(__AVX512F__)
  452. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  453. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  454. uint32_t x32;
  455. memcpy(&x32, x, sizeof(uint32_t));
  456. const __m256i shuf_mask = _mm256_set_epi64x(
  457. 0x0303030303030303, 0x0202020202020202,
  458. 0x0101010101010101, 0x0000000000000000);
  459. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  460. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  461. bytes = _mm256_or_si256(bytes, bit_mask);
  462. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  463. }
  464. // Unpack 32 4-bit fields into 32 bytes
  465. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  466. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  467. {
  468. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  469. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  470. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  471. return _mm256_and_si256(lowMask, bytes);
  472. }
  473. // add int16_t pairwise and return as float vector
  474. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  475. const __m256i ones = _mm256_set1_epi16(1);
  476. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. }
  479. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  480. #if __AVXVNNI__
  481. const __m256i zero = _mm256_setzero_si256();
  482. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  483. return _mm256_cvtepi32_ps(summed_pairs);
  484. #else
  485. // Perform multiplication and create 16-bit values
  486. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  487. return sum_i16_pairs_float(dot);
  488. #endif
  489. }
  490. // multiply int8_t, add results pairwise twice and return as float vector
  491. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  492. #if __AVXVNNIINT8__
  493. const __m256i zero = _mm256_setzero_si256();
  494. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  495. return _mm256_cvtepi32_ps(summed_pairs);
  496. #else
  497. // Get absolute values of x vectors
  498. const __m256i ax = _mm256_sign_epi8(x, x);
  499. // Sign the values of the y vectors
  500. const __m256i sy = _mm256_sign_epi8(y, x);
  501. return mul_sum_us8_pairs_float(ax, sy);
  502. #endif
  503. }
  504. static inline __m128i packNibbles( __m256i bytes )
  505. {
  506. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  507. #if __AVX512F__
  508. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  509. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  510. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  511. #else
  512. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  513. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  514. __m256i low = _mm256_and_si256( lowByte, bytes );
  515. high = _mm256_srli_epi16( high, 4 );
  516. bytes = _mm256_or_si256( low, high );
  517. // Compress uint16_t lanes into bytes
  518. __m128i r0 = _mm256_castsi256_si128( bytes );
  519. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  520. return _mm_packus_epi16( r0, r1 );
  521. #endif
  522. }
  523. #elif defined(__AVX__)
  524. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  525. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  526. uint32_t x32;
  527. memcpy(&x32, x, sizeof(uint32_t));
  528. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  529. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  530. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  531. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  532. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  533. bytesl = _mm_or_si128(bytesl, bit_mask);
  534. bytesh = _mm_or_si128(bytesh, bit_mask);
  535. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  536. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  537. return MM256_SET_M128I(bytesh, bytesl);
  538. }
  539. // Unpack 32 4-bit fields into 32 bytes
  540. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  541. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  542. {
  543. // Load 16 bytes from memory
  544. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  545. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  546. const __m128i lowMask = _mm_set1_epi8(0xF);
  547. tmpl = _mm_and_si128(lowMask, tmpl);
  548. tmph = _mm_and_si128(lowMask, tmph);
  549. return MM256_SET_M128I(tmph, tmpl);
  550. }
  551. // add int16_t pairwise and return as float vector
  552. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  553. const __m128i ones = _mm_set1_epi16(1);
  554. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  555. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  556. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  557. return _mm256_cvtepi32_ps(summed_pairs);
  558. }
  559. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  560. const __m128i axl = _mm256_castsi256_si128(ax);
  561. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  562. const __m128i syl = _mm256_castsi256_si128(sy);
  563. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  564. // Perform multiplication and create 16-bit values
  565. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  566. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  567. return sum_i16_pairs_float(doth, dotl);
  568. }
  569. // multiply int8_t, add results pairwise twice and return as float vector
  570. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  571. const __m128i xl = _mm256_castsi256_si128(x);
  572. const __m128i xh = _mm256_extractf128_si256(x, 1);
  573. const __m128i yl = _mm256_castsi256_si128(y);
  574. const __m128i yh = _mm256_extractf128_si256(y, 1);
  575. // Get absolute values of x vectors
  576. const __m128i axl = _mm_sign_epi8(xl, xl);
  577. const __m128i axh = _mm_sign_epi8(xh, xh);
  578. // Sign the values of the y vectors
  579. const __m128i syl = _mm_sign_epi8(yl, xl);
  580. const __m128i syh = _mm_sign_epi8(yh, xh);
  581. // Perform multiplication and create 16-bit values
  582. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  583. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  584. return sum_i16_pairs_float(doth, dotl);
  585. }
  586. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  587. {
  588. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  589. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  590. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  591. __m128i low = _mm_and_si128( lowByte, bytes1 );
  592. high = _mm_srli_epi16( high, 4 );
  593. bytes1 = _mm_or_si128( low, high );
  594. high = _mm_andnot_si128( lowByte, bytes2 );
  595. low = _mm_and_si128( lowByte, bytes2 );
  596. high = _mm_srli_epi16( high, 4 );
  597. bytes2 = _mm_or_si128( low, high );
  598. return _mm_packus_epi16( bytes1, bytes2);
  599. }
  600. #endif
  601. #elif defined(__SSSE3__)
  602. // horizontally add 4x4 floats
  603. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  604. __m128 res_0 =_mm_hadd_ps(a, b);
  605. __m128 res_1 =_mm_hadd_ps(c, d);
  606. __m128 res =_mm_hadd_ps(res_0, res_1);
  607. res =_mm_hadd_ps(res, res);
  608. res =_mm_hadd_ps(res, res);
  609. return _mm_cvtss_f32(res);
  610. }
  611. #endif // __AVX__ || __AVX2__ || __AVX512F__
  612. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  613. #if defined(__ARM_NEON)
  614. #if !defined(__aarch64__)
  615. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  616. return
  617. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  618. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  619. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  620. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  621. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  622. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  623. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  624. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  625. }
  626. inline static int16_t vaddvq_s8(int8x16_t v) {
  627. return
  628. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  629. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  630. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  631. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  632. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  633. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  634. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  635. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  636. }
  637. inline static int32_t vaddvq_s16(int16x8_t v) {
  638. return
  639. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  640. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  641. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  642. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  643. }
  644. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  645. return
  646. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  647. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  648. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  649. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  650. }
  651. inline static int32_t vaddvq_s32(int32x4_t v) {
  652. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  653. }
  654. inline static float vaddvq_f32(float32x4_t v) {
  655. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  656. }
  657. inline static float vminvq_f32(float32x4_t v) {
  658. return
  659. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  660. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  661. }
  662. inline static float vmaxvq_f32(float32x4_t v) {
  663. return
  664. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  665. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  666. }
  667. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  668. int32x4_t res;
  669. res[0] = roundf(vgetq_lane_f32(v, 0));
  670. res[1] = roundf(vgetq_lane_f32(v, 1));
  671. res[2] = roundf(vgetq_lane_f32(v, 2));
  672. res[3] = roundf(vgetq_lane_f32(v, 3));
  673. return res;
  674. }
  675. #endif
  676. #endif
  677. #define QK4_0 32
  678. typedef struct {
  679. ggml_fp16_t d; // delta
  680. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  681. } block_q4_0;
  682. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  683. #define QK4_1 32
  684. typedef struct {
  685. ggml_fp16_t d; // delta
  686. ggml_fp16_t m; // min
  687. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  688. } block_q4_1;
  689. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  690. #define QK5_0 32
  691. typedef struct {
  692. ggml_fp16_t d; // delta
  693. uint8_t qh[4]; // 5-th bit of quants
  694. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  695. } block_q5_0;
  696. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  697. #define QK5_1 32
  698. typedef struct {
  699. ggml_fp16_t d; // delta
  700. ggml_fp16_t m; // min
  701. uint8_t qh[4]; // 5-th bit of quants
  702. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  703. } block_q5_1;
  704. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  705. #define QK8_0 32
  706. typedef struct {
  707. ggml_fp16_t d; // delta
  708. int8_t qs[QK8_0]; // quants
  709. } block_q8_0;
  710. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  711. #define QK8_1 32
  712. typedef struct {
  713. float d; // delta
  714. float s; // d * sum(qs[i])
  715. int8_t qs[QK8_1]; // quants
  716. } block_q8_1;
  717. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  718. // reference implementation for deterministic creation of model files
  719. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  720. static const int qk = QK4_0;
  721. assert(k % qk == 0);
  722. const int nb = k / qk;
  723. for (int i = 0; i < nb; i++) {
  724. float amax = 0.0f; // absolute max
  725. float max = 0.0f;
  726. for (int j = 0; j < qk; j++) {
  727. const float v = x[i*qk + j];
  728. if (amax < fabsf(v)) {
  729. amax = fabsf(v);
  730. max = v;
  731. }
  732. }
  733. const float d = max / -8;
  734. const float id = d ? 1.0f/d : 0.0f;
  735. y[i].d = GGML_FP32_TO_FP16(d);
  736. for (int j = 0; j < qk/2; ++j) {
  737. const float x0 = x[i*qk + 0 + j]*id;
  738. const float x1 = x[i*qk + qk/2 + j]*id;
  739. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  740. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  741. y[i].qs[j] = xi0;
  742. y[i].qs[j] |= xi1 << 4;
  743. }
  744. }
  745. }
  746. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  747. quantize_row_q4_0_reference(x, y, k);
  748. }
  749. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  750. const int qk = QK4_1;
  751. assert(k % qk == 0);
  752. const int nb = k / qk;
  753. for (int i = 0; i < nb; i++) {
  754. float min = FLT_MAX;
  755. float max = -FLT_MAX;
  756. for (int j = 0; j < qk; j++) {
  757. const float v = x[i*qk + j];
  758. if (v < min) min = v;
  759. if (v > max) max = v;
  760. }
  761. const float d = (max - min) / ((1 << 4) - 1);
  762. const float id = d ? 1.0f/d : 0.0f;
  763. y[i].d = GGML_FP32_TO_FP16(d);
  764. y[i].m = GGML_FP32_TO_FP16(min);
  765. for (int j = 0; j < qk/2; ++j) {
  766. const float x0 = (x[i*qk + 0 + j] - min)*id;
  767. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  768. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  769. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  770. y[i].qs[j] = xi0;
  771. y[i].qs[j] |= xi1 << 4;
  772. }
  773. }
  774. }
  775. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  776. quantize_row_q4_1_reference(x, y, k);
  777. }
  778. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  779. static const int qk = QK5_0;
  780. assert(k % qk == 0);
  781. const int nb = k / qk;
  782. for (int i = 0; i < nb; i++) {
  783. float amax = 0.0f; // absolute max
  784. float max = 0.0f;
  785. for (int j = 0; j < qk; j++) {
  786. const float v = x[i*qk + j];
  787. if (amax < fabsf(v)) {
  788. amax = fabsf(v);
  789. max = v;
  790. }
  791. }
  792. const float d = max / -16;
  793. const float id = d ? 1.0f/d : 0.0f;
  794. y[i].d = GGML_FP32_TO_FP16(d);
  795. uint32_t qh = 0;
  796. for (int j = 0; j < qk/2; ++j) {
  797. const float x0 = x[i*qk + 0 + j]*id;
  798. const float x1 = x[i*qk + qk/2 + j]*id;
  799. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  800. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  801. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  802. // get the 5-th bit and store it in qh at the right position
  803. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  804. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  805. }
  806. memcpy(&y[i].qh, &qh, sizeof(qh));
  807. }
  808. }
  809. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  810. quantize_row_q5_0_reference(x, y, k);
  811. }
  812. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  813. const int qk = QK5_1;
  814. assert(k % qk == 0);
  815. const int nb = k / qk;
  816. for (int i = 0; i < nb; i++) {
  817. float min = FLT_MAX;
  818. float max = -FLT_MAX;
  819. for (int j = 0; j < qk; j++) {
  820. const float v = x[i*qk + j];
  821. if (v < min) min = v;
  822. if (v > max) max = v;
  823. }
  824. const float d = (max - min) / ((1 << 5) - 1);
  825. const float id = d ? 1.0f/d : 0.0f;
  826. y[i].d = GGML_FP32_TO_FP16(d);
  827. y[i].m = GGML_FP32_TO_FP16(min);
  828. uint32_t qh = 0;
  829. for (int j = 0; j < qk/2; ++j) {
  830. const float x0 = (x[i*qk + 0 + j] - min)*id;
  831. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  832. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  833. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  834. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  835. // get the 5-th bit and store it in qh at the right position
  836. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  837. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  838. }
  839. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  840. }
  841. }
  842. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  843. quantize_row_q5_1_reference(x, y, k);
  844. }
  845. // reference implementation for deterministic creation of model files
  846. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  847. assert(k % QK8_0 == 0);
  848. const int nb = k / QK8_0;
  849. for (int i = 0; i < nb; i++) {
  850. float amax = 0.0f; // absolute max
  851. for (int j = 0; j < QK8_0; j++) {
  852. const float v = x[i*QK8_0 + j];
  853. amax = MAX(amax, fabsf(v));
  854. }
  855. const float d = amax / ((1 << 7) - 1);
  856. const float id = d ? 1.0f/d : 0.0f;
  857. y[i].d = GGML_FP32_TO_FP16(d);
  858. for (int j = 0; j < QK8_0; ++j) {
  859. const float x0 = x[i*QK8_0 + j]*id;
  860. y[i].qs[j] = roundf(x0);
  861. }
  862. }
  863. }
  864. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  865. assert(QK8_0 == 32);
  866. assert(k % QK8_0 == 0);
  867. const int nb = k / QK8_0;
  868. block_q8_0 * restrict y = vy;
  869. #if defined(__ARM_NEON)
  870. for (int i = 0; i < nb; i++) {
  871. float32x4_t srcv [8];
  872. float32x4_t asrcv[8];
  873. float32x4_t amaxv[8];
  874. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  875. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  876. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  877. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  878. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  879. const float amax = vmaxvq_f32(amaxv[0]);
  880. const float d = amax / ((1 << 7) - 1);
  881. const float id = d ? 1.0f/d : 0.0f;
  882. y[i].d = GGML_FP32_TO_FP16(d);
  883. for (int j = 0; j < 8; j++) {
  884. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  885. const int32x4_t vi = vcvtnq_s32_f32(v);
  886. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  887. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  888. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  889. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  890. }
  891. }
  892. #elif defined(__wasm_simd128__)
  893. for (int i = 0; i < nb; i++) {
  894. v128_t srcv [8];
  895. v128_t asrcv[8];
  896. v128_t amaxv[8];
  897. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  898. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  899. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  900. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  901. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  902. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  903. wasm_f32x4_extract_lane(amaxv[0], 1)),
  904. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  905. wasm_f32x4_extract_lane(amaxv[0], 3)));
  906. const float d = amax / ((1 << 7) - 1);
  907. const float id = d ? 1.0f/d : 0.0f;
  908. y[i].d = GGML_FP32_TO_FP16(d);
  909. for (int j = 0; j < 8; j++) {
  910. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  911. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  912. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  913. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  914. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  915. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  916. }
  917. }
  918. #elif defined(__AVX2__) || defined(__AVX__)
  919. for (int i = 0; i < nb; i++) {
  920. // Load elements into 4 AVX vectors
  921. __m256 v0 = _mm256_loadu_ps( x );
  922. __m256 v1 = _mm256_loadu_ps( x + 8 );
  923. __m256 v2 = _mm256_loadu_ps( x + 16 );
  924. __m256 v3 = _mm256_loadu_ps( x + 24 );
  925. x += 32;
  926. // Compute max(abs(e)) for the block
  927. const __m256 signBit = _mm256_set1_ps( -0.0f );
  928. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  929. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  930. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  931. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  932. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  933. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  934. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  935. const float maxScalar = _mm_cvtss_f32( max4 );
  936. // Quantize these floats
  937. const float d = maxScalar / 127.f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  940. const __m256 mul = _mm256_set1_ps( id );
  941. // Apply the multiplier
  942. v0 = _mm256_mul_ps( v0, mul );
  943. v1 = _mm256_mul_ps( v1, mul );
  944. v2 = _mm256_mul_ps( v2, mul );
  945. v3 = _mm256_mul_ps( v3, mul );
  946. // Round to nearest integer
  947. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  948. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  949. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  950. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  951. // Convert floats to integers
  952. __m256i i0 = _mm256_cvtps_epi32( v0 );
  953. __m256i i1 = _mm256_cvtps_epi32( v1 );
  954. __m256i i2 = _mm256_cvtps_epi32( v2 );
  955. __m256i i3 = _mm256_cvtps_epi32( v3 );
  956. #if defined(__AVX2__)
  957. // Convert int32 to int16
  958. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  959. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  960. // Convert int16 to int8
  961. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  962. // We got our precious signed bytes, but the order is now wrong
  963. // These AVX2 pack instructions process 16-byte pieces independently
  964. // The following instruction is fixing the order
  965. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  966. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  967. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  968. #else
  969. // Since we don't have in AVX some necessary functions,
  970. // we split the registers in half and call AVX2 analogs from SSE
  971. __m128i ni0 = _mm256_castsi256_si128( i0 );
  972. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  973. __m128i ni2 = _mm256_castsi256_si128( i1 );
  974. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  975. __m128i ni4 = _mm256_castsi256_si128( i2 );
  976. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  977. __m128i ni6 = _mm256_castsi256_si128( i3 );
  978. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  979. // Convert int32 to int16
  980. ni0 = _mm_packs_epi32( ni0, ni1 );
  981. ni2 = _mm_packs_epi32( ni2, ni3 );
  982. ni4 = _mm_packs_epi32( ni4, ni5 );
  983. ni6 = _mm_packs_epi32( ni6, ni7 );
  984. // Convert int16 to int8
  985. ni0 = _mm_packs_epi16( ni0, ni2 );
  986. ni4 = _mm_packs_epi16( ni4, ni6 );
  987. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  988. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  989. #endif
  990. }
  991. #else
  992. // scalar
  993. quantize_row_q8_0_reference(x, y, k);
  994. #endif
  995. }
  996. // reference implementation for deterministic creation of model files
  997. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  998. assert(QK8_1 == 32);
  999. assert(k % QK8_1 == 0);
  1000. const int nb = k / QK8_1;
  1001. for (int i = 0; i < nb; i++) {
  1002. float amax = 0.0f; // absolute max
  1003. for (int j = 0; j < QK8_1; j++) {
  1004. const float v = x[i*QK8_1 + j];
  1005. amax = MAX(amax, fabsf(v));
  1006. }
  1007. const float d = amax / ((1 << 7) - 1);
  1008. const float id = d ? 1.0f/d : 0.0f;
  1009. y[i].d = d;
  1010. int sum = 0;
  1011. for (int j = 0; j < QK8_1/2; ++j) {
  1012. const float v0 = x[i*QK8_1 + j]*id;
  1013. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1014. y[i].qs[ j] = roundf(v0);
  1015. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1016. sum += y[i].qs[ j];
  1017. sum += y[i].qs[QK8_1/2 + j];
  1018. }
  1019. y[i].s = sum*d;
  1020. }
  1021. }
  1022. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1023. assert(k % QK8_1 == 0);
  1024. const int nb = k / QK8_1;
  1025. block_q8_1 * restrict y = vy;
  1026. #if defined(__ARM_NEON)
  1027. for (int i = 0; i < nb; i++) {
  1028. float32x4_t srcv [8];
  1029. float32x4_t asrcv[8];
  1030. float32x4_t amaxv[8];
  1031. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1032. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1033. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1034. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1035. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1036. const float amax = vmaxvq_f32(amaxv[0]);
  1037. const float d = amax / ((1 << 7) - 1);
  1038. const float id = d ? 1.0f/d : 0.0f;
  1039. y[i].d = d;
  1040. int32x4_t accv = vdupq_n_s32(0);
  1041. for (int j = 0; j < 8; j++) {
  1042. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1043. const int32x4_t vi = vcvtnq_s32_f32(v);
  1044. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1045. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1046. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1047. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1048. accv = vaddq_s32(accv, vi);
  1049. }
  1050. y[i].s = d * vaddvq_s32(accv);
  1051. }
  1052. #elif defined(__wasm_simd128__)
  1053. for (int i = 0; i < nb; i++) {
  1054. v128_t srcv [8];
  1055. v128_t asrcv[8];
  1056. v128_t amaxv[8];
  1057. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1058. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1059. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1060. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1061. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1062. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1063. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1064. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1065. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1066. const float d = amax / ((1 << 7) - 1);
  1067. const float id = d ? 1.0f/d : 0.0f;
  1068. y[i].d = d;
  1069. v128_t accv = wasm_i32x4_splat(0);
  1070. for (int j = 0; j < 8; j++) {
  1071. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1072. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1073. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1074. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1075. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1076. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1077. accv = wasm_i32x4_add(accv, vi);
  1078. }
  1079. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1080. wasm_i32x4_extract_lane(accv, 1) +
  1081. wasm_i32x4_extract_lane(accv, 2) +
  1082. wasm_i32x4_extract_lane(accv, 3));
  1083. }
  1084. #elif defined(__AVX2__) || defined(__AVX__)
  1085. for (int i = 0; i < nb; i++) {
  1086. // Load elements into 4 AVX vectors
  1087. __m256 v0 = _mm256_loadu_ps( x );
  1088. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1089. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1090. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1091. x += 32;
  1092. // Compute max(abs(e)) for the block
  1093. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1094. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1095. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1096. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1097. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1098. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1099. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1100. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1101. const float maxScalar = _mm_cvtss_f32( max4 );
  1102. // Quantize these floats
  1103. const float d = maxScalar / 127.f;
  1104. y[i].d = d;
  1105. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1106. const __m256 mul = _mm256_set1_ps( id );
  1107. // Apply the multiplier
  1108. v0 = _mm256_mul_ps( v0, mul );
  1109. v1 = _mm256_mul_ps( v1, mul );
  1110. v2 = _mm256_mul_ps( v2, mul );
  1111. v3 = _mm256_mul_ps( v3, mul );
  1112. // Round to nearest integer
  1113. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1114. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1115. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1116. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1117. // Convert floats to integers
  1118. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1119. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1120. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1121. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1122. #if defined(__AVX2__)
  1123. // Compute the sum of the quants and set y[i].s
  1124. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1125. // Convert int32 to int16
  1126. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1127. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1128. // Convert int16 to int8
  1129. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1130. // We got our precious signed bytes, but the order is now wrong
  1131. // These AVX2 pack instructions process 16-byte pieces independently
  1132. // The following instruction is fixing the order
  1133. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1134. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1135. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1136. #else
  1137. // Since we don't have in AVX some necessary functions,
  1138. // we split the registers in half and call AVX2 analogs from SSE
  1139. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1140. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1141. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1142. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1143. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1144. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1145. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1146. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1147. // Compute the sum of the quants and set y[i].s
  1148. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1149. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1150. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1151. // Convert int32 to int16
  1152. ni0 = _mm_packs_epi32( ni0, ni1 );
  1153. ni2 = _mm_packs_epi32( ni2, ni3 );
  1154. ni4 = _mm_packs_epi32( ni4, ni5 );
  1155. ni6 = _mm_packs_epi32( ni6, ni7 );
  1156. // Convert int16 to int8
  1157. ni0 = _mm_packs_epi16( ni0, ni2 );
  1158. ni4 = _mm_packs_epi16( ni4, ni6 );
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1160. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1161. #endif
  1162. }
  1163. #else
  1164. // scalar
  1165. quantize_row_q8_1_reference(x, y, k);
  1166. #endif
  1167. }
  1168. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1169. static const int qk = QK4_0;
  1170. assert(k % qk == 0);
  1171. const int nb = k / qk;
  1172. for (int i = 0; i < nb; i++) {
  1173. const float d = GGML_FP16_TO_FP32(x[i].d);
  1174. for (int j = 0; j < qk/2; ++j) {
  1175. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1176. const int x1 = (x[i].qs[j] >> 4) - 8;
  1177. y[i*qk + j + 0 ] = x0*d;
  1178. y[i*qk + j + qk/2] = x1*d;
  1179. }
  1180. }
  1181. }
  1182. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1183. static const int qk = QK4_1;
  1184. assert(k % qk == 0);
  1185. const int nb = k / qk;
  1186. for (int i = 0; i < nb; i++) {
  1187. const float d = GGML_FP16_TO_FP32(x[i].d);
  1188. const float m = GGML_FP16_TO_FP32(x[i].m);
  1189. for (int j = 0; j < qk/2; ++j) {
  1190. const int x0 = (x[i].qs[j] & 0x0F);
  1191. const int x1 = (x[i].qs[j] >> 4);
  1192. y[i*qk + j + 0 ] = x0*d + m;
  1193. y[i*qk + j + qk/2] = x1*d + m;
  1194. }
  1195. }
  1196. }
  1197. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1198. static const int qk = QK5_0;
  1199. assert(k % qk == 0);
  1200. const int nb = k / qk;
  1201. for (int i = 0; i < nb; i++) {
  1202. const float d = GGML_FP16_TO_FP32(x[i].d);
  1203. uint32_t qh;
  1204. memcpy(&qh, x[i].qh, sizeof(qh));
  1205. for (int j = 0; j < qk/2; ++j) {
  1206. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1207. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1208. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1209. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1210. y[i*qk + j + 0 ] = x0*d;
  1211. y[i*qk + j + qk/2] = x1*d;
  1212. }
  1213. }
  1214. }
  1215. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1216. static const int qk = QK5_1;
  1217. assert(k % qk == 0);
  1218. const int nb = k / qk;
  1219. for (int i = 0; i < nb; i++) {
  1220. const float d = GGML_FP16_TO_FP32(x[i].d);
  1221. const float m = GGML_FP16_TO_FP32(x[i].m);
  1222. uint32_t qh;
  1223. memcpy(&qh, x[i].qh, sizeof(qh));
  1224. for (int j = 0; j < qk/2; ++j) {
  1225. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1226. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1227. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1228. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1229. y[i*qk + j + 0 ] = x0*d + m;
  1230. y[i*qk + j + qk/2] = x1*d + m;
  1231. }
  1232. }
  1233. }
  1234. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1235. static const int qk = QK8_0;
  1236. assert(k % qk == 0);
  1237. const int nb = k / qk;
  1238. const block_q8_0 * restrict x = vx;
  1239. for (int i = 0; i < nb; i++) {
  1240. const float d = GGML_FP16_TO_FP32(x[i].d);
  1241. for (int j = 0; j < qk; ++j) {
  1242. y[i*qk + j] = x[i].qs[j]*d;
  1243. }
  1244. }
  1245. }
  1246. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1247. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1248. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1249. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1250. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1251. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1252. [GGML_TYPE_Q4_0] = {
  1253. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1254. .quantize_row_q = quantize_row_q4_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1258. .vec_dot_type = GGML_TYPE_Q8_0,
  1259. },
  1260. [GGML_TYPE_Q4_1] = {
  1261. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1262. .quantize_row_q = quantize_row_q4_1,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_1,
  1265. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1266. .vec_dot_type = GGML_TYPE_Q8_1,
  1267. },
  1268. [GGML_TYPE_Q5_0] = {
  1269. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1270. .quantize_row_q = quantize_row_q5_0,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_0,
  1273. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1274. .vec_dot_type = GGML_TYPE_Q8_0,
  1275. },
  1276. [GGML_TYPE_Q5_1] = {
  1277. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1278. .quantize_row_q = quantize_row_q5_1,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_1,
  1281. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1282. .vec_dot_type = GGML_TYPE_Q8_1,
  1283. },
  1284. [GGML_TYPE_Q8_0] = {
  1285. .dequantize_row_q = dequantize_row_q8_0,
  1286. .quantize_row_q = quantize_row_q8_0,
  1287. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1288. .quantize_row_q_dot = quantize_row_q8_0,
  1289. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1290. .vec_dot_type = GGML_TYPE_Q8_0,
  1291. },
  1292. [GGML_TYPE_Q8_1] = {
  1293. .dequantize_row_q = NULL, // TODO
  1294. .quantize_row_q = quantize_row_q8_1,
  1295. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1296. .quantize_row_q_dot = quantize_row_q8_1,
  1297. .vec_dot_q = NULL, // TODO
  1298. .vec_dot_type = GGML_TYPE_Q8_1,
  1299. },
  1300. #ifdef GGML_USE_K_QUANTS
  1301. [GGML_TYPE_Q2_K] = {
  1302. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1303. .quantize_row_q = quantize_row_q2_K,
  1304. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1305. .quantize_row_q_dot = quantize_row_q8_K,
  1306. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1307. .vec_dot_type = GGML_TYPE_Q8_K,
  1308. },
  1309. [GGML_TYPE_Q3_K] = {
  1310. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1311. .quantize_row_q = quantize_row_q3_K,
  1312. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1313. .quantize_row_q_dot = quantize_row_q8_K,
  1314. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1315. .vec_dot_type = GGML_TYPE_Q8_K,
  1316. },
  1317. [GGML_TYPE_Q4_K] = {
  1318. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1319. .quantize_row_q = quantize_row_q4_K,
  1320. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1321. .quantize_row_q_dot = quantize_row_q8_K,
  1322. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1323. .vec_dot_type = GGML_TYPE_Q8_K,
  1324. },
  1325. [GGML_TYPE_Q5_K] = {
  1326. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1327. .quantize_row_q = quantize_row_q5_K,
  1328. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1329. .quantize_row_q_dot = quantize_row_q8_K,
  1330. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1331. .vec_dot_type = GGML_TYPE_Q8_K,
  1332. },
  1333. [GGML_TYPE_Q6_K] = {
  1334. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1335. .quantize_row_q = quantize_row_q6_K,
  1336. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1337. .quantize_row_q_dot = quantize_row_q8_K,
  1338. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1339. .vec_dot_type = GGML_TYPE_Q8_K,
  1340. },
  1341. #endif
  1342. };
  1343. // For internal test use
  1344. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1345. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1346. return quantize_fns[i];
  1347. }
  1348. //
  1349. // simd mappings
  1350. //
  1351. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1352. // we then implement the fundamental computation operations below using only these macros
  1353. // adding support for new architectures requires to define the corresponding SIMD macros
  1354. //
  1355. // GGML_F32_STEP / GGML_F16_STEP
  1356. // number of elements to process in a single step
  1357. //
  1358. // GGML_F32_EPR / GGML_F16_EPR
  1359. // number of elements to fit in a single register
  1360. //
  1361. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1362. #define GGML_SIMD
  1363. // F32 NEON
  1364. #define GGML_F32_STEP 16
  1365. #define GGML_F32_EPR 4
  1366. #define GGML_F32x4 float32x4_t
  1367. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1368. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1369. #define GGML_F32x4_LOAD vld1q_f32
  1370. #define GGML_F32x4_STORE vst1q_f32
  1371. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1372. #define GGML_F32x4_ADD vaddq_f32
  1373. #define GGML_F32x4_MUL vmulq_f32
  1374. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1375. #define GGML_F32x4_REDUCE(res, x) \
  1376. { \
  1377. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1378. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1379. } \
  1380. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1381. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1382. } \
  1383. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1384. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1385. } \
  1386. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1387. }
  1388. #define GGML_F32_VEC GGML_F32x4
  1389. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1390. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1391. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1392. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1393. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1394. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1395. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1396. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1397. // F16 NEON
  1398. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1399. #define GGML_F16_STEP 32
  1400. #define GGML_F16_EPR 8
  1401. #define GGML_F16x8 float16x8_t
  1402. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1403. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1404. #define GGML_F16x8_LOAD vld1q_f16
  1405. #define GGML_F16x8_STORE vst1q_f16
  1406. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1407. #define GGML_F16x8_ADD vaddq_f16
  1408. #define GGML_F16x8_MUL vmulq_f16
  1409. #define GGML_F16x8_REDUCE(res, x) \
  1410. { \
  1411. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1412. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1413. } \
  1414. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1415. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1416. } \
  1417. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1418. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1419. } \
  1420. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1421. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1422. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1423. }
  1424. #define GGML_F16_VEC GGML_F16x8
  1425. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1426. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1427. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1428. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1429. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1430. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1431. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1432. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1433. #else
  1434. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1435. // and take advantage of the vcvt_ functions to convert to/from FP16
  1436. #define GGML_F16_STEP 16
  1437. #define GGML_F16_EPR 4
  1438. #define GGML_F32Cx4 float32x4_t
  1439. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1440. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1441. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1442. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1443. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1444. #define GGML_F32Cx4_ADD vaddq_f32
  1445. #define GGML_F32Cx4_MUL vmulq_f32
  1446. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1447. #define GGML_F16_VEC GGML_F32Cx4
  1448. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1449. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1450. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1451. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1452. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1453. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1454. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1455. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1456. #endif
  1457. #elif defined(__AVX__)
  1458. #define GGML_SIMD
  1459. // F32 AVX
  1460. #define GGML_F32_STEP 32
  1461. #define GGML_F32_EPR 8
  1462. #define GGML_F32x8 __m256
  1463. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1464. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1465. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1466. #define GGML_F32x8_STORE _mm256_storeu_ps
  1467. #if defined(__FMA__)
  1468. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1469. #else
  1470. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1471. #endif
  1472. #define GGML_F32x8_ADD _mm256_add_ps
  1473. #define GGML_F32x8_MUL _mm256_mul_ps
  1474. #define GGML_F32x8_REDUCE(res, x) \
  1475. { \
  1476. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1477. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1478. } \
  1479. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1480. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1481. } \
  1482. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1483. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1484. } \
  1485. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1486. _mm256_extractf128_ps(x[0], 1)); \
  1487. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1488. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1489. }
  1490. // TODO: is this optimal ?
  1491. #define GGML_F32_VEC GGML_F32x8
  1492. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1493. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1494. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1495. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1496. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1497. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1498. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1499. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1500. // F16 AVX
  1501. #define GGML_F16_STEP 32
  1502. #define GGML_F16_EPR 8
  1503. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1504. #define GGML_F32Cx8 __m256
  1505. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1506. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1507. #if defined(__F16C__)
  1508. // the _mm256_cvt intrinsics require F16C
  1509. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1510. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1511. #else
  1512. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1513. float tmp[8];
  1514. for (int i = 0; i < 8; i++) {
  1515. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1516. }
  1517. return _mm256_loadu_ps(tmp);
  1518. }
  1519. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1520. float arr[8];
  1521. _mm256_storeu_ps(arr, y);
  1522. for (int i = 0; i < 8; i++)
  1523. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1524. }
  1525. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1526. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1527. #endif
  1528. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1529. #define GGML_F32Cx8_ADD _mm256_add_ps
  1530. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1531. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1532. #define GGML_F16_VEC GGML_F32Cx8
  1533. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1534. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1535. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1536. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1537. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1538. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1539. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1540. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1541. #elif defined(__POWER9_VECTOR__)
  1542. #define GGML_SIMD
  1543. // F32 POWER9
  1544. #define GGML_F32_STEP 32
  1545. #define GGML_F32_EPR 4
  1546. #define GGML_F32x4 vector float
  1547. #define GGML_F32x4_ZERO 0.0f
  1548. #define GGML_F32x4_SET1 vec_splats
  1549. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1550. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1551. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1552. #define GGML_F32x4_ADD vec_add
  1553. #define GGML_F32x4_MUL vec_mul
  1554. #define GGML_F32x4_REDUCE(res, x) \
  1555. { \
  1556. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1557. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1558. } \
  1559. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1560. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1561. } \
  1562. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1563. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1564. } \
  1565. res = vec_extract(x[0], 0) + \
  1566. vec_extract(x[0], 1) + \
  1567. vec_extract(x[0], 2) + \
  1568. vec_extract(x[0], 3); \
  1569. }
  1570. #define GGML_F32_VEC GGML_F32x4
  1571. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1572. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1573. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1574. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1575. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1576. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1577. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1578. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1579. // F16 POWER9
  1580. #define GGML_F16_STEP GGML_F32_STEP
  1581. #define GGML_F16_EPR GGML_F32_EPR
  1582. #define GGML_F16_VEC GGML_F32x4
  1583. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1584. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1585. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1586. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1587. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1588. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1589. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1590. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1591. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1592. #define GGML_F16_VEC_STORE(p, r, i) \
  1593. if (i & 0x1) \
  1594. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1595. r[i - GGML_ENDIAN_BYTE(0)]), \
  1596. 0, p - GGML_F16_EPR)
  1597. #elif defined(__wasm_simd128__)
  1598. #define GGML_SIMD
  1599. // F32 WASM
  1600. #define GGML_F32_STEP 16
  1601. #define GGML_F32_EPR 4
  1602. #define GGML_F32x4 v128_t
  1603. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1604. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1605. #define GGML_F32x4_LOAD wasm_v128_load
  1606. #define GGML_F32x4_STORE wasm_v128_store
  1607. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1608. #define GGML_F32x4_ADD wasm_f32x4_add
  1609. #define GGML_F32x4_MUL wasm_f32x4_mul
  1610. #define GGML_F32x4_REDUCE(res, x) \
  1611. { \
  1612. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1613. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1614. } \
  1615. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1616. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1617. } \
  1618. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1619. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1620. } \
  1621. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1622. wasm_f32x4_extract_lane(x[0], 1) + \
  1623. wasm_f32x4_extract_lane(x[0], 2) + \
  1624. wasm_f32x4_extract_lane(x[0], 3); \
  1625. }
  1626. #define GGML_F32_VEC GGML_F32x4
  1627. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1628. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1629. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1630. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1631. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1632. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1633. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1634. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1635. // F16 WASM
  1636. #define GGML_F16_STEP 16
  1637. #define GGML_F16_EPR 4
  1638. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1639. float tmp[4];
  1640. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1641. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1642. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1643. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1644. return wasm_v128_load(tmp);
  1645. }
  1646. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1647. float tmp[4];
  1648. wasm_v128_store(tmp, x);
  1649. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1650. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1651. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1652. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1653. }
  1654. #define GGML_F16x4 v128_t
  1655. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1656. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1657. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1658. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1659. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1660. #define GGML_F16x4_ADD wasm_f32x4_add
  1661. #define GGML_F16x4_MUL wasm_f32x4_mul
  1662. #define GGML_F16x4_REDUCE(res, x) \
  1663. { \
  1664. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1665. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1666. } \
  1667. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1668. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1669. } \
  1670. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1671. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1672. } \
  1673. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1674. wasm_f32x4_extract_lane(x[0], 1) + \
  1675. wasm_f32x4_extract_lane(x[0], 2) + \
  1676. wasm_f32x4_extract_lane(x[0], 3); \
  1677. }
  1678. #define GGML_F16_VEC GGML_F16x4
  1679. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1680. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1681. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1682. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1683. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1684. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1685. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1686. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1687. #elif defined(__SSE3__)
  1688. #define GGML_SIMD
  1689. // F32 SSE
  1690. #define GGML_F32_STEP 32
  1691. #define GGML_F32_EPR 4
  1692. #define GGML_F32x4 __m128
  1693. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1694. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1695. #define GGML_F32x4_LOAD _mm_loadu_ps
  1696. #define GGML_F32x4_STORE _mm_storeu_ps
  1697. #if defined(__FMA__)
  1698. // TODO: Does this work?
  1699. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1700. #else
  1701. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1702. #endif
  1703. #define GGML_F32x4_ADD _mm_add_ps
  1704. #define GGML_F32x4_MUL _mm_mul_ps
  1705. #define GGML_F32x4_REDUCE(res, x) \
  1706. { \
  1707. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1708. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1709. } \
  1710. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1711. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1712. } \
  1713. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1714. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1715. } \
  1716. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1717. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1718. }
  1719. // TODO: is this optimal ?
  1720. #define GGML_F32_VEC GGML_F32x4
  1721. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1722. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1723. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1724. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1725. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1726. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1727. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1728. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1729. // F16 SSE
  1730. #define GGML_F16_STEP 32
  1731. #define GGML_F16_EPR 4
  1732. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1733. float tmp[4];
  1734. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1735. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1736. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1737. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1738. return _mm_loadu_ps(tmp);
  1739. }
  1740. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1741. float arr[4];
  1742. _mm_storeu_ps(arr, y);
  1743. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1744. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1745. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1746. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1747. }
  1748. #define GGML_F32Cx4 __m128
  1749. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1750. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1751. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1752. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1753. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1754. #define GGML_F32Cx4_ADD _mm_add_ps
  1755. #define GGML_F32Cx4_MUL _mm_mul_ps
  1756. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1757. #define GGML_F16_VEC GGML_F32Cx4
  1758. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1760. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1761. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1762. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1763. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1764. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1765. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1766. #endif
  1767. // GGML_F32_ARR / GGML_F16_ARR
  1768. // number of registers to use per step
  1769. #ifdef GGML_SIMD
  1770. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1771. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1772. #endif
  1773. //
  1774. // fundamental operations
  1775. //
  1776. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1777. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1778. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1779. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1780. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1781. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1782. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1783. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1784. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1785. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1786. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1787. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1788. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1789. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1790. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1791. #ifdef GGML_SIMD
  1792. float sumf = 0.0f;
  1793. const int np = (n & ~(GGML_F32_STEP - 1));
  1794. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1795. GGML_F32_VEC ax[GGML_F32_ARR];
  1796. GGML_F32_VEC ay[GGML_F32_ARR];
  1797. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1798. for (int j = 0; j < GGML_F32_ARR; j++) {
  1799. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1800. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1801. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1802. }
  1803. }
  1804. // reduce sum0..sum3 to sum0
  1805. GGML_F32_VEC_REDUCE(sumf, sum);
  1806. // leftovers
  1807. for (int i = np; i < n; ++i) {
  1808. sumf += x[i]*y[i];
  1809. }
  1810. #else
  1811. // scalar
  1812. ggml_float sumf = 0.0;
  1813. for (int i = 0; i < n; ++i) {
  1814. sumf += (ggml_float)(x[i]*y[i]);
  1815. }
  1816. #endif
  1817. *s = sumf;
  1818. }
  1819. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1820. ggml_float sumf = 0.0;
  1821. #if defined(GGML_SIMD)
  1822. const int np = (n & ~(GGML_F16_STEP - 1));
  1823. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1824. GGML_F16_VEC ax[GGML_F16_ARR];
  1825. GGML_F16_VEC ay[GGML_F16_ARR];
  1826. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1827. for (int j = 0; j < GGML_F16_ARR; j++) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1829. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1830. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. GGML_F16_VEC_REDUCE(sumf, sum);
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1838. }
  1839. #else
  1840. for (int i = 0; i < n; ++i) {
  1841. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1842. }
  1843. #endif
  1844. *s = sumf;
  1845. }
  1846. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1847. const int qk = QK8_0;
  1848. const int nb = n / qk;
  1849. assert(n % qk == 0);
  1850. assert(nb % 2 == 0);
  1851. const block_q4_0 * restrict x = vx;
  1852. const block_q8_0 * restrict y = vy;
  1853. #if defined(__ARM_NEON)
  1854. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1855. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1856. for (int i = 0; i < nb; i += 2) {
  1857. const block_q4_0 * restrict x0 = &x[i + 0];
  1858. const block_q4_0 * restrict x1 = &x[i + 1];
  1859. const block_q8_0 * restrict y0 = &y[i + 0];
  1860. const block_q8_0 * restrict y1 = &y[i + 1];
  1861. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1862. const int8x16_t s8b = vdupq_n_s8(0x8);
  1863. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1864. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1865. // 4-bit -> 8-bit
  1866. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1867. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1868. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1869. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1870. // sub 8
  1871. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1872. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1873. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1874. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1875. // load y
  1876. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1877. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1878. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1879. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1880. #if defined(__ARM_FEATURE_DOTPROD)
  1881. // dot product into int32x4_t
  1882. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1883. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1884. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1885. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1886. #else
  1887. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1888. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1889. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1890. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1891. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1892. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1893. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1894. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1895. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1896. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1897. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1898. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1899. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1900. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1901. #endif
  1902. }
  1903. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1904. #elif defined(__AVX2__)
  1905. // Initialize accumulator with zeros
  1906. __m256 acc = _mm256_setzero_ps();
  1907. // Main loop
  1908. for (int i = 0; i < nb; ++i) {
  1909. /* Compute combined scale for the block */
  1910. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1911. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1912. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1913. const __m256i off = _mm256_set1_epi8( 8 );
  1914. bx = _mm256_sub_epi8( bx, off );
  1915. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1916. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1917. /* Multiply q with scale and accumulate */
  1918. acc = _mm256_fmadd_ps( d, q, acc );
  1919. }
  1920. *s = hsum_float_8(acc);
  1921. #elif defined(__AVX__)
  1922. // Initialize accumulator with zeros
  1923. __m256 acc = _mm256_setzero_ps();
  1924. // Main loop
  1925. for (int i = 0; i < nb; ++i) {
  1926. // Compute combined scale for the block
  1927. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1928. const __m128i lowMask = _mm_set1_epi8(0xF);
  1929. const __m128i off = _mm_set1_epi8(8);
  1930. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1931. __m128i bx = _mm_and_si128(lowMask, tmp);
  1932. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1933. bx = _mm_sub_epi8(bx, off);
  1934. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1935. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1936. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1937. bx = _mm_sub_epi8(bx, off);
  1938. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1939. // Convert int32_t to float
  1940. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1941. // Apply the scale, and accumulate
  1942. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1943. }
  1944. *s = hsum_float_8(acc);
  1945. #elif defined(__SSSE3__)
  1946. // set constants
  1947. const __m128i lowMask = _mm_set1_epi8(0xF);
  1948. const __m128i off = _mm_set1_epi8(8);
  1949. // Initialize accumulator with zeros
  1950. __m128 acc_0 = _mm_setzero_ps();
  1951. __m128 acc_1 = _mm_setzero_ps();
  1952. __m128 acc_2 = _mm_setzero_ps();
  1953. __m128 acc_3 = _mm_setzero_ps();
  1954. // First round without accumulation
  1955. {
  1956. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1957. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1958. // Compute combined scale for the block 0 and 1
  1959. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1960. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1961. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1962. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1963. bx_0 = _mm_sub_epi8(bx_0, off);
  1964. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1965. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1966. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1967. bx_1 = _mm_sub_epi8(bx_1, off);
  1968. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1969. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1970. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1971. // Compute combined scale for the block 2 and 3
  1972. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1973. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1974. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1975. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1976. bx_2 = _mm_sub_epi8(bx_2, off);
  1977. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1978. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1979. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1980. bx_3 = _mm_sub_epi8(bx_3, off);
  1981. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1982. // Convert int32_t to float
  1983. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1984. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1985. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1986. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1987. // Apply the scale
  1988. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1989. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1990. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1991. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1992. }
  1993. // Main loop
  1994. for (int i = 2; i < nb; i+=2) {
  1995. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1996. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1997. // Compute combined scale for the block 0 and 1
  1998. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1999. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2000. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2001. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2002. bx_0 = _mm_sub_epi8(bx_0, off);
  2003. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2004. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2005. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2006. bx_1 = _mm_sub_epi8(bx_1, off);
  2007. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2008. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2009. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2010. // Compute combined scale for the block 2 and 3
  2011. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2012. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2013. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2014. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2015. bx_2 = _mm_sub_epi8(bx_2, off);
  2016. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2017. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2018. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2019. bx_3 = _mm_sub_epi8(bx_3, off);
  2020. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2021. // Convert int32_t to float
  2022. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2023. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2024. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2025. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2026. // Apply the scale
  2027. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2028. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2029. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2030. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2031. // Acummulate
  2032. acc_0 = _mm_add_ps(p0_d, acc_0);
  2033. acc_1 = _mm_add_ps(p1_d, acc_1);
  2034. acc_2 = _mm_add_ps(p2_d, acc_2);
  2035. acc_3 = _mm_add_ps(p3_d, acc_3);
  2036. }
  2037. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2038. #else
  2039. // scalar
  2040. float sumf = 0.0;
  2041. for (int i = 0; i < nb; i++) {
  2042. int sumi = 0;
  2043. for (int j = 0; j < qk/2; ++j) {
  2044. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2045. const int v1 = (x[i].qs[j] >> 4) - 8;
  2046. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2047. }
  2048. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2049. }
  2050. *s = sumf;
  2051. #endif
  2052. }
  2053. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2054. const int qk = QK8_1;
  2055. const int nb = n / qk;
  2056. assert(n % qk == 0);
  2057. assert(nb % 2 == 0);
  2058. const block_q4_1 * restrict x = vx;
  2059. const block_q8_1 * restrict y = vy;
  2060. // TODO: add WASM SIMD
  2061. #if defined(__ARM_NEON)
  2062. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2063. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2064. float summs = 0;
  2065. for (int i = 0; i < nb; i += 2) {
  2066. const block_q4_1 * restrict x0 = &x[i + 0];
  2067. const block_q4_1 * restrict x1 = &x[i + 1];
  2068. const block_q8_1 * restrict y0 = &y[i + 0];
  2069. const block_q8_1 * restrict y1 = &y[i + 1];
  2070. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2071. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2072. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2073. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2074. // 4-bit -> 8-bit
  2075. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2076. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2077. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2078. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2079. // load y
  2080. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2081. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2082. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2083. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2084. #if defined(__ARM_FEATURE_DOTPROD)
  2085. // dot product into int32x4_t
  2086. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2087. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2088. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2089. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2090. #else
  2091. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2092. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2093. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2094. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2095. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2096. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2097. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2098. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2099. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2100. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2101. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2102. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2103. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2104. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2105. #endif
  2106. }
  2107. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2108. #elif defined(__AVX2__) || defined(__AVX__)
  2109. // Initialize accumulator with zeros
  2110. __m256 acc = _mm256_setzero_ps();
  2111. float summs = 0;
  2112. // Main loop
  2113. for (int i = 0; i < nb; ++i) {
  2114. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2115. const float d1 = y[i].d;
  2116. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2117. const __m256 d0v = _mm256_set1_ps( d0 );
  2118. const __m256 d1v = _mm256_set1_ps( d1 );
  2119. // Compute combined scales
  2120. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2121. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2122. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2123. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2124. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2125. // Accumulate d0*d1*x*y
  2126. #if defined(__AVX2__)
  2127. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2128. #else
  2129. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2130. #endif
  2131. }
  2132. *s = hsum_float_8(acc) + summs;
  2133. #else
  2134. // scalar
  2135. float sumf = 0.0;
  2136. for (int i = 0; i < nb; i++) {
  2137. int sumi = 0;
  2138. for (int j = 0; j < qk/2; ++j) {
  2139. const int v0 = (x[i].qs[j] & 0x0F);
  2140. const int v1 = (x[i].qs[j] >> 4);
  2141. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2142. }
  2143. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2144. }
  2145. *s = sumf;
  2146. #endif
  2147. }
  2148. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2149. const int qk = QK8_0;
  2150. const int nb = n / qk;
  2151. assert(n % qk == 0);
  2152. assert(nb % 2 == 0);
  2153. assert(qk == QK5_0);
  2154. const block_q5_0 * restrict x = vx;
  2155. const block_q8_0 * restrict y = vy;
  2156. #if defined(__ARM_NEON)
  2157. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2158. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2159. uint32_t qh0;
  2160. uint32_t qh1;
  2161. uint64_t tmp0[4];
  2162. uint64_t tmp1[4];
  2163. for (int i = 0; i < nb; i += 2) {
  2164. const block_q5_0 * restrict x0 = &x[i];
  2165. const block_q5_0 * restrict x1 = &x[i + 1];
  2166. const block_q8_0 * restrict y0 = &y[i];
  2167. const block_q8_0 * restrict y1 = &y[i + 1];
  2168. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2169. // extract the 5th bit via lookup table ((!b) << 4)
  2170. memcpy(&qh0, x0->qh, sizeof(qh0));
  2171. memcpy(&qh1, x1->qh, sizeof(qh1));
  2172. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2173. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2174. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2175. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2176. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2177. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2178. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2179. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2180. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2181. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2182. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2183. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2184. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2185. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2186. // 4-bit -> 8-bit
  2187. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2188. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2189. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2190. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2191. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2192. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2193. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2194. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2195. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2196. // load y
  2197. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2198. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2199. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2200. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2201. #if defined(__ARM_FEATURE_DOTPROD)
  2202. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2203. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2204. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2205. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2206. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2207. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2208. #else
  2209. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2210. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2211. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2212. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2213. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2214. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2215. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2216. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2217. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2218. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2219. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2220. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2221. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2222. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2223. #endif
  2224. }
  2225. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2226. #elif defined(__wasm_simd128__)
  2227. v128_t sumv = wasm_f32x4_splat(0.0f);
  2228. uint32_t qh;
  2229. uint64_t tmp[4];
  2230. // TODO: check if unrolling this is better
  2231. for (int i = 0; i < nb; ++i) {
  2232. const block_q5_0 * restrict x0 = &x[i];
  2233. const block_q8_0 * restrict y0 = &y[i];
  2234. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2235. // extract the 5th bit
  2236. memcpy(&qh, x0->qh, sizeof(qh));
  2237. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2238. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2239. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2240. tmp[3] = table_b2b_1[(qh >> 24) ];
  2241. const v128_t qhl = wasm_v128_load(tmp + 0);
  2242. const v128_t qhh = wasm_v128_load(tmp + 2);
  2243. const v128_t v0 = wasm_v128_load(x0->qs);
  2244. // 4-bit -> 8-bit
  2245. const v128_t v0l = wasm_v128_and (v0, m4b);
  2246. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2247. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2248. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2249. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2250. // load y
  2251. const v128_t v1l = wasm_v128_load(y0->qs);
  2252. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2253. // int8x16 -> int16x8
  2254. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2255. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2256. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2257. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2258. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2259. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2260. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2261. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2262. // dot product
  2263. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2264. wasm_i32x4_add(
  2265. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2266. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2267. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2268. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2269. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2270. }
  2271. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2272. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2273. #elif defined(__AVX2__)
  2274. // Initialize accumulator with zeros
  2275. __m256 acc = _mm256_setzero_ps();
  2276. // Main loop
  2277. for (int i = 0; i < nb; i++) {
  2278. /* Compute combined scale for the block */
  2279. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2280. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2281. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2282. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2283. bx = _mm256_or_si256(bx, bxhi);
  2284. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2285. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2286. /* Multiply q with scale and accumulate */
  2287. acc = _mm256_fmadd_ps(d, q, acc);
  2288. }
  2289. *s = hsum_float_8(acc);
  2290. #elif defined(__AVX__)
  2291. // Initialize accumulator with zeros
  2292. __m256 acc = _mm256_setzero_ps();
  2293. __m128i mask = _mm_set1_epi8((char)0xF0);
  2294. // Main loop
  2295. for (int i = 0; i < nb; i++) {
  2296. /* Compute combined scale for the block */
  2297. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2298. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2299. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2300. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2301. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2302. bxhil = _mm_andnot_si128(bxhil, mask);
  2303. bxhih = _mm_andnot_si128(bxhih, mask);
  2304. __m128i bxl = _mm256_castsi256_si128(bx);
  2305. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2306. bxl = _mm_or_si128(bxl, bxhil);
  2307. bxh = _mm_or_si128(bxh, bxhih);
  2308. bx = MM256_SET_M128I(bxh, bxl);
  2309. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2310. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2311. /* Multiply q with scale and accumulate */
  2312. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2313. }
  2314. *s = hsum_float_8(acc);
  2315. #else
  2316. // scalar
  2317. float sumf = 0.0;
  2318. for (int i = 0; i < nb; i++) {
  2319. uint32_t qh;
  2320. memcpy(&qh, x[i].qh, sizeof(qh));
  2321. int sumi = 0;
  2322. for (int j = 0; j < qk/2; ++j) {
  2323. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2324. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2325. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2326. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2327. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2328. }
  2329. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2330. }
  2331. *s = sumf;
  2332. #endif
  2333. }
  2334. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2335. const int qk = QK8_1;
  2336. const int nb = n / qk;
  2337. assert(n % qk == 0);
  2338. assert(nb % 2 == 0);
  2339. assert(qk == QK5_1);
  2340. const block_q5_1 * restrict x = vx;
  2341. const block_q8_1 * restrict y = vy;
  2342. #if defined(__ARM_NEON)
  2343. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2344. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2345. float summs0 = 0.0f;
  2346. float summs1 = 0.0f;
  2347. uint32_t qh0;
  2348. uint32_t qh1;
  2349. uint64_t tmp0[4];
  2350. uint64_t tmp1[4];
  2351. for (int i = 0; i < nb; i += 2) {
  2352. const block_q5_1 * restrict x0 = &x[i];
  2353. const block_q5_1 * restrict x1 = &x[i + 1];
  2354. const block_q8_1 * restrict y0 = &y[i];
  2355. const block_q8_1 * restrict y1 = &y[i + 1];
  2356. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2357. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2358. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2359. // extract the 5th bit via lookup table ((b) << 4)
  2360. memcpy(&qh0, x0->qh, sizeof(qh0));
  2361. memcpy(&qh1, x1->qh, sizeof(qh1));
  2362. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2363. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2364. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2365. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2366. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2367. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2368. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2369. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2370. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2371. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2372. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2373. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2374. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2375. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2376. // 4-bit -> 8-bit
  2377. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2378. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2379. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2380. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2381. // add high bit
  2382. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2383. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2384. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2385. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2386. // load y
  2387. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2388. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2389. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2390. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2391. #if defined(__ARM_FEATURE_DOTPROD)
  2392. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2393. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2394. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2395. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2396. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2397. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2398. #else
  2399. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2400. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2401. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2402. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2403. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2404. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2405. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2406. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2407. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2408. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2409. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2410. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2411. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2412. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2413. #endif
  2414. }
  2415. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2416. #elif defined(__wasm_simd128__)
  2417. v128_t sumv = wasm_f32x4_splat(0.0f);
  2418. float summs = 0.0f;
  2419. uint32_t qh;
  2420. uint64_t tmp[4];
  2421. // TODO: check if unrolling this is better
  2422. for (int i = 0; i < nb; ++i) {
  2423. const block_q5_1 * restrict x0 = &x[i];
  2424. const block_q8_1 * restrict y0 = &y[i];
  2425. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2426. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2427. // extract the 5th bit
  2428. memcpy(&qh, x0->qh, sizeof(qh));
  2429. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2430. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2431. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2432. tmp[3] = table_b2b_0[(qh >> 24) ];
  2433. const v128_t qhl = wasm_v128_load(tmp + 0);
  2434. const v128_t qhh = wasm_v128_load(tmp + 2);
  2435. const v128_t v0 = wasm_v128_load(x0->qs);
  2436. // 4-bit -> 8-bit
  2437. const v128_t v0l = wasm_v128_and (v0, m4b);
  2438. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2439. // add high bit
  2440. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2441. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2442. // load y
  2443. const v128_t v1l = wasm_v128_load(y0->qs);
  2444. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2445. // int8x16 -> int16x8
  2446. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2447. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2448. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2449. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2450. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2451. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2452. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2453. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2454. // dot product
  2455. sumv = wasm_f32x4_add(sumv,
  2456. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2457. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2458. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2459. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2460. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2461. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2462. }
  2463. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2464. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2465. #elif defined(__AVX2__)
  2466. // Initialize accumulator with zeros
  2467. __m256 acc = _mm256_setzero_ps();
  2468. float summs = 0.0f;
  2469. // Main loop
  2470. for (int i = 0; i < nb; i++) {
  2471. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2472. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2473. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2474. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2475. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2476. bx = _mm256_or_si256(bx, bxhi);
  2477. const __m256 dy = _mm256_set1_ps(y[i].d);
  2478. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2479. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2480. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2481. }
  2482. *s = hsum_float_8(acc) + summs;
  2483. #elif defined(__AVX__)
  2484. // Initialize accumulator with zeros
  2485. __m256 acc = _mm256_setzero_ps();
  2486. __m128i mask = _mm_set1_epi8(0x10);
  2487. float summs = 0.0f;
  2488. // Main loop
  2489. for (int i = 0; i < nb; i++) {
  2490. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2491. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2492. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2493. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2494. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2495. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2496. bxhil = _mm_and_si128(bxhil, mask);
  2497. bxhih = _mm_and_si128(bxhih, mask);
  2498. __m128i bxl = _mm256_castsi256_si128(bx);
  2499. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2500. bxl = _mm_or_si128(bxl, bxhil);
  2501. bxh = _mm_or_si128(bxh, bxhih);
  2502. bx = MM256_SET_M128I(bxh, bxl);
  2503. const __m256 dy = _mm256_set1_ps(y[i].d);
  2504. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2505. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2506. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2507. }
  2508. *s = hsum_float_8(acc) + summs;
  2509. #else
  2510. // scalar
  2511. float sumf = 0.0;
  2512. for (int i = 0; i < nb; i++) {
  2513. uint32_t qh;
  2514. memcpy(&qh, x[i].qh, sizeof(qh));
  2515. int sumi = 0;
  2516. for (int j = 0; j < qk/2; ++j) {
  2517. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2518. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2519. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2520. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2521. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2522. }
  2523. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2524. }
  2525. *s = sumf;
  2526. #endif
  2527. }
  2528. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2529. const int qk = QK8_0;
  2530. const int nb = n / qk;
  2531. assert(n % qk == 0);
  2532. assert(nb % 2 == 0);
  2533. const block_q8_0 * restrict x = vx;
  2534. const block_q8_0 * restrict y = vy;
  2535. #if defined(__ARM_NEON)
  2536. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2537. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2538. for (int i = 0; i < nb; i += 2) {
  2539. const block_q8_0 * restrict x0 = &x[i + 0];
  2540. const block_q8_0 * restrict x1 = &x[i + 1];
  2541. const block_q8_0 * restrict y0 = &y[i + 0];
  2542. const block_q8_0 * restrict y1 = &y[i + 1];
  2543. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2544. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2545. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2546. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2547. // load y
  2548. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2549. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2550. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2551. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2552. #if defined(__ARM_FEATURE_DOTPROD)
  2553. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2554. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2555. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2556. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2557. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2558. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2559. #else
  2560. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2561. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2562. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2563. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2564. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2565. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2566. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2567. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2568. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2569. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2570. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2571. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2572. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2573. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2574. #endif
  2575. }
  2576. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2577. #elif defined(__AVX2__) || defined(__AVX__)
  2578. // Initialize accumulator with zeros
  2579. __m256 acc = _mm256_setzero_ps();
  2580. // Main loop
  2581. for (int i = 0; i < nb; ++i) {
  2582. // Compute combined scale for the block
  2583. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2584. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2585. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2586. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2587. // Multiply q with scale and accumulate
  2588. #if defined(__AVX2__)
  2589. acc = _mm256_fmadd_ps( d, q, acc );
  2590. #else
  2591. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2592. #endif
  2593. }
  2594. *s = hsum_float_8(acc);
  2595. #else
  2596. // scalar
  2597. float sumf = 0.0;
  2598. for (int i = 0; i < nb; i++) {
  2599. int sumi = 0;
  2600. for (int j = 0; j < qk; j++) {
  2601. sumi += x[i].qs[j]*y[i].qs[j];
  2602. }
  2603. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2604. }
  2605. *s = sumf;
  2606. #endif
  2607. }
  2608. // compute GGML_VEC_DOT_UNROLL dot products at once
  2609. // xs - x row stride in bytes
  2610. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2611. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2612. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2613. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2614. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2615. }
  2616. #if defined(GGML_SIMD)
  2617. const int np = (n & ~(GGML_F16_STEP - 1));
  2618. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2619. GGML_F16_VEC ax[GGML_F16_ARR];
  2620. GGML_F16_VEC ay[GGML_F16_ARR];
  2621. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2622. for (int j = 0; j < GGML_F16_ARR; j++) {
  2623. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2624. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2625. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2626. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2627. }
  2628. }
  2629. }
  2630. // reduce sum0..sum3 to sum0
  2631. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2632. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2633. }
  2634. // leftovers
  2635. for (int i = np; i < n; ++i) {
  2636. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2637. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2638. }
  2639. }
  2640. #else
  2641. for (int i = 0; i < n; ++i) {
  2642. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2643. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2644. }
  2645. }
  2646. #endif
  2647. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2648. s[i] = sumf[i];
  2649. }
  2650. }
  2651. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2652. #if defined(GGML_SIMD)
  2653. const int np = (n & ~(GGML_F32_STEP - 1));
  2654. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2655. GGML_F32_VEC ax[GGML_F32_ARR];
  2656. GGML_F32_VEC ay[GGML_F32_ARR];
  2657. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2658. for (int j = 0; j < GGML_F32_ARR; j++) {
  2659. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2660. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2661. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2662. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2663. }
  2664. }
  2665. // leftovers
  2666. for (int i = np; i < n; ++i) {
  2667. y[i] += x[i]*v;
  2668. }
  2669. #else
  2670. // scalar
  2671. for (int i = 0; i < n; ++i) {
  2672. y[i] += x[i]*v;
  2673. }
  2674. #endif
  2675. }
  2676. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2677. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2678. #if defined(GGML_SIMD)
  2679. const int np = (n & ~(GGML_F32_STEP - 1));
  2680. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2681. GGML_F32_VEC ay[GGML_F32_ARR];
  2682. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2683. for (int j = 0; j < GGML_F32_ARR; j++) {
  2684. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2685. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2686. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2687. }
  2688. }
  2689. // leftovers
  2690. for (int i = np; i < n; ++i) {
  2691. y[i] *= v;
  2692. }
  2693. #else
  2694. // scalar
  2695. for (int i = 0; i < n; ++i) {
  2696. y[i] *= v;
  2697. }
  2698. #endif
  2699. }
  2700. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2701. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2702. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2703. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2704. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2705. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2706. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2707. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2708. static const float GELU_COEF_A = 0.044715f;
  2709. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2710. inline static float ggml_gelu_f32(float x) {
  2711. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2712. }
  2713. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2714. const uint16_t * i16 = (const uint16_t *) x;
  2715. for (int i = 0; i < n; ++i) {
  2716. y[i] = table_gelu_f16[i16[i]];
  2717. }
  2718. }
  2719. #ifdef GGML_GELU_FP16
  2720. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2721. uint16_t t;
  2722. for (int i = 0; i < n; ++i) {
  2723. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2724. memcpy(&t, &fp16, sizeof(uint16_t));
  2725. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2726. }
  2727. }
  2728. #else
  2729. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2730. for (int i = 0; i < n; ++i) {
  2731. y[i] = ggml_gelu_f32(x[i]);
  2732. }
  2733. }
  2734. #endif
  2735. // Sigmoid Linear Unit (SiLU) function
  2736. inline static float ggml_silu_f32(float x) {
  2737. return x/(1.0f + expf(-x));
  2738. }
  2739. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2740. // const uint16_t * i16 = (const uint16_t *) x;
  2741. // for (int i = 0; i < n; ++i) {
  2742. // y[i] = table_silu_f16[i16[i]];
  2743. // }
  2744. //}
  2745. #ifdef GGML_SILU_FP16
  2746. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2747. uint16_t t;
  2748. for (int i = 0; i < n; ++i) {
  2749. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2750. memcpy(&t, &fp16, sizeof(uint16_t));
  2751. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2752. }
  2753. }
  2754. #else
  2755. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2756. for (int i = 0; i < n; ++i) {
  2757. y[i] = ggml_silu_f32(x[i]);
  2758. }
  2759. }
  2760. #endif
  2761. inline static float ggml_silu_backward_f32(float x, float dy) {
  2762. const float s = 1.0f/(1.0f + expf(-x));
  2763. return dy*s*(1.0f + x*(1.0f - s));
  2764. }
  2765. #ifdef GGML_SILU_FP16
  2766. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2767. for (int i = 0; i < n; ++i) {
  2768. // we did not use x[i] to compute forward silu but its f16 equivalent
  2769. // take derivative at f16 of x[i]:
  2770. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2771. float usedx = GGML_FP16_TO_FP32(fp16);
  2772. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2773. }
  2774. }
  2775. #else
  2776. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2777. for (int i = 0; i < n; ++i) {
  2778. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2779. }
  2780. }
  2781. #endif
  2782. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2783. #ifndef GGML_USE_ACCELERATE
  2784. ggml_float sum = 0.0;
  2785. for (int i = 0; i < n; ++i) {
  2786. sum += (ggml_float)x[i];
  2787. }
  2788. *s = sum;
  2789. #else
  2790. vDSP_sve(x, 1, s, n);
  2791. #endif
  2792. }
  2793. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2794. ggml_float sum = 0.0;
  2795. for (int i = 0; i < n; ++i) {
  2796. sum += (ggml_float)x[i];
  2797. }
  2798. *s = sum;
  2799. }
  2800. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2801. #ifndef GGML_USE_ACCELERATE
  2802. float max = -INFINITY;
  2803. for (int i = 0; i < n; ++i) {
  2804. max = MAX(max, x[i]);
  2805. }
  2806. *s = max;
  2807. #else
  2808. vDSP_maxv(x, 1, s, n);
  2809. #endif
  2810. }
  2811. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2812. ggml_vec_norm_f32(n, s, x);
  2813. *s = 1.f/(*s);
  2814. }
  2815. //
  2816. // logging
  2817. //
  2818. #if (GGML_DEBUG >= 1)
  2819. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2820. #else
  2821. #define GGML_PRINT_DEBUG(...)
  2822. #endif
  2823. #if (GGML_DEBUG >= 5)
  2824. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG_5(...)
  2827. #endif
  2828. #if (GGML_DEBUG >= 10)
  2829. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2830. #else
  2831. #define GGML_PRINT_DEBUG_10(...)
  2832. #endif
  2833. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2834. //
  2835. // data types
  2836. //
  2837. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2838. [GGML_TYPE_F32] = 1,
  2839. [GGML_TYPE_F16] = 1,
  2840. [GGML_TYPE_Q4_0] = QK4_0,
  2841. [GGML_TYPE_Q4_1] = QK4_1,
  2842. [GGML_TYPE_Q5_0] = QK5_0,
  2843. [GGML_TYPE_Q5_1] = QK5_1,
  2844. [GGML_TYPE_Q8_0] = QK8_0,
  2845. [GGML_TYPE_Q8_1] = QK8_1,
  2846. #ifdef GGML_USE_K_QUANTS
  2847. [GGML_TYPE_Q2_K] = QK_K,
  2848. [GGML_TYPE_Q3_K] = QK_K,
  2849. [GGML_TYPE_Q4_K] = QK_K,
  2850. [GGML_TYPE_Q5_K] = QK_K,
  2851. [GGML_TYPE_Q6_K] = QK_K,
  2852. [GGML_TYPE_Q8_K] = QK_K,
  2853. #endif
  2854. [GGML_TYPE_I8] = 1,
  2855. [GGML_TYPE_I16] = 1,
  2856. [GGML_TYPE_I32] = 1,
  2857. };
  2858. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2859. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2860. [GGML_TYPE_F32] = sizeof(float),
  2861. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2862. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2863. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2864. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2865. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2866. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2867. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2868. #ifdef GGML_USE_K_QUANTS
  2869. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2870. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2871. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2872. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2873. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2874. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2875. #endif
  2876. [GGML_TYPE_I8] = sizeof(int8_t),
  2877. [GGML_TYPE_I16] = sizeof(int16_t),
  2878. [GGML_TYPE_I32] = sizeof(int32_t),
  2879. };
  2880. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2881. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2882. [GGML_TYPE_F32] = "f32",
  2883. [GGML_TYPE_F16] = "f16",
  2884. [GGML_TYPE_Q4_0] = "q4_0",
  2885. [GGML_TYPE_Q4_1] = "q4_1",
  2886. [GGML_TYPE_Q5_0] = "q5_0",
  2887. [GGML_TYPE_Q5_1] = "q5_1",
  2888. [GGML_TYPE_Q8_0] = "q8_0",
  2889. [GGML_TYPE_Q8_1] = "q8_1",
  2890. [GGML_TYPE_Q2_K] = "q2_K",
  2891. [GGML_TYPE_Q3_K] = "q3_K",
  2892. [GGML_TYPE_Q4_K] = "q4_K",
  2893. [GGML_TYPE_Q5_K] = "q5_K",
  2894. [GGML_TYPE_Q6_K] = "q6_K",
  2895. [GGML_TYPE_Q8_K] = "q8_K",
  2896. [GGML_TYPE_I8] = "i8",
  2897. [GGML_TYPE_I16] = "i16",
  2898. [GGML_TYPE_I32] = "i32",
  2899. };
  2900. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2901. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2902. [GGML_TYPE_F32] = false,
  2903. [GGML_TYPE_F16] = false,
  2904. [GGML_TYPE_Q4_0] = true,
  2905. [GGML_TYPE_Q4_1] = true,
  2906. [GGML_TYPE_Q5_0] = true,
  2907. [GGML_TYPE_Q5_1] = true,
  2908. [GGML_TYPE_Q8_0] = true,
  2909. [GGML_TYPE_Q8_1] = true,
  2910. [GGML_TYPE_Q2_K] = true,
  2911. [GGML_TYPE_Q3_K] = true,
  2912. [GGML_TYPE_Q4_K] = true,
  2913. [GGML_TYPE_Q5_K] = true,
  2914. [GGML_TYPE_Q6_K] = true,
  2915. [GGML_TYPE_Q8_K] = true,
  2916. [GGML_TYPE_I8] = false,
  2917. [GGML_TYPE_I16] = false,
  2918. [GGML_TYPE_I32] = false,
  2919. };
  2920. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2921. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2922. "NONE",
  2923. "DUP",
  2924. "ADD",
  2925. "ADD1",
  2926. "ACC",
  2927. "SUB",
  2928. "MUL",
  2929. "DIV",
  2930. "SQR",
  2931. "SQRT",
  2932. "LOG",
  2933. "SUM",
  2934. "SUM_ROWS",
  2935. "MEAN",
  2936. "REPEAT",
  2937. "ABS",
  2938. "SGN",
  2939. "NEG",
  2940. "STEP",
  2941. "RELU",
  2942. "GELU",
  2943. "SILU",
  2944. "SILU_BACK",
  2945. "NORM",
  2946. "RMS_NORM",
  2947. "RMS_NORM_BACK",
  2948. "MUL_MAT",
  2949. "SCALE",
  2950. "SET",
  2951. "CPY",
  2952. "CONT",
  2953. "RESHAPE",
  2954. "VIEW",
  2955. "PERMUTE",
  2956. "TRANSPOSE",
  2957. "GET_ROWS",
  2958. "GET_ROWS_BACK",
  2959. "DIAG",
  2960. "DIAG_MASK_INF",
  2961. "DIAG_MASK_ZERO",
  2962. "SOFT_MAX",
  2963. "ROPE",
  2964. "ROPE_BACK",
  2965. "ALIBI",
  2966. "CLAMP",
  2967. "CONV_1D_1S",
  2968. "CONV_1D_2S",
  2969. "FLASH_ATTN",
  2970. "FLASH_FF",
  2971. "MAP_UNARY",
  2972. "MAP_BINARY",
  2973. };
  2974. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2975. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2976. "none",
  2977. "x",
  2978. "x+y",
  2979. "x+y",
  2980. "view(x,nb,offset)+=y->x",
  2981. "x-y",
  2982. "x*y",
  2983. "x/y",
  2984. "x^2",
  2985. "√x",
  2986. "log(x)",
  2987. "Σx",
  2988. "Σx_k",
  2989. "Σx/n",
  2990. "repeat(x)",
  2991. "abs(x)",
  2992. "sgn(x)",
  2993. "-x",
  2994. "step(x)",
  2995. "relu(x)",
  2996. "gelu(x)",
  2997. "silu(x)",
  2998. "silu_back(x)",
  2999. "norm(x)",
  3000. "rms_norm(x)",
  3001. "rms_norm_back(x)",
  3002. "X*Y",
  3003. "x*v",
  3004. "y-\\>view(x)",
  3005. "x-\\>y",
  3006. "cont(x)",
  3007. "reshape(x)",
  3008. "view(x)",
  3009. "permute(x)",
  3010. "transpose(x)",
  3011. "get_rows(x)",
  3012. "get_rows_back(x)",
  3013. "diag(x)",
  3014. "diag_mask_inf(x)",
  3015. "diag_mask_zero(x)",
  3016. "soft_max(x)",
  3017. "rope(x)",
  3018. "rope_back(x)",
  3019. "alibi(x)",
  3020. "clamp(x)",
  3021. "conv_1d_1s(x)",
  3022. "conv_1d_2s(x)",
  3023. "flash_attn(x)",
  3024. "flash_ff(x)",
  3025. "f(x)",
  3026. "f(x,y)",
  3027. };
  3028. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3029. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3030. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3031. //
  3032. // ggml context
  3033. //
  3034. struct ggml_context {
  3035. size_t mem_size;
  3036. void * mem_buffer;
  3037. bool mem_buffer_owned;
  3038. bool no_alloc;
  3039. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3040. int n_objects;
  3041. struct ggml_object * objects_begin;
  3042. struct ggml_object * objects_end;
  3043. struct ggml_scratch scratch;
  3044. struct ggml_scratch scratch_save;
  3045. };
  3046. struct ggml_context_container {
  3047. bool used;
  3048. struct ggml_context context;
  3049. };
  3050. //
  3051. // ggml state
  3052. //
  3053. struct ggml_state {
  3054. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3055. };
  3056. // global state
  3057. static struct ggml_state g_state;
  3058. static atomic_int g_state_barrier = 0;
  3059. // barrier via spin lock
  3060. inline static void ggml_critical_section_start(void) {
  3061. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3062. while (processing > 0) {
  3063. // wait for other threads to finish
  3064. atomic_fetch_sub(&g_state_barrier, 1);
  3065. sched_yield(); // TODO: reconsider this
  3066. processing = atomic_fetch_add(&g_state_barrier, 1);
  3067. }
  3068. }
  3069. // TODO: make this somehow automatically executed
  3070. // some sort of "sentry" mechanism
  3071. inline static void ggml_critical_section_end(void) {
  3072. atomic_fetch_sub(&g_state_barrier, 1);
  3073. }
  3074. ////////////////////////////////////////////////////////////////////////////////
  3075. void ggml_print_object(const struct ggml_object * obj) {
  3076. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3077. obj->offs, obj->size, (const void *) obj->next);
  3078. }
  3079. void ggml_print_objects(const struct ggml_context * ctx) {
  3080. struct ggml_object * obj = ctx->objects_begin;
  3081. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3082. while (obj != NULL) {
  3083. ggml_print_object(obj);
  3084. obj = obj->next;
  3085. }
  3086. GGML_PRINT("%s: --- end ---\n", __func__);
  3087. }
  3088. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3090. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3091. }
  3092. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3093. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3094. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3095. }
  3096. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3097. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3098. // this should handle cases where the tensor is not contiguous in memory
  3099. // probaby just:
  3100. //
  3101. // return tensor->ne[3]*tensor->nb[3]
  3102. //
  3103. // is enough, but just in case, adding the second part
  3104. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3105. }
  3106. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3107. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3108. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3109. }
  3110. int ggml_blck_size(enum ggml_type type) {
  3111. return GGML_BLCK_SIZE[type];
  3112. }
  3113. size_t ggml_type_size(enum ggml_type type) {
  3114. return GGML_TYPE_SIZE[type];
  3115. }
  3116. float ggml_type_sizef(enum ggml_type type) {
  3117. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3118. }
  3119. const char * ggml_type_name(enum ggml_type type) {
  3120. return GGML_TYPE_NAME[type];
  3121. }
  3122. const char * ggml_op_name(enum ggml_op op) {
  3123. return GGML_OP_NAME[op];
  3124. }
  3125. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3126. return GGML_TYPE_SIZE[tensor->type];
  3127. }
  3128. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3129. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3130. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3131. }
  3132. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3133. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3134. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3135. }
  3136. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3137. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3138. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3139. }
  3140. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3141. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3142. return
  3143. (t0->ne[0] == t1->ne[0]) &&
  3144. (t0->ne[2] == t1->ne[2]) &&
  3145. (t0->ne[3] == t1->ne[3]);
  3146. }
  3147. bool ggml_is_quantized(enum ggml_type type) {
  3148. return GGML_IS_QUANTIZED[type];
  3149. }
  3150. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3151. enum ggml_type wtype = GGML_TYPE_COUNT;
  3152. switch (ftype) {
  3153. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3154. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3155. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3156. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3157. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3158. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3159. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3160. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3161. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3162. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3163. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3164. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3165. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3166. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3167. }
  3168. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3169. return wtype;
  3170. }
  3171. size_t ggml_tensor_overhead(void) {
  3172. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3173. }
  3174. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3175. return tensor->nb[0] > tensor->nb[1];
  3176. }
  3177. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3178. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3179. return
  3180. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3181. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3182. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3183. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3184. }
  3185. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3186. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3187. return
  3188. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3189. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3190. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3191. }
  3192. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3193. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3194. return
  3195. (t0->ne[0] == t1->ne[0] ) &&
  3196. (t0->ne[1] == t1->ne[1] ) &&
  3197. (t0->ne[2] == t1->ne[2] ) &&
  3198. (t0->ne[3] == t1->ne[3] );
  3199. }
  3200. // check if t1 can be represented as a repeatition of t0
  3201. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3202. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3203. return
  3204. (t1->ne[0]%t0->ne[0] == 0) &&
  3205. (t1->ne[1]%t0->ne[1] == 0) &&
  3206. (t1->ne[2]%t0->ne[2] == 0) &&
  3207. (t1->ne[3]%t0->ne[3] == 0);
  3208. }
  3209. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3211. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3212. }
  3213. static inline int ggml_up32(int n) {
  3214. return (n + 31) & ~31;
  3215. }
  3216. //static inline int ggml_up64(int n) {
  3217. // return (n + 63) & ~63;
  3218. //}
  3219. static inline int ggml_up(int n, int m) {
  3220. // assert m is a power of 2
  3221. GGML_ASSERT((m & (m - 1)) == 0);
  3222. return (n + m - 1) & ~(m - 1);
  3223. }
  3224. // assert that pointer is aligned to GGML_MEM_ALIGN
  3225. #define ggml_assert_aligned(ptr) \
  3226. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3227. ////////////////////////////////////////////////////////////////////////////////
  3228. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3229. // make this function thread safe
  3230. ggml_critical_section_start();
  3231. static bool is_first_call = true;
  3232. if (is_first_call) {
  3233. // initialize time system (required on Windows)
  3234. ggml_time_init();
  3235. // initialize GELU, SILU and EXP F32 tables
  3236. {
  3237. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3238. ggml_fp16_t ii;
  3239. for (int i = 0; i < (1 << 16); ++i) {
  3240. uint16_t ui = i;
  3241. memcpy(&ii, &ui, sizeof(ii));
  3242. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3243. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3244. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3245. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3246. }
  3247. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3248. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3249. }
  3250. // initialize g_state
  3251. {
  3252. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3253. g_state = (struct ggml_state) {
  3254. /*.contexts =*/ { { 0 } },
  3255. };
  3256. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3257. g_state.contexts[i].used = false;
  3258. }
  3259. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3260. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3261. }
  3262. #if defined(GGML_USE_CUBLAS)
  3263. ggml_init_cublas();
  3264. #elif defined(GGML_USE_CLBLAST)
  3265. ggml_cl_init();
  3266. #endif
  3267. is_first_call = false;
  3268. }
  3269. // find non-used context in g_state
  3270. struct ggml_context * ctx = NULL;
  3271. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3272. if (!g_state.contexts[i].used) {
  3273. g_state.contexts[i].used = true;
  3274. ctx = &g_state.contexts[i].context;
  3275. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3276. break;
  3277. }
  3278. }
  3279. if (ctx == NULL) {
  3280. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3281. ggml_critical_section_end();
  3282. return NULL;
  3283. }
  3284. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3285. *ctx = (struct ggml_context) {
  3286. /*.mem_size =*/ mem_size,
  3287. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3288. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3289. /*.no_alloc =*/ params.no_alloc,
  3290. /*.no_alloc_save =*/ params.no_alloc,
  3291. /*.n_objects =*/ 0,
  3292. /*.objects_begin =*/ NULL,
  3293. /*.objects_end =*/ NULL,
  3294. /*.scratch =*/ { 0, 0, NULL, },
  3295. /*.scratch_save =*/ { 0, 0, NULL, },
  3296. };
  3297. GGML_ASSERT(ctx->mem_buffer != NULL);
  3298. ggml_assert_aligned(ctx->mem_buffer);
  3299. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3300. ggml_critical_section_end();
  3301. return ctx;
  3302. }
  3303. void ggml_free(struct ggml_context * ctx) {
  3304. // make this function thread safe
  3305. ggml_critical_section_start();
  3306. bool found = false;
  3307. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3308. if (&g_state.contexts[i].context == ctx) {
  3309. g_state.contexts[i].used = false;
  3310. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3311. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3312. if (ctx->mem_buffer_owned) {
  3313. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3314. }
  3315. found = true;
  3316. break;
  3317. }
  3318. }
  3319. if (!found) {
  3320. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3321. }
  3322. ggml_critical_section_end();
  3323. }
  3324. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3325. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3326. }
  3327. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3328. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3329. ctx->scratch = scratch;
  3330. return result;
  3331. }
  3332. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3333. ctx->no_alloc = no_alloc;
  3334. }
  3335. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3336. return ctx->mem_buffer;
  3337. }
  3338. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3339. return ctx->mem_size;
  3340. }
  3341. // IMPORTANT:
  3342. // when creating "opt" tensors, always save and load the scratch buffer
  3343. // this is an error prone process, but it is necessary to support inplace
  3344. // operators when using scratch buffers
  3345. // TODO: implement a better way
  3346. void ggml_scratch_save(struct ggml_context * ctx) {
  3347. // this is needed to allow opt tensors to store their data
  3348. // TODO: again, need to find a better way
  3349. ctx->no_alloc_save = ctx->no_alloc;
  3350. ctx->no_alloc = false;
  3351. ctx->scratch_save = ctx->scratch;
  3352. ctx->scratch.data = NULL;
  3353. }
  3354. void ggml_scratch_load(struct ggml_context * ctx) {
  3355. ctx->no_alloc = ctx->no_alloc_save;
  3356. ctx->scratch = ctx->scratch_save;
  3357. }
  3358. ////////////////////////////////////////////////////////////////////////////////
  3359. struct ggml_tensor * ggml_new_tensor_impl(
  3360. struct ggml_context * ctx,
  3361. enum ggml_type type,
  3362. int n_dims,
  3363. const int64_t* ne,
  3364. void* data) {
  3365. // always insert objects at the end of the context's memory pool
  3366. struct ggml_object * obj_cur = ctx->objects_end;
  3367. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3368. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3369. const size_t cur_end = cur_offs + cur_size;
  3370. size_t size_needed = 0;
  3371. if (data == NULL && !ctx->no_alloc) {
  3372. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3373. for (int i = 1; i < n_dims; i++) {
  3374. size_needed *= ne[i];
  3375. }
  3376. // align to GGML_MEM_ALIGN
  3377. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3378. }
  3379. char * const mem_buffer = ctx->mem_buffer;
  3380. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3381. if (ctx->scratch.data == NULL || data != NULL) {
  3382. size_needed += GGML_TENSOR_SIZE;
  3383. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3384. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3385. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3386. assert(false);
  3387. return NULL;
  3388. }
  3389. *obj_new = (struct ggml_object) {
  3390. .offs = cur_end + GGML_OBJECT_SIZE,
  3391. .size = size_needed,
  3392. .next = NULL,
  3393. };
  3394. } else {
  3395. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3396. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3397. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3398. assert(false);
  3399. return NULL;
  3400. }
  3401. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3402. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3403. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3404. assert(false);
  3405. return NULL;
  3406. }
  3407. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3408. *obj_new = (struct ggml_object) {
  3409. .offs = cur_end + GGML_OBJECT_SIZE,
  3410. .size = GGML_TENSOR_SIZE,
  3411. .next = NULL,
  3412. };
  3413. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3414. ctx->scratch.offs += size_needed;
  3415. }
  3416. if (obj_cur != NULL) {
  3417. obj_cur->next = obj_new;
  3418. } else {
  3419. // this is the first object in this context
  3420. ctx->objects_begin = obj_new;
  3421. }
  3422. ctx->objects_end = obj_new;
  3423. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3424. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3425. ggml_assert_aligned(result);
  3426. *result = (struct ggml_tensor) {
  3427. /*.type =*/ type,
  3428. /*.backend =*/ GGML_BACKEND_CPU,
  3429. /*.n_dims =*/ n_dims,
  3430. /*.ne =*/ { 1, 1, 1, 1 },
  3431. /*.nb =*/ { 0, 0, 0, 0 },
  3432. /*.op =*/ GGML_OP_NONE,
  3433. /*.is_param =*/ false,
  3434. /*.grad =*/ NULL,
  3435. /*.src0 =*/ NULL,
  3436. /*.src1 =*/ NULL,
  3437. /*.opt =*/ { NULL },
  3438. /*.n_tasks =*/ 0,
  3439. /*.perf_runs =*/ 0,
  3440. /*.perf_cycles =*/ 0,
  3441. /*.perf_time_us =*/ 0,
  3442. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3443. /*.name =*/ { 0 },
  3444. /*.extra =*/ NULL,
  3445. /*.pad =*/ { 0 },
  3446. };
  3447. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3448. //ggml_assert_aligned(result->data);
  3449. for (int i = 0; i < n_dims; i++) {
  3450. result->ne[i] = ne[i];
  3451. }
  3452. result->nb[0] = GGML_TYPE_SIZE[type];
  3453. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3454. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3455. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3456. }
  3457. ctx->n_objects++;
  3458. return result;
  3459. }
  3460. struct ggml_tensor * ggml_new_tensor(
  3461. struct ggml_context * ctx,
  3462. enum ggml_type type,
  3463. int n_dims,
  3464. const int64_t * ne) {
  3465. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3466. }
  3467. struct ggml_tensor * ggml_new_tensor_1d(
  3468. struct ggml_context * ctx,
  3469. enum ggml_type type,
  3470. int64_t ne0) {
  3471. return ggml_new_tensor(ctx, type, 1, &ne0);
  3472. }
  3473. struct ggml_tensor * ggml_new_tensor_2d(
  3474. struct ggml_context * ctx,
  3475. enum ggml_type type,
  3476. int64_t ne0,
  3477. int64_t ne1) {
  3478. const int64_t ne[2] = { ne0, ne1 };
  3479. return ggml_new_tensor(ctx, type, 2, ne);
  3480. }
  3481. struct ggml_tensor * ggml_new_tensor_3d(
  3482. struct ggml_context * ctx,
  3483. enum ggml_type type,
  3484. int64_t ne0,
  3485. int64_t ne1,
  3486. int64_t ne2) {
  3487. const int64_t ne[3] = { ne0, ne1, ne2 };
  3488. return ggml_new_tensor(ctx, type, 3, ne);
  3489. }
  3490. struct ggml_tensor * ggml_new_tensor_4d(
  3491. struct ggml_context * ctx,
  3492. enum ggml_type type,
  3493. int64_t ne0,
  3494. int64_t ne1,
  3495. int64_t ne2,
  3496. int64_t ne3) {
  3497. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3498. return ggml_new_tensor(ctx, type, 4, ne);
  3499. }
  3500. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3501. ggml_scratch_save(ctx);
  3502. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3503. ggml_scratch_load(ctx);
  3504. ggml_set_i32(result, value);
  3505. return result;
  3506. }
  3507. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3508. ggml_scratch_save(ctx);
  3509. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3510. ggml_scratch_load(ctx);
  3511. ggml_set_f32(result, value);
  3512. return result;
  3513. }
  3514. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3515. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3516. }
  3517. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3518. memset(tensor->data, 0, ggml_nbytes(tensor));
  3519. return tensor;
  3520. }
  3521. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3522. const int n = ggml_nrows(tensor);
  3523. const int nc = tensor->ne[0];
  3524. const size_t n1 = tensor->nb[1];
  3525. char * const data = tensor->data;
  3526. switch (tensor->type) {
  3527. case GGML_TYPE_I8:
  3528. {
  3529. assert(tensor->nb[0] == sizeof(int8_t));
  3530. for (int i = 0; i < n; i++) {
  3531. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3532. }
  3533. } break;
  3534. case GGML_TYPE_I16:
  3535. {
  3536. assert(tensor->nb[0] == sizeof(int16_t));
  3537. for (int i = 0; i < n; i++) {
  3538. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3539. }
  3540. } break;
  3541. case GGML_TYPE_I32:
  3542. {
  3543. assert(tensor->nb[0] == sizeof(int32_t));
  3544. for (int i = 0; i < n; i++) {
  3545. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3546. }
  3547. } break;
  3548. case GGML_TYPE_F16:
  3549. {
  3550. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3551. for (int i = 0; i < n; i++) {
  3552. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3553. }
  3554. } break;
  3555. case GGML_TYPE_F32:
  3556. {
  3557. assert(tensor->nb[0] == sizeof(float));
  3558. for (int i = 0; i < n; i++) {
  3559. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3560. }
  3561. } break;
  3562. default:
  3563. {
  3564. GGML_ASSERT(false);
  3565. } break;
  3566. }
  3567. return tensor;
  3568. }
  3569. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3570. const int n = ggml_nrows(tensor);
  3571. const int nc = tensor->ne[0];
  3572. const size_t n1 = tensor->nb[1];
  3573. char * const data = tensor->data;
  3574. switch (tensor->type) {
  3575. case GGML_TYPE_I8:
  3576. {
  3577. assert(tensor->nb[0] == sizeof(int8_t));
  3578. for (int i = 0; i < n; i++) {
  3579. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3580. }
  3581. } break;
  3582. case GGML_TYPE_I16:
  3583. {
  3584. assert(tensor->nb[0] == sizeof(int16_t));
  3585. for (int i = 0; i < n; i++) {
  3586. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3587. }
  3588. } break;
  3589. case GGML_TYPE_I32:
  3590. {
  3591. assert(tensor->nb[0] == sizeof(int32_t));
  3592. for (int i = 0; i < n; i++) {
  3593. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3594. }
  3595. } break;
  3596. case GGML_TYPE_F16:
  3597. {
  3598. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3599. for (int i = 0; i < n; i++) {
  3600. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3601. }
  3602. } break;
  3603. case GGML_TYPE_F32:
  3604. {
  3605. assert(tensor->nb[0] == sizeof(float));
  3606. for (int i = 0; i < n; i++) {
  3607. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3608. }
  3609. } break;
  3610. default:
  3611. {
  3612. GGML_ASSERT(false);
  3613. } break;
  3614. }
  3615. return tensor;
  3616. }
  3617. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3618. switch (tensor->type) {
  3619. case GGML_TYPE_I8:
  3620. {
  3621. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3622. return ((int8_t *)(tensor->data))[i];
  3623. } break;
  3624. case GGML_TYPE_I16:
  3625. {
  3626. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3627. return ((int16_t *)(tensor->data))[i];
  3628. } break;
  3629. case GGML_TYPE_I32:
  3630. {
  3631. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3632. return ((int32_t *)(tensor->data))[i];
  3633. } break;
  3634. case GGML_TYPE_F16:
  3635. {
  3636. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3637. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3638. } break;
  3639. case GGML_TYPE_F32:
  3640. {
  3641. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3642. return ((float *)(tensor->data))[i];
  3643. } break;
  3644. default:
  3645. {
  3646. GGML_ASSERT(false);
  3647. } break;
  3648. }
  3649. return 0.0f;
  3650. }
  3651. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3652. switch (tensor->type) {
  3653. case GGML_TYPE_I8:
  3654. {
  3655. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3656. ((int8_t *)(tensor->data))[i] = value;
  3657. } break;
  3658. case GGML_TYPE_I16:
  3659. {
  3660. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3661. ((int16_t *)(tensor->data))[i] = value;
  3662. } break;
  3663. case GGML_TYPE_I32:
  3664. {
  3665. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3666. ((int32_t *)(tensor->data))[i] = value;
  3667. } break;
  3668. case GGML_TYPE_F16:
  3669. {
  3670. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3671. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3672. } break;
  3673. case GGML_TYPE_F32:
  3674. {
  3675. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3676. ((float *)(tensor->data))[i] = value;
  3677. } break;
  3678. default:
  3679. {
  3680. GGML_ASSERT(false);
  3681. } break;
  3682. }
  3683. }
  3684. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3685. switch (tensor->type) {
  3686. case GGML_TYPE_I8:
  3687. {
  3688. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3689. return ((int8_t *)(tensor->data))[i];
  3690. } break;
  3691. case GGML_TYPE_I16:
  3692. {
  3693. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3694. return ((int16_t *)(tensor->data))[i];
  3695. } break;
  3696. case GGML_TYPE_I32:
  3697. {
  3698. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3699. return ((int32_t *)(tensor->data))[i];
  3700. } break;
  3701. case GGML_TYPE_F16:
  3702. {
  3703. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3704. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3705. } break;
  3706. case GGML_TYPE_F32:
  3707. {
  3708. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3709. return ((float *)(tensor->data))[i];
  3710. } break;
  3711. default:
  3712. {
  3713. GGML_ASSERT(false);
  3714. } break;
  3715. }
  3716. return 0.0f;
  3717. }
  3718. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3719. switch (tensor->type) {
  3720. case GGML_TYPE_I8:
  3721. {
  3722. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3723. ((int8_t *)(tensor->data))[i] = value;
  3724. } break;
  3725. case GGML_TYPE_I16:
  3726. {
  3727. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3728. ((int16_t *)(tensor->data))[i] = value;
  3729. } break;
  3730. case GGML_TYPE_I32:
  3731. {
  3732. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3733. ((int32_t *)(tensor->data))[i] = value;
  3734. } break;
  3735. case GGML_TYPE_F16:
  3736. {
  3737. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3738. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3739. } break;
  3740. case GGML_TYPE_F32:
  3741. {
  3742. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3743. ((float *)(tensor->data))[i] = value;
  3744. } break;
  3745. default:
  3746. {
  3747. GGML_ASSERT(false);
  3748. } break;
  3749. }
  3750. }
  3751. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3752. return tensor->data;
  3753. }
  3754. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3755. assert(tensor->type == GGML_TYPE_F32);
  3756. return (float *)(tensor->data);
  3757. }
  3758. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3759. return tensor->name;
  3760. }
  3761. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3762. strncpy(tensor->name, name, sizeof(tensor->name));
  3763. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3764. }
  3765. struct ggml_tensor * ggml_view_tensor(
  3766. struct ggml_context * ctx,
  3767. const struct ggml_tensor * src) {
  3768. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3769. result->nb[0] = src->nb[0];
  3770. result->nb[1] = src->nb[1];
  3771. result->nb[2] = src->nb[2];
  3772. result->nb[3] = src->nb[3];
  3773. return result;
  3774. }
  3775. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3776. struct ggml_object * obj = ctx->objects_begin;
  3777. char * const mem_buffer = ctx->mem_buffer;
  3778. while (obj != NULL) {
  3779. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3780. if (strcmp(cur->name, name) == 0) {
  3781. return cur;
  3782. }
  3783. obj = obj->next;
  3784. }
  3785. return NULL;
  3786. }
  3787. ////////////////////////////////////////////////////////////////////////////////
  3788. // ggml_dup
  3789. struct ggml_tensor * ggml_dup_impl(
  3790. struct ggml_context * ctx,
  3791. struct ggml_tensor * a,
  3792. bool inplace) {
  3793. bool is_node = false;
  3794. if (!inplace && (a->grad)) {
  3795. is_node = true;
  3796. }
  3797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3798. result->op = GGML_OP_DUP;
  3799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3800. result->src0 = a;
  3801. result->src1 = NULL;
  3802. return result;
  3803. }
  3804. struct ggml_tensor * ggml_dup(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a) {
  3807. return ggml_dup_impl(ctx, a, false);
  3808. }
  3809. struct ggml_tensor * ggml_dup_inplace(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a) {
  3812. return ggml_dup_impl(ctx, a, true);
  3813. }
  3814. // ggml_add
  3815. struct ggml_tensor * ggml_add_impl(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a,
  3818. struct ggml_tensor * b,
  3819. bool inplace) {
  3820. GGML_ASSERT(ggml_are_same_shape(a, b));
  3821. bool is_node = false;
  3822. if (!inplace && (a->grad || b->grad)) {
  3823. is_node = true;
  3824. }
  3825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3826. result->op = GGML_OP_ADD;
  3827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3828. result->src0 = a;
  3829. result->src1 = b;
  3830. return result;
  3831. }
  3832. struct ggml_tensor * ggml_add(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a,
  3835. struct ggml_tensor * b) {
  3836. return ggml_add_impl(ctx, a, b, false);
  3837. }
  3838. struct ggml_tensor * ggml_add_inplace(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b) {
  3842. return ggml_add_impl(ctx, a, b, true);
  3843. }
  3844. // ggml_add1
  3845. struct ggml_tensor * ggml_add1_impl(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a,
  3848. struct ggml_tensor * b,
  3849. bool inplace) {
  3850. GGML_ASSERT(ggml_is_scalar(b));
  3851. GGML_ASSERT(ggml_is_padded_1d(a));
  3852. bool is_node = false;
  3853. if (!inplace && (a->grad || b->grad)) {
  3854. is_node = true;
  3855. }
  3856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3857. result->op = GGML_OP_ADD1;
  3858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3859. result->src0 = a;
  3860. result->src1 = b;
  3861. return result;
  3862. }
  3863. struct ggml_tensor * ggml_add1(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. struct ggml_tensor * b) {
  3867. return ggml_add1_impl(ctx, a, b, false);
  3868. }
  3869. struct ggml_tensor * ggml_add1_inplace(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b) {
  3873. return ggml_add1_impl(ctx, a, b, true);
  3874. }
  3875. // ggml_acc
  3876. struct ggml_tensor * ggml_acc_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b,
  3880. size_t nb1,
  3881. size_t nb2,
  3882. size_t nb3,
  3883. size_t offset,
  3884. bool inplace) {
  3885. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3886. GGML_ASSERT(ggml_is_contiguous(a));
  3887. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3888. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3889. bool is_node = false;
  3890. if (!inplace && (a->grad || b->grad)) {
  3891. is_node = true;
  3892. }
  3893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3894. ggml_scratch_save(ctx);
  3895. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3896. ((int32_t *) c->data)[0] = nb1;
  3897. ((int32_t *) c->data)[1] = nb2;
  3898. ((int32_t *) c->data)[2] = nb3;
  3899. ((int32_t *) c->data)[3] = offset;
  3900. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3901. ggml_scratch_load(ctx);
  3902. result->op = GGML_OP_ACC;
  3903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3904. result->src0 = a;
  3905. result->src1 = b;
  3906. result->opt[0] = c;
  3907. return result;
  3908. }
  3909. struct ggml_tensor * ggml_acc(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. struct ggml_tensor * b,
  3913. size_t nb1,
  3914. size_t nb2,
  3915. size_t nb3,
  3916. size_t offset) {
  3917. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3918. }
  3919. struct ggml_tensor * ggml_acc_inplace(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a,
  3922. struct ggml_tensor * b,
  3923. size_t nb1,
  3924. size_t nb2,
  3925. size_t nb3,
  3926. size_t offset) {
  3927. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3928. }
  3929. // ggml_sub
  3930. struct ggml_tensor * ggml_sub_impl(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b,
  3934. bool inplace) {
  3935. GGML_ASSERT(ggml_are_same_shape(a, b));
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad || b->grad)) {
  3938. is_node = true;
  3939. }
  3940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3941. result->op = GGML_OP_SUB;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src0 = a;
  3944. result->src1 = b;
  3945. return result;
  3946. }
  3947. struct ggml_tensor * ggml_sub(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. struct ggml_tensor * b) {
  3951. return ggml_sub_impl(ctx, a, b, false);
  3952. }
  3953. struct ggml_tensor * ggml_sub_inplace(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b) {
  3957. return ggml_sub_impl(ctx, a, b, true);
  3958. }
  3959. // ggml_mul
  3960. struct ggml_tensor * ggml_mul_impl(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. struct ggml_tensor * b,
  3964. bool inplace) {
  3965. // TODO: support less-strict constraint
  3966. // GGML_ASSERT(ggml_can_repeat(b, a));
  3967. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3968. bool is_node = false;
  3969. if (!inplace && (a->grad || b->grad)) {
  3970. // TODO: support backward pass for broadcasting
  3971. GGML_ASSERT(ggml_are_same_shape(a, b));
  3972. is_node = true;
  3973. }
  3974. if (inplace) {
  3975. GGML_ASSERT(is_node == false);
  3976. }
  3977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3978. result->op = GGML_OP_MUL;
  3979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3980. result->src0 = a;
  3981. result->src1 = b;
  3982. return result;
  3983. }
  3984. struct ggml_tensor * ggml_mul(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. struct ggml_tensor * b) {
  3988. return ggml_mul_impl(ctx, a, b, false);
  3989. }
  3990. struct ggml_tensor * ggml_mul_inplace(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b) {
  3994. return ggml_mul_impl(ctx, a, b, true);
  3995. }
  3996. // ggml_div
  3997. struct ggml_tensor * ggml_div_impl(
  3998. struct ggml_context * ctx,
  3999. struct ggml_tensor * a,
  4000. struct ggml_tensor * b,
  4001. bool inplace) {
  4002. GGML_ASSERT(ggml_are_same_shape(a, b));
  4003. bool is_node = false;
  4004. if (!inplace && (a->grad || b->grad)) {
  4005. is_node = true;
  4006. }
  4007. if (inplace) {
  4008. GGML_ASSERT(is_node == false);
  4009. }
  4010. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4011. result->op = GGML_OP_DIV;
  4012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4013. result->src0 = a;
  4014. result->src1 = b;
  4015. return result;
  4016. }
  4017. struct ggml_tensor * ggml_div(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. struct ggml_tensor * b) {
  4021. return ggml_div_impl(ctx, a, b, false);
  4022. }
  4023. struct ggml_tensor * ggml_div_inplace(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. struct ggml_tensor * b) {
  4027. return ggml_div_impl(ctx, a, b, true);
  4028. }
  4029. // ggml_sqr
  4030. struct ggml_tensor * ggml_sqr_impl(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a,
  4033. bool inplace) {
  4034. bool is_node = false;
  4035. if (!inplace && (a->grad)) {
  4036. is_node = true;
  4037. }
  4038. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4039. result->op = GGML_OP_SQR;
  4040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4041. result->src0 = a;
  4042. result->src1 = NULL;
  4043. return result;
  4044. }
  4045. struct ggml_tensor * ggml_sqr(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a) {
  4048. return ggml_sqr_impl(ctx, a, false);
  4049. }
  4050. struct ggml_tensor * ggml_sqr_inplace(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a) {
  4053. return ggml_sqr_impl(ctx, a, true);
  4054. }
  4055. // ggml_sqrt
  4056. struct ggml_tensor * ggml_sqrt_impl(
  4057. struct ggml_context * ctx,
  4058. struct ggml_tensor * a,
  4059. bool inplace) {
  4060. bool is_node = false;
  4061. if (!inplace && (a->grad)) {
  4062. is_node = true;
  4063. }
  4064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4065. result->op = GGML_OP_SQRT;
  4066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4067. result->src0 = a;
  4068. result->src1 = NULL;
  4069. return result;
  4070. }
  4071. struct ggml_tensor * ggml_sqrt(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a) {
  4074. return ggml_sqrt_impl(ctx, a, false);
  4075. }
  4076. struct ggml_tensor * ggml_sqrt_inplace(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a) {
  4079. return ggml_sqrt_impl(ctx, a, true);
  4080. }
  4081. // ggml_log
  4082. struct ggml_tensor * ggml_log_impl(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a,
  4085. bool inplace) {
  4086. bool is_node = false;
  4087. if (!inplace && (a->grad)) {
  4088. is_node = true;
  4089. }
  4090. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4091. result->op = GGML_OP_LOG;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src0 = a;
  4094. result->src1 = NULL;
  4095. return result;
  4096. }
  4097. struct ggml_tensor * ggml_log(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a) {
  4100. return ggml_log_impl(ctx, a, false);
  4101. }
  4102. struct ggml_tensor * ggml_log_inplace(
  4103. struct ggml_context * ctx,
  4104. struct ggml_tensor * a) {
  4105. return ggml_log_impl(ctx, a, true);
  4106. }
  4107. // ggml_sum
  4108. struct ggml_tensor * ggml_sum(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a) {
  4111. bool is_node = false;
  4112. if (a->grad) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4116. result->op = GGML_OP_SUM;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src0 = a;
  4119. result->src1 = NULL;
  4120. return result;
  4121. }
  4122. // ggml_sum_rows
  4123. struct ggml_tensor * ggml_sum_rows(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. bool is_node = false;
  4127. if (a->grad) {
  4128. is_node = true;
  4129. }
  4130. int64_t ne[4] = {1,1,1,1};
  4131. for (int i=1; i<a->n_dims; ++i) {
  4132. ne[i] = a->ne[i];
  4133. }
  4134. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4135. result->op = GGML_OP_SUM_ROWS;
  4136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4137. result->src0 = a;
  4138. result->src1 = NULL;
  4139. return result;
  4140. }
  4141. // ggml_mean
  4142. struct ggml_tensor * ggml_mean(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a) {
  4145. bool is_node = false;
  4146. if (a->grad) {
  4147. GGML_ASSERT(false); // TODO: implement
  4148. is_node = true;
  4149. }
  4150. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4151. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4152. result->op = GGML_OP_MEAN;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src0 = a;
  4155. result->src1 = NULL;
  4156. return result;
  4157. }
  4158. // ggml_repeat
  4159. struct ggml_tensor * ggml_repeat(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. struct ggml_tensor * b) {
  4163. GGML_ASSERT(ggml_can_repeat(a, b));
  4164. bool is_node = false;
  4165. if (a->grad) {
  4166. is_node = true;
  4167. }
  4168. if (ggml_are_same_shape(a, b) && !is_node) {
  4169. return a;
  4170. }
  4171. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4172. result->op = GGML_OP_REPEAT;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = b;
  4176. return result;
  4177. }
  4178. // ggml_abs
  4179. struct ggml_tensor * ggml_abs_impl(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. bool inplace) {
  4183. bool is_node = false;
  4184. if (!inplace && (a->grad)) {
  4185. is_node = true;
  4186. }
  4187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4188. result->op = GGML_OP_ABS;
  4189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4190. result->src0 = a;
  4191. result->src1 = NULL;
  4192. return result;
  4193. }
  4194. struct ggml_tensor * ggml_abs(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a) {
  4197. return ggml_abs_impl(ctx, a, false);
  4198. }
  4199. struct ggml_tensor * ggml_abs_inplace(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a) {
  4202. return ggml_abs_impl(ctx, a, true);
  4203. }
  4204. // ggml_sgn
  4205. struct ggml_tensor * ggml_sgn_impl(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a,
  4208. bool inplace) {
  4209. bool is_node = false;
  4210. if (!inplace && (a->grad)) {
  4211. is_node = true;
  4212. }
  4213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4214. result->op = GGML_OP_SGN;
  4215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4216. result->src0 = a;
  4217. result->src1 = NULL;
  4218. return result;
  4219. }
  4220. struct ggml_tensor * ggml_sgn(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a) {
  4223. return ggml_sgn_impl(ctx, a, false);
  4224. }
  4225. struct ggml_tensor * ggml_sgn_inplace(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a) {
  4228. return ggml_sgn_impl(ctx, a, true);
  4229. }
  4230. // ggml_neg
  4231. struct ggml_tensor * ggml_neg_impl(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a,
  4234. bool inplace) {
  4235. bool is_node = false;
  4236. if (!inplace && (a->grad)) {
  4237. is_node = true;
  4238. }
  4239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4240. result->op = GGML_OP_NEG;
  4241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4242. result->src0 = a;
  4243. result->src1 = NULL;
  4244. return result;
  4245. }
  4246. struct ggml_tensor * ggml_neg(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a) {
  4249. return ggml_neg_impl(ctx, a, false);
  4250. }
  4251. struct ggml_tensor * ggml_neg_inplace(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a) {
  4254. return ggml_neg_impl(ctx, a, true);
  4255. }
  4256. // ggml_step
  4257. struct ggml_tensor * ggml_step_impl(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. bool inplace) {
  4261. bool is_node = false;
  4262. if (!inplace && (a->grad)) {
  4263. is_node = true;
  4264. }
  4265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4266. result->op = GGML_OP_STEP;
  4267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4268. result->src0 = a;
  4269. result->src1 = NULL;
  4270. return result;
  4271. }
  4272. struct ggml_tensor * ggml_step(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_step_impl(ctx, a, false);
  4276. }
  4277. struct ggml_tensor * ggml_step_inplace(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_step_impl(ctx, a, true);
  4281. }
  4282. // ggml_relu
  4283. struct ggml_tensor * ggml_relu_impl(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. bool inplace) {
  4287. bool is_node = false;
  4288. if (!inplace && (a->grad)) {
  4289. is_node = true;
  4290. }
  4291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4292. result->op = GGML_OP_RELU;
  4293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4294. result->src0 = a;
  4295. result->src1 = NULL;
  4296. return result;
  4297. }
  4298. struct ggml_tensor * ggml_relu(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_relu_impl(ctx, a, false);
  4302. }
  4303. struct ggml_tensor * ggml_relu_inplace(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a) {
  4306. return ggml_relu_impl(ctx, a, true);
  4307. }
  4308. // ggml_gelu
  4309. struct ggml_tensor * ggml_gelu_impl(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. bool inplace) {
  4313. bool is_node = false;
  4314. if (!inplace && (a->grad)) {
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_GELU;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src0 = a;
  4321. result->src1 = NULL;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_gelu(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_gelu_impl(ctx, a, false);
  4328. }
  4329. struct ggml_tensor * ggml_gelu_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a) {
  4332. return ggml_gelu_impl(ctx, a, true);
  4333. }
  4334. // ggml_silu
  4335. struct ggml_tensor * ggml_silu_impl(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. bool inplace) {
  4339. bool is_node = false;
  4340. if (!inplace && (a->grad)) {
  4341. is_node = true;
  4342. }
  4343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4344. result->op = GGML_OP_SILU;
  4345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4346. result->src0 = a;
  4347. result->src1 = NULL;
  4348. return result;
  4349. }
  4350. struct ggml_tensor * ggml_silu(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a) {
  4353. return ggml_silu_impl(ctx, a, false);
  4354. }
  4355. struct ggml_tensor * ggml_silu_inplace(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a) {
  4358. return ggml_silu_impl(ctx, a, true);
  4359. }
  4360. // ggml_silu_back
  4361. struct ggml_tensor * ggml_silu_back(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. struct ggml_tensor * b) {
  4365. bool is_node = false;
  4366. if (a->grad || b->grad) {
  4367. // TODO: implement backward
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4371. result->op = GGML_OP_SILU_BACK;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src0 = a;
  4374. result->src1 = b;
  4375. return result;
  4376. }
  4377. // ggml_norm
  4378. struct ggml_tensor * ggml_norm_impl(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. bool inplace) {
  4382. bool is_node = false;
  4383. if (!inplace && (a->grad)) {
  4384. GGML_ASSERT(false); // TODO: implement backward
  4385. is_node = true;
  4386. }
  4387. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4388. result->op = GGML_OP_NORM;
  4389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4390. result->src0 = a;
  4391. result->src1 = NULL; // TODO: maybe store epsilon here?
  4392. return result;
  4393. }
  4394. struct ggml_tensor * ggml_norm(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a) {
  4397. return ggml_norm_impl(ctx, a, false);
  4398. }
  4399. struct ggml_tensor * ggml_norm_inplace(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a) {
  4402. return ggml_norm_impl(ctx, a, true);
  4403. }
  4404. struct ggml_tensor * ggml_rms_norm_impl(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. bool inplace) {
  4408. bool is_node = false;
  4409. if (!inplace && (a->grad)) {
  4410. is_node = true;
  4411. }
  4412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4413. result->op = GGML_OP_RMS_NORM;
  4414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4415. result->src0 = a;
  4416. result->src1 = NULL; // TODO: maybe store epsilon here?
  4417. return result;
  4418. }
  4419. struct ggml_tensor * ggml_rms_norm(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. return ggml_rms_norm_impl(ctx, a, false);
  4423. }
  4424. struct ggml_tensor * ggml_rms_norm_inplace(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a) {
  4427. return ggml_rms_norm_impl(ctx, a, true);
  4428. }
  4429. struct ggml_tensor * ggml_rms_norm_back(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. struct ggml_tensor * b) {
  4433. bool is_node = false;
  4434. if (a->grad) {
  4435. // TODO: implement backward
  4436. is_node = true;
  4437. }
  4438. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4439. result->op = GGML_OP_RMS_NORM_BACK;
  4440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4441. result->src0 = a;
  4442. result->src1 = b;
  4443. return result;
  4444. }
  4445. // ggml_mul_mat
  4446. struct ggml_tensor * ggml_mul_mat(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a,
  4449. struct ggml_tensor * b) {
  4450. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4451. GGML_ASSERT(!ggml_is_transposed(a));
  4452. bool is_node = false;
  4453. if (a->grad || b->grad) {
  4454. is_node = true;
  4455. }
  4456. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4458. result->op = GGML_OP_MUL_MAT;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src0 = a;
  4461. result->src1 = b;
  4462. return result;
  4463. }
  4464. // ggml_scale
  4465. struct ggml_tensor * ggml_scale_impl(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. struct ggml_tensor * b,
  4469. bool inplace) {
  4470. GGML_ASSERT(ggml_is_scalar(b));
  4471. GGML_ASSERT(ggml_is_padded_1d(a));
  4472. bool is_node = false;
  4473. if (!inplace && (a->grad || b->grad)) {
  4474. is_node = true;
  4475. }
  4476. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4477. result->op = GGML_OP_SCALE;
  4478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4479. result->src0 = a;
  4480. result->src1 = b;
  4481. return result;
  4482. }
  4483. struct ggml_tensor * ggml_scale(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b) {
  4487. return ggml_scale_impl(ctx, a, b, false);
  4488. }
  4489. struct ggml_tensor * ggml_scale_inplace(
  4490. struct ggml_context * ctx,
  4491. struct ggml_tensor * a,
  4492. struct ggml_tensor * b) {
  4493. return ggml_scale_impl(ctx, a, b, true);
  4494. }
  4495. // ggml_set
  4496. struct ggml_tensor * ggml_set_impl(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. struct ggml_tensor * b,
  4500. size_t nb1,
  4501. size_t nb2,
  4502. size_t nb3,
  4503. size_t offset,
  4504. bool inplace) {
  4505. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4506. bool is_node = false;
  4507. if (!inplace && (a->grad || b->grad)) {
  4508. is_node = true;
  4509. }
  4510. // make a view of the destination
  4511. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4512. ggml_scratch_save(ctx);
  4513. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4514. (( int32_t * ) c->data)[0] = nb1;
  4515. (( int32_t * ) c->data)[1] = nb2;
  4516. (( int32_t * ) c->data)[2] = nb3;
  4517. (( int32_t * ) c->data)[3] = offset;
  4518. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4519. ggml_scratch_load(ctx);
  4520. result->op = GGML_OP_SET;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src0 = a;
  4523. result->src1 = b;
  4524. result->opt[0] = c;
  4525. return result;
  4526. }
  4527. struct ggml_tensor * ggml_set(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. struct ggml_tensor * b,
  4531. size_t nb1,
  4532. size_t nb2,
  4533. size_t nb3,
  4534. size_t offset) {
  4535. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4536. }
  4537. struct ggml_tensor * ggml_set_inplace(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b,
  4541. size_t nb1,
  4542. size_t nb2,
  4543. size_t nb3,
  4544. size_t offset) {
  4545. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4546. }
  4547. struct ggml_tensor * ggml_set_1d(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. struct ggml_tensor * b,
  4551. size_t offset) {
  4552. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4553. }
  4554. struct ggml_tensor * ggml_set_1d_inplace(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. struct ggml_tensor * b,
  4558. size_t offset) {
  4559. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4560. }
  4561. struct ggml_tensor * ggml_set_2d(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. size_t nb1,
  4566. size_t offset) {
  4567. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4568. }
  4569. struct ggml_tensor * ggml_set_2d_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b,
  4573. size_t nb1,
  4574. size_t offset) {
  4575. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4576. }
  4577. // ggml_cpy
  4578. struct ggml_tensor * ggml_cpy_impl(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. bool inplace) {
  4583. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4584. bool is_node = false;
  4585. if (!inplace && (a->grad || b->grad)) {
  4586. is_node = true;
  4587. }
  4588. // make a view of the destination
  4589. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4590. result->op = GGML_OP_CPY;
  4591. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4592. result->src0 = a;
  4593. result->src1 = b;
  4594. return result;
  4595. }
  4596. struct ggml_tensor * ggml_cpy(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. struct ggml_tensor * b) {
  4600. return ggml_cpy_impl(ctx, a, b, false);
  4601. }
  4602. struct ggml_tensor * ggml_cpy_inplace(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b) {
  4606. return ggml_cpy_impl(ctx, a, b, true);
  4607. }
  4608. // ggml_cont
  4609. struct ggml_tensor * ggml_cont_impl(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a,
  4612. bool inplace) {
  4613. bool is_node = false;
  4614. if (!inplace && a->grad) {
  4615. is_node = true;
  4616. }
  4617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4618. result->op = GGML_OP_CONT;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src0 = a;
  4621. result->src1 = NULL;
  4622. return result;
  4623. }
  4624. struct ggml_tensor * ggml_cont(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a) {
  4627. return ggml_cont_impl(ctx, a, false);
  4628. }
  4629. struct ggml_tensor * ggml_cont_inplace(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a) {
  4632. return ggml_cont_impl(ctx, a, true);
  4633. }
  4634. // ggml_reshape
  4635. struct ggml_tensor * ggml_reshape(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. struct ggml_tensor * b) {
  4639. GGML_ASSERT(ggml_is_contiguous(a));
  4640. GGML_ASSERT(ggml_is_contiguous(b));
  4641. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4642. bool is_node = false;
  4643. if (a->grad) {
  4644. is_node = true;
  4645. }
  4646. if (b->grad) {
  4647. // gradient propagation is not supported
  4648. //GGML_ASSERT(false);
  4649. }
  4650. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4651. result->op = GGML_OP_RESHAPE;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src0 = a;
  4654. result->src1 = NULL;
  4655. return result;
  4656. }
  4657. struct ggml_tensor * ggml_reshape_1d(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int64_t ne0) {
  4661. GGML_ASSERT(ggml_is_contiguous(a));
  4662. GGML_ASSERT(ggml_nelements(a) == ne0);
  4663. bool is_node = false;
  4664. if (a->grad) {
  4665. is_node = true;
  4666. }
  4667. const int64_t ne[1] = { ne0 };
  4668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4669. result->op = GGML_OP_RESHAPE;
  4670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4671. result->src0 = a;
  4672. result->src1 = NULL;
  4673. return result;
  4674. }
  4675. struct ggml_tensor * ggml_reshape_2d(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. int64_t ne0,
  4679. int64_t ne1) {
  4680. GGML_ASSERT(ggml_is_contiguous(a));
  4681. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4682. bool is_node = false;
  4683. if (a->grad) {
  4684. is_node = true;
  4685. }
  4686. const int64_t ne[2] = { ne0, ne1 };
  4687. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4688. result->op = GGML_OP_RESHAPE;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src0 = a;
  4691. result->src1 = NULL;
  4692. return result;
  4693. }
  4694. struct ggml_tensor * ggml_reshape_3d(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a,
  4697. int64_t ne0,
  4698. int64_t ne1,
  4699. int64_t ne2) {
  4700. GGML_ASSERT(ggml_is_contiguous(a));
  4701. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4702. bool is_node = false;
  4703. if (a->grad) {
  4704. is_node = true;
  4705. }
  4706. const int64_t ne[3] = { ne0, ne1, ne2 };
  4707. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4708. result->op = GGML_OP_RESHAPE;
  4709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4710. result->src0 = a;
  4711. result->src1 = NULL;
  4712. return result;
  4713. }
  4714. struct ggml_tensor * ggml_reshape_4d(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. int64_t ne0,
  4718. int64_t ne1,
  4719. int64_t ne2,
  4720. int64_t ne3) {
  4721. GGML_ASSERT(ggml_is_contiguous(a));
  4722. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4723. bool is_node = false;
  4724. if (a->grad) {
  4725. is_node = true;
  4726. }
  4727. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4729. result->op = GGML_OP_RESHAPE;
  4730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4731. result->src0 = a;
  4732. result->src1 = NULL;
  4733. return result;
  4734. }
  4735. // ggml_view_1d
  4736. struct ggml_tensor * ggml_view_1d(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. int64_t ne0,
  4740. size_t offset) {
  4741. bool is_node = false;
  4742. if (a->grad) {
  4743. is_node = true;
  4744. }
  4745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4746. ggml_scratch_save(ctx);
  4747. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4748. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4749. ggml_scratch_load(ctx);
  4750. result->op = GGML_OP_VIEW;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src0 = a;
  4753. result->src1 = NULL;
  4754. result->opt[0] = offs;
  4755. if (is_node) {
  4756. memcpy(result->padding, &offset, sizeof(offset));
  4757. }
  4758. return result;
  4759. }
  4760. // ggml_view_2d
  4761. struct ggml_tensor * ggml_view_2d(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int64_t ne0,
  4765. int64_t ne1,
  4766. size_t nb1,
  4767. size_t offset) {
  4768. bool is_node = false;
  4769. if (a->grad) {
  4770. is_node = true;
  4771. }
  4772. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4774. ggml_scratch_save(ctx);
  4775. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4776. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4777. ggml_scratch_load(ctx);
  4778. result->nb[1] = nb1;
  4779. result->nb[2] = result->nb[1]*ne1;
  4780. result->nb[3] = result->nb[2];
  4781. result->op = GGML_OP_VIEW;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src0 = a;
  4784. result->src1 = NULL;
  4785. result->opt[0] = offs;
  4786. if (is_node) {
  4787. memcpy(result->padding, &offset, sizeof(offset));
  4788. }
  4789. return result;
  4790. }
  4791. // ggml_view_3d
  4792. struct ggml_tensor * ggml_view_3d(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a,
  4795. int64_t ne0,
  4796. int64_t ne1,
  4797. int64_t ne2,
  4798. size_t nb1,
  4799. size_t nb2,
  4800. size_t offset) {
  4801. bool is_node = false;
  4802. if (a->grad) {
  4803. is_node = true;
  4804. }
  4805. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4806. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4807. ggml_scratch_save(ctx);
  4808. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4809. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4810. ggml_scratch_load(ctx);
  4811. result->nb[1] = nb1;
  4812. result->nb[2] = nb2;
  4813. result->nb[3] = result->nb[2]*ne2;
  4814. result->op = GGML_OP_VIEW;
  4815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4816. result->src0 = a;
  4817. result->src1 = NULL;
  4818. result->opt[0] = offs;
  4819. if (is_node) {
  4820. memcpy(result->padding, &offset, sizeof(offset));
  4821. }
  4822. return result;
  4823. }
  4824. // ggml_view_4d
  4825. struct ggml_tensor * ggml_view_4d(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int64_t ne0,
  4829. int64_t ne1,
  4830. int64_t ne2,
  4831. int64_t ne3,
  4832. size_t nb1,
  4833. size_t nb2,
  4834. size_t nb3,
  4835. size_t offset) {
  4836. bool is_node = false;
  4837. if (a->grad) {
  4838. is_node = true;
  4839. }
  4840. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4841. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4842. ggml_scratch_save(ctx);
  4843. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4844. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4845. ggml_scratch_load(ctx);
  4846. result->nb[1] = nb1;
  4847. result->nb[2] = nb2;
  4848. result->nb[3] = nb3;
  4849. result->op = GGML_OP_VIEW;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src0 = a;
  4852. result->src1 = NULL;
  4853. result->opt[0] = offs;
  4854. if (is_node) {
  4855. memcpy(result->padding, &offset, sizeof(offset));
  4856. }
  4857. return result;
  4858. }
  4859. // ggml_permute
  4860. struct ggml_tensor * ggml_permute(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. int axis0,
  4864. int axis1,
  4865. int axis2,
  4866. int axis3) {
  4867. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4868. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4869. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4870. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4871. GGML_ASSERT(axis0 != axis1);
  4872. GGML_ASSERT(axis0 != axis2);
  4873. GGML_ASSERT(axis0 != axis3);
  4874. GGML_ASSERT(axis1 != axis2);
  4875. GGML_ASSERT(axis1 != axis3);
  4876. GGML_ASSERT(axis2 != axis3);
  4877. bool is_node = false;
  4878. if (a->grad) {
  4879. is_node = true;
  4880. }
  4881. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4882. int ne[GGML_MAX_DIMS];
  4883. int nb[GGML_MAX_DIMS];
  4884. ne[axis0] = a->ne[0];
  4885. ne[axis1] = a->ne[1];
  4886. ne[axis2] = a->ne[2];
  4887. ne[axis3] = a->ne[3];
  4888. nb[axis0] = a->nb[0];
  4889. nb[axis1] = a->nb[1];
  4890. nb[axis2] = a->nb[2];
  4891. nb[axis3] = a->nb[3];
  4892. result->ne[0] = ne[0];
  4893. result->ne[1] = ne[1];
  4894. result->ne[2] = ne[2];
  4895. result->ne[3] = ne[3];
  4896. result->nb[0] = nb[0];
  4897. result->nb[1] = nb[1];
  4898. result->nb[2] = nb[2];
  4899. result->nb[3] = nb[3];
  4900. result->op = GGML_OP_PERMUTE;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src0 = a;
  4903. result->src1 = NULL;
  4904. if (is_node) {
  4905. result->padding[0] = axis0;
  4906. result->padding[1] = axis1;
  4907. result->padding[2] = axis2;
  4908. result->padding[3] = axis3;
  4909. }
  4910. return result;
  4911. }
  4912. // ggml_transpose
  4913. struct ggml_tensor * ggml_transpose(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a) {
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. is_node = true;
  4919. }
  4920. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4921. result->ne[0] = a->ne[1];
  4922. result->ne[1] = a->ne[0];
  4923. result->nb[0] = a->nb[1];
  4924. result->nb[1] = a->nb[0];
  4925. result->op = GGML_OP_TRANSPOSE;
  4926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4927. result->src0 = a;
  4928. result->src1 = NULL;
  4929. return result;
  4930. }
  4931. // ggml_get_rows
  4932. struct ggml_tensor * ggml_get_rows(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * b) {
  4936. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4937. bool is_node = false;
  4938. if (a->grad || b->grad) {
  4939. is_node = true;
  4940. }
  4941. // TODO: implement non F32 return
  4942. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4943. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4944. result->op = GGML_OP_GET_ROWS;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src0 = a;
  4947. result->src1 = b;
  4948. return result;
  4949. }
  4950. // ggml_get_rows_back
  4951. struct ggml_tensor * ggml_get_rows_back(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. struct ggml_tensor * b,
  4955. struct ggml_tensor * c) {
  4956. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4957. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4958. bool is_node = false;
  4959. if (a->grad || b->grad) {
  4960. is_node = true;
  4961. }
  4962. // TODO: implement non F32 return
  4963. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4964. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4965. result->op = GGML_OP_GET_ROWS_BACK;
  4966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4967. result->src0 = a;
  4968. result->src1 = b;
  4969. result->opt[0] = c;
  4970. return result;
  4971. }
  4972. // ggml_diag
  4973. struct ggml_tensor * ggml_diag(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a) {
  4976. GGML_ASSERT(a->ne[1] == 1);
  4977. bool is_node = false;
  4978. if (a->grad) {
  4979. is_node = true;
  4980. }
  4981. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4982. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4983. result->op = GGML_OP_DIAG;
  4984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4985. result->src0 = a;
  4986. result->src1 = NULL;
  4987. return result;
  4988. }
  4989. // ggml_diag_mask_inf
  4990. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. int n_past,
  4994. bool inplace) {
  4995. bool is_node = false;
  4996. if (a->grad) {
  4997. is_node = true;
  4998. }
  4999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5000. ggml_scratch_save(ctx);
  5001. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5002. ((int32_t *) b->data)[0] = n_past;
  5003. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5004. ggml_scratch_load(ctx);
  5005. result->op = GGML_OP_DIAG_MASK_INF;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src0 = a;
  5008. result->src1 = b;
  5009. return result;
  5010. }
  5011. struct ggml_tensor * ggml_diag_mask_inf(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int n_past) {
  5015. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5016. }
  5017. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. int n_past) {
  5021. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5022. }
  5023. // ggml_diag_mask_zero
  5024. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5025. struct ggml_context * ctx,
  5026. struct ggml_tensor * a,
  5027. int n_past,
  5028. bool inplace) {
  5029. bool is_node = false;
  5030. if (a->grad) {
  5031. is_node = true;
  5032. }
  5033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. ggml_scratch_save(ctx);
  5035. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5036. ggml_set_name(b, "n_past, inplace");
  5037. ((int32_t *) b->data)[0] = n_past;
  5038. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5039. ggml_scratch_load(ctx);
  5040. result->op = GGML_OP_DIAG_MASK_ZERO;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src0 = a;
  5043. result->src1 = b;
  5044. return result;
  5045. }
  5046. struct ggml_tensor * ggml_diag_mask_zero(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. int n_past) {
  5050. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5051. }
  5052. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. int n_past) {
  5056. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5057. }
  5058. // ggml_soft_max
  5059. struct ggml_tensor * ggml_soft_max_impl(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. bool inplace) {
  5063. bool is_node = false;
  5064. if (a->grad) {
  5065. is_node = true;
  5066. }
  5067. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5068. result->op = GGML_OP_SOFT_MAX;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src0 = a;
  5071. result->src1 = NULL;
  5072. return result;
  5073. }
  5074. struct ggml_tensor * ggml_soft_max(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a) {
  5077. return ggml_soft_max_impl(ctx, a, false);
  5078. }
  5079. struct ggml_tensor * ggml_soft_max_inplace(
  5080. struct ggml_context * ctx,
  5081. struct ggml_tensor * a) {
  5082. return ggml_soft_max_impl(ctx, a, true);
  5083. }
  5084. // ggml_rope
  5085. struct ggml_tensor * ggml_rope_impl(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. int n_past,
  5089. int n_dims,
  5090. int mode,
  5091. bool inplace) {
  5092. GGML_ASSERT(n_past >= 0);
  5093. bool is_node = false;
  5094. if (!inplace && a->grad) {
  5095. is_node = true;
  5096. }
  5097. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5098. ggml_scratch_save(ctx);
  5099. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5100. ((int32_t *) b->data)[0] = n_past;
  5101. ((int32_t *) b->data)[1] = n_dims;
  5102. ((int32_t *) b->data)[2] = mode;
  5103. ggml_scratch_load(ctx);
  5104. result->op = GGML_OP_ROPE;
  5105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5106. result->src0 = a;
  5107. result->src1 = b;
  5108. return result;
  5109. }
  5110. struct ggml_tensor * ggml_rope(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. int n_past,
  5114. int n_dims,
  5115. int mode) {
  5116. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5117. }
  5118. struct ggml_tensor * ggml_rope_inplace(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. int n_past,
  5122. int n_dims,
  5123. int mode) {
  5124. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5125. }
  5126. // ggml_rope_back
  5127. struct ggml_tensor * ggml_rope_back(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * a,
  5130. int n_past,
  5131. int n_dims,
  5132. int mode) {
  5133. GGML_ASSERT(n_past >= 0);
  5134. bool is_node = false;
  5135. if (a->grad) {
  5136. GGML_ASSERT(false); // TODO: implement backward
  5137. is_node = true;
  5138. }
  5139. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5140. ggml_scratch_save(ctx);
  5141. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5142. ggml_set_name(b, "n_past, n_dims, mode");
  5143. ((int32_t *) b->data)[0] = n_past;
  5144. ((int32_t *) b->data)[1] = n_dims;
  5145. ((int32_t *) b->data)[2] = mode;
  5146. ggml_scratch_load(ctx);
  5147. result->op = GGML_OP_ROPE_BACK;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src0 = a;
  5150. result->src1 = b;
  5151. return result;
  5152. }
  5153. // ggml_alibi
  5154. struct ggml_tensor * ggml_alibi(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. int n_past,
  5158. int n_head,
  5159. float bias_max) {
  5160. GGML_ASSERT(n_past >= 0);
  5161. bool is_node = false;
  5162. if (a->grad) {
  5163. GGML_ASSERT(false); // TODO: implement backward
  5164. is_node = true;
  5165. }
  5166. // TODO: when implement backward, fix this:
  5167. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5168. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5169. ggml_scratch_save(ctx);
  5170. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5171. ((int32_t *) b->data)[0] = n_past;
  5172. ((int32_t *) b->data)[1] = n_head;
  5173. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5174. (((float *) b->data)[2]) = bias_max;
  5175. ggml_scratch_load(ctx);
  5176. result->op = GGML_OP_ALIBI;
  5177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5178. result->src0 = a;
  5179. result->src1 = b;
  5180. return result;
  5181. }
  5182. // ggml_clamp
  5183. struct ggml_tensor * ggml_clamp(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. float min,
  5187. float max) {
  5188. bool is_node = false;
  5189. if (a->grad) {
  5190. GGML_ASSERT(false); // TODO: implement backward
  5191. is_node = true;
  5192. }
  5193. // TODO: when implement backward, fix this:
  5194. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5195. ggml_scratch_save(ctx);
  5196. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5197. ((float *) b->data)[0] = min;
  5198. ((float *) b->data)[1] = max;
  5199. ggml_scratch_load(ctx);
  5200. result->op = GGML_OP_CLAMP;
  5201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5202. result->src0 = a;
  5203. result->src1 = b;
  5204. return result;
  5205. }
  5206. // ggml_conv_1d_1s
  5207. struct ggml_tensor * ggml_conv_1d_1s(
  5208. struct ggml_context * ctx,
  5209. struct ggml_tensor * a,
  5210. struct ggml_tensor * b) {
  5211. GGML_ASSERT(ggml_is_matrix(b));
  5212. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5213. GGML_ASSERT(a->ne[3] == 1);
  5214. bool is_node = false;
  5215. if (a->grad || b->grad) {
  5216. GGML_ASSERT(false); // TODO: implement backward
  5217. is_node = true;
  5218. }
  5219. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5220. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5221. result->op = GGML_OP_CONV_1D_1S;
  5222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5223. result->src0 = a;
  5224. result->src1 = b;
  5225. return result;
  5226. }
  5227. // ggml_conv_1d_2s
  5228. struct ggml_tensor * ggml_conv_1d_2s(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. struct ggml_tensor * b) {
  5232. GGML_ASSERT(ggml_is_matrix(b));
  5233. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5234. GGML_ASSERT(a->ne[3] == 1);
  5235. bool is_node = false;
  5236. if (a->grad || b->grad) {
  5237. GGML_ASSERT(false); // TODO: implement backward
  5238. is_node = true;
  5239. }
  5240. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5241. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5242. result->op = GGML_OP_CONV_1D_2S;
  5243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5244. result->src0 = a;
  5245. result->src1 = b;
  5246. return result;
  5247. }
  5248. // ggml_flash_attn
  5249. struct ggml_tensor * ggml_flash_attn(
  5250. struct ggml_context * ctx,
  5251. struct ggml_tensor * q,
  5252. struct ggml_tensor * k,
  5253. struct ggml_tensor * v,
  5254. bool masked) {
  5255. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5256. // TODO: check if vT can be multiplied by (k*qT)
  5257. bool is_node = false;
  5258. if (q->grad || k->grad || v->grad) {
  5259. GGML_ASSERT(false); // TODO: implement backward
  5260. is_node = true;
  5261. }
  5262. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5263. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5264. result->op = GGML_OP_FLASH_ATTN;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src0 = q;
  5267. result->src1 = k;
  5268. result->opt[0] = v;
  5269. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5270. return result;
  5271. }
  5272. // ggml_flash_ff
  5273. struct ggml_tensor * ggml_flash_ff(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. struct ggml_tensor * b0,
  5277. struct ggml_tensor * b1,
  5278. struct ggml_tensor * c0,
  5279. struct ggml_tensor * c1) {
  5280. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5281. // TODO: more checks
  5282. bool is_node = false;
  5283. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5284. GGML_ASSERT(false); // TODO: implement backward
  5285. is_node = true;
  5286. }
  5287. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5288. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5289. result->op = GGML_OP_FLASH_FF;
  5290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5291. result->src0 = a;
  5292. result->src1 = b0;
  5293. result->opt[0] = b1;
  5294. result->opt[1] = c0;
  5295. result->opt[2] = c1;
  5296. return result;
  5297. }
  5298. // ggml_map_unary
  5299. struct ggml_tensor * ggml_map_unary_impl_f32(
  5300. struct ggml_context * ctx,
  5301. struct ggml_tensor * a,
  5302. const ggml_unary_op_f32_t fun,
  5303. bool inplace) {
  5304. bool is_node = false;
  5305. if (!inplace && a->grad) {
  5306. is_node = true;
  5307. }
  5308. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5309. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5310. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5311. result->op = GGML_OP_MAP_UNARY;
  5312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5313. result->src0 = a;
  5314. result->opt[0] = addr_tensor;
  5315. return result;
  5316. }
  5317. struct ggml_tensor * ggml_map_unary_f32(
  5318. struct ggml_context * ctx,
  5319. struct ggml_tensor * a,
  5320. const ggml_unary_op_f32_t fun) {
  5321. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5322. }
  5323. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5324. struct ggml_context * ctx,
  5325. struct ggml_tensor * a,
  5326. const ggml_unary_op_f32_t fun) {
  5327. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5328. }
  5329. // ggml_map_binary
  5330. struct ggml_tensor * ggml_map_binary_impl_f32(
  5331. struct ggml_context * ctx,
  5332. struct ggml_tensor * a,
  5333. struct ggml_tensor * b,
  5334. const ggml_binary_op_f32_t fun,
  5335. bool inplace) {
  5336. GGML_ASSERT(ggml_are_same_shape(a, b));
  5337. bool is_node = false;
  5338. if (!inplace && (a->grad || b->grad)) {
  5339. is_node = true;
  5340. }
  5341. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5342. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5343. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5344. result->op = GGML_OP_MAP_BINARY;
  5345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5346. result->src0 = a;
  5347. result->src1 = b;
  5348. result->opt[0] = addr_tensor;
  5349. return result;
  5350. }
  5351. struct ggml_tensor * ggml_map_binary_f32(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b,
  5355. const ggml_binary_op_f32_t fun) {
  5356. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5357. }
  5358. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b,
  5362. const ggml_binary_op_f32_t fun) {
  5363. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5364. }
  5365. ////////////////////////////////////////////////////////////////////////////////
  5366. void ggml_set_param(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * tensor) {
  5369. tensor->is_param = true;
  5370. GGML_ASSERT(tensor->grad == NULL);
  5371. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5372. }
  5373. // ggml_compute_forward_dup
  5374. static void ggml_compute_forward_dup_same_cont(
  5375. const struct ggml_compute_params * params,
  5376. const struct ggml_tensor * src0,
  5377. struct ggml_tensor * dst) {
  5378. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5379. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5380. GGML_ASSERT(src0->type == dst->type);
  5381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5382. return;
  5383. }
  5384. const size_t nb00 = src0->nb[0];
  5385. const size_t nb0 = dst->nb[0];
  5386. const int ith = params->ith; // thread index
  5387. const int nth = params->nth; // number of threads
  5388. // parallelize by elements
  5389. const int ne = ggml_nelements(dst);
  5390. const int dr = (ne + nth - 1) / nth;
  5391. const int ie0 = dr * ith;
  5392. const int ie1 = MIN(ie0 + dr, ne);
  5393. if (ie0 < ie1) {
  5394. memcpy(
  5395. ((char *) dst->data + ie0*nb0),
  5396. ((char *) src0->data + ie0*nb00),
  5397. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5398. }
  5399. }
  5400. static void ggml_compute_forward_dup_f16(
  5401. const struct ggml_compute_params * params,
  5402. const struct ggml_tensor * src0,
  5403. struct ggml_tensor * dst) {
  5404. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5406. return;
  5407. }
  5408. const int64_t ne00 = src0->ne[0];
  5409. const int64_t ne01 = src0->ne[1];
  5410. const int64_t ne02 = src0->ne[2];
  5411. const int64_t ne03 = src0->ne[3];
  5412. const int64_t ne0 = dst->ne[0];
  5413. const int64_t ne1 = dst->ne[1];
  5414. const int64_t ne2 = dst->ne[2];
  5415. const int64_t ne3 = dst->ne[3];
  5416. const size_t nb00 = src0->nb[0];
  5417. const size_t nb01 = src0->nb[1];
  5418. const size_t nb02 = src0->nb[2];
  5419. const size_t nb03 = src0->nb[3];
  5420. const size_t nb0 = dst->nb[0];
  5421. const size_t nb1 = dst->nb[1];
  5422. const size_t nb2 = dst->nb[2];
  5423. const size_t nb3 = dst->nb[3];
  5424. const int ith = params->ith; // thread index
  5425. const int nth = params->nth; // number of threads
  5426. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5427. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5428. return;
  5429. }
  5430. // parallelize by rows
  5431. const int nr = ne01;
  5432. // number of rows per thread
  5433. const int dr = (nr + nth - 1) / nth;
  5434. // row range for this thread
  5435. const int ir0 = dr * ith;
  5436. const int ir1 = MIN(ir0 + dr, nr);
  5437. if (src0->type == dst->type &&
  5438. ne00 == ne0 &&
  5439. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5440. // copy by rows
  5441. const size_t rs = ne00*nb00;
  5442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5444. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5445. memcpy(
  5446. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5447. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5448. rs);
  5449. }
  5450. }
  5451. }
  5452. return;
  5453. }
  5454. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5455. if (ggml_is_contiguous(dst)) {
  5456. if (nb00 == sizeof(ggml_fp16_t)) {
  5457. if (dst->type == GGML_TYPE_F16) {
  5458. size_t id = 0;
  5459. const size_t rs = ne00 * nb00;
  5460. char * dst_ptr = (char *) dst->data;
  5461. for (int i03 = 0; i03 < ne03; i03++) {
  5462. for (int i02 = 0; i02 < ne02; i02++) {
  5463. id += rs * ir0;
  5464. for (int i01 = ir0; i01 < ir1; i01++) {
  5465. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5466. memcpy(dst_ptr + id, src0_ptr, rs);
  5467. id += rs;
  5468. }
  5469. id += rs * (ne01 - ir1);
  5470. }
  5471. }
  5472. } else if (dst->type == GGML_TYPE_F32) {
  5473. size_t id = 0;
  5474. float * dst_ptr = (float *) dst->data;
  5475. for (int i03 = 0; i03 < ne03; i03++) {
  5476. for (int i02 = 0; i02 < ne02; i02++) {
  5477. id += ne00 * ir0;
  5478. for (int i01 = ir0; i01 < ir1; i01++) {
  5479. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5480. for (int i00 = 0; i00 < ne00; i00++) {
  5481. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5482. id++;
  5483. }
  5484. }
  5485. id += ne00 * (ne01 - ir1);
  5486. }
  5487. }
  5488. } else if (ggml_is_quantized(dst->type)) {
  5489. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5490. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5491. size_t id = 0;
  5492. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5493. char * dst_ptr = (char *) dst->data;
  5494. for (int i03 = 0; i03 < ne03; i03++) {
  5495. for (int i02 = 0; i02 < ne02; i02++) {
  5496. id += rs * ir0;
  5497. for (int i01 = ir0; i01 < ir1; i01++) {
  5498. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5499. for (int i00 = 0; i00 < ne00; i00++) {
  5500. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5501. }
  5502. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5503. id += rs;
  5504. }
  5505. id += rs * (ne01 - ir1);
  5506. }
  5507. }
  5508. } else {
  5509. GGML_ASSERT(false); // TODO: implement
  5510. }
  5511. } else {
  5512. //printf("%s: this is not optimal - fix me\n", __func__);
  5513. if (dst->type == GGML_TYPE_F32) {
  5514. size_t id = 0;
  5515. float * dst_ptr = (float *) dst->data;
  5516. for (int i03 = 0; i03 < ne03; i03++) {
  5517. for (int i02 = 0; i02 < ne02; i02++) {
  5518. id += ne00 * ir0;
  5519. for (int i01 = ir0; i01 < ir1; i01++) {
  5520. for (int i00 = 0; i00 < ne00; i00++) {
  5521. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5522. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5523. id++;
  5524. }
  5525. }
  5526. id += ne00 * (ne01 - ir1);
  5527. }
  5528. }
  5529. } else if (dst->type == GGML_TYPE_F16) {
  5530. size_t id = 0;
  5531. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5532. for (int i03 = 0; i03 < ne03; i03++) {
  5533. for (int i02 = 0; i02 < ne02; i02++) {
  5534. id += ne00 * ir0;
  5535. for (int i01 = ir0; i01 < ir1; i01++) {
  5536. for (int i00 = 0; i00 < ne00; i00++) {
  5537. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5538. dst_ptr[id] = *src0_ptr;
  5539. id++;
  5540. }
  5541. }
  5542. id += ne00 * (ne01 - ir1);
  5543. }
  5544. }
  5545. } else {
  5546. GGML_ASSERT(false); // TODO: implement
  5547. }
  5548. }
  5549. return;
  5550. }
  5551. // dst counters
  5552. int64_t i10 = 0;
  5553. int64_t i11 = 0;
  5554. int64_t i12 = 0;
  5555. int64_t i13 = 0;
  5556. if (dst->type == GGML_TYPE_F16) {
  5557. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5558. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5559. i10 += ne00 * ir0;
  5560. while (i10 >= ne0) {
  5561. i10 -= ne0;
  5562. if (++i11 == ne1) {
  5563. i11 = 0;
  5564. if (++i12 == ne2) {
  5565. i12 = 0;
  5566. if (++i13 == ne3) {
  5567. i13 = 0;
  5568. }
  5569. }
  5570. }
  5571. }
  5572. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5573. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5574. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5575. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5576. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5577. if (++i10 == ne00) {
  5578. i10 = 0;
  5579. if (++i11 == ne01) {
  5580. i11 = 0;
  5581. if (++i12 == ne02) {
  5582. i12 = 0;
  5583. if (++i13 == ne03) {
  5584. i13 = 0;
  5585. }
  5586. }
  5587. }
  5588. }
  5589. }
  5590. }
  5591. i10 += ne00 * (ne01 - ir1);
  5592. while (i10 >= ne0) {
  5593. i10 -= ne0;
  5594. if (++i11 == ne1) {
  5595. i11 = 0;
  5596. if (++i12 == ne2) {
  5597. i12 = 0;
  5598. if (++i13 == ne3) {
  5599. i13 = 0;
  5600. }
  5601. }
  5602. }
  5603. }
  5604. }
  5605. }
  5606. } else if (dst->type == GGML_TYPE_F32) {
  5607. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5608. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5609. i10 += ne00 * ir0;
  5610. while (i10 >= ne0) {
  5611. i10 -= ne0;
  5612. if (++i11 == ne1) {
  5613. i11 = 0;
  5614. if (++i12 == ne2) {
  5615. i12 = 0;
  5616. if (++i13 == ne3) {
  5617. i13 = 0;
  5618. }
  5619. }
  5620. }
  5621. }
  5622. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5623. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5624. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5625. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5626. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5627. if (++i10 == ne0) {
  5628. i10 = 0;
  5629. if (++i11 == ne1) {
  5630. i11 = 0;
  5631. if (++i12 == ne2) {
  5632. i12 = 0;
  5633. if (++i13 == ne3) {
  5634. i13 = 0;
  5635. }
  5636. }
  5637. }
  5638. }
  5639. }
  5640. }
  5641. i10 += ne00 * (ne01 - ir1);
  5642. while (i10 >= ne0) {
  5643. i10 -= ne0;
  5644. if (++i11 == ne1) {
  5645. i11 = 0;
  5646. if (++i12 == ne2) {
  5647. i12 = 0;
  5648. if (++i13 == ne3) {
  5649. i13 = 0;
  5650. }
  5651. }
  5652. }
  5653. }
  5654. }
  5655. }
  5656. } else {
  5657. GGML_ASSERT(false); // TODO: implement
  5658. }
  5659. }
  5660. static void ggml_compute_forward_dup_f32(
  5661. const struct ggml_compute_params * params,
  5662. const struct ggml_tensor * src0,
  5663. struct ggml_tensor * dst) {
  5664. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5666. return;
  5667. }
  5668. const int64_t ne00 = src0->ne[0];
  5669. const int64_t ne01 = src0->ne[1];
  5670. const int64_t ne02 = src0->ne[2];
  5671. const int64_t ne03 = src0->ne[3];
  5672. const int64_t ne0 = dst->ne[0];
  5673. const int64_t ne1 = dst->ne[1];
  5674. const int64_t ne2 = dst->ne[2];
  5675. const int64_t ne3 = dst->ne[3];
  5676. const size_t nb00 = src0->nb[0];
  5677. const size_t nb01 = src0->nb[1];
  5678. const size_t nb02 = src0->nb[2];
  5679. const size_t nb03 = src0->nb[3];
  5680. const size_t nb0 = dst->nb[0];
  5681. const size_t nb1 = dst->nb[1];
  5682. const size_t nb2 = dst->nb[2];
  5683. const size_t nb3 = dst->nb[3];
  5684. const int ith = params->ith; // thread index
  5685. const int nth = params->nth; // number of threads
  5686. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5687. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5688. return;
  5689. }
  5690. // parallelize by rows
  5691. const int nr = ne01;
  5692. // number of rows per thread
  5693. const int dr = (nr + nth - 1) / nth;
  5694. // row range for this thread
  5695. const int ir0 = dr * ith;
  5696. const int ir1 = MIN(ir0 + dr, nr);
  5697. if (src0->type == dst->type &&
  5698. ne00 == ne0 &&
  5699. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5700. // copy by rows
  5701. const size_t rs = ne00*nb00;
  5702. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5704. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5705. memcpy(
  5706. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5707. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5708. rs);
  5709. }
  5710. }
  5711. }
  5712. return;
  5713. }
  5714. if (ggml_is_contiguous(dst)) {
  5715. // TODO: simplify
  5716. if (nb00 == sizeof(float)) {
  5717. if (dst->type == GGML_TYPE_F32) {
  5718. size_t id = 0;
  5719. const size_t rs = ne00 * nb00;
  5720. char * dst_ptr = (char *) dst->data;
  5721. for (int i03 = 0; i03 < ne03; i03++) {
  5722. for (int i02 = 0; i02 < ne02; i02++) {
  5723. id += rs * ir0;
  5724. for (int i01 = ir0; i01 < ir1; i01++) {
  5725. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5726. memcpy(dst_ptr + id, src0_ptr, rs);
  5727. id += rs;
  5728. }
  5729. id += rs * (ne01 - ir1);
  5730. }
  5731. }
  5732. } else if (dst->type == GGML_TYPE_F16) {
  5733. size_t id = 0;
  5734. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5735. for (int i03 = 0; i03 < ne03; i03++) {
  5736. for (int i02 = 0; i02 < ne02; i02++) {
  5737. id += ne00 * ir0;
  5738. for (int i01 = ir0; i01 < ir1; i01++) {
  5739. for (int i00 = 0; i00 < ne00; i00++) {
  5740. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5741. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5742. id++;
  5743. }
  5744. }
  5745. id += ne00 * (ne01 - ir1);
  5746. }
  5747. }
  5748. } else if (ggml_is_quantized(dst->type)) {
  5749. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5750. size_t id = 0;
  5751. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5752. char * dst_ptr = (char *) dst->data;
  5753. for (int i03 = 0; i03 < ne03; i03++) {
  5754. for (int i02 = 0; i02 < ne02; i02++) {
  5755. id += rs * ir0;
  5756. for (int i01 = ir0; i01 < ir1; i01++) {
  5757. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5758. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5759. id += rs;
  5760. }
  5761. id += rs * (ne01 - ir1);
  5762. }
  5763. }
  5764. } else {
  5765. GGML_ASSERT(false); // TODO: implement
  5766. }
  5767. } else {
  5768. //printf("%s: this is not optimal - fix me\n", __func__);
  5769. if (dst->type == GGML_TYPE_F32) {
  5770. size_t id = 0;
  5771. float * dst_ptr = (float *) dst->data;
  5772. for (int i03 = 0; i03 < ne03; i03++) {
  5773. for (int i02 = 0; i02 < ne02; i02++) {
  5774. id += ne00 * ir0;
  5775. for (int i01 = ir0; i01 < ir1; i01++) {
  5776. for (int i00 = 0; i00 < ne00; i00++) {
  5777. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5778. dst_ptr[id] = *src0_ptr;
  5779. id++;
  5780. }
  5781. }
  5782. id += ne00 * (ne01 - ir1);
  5783. }
  5784. }
  5785. } else if (dst->type == GGML_TYPE_F16) {
  5786. size_t id = 0;
  5787. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5788. for (int i03 = 0; i03 < ne03; i03++) {
  5789. for (int i02 = 0; i02 < ne02; i02++) {
  5790. id += ne00 * ir0;
  5791. for (int i01 = ir0; i01 < ir1; i01++) {
  5792. for (int i00 = 0; i00 < ne00; i00++) {
  5793. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5794. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5795. id++;
  5796. }
  5797. }
  5798. id += ne00 * (ne01 - ir1);
  5799. }
  5800. }
  5801. } else {
  5802. GGML_ASSERT(false); // TODO: implement
  5803. }
  5804. }
  5805. return;
  5806. }
  5807. // dst counters
  5808. int64_t i10 = 0;
  5809. int64_t i11 = 0;
  5810. int64_t i12 = 0;
  5811. int64_t i13 = 0;
  5812. if (dst->type == GGML_TYPE_F32) {
  5813. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5814. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5815. i10 += ne00 * ir0;
  5816. while (i10 >= ne0) {
  5817. i10 -= ne0;
  5818. if (++i11 == ne1) {
  5819. i11 = 0;
  5820. if (++i12 == ne2) {
  5821. i12 = 0;
  5822. if (++i13 == ne3) {
  5823. i13 = 0;
  5824. }
  5825. }
  5826. }
  5827. }
  5828. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5829. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5830. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5831. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5832. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5833. if (++i10 == ne0) {
  5834. i10 = 0;
  5835. if (++i11 == ne1) {
  5836. i11 = 0;
  5837. if (++i12 == ne2) {
  5838. i12 = 0;
  5839. if (++i13 == ne3) {
  5840. i13 = 0;
  5841. }
  5842. }
  5843. }
  5844. }
  5845. }
  5846. }
  5847. i10 += ne00 * (ne01 - ir1);
  5848. while (i10 >= ne0) {
  5849. i10 -= ne0;
  5850. if (++i11 == ne1) {
  5851. i11 = 0;
  5852. if (++i12 == ne2) {
  5853. i12 = 0;
  5854. if (++i13 == ne3) {
  5855. i13 = 0;
  5856. }
  5857. }
  5858. }
  5859. }
  5860. }
  5861. }
  5862. } else if (dst->type == GGML_TYPE_F16) {
  5863. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5864. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5865. i10 += ne00 * ir0;
  5866. while (i10 >= ne0) {
  5867. i10 -= ne0;
  5868. if (++i11 == ne1) {
  5869. i11 = 0;
  5870. if (++i12 == ne2) {
  5871. i12 = 0;
  5872. if (++i13 == ne3) {
  5873. i13 = 0;
  5874. }
  5875. }
  5876. }
  5877. }
  5878. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5879. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5880. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5881. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5882. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5883. if (++i10 == ne0) {
  5884. i10 = 0;
  5885. if (++i11 == ne1) {
  5886. i11 = 0;
  5887. if (++i12 == ne2) {
  5888. i12 = 0;
  5889. if (++i13 == ne3) {
  5890. i13 = 0;
  5891. }
  5892. }
  5893. }
  5894. }
  5895. }
  5896. }
  5897. i10 += ne00 * (ne01 - ir1);
  5898. while (i10 >= ne0) {
  5899. i10 -= ne0;
  5900. if (++i11 == ne1) {
  5901. i11 = 0;
  5902. if (++i12 == ne2) {
  5903. i12 = 0;
  5904. if (++i13 == ne3) {
  5905. i13 = 0;
  5906. }
  5907. }
  5908. }
  5909. }
  5910. }
  5911. }
  5912. } else {
  5913. GGML_ASSERT(false); // TODO: implement
  5914. }
  5915. }
  5916. static void ggml_compute_forward_dup(
  5917. const struct ggml_compute_params * params,
  5918. const struct ggml_tensor * src0,
  5919. struct ggml_tensor * dst) {
  5920. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5921. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5922. return;
  5923. }
  5924. switch (src0->type) {
  5925. case GGML_TYPE_F16:
  5926. {
  5927. ggml_compute_forward_dup_f16(params, src0, dst);
  5928. } break;
  5929. case GGML_TYPE_F32:
  5930. {
  5931. ggml_compute_forward_dup_f32(params, src0, dst);
  5932. } break;
  5933. default:
  5934. {
  5935. GGML_ASSERT(false);
  5936. } break;
  5937. }
  5938. }
  5939. // ggml_compute_forward_add
  5940. static void ggml_compute_forward_add_f32(
  5941. const struct ggml_compute_params * params,
  5942. const struct ggml_tensor * src0,
  5943. const struct ggml_tensor * src1,
  5944. struct ggml_tensor * dst) {
  5945. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5947. return;
  5948. }
  5949. const int ith = params->ith;
  5950. const int nth = params->nth;
  5951. const int nr = ggml_nrows(src0);
  5952. const int64_t ne0 = src0->ne[0];
  5953. const int64_t ne1 = src0->ne[1];
  5954. const int64_t ne2 = src0->ne[2];
  5955. const size_t nb00 = src0->nb[0];
  5956. const size_t nb01 = src0->nb[1];
  5957. const size_t nb02 = src0->nb[2];
  5958. const size_t nb03 = src0->nb[3];
  5959. const size_t nb10 = src1->nb[0];
  5960. const size_t nb11 = src1->nb[1];
  5961. const size_t nb12 = src1->nb[2];
  5962. const size_t nb13 = src1->nb[3];
  5963. const size_t nb0 = dst->nb[0];
  5964. const size_t nb1 = dst->nb[1];
  5965. const size_t nb2 = dst->nb[2];
  5966. const size_t nb3 = dst->nb[3];
  5967. GGML_ASSERT( nb0 == sizeof(float));
  5968. GGML_ASSERT(nb00 == sizeof(float));
  5969. // rows per thread
  5970. const int dr = (nr + nth - 1)/nth;
  5971. // row range for this thread
  5972. const int ir0 = dr*ith;
  5973. const int ir1 = MIN(ir0 + dr, nr);
  5974. if (nb10 == sizeof(float)) {
  5975. for (int ir = ir0; ir < ir1; ++ir) {
  5976. // src0, src1 and dst are same shape => same indices
  5977. const int i3 = ir/(ne2*ne1);
  5978. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5979. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5980. #ifdef GGML_USE_ACCELERATE
  5981. vDSP_vadd(
  5982. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5983. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5984. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5985. ne0);
  5986. #else
  5987. ggml_vec_add_f32(ne0,
  5988. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5989. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5990. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5991. #endif
  5992. // }
  5993. // }
  5994. }
  5995. } else {
  5996. // src1 is not contiguous
  5997. for (int ir = ir0; ir < ir1; ++ir) {
  5998. // src0, src1 and dst are same shape => same indices
  5999. const int i3 = ir/(ne2*ne1);
  6000. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6001. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6002. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6003. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6004. for (int i0 = 0; i0 < ne0; i0++) {
  6005. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6006. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6007. }
  6008. }
  6009. }
  6010. }
  6011. static void ggml_compute_forward_add_f16_f32(
  6012. const struct ggml_compute_params * params,
  6013. const struct ggml_tensor * src0,
  6014. const struct ggml_tensor * src1,
  6015. struct ggml_tensor * dst) {
  6016. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6018. return;
  6019. }
  6020. const int ith = params->ith;
  6021. const int nth = params->nth;
  6022. const int nr = ggml_nrows(src0);
  6023. const int64_t ne0 = src0->ne[0];
  6024. const int64_t ne1 = src0->ne[1];
  6025. const int64_t ne2 = src0->ne[2];
  6026. const size_t nb00 = src0->nb[0];
  6027. const size_t nb01 = src0->nb[1];
  6028. const size_t nb02 = src0->nb[2];
  6029. const size_t nb03 = src0->nb[3];
  6030. const size_t nb10 = src1->nb[0];
  6031. const size_t nb11 = src1->nb[1];
  6032. const size_t nb12 = src1->nb[2];
  6033. const size_t nb13 = src1->nb[3];
  6034. const size_t nb0 = dst->nb[0];
  6035. const size_t nb1 = dst->nb[1];
  6036. const size_t nb2 = dst->nb[2];
  6037. const size_t nb3 = dst->nb[3];
  6038. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6039. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6040. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6041. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6042. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6043. // rows per thread
  6044. const int dr = (nr + nth - 1)/nth;
  6045. // row range for this thread
  6046. const int ir0 = dr*ith;
  6047. const int ir1 = MIN(ir0 + dr, nr);
  6048. if (nb10 == sizeof(float)) {
  6049. for (int ir = ir0; ir < ir1; ++ir) {
  6050. // src0, src1 and dst are same shape => same indices
  6051. const int i3 = ir/(ne2*ne1);
  6052. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6053. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6054. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6055. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6056. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6057. for (int i = 0; i < ne0; i++) {
  6058. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6059. }
  6060. }
  6061. }
  6062. else {
  6063. // src1 is not contiguous
  6064. GGML_ASSERT(false);
  6065. }
  6066. }
  6067. static void ggml_compute_forward_add_f16_f16(
  6068. const struct ggml_compute_params * params,
  6069. const struct ggml_tensor * src0,
  6070. const struct ggml_tensor * src1,
  6071. struct ggml_tensor * dst) {
  6072. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6074. return;
  6075. }
  6076. const int ith = params->ith;
  6077. const int nth = params->nth;
  6078. const int nr = ggml_nrows(src0);
  6079. const int64_t ne0 = src0->ne[0];
  6080. const int64_t ne1 = src0->ne[1];
  6081. const int64_t ne2 = src0->ne[2];
  6082. const size_t nb00 = src0->nb[0];
  6083. const size_t nb01 = src0->nb[1];
  6084. const size_t nb02 = src0->nb[2];
  6085. const size_t nb03 = src0->nb[3];
  6086. const size_t nb10 = src1->nb[0];
  6087. const size_t nb11 = src1->nb[1];
  6088. const size_t nb12 = src1->nb[2];
  6089. const size_t nb13 = src1->nb[3];
  6090. const size_t nb0 = dst->nb[0];
  6091. const size_t nb1 = dst->nb[1];
  6092. const size_t nb2 = dst->nb[2];
  6093. const size_t nb3 = dst->nb[3];
  6094. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6095. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6096. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6097. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6098. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6099. // rows per thread
  6100. const int dr = (nr + nth - 1)/nth;
  6101. // row range for this thread
  6102. const int ir0 = dr*ith;
  6103. const int ir1 = MIN(ir0 + dr, nr);
  6104. if (nb10 == sizeof(ggml_fp16_t)) {
  6105. for (int ir = ir0; ir < ir1; ++ir) {
  6106. // src0, src1 and dst are same shape => same indices
  6107. const int i3 = ir/(ne2*ne1);
  6108. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6109. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6110. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6111. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6112. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6113. for (int i = 0; i < ne0; i++) {
  6114. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6115. }
  6116. }
  6117. }
  6118. else {
  6119. // src1 is not contiguous
  6120. GGML_ASSERT(false);
  6121. }
  6122. }
  6123. static void ggml_compute_forward_add_q_f32(
  6124. const struct ggml_compute_params * params,
  6125. const struct ggml_tensor * src0,
  6126. const struct ggml_tensor * src1,
  6127. struct ggml_tensor * dst) {
  6128. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6130. return;
  6131. }
  6132. const int nr = ggml_nrows(src0);
  6133. const int64_t ne00 = src0->ne[0];
  6134. const int64_t ne01 = src0->ne[1];
  6135. const int64_t ne02 = src0->ne[2];
  6136. //const int64_t ne03 = src0->ne[3];
  6137. const size_t nb00 = src0->nb[0];
  6138. const size_t nb01 = src0->nb[1];
  6139. const size_t nb02 = src0->nb[2];
  6140. const size_t nb03 = src0->nb[3];
  6141. const size_t nb10 = src1->nb[0];
  6142. const size_t nb11 = src1->nb[1];
  6143. const size_t nb12 = src1->nb[2];
  6144. const size_t nb13 = src1->nb[3];
  6145. const size_t nb0 = dst->nb[0];
  6146. const size_t nb1 = dst->nb[1];
  6147. const size_t nb2 = dst->nb[2];
  6148. const size_t nb3 = dst->nb[3];
  6149. const int ith = params->ith;
  6150. const int nth = params->nth;
  6151. const enum ggml_type type = src0->type;
  6152. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6153. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6154. // we don't support permuted src0 or src1
  6155. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6156. GGML_ASSERT(nb10 == sizeof(float));
  6157. // dst cannot be transposed or permuted
  6158. GGML_ASSERT(nb0 <= nb1);
  6159. GGML_ASSERT(nb1 <= nb2);
  6160. GGML_ASSERT(nb2 <= nb3);
  6161. GGML_ASSERT(ggml_is_quantized(src0->type));
  6162. GGML_ASSERT(dst->type == src0->type);
  6163. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6164. // rows per thread
  6165. const int dr = (nr + nth - 1)/nth;
  6166. // row range for this thread
  6167. const int ir0 = dr*ith;
  6168. const int ir1 = MIN(ir0 + dr, nr);
  6169. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6170. for (int ir = ir0; ir < ir1; ++ir) {
  6171. // src0 indices
  6172. const int i03 = ir/(ne02*ne01);
  6173. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6174. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6175. // src1 and dst are same shape as src0 => same indices
  6176. const int i13 = i03;
  6177. const int i12 = i02;
  6178. const int i11 = i01;
  6179. const int i3 = i03;
  6180. const int i2 = i02;
  6181. const int i1 = i01;
  6182. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6183. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6184. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6185. assert(ne00 % 32 == 0);
  6186. // unquantize row from src0 to temp buffer
  6187. dequantize_row_q(src0_row, wdata, ne00);
  6188. // add src1
  6189. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6190. // quantize row to dst
  6191. quantize_row_q(wdata, dst_row, ne00);
  6192. }
  6193. }
  6194. static void ggml_compute_forward_add(
  6195. const struct ggml_compute_params * params,
  6196. const struct ggml_tensor * src0,
  6197. const struct ggml_tensor * src1,
  6198. struct ggml_tensor * dst) {
  6199. switch (src0->type) {
  6200. case GGML_TYPE_F32:
  6201. {
  6202. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6203. } break;
  6204. case GGML_TYPE_F16:
  6205. {
  6206. if (src1->type == GGML_TYPE_F16) {
  6207. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6208. }
  6209. else if (src1->type == GGML_TYPE_F32) {
  6210. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6211. }
  6212. else {
  6213. GGML_ASSERT(false);
  6214. }
  6215. } break;
  6216. case GGML_TYPE_Q4_0:
  6217. case GGML_TYPE_Q4_1:
  6218. case GGML_TYPE_Q5_0:
  6219. case GGML_TYPE_Q5_1:
  6220. case GGML_TYPE_Q8_0:
  6221. case GGML_TYPE_Q2_K:
  6222. case GGML_TYPE_Q3_K:
  6223. case GGML_TYPE_Q4_K:
  6224. case GGML_TYPE_Q5_K:
  6225. case GGML_TYPE_Q6_K:
  6226. {
  6227. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6228. } break;
  6229. default:
  6230. {
  6231. GGML_ASSERT(false);
  6232. } break;
  6233. }
  6234. }
  6235. // ggml_compute_forward_add1
  6236. static void ggml_compute_forward_add1_f32(
  6237. const struct ggml_compute_params * params,
  6238. const struct ggml_tensor * src0,
  6239. const struct ggml_tensor * src1,
  6240. struct ggml_tensor * dst) {
  6241. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6242. GGML_ASSERT(ggml_is_scalar(src1));
  6243. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6244. return;
  6245. }
  6246. const int ith = params->ith;
  6247. const int nth = params->nth;
  6248. const int nr = ggml_nrows(src0);
  6249. const int64_t ne0 = src0->ne[0];
  6250. const int64_t ne1 = src0->ne[1];
  6251. const int64_t ne2 = src0->ne[2];
  6252. const size_t nb00 = src0->nb[0];
  6253. const size_t nb01 = src0->nb[1];
  6254. const size_t nb02 = src0->nb[2];
  6255. const size_t nb03 = src0->nb[3];
  6256. const size_t nb0 = dst->nb[0];
  6257. const size_t nb1 = dst->nb[1];
  6258. const size_t nb2 = dst->nb[2];
  6259. const size_t nb3 = dst->nb[3];
  6260. GGML_ASSERT( nb0 == sizeof(float));
  6261. GGML_ASSERT(nb00 == sizeof(float));
  6262. // rows per thread
  6263. const int dr = (nr + nth - 1)/nth;
  6264. // row range for this thread
  6265. const int ir0 = dr*ith;
  6266. const int ir1 = MIN(ir0 + dr, nr);
  6267. for (int ir = ir0; ir < ir1; ++ir) {
  6268. // src0 and dst are same shape => same indices
  6269. const int i3 = ir/(ne2*ne1);
  6270. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6271. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6272. #ifdef GGML_USE_ACCELERATE
  6273. UNUSED(ggml_vec_add1_f32);
  6274. vDSP_vadd(
  6275. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6276. (float *) ((char *) src1->data), 0,
  6277. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6278. ne0);
  6279. #else
  6280. ggml_vec_add1_f32(ne0,
  6281. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6282. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6283. *(float *) src1->data);
  6284. #endif
  6285. }
  6286. }
  6287. static void ggml_compute_forward_add1_f16_f32(
  6288. const struct ggml_compute_params * params,
  6289. const struct ggml_tensor * src0,
  6290. const struct ggml_tensor * src1,
  6291. struct ggml_tensor * dst) {
  6292. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6293. GGML_ASSERT(ggml_is_scalar(src1));
  6294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6295. return;
  6296. }
  6297. // scalar to add
  6298. const float v = *(float *) src1->data;
  6299. const int ith = params->ith;
  6300. const int nth = params->nth;
  6301. const int nr = ggml_nrows(src0);
  6302. const int64_t ne0 = src0->ne[0];
  6303. const int64_t ne1 = src0->ne[1];
  6304. const int64_t ne2 = src0->ne[2];
  6305. const size_t nb00 = src0->nb[0];
  6306. const size_t nb01 = src0->nb[1];
  6307. const size_t nb02 = src0->nb[2];
  6308. const size_t nb03 = src0->nb[3];
  6309. const size_t nb0 = dst->nb[0];
  6310. const size_t nb1 = dst->nb[1];
  6311. const size_t nb2 = dst->nb[2];
  6312. const size_t nb3 = dst->nb[3];
  6313. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6314. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6315. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6316. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6317. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6318. // rows per thread
  6319. const int dr = (nr + nth - 1)/nth;
  6320. // row range for this thread
  6321. const int ir0 = dr*ith;
  6322. const int ir1 = MIN(ir0 + dr, nr);
  6323. for (int ir = ir0; ir < ir1; ++ir) {
  6324. // src0 and dst are same shape => same indices
  6325. const int i3 = ir/(ne2*ne1);
  6326. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6327. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6328. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6329. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6330. for (int i = 0; i < ne0; i++) {
  6331. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6332. }
  6333. }
  6334. }
  6335. static void ggml_compute_forward_add1_f16_f16(
  6336. const struct ggml_compute_params * params,
  6337. const struct ggml_tensor * src0,
  6338. const struct ggml_tensor * src1,
  6339. struct ggml_tensor * dst) {
  6340. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6341. GGML_ASSERT(ggml_is_scalar(src1));
  6342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6343. return;
  6344. }
  6345. // scalar to add
  6346. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6347. const int ith = params->ith;
  6348. const int nth = params->nth;
  6349. const int nr = ggml_nrows(src0);
  6350. const int64_t ne0 = src0->ne[0];
  6351. const int64_t ne1 = src0->ne[1];
  6352. const int64_t ne2 = src0->ne[2];
  6353. const size_t nb00 = src0->nb[0];
  6354. const size_t nb01 = src0->nb[1];
  6355. const size_t nb02 = src0->nb[2];
  6356. const size_t nb03 = src0->nb[3];
  6357. const size_t nb0 = dst->nb[0];
  6358. const size_t nb1 = dst->nb[1];
  6359. const size_t nb2 = dst->nb[2];
  6360. const size_t nb3 = dst->nb[3];
  6361. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6362. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6363. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6364. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6365. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6366. // rows per thread
  6367. const int dr = (nr + nth - 1)/nth;
  6368. // row range for this thread
  6369. const int ir0 = dr*ith;
  6370. const int ir1 = MIN(ir0 + dr, nr);
  6371. for (int ir = ir0; ir < ir1; ++ir) {
  6372. // src0 and dst are same shape => same indices
  6373. const int i3 = ir/(ne2*ne1);
  6374. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6375. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6376. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6377. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6378. for (int i = 0; i < ne0; i++) {
  6379. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6380. }
  6381. }
  6382. }
  6383. static void ggml_compute_forward_add1_q_f32(
  6384. const struct ggml_compute_params * params,
  6385. const struct ggml_tensor * src0,
  6386. const struct ggml_tensor * src1,
  6387. struct ggml_tensor * dst) {
  6388. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6389. GGML_ASSERT(ggml_is_scalar(src1));
  6390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6391. return;
  6392. }
  6393. // scalar to add
  6394. const float v = *(float *) src1->data;
  6395. const int ith = params->ith;
  6396. const int nth = params->nth;
  6397. const int nr = ggml_nrows(src0);
  6398. const int64_t ne0 = src0->ne[0];
  6399. const int64_t ne1 = src0->ne[1];
  6400. const int64_t ne2 = src0->ne[2];
  6401. const size_t nb00 = src0->nb[0];
  6402. const size_t nb01 = src0->nb[1];
  6403. const size_t nb02 = src0->nb[2];
  6404. const size_t nb03 = src0->nb[3];
  6405. const size_t nb0 = dst->nb[0];
  6406. const size_t nb1 = dst->nb[1];
  6407. const size_t nb2 = dst->nb[2];
  6408. const size_t nb3 = dst->nb[3];
  6409. const enum ggml_type type = src0->type;
  6410. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6411. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6412. // we don't support permuted src0
  6413. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6414. // dst cannot be transposed or permuted
  6415. GGML_ASSERT(nb0 <= nb1);
  6416. GGML_ASSERT(nb1 <= nb2);
  6417. GGML_ASSERT(nb2 <= nb3);
  6418. GGML_ASSERT(ggml_is_quantized(src0->type));
  6419. GGML_ASSERT(dst->type == src0->type);
  6420. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6421. // rows per thread
  6422. const int dr = (nr + nth - 1)/nth;
  6423. // row range for this thread
  6424. const int ir0 = dr*ith;
  6425. const int ir1 = MIN(ir0 + dr, nr);
  6426. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6427. for (int ir = ir0; ir < ir1; ++ir) {
  6428. // src0 and dst are same shape => same indices
  6429. const int i3 = ir/(ne2*ne1);
  6430. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6431. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6432. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6433. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6434. assert(ne0 % 32 == 0);
  6435. // unquantize row from src0 to temp buffer
  6436. dequantize_row_q(src0_row, wdata, ne0);
  6437. // add src1
  6438. ggml_vec_acc1_f32(ne0, wdata, v);
  6439. // quantize row to dst
  6440. quantize_row_q(wdata, dst_row, ne0);
  6441. }
  6442. }
  6443. static void ggml_compute_forward_add1(
  6444. const struct ggml_compute_params * params,
  6445. const struct ggml_tensor * src0,
  6446. const struct ggml_tensor * src1,
  6447. struct ggml_tensor * dst) {
  6448. switch (src0->type) {
  6449. case GGML_TYPE_F32:
  6450. {
  6451. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6452. } break;
  6453. case GGML_TYPE_F16:
  6454. {
  6455. if (src1->type == GGML_TYPE_F16) {
  6456. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6457. }
  6458. else if (src1->type == GGML_TYPE_F32) {
  6459. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6460. }
  6461. else {
  6462. GGML_ASSERT(false);
  6463. }
  6464. } break;
  6465. case GGML_TYPE_Q4_0:
  6466. case GGML_TYPE_Q4_1:
  6467. case GGML_TYPE_Q5_0:
  6468. case GGML_TYPE_Q5_1:
  6469. case GGML_TYPE_Q8_0:
  6470. case GGML_TYPE_Q8_1:
  6471. case GGML_TYPE_Q2_K:
  6472. case GGML_TYPE_Q3_K:
  6473. case GGML_TYPE_Q4_K:
  6474. case GGML_TYPE_Q5_K:
  6475. case GGML_TYPE_Q6_K:
  6476. {
  6477. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6478. } break;
  6479. default:
  6480. {
  6481. GGML_ASSERT(false);
  6482. } break;
  6483. }
  6484. }
  6485. // ggml_compute_forward_acc
  6486. static void ggml_compute_forward_acc_f32(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * src0,
  6489. const struct ggml_tensor * src1,
  6490. const struct ggml_tensor * opt0,
  6491. struct ggml_tensor * dst) {
  6492. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6493. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6494. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6495. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6496. // view src0 and dst with these strides and data offset inbytes during acc
  6497. // nb0 is implicitely element_size because src0 and dst are contiguous
  6498. size_t nb1 = ((int32_t *) opt0->data)[0];
  6499. size_t nb2 = ((int32_t *) opt0->data)[1];
  6500. size_t nb3 = ((int32_t *) opt0->data)[2];
  6501. size_t offset = ((int32_t *) opt0->data)[3];
  6502. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6503. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6504. // memcpy needs to be synchronized across threads to avoid race conditions.
  6505. // => do it in INIT phase
  6506. memcpy(
  6507. ((char *) dst->data),
  6508. ((char *) src0->data),
  6509. ggml_nbytes(dst));
  6510. }
  6511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6512. return;
  6513. }
  6514. const int ith = params->ith;
  6515. const int nth = params->nth;
  6516. const int nr = ggml_nrows(src1);
  6517. const int nc = src1->ne[0];
  6518. const int64_t ne10 = src1->ne[0];
  6519. const int64_t ne11 = src1->ne[1];
  6520. const int64_t ne12 = src1->ne[2];
  6521. const int64_t ne13 = src1->ne[3];
  6522. const size_t nb10 = src1->nb[0];
  6523. const size_t nb11 = src1->nb[1];
  6524. const size_t nb12 = src1->nb[2];
  6525. const size_t nb13 = src1->nb[3];
  6526. // src0 and dst as viewed during acc
  6527. const size_t nb0 = ggml_element_size(src0);
  6528. const size_t nb00 = nb0;
  6529. const size_t nb01 = nb1;
  6530. const size_t nb02 = nb2;
  6531. const size_t nb03 = nb3;
  6532. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6533. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6534. GGML_ASSERT(nb10 == sizeof(float));
  6535. // rows per thread
  6536. const int dr = (nr + nth - 1)/nth;
  6537. // row range for this thread
  6538. const int ir0 = dr*ith;
  6539. const int ir1 = MIN(ir0 + dr, nr);
  6540. for (int ir = ir0; ir < ir1; ++ir) {
  6541. // src0 and dst are viewed with shape of src1 and offset
  6542. // => same indices
  6543. const int i3 = ir/(ne12*ne11);
  6544. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6545. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6546. #ifdef GGML_USE_ACCELERATE
  6547. vDSP_vadd(
  6548. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6549. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6550. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6551. #else
  6552. ggml_vec_add_f32(nc,
  6553. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6554. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6555. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6556. #endif
  6557. }
  6558. }
  6559. static void ggml_compute_forward_acc(
  6560. const struct ggml_compute_params * params,
  6561. const struct ggml_tensor * src0,
  6562. const struct ggml_tensor * src1,
  6563. const struct ggml_tensor * opt0,
  6564. struct ggml_tensor * dst) {
  6565. switch (src0->type) {
  6566. case GGML_TYPE_F32:
  6567. {
  6568. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6569. } break;
  6570. case GGML_TYPE_F16:
  6571. case GGML_TYPE_Q4_0:
  6572. case GGML_TYPE_Q4_1:
  6573. case GGML_TYPE_Q5_0:
  6574. case GGML_TYPE_Q5_1:
  6575. case GGML_TYPE_Q8_0:
  6576. case GGML_TYPE_Q8_1:
  6577. case GGML_TYPE_Q2_K:
  6578. case GGML_TYPE_Q3_K:
  6579. case GGML_TYPE_Q4_K:
  6580. case GGML_TYPE_Q5_K:
  6581. case GGML_TYPE_Q6_K:
  6582. default:
  6583. {
  6584. GGML_ASSERT(false);
  6585. } break;
  6586. }
  6587. }
  6588. // ggml_compute_forward_sub
  6589. static void ggml_compute_forward_sub_f32(
  6590. const struct ggml_compute_params * params,
  6591. const struct ggml_tensor * src0,
  6592. const struct ggml_tensor * src1,
  6593. struct ggml_tensor * dst) {
  6594. assert(params->ith == 0);
  6595. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6597. return;
  6598. }
  6599. const int nr = ggml_nrows(src0);
  6600. const int64_t ne0 = src0->ne[0];
  6601. const int64_t ne1 = src0->ne[1];
  6602. const int64_t ne2 = src0->ne[2];
  6603. const size_t nb00 = src0->nb[0];
  6604. const size_t nb01 = src0->nb[1];
  6605. const size_t nb02 = src0->nb[2];
  6606. const size_t nb03 = src0->nb[3];
  6607. const size_t nb10 = src1->nb[0];
  6608. const size_t nb11 = src1->nb[1];
  6609. const size_t nb12 = src1->nb[2];
  6610. const size_t nb13 = src1->nb[3];
  6611. const size_t nb0 = dst->nb[0];
  6612. const size_t nb1 = dst->nb[1];
  6613. const size_t nb2 = dst->nb[2];
  6614. const size_t nb3 = dst->nb[3];
  6615. GGML_ASSERT( nb0 == sizeof(float));
  6616. GGML_ASSERT(nb00 == sizeof(float));
  6617. if (nb10 == sizeof(float)) {
  6618. for (int ir = 0; ir < nr; ++ir) {
  6619. // src0, src1 and dst are same shape => same indices
  6620. const int i3 = ir/(ne2*ne1);
  6621. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6622. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6623. #ifdef GGML_USE_ACCELERATE
  6624. vDSP_vsub(
  6625. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6626. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6627. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6628. ne0);
  6629. #else
  6630. ggml_vec_sub_f32(ne0,
  6631. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6632. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6633. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6634. #endif
  6635. // }
  6636. // }
  6637. }
  6638. } else {
  6639. // src1 is not contiguous
  6640. for (int ir = 0; ir < nr; ++ir) {
  6641. // src0, src1 and dst are same shape => same indices
  6642. const int i3 = ir/(ne2*ne1);
  6643. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6644. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6645. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6646. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6647. for (int i0 = 0; i0 < ne0; i0++) {
  6648. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6649. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6650. }
  6651. }
  6652. }
  6653. }
  6654. static void ggml_compute_forward_sub(
  6655. const struct ggml_compute_params * params,
  6656. const struct ggml_tensor * src0,
  6657. const struct ggml_tensor * src1,
  6658. struct ggml_tensor * dst) {
  6659. switch (src0->type) {
  6660. case GGML_TYPE_F32:
  6661. {
  6662. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6663. } break;
  6664. default:
  6665. {
  6666. GGML_ASSERT(false);
  6667. } break;
  6668. }
  6669. }
  6670. // ggml_compute_forward_mul
  6671. static void ggml_compute_forward_mul_f32(
  6672. const struct ggml_compute_params * params,
  6673. const struct ggml_tensor * src0,
  6674. const struct ggml_tensor * src1,
  6675. struct ggml_tensor * dst) {
  6676. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6678. return;
  6679. }
  6680. const int ith = params->ith;
  6681. const int nth = params->nth;
  6682. #ifdef GGML_USE_CLBLAST
  6683. if (src1->backend == GGML_BACKEND_GPU) {
  6684. if (ith == 0) {
  6685. ggml_cl_mul(src0, src1, dst);
  6686. }
  6687. return;
  6688. }
  6689. #endif
  6690. const int64_t nr = ggml_nrows(src0);
  6691. const int64_t ne00 = src0->ne[0];
  6692. const int64_t ne01 = src0->ne[1];
  6693. const int64_t ne02 = src0->ne[2];
  6694. const int64_t ne10 = src1->ne[0];
  6695. const int64_t ne11 = src1->ne[1];
  6696. const int64_t ne12 = src1->ne[2];
  6697. const int64_t ne13 = src1->ne[3];
  6698. const size_t nb00 = src0->nb[0];
  6699. const size_t nb01 = src0->nb[1];
  6700. const size_t nb02 = src0->nb[2];
  6701. const size_t nb03 = src0->nb[3];
  6702. const size_t nb10 = src1->nb[0];
  6703. const size_t nb11 = src1->nb[1];
  6704. const size_t nb12 = src1->nb[2];
  6705. const size_t nb13 = src1->nb[3];
  6706. const size_t nb0 = dst->nb[0];
  6707. const size_t nb1 = dst->nb[1];
  6708. const size_t nb2 = dst->nb[2];
  6709. const size_t nb3 = dst->nb[3];
  6710. GGML_ASSERT( nb0 == sizeof(float));
  6711. GGML_ASSERT(nb00 == sizeof(float));
  6712. GGML_ASSERT(ne00 == ne10);
  6713. if (nb10 == sizeof(float)) {
  6714. for (int64_t ir = ith; ir < nr; ir += nth) {
  6715. // src0 and dst are same shape => same indices
  6716. const int64_t i03 = ir/(ne02*ne01);
  6717. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6718. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6719. const int64_t i13 = i03 % ne13;
  6720. const int64_t i12 = i02 % ne12;
  6721. const int64_t i11 = i01 % ne11;
  6722. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6723. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6724. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6725. #ifdef GGML_USE_ACCELERATE
  6726. UNUSED(ggml_vec_mul_f32);
  6727. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6728. #else
  6729. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6730. #endif
  6731. // }
  6732. // }
  6733. }
  6734. } else {
  6735. // src1 is not contiguous
  6736. for (int64_t ir = ith; ir < nr; ir += nth) {
  6737. // src0 and dst are same shape => same indices
  6738. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6739. const int64_t i03 = ir/(ne02*ne01);
  6740. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6741. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6742. const int64_t i13 = i03 % ne13;
  6743. const int64_t i12 = i02 % ne12;
  6744. const int64_t i11 = i01 % ne11;
  6745. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6746. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6747. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6748. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6749. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6750. }
  6751. }
  6752. }
  6753. }
  6754. static void ggml_compute_forward_mul(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. const struct ggml_tensor * src1,
  6758. struct ggml_tensor * dst) {
  6759. switch (src0->type) {
  6760. case GGML_TYPE_F32:
  6761. {
  6762. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6763. } break;
  6764. default:
  6765. {
  6766. GGML_ASSERT(false);
  6767. } break;
  6768. }
  6769. }
  6770. // ggml_compute_forward_div
  6771. static void ggml_compute_forward_div_f32(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. const struct ggml_tensor * src1,
  6775. struct ggml_tensor * dst) {
  6776. assert(params->ith == 0);
  6777. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6779. return;
  6780. }
  6781. const int nr = ggml_nrows(src0);
  6782. const int64_t ne0 = src0->ne[0];
  6783. const int64_t ne1 = src0->ne[1];
  6784. const int64_t ne2 = src0->ne[2];
  6785. const size_t nb00 = src0->nb[0];
  6786. const size_t nb01 = src0->nb[1];
  6787. const size_t nb02 = src0->nb[2];
  6788. const size_t nb03 = src0->nb[3];
  6789. const size_t nb10 = src1->nb[0];
  6790. const size_t nb11 = src1->nb[1];
  6791. const size_t nb12 = src1->nb[2];
  6792. const size_t nb13 = src1->nb[3];
  6793. const size_t nb0 = dst->nb[0];
  6794. const size_t nb1 = dst->nb[1];
  6795. const size_t nb2 = dst->nb[2];
  6796. const size_t nb3 = dst->nb[3];
  6797. GGML_ASSERT( nb0 == sizeof(float));
  6798. GGML_ASSERT(nb00 == sizeof(float));
  6799. if (nb10 == sizeof(float)) {
  6800. for (int ir = 0; ir < nr; ++ir) {
  6801. // src0, src1 and dst are same shape => same indices
  6802. const int i3 = ir/(ne2*ne1);
  6803. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6804. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6805. #ifdef GGML_USE_ACCELERATE
  6806. vDSP_vdiv(
  6807. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6808. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6809. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6810. ne0);
  6811. #else
  6812. ggml_vec_div_f32(ne0,
  6813. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6814. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6815. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6816. #endif
  6817. // }
  6818. // }
  6819. }
  6820. } else {
  6821. // src1 is not contiguous
  6822. for (int ir = 0; ir < nr; ++ir) {
  6823. // src0, src1 and dst are same shape => same indices
  6824. const int i3 = ir/(ne2*ne1);
  6825. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6826. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6827. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6828. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6829. for (int i0 = 0; i0 < ne0; i0++) {
  6830. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6831. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6832. }
  6833. }
  6834. }
  6835. }
  6836. static void ggml_compute_forward_div(
  6837. const struct ggml_compute_params * params,
  6838. const struct ggml_tensor * src0,
  6839. const struct ggml_tensor * src1,
  6840. struct ggml_tensor * dst) {
  6841. switch (src0->type) {
  6842. case GGML_TYPE_F32:
  6843. {
  6844. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6845. } break;
  6846. default:
  6847. {
  6848. GGML_ASSERT(false);
  6849. } break;
  6850. }
  6851. }
  6852. // ggml_compute_forward_sqr
  6853. static void ggml_compute_forward_sqr_f32(
  6854. const struct ggml_compute_params * params,
  6855. const struct ggml_tensor * src0,
  6856. struct ggml_tensor * dst) {
  6857. assert(params->ith == 0);
  6858. assert(ggml_are_same_shape(src0, dst));
  6859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6860. return;
  6861. }
  6862. const int n = ggml_nrows(src0);
  6863. const int nc = src0->ne[0];
  6864. assert( dst->nb[0] == sizeof(float));
  6865. assert(src0->nb[0] == sizeof(float));
  6866. for (int i = 0; i < n; i++) {
  6867. ggml_vec_sqr_f32(nc,
  6868. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6869. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6870. }
  6871. }
  6872. static void ggml_compute_forward_sqr(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. struct ggml_tensor * dst) {
  6876. switch (src0->type) {
  6877. case GGML_TYPE_F32:
  6878. {
  6879. ggml_compute_forward_sqr_f32(params, src0, dst);
  6880. } break;
  6881. default:
  6882. {
  6883. GGML_ASSERT(false);
  6884. } break;
  6885. }
  6886. }
  6887. // ggml_compute_forward_sqrt
  6888. static void ggml_compute_forward_sqrt_f32(
  6889. const struct ggml_compute_params * params,
  6890. const struct ggml_tensor * src0,
  6891. struct ggml_tensor * dst) {
  6892. assert(params->ith == 0);
  6893. assert(ggml_are_same_shape(src0, dst));
  6894. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6895. return;
  6896. }
  6897. const int n = ggml_nrows(src0);
  6898. const int nc = src0->ne[0];
  6899. assert( dst->nb[0] == sizeof(float));
  6900. assert(src0->nb[0] == sizeof(float));
  6901. for (int i = 0; i < n; i++) {
  6902. ggml_vec_sqrt_f32(nc,
  6903. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6904. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6905. }
  6906. }
  6907. static void ggml_compute_forward_sqrt(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. struct ggml_tensor * dst) {
  6911. switch (src0->type) {
  6912. case GGML_TYPE_F32:
  6913. {
  6914. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6915. } break;
  6916. default:
  6917. {
  6918. GGML_ASSERT(false);
  6919. } break;
  6920. }
  6921. }
  6922. // ggml_compute_forward_log
  6923. static void ggml_compute_forward_log_f32(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. struct ggml_tensor * dst) {
  6927. GGML_ASSERT(params->ith == 0);
  6928. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6930. return;
  6931. }
  6932. const int n = ggml_nrows(src0);
  6933. const int nc = src0->ne[0];
  6934. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6935. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6936. for (int i = 0; i < n; i++) {
  6937. ggml_vec_log_f32(nc,
  6938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6940. }
  6941. }
  6942. static void ggml_compute_forward_log(
  6943. const struct ggml_compute_params * params,
  6944. const struct ggml_tensor * src0,
  6945. struct ggml_tensor * dst) {
  6946. switch (src0->type) {
  6947. case GGML_TYPE_F32:
  6948. {
  6949. ggml_compute_forward_log_f32(params, src0, dst);
  6950. } break;
  6951. default:
  6952. {
  6953. GGML_ASSERT(false);
  6954. } break;
  6955. }
  6956. }
  6957. // ggml_compute_forward_sum
  6958. static void ggml_compute_forward_sum_f32(
  6959. const struct ggml_compute_params * params,
  6960. const struct ggml_tensor * src0,
  6961. struct ggml_tensor * dst) {
  6962. assert(params->ith == 0);
  6963. assert(ggml_is_scalar(dst));
  6964. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6965. return;
  6966. }
  6967. assert(ggml_is_scalar(dst));
  6968. assert(src0->nb[0] == sizeof(float));
  6969. const int64_t ne00 = src0->ne[0];
  6970. const int64_t ne01 = src0->ne[1];
  6971. const int64_t ne02 = src0->ne[2];
  6972. const int64_t ne03 = src0->ne[3];
  6973. const size_t nb01 = src0->nb[1];
  6974. const size_t nb02 = src0->nb[2];
  6975. const size_t nb03 = src0->nb[3];
  6976. ggml_float sum = 0;
  6977. ggml_float row_sum = 0;
  6978. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6979. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6980. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6981. ggml_vec_sum_ggf(ne00,
  6982. &row_sum,
  6983. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6984. sum += row_sum;
  6985. }
  6986. }
  6987. }
  6988. ((float *) dst->data)[0] = sum;
  6989. }
  6990. static void ggml_compute_forward_sum(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. struct ggml_tensor * dst) {
  6994. switch (src0->type) {
  6995. case GGML_TYPE_F32:
  6996. {
  6997. ggml_compute_forward_sum_f32(params, src0, dst);
  6998. } break;
  6999. default:
  7000. {
  7001. GGML_ASSERT(false);
  7002. } break;
  7003. }
  7004. }
  7005. // ggml_compute_forward_sum_rows
  7006. static void ggml_compute_forward_sum_rows_f32(
  7007. const struct ggml_compute_params * params,
  7008. const struct ggml_tensor * src0,
  7009. struct ggml_tensor * dst) {
  7010. GGML_ASSERT(params->ith == 0);
  7011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7012. return;
  7013. }
  7014. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7015. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7016. const int64_t ne00 = src0->ne[0];
  7017. const int64_t ne01 = src0->ne[1];
  7018. const int64_t ne02 = src0->ne[2];
  7019. const int64_t ne03 = src0->ne[3];
  7020. const int64_t ne0 = dst->ne[0];
  7021. const int64_t ne1 = dst->ne[1];
  7022. const int64_t ne2 = dst->ne[2];
  7023. const int64_t ne3 = dst->ne[3];
  7024. GGML_ASSERT(ne0 == 1);
  7025. GGML_ASSERT(ne1 == ne01);
  7026. GGML_ASSERT(ne2 == ne02);
  7027. GGML_ASSERT(ne3 == ne03);
  7028. const size_t nb01 = src0->nb[1];
  7029. const size_t nb02 = src0->nb[2];
  7030. const size_t nb03 = src0->nb[3];
  7031. const size_t nb1 = dst->nb[1];
  7032. const size_t nb2 = dst->nb[2];
  7033. const size_t nb3 = dst->nb[3];
  7034. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7035. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7036. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7037. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7038. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7039. float row_sum = 0;
  7040. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7041. dst_row[0] = row_sum;
  7042. }
  7043. }
  7044. }
  7045. }
  7046. static void ggml_compute_forward_sum_rows(
  7047. const struct ggml_compute_params * params,
  7048. const struct ggml_tensor * src0,
  7049. struct ggml_tensor * dst) {
  7050. switch (src0->type) {
  7051. case GGML_TYPE_F32:
  7052. {
  7053. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7054. } break;
  7055. default:
  7056. {
  7057. GGML_ASSERT(false);
  7058. } break;
  7059. }
  7060. }
  7061. // ggml_compute_forward_mean
  7062. static void ggml_compute_forward_mean_f32(
  7063. const struct ggml_compute_params * params,
  7064. const struct ggml_tensor * src0,
  7065. struct ggml_tensor * dst) {
  7066. assert(params->ith == 0);
  7067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7068. return;
  7069. }
  7070. assert(src0->nb[0] == sizeof(float));
  7071. const int64_t ne00 = src0->ne[0];
  7072. const int64_t ne01 = src0->ne[1];
  7073. const int64_t ne02 = src0->ne[2];
  7074. const int64_t ne03 = src0->ne[3];
  7075. const size_t nb01 = src0->nb[1];
  7076. const size_t nb02 = src0->nb[2];
  7077. const size_t nb03 = src0->nb[3];
  7078. const int64_t ne0 = dst->ne[0];
  7079. const int64_t ne1 = dst->ne[1];
  7080. const int64_t ne2 = dst->ne[2];
  7081. const int64_t ne3 = dst->ne[3];
  7082. assert(ne0 == 1);
  7083. assert(ne1 == ne01);
  7084. assert(ne2 == ne02);
  7085. assert(ne3 == ne03);
  7086. UNUSED(ne0);
  7087. UNUSED(ne1);
  7088. UNUSED(ne2);
  7089. UNUSED(ne3);
  7090. const size_t nb1 = dst->nb[1];
  7091. const size_t nb2 = dst->nb[2];
  7092. const size_t nb3 = dst->nb[3];
  7093. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7094. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7095. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7096. ggml_vec_sum_f32(ne00,
  7097. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7098. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7099. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7100. }
  7101. }
  7102. }
  7103. }
  7104. static void ggml_compute_forward_mean(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0,
  7107. struct ggml_tensor * dst) {
  7108. switch (src0->type) {
  7109. case GGML_TYPE_F32:
  7110. {
  7111. ggml_compute_forward_mean_f32(params, src0, dst);
  7112. } break;
  7113. default:
  7114. {
  7115. GGML_ASSERT(false);
  7116. } break;
  7117. }
  7118. }
  7119. // ggml_compute_forward_repeat
  7120. static void ggml_compute_forward_repeat_f32(
  7121. const struct ggml_compute_params * params,
  7122. const struct ggml_tensor * src0,
  7123. struct ggml_tensor * dst) {
  7124. GGML_ASSERT(params->ith == 0);
  7125. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7127. return;
  7128. }
  7129. const int64_t ne0 = dst->ne[0];
  7130. const int64_t ne1 = dst->ne[1];
  7131. const int64_t ne2 = dst->ne[2];
  7132. const int64_t ne3 = dst->ne[3];
  7133. const int64_t ne00 = src0->ne[0];
  7134. const int64_t ne01 = src0->ne[1];
  7135. const int64_t ne02 = src0->ne[2];
  7136. const int64_t ne03 = src0->ne[3];
  7137. const size_t nb0 = dst->nb[0];
  7138. const size_t nb1 = dst->nb[1];
  7139. const size_t nb2 = dst->nb[2];
  7140. const size_t nb3 = dst->nb[3];
  7141. const size_t nb00 = src0->nb[0];
  7142. const size_t nb01 = src0->nb[1];
  7143. const size_t nb02 = src0->nb[2];
  7144. const size_t nb03 = src0->nb[3];
  7145. // guaranteed to be an integer due to the check in ggml_can_repeat
  7146. const int nr0 = (int)(ne0/ne00);
  7147. const int nr1 = (int)(ne1/ne01);
  7148. const int nr2 = (int)(ne2/ne02);
  7149. const int nr3 = (int)(ne3/ne03);
  7150. // TODO: support for transposed / permuted tensors
  7151. GGML_ASSERT(nb0 == sizeof(float));
  7152. GGML_ASSERT(nb00 == sizeof(float));
  7153. // TODO: maybe this is not optimal?
  7154. for (int i3 = 0; i3 < nr3; i3++) {
  7155. for (int k3 = 0; k3 < ne03; k3++) {
  7156. for (int i2 = 0; i2 < nr2; i2++) {
  7157. for (int k2 = 0; k2 < ne02; k2++) {
  7158. for (int i1 = 0; i1 < nr1; i1++) {
  7159. for (int k1 = 0; k1 < ne01; k1++) {
  7160. for (int i0 = 0; i0 < nr0; i0++) {
  7161. ggml_vec_cpy_f32(ne00,
  7162. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7163. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7164. }
  7165. }
  7166. }
  7167. }
  7168. }
  7169. }
  7170. }
  7171. }
  7172. static void ggml_compute_forward_repeat(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. struct ggml_tensor * dst) {
  7176. switch (src0->type) {
  7177. case GGML_TYPE_F32:
  7178. {
  7179. ggml_compute_forward_repeat_f32(params, src0, dst);
  7180. } break;
  7181. default:
  7182. {
  7183. GGML_ASSERT(false);
  7184. } break;
  7185. }
  7186. }
  7187. // ggml_compute_forward_abs
  7188. static void ggml_compute_forward_abs_f32(
  7189. const struct ggml_compute_params * params,
  7190. const struct ggml_tensor * src0,
  7191. struct ggml_tensor * dst) {
  7192. assert(params->ith == 0);
  7193. assert(ggml_are_same_shape(src0, dst));
  7194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7195. return;
  7196. }
  7197. const int n = ggml_nrows(src0);
  7198. const int nc = src0->ne[0];
  7199. assert(dst->nb[0] == sizeof(float));
  7200. assert(src0->nb[0] == sizeof(float));
  7201. for (int i = 0; i < n; i++) {
  7202. ggml_vec_abs_f32(nc,
  7203. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7204. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7205. }
  7206. }
  7207. static void ggml_compute_forward_abs(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. struct ggml_tensor * dst) {
  7211. switch (src0->type) {
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_abs_f32(params, src0, dst);
  7215. } break;
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_sgn
  7223. static void ggml_compute_forward_sgn_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. assert(params->ith == 0);
  7228. assert(ggml_are_same_shape(src0, dst));
  7229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7230. return;
  7231. }
  7232. const int n = ggml_nrows(src0);
  7233. const int nc = src0->ne[0];
  7234. assert(dst->nb[0] == sizeof(float));
  7235. assert(src0->nb[0] == sizeof(float));
  7236. for (int i = 0; i < n; i++) {
  7237. ggml_vec_sgn_f32(nc,
  7238. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7239. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7240. }
  7241. }
  7242. static void ggml_compute_forward_sgn(
  7243. const struct ggml_compute_params * params,
  7244. const struct ggml_tensor * src0,
  7245. struct ggml_tensor * dst) {
  7246. switch (src0->type) {
  7247. case GGML_TYPE_F32:
  7248. {
  7249. ggml_compute_forward_sgn_f32(params, src0, dst);
  7250. } break;
  7251. default:
  7252. {
  7253. GGML_ASSERT(false);
  7254. } break;
  7255. }
  7256. }
  7257. // ggml_compute_forward_neg
  7258. static void ggml_compute_forward_neg_f32(
  7259. const struct ggml_compute_params * params,
  7260. const struct ggml_tensor * src0,
  7261. struct ggml_tensor * dst) {
  7262. assert(params->ith == 0);
  7263. assert(ggml_are_same_shape(src0, dst));
  7264. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7265. return;
  7266. }
  7267. const int n = ggml_nrows(src0);
  7268. const int nc = src0->ne[0];
  7269. assert(dst->nb[0] == sizeof(float));
  7270. assert(src0->nb[0] == sizeof(float));
  7271. for (int i = 0; i < n; i++) {
  7272. ggml_vec_neg_f32(nc,
  7273. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7274. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7275. }
  7276. }
  7277. static void ggml_compute_forward_neg(
  7278. const struct ggml_compute_params * params,
  7279. const struct ggml_tensor * src0,
  7280. struct ggml_tensor * dst) {
  7281. switch (src0->type) {
  7282. case GGML_TYPE_F32:
  7283. {
  7284. ggml_compute_forward_neg_f32(params, src0, dst);
  7285. } break;
  7286. default:
  7287. {
  7288. GGML_ASSERT(false);
  7289. } break;
  7290. }
  7291. }
  7292. // ggml_compute_forward_step
  7293. static void ggml_compute_forward_step_f32(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. struct ggml_tensor * dst) {
  7297. assert(params->ith == 0);
  7298. assert(ggml_are_same_shape(src0, dst));
  7299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7300. return;
  7301. }
  7302. const int n = ggml_nrows(src0);
  7303. const int nc = src0->ne[0];
  7304. assert(dst->nb[0] == sizeof(float));
  7305. assert(src0->nb[0] == sizeof(float));
  7306. for (int i = 0; i < n; i++) {
  7307. ggml_vec_step_f32(nc,
  7308. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7309. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7310. }
  7311. }
  7312. static void ggml_compute_forward_step(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_step_f32(params, src0, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_relu
  7328. static void ggml_compute_forward_relu_f32(
  7329. const struct ggml_compute_params * params,
  7330. const struct ggml_tensor * src0,
  7331. struct ggml_tensor * dst) {
  7332. assert(params->ith == 0);
  7333. assert(ggml_are_same_shape(src0, dst));
  7334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7335. return;
  7336. }
  7337. const int n = ggml_nrows(src0);
  7338. const int nc = src0->ne[0];
  7339. assert(dst->nb[0] == sizeof(float));
  7340. assert(src0->nb[0] == sizeof(float));
  7341. for (int i = 0; i < n; i++) {
  7342. ggml_vec_relu_f32(nc,
  7343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7345. }
  7346. }
  7347. static void ggml_compute_forward_relu(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. struct ggml_tensor * dst) {
  7351. switch (src0->type) {
  7352. case GGML_TYPE_F32:
  7353. {
  7354. ggml_compute_forward_relu_f32(params, src0, dst);
  7355. } break;
  7356. default:
  7357. {
  7358. GGML_ASSERT(false);
  7359. } break;
  7360. }
  7361. }
  7362. // ggml_compute_forward_gelu
  7363. static void ggml_compute_forward_gelu_f32(
  7364. const struct ggml_compute_params * params,
  7365. const struct ggml_tensor * src0,
  7366. struct ggml_tensor * dst) {
  7367. GGML_ASSERT(ggml_is_contiguous(src0));
  7368. GGML_ASSERT(ggml_is_contiguous(dst));
  7369. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7371. return;
  7372. }
  7373. const int ith = params->ith;
  7374. const int nth = params->nth;
  7375. const int nc = src0->ne[0];
  7376. const int nr = ggml_nrows(src0);
  7377. // rows per thread
  7378. const int dr = (nr + nth - 1)/nth;
  7379. // row range for this thread
  7380. const int ir0 = dr*ith;
  7381. const int ir1 = MIN(ir0 + dr, nr);
  7382. for (int i1 = ir0; i1 < ir1; i1++) {
  7383. ggml_vec_gelu_f32(nc,
  7384. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7385. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7386. #ifndef NDEBUG
  7387. for (int k = 0; k < nc; k++) {
  7388. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7389. UNUSED(x);
  7390. assert(!isnan(x));
  7391. assert(!isinf(x));
  7392. }
  7393. #endif
  7394. }
  7395. }
  7396. static void ggml_compute_forward_gelu(
  7397. const struct ggml_compute_params * params,
  7398. const struct ggml_tensor * src0,
  7399. struct ggml_tensor * dst) {
  7400. switch (src0->type) {
  7401. case GGML_TYPE_F32:
  7402. {
  7403. ggml_compute_forward_gelu_f32(params, src0, dst);
  7404. } break;
  7405. default:
  7406. {
  7407. GGML_ASSERT(false);
  7408. } break;
  7409. }
  7410. //printf("XXXXXXXX gelu\n");
  7411. }
  7412. // ggml_compute_forward_silu
  7413. static void ggml_compute_forward_silu_f32(
  7414. const struct ggml_compute_params * params,
  7415. const struct ggml_tensor * src0,
  7416. struct ggml_tensor * dst) {
  7417. GGML_ASSERT(ggml_is_contiguous(src0));
  7418. GGML_ASSERT(ggml_is_contiguous(dst));
  7419. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7421. return;
  7422. }
  7423. const int ith = params->ith;
  7424. const int nth = params->nth;
  7425. const int nc = src0->ne[0];
  7426. const int nr = ggml_nrows(src0);
  7427. // rows per thread
  7428. const int dr = (nr + nth - 1)/nth;
  7429. // row range for this thread
  7430. const int ir0 = dr*ith;
  7431. const int ir1 = MIN(ir0 + dr, nr);
  7432. for (int i1 = ir0; i1 < ir1; i1++) {
  7433. ggml_vec_silu_f32(nc,
  7434. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7435. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7436. #ifndef NDEBUG
  7437. for (int k = 0; k < nc; k++) {
  7438. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7439. UNUSED(x);
  7440. assert(!isnan(x));
  7441. assert(!isinf(x));
  7442. }
  7443. #endif
  7444. }
  7445. }
  7446. static void ggml_compute_forward_silu(
  7447. const struct ggml_compute_params * params,
  7448. const struct ggml_tensor * src0,
  7449. struct ggml_tensor * dst) {
  7450. switch (src0->type) {
  7451. case GGML_TYPE_F32:
  7452. {
  7453. ggml_compute_forward_silu_f32(params, src0, dst);
  7454. } break;
  7455. default:
  7456. {
  7457. GGML_ASSERT(false);
  7458. } break;
  7459. }
  7460. }
  7461. // ggml_compute_forward_silu_back
  7462. static void ggml_compute_forward_silu_back_f32(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. const struct ggml_tensor * grad,
  7466. struct ggml_tensor * dst) {
  7467. GGML_ASSERT(ggml_is_contiguous(grad));
  7468. GGML_ASSERT(ggml_is_contiguous(src0));
  7469. GGML_ASSERT(ggml_is_contiguous(dst));
  7470. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7471. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7473. return;
  7474. }
  7475. const int ith = params->ith;
  7476. const int nth = params->nth;
  7477. const int nc = src0->ne[0];
  7478. const int nr = ggml_nrows(src0);
  7479. // rows per thread
  7480. const int dr = (nr + nth - 1)/nth;
  7481. // row range for this thread
  7482. const int ir0 = dr*ith;
  7483. const int ir1 = MIN(ir0 + dr, nr);
  7484. for (int i1 = ir0; i1 < ir1; i1++) {
  7485. ggml_vec_silu_backward_f32(nc,
  7486. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7487. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7488. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7489. #ifndef NDEBUG
  7490. for (int k = 0; k < nc; k++) {
  7491. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7492. UNUSED(x);
  7493. assert(!isnan(x));
  7494. assert(!isinf(x));
  7495. }
  7496. #endif
  7497. }
  7498. }
  7499. static void ggml_compute_forward_silu_back(
  7500. const struct ggml_compute_params * params,
  7501. const struct ggml_tensor * src0,
  7502. const struct ggml_tensor * grad,
  7503. struct ggml_tensor * dst) {
  7504. switch (src0->type) {
  7505. case GGML_TYPE_F32:
  7506. {
  7507. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7508. } break;
  7509. default:
  7510. {
  7511. GGML_ASSERT(false);
  7512. } break;
  7513. }
  7514. }
  7515. // ggml_compute_forward_norm
  7516. static void ggml_compute_forward_norm_f32(
  7517. const struct ggml_compute_params * params,
  7518. const struct ggml_tensor * src0,
  7519. struct ggml_tensor * dst) {
  7520. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7522. return;
  7523. }
  7524. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7525. const int ith = params->ith;
  7526. const int nth = params->nth;
  7527. const int64_t ne00 = src0->ne[0];
  7528. const int64_t ne01 = src0->ne[1];
  7529. const int64_t ne02 = src0->ne[2];
  7530. const int64_t ne03 = src0->ne[3];
  7531. const size_t nb01 = src0->nb[1];
  7532. const size_t nb02 = src0->nb[2];
  7533. const size_t nb03 = src0->nb[3];
  7534. const size_t nb1 = dst->nb[1];
  7535. const size_t nb2 = dst->nb[2];
  7536. const size_t nb3 = dst->nb[3];
  7537. const float eps = 1e-5f; // TODO: make this a parameter
  7538. // TODO: optimize
  7539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7541. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7542. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7543. ggml_float sum = 0.0;
  7544. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7545. sum += (ggml_float)x[i00];
  7546. }
  7547. float mean = sum/ne00;
  7548. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7549. ggml_float sum2 = 0.0;
  7550. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7551. float v = x[i00] - mean;
  7552. y[i00] = v;
  7553. sum2 += (ggml_float)(v*v);
  7554. }
  7555. float variance = sum2/ne00;
  7556. const float scale = 1.0f/sqrtf(variance + eps);
  7557. ggml_vec_scale_f32(ne00, y, scale);
  7558. }
  7559. }
  7560. }
  7561. }
  7562. static void ggml_compute_forward_norm(
  7563. const struct ggml_compute_params * params,
  7564. const struct ggml_tensor * src0,
  7565. struct ggml_tensor * dst) {
  7566. switch (src0->type) {
  7567. case GGML_TYPE_F32:
  7568. {
  7569. ggml_compute_forward_norm_f32(params, src0, dst);
  7570. } break;
  7571. default:
  7572. {
  7573. GGML_ASSERT(false);
  7574. } break;
  7575. }
  7576. }
  7577. static void ggml_compute_forward_rms_norm_f32(
  7578. const struct ggml_compute_params * params,
  7579. const struct ggml_tensor * src0,
  7580. struct ggml_tensor * dst) {
  7581. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7582. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7583. return;
  7584. }
  7585. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7586. const int ith = params->ith;
  7587. const int nth = params->nth;
  7588. const int64_t ne00 = src0->ne[0];
  7589. const int64_t ne01 = src0->ne[1];
  7590. const int64_t ne02 = src0->ne[2];
  7591. const int64_t ne03 = src0->ne[3];
  7592. const size_t nb01 = src0->nb[1];
  7593. const size_t nb02 = src0->nb[2];
  7594. const size_t nb03 = src0->nb[3];
  7595. const size_t nb1 = dst->nb[1];
  7596. const size_t nb2 = dst->nb[2];
  7597. const size_t nb3 = dst->nb[3];
  7598. const float eps = 1e-6f; // TODO: make this a parameter
  7599. // TODO: optimize
  7600. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7601. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7602. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7603. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7604. ggml_float sum = 0.0;
  7605. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7606. sum += (ggml_float)(x[i00] * x[i00]);
  7607. }
  7608. const float mean = sum/ne00;
  7609. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7610. memcpy(y, x, ne00 * sizeof(float));
  7611. // for (int i00 = 0; i00 < ne00; i00++) {
  7612. // y[i00] = x[i00];
  7613. // }
  7614. const float scale = 1.0f/sqrtf(mean + eps);
  7615. ggml_vec_scale_f32(ne00, y, scale);
  7616. }
  7617. }
  7618. }
  7619. }
  7620. static void ggml_compute_forward_rms_norm(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. struct ggml_tensor * dst) {
  7624. switch (src0->type) {
  7625. case GGML_TYPE_F32:
  7626. {
  7627. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7628. } break;
  7629. default:
  7630. {
  7631. GGML_ASSERT(false);
  7632. } break;
  7633. }
  7634. }
  7635. static void ggml_compute_forward_rms_norm_back_f32(
  7636. const struct ggml_compute_params * params,
  7637. const struct ggml_tensor * src0,
  7638. const struct ggml_tensor * src1,
  7639. struct ggml_tensor * dst) {
  7640. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7642. return;
  7643. }
  7644. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7645. const int ith = params->ith;
  7646. const int nth = params->nth;
  7647. const int64_t ne00 = src0->ne[0];
  7648. const int64_t ne01 = src0->ne[1];
  7649. const int64_t ne02 = src0->ne[2];
  7650. const int64_t ne03 = src0->ne[3];
  7651. const size_t nb01 = src0->nb[1];
  7652. const size_t nb02 = src0->nb[2];
  7653. const size_t nb03 = src0->nb[3];
  7654. const size_t nb11 = src1->nb[1];
  7655. const size_t nb12 = src1->nb[2];
  7656. const size_t nb13 = src1->nb[3];
  7657. const size_t nb1 = dst->nb[1];
  7658. const size_t nb2 = dst->nb[2];
  7659. const size_t nb3 = dst->nb[3];
  7660. const float eps = 1e-6f; // TODO: make this a parameter
  7661. // TODO: optimize
  7662. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7663. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7664. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7665. // src1 is same shape as src0 => same indices
  7666. const int64_t i11 = i01;
  7667. const int64_t i12 = i02;
  7668. const int64_t i13 = i03;
  7669. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7670. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7671. ggml_float sum_xx = 0.0;
  7672. ggml_float sum_xdz = 0.0;
  7673. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7674. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7675. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7676. }
  7677. //const float mean = (float)(sum_xx)/ne00;
  7678. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7679. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7680. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7681. // we could cache rms from forward pass to improve performance.
  7682. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7683. //const float rms = sqrtf(mean_eps);
  7684. const float rrms = 1.0f / sqrtf(mean_eps);
  7685. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7686. {
  7687. // z = rms_norm(x)
  7688. //
  7689. // rms_norm(src0) =
  7690. // scale(
  7691. // src0,
  7692. // div(
  7693. // 1,
  7694. // sqrt(
  7695. // add(
  7696. // scale(
  7697. // sum(
  7698. // sqr(
  7699. // src0)),
  7700. // (1.0/N)),
  7701. // eps))));
  7702. // postorder:
  7703. // ## op args grad
  7704. // 00 param src0 grad[#00]
  7705. // 01 const 1
  7706. // 02 sqr (#00) grad[#02]
  7707. // 03 sum (#02) grad[#03]
  7708. // 04 const 1/N
  7709. // 05 scale (#03, #04) grad[#05]
  7710. // 06 const eps
  7711. // 07 add (#05, #06) grad[#07]
  7712. // 08 sqrt (#07) grad[#08]
  7713. // 09 div (#01,#08) grad[#09]
  7714. // 10 scale (#00,#09) grad[#10]
  7715. //
  7716. // backward pass, given grad[#10]
  7717. // #10: scale
  7718. // grad[#00] += scale(grad[#10],#09)
  7719. // grad[#09] += sum(mul(grad[#10],#00))
  7720. // #09: div
  7721. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7722. // #08: sqrt
  7723. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7724. // #07: add
  7725. // grad[#05] += grad[#07]
  7726. // #05: scale
  7727. // grad[#03] += scale(grad[#05],#04)
  7728. // #03: sum
  7729. // grad[#02] += repeat(grad[#03], #02)
  7730. // #02:
  7731. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7732. //
  7733. // substitute and simplify:
  7734. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7735. // grad[#02] = repeat(grad[#03], #02)
  7736. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7737. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7738. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7739. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7740. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7741. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7742. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7743. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7744. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7745. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7746. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7747. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7748. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7749. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7750. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7751. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7752. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7753. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7754. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7755. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7756. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7757. // a = b*c + d*e
  7758. // a = b*c*f/f + d*e*f/f
  7759. // a = (b*c*f + d*e*f)*(1/f)
  7760. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7761. // a = (b + d*e/c)*c
  7762. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7763. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7764. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7765. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7766. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7767. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7768. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7769. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7770. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7771. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7772. }
  7773. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7774. // post-order:
  7775. // dx := x
  7776. // dx := scale(dx,-mean_xdz/mean_eps)
  7777. // dx := add(dx, dz)
  7778. // dx := scale(dx, rrms)
  7779. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7780. ggml_vec_cpy_f32 (ne00, dx, x);
  7781. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7782. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7783. ggml_vec_acc_f32 (ne00, dx, dz);
  7784. ggml_vec_scale_f32(ne00, dx, rrms);
  7785. }
  7786. }
  7787. }
  7788. }
  7789. static void ggml_compute_forward_rms_norm_back(
  7790. const struct ggml_compute_params * params,
  7791. const struct ggml_tensor * src0,
  7792. const struct ggml_tensor * src1,
  7793. struct ggml_tensor * dst) {
  7794. switch (src0->type) {
  7795. case GGML_TYPE_F32:
  7796. {
  7797. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7798. } break;
  7799. default:
  7800. {
  7801. GGML_ASSERT(false);
  7802. } break;
  7803. }
  7804. }
  7805. // ggml_compute_forward_mul_mat
  7806. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7807. // helper function to determine if it is better to use BLAS or not
  7808. // for large matrices, BLAS is faster
  7809. static bool ggml_compute_forward_mul_mat_use_blas(
  7810. const struct ggml_tensor * src0,
  7811. const struct ggml_tensor * src1,
  7812. struct ggml_tensor * dst) {
  7813. //const int64_t ne00 = src0->ne[0];
  7814. //const int64_t ne01 = src0->ne[1];
  7815. const int64_t ne10 = src1->ne[0];
  7816. const int64_t ne0 = dst->ne[0];
  7817. const int64_t ne1 = dst->ne[1];
  7818. // TODO: find the optimal values for these
  7819. if (ggml_is_contiguous(src0) &&
  7820. ggml_is_contiguous(src1) &&
  7821. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7822. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7823. return true;
  7824. }
  7825. return false;
  7826. }
  7827. #endif
  7828. static void ggml_compute_forward_mul_mat_f32(
  7829. const struct ggml_compute_params * params,
  7830. const struct ggml_tensor * src0,
  7831. const struct ggml_tensor * src1,
  7832. struct ggml_tensor * dst) {
  7833. int64_t t0 = ggml_perf_time_us();
  7834. UNUSED(t0);
  7835. const int64_t ne00 = src0->ne[0];
  7836. const int64_t ne01 = src0->ne[1];
  7837. const int64_t ne02 = src0->ne[2];
  7838. const int64_t ne03 = src0->ne[3];
  7839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7840. const int64_t ne10 = src1->ne[0];
  7841. #endif
  7842. const int64_t ne11 = src1->ne[1];
  7843. #ifndef NDEBUG
  7844. const int64_t ne12 = src1->ne[2];
  7845. const int64_t ne13 = src1->ne[3];
  7846. const int64_t ne0 = dst->ne[0];
  7847. const int64_t ne1 = dst->ne[1];
  7848. const int64_t ne2 = dst->ne[2];
  7849. const int64_t ne3 = dst->ne[3];
  7850. const int nb00 = src0->nb[0];
  7851. #endif
  7852. const int nb01 = src0->nb[1];
  7853. const int nb02 = src0->nb[2];
  7854. const int nb03 = src0->nb[3];
  7855. #ifndef NDEBUG
  7856. const int nb10 = src1->nb[0];
  7857. #endif
  7858. const int nb11 = src1->nb[1];
  7859. const int nb12 = src1->nb[2];
  7860. const int nb13 = src1->nb[3];
  7861. const int nb0 = dst->nb[0];
  7862. const int nb1 = dst->nb[1];
  7863. const int nb2 = dst->nb[2];
  7864. const int nb3 = dst->nb[3];
  7865. const int ith = params->ith;
  7866. const int nth = params->nth;
  7867. assert(ne02 == ne12);
  7868. assert(ne03 == ne13);
  7869. assert(ne2 == ne12);
  7870. assert(ne3 == ne13);
  7871. // we don't support permuted src0 or src1
  7872. assert(nb00 == sizeof(float));
  7873. assert(nb10 == sizeof(float));
  7874. // dst cannot be transposed or permuted
  7875. assert(nb0 == sizeof(float));
  7876. assert(nb0 <= nb1);
  7877. assert(nb1 <= nb2);
  7878. assert(nb2 <= nb3);
  7879. assert(ne0 == ne01);
  7880. assert(ne1 == ne11);
  7881. assert(ne2 == ne02);
  7882. assert(ne3 == ne03);
  7883. // nb01 >= nb00 - src0 is not transposed
  7884. // compute by src0 rows
  7885. #if defined(GGML_USE_CLBLAST)
  7886. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7887. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7888. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7889. }
  7890. return;
  7891. }
  7892. #endif
  7893. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7894. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7895. if (params->ith != 0) {
  7896. return;
  7897. }
  7898. if (params->type == GGML_TASK_INIT) {
  7899. return;
  7900. }
  7901. if (params->type == GGML_TASK_FINALIZE) {
  7902. return;
  7903. }
  7904. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7905. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7906. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7907. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7908. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7909. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7910. ne11, ne01, ne10,
  7911. 1.0f, y, ne10,
  7912. x, ne00,
  7913. 0.0f, d, ne01);
  7914. }
  7915. }
  7916. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7917. return;
  7918. }
  7919. #endif
  7920. if (params->type == GGML_TASK_INIT) {
  7921. return;
  7922. }
  7923. if (params->type == GGML_TASK_FINALIZE) {
  7924. return;
  7925. }
  7926. // parallelize by src0 rows using ggml_vec_dot_f32
  7927. // total rows in src0
  7928. const int nr = ne01*ne02*ne03;
  7929. // rows per thread
  7930. const int dr = (nr + nth - 1)/nth;
  7931. // row range for this thread
  7932. const int ir0 = dr*ith;
  7933. const int ir1 = MIN(ir0 + dr, nr);
  7934. for (int ir = ir0; ir < ir1; ++ir) {
  7935. // src0 indices
  7936. const int i03 = ir/(ne02*ne01);
  7937. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7938. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7939. for (int64_t ic = 0; ic < ne11; ++ic) {
  7940. // src1 indices
  7941. const int i13 = i03;
  7942. const int i12 = i02;
  7943. const int i11 = ic;
  7944. // dst indices
  7945. const int i0 = i01;
  7946. const int i1 = i11;
  7947. const int i2 = i02;
  7948. const int i3 = i03;
  7949. ggml_vec_dot_f32(ne00,
  7950. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7951. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7952. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7953. }
  7954. }
  7955. //int64_t t1 = ggml_perf_time_us();
  7956. //static int64_t acc = 0;
  7957. //acc += t1 - t0;
  7958. //if (t1 - t0 > 10) {
  7959. // printf("\n");
  7960. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7961. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7962. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7963. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7964. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7965. //}
  7966. }
  7967. static void ggml_compute_forward_mul_mat_f16_f32(
  7968. const struct ggml_compute_params * params,
  7969. const struct ggml_tensor * src0,
  7970. const struct ggml_tensor * src1,
  7971. struct ggml_tensor * dst) {
  7972. int64_t t0 = ggml_perf_time_us();
  7973. UNUSED(t0);
  7974. const int64_t ne00 = src0->ne[0];
  7975. const int64_t ne01 = src0->ne[1];
  7976. const int64_t ne02 = src0->ne[2];
  7977. const int64_t ne03 = src0->ne[3];
  7978. const int64_t ne10 = src1->ne[0];
  7979. const int64_t ne11 = src1->ne[1];
  7980. const int64_t ne12 = src1->ne[2];
  7981. const int64_t ne13 = src1->ne[3];
  7982. const int64_t ne0 = dst->ne[0];
  7983. const int64_t ne1 = dst->ne[1];
  7984. const int64_t ne2 = dst->ne[2];
  7985. const int64_t ne3 = dst->ne[3];
  7986. //const int64_t ne = ne0*ne1*ne2*ne3;
  7987. const int nb00 = src0->nb[0];
  7988. const int nb01 = src0->nb[1];
  7989. const int nb02 = src0->nb[2];
  7990. const int nb03 = src0->nb[3];
  7991. const int nb10 = src1->nb[0];
  7992. const int nb11 = src1->nb[1];
  7993. const int nb12 = src1->nb[2];
  7994. const int nb13 = src1->nb[3];
  7995. const int nb0 = dst->nb[0];
  7996. const int nb1 = dst->nb[1];
  7997. const int nb2 = dst->nb[2];
  7998. const int nb3 = dst->nb[3];
  7999. const int ith = params->ith;
  8000. const int nth = params->nth;
  8001. GGML_ASSERT(ne02 == ne12);
  8002. GGML_ASSERT(ne03 == ne13);
  8003. GGML_ASSERT(ne2 == ne12);
  8004. GGML_ASSERT(ne3 == ne13);
  8005. // TODO: we don't support permuted src0
  8006. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8007. // dst cannot be transposed or permuted
  8008. GGML_ASSERT(nb0 == sizeof(float));
  8009. GGML_ASSERT(nb0 <= nb1);
  8010. GGML_ASSERT(nb1 <= nb2);
  8011. GGML_ASSERT(nb2 <= nb3);
  8012. GGML_ASSERT(ne0 == ne01);
  8013. GGML_ASSERT(ne1 == ne11);
  8014. GGML_ASSERT(ne2 == ne02);
  8015. GGML_ASSERT(ne3 == ne03);
  8016. // nb01 >= nb00 - src0 is not transposed
  8017. // compute by src0 rows
  8018. #if defined(GGML_USE_CLBLAST)
  8019. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8020. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8021. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8022. }
  8023. return;
  8024. }
  8025. #endif
  8026. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8027. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8028. GGML_ASSERT(nb10 == sizeof(float));
  8029. if (params->ith != 0) {
  8030. return;
  8031. }
  8032. if (params->type == GGML_TASK_INIT) {
  8033. return;
  8034. }
  8035. if (params->type == GGML_TASK_FINALIZE) {
  8036. return;
  8037. }
  8038. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8039. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8040. float * const wdata = params->wdata;
  8041. {
  8042. size_t id = 0;
  8043. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8044. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8045. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8046. }
  8047. }
  8048. assert(id*sizeof(float) <= params->wsize);
  8049. }
  8050. const float * x = wdata;
  8051. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8052. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8053. // zT = y * xT
  8054. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8055. ne11, ne01, ne10,
  8056. 1.0f, y, ne10,
  8057. x, ne00,
  8058. 0.0f, d, ne01);
  8059. }
  8060. }
  8061. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8062. return;
  8063. }
  8064. #endif
  8065. if (params->type == GGML_TASK_INIT) {
  8066. ggml_fp16_t * const wdata = params->wdata;
  8067. size_t id = 0;
  8068. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8069. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8070. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8071. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8072. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8073. }
  8074. }
  8075. }
  8076. }
  8077. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8078. return;
  8079. }
  8080. if (params->type == GGML_TASK_FINALIZE) {
  8081. return;
  8082. }
  8083. // fp16 -> half the size, so divide by 2
  8084. // TODO: do not support transposed src1
  8085. assert(nb10/2 == sizeof(ggml_fp16_t));
  8086. // parallelize by src0 rows using ggml_vec_dot_f16
  8087. // total rows in src0
  8088. const int nr = ne01*ne02*ne03;
  8089. // rows per thread
  8090. const int dr = (nr + nth - 1)/nth;
  8091. // row range for this thread
  8092. const int ir0 = dr*ith;
  8093. const int ir1 = MIN(ir0 + dr, nr);
  8094. ggml_fp16_t * wdata = params->wdata;
  8095. for (int ir = ir0; ir < ir1; ++ir) {
  8096. // src0 indices
  8097. const int i03 = ir/(ne02*ne01);
  8098. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8099. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8100. const int i13 = i03;
  8101. const int i12 = i02;
  8102. const int i0 = i01;
  8103. const int i2 = i02;
  8104. const int i3 = i03;
  8105. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8106. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8107. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8108. for (int64_t ic = 0; ic < ne11; ++ic) {
  8109. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8110. }
  8111. }
  8112. //int64_t t1 = ggml_time_us();
  8113. //static int64_t acc = 0;
  8114. //acc += t1 - t0;
  8115. //if (t1 - t0 > 10) {
  8116. // printf("\n");
  8117. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8118. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8119. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8120. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8121. //}
  8122. }
  8123. static void ggml_compute_forward_mul_mat_q_f32(
  8124. const struct ggml_compute_params * params,
  8125. const struct ggml_tensor * src0,
  8126. const struct ggml_tensor * src1,
  8127. struct ggml_tensor * dst) {
  8128. int64_t t0 = ggml_perf_time_us();
  8129. UNUSED(t0);
  8130. const int64_t ne00 = src0->ne[0];
  8131. const int64_t ne01 = src0->ne[1];
  8132. const int64_t ne02 = src0->ne[2];
  8133. const int64_t ne03 = src0->ne[3];
  8134. const int64_t ne10 = src1->ne[0];
  8135. const int64_t ne11 = src1->ne[1];
  8136. const int64_t ne12 = src1->ne[2];
  8137. const int64_t ne13 = src1->ne[3];
  8138. const int64_t ne0 = dst->ne[0];
  8139. const int64_t ne1 = dst->ne[1];
  8140. const int64_t ne2 = dst->ne[2];
  8141. const int64_t ne3 = dst->ne[3];
  8142. const int nb00 = src0->nb[0];
  8143. const int nb01 = src0->nb[1];
  8144. const int nb02 = src0->nb[2];
  8145. const int nb03 = src0->nb[3];
  8146. const int nb10 = src1->nb[0];
  8147. const int nb11 = src1->nb[1];
  8148. const int nb12 = src1->nb[2];
  8149. const int nb13 = src1->nb[3];
  8150. const int nb0 = dst->nb[0];
  8151. const int nb1 = dst->nb[1];
  8152. const int nb2 = dst->nb[2];
  8153. const int nb3 = dst->nb[3];
  8154. const int ith = params->ith;
  8155. const int nth = params->nth;
  8156. GGML_ASSERT(ne02 == ne12);
  8157. GGML_ASSERT(ne03 == ne13);
  8158. GGML_ASSERT(ne2 == ne12);
  8159. GGML_ASSERT(ne3 == ne13);
  8160. const enum ggml_type type = src0->type;
  8161. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8162. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8163. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8164. // we don't support permuted src0 or src1
  8165. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8166. GGML_ASSERT(nb10 == sizeof(float));
  8167. // dst cannot be transposed or permuted
  8168. GGML_ASSERT(nb0 == sizeof(float));
  8169. GGML_ASSERT(nb0 <= nb1);
  8170. GGML_ASSERT(nb1 <= nb2);
  8171. GGML_ASSERT(nb2 <= nb3);
  8172. GGML_ASSERT(ne0 == ne01);
  8173. GGML_ASSERT(ne1 == ne11);
  8174. GGML_ASSERT(ne2 == ne02);
  8175. GGML_ASSERT(ne3 == ne03);
  8176. // nb01 >= nb00 - src0 is not transposed
  8177. // compute by src0 rows
  8178. #if defined(GGML_USE_CLBLAST)
  8179. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8180. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8181. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8182. }
  8183. return;
  8184. }
  8185. #endif
  8186. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8187. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8188. if (params->ith != 0) {
  8189. return;
  8190. }
  8191. if (params->type == GGML_TASK_INIT) {
  8192. return;
  8193. }
  8194. if (params->type == GGML_TASK_FINALIZE) {
  8195. return;
  8196. }
  8197. float * const wdata = params->wdata;
  8198. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8199. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8200. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8201. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8202. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8203. {
  8204. size_t id = 0;
  8205. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8206. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8207. id += ne00;
  8208. }
  8209. assert(id*sizeof(float) <= params->wsize);
  8210. }
  8211. const float * x = wdata;
  8212. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8213. ne11, ne01, ne10,
  8214. 1.0f, y, ne10,
  8215. x, ne00,
  8216. 0.0f, d, ne01);
  8217. }
  8218. }
  8219. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8220. return;
  8221. }
  8222. #endif
  8223. if (params->type == GGML_TASK_INIT) {
  8224. char * wdata = params->wdata;
  8225. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8226. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8227. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8228. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8229. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8230. wdata += row_size;
  8231. }
  8232. }
  8233. }
  8234. return;
  8235. }
  8236. if (params->type == GGML_TASK_FINALIZE) {
  8237. return;
  8238. }
  8239. // parallelize by src0 rows using ggml_vec_dot_q
  8240. // total rows in src0
  8241. const int nr = ne01*ne02*ne03;
  8242. // rows per thread
  8243. const int dr = (nr + nth - 1)/nth;
  8244. // row range for this thread
  8245. const int ir0 = dr*ith;
  8246. const int ir1 = MIN(ir0 + dr, nr);
  8247. void * wdata = params->wdata;
  8248. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8249. for (int ir = ir0; ir < ir1; ++ir) {
  8250. // src0 indices
  8251. const int i03 = ir/(ne02*ne01);
  8252. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8253. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8254. const int i13 = i03;
  8255. const int i12 = i02;
  8256. const int i0 = i01;
  8257. const int i2 = i02;
  8258. const int i3 = i03;
  8259. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8260. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8261. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8262. assert(ne00 % 32 == 0);
  8263. for (int64_t ic = 0; ic < ne11; ++ic) {
  8264. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8265. }
  8266. }
  8267. //int64_t t1 = ggml_time_us();
  8268. //static int64_t acc = 0;
  8269. //acc += t1 - t0;
  8270. //if (t1 - t0 > 10) {
  8271. // printf("\n");
  8272. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8273. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8274. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8275. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8276. //}
  8277. }
  8278. static void ggml_compute_forward_mul_mat(
  8279. const struct ggml_compute_params * params,
  8280. const struct ggml_tensor * src0,
  8281. const struct ggml_tensor * src1,
  8282. struct ggml_tensor * dst) {
  8283. switch (src0->type) {
  8284. case GGML_TYPE_Q4_0:
  8285. case GGML_TYPE_Q4_1:
  8286. case GGML_TYPE_Q5_0:
  8287. case GGML_TYPE_Q5_1:
  8288. case GGML_TYPE_Q8_0:
  8289. case GGML_TYPE_Q8_1:
  8290. case GGML_TYPE_Q2_K:
  8291. case GGML_TYPE_Q3_K:
  8292. case GGML_TYPE_Q4_K:
  8293. case GGML_TYPE_Q5_K:
  8294. case GGML_TYPE_Q6_K:
  8295. {
  8296. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8297. } break;
  8298. case GGML_TYPE_F16:
  8299. {
  8300. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8301. } break;
  8302. case GGML_TYPE_F32:
  8303. {
  8304. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8305. } break;
  8306. default:
  8307. {
  8308. GGML_ASSERT(false);
  8309. } break;
  8310. }
  8311. }
  8312. // ggml_compute_forward_scale
  8313. static void ggml_compute_forward_scale_f32(
  8314. const struct ggml_compute_params * params,
  8315. const struct ggml_tensor * src0,
  8316. const struct ggml_tensor * src1,
  8317. struct ggml_tensor * dst) {
  8318. GGML_ASSERT(ggml_is_contiguous(src0));
  8319. GGML_ASSERT(ggml_is_contiguous(dst));
  8320. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8321. GGML_ASSERT(ggml_is_scalar(src1));
  8322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8323. return;
  8324. }
  8325. // scale factor
  8326. const float v = *(float *) src1->data;
  8327. const int ith = params->ith;
  8328. const int nth = params->nth;
  8329. const int nc = src0->ne[0];
  8330. const int nr = ggml_nrows(src0);
  8331. // rows per thread
  8332. const int dr = (nr + nth - 1)/nth;
  8333. // row range for this thread
  8334. const int ir0 = dr*ith;
  8335. const int ir1 = MIN(ir0 + dr, nr);
  8336. const size_t nb01 = src0->nb[1];
  8337. const size_t nb1 = dst->nb[1];
  8338. for (int i1 = ir0; i1 < ir1; i1++) {
  8339. if (dst->data != src0->data) {
  8340. // src0 is same shape as dst => same indices
  8341. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8342. }
  8343. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8344. }
  8345. }
  8346. static void ggml_compute_forward_scale(
  8347. const struct ggml_compute_params * params,
  8348. const struct ggml_tensor * src0,
  8349. const struct ggml_tensor * src1,
  8350. struct ggml_tensor * dst) {
  8351. switch (src0->type) {
  8352. case GGML_TYPE_F32:
  8353. {
  8354. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8355. } break;
  8356. default:
  8357. {
  8358. GGML_ASSERT(false);
  8359. } break;
  8360. }
  8361. }
  8362. // ggml_compute_forward_set
  8363. static void ggml_compute_forward_set_f32(
  8364. const struct ggml_compute_params * params,
  8365. const struct ggml_tensor * src0,
  8366. const struct ggml_tensor * src1,
  8367. const struct ggml_tensor * opt0,
  8368. struct ggml_tensor * dst) {
  8369. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8370. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8371. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8372. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8373. // view src0 and dst with these strides and data offset inbytes during set
  8374. // nb0 is implicitely element_size because src0 and dst are contiguous
  8375. size_t nb1 = ((int32_t *) opt0->data)[0];
  8376. size_t nb2 = ((int32_t *) opt0->data)[1];
  8377. size_t nb3 = ((int32_t *) opt0->data)[2];
  8378. size_t offset = ((int32_t *) opt0->data)[3];
  8379. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8380. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8381. // memcpy needs to be synchronized across threads to avoid race conditions.
  8382. // => do it in INIT phase
  8383. memcpy(
  8384. ((char *) dst->data),
  8385. ((char *) src0->data),
  8386. ggml_nbytes(dst));
  8387. }
  8388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8389. return;
  8390. }
  8391. const int ith = params->ith;
  8392. const int nth = params->nth;
  8393. const int nr = ggml_nrows(src1);
  8394. const int nc = src1->ne[0];
  8395. const int64_t ne10 = src1->ne[0];
  8396. const int64_t ne11 = src1->ne[1];
  8397. const int64_t ne12 = src1->ne[2];
  8398. const int64_t ne13 = src1->ne[3];
  8399. const size_t nb10 = src1->nb[0];
  8400. const size_t nb11 = src1->nb[1];
  8401. const size_t nb12 = src1->nb[2];
  8402. const size_t nb13 = src1->nb[3];
  8403. // src0 and dst as viewed during set
  8404. const size_t nb0 = ggml_element_size(src0);
  8405. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8406. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8407. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8408. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8409. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8410. GGML_ASSERT(nb10 == sizeof(float));
  8411. // rows per thread
  8412. const int dr = (nr + nth - 1)/nth;
  8413. // row range for this thread
  8414. const int ir0 = dr*ith;
  8415. const int ir1 = MIN(ir0 + dr, nr);
  8416. for (int ir = ir0; ir < ir1; ++ir) {
  8417. // src0 and dst are viewed with shape of src1 and offset
  8418. // => same indices
  8419. const int i3 = ir/(ne12*ne11);
  8420. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8421. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8422. ggml_vec_cpy_f32(nc,
  8423. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8424. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8425. }
  8426. }
  8427. static void ggml_compute_forward_set(
  8428. const struct ggml_compute_params * params,
  8429. const struct ggml_tensor * src0,
  8430. const struct ggml_tensor * src1,
  8431. const struct ggml_tensor * opt0,
  8432. struct ggml_tensor * dst) {
  8433. switch (src0->type) {
  8434. case GGML_TYPE_F32:
  8435. {
  8436. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8437. } break;
  8438. case GGML_TYPE_F16:
  8439. case GGML_TYPE_Q4_0:
  8440. case GGML_TYPE_Q4_1:
  8441. case GGML_TYPE_Q5_0:
  8442. case GGML_TYPE_Q5_1:
  8443. case GGML_TYPE_Q8_0:
  8444. case GGML_TYPE_Q8_1:
  8445. case GGML_TYPE_Q2_K:
  8446. case GGML_TYPE_Q3_K:
  8447. case GGML_TYPE_Q4_K:
  8448. case GGML_TYPE_Q5_K:
  8449. case GGML_TYPE_Q6_K:
  8450. default:
  8451. {
  8452. GGML_ASSERT(false);
  8453. } break;
  8454. }
  8455. }
  8456. // ggml_compute_forward_cpy
  8457. static void ggml_compute_forward_cpy(
  8458. const struct ggml_compute_params * params,
  8459. const struct ggml_tensor * src0,
  8460. struct ggml_tensor * dst) {
  8461. ggml_compute_forward_dup(params, src0, dst);
  8462. }
  8463. // ggml_compute_forward_cont
  8464. static void ggml_compute_forward_cont(
  8465. const struct ggml_compute_params * params,
  8466. const struct ggml_tensor * src0,
  8467. struct ggml_tensor * dst) {
  8468. ggml_compute_forward_dup(params, src0, dst);
  8469. }
  8470. // ggml_compute_forward_reshape
  8471. static void ggml_compute_forward_reshape(
  8472. const struct ggml_compute_params * params,
  8473. const struct ggml_tensor * src0,
  8474. struct ggml_tensor * dst) {
  8475. // NOP
  8476. UNUSED(params);
  8477. UNUSED(src0);
  8478. UNUSED(dst);
  8479. }
  8480. // ggml_compute_forward_view
  8481. static void ggml_compute_forward_view(
  8482. const struct ggml_compute_params * params,
  8483. const struct ggml_tensor * src0) {
  8484. // NOP
  8485. UNUSED(params);
  8486. UNUSED(src0);
  8487. }
  8488. // ggml_compute_forward_permute
  8489. static void ggml_compute_forward_permute(
  8490. const struct ggml_compute_params * params,
  8491. const struct ggml_tensor * src0) {
  8492. // NOP
  8493. UNUSED(params);
  8494. UNUSED(src0);
  8495. }
  8496. // ggml_compute_forward_transpose
  8497. static void ggml_compute_forward_transpose(
  8498. const struct ggml_compute_params * params,
  8499. const struct ggml_tensor * src0) {
  8500. // NOP
  8501. UNUSED(params);
  8502. UNUSED(src0);
  8503. }
  8504. // ggml_compute_forward_get_rows
  8505. static void ggml_compute_forward_get_rows_q(
  8506. const struct ggml_compute_params * params,
  8507. const struct ggml_tensor * src0,
  8508. const struct ggml_tensor * src1,
  8509. struct ggml_tensor * dst) {
  8510. assert(params->ith == 0);
  8511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8512. return;
  8513. }
  8514. const int nc = src0->ne[0];
  8515. const int nr = ggml_nelements(src1);
  8516. const enum ggml_type type = src0->type;
  8517. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8518. assert( dst->ne[0] == nc);
  8519. assert( dst->ne[1] == nr);
  8520. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8521. for (int i = 0; i < nr; ++i) {
  8522. const int r = ((int32_t *) src1->data)[i];
  8523. dequantize_row_q(
  8524. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8525. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8526. }
  8527. }
  8528. static void ggml_compute_forward_get_rows_f16(
  8529. const struct ggml_compute_params * params,
  8530. const struct ggml_tensor * src0,
  8531. const struct ggml_tensor * src1,
  8532. struct ggml_tensor * dst) {
  8533. assert(params->ith == 0);
  8534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8535. return;
  8536. }
  8537. const int nc = src0->ne[0];
  8538. const int nr = ggml_nelements(src1);
  8539. assert( dst->ne[0] == nc);
  8540. assert( dst->ne[1] == nr);
  8541. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8542. for (int i = 0; i < nr; ++i) {
  8543. const int r = ((int32_t *) src1->data)[i];
  8544. for (int j = 0; j < nc; ++j) {
  8545. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8546. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8547. }
  8548. }
  8549. }
  8550. static void ggml_compute_forward_get_rows_f32(
  8551. const struct ggml_compute_params * params,
  8552. const struct ggml_tensor * src0,
  8553. const struct ggml_tensor * src1,
  8554. struct ggml_tensor * dst) {
  8555. assert(params->ith == 0);
  8556. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8557. return;
  8558. }
  8559. const int nc = src0->ne[0];
  8560. const int nr = ggml_nelements(src1);
  8561. assert( dst->ne[0] == nc);
  8562. assert( dst->ne[1] == nr);
  8563. assert(src0->nb[0] == sizeof(float));
  8564. for (int i = 0; i < nr; ++i) {
  8565. const int r = ((int32_t *) src1->data)[i];
  8566. ggml_vec_cpy_f32(nc,
  8567. (float *) ((char *) dst->data + i*dst->nb[1]),
  8568. (float *) ((char *) src0->data + r*src0->nb[1]));
  8569. }
  8570. }
  8571. static void ggml_compute_forward_get_rows(
  8572. const struct ggml_compute_params * params,
  8573. const struct ggml_tensor * src0,
  8574. const struct ggml_tensor * src1,
  8575. struct ggml_tensor * dst) {
  8576. switch (src0->type) {
  8577. case GGML_TYPE_Q4_0:
  8578. case GGML_TYPE_Q4_1:
  8579. case GGML_TYPE_Q5_0:
  8580. case GGML_TYPE_Q5_1:
  8581. case GGML_TYPE_Q8_0:
  8582. case GGML_TYPE_Q8_1:
  8583. case GGML_TYPE_Q2_K:
  8584. case GGML_TYPE_Q3_K:
  8585. case GGML_TYPE_Q4_K:
  8586. case GGML_TYPE_Q5_K:
  8587. case GGML_TYPE_Q6_K:
  8588. {
  8589. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8590. } break;
  8591. case GGML_TYPE_F16:
  8592. {
  8593. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8594. } break;
  8595. case GGML_TYPE_F32:
  8596. {
  8597. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8598. } break;
  8599. default:
  8600. {
  8601. GGML_ASSERT(false);
  8602. } break;
  8603. }
  8604. //static bool first = true;
  8605. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8606. //if (first) {
  8607. // first = false;
  8608. //} else {
  8609. // for (int k = 0; k < dst->ne[1]; ++k) {
  8610. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8611. // for (int i = 0; i < 16; ++i) {
  8612. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8613. // }
  8614. // printf("\n");
  8615. // }
  8616. // printf("\n");
  8617. // }
  8618. // printf("\n");
  8619. // exit(0);
  8620. //}
  8621. }
  8622. // ggml_compute_forward_get_rows_back
  8623. static void ggml_compute_forward_get_rows_back_f32_f16(
  8624. const struct ggml_compute_params * params,
  8625. const struct ggml_tensor * src0,
  8626. const struct ggml_tensor * src1,
  8627. const struct ggml_tensor * opt0,
  8628. struct ggml_tensor * dst) {
  8629. GGML_ASSERT(params->ith == 0);
  8630. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8631. GGML_ASSERT(ggml_is_contiguous(opt0));
  8632. GGML_ASSERT(ggml_is_contiguous(dst));
  8633. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8635. return;
  8636. }
  8637. const int nc = src0->ne[0];
  8638. const int nr = ggml_nelements(src1);
  8639. GGML_ASSERT( dst->ne[0] == nc);
  8640. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8641. for (int i = 0; i < nr; ++i) {
  8642. const int r = ((int32_t *) src1->data)[i];
  8643. for (int j = 0; j < nc; ++j) {
  8644. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8645. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8646. }
  8647. }
  8648. }
  8649. static void ggml_compute_forward_get_rows_back_f32(
  8650. const struct ggml_compute_params * params,
  8651. const struct ggml_tensor * src0,
  8652. const struct ggml_tensor * src1,
  8653. const struct ggml_tensor * opt0,
  8654. struct ggml_tensor * dst) {
  8655. GGML_ASSERT(params->ith == 0);
  8656. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8657. GGML_ASSERT(ggml_is_contiguous(opt0));
  8658. GGML_ASSERT(ggml_is_contiguous(dst));
  8659. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8661. return;
  8662. }
  8663. const int nc = src0->ne[0];
  8664. const int nr = ggml_nelements(src1);
  8665. GGML_ASSERT( dst->ne[0] == nc);
  8666. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8667. for (int i = 0; i < nr; ++i) {
  8668. const int r = ((int32_t *) src1->data)[i];
  8669. ggml_vec_add_f32(nc,
  8670. (float *) ((char *) dst->data + r*dst->nb[1]),
  8671. (float *) ((char *) dst->data + r*dst->nb[1]),
  8672. (float *) ((char *) src0->data + i*src0->nb[1]));
  8673. }
  8674. }
  8675. static void ggml_compute_forward_get_rows_back(
  8676. const struct ggml_compute_params * params,
  8677. const struct ggml_tensor * src0,
  8678. const struct ggml_tensor * src1,
  8679. const struct ggml_tensor * opt0,
  8680. struct ggml_tensor * dst) {
  8681. switch (src0->type) {
  8682. case GGML_TYPE_F16:
  8683. {
  8684. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8685. } break;
  8686. case GGML_TYPE_F32:
  8687. {
  8688. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8689. } break;
  8690. default:
  8691. {
  8692. GGML_ASSERT(false);
  8693. } break;
  8694. }
  8695. //static bool first = true;
  8696. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8697. //if (first) {
  8698. // first = false;
  8699. //} else {
  8700. // for (int k = 0; k < dst->ne[1]; ++k) {
  8701. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8702. // for (int i = 0; i < 16; ++i) {
  8703. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8704. // }
  8705. // printf("\n");
  8706. // }
  8707. // printf("\n");
  8708. // }
  8709. // printf("\n");
  8710. // exit(0);
  8711. //}
  8712. }
  8713. // ggml_compute_forward_diag
  8714. static void ggml_compute_forward_diag_f32(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. struct ggml_tensor * dst) {
  8718. GGML_ASSERT(params->ith == 0);
  8719. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8720. return;
  8721. }
  8722. // TODO: handle transposed/permuted matrices
  8723. const int ne00 = src0->ne[0];
  8724. const int ne01 = src0->ne[1];
  8725. const int ne02 = src0->ne[2];
  8726. const int ne03 = src0->ne[3];
  8727. const int ne0 = dst->ne[0];
  8728. const int ne1 = dst->ne[1];
  8729. const int ne2 = dst->ne[2];
  8730. const int ne3 = dst->ne[3];
  8731. GGML_ASSERT(ne00 == ne0);
  8732. GGML_ASSERT(ne00 == ne1);
  8733. GGML_ASSERT(ne01 == 1);
  8734. GGML_ASSERT(ne02 == ne2);
  8735. GGML_ASSERT(ne03 == ne3);
  8736. const int nb00 = src0->nb[0];
  8737. //const int nb01 = src0->nb[1];
  8738. const int nb02 = src0->nb[2];
  8739. const int nb03 = src0->nb[3];
  8740. const int nb0 = dst->nb[0];
  8741. const int nb1 = dst->nb[1];
  8742. const int nb2 = dst->nb[2];
  8743. const int nb3 = dst->nb[3];
  8744. GGML_ASSERT(nb00 == sizeof(float));
  8745. GGML_ASSERT(nb0 == sizeof(float));
  8746. for (int i3 = 0; i3 < ne3; i3++) {
  8747. for (int i2 = 0; i2 < ne2; i2++) {
  8748. for (int i1 = 0; i1 < ne1; i1++) {
  8749. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8750. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8751. for (int i0 = 0; i0 < i1; i0++) {
  8752. d[i0] = 0;
  8753. }
  8754. d[i1] = s[i1];
  8755. for (int i0 = i1+1; i0 < ne0; i0++) {
  8756. d[i0] = 0;
  8757. }
  8758. }
  8759. }
  8760. }
  8761. }
  8762. static void ggml_compute_forward_diag(
  8763. const struct ggml_compute_params * params,
  8764. const struct ggml_tensor * src0,
  8765. struct ggml_tensor * dst) {
  8766. switch (src0->type) {
  8767. case GGML_TYPE_F32:
  8768. {
  8769. ggml_compute_forward_diag_f32(params, src0, dst);
  8770. } break;
  8771. default:
  8772. {
  8773. GGML_ASSERT(false);
  8774. } break;
  8775. }
  8776. }
  8777. // ggml_compute_forward_diag_mask_inf
  8778. static void ggml_compute_forward_diag_mask_f32(
  8779. const struct ggml_compute_params * params,
  8780. const struct ggml_tensor * src0,
  8781. const struct ggml_tensor * src1,
  8782. struct ggml_tensor * dst,
  8783. const float value) {
  8784. assert(src1->type == GGML_TYPE_I32);
  8785. assert(ggml_nelements(src1) == 2);
  8786. const int ith = params->ith;
  8787. const int nth = params->nth;
  8788. const int n_past = ((int32_t *) src1->data)[0];
  8789. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8790. assert(n_past >= 0);
  8791. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8792. // memcpy needs to be synchronized across threads to avoid race conditions.
  8793. // => do it in INIT phase
  8794. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8795. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8796. memcpy(
  8797. ((char *) dst->data),
  8798. ((char *) src0->data),
  8799. ggml_nbytes(dst));
  8800. }
  8801. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8802. return;
  8803. }
  8804. // TODO: handle transposed/permuted matrices
  8805. const int n = ggml_nrows(src0);
  8806. const int nc = src0->ne[0];
  8807. const int nr = src0->ne[1];
  8808. const int nz = n/nr;
  8809. assert( dst->nb[0] == sizeof(float));
  8810. assert(src0->nb[0] == sizeof(float));
  8811. for (int k = 0; k < nz; k++) {
  8812. for (int j = ith; j < nr; j += nth) {
  8813. for (int i = n_past; i < nc; i++) {
  8814. if (i > n_past + j) {
  8815. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8816. }
  8817. }
  8818. }
  8819. }
  8820. }
  8821. static void ggml_compute_forward_diag_mask_inf(
  8822. const struct ggml_compute_params * params,
  8823. const struct ggml_tensor * src0,
  8824. const struct ggml_tensor * src1,
  8825. struct ggml_tensor * dst) {
  8826. switch (src0->type) {
  8827. case GGML_TYPE_F32:
  8828. {
  8829. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8830. } break;
  8831. default:
  8832. {
  8833. GGML_ASSERT(false);
  8834. } break;
  8835. }
  8836. }
  8837. static void ggml_compute_forward_diag_mask_zero(
  8838. const struct ggml_compute_params * params,
  8839. const struct ggml_tensor * src0,
  8840. const struct ggml_tensor * src1,
  8841. struct ggml_tensor * dst) {
  8842. switch (src0->type) {
  8843. case GGML_TYPE_F32:
  8844. {
  8845. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8846. } break;
  8847. default:
  8848. {
  8849. GGML_ASSERT(false);
  8850. } break;
  8851. }
  8852. }
  8853. // ggml_compute_forward_soft_max
  8854. static void ggml_compute_forward_soft_max_f32(
  8855. const struct ggml_compute_params * params,
  8856. const struct ggml_tensor * src0,
  8857. struct ggml_tensor * dst) {
  8858. GGML_ASSERT(ggml_is_contiguous(src0));
  8859. GGML_ASSERT(ggml_is_contiguous(dst));
  8860. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8862. return;
  8863. }
  8864. // TODO: handle transposed/permuted matrices
  8865. const int ith = params->ith;
  8866. const int nth = params->nth;
  8867. const int nc = src0->ne[0];
  8868. const int nr = ggml_nrows(src0);
  8869. // rows per thread
  8870. const int dr = (nr + nth - 1)/nth;
  8871. // row range for this thread
  8872. const int ir0 = dr*ith;
  8873. const int ir1 = MIN(ir0 + dr, nr);
  8874. for (int i1 = ir0; i1 < ir1; i1++) {
  8875. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8876. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8877. #ifndef NDEBUG
  8878. for (int i = 0; i < nc; ++i) {
  8879. //printf("p[%d] = %f\n", i, p[i]);
  8880. assert(!isnan(sp[i]));
  8881. }
  8882. #endif
  8883. float max = -INFINITY;
  8884. ggml_vec_max_f32(nc, &max, sp);
  8885. ggml_float sum = 0.0;
  8886. uint16_t scvt;
  8887. for (int i = 0; i < nc; i++) {
  8888. if (sp[i] == -INFINITY) {
  8889. dp[i] = 0.0f;
  8890. } else {
  8891. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8892. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8893. memcpy(&scvt, &s, sizeof(scvt));
  8894. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8895. sum += (ggml_float)val;
  8896. dp[i] = val;
  8897. }
  8898. }
  8899. assert(sum > 0.0);
  8900. sum = 1.0/sum;
  8901. ggml_vec_scale_f32(nc, dp, sum);
  8902. #ifndef NDEBUG
  8903. for (int i = 0; i < nc; ++i) {
  8904. assert(!isnan(dp[i]));
  8905. assert(!isinf(dp[i]));
  8906. }
  8907. #endif
  8908. }
  8909. }
  8910. static void ggml_compute_forward_soft_max(
  8911. const struct ggml_compute_params * params,
  8912. const struct ggml_tensor * src0,
  8913. struct ggml_tensor * dst) {
  8914. switch (src0->type) {
  8915. case GGML_TYPE_F32:
  8916. {
  8917. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8918. } break;
  8919. default:
  8920. {
  8921. GGML_ASSERT(false);
  8922. } break;
  8923. }
  8924. }
  8925. // ggml_compute_forward_alibi
  8926. static void ggml_compute_forward_alibi_f32(
  8927. const struct ggml_compute_params * params,
  8928. const struct ggml_tensor * src0,
  8929. const struct ggml_tensor * src1,
  8930. struct ggml_tensor * dst) {
  8931. assert(params->ith == 0);
  8932. assert(src1->type == GGML_TYPE_I32);
  8933. assert(ggml_nelements(src1) == 3);
  8934. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8935. return;
  8936. }
  8937. const int n_past = ((int32_t *) src1->data)[0];
  8938. const int n_head = ((int32_t *) src1->data)[1];
  8939. const float max_bias = ((float *) src1->data)[2];
  8940. assert(n_past >= 0);
  8941. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8942. const int ne1 = src0->ne[1]; // seq_len_without_past
  8943. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8944. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8945. const int n = ggml_nrows(src0);
  8946. const int ne2_ne3 = n/ne1; // ne2*ne3
  8947. const int nb0 = src0->nb[0];
  8948. const int nb1 = src0->nb[1];
  8949. const int nb2 = src0->nb[2];
  8950. //const int nb3 = src0->nb[3];
  8951. assert(nb0 == sizeof(float));
  8952. assert(ne1 + n_past == ne0); (void) n_past;
  8953. // add alibi to src0 (KQ_scaled)
  8954. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8955. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8956. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8957. for (int i = 0; i < ne0; i++) {
  8958. for (int j = 0; j < ne1; j++) {
  8959. for (int k = 0; k < ne2_ne3; k++) {
  8960. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8961. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8962. // TODO: k*nb2 or k*nb3
  8963. float m_k;
  8964. if (k < n_heads_log2_floor) {
  8965. m_k = powf(m0, k + 1);
  8966. } else {
  8967. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8968. }
  8969. pdst[0] = (i-ne0+1) * m_k + src[0];
  8970. }
  8971. }
  8972. }
  8973. }
  8974. static void ggml_compute_forward_alibi_f16(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. struct ggml_tensor * dst) {
  8979. assert(params->ith == 0);
  8980. assert(src1->type == GGML_TYPE_I32);
  8981. assert(ggml_nelements(src1) == 3);
  8982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8983. return;
  8984. }
  8985. const int n_past = ((int32_t *) src1->data)[0];
  8986. const int n_head = ((int32_t *) src1->data)[1];
  8987. const float max_bias = ((float *) src1->data)[2];
  8988. assert(n_past >= 0);
  8989. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8990. const int ne1 = src0->ne[1]; // seq_len_without_past
  8991. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8992. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8993. const int n = ggml_nrows(src0);
  8994. const int ne2_ne3 = n/ne1; // ne2*ne3
  8995. const int nb0 = src0->nb[0];
  8996. const int nb1 = src0->nb[1];
  8997. const int nb2 = src0->nb[2];
  8998. //const int nb3 = src0->nb[3];
  8999. assert(nb0 == sizeof(ggml_fp16_t));
  9000. assert(ne1 + n_past == ne0); (void) n_past;
  9001. // add alibi to src0 (KQ_scaled)
  9002. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9003. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9004. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9005. for (int i = 0; i < ne0; i++) {
  9006. for (int j = 0; j < ne1; j++) {
  9007. for (int k = 0; k < ne2_ne3; k++) {
  9008. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9009. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9010. // TODO: k*nb2 or k*nb3
  9011. float m_k;
  9012. if (k < n_heads_log2_floor) {
  9013. m_k = powf(m0, k + 1);
  9014. } else {
  9015. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9016. }
  9017. // we return F32
  9018. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9019. }
  9020. }
  9021. }
  9022. }
  9023. static void ggml_compute_forward_alibi(
  9024. const struct ggml_compute_params * params,
  9025. const struct ggml_tensor * src0,
  9026. const struct ggml_tensor * src1,
  9027. struct ggml_tensor * dst) {
  9028. switch (src0->type) {
  9029. case GGML_TYPE_F16:
  9030. {
  9031. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9032. } break;
  9033. case GGML_TYPE_F32:
  9034. {
  9035. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9036. } break;
  9037. case GGML_TYPE_Q4_0:
  9038. case GGML_TYPE_Q4_1:
  9039. case GGML_TYPE_Q5_0:
  9040. case GGML_TYPE_Q5_1:
  9041. case GGML_TYPE_Q8_0:
  9042. case GGML_TYPE_Q8_1:
  9043. case GGML_TYPE_Q2_K:
  9044. case GGML_TYPE_Q3_K:
  9045. case GGML_TYPE_Q4_K:
  9046. case GGML_TYPE_Q5_K:
  9047. case GGML_TYPE_Q6_K:
  9048. case GGML_TYPE_Q8_K:
  9049. case GGML_TYPE_I8:
  9050. case GGML_TYPE_I16:
  9051. case GGML_TYPE_I32:
  9052. case GGML_TYPE_COUNT:
  9053. {
  9054. GGML_ASSERT(false);
  9055. } break;
  9056. }
  9057. }
  9058. // ggml_compute_forward_clamp
  9059. static void ggml_compute_forward_clamp_f32(
  9060. const struct ggml_compute_params * params,
  9061. const struct ggml_tensor * src0,
  9062. const struct ggml_tensor * src1,
  9063. struct ggml_tensor * dst) {
  9064. assert(params->ith == 0);
  9065. assert(src1->type == GGML_TYPE_I32);
  9066. assert(ggml_nelements(src1) == 2);
  9067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9068. return;
  9069. }
  9070. const int min = ((float *) src1->data)[0];
  9071. const int max = ((float *) src1->data)[1];
  9072. const int ith = params->ith;
  9073. const int nth = params->nth;
  9074. const int n = ggml_nrows(src0);
  9075. const int nc = src0->ne[0];
  9076. const size_t nb00 = src0->nb[0];
  9077. const size_t nb01 = src0->nb[1];
  9078. const size_t nb0 = dst->nb[0];
  9079. const size_t nb1 = dst->nb[1];
  9080. GGML_ASSERT( nb0 == sizeof(float));
  9081. GGML_ASSERT(nb00 == sizeof(float));
  9082. for (int j = ith; j < n; j += nth) {
  9083. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9084. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9085. for (int i = 0; i < nc; i++) {
  9086. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9087. }
  9088. }
  9089. }
  9090. static void ggml_compute_forward_clamp(
  9091. const struct ggml_compute_params * params,
  9092. const struct ggml_tensor * src0,
  9093. const struct ggml_tensor * src1,
  9094. struct ggml_tensor * dst) {
  9095. switch (src0->type) {
  9096. case GGML_TYPE_F32:
  9097. {
  9098. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9099. } break;
  9100. case GGML_TYPE_F16:
  9101. case GGML_TYPE_Q4_0:
  9102. case GGML_TYPE_Q4_1:
  9103. case GGML_TYPE_Q5_0:
  9104. case GGML_TYPE_Q5_1:
  9105. case GGML_TYPE_Q8_0:
  9106. case GGML_TYPE_Q8_1:
  9107. case GGML_TYPE_Q2_K:
  9108. case GGML_TYPE_Q3_K:
  9109. case GGML_TYPE_Q4_K:
  9110. case GGML_TYPE_Q5_K:
  9111. case GGML_TYPE_Q6_K:
  9112. case GGML_TYPE_Q8_K:
  9113. case GGML_TYPE_I8:
  9114. case GGML_TYPE_I16:
  9115. case GGML_TYPE_I32:
  9116. case GGML_TYPE_COUNT:
  9117. {
  9118. GGML_ASSERT(false);
  9119. } break;
  9120. }
  9121. }
  9122. // ggml_compute_forward_rope
  9123. static void ggml_compute_forward_rope_f32(
  9124. const struct ggml_compute_params * params,
  9125. const struct ggml_tensor * src0,
  9126. const struct ggml_tensor * src1,
  9127. struct ggml_tensor * dst) {
  9128. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9129. GGML_ASSERT(ggml_nelements(src1) == 3);
  9130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9131. return;
  9132. }
  9133. const int n_past = ((int32_t *) src1->data)[0];
  9134. const int n_dims = ((int32_t *) src1->data)[1];
  9135. const int mode = ((int32_t *) src1->data)[2];
  9136. assert(n_past >= 0);
  9137. const size_t nb00 = src0->nb[0];
  9138. const size_t nb01 = src0->nb[1];
  9139. const size_t nb02 = src0->nb[2];
  9140. const size_t nb03 = src0->nb[3];
  9141. const int64_t ne0 = dst->ne[0];
  9142. const int64_t ne1 = dst->ne[1];
  9143. const int64_t ne2 = dst->ne[2];
  9144. const int64_t ne3 = dst->ne[3];
  9145. const size_t nb0 = dst->nb[0];
  9146. const size_t nb1 = dst->nb[1];
  9147. const size_t nb2 = dst->nb[2];
  9148. const size_t nb3 = dst->nb[3];
  9149. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9150. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9151. GGML_ASSERT(nb00 == sizeof(float));
  9152. const int ith = params->ith;
  9153. const int nth = params->nth;
  9154. const int nr = ggml_nrows(dst);
  9155. GGML_ASSERT(n_dims <= ne0);
  9156. GGML_ASSERT(n_dims % 2 == 0);
  9157. // rows per thread
  9158. const int dr = (nr + nth - 1)/nth;
  9159. // row range for this thread
  9160. const int ir0 = dr*ith;
  9161. const int ir1 = MIN(ir0 + dr, nr);
  9162. // row index used to determine which thread to use
  9163. int ir = 0;
  9164. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9165. const bool is_neox = mode & 2;
  9166. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9167. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9168. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9169. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9170. if (ir++ < ir0) continue;
  9171. if (ir > ir1) break;
  9172. float theta = (float)p;
  9173. if (!is_neox) {
  9174. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9175. const float cos_theta = cosf(theta);
  9176. const float sin_theta = sinf(theta);
  9177. theta *= theta_scale;
  9178. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9179. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9180. const float x0 = src[0];
  9181. const float x1 = src[1];
  9182. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9183. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9184. }
  9185. } else {
  9186. // TODO: this is probably wrong, but I can't figure it out ..
  9187. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9188. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9189. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9190. const float cos_theta = cosf(theta);
  9191. const float sin_theta = sinf(theta);
  9192. theta *= theta_scale;
  9193. const int64_t i0 = ib*n_dims + ic/2;
  9194. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9195. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9196. const float x0 = src[0];
  9197. const float x1 = src[n_dims/2];
  9198. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9199. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9200. }
  9201. }
  9202. }
  9203. }
  9204. }
  9205. }
  9206. }
  9207. static void ggml_compute_forward_rope_f16(
  9208. const struct ggml_compute_params * params,
  9209. const struct ggml_tensor * src0,
  9210. const struct ggml_tensor * src1,
  9211. struct ggml_tensor * dst) {
  9212. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9213. GGML_ASSERT(ggml_nelements(src1) == 3);
  9214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9215. return;
  9216. }
  9217. const int n_past = ((int32_t *) src1->data)[0];
  9218. const int n_dims = ((int32_t *) src1->data)[1];
  9219. const int mode = ((int32_t *) src1->data)[2];
  9220. assert(n_past >= 0);
  9221. const size_t nb00 = src0->nb[0];
  9222. const size_t nb01 = src0->nb[1];
  9223. const size_t nb02 = src0->nb[2];
  9224. const size_t nb03 = src0->nb[3];
  9225. const int64_t ne0 = dst->ne[0];
  9226. const int64_t ne1 = dst->ne[1];
  9227. const int64_t ne2 = dst->ne[2];
  9228. const int64_t ne3 = dst->ne[3];
  9229. const size_t nb0 = dst->nb[0];
  9230. const size_t nb1 = dst->nb[1];
  9231. const size_t nb2 = dst->nb[2];
  9232. const size_t nb3 = dst->nb[3];
  9233. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9234. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9235. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9236. const int ith = params->ith;
  9237. const int nth = params->nth;
  9238. const int nr = ggml_nrows(dst);
  9239. GGML_ASSERT(n_dims <= ne0);
  9240. GGML_ASSERT(n_dims % 2 == 0);
  9241. // rows per thread
  9242. const int dr = (nr + nth - 1)/nth;
  9243. // row range for this thread
  9244. const int ir0 = dr*ith;
  9245. const int ir1 = MIN(ir0 + dr, nr);
  9246. // row index used to determine which thread to use
  9247. int ir = 0;
  9248. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9249. const bool is_neox = mode & 2;
  9250. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9251. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9252. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9253. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9254. if (ir++ < ir0) continue;
  9255. if (ir > ir1) break;
  9256. float theta = (float)p;
  9257. if (!is_neox) {
  9258. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9259. const float cos_theta = cosf(theta);
  9260. const float sin_theta = sinf(theta);
  9261. theta *= theta_scale;
  9262. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9263. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9264. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9265. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9266. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9267. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9268. }
  9269. } else {
  9270. // TODO: this is probably wrong, but I can't figure it out ..
  9271. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9272. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9273. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9274. const float cos_theta = cosf(theta);
  9275. const float sin_theta = sinf(theta);
  9276. theta *= theta_scale;
  9277. const int64_t i0 = ib*n_dims + ic/2;
  9278. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9279. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9280. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9281. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9282. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9283. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9284. }
  9285. }
  9286. }
  9287. }
  9288. }
  9289. }
  9290. }
  9291. static void ggml_compute_forward_rope(
  9292. const struct ggml_compute_params * params,
  9293. const struct ggml_tensor * src0,
  9294. const struct ggml_tensor * src1,
  9295. struct ggml_tensor * dst) {
  9296. switch (src0->type) {
  9297. case GGML_TYPE_F16:
  9298. {
  9299. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9300. } break;
  9301. case GGML_TYPE_F32:
  9302. {
  9303. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9304. } break;
  9305. default:
  9306. {
  9307. GGML_ASSERT(false);
  9308. } break;
  9309. }
  9310. }
  9311. // ggml_compute_forward_rope_back
  9312. static void ggml_compute_forward_rope_back_f32(
  9313. const struct ggml_compute_params * params,
  9314. const struct ggml_tensor * src0,
  9315. const struct ggml_tensor * src1,
  9316. struct ggml_tensor * dst) {
  9317. assert(src1->type == GGML_TYPE_I32);
  9318. assert(ggml_nelements(src1) == 3);
  9319. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9320. return;
  9321. }
  9322. // y = rope(x, src1)
  9323. // dx = rope_back(dy, src1)
  9324. // src0 is dy, src1 contains options
  9325. const int n_past = ((int32_t *) src1->data)[0];
  9326. const int n_dims = ((int32_t *) src1->data)[1];
  9327. const int mode = ((int32_t *) src1->data)[2];
  9328. assert(n_past >= 0);
  9329. const size_t nb00 = src0->nb[0];
  9330. const size_t nb01 = src0->nb[1];
  9331. const size_t nb02 = src0->nb[2];
  9332. const size_t nb03 = src0->nb[3];
  9333. const int64_t ne0 = dst->ne[0];
  9334. const int64_t ne1 = dst->ne[1];
  9335. const int64_t ne2 = dst->ne[2];
  9336. const int64_t ne3 = dst->ne[3];
  9337. const size_t nb0 = dst->nb[0];
  9338. const size_t nb1 = dst->nb[1];
  9339. const size_t nb2 = dst->nb[2];
  9340. const size_t nb3 = dst->nb[3];
  9341. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9342. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9343. assert(nb0 == sizeof(float));
  9344. const int ith = params->ith;
  9345. const int nth = params->nth;
  9346. const int nr = ggml_nrows(dst);
  9347. // rows per thread
  9348. const int dr = (nr + nth - 1)/nth;
  9349. // row range for this thread
  9350. const int ir0 = dr*ith;
  9351. const int ir1 = MIN(ir0 + dr, nr);
  9352. // row index used to determine which thread to use
  9353. int ir = 0;
  9354. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9355. const bool is_neox = mode & 2;
  9356. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9357. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9358. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9359. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9360. if (ir++ < ir0) continue;
  9361. if (ir > ir1) break;
  9362. float theta = (float)p;
  9363. if (!is_neox) {
  9364. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9365. const float cos_theta = cosf(theta);
  9366. const float sin_theta = sinf(theta);
  9367. theta *= theta_scale;
  9368. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9369. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9370. const float dy0 = dy[0];
  9371. const float dy1 = dy[1];
  9372. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9373. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9374. }
  9375. } else {
  9376. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9377. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9378. const float cos_theta = cosf(theta);
  9379. const float sin_theta = sinf(theta);
  9380. theta *= theta_scale;
  9381. const int64_t i0 = ib*n_dims + ic/2;
  9382. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9383. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9384. const float dy0 = dy[0];
  9385. const float dy1 = dy[n_dims/2];
  9386. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9387. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9388. }
  9389. }
  9390. }
  9391. }
  9392. }
  9393. }
  9394. }
  9395. static void ggml_compute_forward_rope_back_f16(
  9396. const struct ggml_compute_params * params,
  9397. const struct ggml_tensor * src0,
  9398. const struct ggml_tensor * src1,
  9399. struct ggml_tensor * dst) {
  9400. assert(src1->type == GGML_TYPE_I32);
  9401. assert(ggml_nelements(src1) == 3);
  9402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9403. return;
  9404. }
  9405. // y = rope(x, src1)
  9406. // dx = rope_back(dy, src1)
  9407. // src0 is dy, src1 contains options
  9408. const int n_past = ((int32_t *) src1->data)[0];
  9409. const int n_dims = ((int32_t *) src1->data)[1];
  9410. const int mode = ((int32_t *) src1->data)[2];
  9411. assert(n_past >= 0);
  9412. const size_t nb00 = src0->nb[0];
  9413. const size_t nb01 = src0->nb[1];
  9414. const size_t nb02 = src0->nb[2];
  9415. const size_t nb03 = src0->nb[3];
  9416. const int64_t ne0 = dst->ne[0];
  9417. const int64_t ne1 = dst->ne[1];
  9418. const int64_t ne2 = dst->ne[2];
  9419. const int64_t ne3 = dst->ne[3];
  9420. const size_t nb0 = dst->nb[0];
  9421. const size_t nb1 = dst->nb[1];
  9422. const size_t nb2 = dst->nb[2];
  9423. const size_t nb3 = dst->nb[3];
  9424. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9425. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9426. assert(nb0 == sizeof(ggml_fp16_t));
  9427. const int ith = params->ith;
  9428. const int nth = params->nth;
  9429. const int nr = ggml_nrows(dst);
  9430. // rows per thread
  9431. const int dr = (nr + nth - 1)/nth;
  9432. // row range for this thread
  9433. const int ir0 = dr*ith;
  9434. const int ir1 = MIN(ir0 + dr, nr);
  9435. // row index used to determine which thread to use
  9436. int ir = 0;
  9437. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9438. const bool is_neox = mode & 2;
  9439. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9440. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9441. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9442. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9443. if (ir++ < ir0) continue;
  9444. if (ir > ir1) break;
  9445. float theta = (float)p;
  9446. if (!is_neox) {
  9447. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9448. const float cos_theta = cosf(theta);
  9449. const float sin_theta = sinf(theta);
  9450. theta *= theta_scale;
  9451. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9452. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9453. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9454. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9455. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9456. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9457. }
  9458. } else {
  9459. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9460. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9461. const float cos_theta = cosf(theta);
  9462. const float sin_theta = sinf(theta);
  9463. theta *= theta_scale;
  9464. const int64_t i0 = ib*n_dims + ic/2;
  9465. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9466. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9467. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9468. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9469. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9470. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9471. }
  9472. }
  9473. }
  9474. }
  9475. }
  9476. }
  9477. }
  9478. static void ggml_compute_forward_rope_back(
  9479. const struct ggml_compute_params * params,
  9480. const struct ggml_tensor * src0,
  9481. const struct ggml_tensor * src1,
  9482. struct ggml_tensor * dst) {
  9483. switch (src0->type) {
  9484. case GGML_TYPE_F16:
  9485. {
  9486. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9487. } break;
  9488. case GGML_TYPE_F32:
  9489. {
  9490. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9491. } break;
  9492. default:
  9493. {
  9494. GGML_ASSERT(false);
  9495. } break;
  9496. }
  9497. }
  9498. // ggml_compute_forward_conv_1d_1s
  9499. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9500. const struct ggml_compute_params * params,
  9501. const struct ggml_tensor * src0,
  9502. const struct ggml_tensor * src1,
  9503. struct ggml_tensor * dst) {
  9504. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9505. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9506. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9507. int64_t t0 = ggml_perf_time_us();
  9508. UNUSED(t0);
  9509. const int64_t ne00 = src0->ne[0];
  9510. const int64_t ne01 = src0->ne[1];
  9511. const int64_t ne02 = src0->ne[2];
  9512. //const int64_t ne03 = src0->ne[3];
  9513. const int64_t ne10 = src1->ne[0];
  9514. const int64_t ne11 = src1->ne[1];
  9515. //const int64_t ne12 = src1->ne[2];
  9516. //const int64_t ne13 = src1->ne[3];
  9517. //const int64_t ne0 = dst->ne[0];
  9518. //const int64_t ne1 = dst->ne[1];
  9519. //const int64_t ne2 = dst->ne[2];
  9520. //const int64_t ne3 = dst->ne[3];
  9521. //const int64_t ne = ne0*ne1*ne2*ne3;
  9522. const int nb00 = src0->nb[0];
  9523. const int nb01 = src0->nb[1];
  9524. const int nb02 = src0->nb[2];
  9525. //const int nb03 = src0->nb[3];
  9526. const int nb10 = src1->nb[0];
  9527. const int nb11 = src1->nb[1];
  9528. //const int nb12 = src1->nb[2];
  9529. //const int nb13 = src1->nb[3];
  9530. //const int nb0 = dst->nb[0];
  9531. const int nb1 = dst->nb[1];
  9532. //const int nb2 = dst->nb[2];
  9533. //const int nb3 = dst->nb[3];
  9534. const int ith = params->ith;
  9535. const int nth = params->nth;
  9536. const int nk = ne00;
  9537. const int nh = nk/2;
  9538. const int ew0 = ggml_up32(ne01);
  9539. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9540. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9541. GGML_ASSERT(nb10 == sizeof(float));
  9542. if (params->type == GGML_TASK_INIT) {
  9543. // TODO: fix this memset (wsize is overestimated)
  9544. memset(params->wdata, 0, params->wsize);
  9545. // prepare kernel data (src0)
  9546. {
  9547. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9549. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9550. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9551. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9552. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9553. dst_data[i00*ew0 + i01] = src[i00];
  9554. }
  9555. }
  9556. }
  9557. }
  9558. // prepare source data (src1)
  9559. {
  9560. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9561. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9562. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9563. ggml_fp16_t * dst_data = wdata;
  9564. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9565. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9566. }
  9567. }
  9568. }
  9569. return;
  9570. }
  9571. if (params->type == GGML_TASK_FINALIZE) {
  9572. return;
  9573. }
  9574. // total rows in dst
  9575. const int nr = ne02;
  9576. // rows per thread
  9577. const int dr = (nr + nth - 1)/nth;
  9578. // row range for this thread
  9579. const int ir0 = dr*ith;
  9580. const int ir1 = MIN(ir0 + dr, nr);
  9581. for (int i1 = ir0; i1 < ir1; i1++) {
  9582. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9583. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9584. dst_data[i0] = 0;
  9585. for (int k = -nh; k <= nh; k++) {
  9586. float v = 0.0f;
  9587. ggml_vec_dot_f16(ew0, &v,
  9588. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9589. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9590. dst_data[i0] += v;
  9591. }
  9592. }
  9593. }
  9594. }
  9595. static void ggml_compute_forward_conv_1d_1s_f32(
  9596. const struct ggml_compute_params * params,
  9597. const struct ggml_tensor * src0,
  9598. const struct ggml_tensor * src1,
  9599. struct ggml_tensor * dst) {
  9600. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9601. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9602. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9603. int64_t t0 = ggml_perf_time_us();
  9604. UNUSED(t0);
  9605. const int64_t ne00 = src0->ne[0];
  9606. const int64_t ne01 = src0->ne[1];
  9607. const int64_t ne02 = src0->ne[2];
  9608. //const int64_t ne03 = src0->ne[3];
  9609. const int64_t ne10 = src1->ne[0];
  9610. const int64_t ne11 = src1->ne[1];
  9611. //const int64_t ne12 = src1->ne[2];
  9612. //const int64_t ne13 = src1->ne[3];
  9613. //const int64_t ne0 = dst->ne[0];
  9614. //const int64_t ne1 = dst->ne[1];
  9615. //const int64_t ne2 = dst->ne[2];
  9616. //const int64_t ne3 = dst->ne[3];
  9617. //const int64_t ne = ne0*ne1*ne2*ne3;
  9618. const int nb00 = src0->nb[0];
  9619. const int nb01 = src0->nb[1];
  9620. const int nb02 = src0->nb[2];
  9621. //const int nb03 = src0->nb[3];
  9622. const int nb10 = src1->nb[0];
  9623. const int nb11 = src1->nb[1];
  9624. //const int nb12 = src1->nb[2];
  9625. //const int nb13 = src1->nb[3];
  9626. //const int nb0 = dst->nb[0];
  9627. const int nb1 = dst->nb[1];
  9628. //const int nb2 = dst->nb[2];
  9629. //const int nb3 = dst->nb[3];
  9630. const int ith = params->ith;
  9631. const int nth = params->nth;
  9632. const int nk = ne00;
  9633. const int nh = nk/2;
  9634. const int ew0 = ggml_up32(ne01);
  9635. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9636. GGML_ASSERT(nb00 == sizeof(float));
  9637. GGML_ASSERT(nb10 == sizeof(float));
  9638. if (params->type == GGML_TASK_INIT) {
  9639. // TODO: fix this memset (wsize is overestimated)
  9640. memset(params->wdata, 0, params->wsize);
  9641. // prepare kernel data (src0)
  9642. {
  9643. float * const wdata = (float *) params->wdata + 0;
  9644. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9645. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9646. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9647. float * dst_data = wdata + i02*ew0*ne00;
  9648. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9649. dst_data[i00*ew0 + i01] = src[i00];
  9650. }
  9651. }
  9652. }
  9653. }
  9654. // prepare source data (src1)
  9655. {
  9656. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9657. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9658. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9659. float * dst_data = wdata;
  9660. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9661. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9662. }
  9663. }
  9664. }
  9665. return;
  9666. }
  9667. if (params->type == GGML_TASK_FINALIZE) {
  9668. return;
  9669. }
  9670. // total rows in dst
  9671. const int nr = ne02;
  9672. // rows per thread
  9673. const int dr = (nr + nth - 1)/nth;
  9674. // row range for this thread
  9675. const int ir0 = dr*ith;
  9676. const int ir1 = MIN(ir0 + dr, nr);
  9677. for (int i1 = ir0; i1 < ir1; i1++) {
  9678. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9679. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9680. dst_data[i0] = 0;
  9681. for (int k = -nh; k <= nh; k++) {
  9682. float v = 0.0f;
  9683. ggml_vec_dot_f32(ew0, &v,
  9684. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9685. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9686. dst_data[i0] += v;
  9687. }
  9688. }
  9689. }
  9690. }
  9691. static void ggml_compute_forward_conv_1d_1s(
  9692. const struct ggml_compute_params * params,
  9693. const struct ggml_tensor * src0,
  9694. const struct ggml_tensor * src1,
  9695. struct ggml_tensor * dst) {
  9696. switch (src0->type) {
  9697. case GGML_TYPE_F16:
  9698. {
  9699. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9700. } break;
  9701. case GGML_TYPE_F32:
  9702. {
  9703. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9704. } break;
  9705. default:
  9706. {
  9707. GGML_ASSERT(false);
  9708. } break;
  9709. }
  9710. }
  9711. // ggml_compute_forward_conv_1d_2s
  9712. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9713. const struct ggml_compute_params * params,
  9714. const struct ggml_tensor * src0,
  9715. const struct ggml_tensor * src1,
  9716. struct ggml_tensor * dst) {
  9717. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9718. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9719. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9720. int64_t t0 = ggml_perf_time_us();
  9721. UNUSED(t0);
  9722. const int64_t ne00 = src0->ne[0];
  9723. const int64_t ne01 = src0->ne[1];
  9724. const int64_t ne02 = src0->ne[2];
  9725. //const int64_t ne03 = src0->ne[3];
  9726. const int64_t ne10 = src1->ne[0];
  9727. const int64_t ne11 = src1->ne[1];
  9728. //const int64_t ne12 = src1->ne[2];
  9729. //const int64_t ne13 = src1->ne[3];
  9730. //const int64_t ne0 = dst->ne[0];
  9731. //const int64_t ne1 = dst->ne[1];
  9732. //const int64_t ne2 = dst->ne[2];
  9733. //const int64_t ne3 = dst->ne[3];
  9734. //const int64_t ne = ne0*ne1*ne2*ne3;
  9735. const int nb00 = src0->nb[0];
  9736. const int nb01 = src0->nb[1];
  9737. const int nb02 = src0->nb[2];
  9738. //const int nb03 = src0->nb[3];
  9739. const int nb10 = src1->nb[0];
  9740. const int nb11 = src1->nb[1];
  9741. //const int nb12 = src1->nb[2];
  9742. //const int nb13 = src1->nb[3];
  9743. //const int nb0 = dst->nb[0];
  9744. const int nb1 = dst->nb[1];
  9745. //const int nb2 = dst->nb[2];
  9746. //const int nb3 = dst->nb[3];
  9747. const int ith = params->ith;
  9748. const int nth = params->nth;
  9749. const int nk = ne00;
  9750. const int nh = nk/2;
  9751. const int ew0 = ggml_up32(ne01);
  9752. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9753. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9754. GGML_ASSERT(nb10 == sizeof(float));
  9755. if (params->type == GGML_TASK_INIT) {
  9756. // TODO: fix this memset (wsize is overestimated)
  9757. memset(params->wdata, 0, params->wsize);
  9758. // prepare kernel data (src0)
  9759. {
  9760. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9761. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9762. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9763. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9764. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9765. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9766. dst_data[i00*ew0 + i01] = src[i00];
  9767. }
  9768. }
  9769. }
  9770. }
  9771. // prepare source data (src1)
  9772. {
  9773. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9774. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9775. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9776. ggml_fp16_t * dst_data = wdata;
  9777. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9778. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9779. }
  9780. }
  9781. }
  9782. return;
  9783. }
  9784. if (params->type == GGML_TASK_FINALIZE) {
  9785. return;
  9786. }
  9787. // total rows in dst
  9788. const int nr = ne02;
  9789. // rows per thread
  9790. const int dr = (nr + nth - 1)/nth;
  9791. // row range for this thread
  9792. const int ir0 = dr*ith;
  9793. const int ir1 = MIN(ir0 + dr, nr);
  9794. for (int i1 = ir0; i1 < ir1; i1++) {
  9795. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9796. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9797. dst_data[i0/2] = 0;
  9798. for (int k = -nh; k <= nh; k++) {
  9799. float v = 0.0f;
  9800. ggml_vec_dot_f16(ew0, &v,
  9801. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9802. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9803. dst_data[i0/2] += v;
  9804. }
  9805. }
  9806. }
  9807. }
  9808. static void ggml_compute_forward_conv_1d_2s_f32(
  9809. const struct ggml_compute_params * params,
  9810. const struct ggml_tensor * src0,
  9811. const struct ggml_tensor * src1,
  9812. struct ggml_tensor * dst) {
  9813. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9814. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9815. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9816. int64_t t0 = ggml_perf_time_us();
  9817. UNUSED(t0);
  9818. const int64_t ne00 = src0->ne[0];
  9819. const int64_t ne01 = src0->ne[1];
  9820. const int64_t ne02 = src0->ne[2];
  9821. //const int64_t ne03 = src0->ne[3];
  9822. const int64_t ne10 = src1->ne[0];
  9823. const int64_t ne11 = src1->ne[1];
  9824. //const int64_t ne12 = src1->ne[2];
  9825. //const int64_t ne13 = src1->ne[3];
  9826. //const int64_t ne0 = dst->ne[0];
  9827. //const int64_t ne1 = dst->ne[1];
  9828. //const int64_t ne2 = dst->ne[2];
  9829. //const int64_t ne3 = dst->ne[3];
  9830. //const int64_t ne = ne0*ne1*ne2*ne3;
  9831. const int nb00 = src0->nb[0];
  9832. const int nb01 = src0->nb[1];
  9833. const int nb02 = src0->nb[2];
  9834. //const int nb03 = src0->nb[3];
  9835. const int nb10 = src1->nb[0];
  9836. const int nb11 = src1->nb[1];
  9837. //const int nb12 = src1->nb[2];
  9838. //const int nb13 = src1->nb[3];
  9839. //const int nb0 = dst->nb[0];
  9840. const int nb1 = dst->nb[1];
  9841. //const int nb2 = dst->nb[2];
  9842. //const int nb3 = dst->nb[3];
  9843. const int ith = params->ith;
  9844. const int nth = params->nth;
  9845. const int nk = ne00;
  9846. const int nh = nk/2;
  9847. const int ew0 = ggml_up32(ne01);
  9848. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9849. GGML_ASSERT(nb00 == sizeof(float));
  9850. GGML_ASSERT(nb10 == sizeof(float));
  9851. if (params->type == GGML_TASK_INIT) {
  9852. // TODO: fix this memset (wsize is overestimated)
  9853. memset(params->wdata, 0, params->wsize);
  9854. // prepare kernel data (src0)
  9855. {
  9856. float * const wdata = (float *) params->wdata + 0;
  9857. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9858. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9859. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9860. float * dst_data = wdata + i02*ew0*ne00;
  9861. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9862. dst_data[i00*ew0 + i01] = src[i00];
  9863. }
  9864. }
  9865. }
  9866. }
  9867. // prepare source data (src1)
  9868. {
  9869. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9870. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9871. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9872. float * dst_data = wdata;
  9873. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9874. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9875. }
  9876. }
  9877. }
  9878. return;
  9879. }
  9880. if (params->type == GGML_TASK_FINALIZE) {
  9881. return;
  9882. }
  9883. // total rows in dst
  9884. const int nr = ne02;
  9885. // rows per thread
  9886. const int dr = (nr + nth - 1)/nth;
  9887. // row range for this thread
  9888. const int ir0 = dr*ith;
  9889. const int ir1 = MIN(ir0 + dr, nr);
  9890. for (int i1 = ir0; i1 < ir1; i1++) {
  9891. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9892. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9893. dst_data[i0/2] = 0;
  9894. for (int k = -nh; k <= nh; k++) {
  9895. float v = 0.0f;
  9896. ggml_vec_dot_f32(ew0, &v,
  9897. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9898. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9899. dst_data[i0/2] += v;
  9900. }
  9901. }
  9902. }
  9903. }
  9904. static void ggml_compute_forward_conv_1d_2s(
  9905. const struct ggml_compute_params * params,
  9906. const struct ggml_tensor * src0,
  9907. const struct ggml_tensor * src1,
  9908. struct ggml_tensor * dst) {
  9909. switch (src0->type) {
  9910. case GGML_TYPE_F16:
  9911. {
  9912. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9913. } break;
  9914. case GGML_TYPE_F32:
  9915. {
  9916. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9917. } break;
  9918. default:
  9919. {
  9920. GGML_ASSERT(false);
  9921. } break;
  9922. }
  9923. }
  9924. // ggml_compute_forward_flash_attn
  9925. static void ggml_compute_forward_flash_attn_f32(
  9926. const struct ggml_compute_params * params,
  9927. const struct ggml_tensor * q,
  9928. const struct ggml_tensor * k,
  9929. const struct ggml_tensor * v,
  9930. const bool masked,
  9931. struct ggml_tensor * dst) {
  9932. int64_t t0 = ggml_perf_time_us();
  9933. UNUSED(t0);
  9934. const int64_t neq0 = q->ne[0];
  9935. const int64_t neq1 = q->ne[1];
  9936. const int64_t neq2 = q->ne[2];
  9937. const int64_t neq3 = q->ne[3];
  9938. const int64_t nek0 = k->ne[0];
  9939. const int64_t nek1 = k->ne[1];
  9940. //const int64_t nek2 = k->ne[2];
  9941. //const int64_t nek3 = k->ne[3];
  9942. //const int64_t nev0 = v->ne[0];
  9943. const int64_t nev1 = v->ne[1];
  9944. //const int64_t nev2 = v->ne[2];
  9945. //const int64_t nev3 = v->ne[3];
  9946. const int64_t ne0 = dst->ne[0];
  9947. const int64_t ne1 = dst->ne[1];
  9948. //const int64_t ne2 = dst->ne[2];
  9949. //const int64_t ne3 = dst->ne[3];
  9950. const int nbk0 = k->nb[0];
  9951. const int nbk1 = k->nb[1];
  9952. const int nbk2 = k->nb[2];
  9953. const int nbk3 = k->nb[3];
  9954. const int nbq0 = q->nb[0];
  9955. const int nbq1 = q->nb[1];
  9956. const int nbq2 = q->nb[2];
  9957. const int nbq3 = q->nb[3];
  9958. const int nbv0 = v->nb[0];
  9959. const int nbv1 = v->nb[1];
  9960. const int nbv2 = v->nb[2];
  9961. const int nbv3 = v->nb[3];
  9962. const int nb0 = dst->nb[0];
  9963. const int nb1 = dst->nb[1];
  9964. const int nb2 = dst->nb[2];
  9965. const int nb3 = dst->nb[3];
  9966. const int ith = params->ith;
  9967. const int nth = params->nth;
  9968. const int64_t D = neq0;
  9969. const int64_t N = neq1;
  9970. const int64_t P = nek1 - N;
  9971. const int64_t M = P + N;
  9972. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9973. GGML_ASSERT(ne0 == D);
  9974. GGML_ASSERT(ne1 == N);
  9975. GGML_ASSERT(P >= 0);
  9976. GGML_ASSERT(nbq0 == sizeof(float));
  9977. GGML_ASSERT(nbk0 == sizeof(float));
  9978. GGML_ASSERT(nbv0 == sizeof(float));
  9979. GGML_ASSERT(neq0 == D);
  9980. GGML_ASSERT(nek0 == D);
  9981. GGML_ASSERT(nev1 == D);
  9982. GGML_ASSERT(neq1 == N);
  9983. GGML_ASSERT(nek1 == N + P);
  9984. GGML_ASSERT(nev1 == D);
  9985. // dst cannot be transposed or permuted
  9986. GGML_ASSERT(nb0 == sizeof(float));
  9987. GGML_ASSERT(nb0 <= nb1);
  9988. GGML_ASSERT(nb1 <= nb2);
  9989. GGML_ASSERT(nb2 <= nb3);
  9990. if (params->type == GGML_TASK_INIT) {
  9991. return;
  9992. }
  9993. if (params->type == GGML_TASK_FINALIZE) {
  9994. return;
  9995. }
  9996. // parallelize by q rows using ggml_vec_dot_f32
  9997. // total rows in q
  9998. const int nr = neq1*neq2*neq3;
  9999. // rows per thread
  10000. const int dr = (nr + nth - 1)/nth;
  10001. // row range for this thread
  10002. const int ir0 = dr*ith;
  10003. const int ir1 = MIN(ir0 + dr, nr);
  10004. const float scale = 1.0f/sqrtf(D);
  10005. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10006. for (int ir = ir0; ir < ir1; ++ir) {
  10007. // q indices
  10008. const int iq3 = ir/(neq2*neq1);
  10009. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10010. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10011. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10012. for (int i = M; i < Mup; ++i) {
  10013. S[i] = -INFINITY;
  10014. }
  10015. for (int64_t ic = 0; ic < nek1; ++ic) {
  10016. // k indices
  10017. const int ik3 = iq3;
  10018. const int ik2 = iq2;
  10019. const int ik1 = ic;
  10020. // S indices
  10021. const int i1 = ik1;
  10022. ggml_vec_dot_f32(neq0,
  10023. S + i1,
  10024. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10025. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10026. }
  10027. // scale
  10028. ggml_vec_scale_f32(nek1, S, scale);
  10029. if (masked) {
  10030. for (int64_t i = P; i < M; i++) {
  10031. if (i > P + iq1) {
  10032. S[i] = -INFINITY;
  10033. }
  10034. }
  10035. }
  10036. // softmax
  10037. {
  10038. float max = -INFINITY;
  10039. ggml_vec_max_f32(M, &max, S);
  10040. ggml_float sum = 0.0;
  10041. {
  10042. #ifdef GGML_SOFT_MAX_ACCELERATE
  10043. max = -max;
  10044. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10045. vvexpf(S, S, &Mup);
  10046. ggml_vec_sum_f32(Mup, &sum, S);
  10047. #else
  10048. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10049. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10050. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10051. float * SS = S + i;
  10052. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10053. if (SS[j] == -INFINITY) {
  10054. SS[j] = 0.0f;
  10055. } else {
  10056. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10057. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10058. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10059. sump[j] += (ggml_float)val;
  10060. SS[j] = val;
  10061. }
  10062. }
  10063. }
  10064. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10065. sum += sump[i];
  10066. }
  10067. #endif
  10068. }
  10069. assert(sum > 0.0);
  10070. sum = 1.0/sum;
  10071. ggml_vec_scale_f32(M, S, sum);
  10072. #ifndef NDEBUG
  10073. for (int i = 0; i < M; ++i) {
  10074. assert(!isnan(S[i]));
  10075. assert(!isinf(S[i]));
  10076. }
  10077. #endif
  10078. }
  10079. for (int64_t ic = 0; ic < nev1; ++ic) {
  10080. // dst indices
  10081. const int i1 = iq1;
  10082. const int i2 = iq2;
  10083. const int i3 = iq3;
  10084. ggml_vec_dot_f32(nek1,
  10085. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10086. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10087. S);
  10088. }
  10089. }
  10090. }
  10091. static void ggml_compute_forward_flash_attn_f16(
  10092. const struct ggml_compute_params * params,
  10093. const struct ggml_tensor * q,
  10094. const struct ggml_tensor * k,
  10095. const struct ggml_tensor * v,
  10096. const bool masked,
  10097. struct ggml_tensor * dst) {
  10098. int64_t t0 = ggml_perf_time_us();
  10099. UNUSED(t0);
  10100. const int64_t neq0 = q->ne[0];
  10101. const int64_t neq1 = q->ne[1];
  10102. const int64_t neq2 = q->ne[2];
  10103. const int64_t neq3 = q->ne[3];
  10104. const int64_t nek0 = k->ne[0];
  10105. const int64_t nek1 = k->ne[1];
  10106. //const int64_t nek2 = k->ne[2];
  10107. //const int64_t nek3 = k->ne[3];
  10108. //const int64_t nev0 = v->ne[0];
  10109. const int64_t nev1 = v->ne[1];
  10110. //const int64_t nev2 = v->ne[2];
  10111. //const int64_t nev3 = v->ne[3];
  10112. const int64_t ne0 = dst->ne[0];
  10113. const int64_t ne1 = dst->ne[1];
  10114. //const int64_t ne2 = dst->ne[2];
  10115. //const int64_t ne3 = dst->ne[3];
  10116. const int nbk0 = k->nb[0];
  10117. const int nbk1 = k->nb[1];
  10118. const int nbk2 = k->nb[2];
  10119. const int nbk3 = k->nb[3];
  10120. const int nbq0 = q->nb[0];
  10121. const int nbq1 = q->nb[1];
  10122. const int nbq2 = q->nb[2];
  10123. const int nbq3 = q->nb[3];
  10124. const int nbv0 = v->nb[0];
  10125. const int nbv1 = v->nb[1];
  10126. const int nbv2 = v->nb[2];
  10127. const int nbv3 = v->nb[3];
  10128. const int nb0 = dst->nb[0];
  10129. const int nb1 = dst->nb[1];
  10130. const int nb2 = dst->nb[2];
  10131. const int nb3 = dst->nb[3];
  10132. const int ith = params->ith;
  10133. const int nth = params->nth;
  10134. const int64_t D = neq0;
  10135. const int64_t N = neq1;
  10136. const int64_t P = nek1 - N;
  10137. const int64_t M = P + N;
  10138. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10139. GGML_ASSERT(ne0 == D);
  10140. GGML_ASSERT(ne1 == N);
  10141. GGML_ASSERT(P >= 0);
  10142. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10143. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10144. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10145. GGML_ASSERT(neq0 == D);
  10146. GGML_ASSERT(nek0 == D);
  10147. GGML_ASSERT(nev1 == D);
  10148. GGML_ASSERT(neq1 == N);
  10149. GGML_ASSERT(nek1 == N + P);
  10150. GGML_ASSERT(nev1 == D);
  10151. // dst cannot be transposed or permuted
  10152. GGML_ASSERT(nb0 == sizeof(float));
  10153. GGML_ASSERT(nb0 <= nb1);
  10154. GGML_ASSERT(nb1 <= nb2);
  10155. GGML_ASSERT(nb2 <= nb3);
  10156. if (params->type == GGML_TASK_INIT) {
  10157. return;
  10158. }
  10159. if (params->type == GGML_TASK_FINALIZE) {
  10160. return;
  10161. }
  10162. // parallelize by q rows using ggml_vec_dot_f32
  10163. // total rows in q
  10164. const int nr = neq1*neq2*neq3;
  10165. // rows per thread
  10166. const int dr = (nr + nth - 1)/nth;
  10167. // row range for this thread
  10168. const int ir0 = dr*ith;
  10169. const int ir1 = MIN(ir0 + dr, nr);
  10170. const float scale = 1.0f/sqrtf(D);
  10171. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10172. for (int ir = ir0; ir < ir1; ++ir) {
  10173. // q indices
  10174. const int iq3 = ir/(neq2*neq1);
  10175. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10176. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10177. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10178. for (int i = M; i < Mup; ++i) {
  10179. S[i] = -INFINITY;
  10180. }
  10181. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10182. for (int64_t ic = 0; ic < nek1; ++ic) {
  10183. // k indices
  10184. const int ik3 = iq3;
  10185. const int ik2 = iq2;
  10186. const int ik1 = ic;
  10187. // S indices
  10188. const int i1 = ik1;
  10189. ggml_vec_dot_f16(neq0,
  10190. S + i1,
  10191. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10192. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10193. }
  10194. } else {
  10195. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10196. // k indices
  10197. const int ik3 = iq3;
  10198. const int ik2 = iq2;
  10199. const int ik1 = ic;
  10200. // S indices
  10201. const int i1 = ik1;
  10202. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10203. S + i1,
  10204. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10205. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10206. }
  10207. }
  10208. // scale
  10209. ggml_vec_scale_f32(nek1, S, scale);
  10210. if (masked) {
  10211. for (int64_t i = P; i < M; i++) {
  10212. if (i > P + iq1) {
  10213. S[i] = -INFINITY;
  10214. }
  10215. }
  10216. }
  10217. // softmax
  10218. {
  10219. float max = -INFINITY;
  10220. ggml_vec_max_f32(M, &max, S);
  10221. ggml_float sum = 0.0;
  10222. {
  10223. #ifdef GGML_SOFT_MAX_ACCELERATE
  10224. max = -max;
  10225. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10226. vvexpf(S, S, &Mup);
  10227. ggml_vec_sum_f32(Mup, &sum, S);
  10228. #else
  10229. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10230. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10231. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10232. float * SS = S + i;
  10233. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10234. if (SS[j] == -INFINITY) {
  10235. SS[j] = 0.0f;
  10236. } else {
  10237. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10238. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10239. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10240. sump[j] += (ggml_float)val;
  10241. SS[j] = val;
  10242. }
  10243. }
  10244. }
  10245. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10246. sum += sump[i];
  10247. }
  10248. #endif
  10249. }
  10250. assert(sum > 0.0);
  10251. sum = 1.0/sum;
  10252. ggml_vec_scale_f32(M, S, sum);
  10253. #ifndef NDEBUG
  10254. for (int i = 0; i < M; ++i) {
  10255. assert(!isnan(S[i]));
  10256. assert(!isinf(S[i]));
  10257. }
  10258. #endif
  10259. }
  10260. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10261. for (int64_t i = 0; i < M; i++) {
  10262. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10263. }
  10264. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10265. for (int64_t ic = 0; ic < nev1; ++ic) {
  10266. // dst indices
  10267. const int i1 = iq1;
  10268. const int i2 = iq2;
  10269. const int i3 = iq3;
  10270. ggml_vec_dot_f16(nek1,
  10271. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10272. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10273. S16);
  10274. }
  10275. } else {
  10276. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10277. // dst indices
  10278. const int i1 = iq1;
  10279. const int i2 = iq2;
  10280. const int i3 = iq3;
  10281. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10282. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10283. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10284. S16);
  10285. }
  10286. }
  10287. }
  10288. }
  10289. static void ggml_compute_forward_flash_attn(
  10290. const struct ggml_compute_params * params,
  10291. const struct ggml_tensor * q,
  10292. const struct ggml_tensor * k,
  10293. const struct ggml_tensor * v,
  10294. const bool masked,
  10295. struct ggml_tensor * dst) {
  10296. switch (q->type) {
  10297. case GGML_TYPE_F16:
  10298. {
  10299. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10300. } break;
  10301. case GGML_TYPE_F32:
  10302. {
  10303. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10304. } break;
  10305. default:
  10306. {
  10307. GGML_ASSERT(false);
  10308. } break;
  10309. }
  10310. }
  10311. // ggml_compute_forward_flash_ff
  10312. static void ggml_compute_forward_flash_ff_f16(
  10313. const struct ggml_compute_params * params,
  10314. const struct ggml_tensor * a, // F16
  10315. const struct ggml_tensor * b0, // F16 fc_w
  10316. const struct ggml_tensor * b1, // F32 fc_b
  10317. const struct ggml_tensor * c0, // F16 proj_w
  10318. const struct ggml_tensor * c1, // F32 proj_b
  10319. struct ggml_tensor * dst) {
  10320. int64_t t0 = ggml_perf_time_us();
  10321. UNUSED(t0);
  10322. const int64_t nea0 = a->ne[0];
  10323. const int64_t nea1 = a->ne[1];
  10324. const int64_t nea2 = a->ne[2];
  10325. const int64_t nea3 = a->ne[3];
  10326. const int64_t neb00 = b0->ne[0];
  10327. const int64_t neb01 = b0->ne[1];
  10328. //const int64_t neb02 = b0->ne[2];
  10329. //const int64_t neb03 = b0->ne[3];
  10330. const int64_t neb10 = b1->ne[0];
  10331. const int64_t neb11 = b1->ne[1];
  10332. //const int64_t neb12 = b1->ne[2];
  10333. //const int64_t neb13 = b1->ne[3];
  10334. const int64_t nec00 = c0->ne[0];
  10335. const int64_t nec01 = c0->ne[1];
  10336. //const int64_t nec02 = c0->ne[2];
  10337. //const int64_t nec03 = c0->ne[3];
  10338. const int64_t nec10 = c1->ne[0];
  10339. const int64_t nec11 = c1->ne[1];
  10340. //const int64_t nec12 = c1->ne[2];
  10341. //const int64_t nec13 = c1->ne[3];
  10342. const int64_t ne0 = dst->ne[0];
  10343. const int64_t ne1 = dst->ne[1];
  10344. const int64_t ne2 = dst->ne[2];
  10345. //const int64_t ne3 = dst->ne[3];
  10346. const int nba0 = a->nb[0];
  10347. const int nba1 = a->nb[1];
  10348. const int nba2 = a->nb[2];
  10349. const int nba3 = a->nb[3];
  10350. const int nbb00 = b0->nb[0];
  10351. const int nbb01 = b0->nb[1];
  10352. const int nbb02 = b0->nb[2];
  10353. const int nbb03 = b0->nb[3];
  10354. const int nbb10 = b1->nb[0];
  10355. //const int nbb11 = b1->nb[1];
  10356. //const int nbb12 = b1->nb[2];
  10357. //const int nbb13 = b1->nb[3];
  10358. const int nbc00 = c0->nb[0];
  10359. const int nbc01 = c0->nb[1];
  10360. const int nbc02 = c0->nb[2];
  10361. const int nbc03 = c0->nb[3];
  10362. const int nbc10 = c1->nb[0];
  10363. //const int nbc11 = c1->nb[1];
  10364. //const int nbc12 = c1->nb[2];
  10365. //const int nbc13 = c1->nb[3];
  10366. const int nb0 = dst->nb[0];
  10367. const int nb1 = dst->nb[1];
  10368. const int nb2 = dst->nb[2];
  10369. const int nb3 = dst->nb[3];
  10370. const int ith = params->ith;
  10371. const int nth = params->nth;
  10372. const int64_t D = nea0;
  10373. //const int64_t N = nea1;
  10374. const int64_t M = neb01;
  10375. GGML_ASSERT(ne0 == nea0);
  10376. GGML_ASSERT(ne1 == nea1);
  10377. GGML_ASSERT(ne2 == nea2);
  10378. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10379. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10380. GGML_ASSERT(nbb10 == sizeof(float));
  10381. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10382. GGML_ASSERT(nbc10 == sizeof(float));
  10383. GGML_ASSERT(neb00 == D);
  10384. GGML_ASSERT(neb01 == M);
  10385. GGML_ASSERT(neb10 == M);
  10386. GGML_ASSERT(neb11 == 1);
  10387. GGML_ASSERT(nec00 == M);
  10388. GGML_ASSERT(nec01 == D);
  10389. GGML_ASSERT(nec10 == D);
  10390. GGML_ASSERT(nec11 == 1);
  10391. // dst cannot be transposed or permuted
  10392. GGML_ASSERT(nb0 == sizeof(float));
  10393. GGML_ASSERT(nb0 <= nb1);
  10394. GGML_ASSERT(nb1 <= nb2);
  10395. GGML_ASSERT(nb2 <= nb3);
  10396. if (params->type == GGML_TASK_INIT) {
  10397. return;
  10398. }
  10399. if (params->type == GGML_TASK_FINALIZE) {
  10400. return;
  10401. }
  10402. // parallelize by a rows using ggml_vec_dot_f32
  10403. // total rows in a
  10404. const int nr = nea1*nea2*nea3;
  10405. // rows per thread
  10406. const int dr = (nr + nth - 1)/nth;
  10407. // row range for this thread
  10408. const int ir0 = dr*ith;
  10409. const int ir1 = MIN(ir0 + dr, nr);
  10410. for (int ir = ir0; ir < ir1; ++ir) {
  10411. // a indices
  10412. const int ia3 = ir/(nea2*nea1);
  10413. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10414. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10415. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10416. for (int64_t ic = 0; ic < neb01; ++ic) {
  10417. // b0 indices
  10418. const int ib03 = ia3;
  10419. const int ib02 = ia2;
  10420. const int ib01 = ic;
  10421. // S indices
  10422. const int i1 = ib01;
  10423. ggml_vec_dot_f16(nea0,
  10424. S + i1,
  10425. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10426. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10427. }
  10428. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10429. //ggml_vec_gelu_f32(neb01, S, S);
  10430. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10431. for (int64_t i = 0; i < M; i++) {
  10432. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10433. }
  10434. ggml_vec_gelu_f16(neb01, S16, S16);
  10435. {
  10436. // dst indices
  10437. const int i1 = ia1;
  10438. const int i2 = ia2;
  10439. const int i3 = ia3;
  10440. for (int64_t ic = 0; ic < nec01; ++ic) {
  10441. ggml_vec_dot_f16(neb01,
  10442. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10443. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10444. S16);
  10445. }
  10446. ggml_vec_add_f32(nec01,
  10447. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10448. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10449. (float *) c1->data);
  10450. }
  10451. }
  10452. }
  10453. static void ggml_compute_forward_flash_ff(
  10454. const struct ggml_compute_params * params,
  10455. const struct ggml_tensor * a,
  10456. const struct ggml_tensor * b0,
  10457. const struct ggml_tensor * b1,
  10458. const struct ggml_tensor * c0,
  10459. const struct ggml_tensor * c1,
  10460. struct ggml_tensor * dst) {
  10461. switch (b0->type) {
  10462. case GGML_TYPE_F16:
  10463. {
  10464. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10465. } break;
  10466. case GGML_TYPE_F32:
  10467. {
  10468. GGML_ASSERT(false); // TODO
  10469. } break;
  10470. default:
  10471. {
  10472. GGML_ASSERT(false);
  10473. } break;
  10474. }
  10475. }
  10476. // ggml_compute_forward_map_unary
  10477. static void ggml_compute_forward_map_unary_f32(
  10478. const struct ggml_compute_params * params,
  10479. const struct ggml_tensor * src0,
  10480. struct ggml_tensor * dst,
  10481. const ggml_unary_op_f32_t fun) {
  10482. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10484. return;
  10485. }
  10486. const int n = ggml_nrows(src0);
  10487. const int nc = src0->ne[0];
  10488. assert( dst->nb[0] == sizeof(float));
  10489. assert(src0->nb[0] == sizeof(float));
  10490. for (int i = 0; i < n; i++) {
  10491. fun(nc,
  10492. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10493. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10494. }
  10495. }
  10496. static void ggml_compute_forward_map_unary(
  10497. const struct ggml_compute_params * params,
  10498. const struct ggml_tensor * src0,
  10499. struct ggml_tensor * dst,
  10500. const ggml_unary_op_f32_t fun) {
  10501. switch (src0->type) {
  10502. case GGML_TYPE_F32:
  10503. {
  10504. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10505. } break;
  10506. default:
  10507. {
  10508. GGML_ASSERT(false);
  10509. } break;
  10510. }
  10511. }
  10512. // ggml_compute_forward_map_binary
  10513. static void ggml_compute_forward_map_binary_f32(
  10514. const struct ggml_compute_params * params,
  10515. const struct ggml_tensor * src0,
  10516. const struct ggml_tensor * src1,
  10517. struct ggml_tensor * dst,
  10518. const ggml_binary_op_f32_t fun) {
  10519. assert(params->ith == 0);
  10520. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10522. return;
  10523. }
  10524. const int n = ggml_nrows(src0);
  10525. const int nc = src0->ne[0];
  10526. assert( dst->nb[0] == sizeof(float));
  10527. assert(src0->nb[0] == sizeof(float));
  10528. assert(src1->nb[0] == sizeof(float));
  10529. for (int i = 0; i < n; i++) {
  10530. fun(nc,
  10531. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10532. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10533. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10534. }
  10535. }
  10536. static void ggml_compute_forward_map_binary(
  10537. const struct ggml_compute_params * params,
  10538. const struct ggml_tensor * src0,
  10539. const struct ggml_tensor * src1,
  10540. struct ggml_tensor * dst,
  10541. const ggml_binary_op_f32_t fun) {
  10542. switch (src0->type) {
  10543. case GGML_TYPE_F32:
  10544. {
  10545. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10546. } break;
  10547. default:
  10548. {
  10549. GGML_ASSERT(false);
  10550. } break;
  10551. }
  10552. }
  10553. /////////////////////////////////
  10554. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10555. GGML_ASSERT(params);
  10556. #ifdef GGML_USE_CUBLAS
  10557. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  10558. if (skip_cpu) {
  10559. return;
  10560. }
  10561. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  10562. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  10563. #endif // GGML_USE_CUBLAS
  10564. switch (tensor->op) {
  10565. case GGML_OP_DUP:
  10566. {
  10567. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10568. } break;
  10569. case GGML_OP_ADD:
  10570. {
  10571. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10572. } break;
  10573. case GGML_OP_ADD1:
  10574. {
  10575. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10576. } break;
  10577. case GGML_OP_ACC:
  10578. {
  10579. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10580. } break;
  10581. case GGML_OP_SUB:
  10582. {
  10583. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10584. } break;
  10585. case GGML_OP_MUL:
  10586. {
  10587. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10588. } break;
  10589. case GGML_OP_DIV:
  10590. {
  10591. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10592. } break;
  10593. case GGML_OP_SQR:
  10594. {
  10595. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10596. } break;
  10597. case GGML_OP_SQRT:
  10598. {
  10599. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10600. } break;
  10601. case GGML_OP_LOG:
  10602. {
  10603. ggml_compute_forward_log(params, tensor->src0, tensor);
  10604. } break;
  10605. case GGML_OP_SUM:
  10606. {
  10607. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10608. } break;
  10609. case GGML_OP_SUM_ROWS:
  10610. {
  10611. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10612. } break;
  10613. case GGML_OP_MEAN:
  10614. {
  10615. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10616. } break;
  10617. case GGML_OP_REPEAT:
  10618. {
  10619. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10620. } break;
  10621. case GGML_OP_ABS:
  10622. {
  10623. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10624. } break;
  10625. case GGML_OP_SGN:
  10626. {
  10627. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10628. } break;
  10629. case GGML_OP_NEG:
  10630. {
  10631. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10632. } break;
  10633. case GGML_OP_STEP:
  10634. {
  10635. ggml_compute_forward_step(params, tensor->src0, tensor);
  10636. } break;
  10637. case GGML_OP_RELU:
  10638. {
  10639. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10640. } break;
  10641. case GGML_OP_GELU:
  10642. {
  10643. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10644. } break;
  10645. case GGML_OP_SILU:
  10646. {
  10647. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10648. } break;
  10649. case GGML_OP_SILU_BACK:
  10650. {
  10651. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10652. } break;
  10653. case GGML_OP_NORM:
  10654. {
  10655. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10656. } break;
  10657. case GGML_OP_RMS_NORM:
  10658. {
  10659. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10660. } break;
  10661. case GGML_OP_RMS_NORM_BACK:
  10662. {
  10663. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10664. } break;
  10665. case GGML_OP_MUL_MAT:
  10666. {
  10667. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10668. } break;
  10669. case GGML_OP_SCALE:
  10670. {
  10671. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10672. } break;
  10673. case GGML_OP_SET:
  10674. {
  10675. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10676. } break;
  10677. case GGML_OP_CPY:
  10678. {
  10679. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10680. } break;
  10681. case GGML_OP_CONT:
  10682. {
  10683. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10684. } break;
  10685. case GGML_OP_RESHAPE:
  10686. {
  10687. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10688. } break;
  10689. case GGML_OP_VIEW:
  10690. {
  10691. ggml_compute_forward_view(params, tensor->src0);
  10692. } break;
  10693. case GGML_OP_PERMUTE:
  10694. {
  10695. ggml_compute_forward_permute(params, tensor->src0);
  10696. } break;
  10697. case GGML_OP_TRANSPOSE:
  10698. {
  10699. ggml_compute_forward_transpose(params, tensor->src0);
  10700. } break;
  10701. case GGML_OP_GET_ROWS:
  10702. {
  10703. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10704. } break;
  10705. case GGML_OP_GET_ROWS_BACK:
  10706. {
  10707. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10708. } break;
  10709. case GGML_OP_DIAG:
  10710. {
  10711. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10712. } break;
  10713. case GGML_OP_DIAG_MASK_INF:
  10714. {
  10715. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10716. } break;
  10717. case GGML_OP_DIAG_MASK_ZERO:
  10718. {
  10719. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10720. } break;
  10721. case GGML_OP_SOFT_MAX:
  10722. {
  10723. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10724. } break;
  10725. case GGML_OP_ROPE:
  10726. {
  10727. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10728. } break;
  10729. case GGML_OP_ROPE_BACK:
  10730. {
  10731. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10732. } break;
  10733. case GGML_OP_ALIBI:
  10734. {
  10735. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10736. } break;
  10737. case GGML_OP_CLAMP:
  10738. {
  10739. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10740. } break;
  10741. case GGML_OP_CONV_1D_1S:
  10742. {
  10743. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10744. } break;
  10745. case GGML_OP_CONV_1D_2S:
  10746. {
  10747. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10748. } break;
  10749. case GGML_OP_FLASH_ATTN:
  10750. {
  10751. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10752. GGML_ASSERT(t == 0 || t == 1);
  10753. bool masked = t != 0;
  10754. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10755. } break;
  10756. case GGML_OP_FLASH_FF:
  10757. {
  10758. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10759. } break;
  10760. case GGML_OP_MAP_UNARY:
  10761. {
  10762. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10763. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10764. }
  10765. break;
  10766. case GGML_OP_MAP_BINARY:
  10767. {
  10768. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10769. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10770. }
  10771. break;
  10772. case GGML_OP_NONE:
  10773. {
  10774. // nop
  10775. } break;
  10776. case GGML_OP_COUNT:
  10777. {
  10778. GGML_ASSERT(false);
  10779. } break;
  10780. }
  10781. }
  10782. ////////////////////////////////////////////////////////////////////////////////
  10783. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10784. struct ggml_tensor * src0 = tensor->src0;
  10785. struct ggml_tensor * src1 = tensor->src1;
  10786. switch (tensor->op) {
  10787. case GGML_OP_DUP:
  10788. {
  10789. if (src0->grad) {
  10790. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10791. }
  10792. } break;
  10793. case GGML_OP_ADD:
  10794. {
  10795. if (src0->grad) {
  10796. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10797. }
  10798. if (src1->grad) {
  10799. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10800. }
  10801. } break;
  10802. case GGML_OP_ADD1:
  10803. {
  10804. if (src0->grad) {
  10805. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10806. }
  10807. if (src1->grad) {
  10808. src1->grad = ggml_add_impl(ctx,
  10809. src1->grad,
  10810. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10811. inplace);
  10812. }
  10813. } break;
  10814. case GGML_OP_ACC:
  10815. {
  10816. if (src0->grad) {
  10817. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10818. }
  10819. if (src1->grad) {
  10820. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10821. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10822. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10823. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10824. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10825. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10826. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10827. tensor->grad,
  10828. src1->grad->ne[0],
  10829. src1->grad->ne[1],
  10830. src1->grad->ne[2],
  10831. src1->grad->ne[3],
  10832. nb1, nb2, nb3, offset);
  10833. src1->grad =
  10834. ggml_add_impl(ctx,
  10835. src1->grad,
  10836. ggml_reshape(ctx,
  10837. ggml_cont(ctx, tensor_grad_view),
  10838. src1->grad),
  10839. inplace);
  10840. }
  10841. } break;
  10842. case GGML_OP_SUB:
  10843. {
  10844. if (src0->grad) {
  10845. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10846. }
  10847. if (src1->grad) {
  10848. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10849. }
  10850. } break;
  10851. case GGML_OP_MUL:
  10852. {
  10853. if (src0->grad) {
  10854. src0->grad =
  10855. ggml_add_impl(ctx,
  10856. src0->grad,
  10857. ggml_mul(ctx, src1, tensor->grad),
  10858. inplace);
  10859. }
  10860. if (src1->grad) {
  10861. src1->grad =
  10862. ggml_add_impl(ctx,
  10863. src1->grad,
  10864. ggml_mul(ctx, src0, tensor->grad),
  10865. inplace);
  10866. }
  10867. } break;
  10868. case GGML_OP_DIV:
  10869. {
  10870. if (src0->grad) {
  10871. src0->grad =
  10872. ggml_add_impl(ctx,
  10873. src0->grad,
  10874. ggml_div(ctx, tensor->grad, src1),
  10875. inplace);
  10876. }
  10877. if (src1->grad) {
  10878. src1->grad =
  10879. ggml_sub_impl(ctx,
  10880. src1->grad,
  10881. ggml_mul(ctx,
  10882. tensor->grad,
  10883. ggml_div(ctx, tensor, src1)),
  10884. inplace);
  10885. }
  10886. } break;
  10887. case GGML_OP_SQR:
  10888. {
  10889. if (src0->grad) {
  10890. src0->grad =
  10891. ggml_add_impl(ctx,
  10892. src0->grad,
  10893. ggml_scale(ctx,
  10894. ggml_mul(ctx, src0, tensor->grad),
  10895. ggml_new_f32(ctx, 2.0f)),
  10896. inplace);
  10897. }
  10898. } break;
  10899. case GGML_OP_SQRT:
  10900. {
  10901. if (src0->grad) {
  10902. src0->grad =
  10903. ggml_add_impl(ctx,
  10904. src0->grad,
  10905. ggml_mul(ctx,
  10906. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10907. ggml_div(ctx,
  10908. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10909. tensor)),
  10910. inplace);
  10911. }
  10912. } break;
  10913. case GGML_OP_LOG:
  10914. {
  10915. if (src0->grad) {
  10916. src0->grad =
  10917. ggml_add_impl(ctx,
  10918. src0->grad,
  10919. ggml_div(ctx,
  10920. tensor->grad,
  10921. src0),
  10922. inplace);
  10923. }
  10924. } break;
  10925. case GGML_OP_SUM:
  10926. {
  10927. if (src0->grad) {
  10928. src0->grad =
  10929. ggml_add1_impl(ctx,
  10930. src0->grad,
  10931. tensor->grad,
  10932. inplace);
  10933. }
  10934. } break;
  10935. case GGML_OP_SUM_ROWS:
  10936. {
  10937. if (src0->grad) {
  10938. src0->grad =
  10939. ggml_add_impl(ctx,
  10940. src0->grad,
  10941. ggml_repeat(ctx,
  10942. tensor->grad,
  10943. src0->grad),
  10944. inplace);
  10945. }
  10946. } break;
  10947. case GGML_OP_MEAN:
  10948. {
  10949. GGML_ASSERT(false); // TODO: implement
  10950. } break;
  10951. case GGML_OP_REPEAT:
  10952. {
  10953. // necessary for llama
  10954. if (src0->grad) {
  10955. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10956. const int nc = tensor->ne[0];
  10957. const int nr = tensor->ne[1];
  10958. const int nc0 = src0->ne[0];
  10959. const int nr0 = src0->ne[1];
  10960. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10961. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10962. // tensor->grad [nc,nr,1,1]
  10963. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10964. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10965. // substitute [nc0,nr0,ncr,nrr]
  10966. // reshape [nc0*nr0,ncr*nrr,1,1]
  10967. // transpose [ncr*nrr,nc0*nr0,1,1]
  10968. // sum rows [1,nc0*nr0,1,1]
  10969. // transpose [nc0*nr0,1,1]
  10970. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10971. // add to src0->grad
  10972. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10973. struct ggml_tensor* F00 = tensor->grad;
  10974. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10975. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10976. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10977. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10978. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10979. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10980. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10981. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10982. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10983. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10984. src0->grad =
  10985. ggml_add_impl(ctx,
  10986. src0->grad,
  10987. F10,
  10988. inplace);
  10989. }
  10990. } break;
  10991. case GGML_OP_ABS:
  10992. {
  10993. if (src0->grad) {
  10994. src0->grad =
  10995. ggml_add_impl(ctx,
  10996. src0->grad,
  10997. ggml_mul(ctx,
  10998. ggml_sgn(ctx, src0),
  10999. tensor->grad),
  11000. inplace);
  11001. }
  11002. } break;
  11003. case GGML_OP_SGN:
  11004. {
  11005. if (src0->grad) {
  11006. // noop
  11007. }
  11008. } break;
  11009. case GGML_OP_NEG:
  11010. {
  11011. if (src0->grad) {
  11012. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  11013. }
  11014. } break;
  11015. case GGML_OP_STEP:
  11016. {
  11017. if (src0->grad) {
  11018. // noop
  11019. }
  11020. } break;
  11021. case GGML_OP_RELU:
  11022. {
  11023. if (src0->grad) {
  11024. src0->grad = ggml_sub_impl(ctx,
  11025. src0->grad,
  11026. ggml_mul(ctx,
  11027. ggml_step(ctx, src0),
  11028. tensor->grad),
  11029. inplace);
  11030. }
  11031. } break;
  11032. case GGML_OP_GELU:
  11033. {
  11034. GGML_ASSERT(false); // TODO: not implemented
  11035. } break;
  11036. case GGML_OP_ALIBI:
  11037. {
  11038. GGML_ASSERT(false); // TODO: not implemented
  11039. } break;
  11040. case GGML_OP_CLAMP:
  11041. {
  11042. GGML_ASSERT(false); // TODO: not implemented
  11043. } break;
  11044. case GGML_OP_SILU:
  11045. {
  11046. // necessary for llama
  11047. if (src0->grad) {
  11048. src0->grad = ggml_add_impl(ctx,
  11049. src0->grad,
  11050. ggml_silu_back(ctx, src0, tensor->grad),
  11051. inplace);
  11052. }
  11053. } break;
  11054. case GGML_OP_SILU_BACK:
  11055. {
  11056. GGML_ASSERT(false); // TODO: not implemented
  11057. } break;
  11058. case GGML_OP_NORM:
  11059. {
  11060. GGML_ASSERT(false); // TODO: not implemented
  11061. } break;
  11062. case GGML_OP_RMS_NORM:
  11063. {
  11064. // necessary for llama
  11065. if (src0->grad) {
  11066. src0->grad = ggml_add_impl(ctx,
  11067. src0->grad,
  11068. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11069. inplace);
  11070. }
  11071. } break;
  11072. case GGML_OP_RMS_NORM_BACK:
  11073. {
  11074. GGML_ASSERT(false); // TODO: not implemented
  11075. } break;
  11076. case GGML_OP_MUL_MAT:
  11077. {
  11078. // https://cs231n.github.io/optimization-2/#staged
  11079. // # forward pass
  11080. // s0 = np.random.randn(5, 10)
  11081. // s1 = np.random.randn(10, 3)
  11082. // t = s0.dot(s1)
  11083. // # now suppose we had the gradient on t from above in the circuit
  11084. // dt = np.random.randn(*t.shape) # same shape as t
  11085. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11086. // ds1 = t.T.dot(dt)
  11087. // tensor.shape [m,p]
  11088. // src0.shape [n,m]
  11089. // src1.shape [n,p]
  11090. // necessary for llama
  11091. if (src0->grad) {
  11092. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11093. src0->grad =
  11094. ggml_add_impl(ctx,
  11095. src0->grad,
  11096. // ds0 = dt.dot(s1.T)
  11097. // ggml_out_prod(ctx, // [n,m]
  11098. // src1, // [n,p]
  11099. // tensor->grad), // [m,p]
  11100. // for now just using A*B==(B.T*A.T).T
  11101. ggml_cont(ctx, // [n,m]
  11102. ggml_transpose(ctx, // [n,m]
  11103. ggml_mul_mat(ctx, // [m,n]
  11104. ggml_cont(ctx, // [p,m]
  11105. ggml_transpose(ctx, // [p,m]
  11106. tensor->grad)), // [m,p]
  11107. ggml_cont(ctx, // [p,n]
  11108. ggml_transpose(ctx, // [p,n]
  11109. src1))))), // [n,p]
  11110. inplace);
  11111. }
  11112. if (src1->grad) {
  11113. src1->grad =
  11114. ggml_add_impl(ctx,
  11115. src1->grad,
  11116. // ds1 = s0.T.dot(dt):
  11117. ggml_mul_mat(ctx, // [n,p]
  11118. ggml_cont(ctx, // [m,n]
  11119. ggml_transpose(ctx, src0)), // [m,n]
  11120. tensor->grad), // [m,p]
  11121. inplace);
  11122. }
  11123. } break;
  11124. case GGML_OP_SCALE:
  11125. {
  11126. // necessary for llama
  11127. if (src0->grad) {
  11128. src0->grad =
  11129. ggml_add_impl(ctx,
  11130. src0->grad,
  11131. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11132. inplace);
  11133. }
  11134. if (src1->grad) {
  11135. src1->grad =
  11136. ggml_add_impl(ctx,
  11137. src1->grad,
  11138. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11139. inplace);
  11140. }
  11141. } break;
  11142. case GGML_OP_SET:
  11143. {
  11144. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11145. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11146. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11147. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11148. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11149. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11150. struct ggml_tensor * tensor_grad_view = NULL;
  11151. if (src0->grad || src1->grad) {
  11152. GGML_ASSERT(src0->type == tensor->type);
  11153. GGML_ASSERT(tensor->grad->type == tensor->type);
  11154. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11155. tensor_grad_view = ggml_view_4d(ctx,
  11156. tensor->grad,
  11157. src1->grad->ne[0],
  11158. src1->grad->ne[1],
  11159. src1->grad->ne[2],
  11160. src1->grad->ne[3],
  11161. nb1, nb2, nb3, offset);
  11162. }
  11163. if (src0->grad) {
  11164. src0->grad = ggml_add_impl(ctx,
  11165. src0->grad,
  11166. ggml_acc_impl(ctx,
  11167. tensor->grad,
  11168. ggml_neg(ctx, tensor_grad_view),
  11169. nb1, nb2, nb3, offset, false),
  11170. inplace);
  11171. }
  11172. if (src1->grad) {
  11173. src1->grad =
  11174. ggml_add_impl(ctx,
  11175. src1->grad,
  11176. ggml_reshape(ctx,
  11177. ggml_cont(ctx, tensor_grad_view),
  11178. src1->grad),
  11179. inplace);
  11180. }
  11181. } break;
  11182. case GGML_OP_CPY:
  11183. {
  11184. // necessary for llama
  11185. // cpy overwrites value of src1 by src0 and returns view(src1)
  11186. // the overwriting is mathematically equivalent to:
  11187. // tensor = src0 * 1 + src1 * 0
  11188. if (src0->grad) {
  11189. // dsrc0 = dtensor * 1
  11190. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11191. }
  11192. if (src1->grad) {
  11193. // dsrc1 = dtensor * 0 -> noop
  11194. }
  11195. } break;
  11196. case GGML_OP_CONT:
  11197. {
  11198. // same as cpy
  11199. if (src0->grad) {
  11200. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11201. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11202. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11203. }
  11204. } break;
  11205. case GGML_OP_RESHAPE:
  11206. {
  11207. // necessary for llama
  11208. if (src0->grad) {
  11209. src0->grad =
  11210. ggml_add_impl(ctx, src0->grad,
  11211. ggml_reshape(ctx, tensor->grad, src0->grad),
  11212. inplace);
  11213. }
  11214. } break;
  11215. case GGML_OP_VIEW:
  11216. {
  11217. // necessary for llama
  11218. if (src0->grad) {
  11219. size_t offset;
  11220. memcpy(&offset, tensor->padding, sizeof(offset));
  11221. size_t nb1 = tensor->nb[1];
  11222. size_t nb2 = tensor->nb[2];
  11223. size_t nb3 = tensor->nb[3];
  11224. if (src0->type != src0->grad->type) {
  11225. // gradient is typically F32, but src0 could be other type
  11226. size_t ng = ggml_element_size(src0->grad);
  11227. size_t n0 = ggml_element_size(src0);
  11228. GGML_ASSERT(offset % n0 == 0);
  11229. GGML_ASSERT(nb1 % n0 == 0);
  11230. GGML_ASSERT(nb2 % n0 == 0);
  11231. GGML_ASSERT(nb3 % n0 == 0);
  11232. offset = (offset / n0) * ng;
  11233. nb1 = (nb1 / n0) * ng;
  11234. nb2 = (nb2 / n0) * ng;
  11235. nb3 = (nb3 / n0) * ng;
  11236. }
  11237. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11238. }
  11239. } break;
  11240. case GGML_OP_PERMUTE:
  11241. {
  11242. // necessary for llama
  11243. if (src0->grad) {
  11244. int axis0 = tensor->padding[0] & 0x3;
  11245. int axis1 = tensor->padding[1] & 0x3;
  11246. int axis2 = tensor->padding[2] & 0x3;
  11247. int axis3 = tensor->padding[3] & 0x3;
  11248. int axes_backward[4] = {0,0,0,0};
  11249. axes_backward[axis0] = 0;
  11250. axes_backward[axis1] = 1;
  11251. axes_backward[axis2] = 2;
  11252. axes_backward[axis3] = 3;
  11253. src0->grad =
  11254. ggml_add_impl(ctx, src0->grad,
  11255. ggml_permute(ctx,
  11256. tensor->grad,
  11257. axes_backward[0],
  11258. axes_backward[1],
  11259. axes_backward[2],
  11260. axes_backward[3]),
  11261. inplace);
  11262. }
  11263. } break;
  11264. case GGML_OP_TRANSPOSE:
  11265. {
  11266. // necessary for llama
  11267. if (src0->grad) {
  11268. src0->grad =
  11269. ggml_add_impl(ctx, src0->grad,
  11270. ggml_transpose(ctx, tensor->grad),
  11271. inplace);
  11272. }
  11273. } break;
  11274. case GGML_OP_GET_ROWS:
  11275. {
  11276. // necessary for llama (only for tokenizer)
  11277. if (src0->grad) {
  11278. src0->grad =
  11279. ggml_add_impl(ctx, src0->grad,
  11280. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11281. inplace);
  11282. }
  11283. if (src1->grad) {
  11284. // noop
  11285. }
  11286. } break;
  11287. case GGML_OP_GET_ROWS_BACK:
  11288. {
  11289. GGML_ASSERT(false); // TODO: not implemented
  11290. } break;
  11291. case GGML_OP_DIAG:
  11292. {
  11293. GGML_ASSERT(false); // TODO: not implemented
  11294. } break;
  11295. case GGML_OP_DIAG_MASK_INF:
  11296. {
  11297. // necessary for llama
  11298. if (src0->grad) {
  11299. assert(src1->type == GGML_TYPE_I32);
  11300. assert(ggml_nelements(src1) == 2);
  11301. const int n_past = ((int32_t *) src1->data)[0];
  11302. src0->grad =
  11303. ggml_add_impl(ctx, src0->grad,
  11304. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11305. inplace);
  11306. }
  11307. if (src1->grad) {
  11308. // noop
  11309. }
  11310. } break;
  11311. case GGML_OP_DIAG_MASK_ZERO:
  11312. {
  11313. // necessary for llama
  11314. if (src0->grad) {
  11315. assert(src1->type == GGML_TYPE_I32);
  11316. assert(ggml_nelements(src1) == 2);
  11317. const int n_past = ((int32_t *) src1->data)[0];
  11318. src0->grad =
  11319. ggml_add_impl(ctx, src0->grad,
  11320. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11321. inplace);
  11322. }
  11323. if (src1->grad) {
  11324. // noop
  11325. }
  11326. } break;
  11327. case GGML_OP_SOFT_MAX:
  11328. {
  11329. // necessary for llama
  11330. if (src0->grad) {
  11331. // y = softmax(x)
  11332. //
  11333. // Jii = yi - yi*yi
  11334. // Jij = -yi*yj
  11335. // J = diag(y)-y.*y
  11336. // dx = J * dy
  11337. // dxk = sum(Jkj * dyk)
  11338. int64_t ne2[4] = {
  11339. tensor->ne[0],
  11340. 1,
  11341. tensor->ne[1]*tensor->ne[2],
  11342. tensor->ne[3]
  11343. };
  11344. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11345. ggml_reshape_4d(ctx,
  11346. ggml_cont(ctx, tensor),
  11347. ne2[0], ne2[1], ne2[2], ne2[3]));
  11348. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11349. ggml_reshape_4d(ctx,
  11350. ggml_cont(ctx, tensor->grad),
  11351. ne2[0], ne2[1], ne2[2], ne2[3]));
  11352. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11353. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11354. tensor2, // [ne0,1,ne1*ne2,ne3]
  11355. 1, 0, 2, 3));
  11356. src0->grad =
  11357. ggml_add_impl(ctx,
  11358. src0->grad, // [ne0,ne1,ne2,ne3]
  11359. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11360. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11361. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11362. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11363. tensor2), // [ne0,1,ne1*ne2,ne3]
  11364. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11365. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11366. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11367. grad2), // [ne0,1,ne1*ne2,ne3]
  11368. src0->grad),
  11369. inplace);
  11370. }
  11371. } break;
  11372. case GGML_OP_ROPE:
  11373. {
  11374. // necessary for llama
  11375. if (src0->grad) {
  11376. assert(src1->type == GGML_TYPE_I32);
  11377. assert(ggml_nelements(src1) == 3);
  11378. const int n_past = ((int32_t *) src1->data)[0];
  11379. const int n_dims = ((int32_t *) src1->data)[1];
  11380. const int mode = ((int32_t *) src1->data)[2];
  11381. src0->grad = ggml_add_impl(ctx,
  11382. src0->grad,
  11383. ggml_rope_back(ctx,
  11384. tensor->grad,
  11385. n_past,
  11386. n_dims,
  11387. mode),
  11388. inplace);
  11389. }
  11390. if (src1->grad) {
  11391. // noop
  11392. }
  11393. } break;
  11394. case GGML_OP_ROPE_BACK:
  11395. {
  11396. if (src0->grad) {
  11397. assert(src1->type == GGML_TYPE_I32);
  11398. assert(ggml_nelements(src1) == 3);
  11399. const int n_past = ((int32_t *) src1->data)[0];
  11400. const int n_dims = ((int32_t *) src1->data)[1];
  11401. const int mode = ((int32_t *) src1->data)[2];
  11402. src0->grad = ggml_add_impl(ctx,
  11403. src0->grad,
  11404. ggml_rope(ctx,
  11405. tensor->grad,
  11406. n_past,
  11407. n_dims,
  11408. mode),
  11409. inplace);
  11410. }
  11411. if (src1->grad) {
  11412. // noop
  11413. }
  11414. } break;
  11415. case GGML_OP_CONV_1D_1S:
  11416. {
  11417. GGML_ASSERT(false); // TODO: not implemented
  11418. } break;
  11419. case GGML_OP_CONV_1D_2S:
  11420. {
  11421. GGML_ASSERT(false); // TODO: not implemented
  11422. } break;
  11423. case GGML_OP_FLASH_ATTN:
  11424. {
  11425. GGML_ASSERT(false); // not supported
  11426. } break;
  11427. case GGML_OP_FLASH_FF:
  11428. {
  11429. GGML_ASSERT(false); // not supported
  11430. } break;
  11431. case GGML_OP_MAP_UNARY:
  11432. case GGML_OP_MAP_BINARY:
  11433. {
  11434. GGML_ASSERT(false); // not supported
  11435. } break;
  11436. case GGML_OP_NONE:
  11437. {
  11438. // nop
  11439. } break;
  11440. case GGML_OP_COUNT:
  11441. {
  11442. GGML_ASSERT(false);
  11443. } break;
  11444. }
  11445. }
  11446. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11447. if (node->grad == NULL) {
  11448. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11449. // it can also happen during forward pass, if the user performs computations with constants
  11450. if (node->op != GGML_OP_NONE) {
  11451. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11452. }
  11453. }
  11454. // check if already visited
  11455. for (int i = 0; i < cgraph->n_nodes; i++) {
  11456. if (cgraph->nodes[i] == node) {
  11457. return;
  11458. }
  11459. }
  11460. for (int i = 0; i < cgraph->n_leafs; i++) {
  11461. if (cgraph->leafs[i] == node) {
  11462. return;
  11463. }
  11464. }
  11465. if (node->src0) {
  11466. ggml_visit_parents(cgraph, node->src0);
  11467. }
  11468. if (node->src1) {
  11469. ggml_visit_parents(cgraph, node->src1);
  11470. }
  11471. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11472. if (node->opt[i]) {
  11473. ggml_visit_parents(cgraph, node->opt[i]);
  11474. }
  11475. }
  11476. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11477. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11478. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11479. if (strlen(node->name) == 0) {
  11480. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11481. }
  11482. cgraph->leafs[cgraph->n_leafs] = node;
  11483. cgraph->n_leafs++;
  11484. } else {
  11485. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11486. if (strlen(node->name) == 0) {
  11487. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11488. }
  11489. cgraph->nodes[cgraph->n_nodes] = node;
  11490. cgraph->grads[cgraph->n_nodes] = node->grad;
  11491. cgraph->n_nodes++;
  11492. }
  11493. }
  11494. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11495. if (!expand) {
  11496. cgraph->n_nodes = 0;
  11497. cgraph->n_leafs = 0;
  11498. }
  11499. const int n0 = cgraph->n_nodes;
  11500. UNUSED(n0);
  11501. ggml_visit_parents(cgraph, tensor);
  11502. const int n_new = cgraph->n_nodes - n0;
  11503. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11504. if (n_new > 0) {
  11505. // the last added node should always be starting point
  11506. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11507. }
  11508. }
  11509. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11510. ggml_build_forward_impl(cgraph, tensor, true);
  11511. }
  11512. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11513. struct ggml_cgraph result = {
  11514. /*.n_nodes =*/ 0,
  11515. /*.n_leafs =*/ 0,
  11516. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11517. /*.work_size =*/ 0,
  11518. /*.work =*/ NULL,
  11519. /*.nodes =*/ { NULL },
  11520. /*.grads =*/ { NULL },
  11521. /*.leafs =*/ { NULL },
  11522. /*.perf_runs =*/ 0,
  11523. /*.perf_cycles =*/ 0,
  11524. /*.perf_time_us =*/ 0,
  11525. };
  11526. ggml_build_forward_impl(&result, tensor, false);
  11527. return result;
  11528. }
  11529. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11530. struct ggml_cgraph result = *gf;
  11531. GGML_ASSERT(gf->n_nodes > 0);
  11532. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11533. if (keep) {
  11534. for (int i = 0; i < gf->n_nodes; i++) {
  11535. struct ggml_tensor * node = gf->nodes[i];
  11536. if (node->grad) {
  11537. node->grad = ggml_dup_tensor(ctx, node);
  11538. gf->grads[i] = node->grad;
  11539. }
  11540. }
  11541. }
  11542. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11543. struct ggml_tensor * node = gf->nodes[i];
  11544. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11545. if (node->grad) {
  11546. ggml_compute_backward(ctx, node, keep);
  11547. }
  11548. }
  11549. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11550. struct ggml_tensor * node = gf->nodes[i];
  11551. if (node->is_param) {
  11552. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11553. ggml_build_forward_impl(&result, node->grad, true);
  11554. }
  11555. }
  11556. return result;
  11557. }
  11558. //
  11559. // thread data
  11560. //
  11561. // synchronization is done via busy loops
  11562. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11563. //
  11564. #ifdef __APPLE__
  11565. //#include <os/lock.h>
  11566. //
  11567. //typedef os_unfair_lock ggml_lock_t;
  11568. //
  11569. //#define ggml_lock_init(x) UNUSED(x)
  11570. //#define ggml_lock_destroy(x) UNUSED(x)
  11571. //#define ggml_lock_lock os_unfair_lock_lock
  11572. //#define ggml_lock_unlock os_unfair_lock_unlock
  11573. //
  11574. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11575. typedef int ggml_lock_t;
  11576. #define ggml_lock_init(x) UNUSED(x)
  11577. #define ggml_lock_destroy(x) UNUSED(x)
  11578. #define ggml_lock_lock(x) UNUSED(x)
  11579. #define ggml_lock_unlock(x) UNUSED(x)
  11580. #define GGML_LOCK_INITIALIZER 0
  11581. typedef pthread_t ggml_thread_t;
  11582. #define ggml_thread_create pthread_create
  11583. #define ggml_thread_join pthread_join
  11584. #else
  11585. //typedef pthread_spinlock_t ggml_lock_t;
  11586. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11587. //#define ggml_lock_destroy pthread_spin_destroy
  11588. //#define ggml_lock_lock pthread_spin_lock
  11589. //#define ggml_lock_unlock pthread_spin_unlock
  11590. typedef int ggml_lock_t;
  11591. #define ggml_lock_init(x) UNUSED(x)
  11592. #define ggml_lock_destroy(x) UNUSED(x)
  11593. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11594. #define ggml_lock_lock(x) _mm_pause()
  11595. #else
  11596. #define ggml_lock_lock(x) UNUSED(x)
  11597. #endif
  11598. #define ggml_lock_unlock(x) UNUSED(x)
  11599. #define GGML_LOCK_INITIALIZER 0
  11600. typedef pthread_t ggml_thread_t;
  11601. #define ggml_thread_create pthread_create
  11602. #define ggml_thread_join pthread_join
  11603. #endif
  11604. struct ggml_compute_state_shared {
  11605. ggml_lock_t spin;
  11606. int n_threads;
  11607. // synchronization primitives
  11608. atomic_int n_ready;
  11609. atomic_bool has_work;
  11610. atomic_bool stop; // stop all threads
  11611. };
  11612. struct ggml_compute_state {
  11613. ggml_thread_t thrd;
  11614. struct ggml_compute_params params;
  11615. struct ggml_tensor * node;
  11616. struct ggml_compute_state_shared * shared;
  11617. };
  11618. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11619. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11620. const int n_threads = state->shared->n_threads;
  11621. while (true) {
  11622. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11623. atomic_store(&state->shared->has_work, false);
  11624. } else {
  11625. while (atomic_load(&state->shared->has_work)) {
  11626. if (atomic_load(&state->shared->stop)) {
  11627. return 0;
  11628. }
  11629. ggml_lock_lock (&state->shared->spin);
  11630. ggml_lock_unlock(&state->shared->spin);
  11631. }
  11632. }
  11633. atomic_fetch_sub(&state->shared->n_ready, 1);
  11634. // wait for work
  11635. while (!atomic_load(&state->shared->has_work)) {
  11636. if (atomic_load(&state->shared->stop)) {
  11637. return 0;
  11638. }
  11639. ggml_lock_lock (&state->shared->spin);
  11640. ggml_lock_unlock(&state->shared->spin);
  11641. }
  11642. // check if we should stop
  11643. if (atomic_load(&state->shared->stop)) {
  11644. break;
  11645. }
  11646. if (state->node) {
  11647. if (state->params.ith < state->params.nth) {
  11648. ggml_compute_forward(&state->params, state->node);
  11649. }
  11650. state->node = NULL;
  11651. } else {
  11652. break;
  11653. }
  11654. }
  11655. return 0;
  11656. }
  11657. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11658. const int n_threads = cgraph->n_threads;
  11659. struct ggml_compute_state_shared state_shared = {
  11660. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11661. /*.n_threads =*/ n_threads,
  11662. /*.n_ready =*/ 0,
  11663. /*.has_work =*/ false,
  11664. /*.stop =*/ false,
  11665. };
  11666. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11667. // create thread pool
  11668. if (n_threads > 1) {
  11669. ggml_lock_init(&state_shared.spin);
  11670. atomic_store(&state_shared.has_work, true);
  11671. for (int j = 0; j < n_threads - 1; j++) {
  11672. workers[j] = (struct ggml_compute_state) {
  11673. .thrd = 0,
  11674. .params = {
  11675. .type = GGML_TASK_COMPUTE,
  11676. .ith = j + 1,
  11677. .nth = n_threads,
  11678. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11679. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11680. },
  11681. .node = NULL,
  11682. .shared = &state_shared,
  11683. };
  11684. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11685. GGML_ASSERT(rc == 0);
  11686. UNUSED(rc);
  11687. }
  11688. }
  11689. // initialize tasks + work buffer
  11690. {
  11691. size_t work_size = 0;
  11692. // thread scheduling for the different operations
  11693. for (int i = 0; i < cgraph->n_nodes; i++) {
  11694. struct ggml_tensor * node = cgraph->nodes[i];
  11695. switch (node->op) {
  11696. case GGML_OP_CPY:
  11697. case GGML_OP_DUP:
  11698. {
  11699. node->n_tasks = n_threads;
  11700. size_t cur = 0;
  11701. if (ggml_is_quantized(node->type)) {
  11702. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11703. }
  11704. work_size = MAX(work_size, cur);
  11705. } break;
  11706. case GGML_OP_ADD:
  11707. case GGML_OP_ADD1:
  11708. {
  11709. node->n_tasks = n_threads;
  11710. size_t cur = 0;
  11711. if (ggml_is_quantized(node->src0->type)) {
  11712. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11713. }
  11714. work_size = MAX(work_size, cur);
  11715. } break;
  11716. case GGML_OP_ACC:
  11717. {
  11718. node->n_tasks = n_threads;
  11719. size_t cur = 0;
  11720. if (ggml_is_quantized(node->src0->type)) {
  11721. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11722. }
  11723. work_size = MAX(work_size, cur);
  11724. } break;
  11725. case GGML_OP_SUB:
  11726. case GGML_OP_DIV:
  11727. case GGML_OP_SQR:
  11728. case GGML_OP_SQRT:
  11729. case GGML_OP_LOG:
  11730. case GGML_OP_SUM:
  11731. case GGML_OP_SUM_ROWS:
  11732. case GGML_OP_MEAN:
  11733. case GGML_OP_REPEAT:
  11734. case GGML_OP_ABS:
  11735. case GGML_OP_SGN:
  11736. case GGML_OP_NEG:
  11737. case GGML_OP_STEP:
  11738. case GGML_OP_RELU:
  11739. {
  11740. node->n_tasks = 1;
  11741. } break;
  11742. case GGML_OP_MUL:
  11743. case GGML_OP_GELU:
  11744. case GGML_OP_SILU:
  11745. case GGML_OP_SILU_BACK:
  11746. case GGML_OP_NORM:
  11747. case GGML_OP_RMS_NORM:
  11748. case GGML_OP_RMS_NORM_BACK:
  11749. {
  11750. node->n_tasks = n_threads;
  11751. } break;
  11752. case GGML_OP_MUL_MAT:
  11753. {
  11754. node->n_tasks = n_threads;
  11755. // TODO: use different scheduling for different matrix sizes
  11756. //const int nr0 = ggml_nrows(node->src0);
  11757. //const int nr1 = ggml_nrows(node->src1);
  11758. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11759. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11760. size_t cur = 0;
  11761. #if defined(GGML_USE_CUBLAS)
  11762. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11763. node->n_tasks = 1; // TODO: this actually is doing nothing
  11764. // the threads are still spinning
  11765. }
  11766. else
  11767. #elif defined(GGML_USE_CLBLAST)
  11768. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11769. node->n_tasks = 1; // TODO: this actually is doing nothing
  11770. // the threads are still spinning
  11771. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11772. }
  11773. else
  11774. #endif
  11775. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11776. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11777. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11778. node->n_tasks = 1; // TODO: this actually is doing nothing
  11779. // the threads are still spinning
  11780. // here we need memory just for single 2D matrix from src0
  11781. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11782. } else {
  11783. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11784. }
  11785. #else
  11786. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11787. #endif
  11788. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11789. cur = 0;
  11790. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11791. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11792. node->n_tasks = 1;
  11793. }
  11794. #endif
  11795. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11796. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11797. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11798. node->n_tasks = 1;
  11799. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11800. } else
  11801. #endif
  11802. {
  11803. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11804. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11805. }
  11806. } else {
  11807. GGML_ASSERT(false);
  11808. }
  11809. work_size = MAX(work_size, cur);
  11810. } break;
  11811. case GGML_OP_SCALE:
  11812. {
  11813. node->n_tasks = n_threads;
  11814. } break;
  11815. case GGML_OP_SET:
  11816. case GGML_OP_CONT:
  11817. case GGML_OP_RESHAPE:
  11818. case GGML_OP_VIEW:
  11819. case GGML_OP_PERMUTE:
  11820. case GGML_OP_TRANSPOSE:
  11821. case GGML_OP_GET_ROWS:
  11822. case GGML_OP_GET_ROWS_BACK:
  11823. case GGML_OP_DIAG:
  11824. case GGML_OP_DIAG_MASK_ZERO:
  11825. {
  11826. node->n_tasks = 1;
  11827. } break;
  11828. case GGML_OP_DIAG_MASK_INF:
  11829. case GGML_OP_SOFT_MAX:
  11830. case GGML_OP_ROPE:
  11831. case GGML_OP_ROPE_BACK:
  11832. {
  11833. node->n_tasks = n_threads;
  11834. } break;
  11835. case GGML_OP_ALIBI:
  11836. {
  11837. node->n_tasks = 1; //TODO
  11838. } break;
  11839. case GGML_OP_CLAMP:
  11840. {
  11841. node->n_tasks = 1; //TODO
  11842. } break;
  11843. case GGML_OP_CONV_1D_1S:
  11844. case GGML_OP_CONV_1D_2S:
  11845. {
  11846. node->n_tasks = n_threads;
  11847. GGML_ASSERT(node->src0->ne[3] == 1);
  11848. GGML_ASSERT(node->src1->ne[2] == 1);
  11849. GGML_ASSERT(node->src1->ne[3] == 1);
  11850. size_t cur = 0;
  11851. const int nk = node->src0->ne[0];
  11852. if (node->src0->type == GGML_TYPE_F16 &&
  11853. node->src1->type == GGML_TYPE_F32) {
  11854. cur = sizeof(ggml_fp16_t)*(
  11855. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11856. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11857. );
  11858. } else if (node->src0->type == GGML_TYPE_F32 &&
  11859. node->src1->type == GGML_TYPE_F32) {
  11860. cur = sizeof(float)*(
  11861. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11862. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11863. );
  11864. } else {
  11865. GGML_ASSERT(false);
  11866. }
  11867. work_size = MAX(work_size, cur);
  11868. } break;
  11869. case GGML_OP_FLASH_ATTN:
  11870. {
  11871. node->n_tasks = n_threads;
  11872. size_t cur = 0;
  11873. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11874. if (node->src1->type == GGML_TYPE_F32) {
  11875. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11876. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11877. }
  11878. if (node->src1->type == GGML_TYPE_F16) {
  11879. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11880. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11881. }
  11882. work_size = MAX(work_size, cur);
  11883. } break;
  11884. case GGML_OP_FLASH_FF:
  11885. {
  11886. node->n_tasks = n_threads;
  11887. size_t cur = 0;
  11888. if (node->src1->type == GGML_TYPE_F32) {
  11889. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11890. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11891. }
  11892. if (node->src1->type == GGML_TYPE_F16) {
  11893. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11894. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11895. }
  11896. work_size = MAX(work_size, cur);
  11897. } break;
  11898. case GGML_OP_MAP_UNARY:
  11899. case GGML_OP_MAP_BINARY:
  11900. {
  11901. node->n_tasks = 1;
  11902. } break;
  11903. case GGML_OP_NONE:
  11904. {
  11905. node->n_tasks = 1;
  11906. } break;
  11907. case GGML_OP_COUNT:
  11908. {
  11909. GGML_ASSERT(false);
  11910. } break;
  11911. }
  11912. }
  11913. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11914. GGML_ASSERT(false); // TODO: better handling
  11915. }
  11916. if (work_size > 0 && cgraph->work == NULL) {
  11917. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11918. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11919. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11920. }
  11921. }
  11922. const int64_t perf_start_cycles = ggml_perf_cycles();
  11923. const int64_t perf_start_time_us = ggml_perf_time_us();
  11924. for (int i = 0; i < cgraph->n_nodes; i++) {
  11925. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11926. struct ggml_tensor * node = cgraph->nodes[i];
  11927. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11928. //if (node->grad == NULL && node->perf_runs > 0) {
  11929. // continue;
  11930. //}
  11931. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11932. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11933. // INIT
  11934. struct ggml_compute_params params = {
  11935. /*.type =*/ GGML_TASK_INIT,
  11936. /*.ith =*/ 0,
  11937. /*.nth =*/ node->n_tasks,
  11938. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11939. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11940. };
  11941. ggml_compute_forward(&params, node);
  11942. // COMPUTE
  11943. if (node->n_tasks > 1) {
  11944. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11945. atomic_store(&state_shared.has_work, false);
  11946. }
  11947. while (atomic_load(&state_shared.has_work)) {
  11948. ggml_lock_lock (&state_shared.spin);
  11949. ggml_lock_unlock(&state_shared.spin);
  11950. }
  11951. // launch thread pool
  11952. for (int j = 0; j < n_threads - 1; j++) {
  11953. workers[j].params = (struct ggml_compute_params) {
  11954. .type = GGML_TASK_COMPUTE,
  11955. .ith = j + 1,
  11956. .nth = node->n_tasks,
  11957. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11958. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11959. };
  11960. workers[j].node = node;
  11961. }
  11962. atomic_fetch_sub(&state_shared.n_ready, 1);
  11963. while (atomic_load(&state_shared.n_ready) > 0) {
  11964. ggml_lock_lock (&state_shared.spin);
  11965. ggml_lock_unlock(&state_shared.spin);
  11966. }
  11967. atomic_store(&state_shared.has_work, true);
  11968. }
  11969. params.type = GGML_TASK_COMPUTE;
  11970. ggml_compute_forward(&params, node);
  11971. // wait for thread pool
  11972. if (node->n_tasks > 1) {
  11973. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11974. atomic_store(&state_shared.has_work, false);
  11975. }
  11976. while (atomic_load(&state_shared.has_work)) {
  11977. ggml_lock_lock (&state_shared.spin);
  11978. ggml_lock_unlock(&state_shared.spin);
  11979. }
  11980. atomic_fetch_sub(&state_shared.n_ready, 1);
  11981. while (atomic_load(&state_shared.n_ready) != 0) {
  11982. ggml_lock_lock (&state_shared.spin);
  11983. ggml_lock_unlock(&state_shared.spin);
  11984. }
  11985. }
  11986. // FINALIZE
  11987. if (node->n_tasks > 1) {
  11988. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11989. atomic_store(&state_shared.has_work, false);
  11990. }
  11991. while (atomic_load(&state_shared.has_work)) {
  11992. ggml_lock_lock (&state_shared.spin);
  11993. ggml_lock_unlock(&state_shared.spin);
  11994. }
  11995. // launch thread pool
  11996. for (int j = 0; j < n_threads - 1; j++) {
  11997. workers[j].params = (struct ggml_compute_params) {
  11998. .type = GGML_TASK_FINALIZE,
  11999. .ith = j + 1,
  12000. .nth = node->n_tasks,
  12001. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12002. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12003. };
  12004. workers[j].node = node;
  12005. }
  12006. atomic_fetch_sub(&state_shared.n_ready, 1);
  12007. while (atomic_load(&state_shared.n_ready) > 0) {
  12008. ggml_lock_lock (&state_shared.spin);
  12009. ggml_lock_unlock(&state_shared.spin);
  12010. }
  12011. atomic_store(&state_shared.has_work, true);
  12012. }
  12013. params.type = GGML_TASK_FINALIZE;
  12014. ggml_compute_forward(&params, node);
  12015. // wait for thread pool
  12016. if (node->n_tasks > 1) {
  12017. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12018. atomic_store(&state_shared.has_work, false);
  12019. }
  12020. while (atomic_load(&state_shared.has_work)) {
  12021. ggml_lock_lock (&state_shared.spin);
  12022. ggml_lock_unlock(&state_shared.spin);
  12023. }
  12024. atomic_fetch_sub(&state_shared.n_ready, 1);
  12025. while (atomic_load(&state_shared.n_ready) != 0) {
  12026. ggml_lock_lock (&state_shared.spin);
  12027. ggml_lock_unlock(&state_shared.spin);
  12028. }
  12029. }
  12030. // performance stats (node)
  12031. {
  12032. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12033. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12034. node->perf_runs++;
  12035. node->perf_cycles += perf_cycles_cur;
  12036. node->perf_time_us += perf_time_us_cur;
  12037. }
  12038. }
  12039. // join thread pool
  12040. if (n_threads > 1) {
  12041. atomic_store(&state_shared.stop, true);
  12042. atomic_store(&state_shared.has_work, true);
  12043. for (int j = 0; j < n_threads - 1; j++) {
  12044. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12045. GGML_ASSERT(rc == 0);
  12046. UNUSED(rc);
  12047. }
  12048. ggml_lock_destroy(&state_shared.spin);
  12049. }
  12050. // performance stats (graph)
  12051. {
  12052. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12053. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12054. cgraph->perf_runs++;
  12055. cgraph->perf_cycles += perf_cycles_cur;
  12056. cgraph->perf_time_us += perf_time_us_cur;
  12057. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12058. __func__, cgraph->perf_runs,
  12059. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12060. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12061. (double) perf_time_us_cur / 1000.0,
  12062. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12063. }
  12064. }
  12065. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12066. for (int i = 0; i < cgraph->n_nodes; i++) {
  12067. struct ggml_tensor * grad = cgraph->grads[i];
  12068. if (grad) {
  12069. ggml_set_zero(grad);
  12070. }
  12071. }
  12072. }
  12073. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12074. for (int i = 0; i < cgraph->n_leafs; i++) {
  12075. struct ggml_tensor * leaf = cgraph->leafs[i];
  12076. if (strcmp(leaf->name, name) == 0) {
  12077. return leaf;
  12078. }
  12079. }
  12080. for (int i = 0; i < cgraph->n_nodes; i++) {
  12081. struct ggml_tensor * node = cgraph->nodes[i];
  12082. if (strcmp(node->name, name) == 0) {
  12083. return node;
  12084. }
  12085. }
  12086. return NULL;
  12087. }
  12088. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12089. const int64_t * ne = tensor->ne;
  12090. const size_t * nb = tensor->nb;
  12091. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  12092. ggml_type_name(tensor->type),
  12093. ggml_op_name (tensor->op),
  12094. tensor->n_dims,
  12095. ne[0], ne[1], ne[2], ne[3],
  12096. nb[0], nb[1], nb[2], nb[3],
  12097. tensor->data,
  12098. tensor->name);
  12099. }
  12100. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12101. const int64_t * ne = tensor->ne;
  12102. const size_t * nb = tensor->nb;
  12103. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12104. arg,
  12105. ggml_type_name(tensor->type),
  12106. ggml_op_name (tensor->op),
  12107. tensor->n_dims,
  12108. ne[0], ne[1], ne[2], ne[3],
  12109. nb[0], nb[1], nb[2], nb[3],
  12110. tensor->n_tasks,
  12111. tensor->data,
  12112. tensor->name);
  12113. }
  12114. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12115. //assert(cgraph->work == NULL);
  12116. //assert(cgraph->work_size == 0);
  12117. uint64_t size_eval = 0;
  12118. // compute size of intermediate results
  12119. // TODO: does not take into account scratch buffers !!!!
  12120. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12121. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12122. }
  12123. // print
  12124. {
  12125. FILE * fout = stdout;
  12126. fprintf(fout, "\n");
  12127. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12128. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12129. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12130. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12131. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  12132. // header
  12133. fprintf(fout, "\n");
  12134. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12135. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12136. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12137. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12138. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12139. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12140. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12141. }
  12142. // header
  12143. fprintf(fout, "\n");
  12144. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12145. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12146. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12147. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12148. if (cgraph->nodes[i]->src0) {
  12149. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12150. }
  12151. if (cgraph->nodes[i]->src1) {
  12152. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12153. }
  12154. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12155. if (cgraph->nodes[i]->opt[j]) {
  12156. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12157. }
  12158. }
  12159. fprintf(fout, "\n");
  12160. }
  12161. fprintf(fout, "\n");
  12162. }
  12163. // write binary data
  12164. {
  12165. FILE * fout = fopen(fname, "wb");
  12166. if (!fout) {
  12167. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12168. return;
  12169. }
  12170. // header
  12171. {
  12172. const uint32_t magic = GGML_FILE_MAGIC;
  12173. const uint32_t version = GGML_FILE_VERSION;
  12174. const uint32_t n_leafs = cgraph->n_leafs;
  12175. const uint32_t nodes = cgraph->n_nodes;
  12176. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12177. fwrite(&version, sizeof(uint32_t), 1, fout);
  12178. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12179. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12180. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12181. }
  12182. // leafs
  12183. {
  12184. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12185. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12186. const uint32_t type = tensor->type;
  12187. const uint32_t op = tensor->op;
  12188. const uint32_t n_dims = tensor->n_dims;
  12189. fwrite(&type, sizeof(uint32_t), 1, fout);
  12190. fwrite(&op, sizeof(uint32_t), 1, fout);
  12191. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12192. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12193. const uint64_t ne = tensor->ne[j];
  12194. const uint64_t nb = tensor->nb[j];
  12195. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12196. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12197. }
  12198. // store the pointer address
  12199. {
  12200. const uint64_t ptr = (uint64_t) tensor->data;
  12201. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12202. }
  12203. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12204. // dump the data
  12205. // TODO: pad this to 32 byte boundary
  12206. {
  12207. const size_t size = ggml_nbytes(tensor);
  12208. fwrite(tensor->data, sizeof(char), size, fout);
  12209. }
  12210. }
  12211. }
  12212. // nodes
  12213. {
  12214. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12215. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12216. const uint32_t type = tensor->type;
  12217. const uint32_t op = tensor->op;
  12218. const uint32_t n_dims = tensor->n_dims;
  12219. fwrite(&type, sizeof(uint32_t), 1, fout);
  12220. fwrite(&op, sizeof(uint32_t), 1, fout);
  12221. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12222. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12223. const uint64_t ne = tensor->ne[j];
  12224. const uint64_t nb = tensor->nb[j];
  12225. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12226. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12227. }
  12228. // store the pointer address
  12229. {
  12230. const uint64_t ptr = (uint64_t) tensor->data;
  12231. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12232. }
  12233. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12234. // output the op arguments
  12235. {
  12236. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12237. args[0] = tensor->src0;
  12238. args[1] = tensor->src1;
  12239. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12240. args[2 + j] = tensor->opt[j];
  12241. }
  12242. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12243. if (args[j]) {
  12244. int32_t idx = -1;
  12245. // check if leaf
  12246. {
  12247. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12248. if (args[j] == cgraph->leafs[k]) {
  12249. idx = k;
  12250. break;
  12251. }
  12252. }
  12253. }
  12254. // check if node
  12255. if (idx == -1) {
  12256. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12257. if (args[j] == cgraph->nodes[k]) {
  12258. idx = GGML_MAX_NODES + k;
  12259. break;
  12260. }
  12261. }
  12262. }
  12263. if (idx == -1) {
  12264. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12265. return;
  12266. }
  12267. fwrite(&idx, sizeof(int32_t), 1, fout);
  12268. } else {
  12269. const int32_t nul = -1;
  12270. fwrite(&nul, sizeof(int32_t), 1, fout);
  12271. }
  12272. }
  12273. }
  12274. }
  12275. }
  12276. fclose(fout);
  12277. }
  12278. }
  12279. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12280. assert(*ctx_data == NULL);
  12281. assert(*ctx_eval == NULL);
  12282. struct ggml_cgraph result = { 0 };
  12283. struct ggml_tensor * data = NULL;
  12284. // read file into data
  12285. {
  12286. FILE * fin = fopen(fname, "rb");
  12287. if (!fin) {
  12288. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12289. return result;
  12290. }
  12291. size_t fsize = 0;
  12292. fseek(fin, 0, SEEK_END);
  12293. fsize = ftell(fin);
  12294. fseek(fin, 0, SEEK_SET);
  12295. // create the data context
  12296. {
  12297. const size_t overhead = 1*ggml_tensor_overhead();
  12298. struct ggml_init_params params = {
  12299. .mem_size = fsize + overhead,
  12300. .mem_buffer = NULL,
  12301. .no_alloc = false,
  12302. };
  12303. *ctx_data = ggml_init(params);
  12304. if (!*ctx_data) {
  12305. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12306. return result;
  12307. }
  12308. }
  12309. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12310. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  12311. if (ret != fsize) {
  12312. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  12313. return result;
  12314. }
  12315. fclose(fin);
  12316. }
  12317. // populate result
  12318. {
  12319. char * ptr = (char *) data->data;
  12320. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12321. if (magic != GGML_FILE_MAGIC) {
  12322. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12323. return result;
  12324. }
  12325. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12326. if (version != GGML_FILE_VERSION) {
  12327. fprintf(stderr, "%s: invalid version number\n", __func__);
  12328. return result;
  12329. }
  12330. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12331. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12332. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12333. result.n_leafs = n_leafs;
  12334. result.n_nodes = n_nodes;
  12335. // create the data context
  12336. {
  12337. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12338. struct ggml_init_params params = {
  12339. .mem_size = size_eval + overhead,
  12340. .mem_buffer = NULL,
  12341. .no_alloc = true,
  12342. };
  12343. *ctx_eval = ggml_init(params);
  12344. if (!*ctx_eval) {
  12345. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12346. return result;
  12347. }
  12348. }
  12349. // leafs
  12350. {
  12351. uint32_t type;
  12352. uint32_t op;
  12353. uint32_t n_dims;
  12354. for (uint32_t i = 0; i < n_leafs; ++i) {
  12355. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12356. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12357. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12358. int64_t ne[GGML_MAX_DIMS];
  12359. size_t nb[GGML_MAX_DIMS];
  12360. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12361. uint64_t ne_cur;
  12362. uint64_t nb_cur;
  12363. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12364. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12365. ne[j] = ne_cur;
  12366. nb[j] = nb_cur;
  12367. }
  12368. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12369. tensor->op = (enum ggml_op) op;
  12370. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12371. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12372. tensor->data = (void *) ptr;
  12373. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12374. tensor->nb[j] = nb[j];
  12375. }
  12376. result.leafs[i] = tensor;
  12377. ptr += ggml_nbytes(tensor);
  12378. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12379. }
  12380. }
  12381. ggml_set_no_alloc(*ctx_eval, false);
  12382. // nodes
  12383. {
  12384. uint32_t type;
  12385. uint32_t op;
  12386. uint32_t n_dims;
  12387. for (uint32_t i = 0; i < n_nodes; ++i) {
  12388. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12389. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12390. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12391. enum ggml_op eop = (enum ggml_op) op;
  12392. int64_t ne[GGML_MAX_DIMS];
  12393. size_t nb[GGML_MAX_DIMS];
  12394. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12395. uint64_t ne_cur;
  12396. uint64_t nb_cur;
  12397. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12398. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12399. ne[j] = ne_cur;
  12400. nb[j] = nb_cur;
  12401. }
  12402. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12403. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12404. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12405. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12406. // parse args
  12407. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12408. const int32_t arg_idx = ptr_arg_idx[j];
  12409. if (arg_idx == -1) {
  12410. continue;
  12411. }
  12412. if (arg_idx < GGML_MAX_NODES) {
  12413. args[j] = result.leafs[arg_idx];
  12414. } else {
  12415. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12416. }
  12417. }
  12418. // create the tensor
  12419. // "view" operations are handled differently
  12420. // TODO: handle inplace ops - currently a copy is always made
  12421. struct ggml_tensor * tensor = NULL;
  12422. switch (eop) {
  12423. // TODO: implement other view ops
  12424. case GGML_OP_RESHAPE:
  12425. {
  12426. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12427. } break;
  12428. case GGML_OP_VIEW:
  12429. {
  12430. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12431. uint64_t offs;
  12432. memcpy(&offs, args[2]->data, sizeof(offs));
  12433. tensor->data = ((char *) tensor->data) + offs;
  12434. } break;
  12435. case GGML_OP_TRANSPOSE:
  12436. {
  12437. tensor = ggml_transpose(*ctx_eval, args[0]);
  12438. } break;
  12439. case GGML_OP_PERMUTE:
  12440. {
  12441. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12442. } break;
  12443. default:
  12444. {
  12445. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12446. tensor->op = eop;
  12447. } break;
  12448. }
  12449. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12450. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12451. tensor->nb[j] = nb[j];
  12452. }
  12453. tensor->src0 = args[0];
  12454. tensor->src1 = args[1];
  12455. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12456. tensor->opt[j] = args[2 + j];
  12457. }
  12458. result.nodes[i] = tensor;
  12459. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12460. }
  12461. }
  12462. }
  12463. return result;
  12464. }
  12465. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12466. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12467. GGML_PRINT("=== GRAPH ===\n");
  12468. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12469. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12470. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12471. for (int i = 0; i < cgraph->n_nodes; i++) {
  12472. struct ggml_tensor * node = cgraph->nodes[i];
  12473. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12474. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12475. i,
  12476. node->ne[0], node->ne[1], node->ne[2],
  12477. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12478. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12479. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12480. (double) node->perf_time_us / 1000.0,
  12481. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12482. }
  12483. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12484. for (int i = 0; i < cgraph->n_leafs; i++) {
  12485. struct ggml_tensor * node = cgraph->leafs[i];
  12486. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12487. i,
  12488. node->ne[0], node->ne[1],
  12489. GGML_OP_NAME[node->op]);
  12490. }
  12491. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12492. if (perf_total_per_op_us[i] == 0) {
  12493. continue;
  12494. }
  12495. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12496. }
  12497. GGML_PRINT("========================================\n");
  12498. }
  12499. // check if node is part of the graph
  12500. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12501. if (cgraph == NULL) {
  12502. return true;
  12503. }
  12504. for (int i = 0; i < cgraph->n_nodes; i++) {
  12505. if (cgraph->nodes[i] == node) {
  12506. return true;
  12507. }
  12508. }
  12509. return false;
  12510. }
  12511. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12512. for (int i = 0; i < cgraph->n_nodes; i++) {
  12513. struct ggml_tensor * parent = cgraph->nodes[i];
  12514. if (parent->grad == node) {
  12515. return parent;
  12516. }
  12517. }
  12518. return NULL;
  12519. }
  12520. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12521. char color[16];
  12522. FILE * fp = fopen(filename, "w");
  12523. GGML_ASSERT(fp);
  12524. fprintf(fp, "digraph G {\n");
  12525. fprintf(fp, " newrank = true;\n");
  12526. fprintf(fp, " rankdir = LR;\n");
  12527. for (int i = 0; i < gb->n_nodes; i++) {
  12528. struct ggml_tensor * node = gb->nodes[i];
  12529. if (ggml_graph_get_parent(gb, node) != NULL) {
  12530. continue;
  12531. }
  12532. if (node->is_param) {
  12533. snprintf(color, sizeof(color), "yellow");
  12534. } else if (node->grad) {
  12535. if (ggml_graph_find(gf, node)) {
  12536. snprintf(color, sizeof(color), "green");
  12537. } else {
  12538. snprintf(color, sizeof(color), "lightblue");
  12539. }
  12540. } else {
  12541. snprintf(color, sizeof(color), "white");
  12542. }
  12543. fprintf(fp, " \"%p\" [ "
  12544. "style = filled; fillcolor = %s; shape = record; "
  12545. "label=\"",
  12546. (void *) node, color);
  12547. if (strlen(node->name) > 0) {
  12548. fprintf(fp, "%s |", node->name);
  12549. }
  12550. if (node->n_dims == 2) {
  12551. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12552. } else {
  12553. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12554. }
  12555. if (node->grad) {
  12556. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12557. } else {
  12558. fprintf(fp, "\"; ]\n");
  12559. }
  12560. }
  12561. for (int i = 0; i < gb->n_leafs; i++) {
  12562. struct ggml_tensor * node = gb->leafs[i];
  12563. snprintf(color, sizeof(color), "pink");
  12564. fprintf(fp, " \"%p\" [ "
  12565. "style = filled; fillcolor = %s; shape = record; "
  12566. "label=\"<x>",
  12567. (void *) node, color);
  12568. if (strlen(node->name) > 0) {
  12569. fprintf(fp, "%s | ", node->name);
  12570. }
  12571. if (ggml_nelements(node) == 1) {
  12572. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12573. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12574. }
  12575. else {
  12576. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12577. }
  12578. }
  12579. else {
  12580. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12581. }
  12582. fprintf(fp, "\"; ]\n");
  12583. }
  12584. for (int i = 0; i < gb->n_nodes; i++) {
  12585. struct ggml_tensor * node = gb->nodes[i];
  12586. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12587. if (node->src0) {
  12588. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12589. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12590. parent0 ? (void *) parent0 : (void *) node->src0,
  12591. parent0 ? "g" : "x",
  12592. parent ? (void *) parent : (void *) node,
  12593. parent ? "g" : "x",
  12594. parent ? "empty" : "vee",
  12595. parent ? "dashed" : "solid");
  12596. }
  12597. if (node->src1) {
  12598. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12599. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12600. parent1 ? (void *) parent1 : (void *) node->src1,
  12601. parent1 ? "g" : "x",
  12602. parent ? (void *) parent : (void *) node,
  12603. parent ? "g" : "x",
  12604. parent ? "empty" : "vee",
  12605. parent ? "dashed" : "solid");
  12606. }
  12607. }
  12608. for (int i = 0; i < gb->n_leafs; i++) {
  12609. struct ggml_tensor * node = gb->leafs[i];
  12610. if (node->src0) {
  12611. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12612. (void *) node->src0, "x",
  12613. (void *) node, "x");
  12614. }
  12615. if (node->src1) {
  12616. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12617. (void *) node->src1, "x",
  12618. (void *) node, "x");
  12619. }
  12620. }
  12621. fprintf(fp, "}\n");
  12622. fclose(fp);
  12623. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12624. }
  12625. ////////////////////////////////////////////////////////////////////////////////
  12626. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12627. int i = 0;
  12628. for (int p = 0; p < np; ++p) {
  12629. const int64_t ne = ggml_nelements(ps[p]) ;
  12630. // TODO: add function to set tensor from array
  12631. for (int64_t j = 0; j < ne; ++j) {
  12632. ggml_set_f32_1d(ps[p], j, x[i++]);
  12633. }
  12634. }
  12635. }
  12636. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12637. int i = 0;
  12638. for (int p = 0; p < np; ++p) {
  12639. const int64_t ne = ggml_nelements(ps[p]) ;
  12640. // TODO: add function to get all elements at once
  12641. for (int64_t j = 0; j < ne; ++j) {
  12642. x[i++] = ggml_get_f32_1d(ps[p], j);
  12643. }
  12644. }
  12645. }
  12646. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12647. int i = 0;
  12648. for (int p = 0; p < np; ++p) {
  12649. const int64_t ne = ggml_nelements(ps[p]) ;
  12650. // TODO: add function to get all elements at once
  12651. for (int64_t j = 0; j < ne; ++j) {
  12652. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12653. }
  12654. }
  12655. }
  12656. //
  12657. // ADAM
  12658. //
  12659. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12660. //
  12661. static enum ggml_opt_result ggml_opt_adam(
  12662. struct ggml_context * ctx,
  12663. struct ggml_opt_params params,
  12664. struct ggml_tensor * f,
  12665. struct ggml_cgraph * gf,
  12666. struct ggml_cgraph * gb) {
  12667. GGML_ASSERT(ggml_is_scalar(f));
  12668. gf->n_threads = params.n_threads;
  12669. gb->n_threads = params.n_threads;
  12670. // these will store the parameters we want to optimize
  12671. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12672. int np = 0;
  12673. int nx = 0;
  12674. for (int i = 0; i < gf->n_nodes; ++i) {
  12675. if (gf->nodes[i]->is_param) {
  12676. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12677. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12678. ps[np++] = gf->nodes[i];
  12679. nx += ggml_nelements(gf->nodes[i]);
  12680. }
  12681. }
  12682. // constants
  12683. const float alpha = params.adam.alpha;
  12684. const float beta1 = params.adam.beta1;
  12685. const float beta2 = params.adam.beta2;
  12686. const float eps = params.adam.eps;
  12687. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12688. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12689. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12690. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12691. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12692. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12693. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12694. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12695. // initialize
  12696. ggml_vec_set_f32(nx, m, 0.0f);
  12697. ggml_vec_set_f32(nx, v, 0.0f);
  12698. // update view
  12699. ggml_opt_get_params(np, ps, x);
  12700. // compute the function value
  12701. ggml_graph_reset (gf);
  12702. ggml_set_f32 (f->grad, 1.0f);
  12703. ggml_graph_compute(ctx, gb);
  12704. float fx_prev = ggml_get_f32_1d(f, 0);
  12705. if (pf) {
  12706. pf[0] = fx_prev;
  12707. }
  12708. int n_no_improvement = 0;
  12709. float fx_best = fx_prev;
  12710. // run the optimizer
  12711. for (int t = 0; t < params.adam.n_iter; ++t) {
  12712. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12713. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12714. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12715. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12716. for (int i = 0; i < np; ++i) {
  12717. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12718. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12719. }
  12720. const int64_t t_start_wall = ggml_time_us();
  12721. const int64_t t_start_cpu = ggml_cycles();
  12722. UNUSED(t_start_wall);
  12723. UNUSED(t_start_cpu);
  12724. {
  12725. // update the gradient
  12726. ggml_opt_get_grad(np, ps, g1);
  12727. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12728. ggml_vec_scale_f32(nx, m, beta1);
  12729. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12730. // g2 = g1^2
  12731. ggml_vec_sqr_f32 (nx, g2, g1);
  12732. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12733. ggml_vec_scale_f32(nx, v, beta2);
  12734. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12735. // m^hat = m_t / (1 - beta1^t)
  12736. // v^hat = v_t / (1 - beta2^t)
  12737. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12738. ggml_vec_cpy_f32 (nx, mh, m);
  12739. ggml_vec_cpy_f32 (nx, vh, v);
  12740. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12741. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12742. ggml_vec_sqrt_f32 (nx, vh, vh);
  12743. ggml_vec_acc1_f32 (nx, vh, eps);
  12744. ggml_vec_div_f32 (nx, mh, mh, vh);
  12745. ggml_vec_sub_f32 (nx, x, x, mh);
  12746. // update the parameters
  12747. ggml_opt_set_params(np, ps, x);
  12748. }
  12749. ggml_graph_reset (gf);
  12750. ggml_set_f32 (f->grad, 1.0f);
  12751. ggml_graph_compute(ctx, gb);
  12752. const float fx = ggml_get_f32_1d(f, 0);
  12753. // check convergence
  12754. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12755. GGML_PRINT_DEBUG("converged\n");
  12756. return GGML_OPT_OK;
  12757. }
  12758. // delta-based convergence test
  12759. if (pf != NULL) {
  12760. // need at least params.past iterations to start checking for convergence
  12761. if (params.past <= t) {
  12762. const float rate = (pf[t%params.past] - fx)/fx;
  12763. if (fabsf(rate) < params.delta) {
  12764. return GGML_OPT_OK;
  12765. }
  12766. }
  12767. pf[t%params.past] = fx;
  12768. }
  12769. // check for improvement
  12770. if (params.max_no_improvement > 0) {
  12771. if (fx_best > fx) {
  12772. fx_best = fx;
  12773. n_no_improvement = 0;
  12774. } else {
  12775. ++n_no_improvement;
  12776. if (n_no_improvement >= params.max_no_improvement) {
  12777. return GGML_OPT_OK;
  12778. }
  12779. }
  12780. }
  12781. fx_prev = fx;
  12782. {
  12783. const int64_t t_end_cpu = ggml_cycles();
  12784. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12785. UNUSED(t_end_cpu);
  12786. const int64_t t_end_wall = ggml_time_us();
  12787. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12788. UNUSED(t_end_wall);
  12789. }
  12790. }
  12791. return GGML_OPT_DID_NOT_CONVERGE;
  12792. }
  12793. //
  12794. // L-BFGS
  12795. //
  12796. // the L-BFGS implementation below is based on the following implementation:
  12797. //
  12798. // https://github.com/chokkan/liblbfgs
  12799. //
  12800. struct ggml_lbfgs_iteration_data {
  12801. float alpha;
  12802. float ys;
  12803. float * s;
  12804. float * y;
  12805. };
  12806. static enum ggml_opt_result linesearch_backtracking(
  12807. struct ggml_context * ctx,
  12808. const struct ggml_opt_params * params,
  12809. int nx,
  12810. float * x,
  12811. float * fx,
  12812. float * g,
  12813. float * d,
  12814. float * step,
  12815. const float * xp,
  12816. struct ggml_tensor * f,
  12817. struct ggml_cgraph * gf,
  12818. struct ggml_cgraph * gb,
  12819. const int np,
  12820. struct ggml_tensor * ps[]) {
  12821. int count = 0;
  12822. float width = 0.0f;
  12823. float dg = 0.0f;
  12824. float finit = 0.0f;
  12825. float dginit = 0.0f;
  12826. float dgtest = 0.0f;
  12827. const float dec = 0.5f;
  12828. const float inc = 2.1f;
  12829. if (*step <= 0.f) {
  12830. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12831. }
  12832. // compute the initial gradient in the search direction
  12833. ggml_vec_dot_f32(nx, &dginit, g, d);
  12834. // make sure that d points to a descent direction
  12835. if (0 < dginit) {
  12836. return GGML_LINESEARCH_FAIL;
  12837. }
  12838. // initialize local variables
  12839. finit = *fx;
  12840. dgtest = params->lbfgs.ftol*dginit;
  12841. while (true) {
  12842. ggml_vec_cpy_f32(nx, x, xp);
  12843. ggml_vec_mad_f32(nx, x, d, *step);
  12844. // evaluate the function and gradient values
  12845. {
  12846. ggml_opt_set_params(np, ps, x);
  12847. ggml_graph_reset (gf);
  12848. ggml_set_f32 (f->grad, 1.0f);
  12849. ggml_graph_compute(ctx, gb);
  12850. ggml_opt_get_grad(np, ps, g);
  12851. *fx = ggml_get_f32_1d(f, 0);
  12852. }
  12853. ++count;
  12854. if (*fx > finit + (*step)*dgtest) {
  12855. width = dec;
  12856. } else {
  12857. // Armijo condition is satisfied
  12858. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12859. return count;
  12860. }
  12861. ggml_vec_dot_f32(nx, &dg, g, d);
  12862. // check the Wolfe condition
  12863. if (dg < params->lbfgs.wolfe * dginit) {
  12864. width = inc;
  12865. } else {
  12866. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12867. // regular Wolfe conditions
  12868. return count;
  12869. }
  12870. if(dg > -params->lbfgs.wolfe*dginit) {
  12871. width = dec;
  12872. } else {
  12873. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12874. return count;
  12875. }
  12876. return count;
  12877. }
  12878. }
  12879. if (*step < params->lbfgs.min_step) {
  12880. return GGML_LINESEARCH_MINIMUM_STEP;
  12881. }
  12882. if (*step > params->lbfgs.max_step) {
  12883. return GGML_LINESEARCH_MAXIMUM_STEP;
  12884. }
  12885. if (params->lbfgs.max_linesearch <= count) {
  12886. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12887. }
  12888. (*step) *= width;
  12889. }
  12890. return GGML_LINESEARCH_FAIL;
  12891. }
  12892. static enum ggml_opt_result ggml_opt_lbfgs(
  12893. struct ggml_context * ctx,
  12894. struct ggml_opt_params params,
  12895. struct ggml_tensor * f,
  12896. struct ggml_cgraph * gf,
  12897. struct ggml_cgraph * gb) {
  12898. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12899. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12900. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12901. return GGML_OPT_INVALID_WOLFE;
  12902. }
  12903. }
  12904. gf->n_threads = params.n_threads;
  12905. gb->n_threads = params.n_threads;
  12906. const int m = params.lbfgs.m;
  12907. // these will store the parameters we want to optimize
  12908. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12909. int np = 0;
  12910. int nx = 0;
  12911. for (int i = 0; i < gf->n_nodes; ++i) {
  12912. if (gf->nodes[i]->is_param) {
  12913. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12914. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12915. ps[np++] = gf->nodes[i];
  12916. nx += ggml_nelements(gf->nodes[i]);
  12917. }
  12918. }
  12919. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12920. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12921. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12922. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12923. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12924. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12925. float fx = 0.0f; // cost function value
  12926. float xnorm = 0.0f; // ||x||
  12927. float gnorm = 0.0f; // ||g||
  12928. float step = 0.0f;
  12929. // initialize x from the graph nodes
  12930. ggml_opt_get_params(np, ps, x);
  12931. // the L-BFGS memory
  12932. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12933. for (int i = 0; i < m; ++i) {
  12934. lm[i].alpha = 0.0f;
  12935. lm[i].ys = 0.0f;
  12936. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12937. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12938. }
  12939. // evaluate the function value and its gradient
  12940. {
  12941. ggml_opt_set_params(np, ps, x);
  12942. ggml_graph_reset (gf);
  12943. ggml_set_f32 (f->grad, 1.0f);
  12944. ggml_graph_compute(ctx, gb);
  12945. ggml_opt_get_grad(np, ps, g);
  12946. fx = ggml_get_f32_1d(f, 0);
  12947. }
  12948. if (pf) {
  12949. pf[0] = fx;
  12950. }
  12951. float fx_best = fx;
  12952. // search direction = -gradient
  12953. ggml_vec_neg_f32(nx, d, g);
  12954. // ||x||, ||g||
  12955. ggml_vec_norm_f32(nx, &xnorm, x);
  12956. ggml_vec_norm_f32(nx, &gnorm, g);
  12957. if (xnorm < 1.0f) {
  12958. xnorm = 1.0f;
  12959. }
  12960. // already optimized
  12961. if (gnorm/xnorm <= params.lbfgs.eps) {
  12962. return GGML_OPT_OK;
  12963. }
  12964. // initial step
  12965. ggml_vec_norm_inv_f32(nx, &step, d);
  12966. int j = 0;
  12967. int k = 1;
  12968. int ls = 0;
  12969. int end = 0;
  12970. int bound = 0;
  12971. int n_no_improvement = 0;
  12972. float ys = 0.0f;
  12973. float yy = 0.0f;
  12974. float beta = 0.0f;
  12975. while (true) {
  12976. // store the current position and gradient vectors
  12977. ggml_vec_cpy_f32(nx, xp, x);
  12978. ggml_vec_cpy_f32(nx, gp, g);
  12979. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12980. if (ls < 0) {
  12981. // linesearch failed - go back to the previous point and return
  12982. ggml_vec_cpy_f32(nx, x, xp);
  12983. ggml_vec_cpy_f32(nx, g, gp);
  12984. return ls;
  12985. }
  12986. ggml_vec_norm_f32(nx, &xnorm, x);
  12987. ggml_vec_norm_f32(nx, &gnorm, g);
  12988. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12989. if (xnorm < 1.0f) {
  12990. xnorm = 1.0f;
  12991. }
  12992. if (gnorm/xnorm <= params.lbfgs.eps) {
  12993. // converged
  12994. return GGML_OPT_OK;
  12995. }
  12996. // delta-based convergence test
  12997. if (pf != NULL) {
  12998. // need at least params.past iterations to start checking for convergence
  12999. if (params.past <= k) {
  13000. const float rate = (pf[k%params.past] - fx)/fx;
  13001. if (fabsf(rate) < params.delta) {
  13002. return GGML_OPT_OK;
  13003. }
  13004. }
  13005. pf[k%params.past] = fx;
  13006. }
  13007. // check for improvement
  13008. if (params.max_no_improvement > 0) {
  13009. if (fx < fx_best) {
  13010. fx_best = fx;
  13011. n_no_improvement = 0;
  13012. } else {
  13013. n_no_improvement++;
  13014. if (n_no_improvement >= params.max_no_improvement) {
  13015. return GGML_OPT_OK;
  13016. }
  13017. }
  13018. }
  13019. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13020. // reached the maximum number of iterations
  13021. return GGML_OPT_DID_NOT_CONVERGE;
  13022. }
  13023. // update vectors s and y:
  13024. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13025. // y_{k+1} = g_{k+1} - g_{k}.
  13026. //
  13027. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13028. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13029. // compute scalars ys and yy:
  13030. // ys = y^t \cdot s -> 1 / \rho.
  13031. // yy = y^t \cdot y.
  13032. //
  13033. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13034. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13035. lm[end].ys = ys;
  13036. // find new search direction
  13037. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13038. bound = (m <= k) ? m : k;
  13039. k++;
  13040. end = (end + 1)%m;
  13041. // initialize search direction with -g
  13042. ggml_vec_neg_f32(nx, d, g);
  13043. j = end;
  13044. for (int i = 0; i < bound; ++i) {
  13045. j = (j + m - 1) % m;
  13046. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13047. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13048. lm[j].alpha /= lm[j].ys;
  13049. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13050. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13051. }
  13052. ggml_vec_scale_f32(nx, d, ys/yy);
  13053. for (int i = 0; i < bound; ++i) {
  13054. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13055. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13056. beta /= lm[j].ys;
  13057. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13058. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13059. j = (j + 1)%m;
  13060. }
  13061. step = 1.0;
  13062. }
  13063. return GGML_OPT_DID_NOT_CONVERGE;
  13064. }
  13065. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13066. struct ggml_opt_params result;
  13067. switch (type) {
  13068. case GGML_OPT_ADAM:
  13069. {
  13070. result = (struct ggml_opt_params) {
  13071. .type = GGML_OPT_ADAM,
  13072. .n_threads = 1,
  13073. .past = 0,
  13074. .delta = 1e-5f,
  13075. .max_no_improvement = 100,
  13076. .print_forward_graph = true,
  13077. .print_backward_graph = true,
  13078. .adam = {
  13079. .n_iter = 10000,
  13080. .alpha = 0.001f,
  13081. .beta1 = 0.9f,
  13082. .beta2 = 0.999f,
  13083. .eps = 1e-8f,
  13084. .eps_f = 1e-5f,
  13085. .eps_g = 1e-3f,
  13086. },
  13087. };
  13088. } break;
  13089. case GGML_OPT_LBFGS:
  13090. {
  13091. result = (struct ggml_opt_params) {
  13092. .type = GGML_OPT_LBFGS,
  13093. .n_threads = 1,
  13094. .past = 0,
  13095. .delta = 1e-5f,
  13096. .max_no_improvement = 0,
  13097. .print_forward_graph = true,
  13098. .print_backward_graph = true,
  13099. .lbfgs = {
  13100. .m = 6,
  13101. .n_iter = 100,
  13102. .max_linesearch = 20,
  13103. .eps = 1e-5f,
  13104. .ftol = 1e-4f,
  13105. .wolfe = 0.9f,
  13106. .min_step = 1e-20f,
  13107. .max_step = 1e+20f,
  13108. .linesearch = GGML_LINESEARCH_DEFAULT,
  13109. },
  13110. };
  13111. } break;
  13112. }
  13113. return result;
  13114. }
  13115. enum ggml_opt_result ggml_opt(
  13116. struct ggml_context * ctx,
  13117. struct ggml_opt_params params,
  13118. struct ggml_tensor * f) {
  13119. bool free_ctx = false;
  13120. if (ctx == NULL) {
  13121. struct ggml_init_params params_ctx = {
  13122. .mem_size = 16*1024*1024,
  13123. .mem_buffer = NULL,
  13124. .no_alloc = false,
  13125. };
  13126. ctx = ggml_init(params_ctx);
  13127. if (ctx == NULL) {
  13128. return GGML_OPT_NO_CONTEXT;
  13129. }
  13130. free_ctx = true;
  13131. }
  13132. enum ggml_opt_result result = GGML_OPT_OK;
  13133. // build forward + backward compute graphs
  13134. struct ggml_cgraph gf = ggml_build_forward (f);
  13135. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13136. switch (params.type) {
  13137. case GGML_OPT_ADAM:
  13138. {
  13139. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13140. } break;
  13141. case GGML_OPT_LBFGS:
  13142. {
  13143. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13144. } break;
  13145. }
  13146. if (params.print_forward_graph) {
  13147. ggml_graph_print (&gf);
  13148. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13149. }
  13150. if (params.print_backward_graph) {
  13151. ggml_graph_print (&gb);
  13152. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13153. }
  13154. if (free_ctx) {
  13155. ggml_free(ctx);
  13156. }
  13157. return result;
  13158. }
  13159. ////////////////////////////////////////////////////////////////////////////////
  13160. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13161. assert(k % QK4_0 == 0);
  13162. const int nb = k / QK4_0;
  13163. for (int b = 0; b < n; b += k) {
  13164. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13165. quantize_row_q4_0_reference(src + b, y, k);
  13166. for (int i = 0; i < nb; i++) {
  13167. for (int j = 0; j < QK4_0; j += 2) {
  13168. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13169. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13170. hist[vi0]++;
  13171. hist[vi1]++;
  13172. }
  13173. }
  13174. }
  13175. return (n/QK4_0*sizeof(block_q4_0));
  13176. }
  13177. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13178. assert(k % QK4_1 == 0);
  13179. const int nb = k / QK4_1;
  13180. for (int b = 0; b < n; b += k) {
  13181. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13182. quantize_row_q4_1_reference(src + b, y, k);
  13183. for (int i = 0; i < nb; i++) {
  13184. for (int j = 0; j < QK4_1; j += 2) {
  13185. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13186. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13187. hist[vi0]++;
  13188. hist[vi1]++;
  13189. }
  13190. }
  13191. }
  13192. return (n/QK4_1*sizeof(block_q4_1));
  13193. }
  13194. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13195. assert(k % QK5_0 == 0);
  13196. const int nb = k / QK5_0;
  13197. for (int b = 0; b < n; b += k) {
  13198. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13199. quantize_row_q5_0_reference(src + b, y, k);
  13200. for (int i = 0; i < nb; i++) {
  13201. uint32_t qh;
  13202. memcpy(&qh, &y[i].qh, sizeof(qh));
  13203. for (int j = 0; j < QK5_0; j += 2) {
  13204. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13205. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13206. // cast to 16 bins
  13207. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13208. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13209. hist[vi0]++;
  13210. hist[vi1]++;
  13211. }
  13212. }
  13213. }
  13214. return (n/QK5_0*sizeof(block_q5_0));
  13215. }
  13216. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13217. assert(k % QK5_1 == 0);
  13218. const int nb = k / QK5_1;
  13219. for (int b = 0; b < n; b += k) {
  13220. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13221. quantize_row_q5_1_reference(src + b, y, k);
  13222. for (int i = 0; i < nb; i++) {
  13223. uint32_t qh;
  13224. memcpy(&qh, &y[i].qh, sizeof(qh));
  13225. for (int j = 0; j < QK5_1; j += 2) {
  13226. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13227. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13228. // cast to 16 bins
  13229. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13230. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13231. hist[vi0]++;
  13232. hist[vi1]++;
  13233. }
  13234. }
  13235. }
  13236. return (n/QK5_1*sizeof(block_q5_1));
  13237. }
  13238. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13239. assert(k % QK8_0 == 0);
  13240. const int nb = k / QK8_0;
  13241. for (int b = 0; b < n; b += k) {
  13242. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13243. quantize_row_q8_0_reference(src + b, y, k);
  13244. for (int i = 0; i < nb; i++) {
  13245. for (int j = 0; j < QK8_0; ++j) {
  13246. const int8_t vi = y[i].qs[j];
  13247. hist[vi/16 + 8]++;
  13248. }
  13249. }
  13250. }
  13251. return (n/QK8_0*sizeof(block_q8_0));
  13252. }
  13253. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13254. size_t result = 0;
  13255. switch (type) {
  13256. case GGML_TYPE_Q4_0:
  13257. {
  13258. GGML_ASSERT(start % QK4_0 == 0);
  13259. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13260. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13261. } break;
  13262. case GGML_TYPE_Q4_1:
  13263. {
  13264. GGML_ASSERT(start % QK4_1 == 0);
  13265. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13266. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13267. } break;
  13268. case GGML_TYPE_Q5_0:
  13269. {
  13270. GGML_ASSERT(start % QK5_0 == 0);
  13271. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13272. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13273. } break;
  13274. case GGML_TYPE_Q5_1:
  13275. {
  13276. GGML_ASSERT(start % QK5_1 == 0);
  13277. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13278. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13279. } break;
  13280. case GGML_TYPE_Q8_0:
  13281. {
  13282. GGML_ASSERT(start % QK8_0 == 0);
  13283. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13284. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13285. } break;
  13286. #ifdef GGML_USE_K_QUANTS
  13287. case GGML_TYPE_Q2_K:
  13288. {
  13289. GGML_ASSERT(start % QK_K == 0);
  13290. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  13291. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  13292. } break;
  13293. case GGML_TYPE_Q3_K:
  13294. {
  13295. GGML_ASSERT(start % QK_K == 0);
  13296. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  13297. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  13298. } break;
  13299. case GGML_TYPE_Q4_K:
  13300. {
  13301. GGML_ASSERT(start % QK_K == 0);
  13302. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  13303. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  13304. } break;
  13305. case GGML_TYPE_Q5_K:
  13306. {
  13307. GGML_ASSERT(start % QK_K == 0);
  13308. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  13309. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  13310. } break;
  13311. case GGML_TYPE_Q6_K:
  13312. {
  13313. GGML_ASSERT(start % QK_K == 0);
  13314. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  13315. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  13316. } break;
  13317. #endif
  13318. default:
  13319. assert(false);
  13320. }
  13321. return result;
  13322. }
  13323. ////////////////////////////////////////////////////////////////////////////////
  13324. int ggml_cpu_has_avx(void) {
  13325. #if defined(__AVX__)
  13326. return 1;
  13327. #else
  13328. return 0;
  13329. #endif
  13330. }
  13331. int ggml_cpu_has_avx2(void) {
  13332. #if defined(__AVX2__)
  13333. return 1;
  13334. #else
  13335. return 0;
  13336. #endif
  13337. }
  13338. int ggml_cpu_has_avx512(void) {
  13339. #if defined(__AVX512F__)
  13340. return 1;
  13341. #else
  13342. return 0;
  13343. #endif
  13344. }
  13345. int ggml_cpu_has_avx512_vbmi(void) {
  13346. #if defined(__AVX512VBMI__)
  13347. return 1;
  13348. #else
  13349. return 0;
  13350. #endif
  13351. }
  13352. int ggml_cpu_has_avx512_vnni(void) {
  13353. #if defined(__AVX512VNNI__)
  13354. return 1;
  13355. #else
  13356. return 0;
  13357. #endif
  13358. }
  13359. int ggml_cpu_has_fma(void) {
  13360. #if defined(__FMA__)
  13361. return 1;
  13362. #else
  13363. return 0;
  13364. #endif
  13365. }
  13366. int ggml_cpu_has_neon(void) {
  13367. #if defined(__ARM_NEON)
  13368. return 1;
  13369. #else
  13370. return 0;
  13371. #endif
  13372. }
  13373. int ggml_cpu_has_arm_fma(void) {
  13374. #if defined(__ARM_FEATURE_FMA)
  13375. return 1;
  13376. #else
  13377. return 0;
  13378. #endif
  13379. }
  13380. int ggml_cpu_has_f16c(void) {
  13381. #if defined(__F16C__)
  13382. return 1;
  13383. #else
  13384. return 0;
  13385. #endif
  13386. }
  13387. int ggml_cpu_has_fp16_va(void) {
  13388. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13389. return 1;
  13390. #else
  13391. return 0;
  13392. #endif
  13393. }
  13394. int ggml_cpu_has_wasm_simd(void) {
  13395. #if defined(__wasm_simd128__)
  13396. return 1;
  13397. #else
  13398. return 0;
  13399. #endif
  13400. }
  13401. int ggml_cpu_has_blas(void) {
  13402. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13403. return 1;
  13404. #else
  13405. return 0;
  13406. #endif
  13407. }
  13408. int ggml_cpu_has_cublas(void) {
  13409. #if defined(GGML_USE_CUBLAS)
  13410. return 1;
  13411. #else
  13412. return 0;
  13413. #endif
  13414. }
  13415. int ggml_cpu_has_clblast(void) {
  13416. #if defined(GGML_USE_CLBLAST)
  13417. return 1;
  13418. #else
  13419. return 0;
  13420. #endif
  13421. }
  13422. int ggml_cpu_has_gpublas(void) {
  13423. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13424. }
  13425. int ggml_cpu_has_sse3(void) {
  13426. #if defined(__SSE3__)
  13427. return 1;
  13428. #else
  13429. return 0;
  13430. #endif
  13431. }
  13432. int ggml_cpu_has_vsx(void) {
  13433. #if defined(__POWER9_VECTOR__)
  13434. return 1;
  13435. #else
  13436. return 0;
  13437. #endif
  13438. }
  13439. ////////////////////////////////////////////////////////////////////////////////