server.cpp 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. json to_json() const {
  102. std::vector<std::string> samplers;
  103. samplers.reserve(sampling.samplers.size());
  104. for (const auto & sampler : sampling.samplers) {
  105. samplers.emplace_back(common_sampler_type_to_str(sampler));
  106. }
  107. json lora = json::array();
  108. for (size_t i = 0; i < this->lora.size(); ++i) {
  109. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  110. }
  111. return json {
  112. {"n_predict", n_predict}, // Server configured n_predict
  113. {"seed", sampling.seed},
  114. {"temperature", sampling.temp},
  115. {"dynatemp_range", sampling.dynatemp_range},
  116. {"dynatemp_exponent", sampling.dynatemp_exponent},
  117. {"top_k", sampling.top_k},
  118. {"top_p", sampling.top_p},
  119. {"min_p", sampling.min_p},
  120. {"xtc_probability", sampling.xtc_probability},
  121. {"xtc_threshold", sampling.xtc_threshold},
  122. {"typical_p", sampling.typ_p},
  123. {"repeat_last_n", sampling.penalty_last_n},
  124. {"repeat_penalty", sampling.penalty_repeat},
  125. {"presence_penalty", sampling.penalty_present},
  126. {"frequency_penalty", sampling.penalty_freq},
  127. {"dry_multiplier", sampling.dry_multiplier},
  128. {"dry_base", sampling.dry_base},
  129. {"dry_allowed_length", sampling.dry_allowed_length},
  130. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  131. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  132. {"mirostat", sampling.mirostat},
  133. {"mirostat_tau", sampling.mirostat_tau},
  134. {"mirostat_eta", sampling.mirostat_eta},
  135. {"stop", antiprompt},
  136. {"max_tokens", n_predict}, // User configured n_predict
  137. {"n_keep", n_keep},
  138. {"n_discard", n_discard},
  139. {"ignore_eos", sampling.ignore_eos},
  140. {"stream", stream},
  141. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  142. {"n_probs", sampling.n_probs},
  143. {"min_keep", sampling.min_keep},
  144. {"grammar", sampling.grammar},
  145. {"samplers", samplers},
  146. {"speculative.n_max", speculative.n_max},
  147. {"speculative.n_min", speculative.n_min},
  148. {"speculative.p_min", speculative.p_min},
  149. {"timings_per_token", timings_per_token},
  150. {"post_sampling_probs", post_sampling_probs},
  151. {"lora", lora},
  152. };
  153. }
  154. };
  155. struct server_task {
  156. int id = -1; // to be filled by server_queue
  157. int index = -1; // used when there are multiple prompts (batch request)
  158. server_task_type type;
  159. // used by SERVER_TASK_TYPE_CANCEL
  160. int id_target = -1;
  161. // used by SERVER_TASK_TYPE_INFERENCE
  162. slot_params params;
  163. llama_tokens prompt_tokens;
  164. int id_selected_slot = -1;
  165. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  166. struct slot_action {
  167. int slot_id;
  168. std::string filename;
  169. std::string filepath;
  170. };
  171. slot_action slot_action;
  172. // used by SERVER_TASK_TYPE_METRICS
  173. bool metrics_reset_bucket = false;
  174. // used by SERVER_TASK_TYPE_SET_LORA
  175. std::vector<common_adapter_lora_info> set_lora;
  176. server_task(server_task_type type) : type(type) {}
  177. static slot_params params_from_json_cmpl(
  178. const llama_context * ctx,
  179. const common_params & params_base,
  180. const json & data) {
  181. const llama_model * model = llama_get_model(ctx);
  182. const llama_vocab * vocab = llama_model_get_vocab(model);
  183. slot_params params;
  184. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  185. slot_params defaults;
  186. defaults.sampling = params_base.sampling;
  187. defaults.speculative = params_base.speculative;
  188. // enabling this will output extra debug information in the HTTP responses from the server
  189. params.verbose = params_base.verbosity > 9;
  190. params.timings_per_token = json_value(data, "timings_per_token", false);
  191. params.stream = json_value(data, "stream", false);
  192. params.cache_prompt = json_value(data, "cache_prompt", true);
  193. params.return_tokens = json_value(data, "return_tokens", false);
  194. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  195. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  196. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  197. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  198. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  199. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  200. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  201. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  202. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  203. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  204. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  205. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  206. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  207. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  208. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  209. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  210. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  211. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  212. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  213. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  214. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  215. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  216. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  217. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  218. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  219. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  220. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  221. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  222. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  223. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  224. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  225. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  226. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  227. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  228. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  229. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  230. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  231. // Use OpenAI API logprobs only if n_probs wasn't provided
  232. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  233. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  234. }
  235. if (data.contains("lora")) {
  236. if (data.at("lora").is_array()) {
  237. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  238. } else {
  239. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  240. }
  241. } else {
  242. params.lora = params_base.lora_adapters;
  243. }
  244. // TODO: add more sanity checks for the input parameters
  245. if (params.sampling.penalty_last_n < -1) {
  246. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  247. }
  248. if (params.sampling.dry_penalty_last_n < -1) {
  249. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  250. }
  251. if (params.sampling.penalty_last_n == -1) {
  252. // note: should be the slot's context and not the full context, but it's ok
  253. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  254. }
  255. if (params.sampling.dry_penalty_last_n == -1) {
  256. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  257. }
  258. if (params.sampling.dry_base < 1.0f) {
  259. params.sampling.dry_base = defaults.sampling.dry_base;
  260. }
  261. // sequence breakers for DRY
  262. {
  263. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  264. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  265. if (data.contains("dry_sequence_breakers")) {
  266. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  267. if (params.sampling.dry_sequence_breakers.empty()) {
  268. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  269. }
  270. }
  271. }
  272. // process "json_schema" and "grammar"
  273. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  274. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  275. }
  276. if (data.contains("json_schema") && !data.contains("grammar")) {
  277. try {
  278. auto schema = json_value(data, "json_schema", json::object());
  279. params.sampling.grammar = json_schema_to_grammar(schema);
  280. } catch (const std::exception & e) {
  281. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  282. }
  283. } else {
  284. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  285. }
  286. {
  287. params.sampling.logit_bias.clear();
  288. params.ignore_eos = json_value(data, "ignore_eos", false);
  289. const auto & logit_bias = data.find("logit_bias");
  290. if (logit_bias != data.end() && logit_bias->is_array()) {
  291. const int n_vocab = llama_vocab_n_tokens(vocab);
  292. for (const auto & el : *logit_bias) {
  293. // TODO: we may want to throw errors here, in case "el" is incorrect
  294. if (el.is_array() && el.size() == 2) {
  295. float bias;
  296. if (el[1].is_number()) {
  297. bias = el[1].get<float>();
  298. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  299. bias = -INFINITY;
  300. } else {
  301. continue;
  302. }
  303. if (el[0].is_number_integer()) {
  304. llama_token tok = el[0].get<llama_token>();
  305. if (tok >= 0 && tok < n_vocab) {
  306. params.sampling.logit_bias.push_back({tok, bias});
  307. }
  308. } else if (el[0].is_string()) {
  309. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  310. for (auto tok : toks) {
  311. params.sampling.logit_bias.push_back({tok, bias});
  312. }
  313. }
  314. }
  315. }
  316. }
  317. }
  318. {
  319. params.antiprompt.clear();
  320. const auto & stop = data.find("stop");
  321. if (stop != data.end() && stop->is_array()) {
  322. for (const auto & word : *stop) {
  323. if (!word.empty()) {
  324. params.antiprompt.push_back(word);
  325. }
  326. }
  327. }
  328. }
  329. {
  330. const auto & samplers = data.find("samplers");
  331. if (samplers != data.end()) {
  332. if (samplers->is_array()) {
  333. std::vector<std::string> sampler_names;
  334. for (const auto & name : *samplers) {
  335. if (name.is_string()) {
  336. sampler_names.emplace_back(name);
  337. }
  338. }
  339. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  340. } else if (samplers->is_string()){
  341. std::string sampler_string;
  342. for (const auto & name : *samplers) {
  343. sampler_string += name;
  344. }
  345. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  346. }
  347. } else {
  348. params.sampling.samplers = defaults.sampling.samplers;
  349. }
  350. }
  351. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  352. params.oaicompat_model = json_value(data, "model", model_name);
  353. return params;
  354. }
  355. // utility function
  356. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  357. std::unordered_set<int> ids(tasks.size());
  358. for (size_t i = 0; i < tasks.size(); i++) {
  359. ids.insert(tasks[i].id);
  360. }
  361. return ids;
  362. }
  363. };
  364. struct result_timings {
  365. int32_t prompt_n = -1;
  366. double prompt_ms;
  367. double prompt_per_token_ms;
  368. double prompt_per_second;
  369. int32_t predicted_n = -1;
  370. double predicted_ms;
  371. double predicted_per_token_ms;
  372. double predicted_per_second;
  373. json to_json() const {
  374. return {
  375. {"prompt_n", prompt_n},
  376. {"prompt_ms", prompt_ms},
  377. {"prompt_per_token_ms", prompt_per_token_ms},
  378. {"prompt_per_second", prompt_per_second},
  379. {"predicted_n", predicted_n},
  380. {"predicted_ms", predicted_ms},
  381. {"predicted_per_token_ms", predicted_per_token_ms},
  382. {"predicted_per_second", predicted_per_second},
  383. };
  384. }
  385. };
  386. struct server_task_result {
  387. int id = -1;
  388. int id_slot = -1;
  389. virtual bool is_error() {
  390. // only used by server_task_result_error
  391. return false;
  392. }
  393. virtual bool is_stop() {
  394. // only used by server_task_result_cmpl_*
  395. return false;
  396. }
  397. virtual int get_index() {
  398. return -1;
  399. }
  400. virtual json to_json() = 0;
  401. virtual ~server_task_result() = default;
  402. };
  403. // using shared_ptr for polymorphism of server_task_result
  404. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  405. inline std::string stop_type_to_str(stop_type type) {
  406. switch (type) {
  407. case STOP_TYPE_EOS: return "eos";
  408. case STOP_TYPE_WORD: return "word";
  409. case STOP_TYPE_LIMIT: return "limit";
  410. default: return "none";
  411. }
  412. }
  413. struct completion_token_output {
  414. llama_token tok;
  415. float prob;
  416. std::string text_to_send;
  417. struct prob_info {
  418. llama_token tok;
  419. std::string txt;
  420. float prob;
  421. };
  422. std::vector<prob_info> probs;
  423. json to_json(bool post_sampling_probs) const {
  424. json probs_for_token = json::array();
  425. for (const auto & p : probs) {
  426. std::string txt(p.txt);
  427. txt.resize(validate_utf8(txt));
  428. probs_for_token.push_back(json {
  429. {"id", p.tok},
  430. {"token", txt},
  431. {"bytes", str_to_bytes(p.txt)},
  432. {
  433. post_sampling_probs ? "prob" : "logprob",
  434. post_sampling_probs ? p.prob : logarithm(p.prob)
  435. },
  436. });
  437. }
  438. return probs_for_token;
  439. }
  440. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  441. json out = json::array();
  442. for (const auto & p : probs) {
  443. std::string txt(p.text_to_send);
  444. txt.resize(validate_utf8(txt));
  445. out.push_back(json {
  446. {"id", p.tok},
  447. {"token", txt},
  448. {"bytes", str_to_bytes(p.text_to_send)},
  449. {
  450. post_sampling_probs ? "prob" : "logprob",
  451. post_sampling_probs ? p.prob : logarithm(p.prob)
  452. },
  453. {
  454. post_sampling_probs ? "top_probs" : "top_logprobs",
  455. p.to_json(post_sampling_probs)
  456. },
  457. });
  458. }
  459. return out;
  460. }
  461. static float logarithm(float x) {
  462. // nlohmann::json converts -inf to null, so we need to prevent that
  463. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  464. }
  465. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  466. std::vector<unsigned char> bytes;
  467. for (unsigned char c : str) {
  468. bytes.push_back(c);
  469. }
  470. return bytes;
  471. }
  472. };
  473. struct server_task_result_cmpl_final : server_task_result {
  474. int index = 0;
  475. std::string content;
  476. llama_tokens tokens;
  477. bool stream;
  478. result_timings timings;
  479. std::string prompt;
  480. bool truncated;
  481. int32_t n_decoded;
  482. int32_t n_prompt_tokens;
  483. int32_t n_tokens_cached;
  484. bool has_new_line;
  485. std::string stopping_word;
  486. stop_type stop = STOP_TYPE_NONE;
  487. bool post_sampling_probs;
  488. std::vector<completion_token_output> probs_output;
  489. std::vector<std::string> response_fields;
  490. slot_params generation_params;
  491. // OAI-compat fields
  492. bool verbose = false;
  493. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  494. std::string oaicompat_model;
  495. std::string oaicompat_cmpl_id;
  496. virtual int get_index() override {
  497. return index;
  498. }
  499. virtual bool is_stop() override {
  500. return true; // in stream mode, final responses are considered stop
  501. }
  502. virtual json to_json() override {
  503. switch (oaicompat) {
  504. case OAICOMPAT_TYPE_NONE:
  505. return to_json_non_oaicompat();
  506. case OAICOMPAT_TYPE_COMPLETION:
  507. return to_json_oaicompat();
  508. case OAICOMPAT_TYPE_CHAT:
  509. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  510. default:
  511. GGML_ASSERT(false && "Invalid oaicompat_type");
  512. }
  513. }
  514. json to_json_non_oaicompat() {
  515. json res = json {
  516. {"index", index},
  517. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  518. {"tokens", stream ? llama_tokens {} : tokens},
  519. {"id_slot", id_slot},
  520. {"stop", true},
  521. {"model", oaicompat_model},
  522. {"tokens_predicted", n_decoded},
  523. {"tokens_evaluated", n_prompt_tokens},
  524. {"generation_settings", generation_params.to_json()},
  525. {"prompt", prompt},
  526. {"has_new_line", has_new_line},
  527. {"truncated", truncated},
  528. {"stop_type", stop_type_to_str(stop)},
  529. {"stopping_word", stopping_word},
  530. {"tokens_cached", n_tokens_cached},
  531. {"timings", timings.to_json()},
  532. };
  533. if (!stream && !probs_output.empty()) {
  534. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  535. }
  536. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  537. }
  538. json to_json_oaicompat() {
  539. std::time_t t = std::time(0);
  540. json logprobs = json(nullptr); // OAI default to null
  541. if (!stream && probs_output.size() > 0) {
  542. logprobs = json{
  543. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  544. };
  545. }
  546. json finish_reason = "length";
  547. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  548. finish_reason = "stop";
  549. }
  550. json res = json {
  551. {"choices", json::array({
  552. json{
  553. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  554. {"index", index},
  555. {"logprobs", logprobs},
  556. {"finish_reason", finish_reason},
  557. }
  558. })},
  559. {"created", t},
  560. {"model", oaicompat_model},
  561. {"system_fingerprint", build_info},
  562. {"object", "text_completion"},
  563. {"usage", json {
  564. {"completion_tokens", n_decoded},
  565. {"prompt_tokens", n_prompt_tokens},
  566. {"total_tokens", n_decoded + n_prompt_tokens}
  567. }},
  568. {"id", oaicompat_cmpl_id}
  569. };
  570. // extra fields for debugging purposes
  571. if (verbose) {
  572. res["__verbose"] = to_json_non_oaicompat();
  573. }
  574. if (timings.prompt_n >= 0) {
  575. res.push_back({"timings", timings.to_json()});
  576. }
  577. return res;
  578. }
  579. json to_json_oaicompat_chat() {
  580. std::string finish_reason = "length";
  581. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  582. finish_reason = "stop";
  583. }
  584. json choice = json{
  585. {"finish_reason", finish_reason},
  586. {"index", 0},
  587. {"message", json {
  588. {"content", content},
  589. {"role", "assistant"}
  590. }
  591. }};
  592. if (!stream && probs_output.size() > 0) {
  593. choice["logprobs"] = json{
  594. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  595. };
  596. }
  597. std::time_t t = std::time(0);
  598. json res = json {
  599. {"choices", json::array({choice})},
  600. {"created", t},
  601. {"model", oaicompat_model},
  602. {"system_fingerprint", build_info},
  603. {"object", "chat.completion"},
  604. {"usage", json {
  605. {"completion_tokens", n_decoded},
  606. {"prompt_tokens", n_prompt_tokens},
  607. {"total_tokens", n_decoded + n_prompt_tokens}
  608. }},
  609. {"id", oaicompat_cmpl_id}
  610. };
  611. // extra fields for debugging purposes
  612. if (verbose) {
  613. res["__verbose"] = to_json_non_oaicompat();
  614. }
  615. if (timings.prompt_n >= 0) {
  616. res.push_back({"timings", timings.to_json()});
  617. }
  618. return res;
  619. }
  620. json to_json_oaicompat_chat_stream() {
  621. std::time_t t = std::time(0);
  622. std::string finish_reason = "length";
  623. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  624. finish_reason = "stop";
  625. }
  626. json choice = json{
  627. {"finish_reason", finish_reason},
  628. {"index", 0},
  629. {"delta", json::object()}
  630. };
  631. json ret = json {
  632. {"choices", json::array({choice})},
  633. {"created", t},
  634. {"id", oaicompat_cmpl_id},
  635. {"model", oaicompat_model},
  636. {"system_fingerprint", build_info},
  637. {"object", "chat.completion.chunk"},
  638. {"usage", json {
  639. {"completion_tokens", n_decoded},
  640. {"prompt_tokens", n_prompt_tokens},
  641. {"total_tokens", n_decoded + n_prompt_tokens},
  642. }},
  643. };
  644. if (timings.prompt_n >= 0) {
  645. ret.push_back({"timings", timings.to_json()});
  646. }
  647. return ret;
  648. }
  649. };
  650. struct server_task_result_cmpl_partial : server_task_result {
  651. int index = 0;
  652. std::string content;
  653. llama_tokens tokens;
  654. int32_t n_decoded;
  655. int32_t n_prompt_tokens;
  656. bool post_sampling_probs;
  657. completion_token_output prob_output;
  658. result_timings timings;
  659. // OAI-compat fields
  660. bool verbose = false;
  661. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  662. std::string oaicompat_model;
  663. std::string oaicompat_cmpl_id;
  664. virtual int get_index() override {
  665. return index;
  666. }
  667. virtual bool is_stop() override {
  668. return false; // in stream mode, partial responses are not considered stop
  669. }
  670. virtual json to_json() override {
  671. switch (oaicompat) {
  672. case OAICOMPAT_TYPE_NONE:
  673. return to_json_non_oaicompat();
  674. case OAICOMPAT_TYPE_COMPLETION:
  675. return to_json_oaicompat();
  676. case OAICOMPAT_TYPE_CHAT:
  677. return to_json_oaicompat_chat();
  678. default:
  679. GGML_ASSERT(false && "Invalid oaicompat_type");
  680. }
  681. }
  682. json to_json_non_oaicompat() {
  683. // non-OAI-compat JSON
  684. json res = json {
  685. {"index", index},
  686. {"content", content},
  687. {"tokens", tokens},
  688. {"stop", false},
  689. {"id_slot", id_slot},
  690. {"tokens_predicted", n_decoded},
  691. {"tokens_evaluated", n_prompt_tokens},
  692. };
  693. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  694. if (timings.prompt_n > 0) {
  695. res.push_back({"timings", timings.to_json()});
  696. }
  697. if (!prob_output.probs.empty()) {
  698. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  699. }
  700. return res;
  701. }
  702. json to_json_oaicompat() {
  703. std::time_t t = std::time(0);
  704. json logprobs = json(nullptr); // OAI default to null
  705. if (prob_output.probs.size() > 0) {
  706. logprobs = json{
  707. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  708. };
  709. }
  710. json res = json {
  711. {"choices", json::array({
  712. json{
  713. {"text", content},
  714. {"index", index},
  715. {"logprobs", logprobs},
  716. {"finish_reason", nullptr},
  717. }
  718. })},
  719. {"created", t},
  720. {"model", oaicompat_model},
  721. {"system_fingerprint", build_info},
  722. {"object", "text_completion"},
  723. {"id", oaicompat_cmpl_id}
  724. };
  725. // extra fields for debugging purposes
  726. if (verbose) {
  727. res["__verbose"] = to_json_non_oaicompat();
  728. }
  729. if (timings.prompt_n >= 0) {
  730. res.push_back({"timings", timings.to_json()});
  731. }
  732. return res;
  733. }
  734. json to_json_oaicompat_chat() {
  735. bool first = n_decoded == 0;
  736. std::time_t t = std::time(0);
  737. json choices;
  738. if (first) {
  739. if (content.empty()) {
  740. choices = json::array({json{{"finish_reason", nullptr},
  741. {"index", 0},
  742. {"delta", json{{"role", "assistant"}}}}});
  743. } else {
  744. // We have to send this as two updates to conform to openai behavior
  745. json initial_ret = json{{"choices", json::array({json{
  746. {"finish_reason", nullptr},
  747. {"index", 0},
  748. {"delta", json{
  749. {"role", "assistant"}
  750. }}}})},
  751. {"created", t},
  752. {"id", oaicompat_cmpl_id},
  753. {"model", oaicompat_model},
  754. {"object", "chat.completion.chunk"}};
  755. json second_ret = json{
  756. {"choices", json::array({json{{"finish_reason", nullptr},
  757. {"index", 0},
  758. {"delta", json {
  759. {"content", content}}}
  760. }})},
  761. {"created", t},
  762. {"id", oaicompat_cmpl_id},
  763. {"model", oaicompat_model},
  764. {"object", "chat.completion.chunk"}};
  765. return std::vector<json>({initial_ret, second_ret});
  766. }
  767. } else {
  768. choices = json::array({json{
  769. {"finish_reason", nullptr},
  770. {"index", 0},
  771. {"delta",
  772. json {
  773. {"content", content},
  774. }},
  775. }});
  776. }
  777. GGML_ASSERT(choices.size() >= 1);
  778. if (prob_output.probs.size() > 0) {
  779. choices[0]["logprobs"] = json{
  780. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  781. };
  782. }
  783. json ret = json {
  784. {"choices", choices},
  785. {"created", t},
  786. {"id", oaicompat_cmpl_id},
  787. {"model", oaicompat_model},
  788. {"system_fingerprint", build_info},
  789. {"object", "chat.completion.chunk"}
  790. };
  791. if (timings.prompt_n >= 0) {
  792. ret.push_back({"timings", timings.to_json()});
  793. }
  794. return std::vector<json>({ret});
  795. }
  796. };
  797. struct server_task_result_embd : server_task_result {
  798. int index = 0;
  799. std::vector<std::vector<float>> embedding;
  800. int32_t n_tokens;
  801. // OAI-compat fields
  802. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  803. virtual int get_index() override {
  804. return index;
  805. }
  806. virtual json to_json() override {
  807. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  808. ? to_json_oaicompat()
  809. : to_json_non_oaicompat();
  810. }
  811. json to_json_non_oaicompat() {
  812. return json {
  813. {"index", index},
  814. {"embedding", embedding},
  815. };
  816. }
  817. json to_json_oaicompat() {
  818. return json {
  819. {"index", index},
  820. {"embedding", embedding[0]},
  821. {"tokens_evaluated", n_tokens},
  822. };
  823. }
  824. };
  825. struct server_task_result_rerank : server_task_result {
  826. int index = 0;
  827. float score = -1e6;
  828. int32_t n_tokens;
  829. virtual int get_index() override {
  830. return index;
  831. }
  832. virtual json to_json() override {
  833. return json {
  834. {"index", index},
  835. {"score", score},
  836. {"tokens_evaluated", n_tokens},
  837. };
  838. }
  839. };
  840. // this function maybe used outside of server_task_result_error
  841. static json format_error_response(const std::string & message, const enum error_type type) {
  842. std::string type_str;
  843. int code = 500;
  844. switch (type) {
  845. case ERROR_TYPE_INVALID_REQUEST:
  846. type_str = "invalid_request_error";
  847. code = 400;
  848. break;
  849. case ERROR_TYPE_AUTHENTICATION:
  850. type_str = "authentication_error";
  851. code = 401;
  852. break;
  853. case ERROR_TYPE_NOT_FOUND:
  854. type_str = "not_found_error";
  855. code = 404;
  856. break;
  857. case ERROR_TYPE_SERVER:
  858. type_str = "server_error";
  859. code = 500;
  860. break;
  861. case ERROR_TYPE_PERMISSION:
  862. type_str = "permission_error";
  863. code = 403;
  864. break;
  865. case ERROR_TYPE_NOT_SUPPORTED:
  866. type_str = "not_supported_error";
  867. code = 501;
  868. break;
  869. case ERROR_TYPE_UNAVAILABLE:
  870. type_str = "unavailable_error";
  871. code = 503;
  872. break;
  873. }
  874. return json {
  875. {"code", code},
  876. {"message", message},
  877. {"type", type_str},
  878. };
  879. }
  880. struct server_task_result_error : server_task_result {
  881. int index = 0;
  882. error_type err_type = ERROR_TYPE_SERVER;
  883. std::string err_msg;
  884. virtual bool is_error() override {
  885. return true;
  886. }
  887. virtual json to_json() override {
  888. return format_error_response(err_msg, err_type);
  889. }
  890. };
  891. struct server_task_result_metrics : server_task_result {
  892. int n_idle_slots;
  893. int n_processing_slots;
  894. int n_tasks_deferred;
  895. int64_t t_start;
  896. int32_t kv_cache_tokens_count;
  897. int32_t kv_cache_used_cells;
  898. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  899. uint64_t n_prompt_tokens_processed_total = 0;
  900. uint64_t t_prompt_processing_total = 0;
  901. uint64_t n_tokens_predicted_total = 0;
  902. uint64_t t_tokens_generation_total = 0;
  903. uint64_t n_prompt_tokens_processed = 0;
  904. uint64_t t_prompt_processing = 0;
  905. uint64_t n_tokens_predicted = 0;
  906. uint64_t t_tokens_generation = 0;
  907. uint64_t n_decode_total = 0;
  908. uint64_t n_busy_slots_total = 0;
  909. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  910. // therefore, we use json to temporarily store the slot.to_json() result
  911. json slots_data = json::array();
  912. virtual json to_json() override {
  913. return json {
  914. { "idle", n_idle_slots },
  915. { "processing", n_processing_slots },
  916. { "deferred", n_tasks_deferred },
  917. { "t_start", t_start },
  918. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  919. { "t_tokens_generation_total", t_tokens_generation_total },
  920. { "n_tokens_predicted_total", n_tokens_predicted_total },
  921. { "t_prompt_processing_total", t_prompt_processing_total },
  922. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  923. { "t_prompt_processing", t_prompt_processing },
  924. { "n_tokens_predicted", n_tokens_predicted },
  925. { "t_tokens_generation", t_tokens_generation },
  926. { "n_decode_total", n_decode_total },
  927. { "n_busy_slots_total", n_busy_slots_total },
  928. { "kv_cache_tokens_count", kv_cache_tokens_count },
  929. { "kv_cache_used_cells", kv_cache_used_cells },
  930. { "slots", slots_data },
  931. };
  932. }
  933. };
  934. struct server_task_result_slot_save_load : server_task_result {
  935. std::string filename;
  936. bool is_save; // true = save, false = load
  937. size_t n_tokens;
  938. size_t n_bytes;
  939. double t_ms;
  940. virtual json to_json() override {
  941. if (is_save) {
  942. return json {
  943. { "id_slot", id_slot },
  944. { "filename", filename },
  945. { "n_saved", n_tokens },
  946. { "n_written", n_bytes },
  947. { "timings", {
  948. { "save_ms", t_ms }
  949. }},
  950. };
  951. } else {
  952. return json {
  953. { "id_slot", id_slot },
  954. { "filename", filename },
  955. { "n_restored", n_tokens },
  956. { "n_read", n_bytes },
  957. { "timings", {
  958. { "restore_ms", t_ms }
  959. }},
  960. };
  961. }
  962. }
  963. };
  964. struct server_task_result_slot_erase : server_task_result {
  965. size_t n_erased;
  966. virtual json to_json() override {
  967. return json {
  968. { "id_slot", id_slot },
  969. { "n_erased", n_erased },
  970. };
  971. }
  972. };
  973. struct server_task_result_apply_lora : server_task_result {
  974. virtual json to_json() override {
  975. return json {{ "success", true }};
  976. }
  977. };
  978. struct server_slot {
  979. int id;
  980. int id_task = -1;
  981. // only used for completion/embedding/infill/rerank
  982. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  983. llama_batch batch_spec = {};
  984. llama_context * ctx = nullptr;
  985. llama_context * ctx_dft = nullptr;
  986. common_speculative * spec = nullptr;
  987. std::vector<common_adapter_lora_info> lora;
  988. // the index relative to completion multi-task request
  989. size_t index = 0;
  990. struct slot_params params;
  991. slot_state state = SLOT_STATE_IDLE;
  992. // used to determine the slot that has been used the longest
  993. int64_t t_last_used = -1;
  994. // generation props
  995. int32_t n_ctx = 0; // context size per slot
  996. int32_t n_past = 0;
  997. int32_t n_decoded = 0;
  998. int32_t n_remaining = -1;
  999. int32_t i_batch = -1;
  1000. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1001. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1002. int32_t n_prompt_tokens = 0;
  1003. int32_t n_prompt_tokens_processed = 0;
  1004. // input prompt tokens
  1005. llama_tokens prompt_tokens;
  1006. size_t last_nl_pos = 0;
  1007. std::string generated_text;
  1008. llama_tokens generated_tokens;
  1009. llama_tokens cache_tokens;
  1010. std::vector<completion_token_output> generated_token_probs;
  1011. bool has_next_token = true;
  1012. bool has_new_line = false;
  1013. bool truncated = false;
  1014. stop_type stop;
  1015. std::string stopping_word;
  1016. // sampling
  1017. json json_schema;
  1018. struct common_sampler * smpl = nullptr;
  1019. llama_token sampled;
  1020. // stats
  1021. size_t n_sent_text = 0; // number of sent text character
  1022. int64_t t_start_process_prompt;
  1023. int64_t t_start_generation;
  1024. double t_prompt_processing; // ms
  1025. double t_token_generation; // ms
  1026. std::function<void(int)> callback_on_release;
  1027. void reset() {
  1028. SLT_DBG(*this, "%s", "\n");
  1029. n_prompt_tokens = 0;
  1030. last_nl_pos = 0;
  1031. generated_text = "";
  1032. has_new_line = false;
  1033. truncated = false;
  1034. stop = STOP_TYPE_NONE;
  1035. stopping_word = "";
  1036. n_past = 0;
  1037. n_sent_text = 0;
  1038. task_type = SERVER_TASK_TYPE_COMPLETION;
  1039. generated_tokens.clear();
  1040. generated_token_probs.clear();
  1041. }
  1042. bool is_non_causal() const {
  1043. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1044. }
  1045. bool can_batch_with(server_slot & other_slot) {
  1046. return is_non_causal() == other_slot.is_non_causal()
  1047. && are_lora_equal(lora, other_slot.lora);
  1048. }
  1049. bool has_budget(const common_params & global_params) {
  1050. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1051. return true; // limitless
  1052. }
  1053. n_remaining = -1;
  1054. if (params.n_predict != -1) {
  1055. n_remaining = params.n_predict - n_decoded;
  1056. } else if (global_params.n_predict != -1) {
  1057. n_remaining = global_params.n_predict - n_decoded;
  1058. }
  1059. return n_remaining > 0; // no budget
  1060. }
  1061. bool is_processing() const {
  1062. return state != SLOT_STATE_IDLE;
  1063. }
  1064. bool can_speculate() const {
  1065. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1066. }
  1067. void add_token(const completion_token_output & token) {
  1068. if (!is_processing()) {
  1069. SLT_WRN(*this, "%s", "slot is not processing\n");
  1070. return;
  1071. }
  1072. generated_token_probs.push_back(token);
  1073. }
  1074. void release() {
  1075. if (is_processing()) {
  1076. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1077. t_last_used = ggml_time_us();
  1078. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1079. state = SLOT_STATE_IDLE;
  1080. callback_on_release(id);
  1081. }
  1082. }
  1083. result_timings get_timings() const {
  1084. result_timings timings;
  1085. timings.prompt_n = n_prompt_tokens_processed;
  1086. timings.prompt_ms = t_prompt_processing;
  1087. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1088. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1089. timings.predicted_n = n_decoded;
  1090. timings.predicted_ms = t_token_generation;
  1091. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1092. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1093. return timings;
  1094. }
  1095. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1096. size_t stop_pos = std::string::npos;
  1097. for (const std::string & word : params.antiprompt) {
  1098. size_t pos;
  1099. if (is_full_stop) {
  1100. const size_t tmp = word.size() + last_token_size;
  1101. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1102. pos = text.find(word, from_pos);
  1103. } else {
  1104. // otherwise, partial stop
  1105. pos = find_partial_stop_string(word, text);
  1106. }
  1107. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1108. if (is_full_stop) {
  1109. stop = STOP_TYPE_WORD;
  1110. stopping_word = word;
  1111. has_next_token = false;
  1112. }
  1113. stop_pos = pos;
  1114. }
  1115. }
  1116. return stop_pos;
  1117. }
  1118. void print_timings() const {
  1119. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1120. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1121. const double t_gen = t_token_generation / n_decoded;
  1122. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1123. SLT_INF(*this,
  1124. "\n"
  1125. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1126. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1127. " total time = %10.2f ms / %5d tokens\n",
  1128. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1129. t_token_generation, n_decoded, t_gen, n_gen_second,
  1130. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1131. }
  1132. json to_json() const {
  1133. return json {
  1134. {"id", id},
  1135. {"id_task", id_task},
  1136. {"n_ctx", n_ctx},
  1137. {"speculative", can_speculate()},
  1138. {"is_processing", is_processing()},
  1139. {"non_causal", is_non_causal()},
  1140. {"params", params.to_json()},
  1141. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1142. {"next_token",
  1143. {
  1144. {"has_next_token", has_next_token},
  1145. {"has_new_line", has_new_line},
  1146. {"n_remain", n_remaining},
  1147. {"n_decoded", n_decoded},
  1148. {"stopping_word", stopping_word},
  1149. }
  1150. },
  1151. };
  1152. }
  1153. };
  1154. struct server_metrics {
  1155. int64_t t_start = 0;
  1156. uint64_t n_prompt_tokens_processed_total = 0;
  1157. uint64_t t_prompt_processing_total = 0;
  1158. uint64_t n_tokens_predicted_total = 0;
  1159. uint64_t t_tokens_generation_total = 0;
  1160. uint64_t n_prompt_tokens_processed = 0;
  1161. uint64_t t_prompt_processing = 0;
  1162. uint64_t n_tokens_predicted = 0;
  1163. uint64_t t_tokens_generation = 0;
  1164. uint64_t n_decode_total = 0;
  1165. uint64_t n_busy_slots_total = 0;
  1166. void init() {
  1167. t_start = ggml_time_us();
  1168. }
  1169. void on_prompt_eval(const server_slot & slot) {
  1170. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1171. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1172. t_prompt_processing += slot.t_prompt_processing;
  1173. t_prompt_processing_total += slot.t_prompt_processing;
  1174. }
  1175. void on_prediction(const server_slot & slot) {
  1176. n_tokens_predicted_total += slot.n_decoded;
  1177. n_tokens_predicted += slot.n_decoded;
  1178. t_tokens_generation += slot.t_token_generation;
  1179. t_tokens_generation_total += slot.t_token_generation;
  1180. }
  1181. void on_decoded(const std::vector<server_slot> & slots) {
  1182. n_decode_total++;
  1183. for (const auto & slot : slots) {
  1184. if (slot.is_processing()) {
  1185. n_busy_slots_total++;
  1186. }
  1187. }
  1188. }
  1189. void reset_bucket() {
  1190. n_prompt_tokens_processed = 0;
  1191. t_prompt_processing = 0;
  1192. n_tokens_predicted = 0;
  1193. t_tokens_generation = 0;
  1194. }
  1195. };
  1196. struct server_queue {
  1197. int id = 0;
  1198. bool running;
  1199. // queues
  1200. std::deque<server_task> queue_tasks;
  1201. std::deque<server_task> queue_tasks_deferred;
  1202. std::mutex mutex_tasks;
  1203. std::condition_variable condition_tasks;
  1204. // callback functions
  1205. std::function<void(server_task)> callback_new_task;
  1206. std::function<void(void)> callback_update_slots;
  1207. // Add a new task to the end of the queue
  1208. int post(server_task task, bool front = false) {
  1209. std::unique_lock<std::mutex> lock(mutex_tasks);
  1210. GGML_ASSERT(task.id != -1);
  1211. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1212. if (front) {
  1213. queue_tasks.push_front(std::move(task));
  1214. } else {
  1215. queue_tasks.push_back(std::move(task));
  1216. }
  1217. condition_tasks.notify_one();
  1218. return task.id;
  1219. }
  1220. // multi-task version of post()
  1221. int post(std::vector<server_task> & tasks, bool front = false) {
  1222. std::unique_lock<std::mutex> lock(mutex_tasks);
  1223. for (auto & task : tasks) {
  1224. if (task.id == -1) {
  1225. task.id = id++;
  1226. }
  1227. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1228. if (front) {
  1229. queue_tasks.push_front(std::move(task));
  1230. } else {
  1231. queue_tasks.push_back(std::move(task));
  1232. }
  1233. }
  1234. condition_tasks.notify_one();
  1235. return 0;
  1236. }
  1237. // Add a new task, but defer until one slot is available
  1238. void defer(server_task task) {
  1239. std::unique_lock<std::mutex> lock(mutex_tasks);
  1240. QUE_DBG("defer task, id = %d\n", task.id);
  1241. queue_tasks_deferred.push_back(std::move(task));
  1242. condition_tasks.notify_one();
  1243. }
  1244. // Get the next id for creating a new task
  1245. int get_new_id() {
  1246. std::unique_lock<std::mutex> lock(mutex_tasks);
  1247. int new_id = id++;
  1248. return new_id;
  1249. }
  1250. // Register function to process a new task
  1251. void on_new_task(std::function<void(server_task)> callback) {
  1252. callback_new_task = std::move(callback);
  1253. }
  1254. // Register the function to be called when all slots data is ready to be processed
  1255. void on_update_slots(std::function<void(void)> callback) {
  1256. callback_update_slots = std::move(callback);
  1257. }
  1258. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1259. void pop_deferred_task() {
  1260. std::unique_lock<std::mutex> lock(mutex_tasks);
  1261. if (!queue_tasks_deferred.empty()) {
  1262. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1263. queue_tasks_deferred.pop_front();
  1264. }
  1265. condition_tasks.notify_one();
  1266. }
  1267. // end the start_loop routine
  1268. void terminate() {
  1269. std::unique_lock<std::mutex> lock(mutex_tasks);
  1270. running = false;
  1271. condition_tasks.notify_all();
  1272. }
  1273. /**
  1274. * Main loop consists of these steps:
  1275. * - Wait until a new task arrives
  1276. * - Process the task (i.e. maybe copy data into slot)
  1277. * - Check if multitask is finished
  1278. * - Update all slots
  1279. */
  1280. void start_loop() {
  1281. running = true;
  1282. while (true) {
  1283. QUE_DBG("%s", "processing new tasks\n");
  1284. while (true) {
  1285. std::unique_lock<std::mutex> lock(mutex_tasks);
  1286. if (queue_tasks.empty()) {
  1287. lock.unlock();
  1288. break;
  1289. }
  1290. server_task task = queue_tasks.front();
  1291. queue_tasks.pop_front();
  1292. lock.unlock();
  1293. QUE_DBG("processing task, id = %d\n", task.id);
  1294. callback_new_task(std::move(task));
  1295. }
  1296. // all tasks in the current loop is processed, slots data is now ready
  1297. QUE_DBG("%s", "update slots\n");
  1298. callback_update_slots();
  1299. QUE_DBG("%s", "waiting for new tasks\n");
  1300. {
  1301. std::unique_lock<std::mutex> lock(mutex_tasks);
  1302. if (queue_tasks.empty()) {
  1303. if (!running) {
  1304. QUE_DBG("%s", "terminate\n");
  1305. return;
  1306. }
  1307. condition_tasks.wait(lock, [&]{
  1308. return (!queue_tasks.empty() || !running);
  1309. });
  1310. }
  1311. }
  1312. }
  1313. }
  1314. };
  1315. struct server_response {
  1316. // for keeping track of all tasks waiting for the result
  1317. std::unordered_set<int> waiting_task_ids;
  1318. // the main result queue (using ptr for polymorphism)
  1319. std::vector<server_task_result_ptr> queue_results;
  1320. std::mutex mutex_results;
  1321. std::condition_variable condition_results;
  1322. // add the id_task to the list of tasks waiting for response
  1323. void add_waiting_task_id(int id_task) {
  1324. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1325. std::unique_lock<std::mutex> lock(mutex_results);
  1326. waiting_task_ids.insert(id_task);
  1327. }
  1328. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1329. std::unique_lock<std::mutex> lock(mutex_results);
  1330. for (const auto & task : tasks) {
  1331. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1332. waiting_task_ids.insert(task.id);
  1333. }
  1334. }
  1335. // when the request is finished, we can remove task associated with it
  1336. void remove_waiting_task_id(int id_task) {
  1337. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1338. std::unique_lock<std::mutex> lock(mutex_results);
  1339. waiting_task_ids.erase(id_task);
  1340. }
  1341. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1342. std::unique_lock<std::mutex> lock(mutex_results);
  1343. for (const auto & id_task : id_tasks) {
  1344. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1345. waiting_task_ids.erase(id_task);
  1346. }
  1347. }
  1348. // This function blocks the thread until there is a response for one of the id_tasks
  1349. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1350. while (true) {
  1351. std::unique_lock<std::mutex> lock(mutex_results);
  1352. condition_results.wait(lock, [&]{
  1353. return !queue_results.empty();
  1354. });
  1355. for (int i = 0; i < (int) queue_results.size(); i++) {
  1356. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1357. server_task_result_ptr res = std::move(queue_results[i]);
  1358. queue_results.erase(queue_results.begin() + i);
  1359. return res;
  1360. }
  1361. }
  1362. }
  1363. // should never reach here
  1364. }
  1365. // same as recv(), but have timeout in seconds
  1366. // if timeout is reached, nullptr is returned
  1367. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1368. while (true) {
  1369. std::unique_lock<std::mutex> lock(mutex_results);
  1370. bool cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout), [&]{
  1371. return !queue_results.empty();
  1372. });
  1373. if (!cr_res) {
  1374. return nullptr;
  1375. }
  1376. for (int i = 0; i < (int) queue_results.size(); i++) {
  1377. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1378. server_task_result_ptr res = std::move(queue_results[i]);
  1379. queue_results.erase(queue_results.begin() + i);
  1380. return res;
  1381. }
  1382. }
  1383. }
  1384. // should never reach here
  1385. }
  1386. // single-task version of recv()
  1387. server_task_result_ptr recv(int id_task) {
  1388. std::unordered_set<int> id_tasks = {id_task};
  1389. return recv(id_tasks);
  1390. }
  1391. // Send a new result to a waiting id_task
  1392. void send(server_task_result_ptr && result) {
  1393. SRV_DBG("sending result for task id = %d\n", result->id);
  1394. std::unique_lock<std::mutex> lock(mutex_results);
  1395. for (const auto & id_task : waiting_task_ids) {
  1396. if (result->id == id_task) {
  1397. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1398. queue_results.emplace_back(std::move(result));
  1399. condition_results.notify_all();
  1400. return;
  1401. }
  1402. }
  1403. }
  1404. };
  1405. struct server_context {
  1406. common_params params_base;
  1407. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1408. common_init_result llama_init;
  1409. common_init_result llama_init_dft;
  1410. llama_model * model = nullptr;
  1411. llama_context * ctx = nullptr;
  1412. const llama_vocab * vocab = nullptr;
  1413. llama_model * model_dft = nullptr;
  1414. llama_context_params cparams_dft;
  1415. llama_batch batch = {};
  1416. bool clean_kv_cache = true;
  1417. bool add_bos_token = true;
  1418. bool has_eos_token = false;
  1419. int32_t n_ctx; // total context for all clients / slots
  1420. // slots / clients
  1421. std::vector<server_slot> slots;
  1422. json default_generation_settings_for_props;
  1423. server_queue queue_tasks;
  1424. server_response queue_results;
  1425. server_metrics metrics;
  1426. // Necessary similarity of prompt for slot selection
  1427. float slot_prompt_similarity = 0.0f;
  1428. common_chat_templates chat_templates;
  1429. ~server_context() {
  1430. // Clear any sampling context
  1431. for (server_slot & slot : slots) {
  1432. common_sampler_free(slot.smpl);
  1433. slot.smpl = nullptr;
  1434. llama_free(slot.ctx_dft);
  1435. slot.ctx_dft = nullptr;
  1436. common_speculative_free(slot.spec);
  1437. slot.spec = nullptr;
  1438. llama_batch_free(slot.batch_spec);
  1439. }
  1440. llama_batch_free(batch);
  1441. }
  1442. bool load_model(const common_params & params) {
  1443. SRV_INF("loading model '%s'\n", params.model.c_str());
  1444. params_base = params;
  1445. llama_init = common_init_from_params(params_base);
  1446. model = llama_init.model.get();
  1447. ctx = llama_init.context.get();
  1448. if (model == nullptr) {
  1449. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1450. return false;
  1451. }
  1452. vocab = llama_model_get_vocab(model);
  1453. n_ctx = llama_n_ctx(ctx);
  1454. add_bos_token = llama_vocab_get_add_bos(vocab);
  1455. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1456. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1457. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1458. auto params_dft = params_base;
  1459. params_dft.devices = params_base.speculative.devices;
  1460. params_dft.hf_file = params_base.speculative.hf_file;
  1461. params_dft.hf_repo = params_base.speculative.hf_repo;
  1462. params_dft.model = params_base.speculative.model;
  1463. params_dft.model_url = params_base.speculative.model_url;
  1464. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1465. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1466. params_dft.n_parallel = 1;
  1467. llama_init_dft = common_init_from_params(params_dft);
  1468. model_dft = llama_init_dft.model.get();
  1469. if (model_dft == nullptr) {
  1470. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1471. return false;
  1472. }
  1473. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1474. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1475. return false;
  1476. }
  1477. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1478. cparams_dft = common_context_params_to_llama(params_dft);
  1479. cparams_dft.n_batch = n_ctx_dft;
  1480. // force F16 KV cache for the draft model for extra performance
  1481. cparams_dft.type_k = GGML_TYPE_F16;
  1482. cparams_dft.type_v = GGML_TYPE_F16;
  1483. // the context is not needed - we will create one for each slot
  1484. llama_init_dft.context.reset();
  1485. }
  1486. chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
  1487. GGML_ASSERT(chat_templates.template_default.get() != nullptr);
  1488. return true;
  1489. }
  1490. bool validate_builtin_chat_template(bool use_jinja) const {
  1491. llama_chat_message chat[] = {{"user", "test"}};
  1492. if (use_jinja) {
  1493. auto templates = common_chat_templates_from_model(model, "");
  1494. GGML_ASSERT(templates.template_default);
  1495. try {
  1496. templates.template_default->apply({{
  1497. {"role", "user"},
  1498. {"content", "test"},
  1499. }}, json(), true);
  1500. if (templates.template_tool_use) {
  1501. templates.template_tool_use->apply({{
  1502. {"role", "user"},
  1503. {"content", "test"},
  1504. }}, json(), true);
  1505. }
  1506. return true;
  1507. } catch (const std::exception & e) {
  1508. SRV_ERR("failed to apply template: %s\n", e.what());
  1509. return false;
  1510. }
  1511. } else {
  1512. const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
  1513. const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
  1514. return chat_res > 0;
  1515. }
  1516. }
  1517. void init() {
  1518. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1519. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1520. for (int i = 0; i < params_base.n_parallel; i++) {
  1521. server_slot slot;
  1522. slot.id = i;
  1523. slot.ctx = ctx;
  1524. slot.n_ctx = n_ctx_slot;
  1525. slot.n_predict = params_base.n_predict;
  1526. if (model_dft) {
  1527. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1528. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1529. if (slot.ctx_dft == nullptr) {
  1530. SRV_ERR("%s", "failed to create draft context\n");
  1531. return;
  1532. }
  1533. slot.spec = common_speculative_init(slot.ctx_dft);
  1534. if (slot.spec == nullptr) {
  1535. SRV_ERR("%s", "failed to create speculator\n");
  1536. return;
  1537. }
  1538. }
  1539. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1540. slot.params.sampling = params_base.sampling;
  1541. slot.callback_on_release = [this](int) {
  1542. queue_tasks.pop_deferred_task();
  1543. };
  1544. slot.reset();
  1545. slots.push_back(slot);
  1546. }
  1547. default_generation_settings_for_props = slots[0].to_json();
  1548. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1549. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1550. {
  1551. const int32_t n_batch = llama_n_batch(ctx);
  1552. // only a single seq_id per token is needed
  1553. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1554. }
  1555. metrics.init();
  1556. }
  1557. server_slot * get_slot_by_id(int id) {
  1558. for (server_slot & slot : slots) {
  1559. if (slot.id == id) {
  1560. return &slot;
  1561. }
  1562. }
  1563. return nullptr;
  1564. }
  1565. server_slot * get_available_slot(const server_task & task) {
  1566. server_slot * ret = nullptr;
  1567. // find the slot that has at least n% prompt similarity
  1568. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1569. int lcs_len = 0;
  1570. float similarity = 0;
  1571. for (server_slot & slot : slots) {
  1572. // skip the slot if it is not available
  1573. if (slot.is_processing()) {
  1574. continue;
  1575. }
  1576. // skip the slot if it does not contains cached tokens
  1577. if (slot.cache_tokens.empty()) {
  1578. continue;
  1579. }
  1580. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1581. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1582. // fraction of the common subsequence length compared to the current slot's prompt length
  1583. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1584. // select the current slot if the criteria match
  1585. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1586. lcs_len = cur_lcs_len;
  1587. similarity = cur_similarity;
  1588. ret = &slot;
  1589. }
  1590. }
  1591. if (ret != nullptr) {
  1592. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1593. }
  1594. }
  1595. // find the slot that has been least recently used
  1596. if (ret == nullptr) {
  1597. int64_t t_last = ggml_time_us();
  1598. for (server_slot & slot : slots) {
  1599. // skip the slot if it is not available
  1600. if (slot.is_processing()) {
  1601. continue;
  1602. }
  1603. // select the current slot if the criteria match
  1604. if (slot.t_last_used < t_last) {
  1605. t_last = slot.t_last_used;
  1606. ret = &slot;
  1607. }
  1608. }
  1609. if (ret != nullptr) {
  1610. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1611. }
  1612. }
  1613. return ret;
  1614. }
  1615. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1616. slot.reset();
  1617. slot.id_task = task.id;
  1618. slot.index = task.index;
  1619. slot.task_type = task.type;
  1620. slot.params = std::move(task.params);
  1621. slot.prompt_tokens = std::move(task.prompt_tokens);
  1622. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1623. // if lora is changed, we cannot reuse cached tokens
  1624. slot.cache_tokens.clear();
  1625. slot.lora = task.params.lora;
  1626. }
  1627. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1628. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1629. // Might be better to reject the request with a 400 ?
  1630. slot.params.n_predict = slot.n_predict;
  1631. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1632. }
  1633. if (slot.params.ignore_eos && has_eos_token) {
  1634. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1635. }
  1636. {
  1637. if (slot.smpl != nullptr) {
  1638. common_sampler_free(slot.smpl);
  1639. }
  1640. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1641. if (slot.smpl == nullptr) {
  1642. // for now, the only error that may happen here is invalid grammar
  1643. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1644. return false;
  1645. }
  1646. }
  1647. if (slot.ctx_dft) {
  1648. llama_batch_free(slot.batch_spec);
  1649. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1650. }
  1651. slot.state = SLOT_STATE_STARTED;
  1652. SLT_INF(slot, "%s", "processing task\n");
  1653. return true;
  1654. }
  1655. void kv_cache_clear() {
  1656. SRV_DBG("%s", "clearing KV cache\n");
  1657. // clear the entire KV cache
  1658. llama_kv_cache_clear(ctx);
  1659. clean_kv_cache = false;
  1660. }
  1661. bool process_token(completion_token_output & result, server_slot & slot) {
  1662. // remember which tokens were sampled - used for repetition penalties during sampling
  1663. const std::string token_str = result.text_to_send;
  1664. slot.sampled = result.tok;
  1665. slot.generated_text += token_str;
  1666. if (slot.params.return_tokens) {
  1667. slot.generated_tokens.push_back(result.tok);
  1668. }
  1669. slot.has_next_token = true;
  1670. // check if there is incomplete UTF-8 character at the end
  1671. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1672. // search stop word and delete it
  1673. if (!incomplete) {
  1674. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1675. const std::string str_test = slot.generated_text.substr(pos);
  1676. bool send_text = true;
  1677. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1678. if (stop_pos != std::string::npos) {
  1679. slot.generated_text.erase(
  1680. slot.generated_text.begin() + pos + stop_pos,
  1681. slot.generated_text.end());
  1682. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1683. } else if (slot.has_next_token) {
  1684. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1685. send_text = stop_pos == std::string::npos;
  1686. }
  1687. // check if there is any token to predict
  1688. if (send_text) {
  1689. // no send the stop word in the response
  1690. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1691. slot.n_sent_text += result.text_to_send.size();
  1692. // add the token to slot queue and cache
  1693. } else {
  1694. result.text_to_send = "";
  1695. }
  1696. slot.add_token(result);
  1697. if (slot.params.stream) {
  1698. send_partial_response(slot, result);
  1699. }
  1700. }
  1701. if (incomplete) {
  1702. slot.has_next_token = true;
  1703. }
  1704. // check the limits
  1705. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1706. slot.stop = STOP_TYPE_LIMIT;
  1707. slot.has_next_token = false;
  1708. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1709. }
  1710. if (slot.has_new_line) {
  1711. // if we have already seen a new line, we stop after a certain time limit
  1712. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1713. slot.stop = STOP_TYPE_LIMIT;
  1714. slot.has_next_token = false;
  1715. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1716. }
  1717. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1718. if (slot.params.n_indent > 0) {
  1719. // check the current indentation
  1720. // TODO: improve by not doing it more than once for each new line
  1721. if (slot.last_nl_pos > 0) {
  1722. size_t pos = slot.last_nl_pos;
  1723. int n_indent = 0;
  1724. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1725. n_indent++;
  1726. pos++;
  1727. }
  1728. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1729. slot.stop = STOP_TYPE_LIMIT;
  1730. slot.has_next_token = false;
  1731. // cut the last line
  1732. slot.generated_text.erase(pos, std::string::npos);
  1733. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1734. }
  1735. }
  1736. // find the next new line
  1737. {
  1738. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1739. if (pos != std::string::npos) {
  1740. slot.last_nl_pos = pos + 1;
  1741. }
  1742. }
  1743. }
  1744. }
  1745. // check if there is a new line in the generated text
  1746. if (result.text_to_send.find('\n') != std::string::npos) {
  1747. slot.has_new_line = true;
  1748. }
  1749. // if context shift is disabled, we stop when it reaches the context limit
  1750. if (slot.n_past >= slot.n_ctx) {
  1751. slot.truncated = true;
  1752. slot.stop = STOP_TYPE_LIMIT;
  1753. slot.has_next_token = false;
  1754. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1755. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1756. }
  1757. if (llama_vocab_is_eog(vocab, result.tok)) {
  1758. slot.stop = STOP_TYPE_EOS;
  1759. slot.has_next_token = false;
  1760. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1761. }
  1762. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1763. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1764. slot.truncated = true;
  1765. slot.stop = STOP_TYPE_LIMIT;
  1766. slot.has_next_token = false; // stop prediction
  1767. SLT_WRN(slot,
  1768. "n_predict (%d) is set for infinite generation. "
  1769. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1770. slot.params.n_predict, n_ctx_train);
  1771. }
  1772. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1773. return slot.has_next_token; // continue
  1774. }
  1775. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1776. size_t n_probs = slot.params.sampling.n_probs;
  1777. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1778. if (post_sampling) {
  1779. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1780. const size_t max_probs = cur_p->size;
  1781. // set probability for sampled token
  1782. for (size_t i = 0; i < max_probs; i++) {
  1783. if (cur_p->data[i].id == result.tok) {
  1784. result.prob = cur_p->data[i].p;
  1785. break;
  1786. }
  1787. }
  1788. // set probability for top n_probs tokens
  1789. result.probs.reserve(max_probs);
  1790. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1791. result.probs.push_back({
  1792. cur_p->data[i].id,
  1793. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1794. cur_p->data[i].p
  1795. });
  1796. }
  1797. } else {
  1798. // TODO: optimize this with min-p optimization
  1799. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1800. // set probability for sampled token
  1801. for (size_t i = 0; i < n_vocab; i++) {
  1802. // set probability for sampled token
  1803. if (cur[i].id == result.tok) {
  1804. result.prob = cur[i].p;
  1805. break;
  1806. }
  1807. }
  1808. // set probability for top n_probs tokens
  1809. result.probs.reserve(n_probs);
  1810. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1811. result.probs.push_back({
  1812. cur[i].id,
  1813. common_detokenize(ctx, {cur[i].id}, special),
  1814. cur[i].p
  1815. });
  1816. }
  1817. }
  1818. }
  1819. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1820. send_error(task.id, error, type);
  1821. }
  1822. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1823. send_error(slot.id_task, error, type);
  1824. }
  1825. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1826. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1827. auto res = std::make_unique<server_task_result_error>();
  1828. res->id = id_task;
  1829. res->err_type = type;
  1830. res->err_msg = error;
  1831. queue_results.send(std::move(res));
  1832. }
  1833. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1834. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1835. res->id = slot.id_task;
  1836. res->index = slot.index;
  1837. res->content = tkn.text_to_send;
  1838. res->tokens = { tkn.tok };
  1839. res->n_decoded = slot.n_decoded;
  1840. res->n_prompt_tokens = slot.n_prompt_tokens;
  1841. res->post_sampling_probs = slot.params.post_sampling_probs;
  1842. res->verbose = slot.params.verbose;
  1843. res->oaicompat = slot.params.oaicompat;
  1844. res->oaicompat_model = slot.params.oaicompat_model;
  1845. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1846. // populate res.probs_output
  1847. if (slot.params.sampling.n_probs > 0) {
  1848. res->prob_output = tkn; // copy the token probs
  1849. }
  1850. // populate timings if this is final response or timings_per_token is enabled
  1851. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1852. res->timings = slot.get_timings();
  1853. }
  1854. queue_results.send(std::move(res));
  1855. }
  1856. void send_final_response(server_slot & slot) {
  1857. auto res = std::make_unique<server_task_result_cmpl_final>();
  1858. res->id = slot.id_task;
  1859. res->id_slot = slot.id;
  1860. res->index = slot.index;
  1861. res->content = slot.generated_text;
  1862. res->tokens = slot.generated_tokens;
  1863. res->timings = slot.get_timings();
  1864. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1865. res->response_fields = slot.params.response_fields;
  1866. res->truncated = slot.truncated;
  1867. res->n_decoded = slot.n_decoded;
  1868. res->n_prompt_tokens = slot.n_prompt_tokens;
  1869. res->n_tokens_cached = slot.n_past;
  1870. res->has_new_line = slot.has_new_line;
  1871. res->stopping_word = slot.stopping_word;
  1872. res->stop = slot.stop;
  1873. res->post_sampling_probs = slot.params.post_sampling_probs;
  1874. res->verbose = slot.params.verbose;
  1875. res->stream = slot.params.stream;
  1876. res->oaicompat = slot.params.oaicompat;
  1877. res->oaicompat_model = slot.params.oaicompat_model;
  1878. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1879. // populate res.probs_output
  1880. if (slot.params.sampling.n_probs > 0) {
  1881. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1882. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1883. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1884. res->probs_output = std::vector<completion_token_output>(
  1885. slot.generated_token_probs.begin(),
  1886. slot.generated_token_probs.end() - safe_offset);
  1887. } else {
  1888. res->probs_output = std::vector<completion_token_output>(
  1889. slot.generated_token_probs.begin(),
  1890. slot.generated_token_probs.end());
  1891. }
  1892. }
  1893. res->generation_params = slot.params; // copy the parameters
  1894. queue_results.send(std::move(res));
  1895. }
  1896. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1897. auto res = std::make_unique<server_task_result_embd>();
  1898. res->id = slot.id_task;
  1899. res->index = slot.index;
  1900. res->n_tokens = slot.n_prompt_tokens;
  1901. res->oaicompat = slot.params.oaicompat;
  1902. const int n_embd = llama_model_n_embd(model);
  1903. std::vector<float> embd_res(n_embd, 0.0f);
  1904. for (int i = 0; i < batch.n_tokens; ++i) {
  1905. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1906. continue;
  1907. }
  1908. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1909. if (embd == NULL) {
  1910. embd = llama_get_embeddings_ith(ctx, i);
  1911. }
  1912. if (embd == NULL) {
  1913. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1914. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1915. continue;
  1916. }
  1917. // normalize only when there is pooling
  1918. // TODO: configurable
  1919. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1920. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1921. res->embedding.push_back(embd_res);
  1922. } else {
  1923. res->embedding.push_back({ embd, embd + n_embd });
  1924. }
  1925. }
  1926. SLT_DBG(slot, "%s", "sending embeddings\n");
  1927. queue_results.send(std::move(res));
  1928. }
  1929. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1930. auto res = std::make_unique<server_task_result_rerank>();
  1931. res->id = slot.id_task;
  1932. res->index = slot.index;
  1933. res->n_tokens = slot.n_prompt_tokens;
  1934. for (int i = 0; i < batch.n_tokens; ++i) {
  1935. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1936. continue;
  1937. }
  1938. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1939. if (embd == NULL) {
  1940. embd = llama_get_embeddings_ith(ctx, i);
  1941. }
  1942. if (embd == NULL) {
  1943. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1944. res->score = -1e6;
  1945. continue;
  1946. }
  1947. res->score = embd[0];
  1948. }
  1949. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1950. queue_results.send(std::move(res));
  1951. }
  1952. //
  1953. // Functions to create new task(s) and receive result(s)
  1954. //
  1955. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1956. std::vector<server_task> cancel_tasks;
  1957. cancel_tasks.reserve(id_tasks.size());
  1958. for (const auto & id_task : id_tasks) {
  1959. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1960. server_task task(SERVER_TASK_TYPE_CANCEL);
  1961. task.id_target = id_task;
  1962. cancel_tasks.push_back(task);
  1963. queue_results.remove_waiting_task_id(id_task);
  1964. }
  1965. // push to beginning of the queue, so it has highest priority
  1966. queue_tasks.post(cancel_tasks, true);
  1967. }
  1968. // receive the results from task(s)
  1969. void receive_multi_results(
  1970. const std::unordered_set<int> & id_tasks,
  1971. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1972. const std::function<void(json)> & error_handler,
  1973. const std::function<bool()> & is_connection_closed) {
  1974. std::vector<server_task_result_ptr> results(id_tasks.size());
  1975. for (int i = 0; i < (int)id_tasks.size(); i++) {
  1976. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  1977. if (is_connection_closed()) {
  1978. cancel_tasks(id_tasks);
  1979. return;
  1980. }
  1981. if (result == nullptr) {
  1982. i--; // retry
  1983. continue;
  1984. }
  1985. if (result->is_error()) {
  1986. error_handler(result->to_json());
  1987. cancel_tasks(id_tasks);
  1988. return;
  1989. }
  1990. GGML_ASSERT(
  1991. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1992. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1993. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1994. );
  1995. const size_t idx = result->get_index();
  1996. GGML_ASSERT(idx < results.size() && "index out of range");
  1997. results[idx] = std::move(result);
  1998. }
  1999. result_handler(results);
  2000. }
  2001. // receive the results from task(s), in stream mode
  2002. void receive_cmpl_results_stream(
  2003. const std::unordered_set<int> & id_tasks,
  2004. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2005. const std::function<void(json)> & error_handler,
  2006. const std::function<bool()> & is_connection_closed) {
  2007. size_t n_finished = 0;
  2008. while (true) {
  2009. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2010. if (is_connection_closed()) {
  2011. cancel_tasks(id_tasks);
  2012. return;
  2013. }
  2014. if (result == nullptr) {
  2015. continue; // retry
  2016. }
  2017. if (result->is_error()) {
  2018. error_handler(result->to_json());
  2019. cancel_tasks(id_tasks);
  2020. return;
  2021. }
  2022. GGML_ASSERT(
  2023. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2024. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2025. );
  2026. if (!result_handler(result)) {
  2027. cancel_tasks(id_tasks);
  2028. break;
  2029. }
  2030. if (result->is_stop()) {
  2031. if (++n_finished == id_tasks.size()) {
  2032. break;
  2033. }
  2034. }
  2035. }
  2036. }
  2037. //
  2038. // Functions to process the task
  2039. //
  2040. void process_single_task(server_task task) {
  2041. switch (task.type) {
  2042. case SERVER_TASK_TYPE_COMPLETION:
  2043. case SERVER_TASK_TYPE_INFILL:
  2044. case SERVER_TASK_TYPE_EMBEDDING:
  2045. case SERVER_TASK_TYPE_RERANK:
  2046. {
  2047. const int id_slot = task.id_selected_slot;
  2048. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2049. if (slot == nullptr) {
  2050. // if no slot is available, we defer this task for processing later
  2051. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2052. queue_tasks.defer(task);
  2053. break;
  2054. }
  2055. if (slot->is_processing()) {
  2056. // if requested slot is unavailable, we defer this task for processing later
  2057. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2058. queue_tasks.defer(task);
  2059. break;
  2060. }
  2061. if (!launch_slot_with_task(*slot, task)) {
  2062. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2063. break;
  2064. }
  2065. } break;
  2066. case SERVER_TASK_TYPE_CANCEL:
  2067. {
  2068. // release slot linked with the task id
  2069. for (auto & slot : slots) {
  2070. if (slot.id_task == task.id_target) {
  2071. slot.release();
  2072. break;
  2073. }
  2074. }
  2075. } break;
  2076. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2077. {
  2078. // do nothing
  2079. } break;
  2080. case SERVER_TASK_TYPE_METRICS:
  2081. {
  2082. json slots_data = json::array();
  2083. int n_idle_slots = 0;
  2084. int n_processing_slots = 0;
  2085. for (server_slot & slot : slots) {
  2086. json slot_data = slot.to_json();
  2087. if (slot.is_processing()) {
  2088. n_processing_slots++;
  2089. } else {
  2090. n_idle_slots++;
  2091. }
  2092. slots_data.push_back(slot_data);
  2093. }
  2094. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2095. auto res = std::make_unique<server_task_result_metrics>();
  2096. res->id = task.id;
  2097. res->slots_data = std::move(slots_data);
  2098. res->n_idle_slots = n_idle_slots;
  2099. res->n_processing_slots = n_processing_slots;
  2100. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2101. res->t_start = metrics.t_start;
  2102. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2103. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2104. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2105. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2106. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2107. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2108. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2109. res->t_prompt_processing = metrics.t_prompt_processing;
  2110. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2111. res->t_tokens_generation = metrics.t_tokens_generation;
  2112. res->n_decode_total = metrics.n_decode_total;
  2113. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2114. if (task.metrics_reset_bucket) {
  2115. metrics.reset_bucket();
  2116. }
  2117. queue_results.send(std::move(res));
  2118. } break;
  2119. case SERVER_TASK_TYPE_SLOT_SAVE:
  2120. {
  2121. int id_slot = task.slot_action.slot_id;
  2122. server_slot * slot = get_slot_by_id(id_slot);
  2123. if (slot == nullptr) {
  2124. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2125. break;
  2126. }
  2127. if (slot->is_processing()) {
  2128. // if requested slot is unavailable, we defer this task for processing later
  2129. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2130. queue_tasks.defer(task);
  2131. break;
  2132. }
  2133. const size_t token_count = slot->cache_tokens.size();
  2134. const int64_t t_start = ggml_time_us();
  2135. std::string filename = task.slot_action.filename;
  2136. std::string filepath = task.slot_action.filepath;
  2137. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2138. const int64_t t_end = ggml_time_us();
  2139. const double t_save_ms = (t_end - t_start) / 1000.0;
  2140. auto res = std::make_unique<server_task_result_slot_save_load>();
  2141. res->id = task.id;
  2142. res->id_slot = id_slot;
  2143. res->filename = filename;
  2144. res->is_save = true;
  2145. res->n_tokens = token_count;
  2146. res->n_bytes = nwrite;
  2147. res->t_ms = t_save_ms;
  2148. queue_results.send(std::move(res));
  2149. } break;
  2150. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2151. {
  2152. int id_slot = task.slot_action.slot_id;
  2153. server_slot * slot = get_slot_by_id(id_slot);
  2154. if (slot == nullptr) {
  2155. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2156. break;
  2157. }
  2158. if (slot->is_processing()) {
  2159. // if requested slot is unavailable, we defer this task for processing later
  2160. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2161. queue_tasks.defer(task);
  2162. break;
  2163. }
  2164. const int64_t t_start = ggml_time_us();
  2165. std::string filename = task.slot_action.filename;
  2166. std::string filepath = task.slot_action.filepath;
  2167. slot->cache_tokens.resize(slot->n_ctx);
  2168. size_t token_count = 0;
  2169. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2170. if (nread == 0) {
  2171. slot->cache_tokens.resize(0);
  2172. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2173. break;
  2174. }
  2175. slot->cache_tokens.resize(token_count);
  2176. const int64_t t_end = ggml_time_us();
  2177. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2178. auto res = std::make_unique<server_task_result_slot_save_load>();
  2179. res->id = task.id;
  2180. res->id_slot = id_slot;
  2181. res->filename = filename;
  2182. res->is_save = false;
  2183. res->n_tokens = token_count;
  2184. res->n_bytes = nread;
  2185. res->t_ms = t_restore_ms;
  2186. queue_results.send(std::move(res));
  2187. } break;
  2188. case SERVER_TASK_TYPE_SLOT_ERASE:
  2189. {
  2190. int id_slot = task.slot_action.slot_id;
  2191. server_slot * slot = get_slot_by_id(id_slot);
  2192. if (slot == nullptr) {
  2193. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2194. break;
  2195. }
  2196. if (slot->is_processing()) {
  2197. // if requested slot is unavailable, we defer this task for processing later
  2198. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2199. queue_tasks.defer(task);
  2200. break;
  2201. }
  2202. // Erase token cache
  2203. const size_t n_erased = slot->cache_tokens.size();
  2204. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2205. slot->cache_tokens.clear();
  2206. auto res = std::make_unique<server_task_result_slot_erase>();
  2207. res->id = task.id;
  2208. res->id_slot = id_slot;
  2209. res->n_erased = n_erased;
  2210. queue_results.send(std::move(res));
  2211. } break;
  2212. case SERVER_TASK_TYPE_SET_LORA:
  2213. {
  2214. params_base.lora_adapters = std::move(task.set_lora);
  2215. auto res = std::make_unique<server_task_result_apply_lora>();
  2216. res->id = task.id;
  2217. queue_results.send(std::move(res));
  2218. } break;
  2219. }
  2220. }
  2221. void update_slots() {
  2222. // check if all slots are idle
  2223. {
  2224. bool all_idle = true;
  2225. for (auto & slot : slots) {
  2226. if (slot.is_processing()) {
  2227. all_idle = false;
  2228. break;
  2229. }
  2230. }
  2231. if (all_idle) {
  2232. SRV_INF("%s", "all slots are idle\n");
  2233. if (clean_kv_cache) {
  2234. kv_cache_clear();
  2235. }
  2236. return;
  2237. }
  2238. }
  2239. {
  2240. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2241. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2242. task.id = queue_tasks.get_new_id();
  2243. queue_tasks.post(task);
  2244. }
  2245. // apply context-shift if needed
  2246. // TODO: simplify and improve
  2247. for (server_slot & slot : slots) {
  2248. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2249. if (!params_base.ctx_shift) {
  2250. // this check is redundant (for good)
  2251. // we should never get here, because generation should already stopped in process_token()
  2252. slot.release();
  2253. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2254. continue;
  2255. }
  2256. // Shift context
  2257. const int n_keep = slot.params.n_keep + add_bos_token;
  2258. const int n_left = slot.n_past - n_keep;
  2259. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2260. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2261. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2262. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2263. if (slot.params.cache_prompt) {
  2264. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2265. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2266. }
  2267. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2268. }
  2269. slot.n_past -= n_discard;
  2270. slot.truncated = true;
  2271. }
  2272. }
  2273. // start populating the batch for this iteration
  2274. common_batch_clear(batch);
  2275. // track if given slot can be batched with slots already in the batch
  2276. server_slot * slot_batched = nullptr;
  2277. // frist, add sampled tokens from any ongoing sequences
  2278. for (auto & slot : slots) {
  2279. if (slot.state != SLOT_STATE_GENERATING) {
  2280. continue;
  2281. }
  2282. // check if we can batch this slot with the previous one
  2283. if (!slot_batched) {
  2284. slot_batched = &slot;
  2285. } else if (!slot_batched->can_batch_with(slot)) {
  2286. continue;
  2287. }
  2288. slot.i_batch = batch.n_tokens;
  2289. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2290. slot.n_past += 1;
  2291. if (slot.params.cache_prompt) {
  2292. slot.cache_tokens.push_back(slot.sampled);
  2293. }
  2294. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2295. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2296. }
  2297. // process in chunks of params.n_batch
  2298. int32_t n_batch = llama_n_batch(ctx);
  2299. int32_t n_ubatch = llama_n_ubatch(ctx);
  2300. // next, batch any pending prompts without exceeding n_batch
  2301. if (params_base.cont_batching || batch.n_tokens == 0) {
  2302. for (auto & slot : slots) {
  2303. // check if we can batch this slot with the previous one
  2304. if (slot.is_processing()) {
  2305. if (!slot_batched) {
  2306. slot_batched = &slot;
  2307. } else if (!slot_batched->can_batch_with(slot)) {
  2308. continue;
  2309. }
  2310. }
  2311. // this slot still has a prompt to be processed
  2312. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2313. auto & prompt_tokens = slot.prompt_tokens;
  2314. // TODO: maybe move branch to outside of this loop in the future
  2315. if (slot.state == SLOT_STATE_STARTED) {
  2316. slot.t_start_process_prompt = ggml_time_us();
  2317. slot.t_start_generation = 0;
  2318. slot.n_past = 0;
  2319. slot.n_prompt_tokens = prompt_tokens.size();
  2320. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2321. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2322. // print prompt tokens (for debugging)
  2323. if (1) {
  2324. // first 16 tokens (avoid flooding logs)
  2325. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2326. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2327. }
  2328. } else {
  2329. // all
  2330. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2331. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2332. }
  2333. }
  2334. // empty prompt passed -> release the slot and send empty response
  2335. if (prompt_tokens.empty()) {
  2336. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2337. slot.release();
  2338. slot.print_timings();
  2339. send_final_response(slot);
  2340. continue;
  2341. }
  2342. if (slot.is_non_causal()) {
  2343. if (slot.n_prompt_tokens > n_ubatch) {
  2344. slot.release();
  2345. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2346. continue;
  2347. }
  2348. if (slot.n_prompt_tokens > slot.n_ctx) {
  2349. slot.release();
  2350. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2351. continue;
  2352. }
  2353. } else {
  2354. if (!params_base.ctx_shift) {
  2355. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2356. // TODO: there should be a separate parameter that control prompt truncation
  2357. // context shift should be applied only during the generation phase
  2358. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2359. slot.release();
  2360. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2361. continue;
  2362. }
  2363. }
  2364. if (slot.params.n_keep < 0) {
  2365. slot.params.n_keep = slot.n_prompt_tokens;
  2366. }
  2367. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2368. // if input prompt is too big, truncate it
  2369. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2370. const int n_left = slot.n_ctx - slot.params.n_keep;
  2371. const int n_block_size = n_left / 2;
  2372. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2373. llama_tokens new_tokens(
  2374. prompt_tokens.begin(),
  2375. prompt_tokens.begin() + slot.params.n_keep);
  2376. new_tokens.insert(
  2377. new_tokens.end(),
  2378. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2379. prompt_tokens.end());
  2380. prompt_tokens = std::move(new_tokens);
  2381. slot.truncated = true;
  2382. slot.n_prompt_tokens = prompt_tokens.size();
  2383. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2384. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2385. }
  2386. if (slot.params.cache_prompt) {
  2387. // reuse any previously computed tokens that are common with the new prompt
  2388. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2389. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2390. if (params_base.n_cache_reuse > 0) {
  2391. size_t head_c = slot.n_past; // cache
  2392. size_t head_p = slot.n_past; // current prompt
  2393. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2394. while (head_c < slot.cache_tokens.size() &&
  2395. head_p < prompt_tokens.size()) {
  2396. size_t n_match = 0;
  2397. while (head_c + n_match < slot.cache_tokens.size() &&
  2398. head_p + n_match < prompt_tokens.size() &&
  2399. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2400. n_match++;
  2401. }
  2402. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2403. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2404. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2405. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2406. //}
  2407. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2408. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2409. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2410. for (size_t i = 0; i < n_match; i++) {
  2411. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2412. slot.n_past++;
  2413. }
  2414. head_c += n_match;
  2415. head_p += n_match;
  2416. } else {
  2417. head_c += 1;
  2418. }
  2419. }
  2420. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2421. }
  2422. }
  2423. }
  2424. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2425. // we have to evaluate at least 1 token to generate logits.
  2426. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2427. slot.n_past--;
  2428. }
  2429. slot.n_prompt_tokens_processed = 0;
  2430. }
  2431. // non-causal tasks require to fit the entire prompt in the physical batch
  2432. if (slot.is_non_causal()) {
  2433. // cannot fit the prompt in the current batch - will try next iter
  2434. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2435. continue;
  2436. }
  2437. }
  2438. // keep only the common part
  2439. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2440. // could not partially delete (likely using a non-Transformer model)
  2441. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2442. // there is no common part left
  2443. slot.n_past = 0;
  2444. }
  2445. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2446. // remove the non-common part from the cache
  2447. slot.cache_tokens.resize(slot.n_past);
  2448. // add prompt tokens for processing in the current batch
  2449. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2450. // without pooling, we want to output the embeddings for all the tokens in the batch
  2451. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2452. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2453. if (slot.params.cache_prompt) {
  2454. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2455. }
  2456. slot.n_prompt_tokens_processed++;
  2457. slot.n_past++;
  2458. }
  2459. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2460. // entire prompt has been processed
  2461. if (slot.n_past == slot.n_prompt_tokens) {
  2462. slot.state = SLOT_STATE_DONE_PROMPT;
  2463. GGML_ASSERT(batch.n_tokens > 0);
  2464. common_sampler_reset(slot.smpl);
  2465. // Process all prompt tokens through sampler system
  2466. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2467. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2468. }
  2469. // extract the logits only for the last token
  2470. batch.logits[batch.n_tokens - 1] = true;
  2471. slot.n_decoded = 0;
  2472. slot.i_batch = batch.n_tokens - 1;
  2473. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2474. }
  2475. }
  2476. if (batch.n_tokens >= n_batch) {
  2477. break;
  2478. }
  2479. }
  2480. }
  2481. if (batch.n_tokens == 0) {
  2482. SRV_WRN("%s", "no tokens to decode\n");
  2483. return;
  2484. }
  2485. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2486. if (slot_batched) {
  2487. // make sure we're in the right embedding mode
  2488. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2489. // apply lora, only need to do it once per batch
  2490. common_set_adapter_lora(ctx, slot_batched->lora);
  2491. }
  2492. // process the created batch of tokens
  2493. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2494. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2495. llama_batch batch_view = {
  2496. n_tokens,
  2497. batch.token + i,
  2498. nullptr,
  2499. batch.pos + i,
  2500. batch.n_seq_id + i,
  2501. batch.seq_id + i,
  2502. batch.logits + i,
  2503. };
  2504. const int ret = llama_decode(ctx, batch_view);
  2505. metrics.on_decoded(slots);
  2506. if (ret != 0) {
  2507. if (n_batch == 1 || ret < 0) {
  2508. // if you get here, it means the KV cache is full - try increasing it via the context size
  2509. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2510. for (auto & slot : slots) {
  2511. slot.release();
  2512. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2513. }
  2514. break; // break loop of n_batch
  2515. }
  2516. // retry with half the batch size to try to find a free slot in the KV cache
  2517. n_batch /= 2;
  2518. i -= n_batch;
  2519. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2520. continue; // continue loop of n_batch
  2521. }
  2522. for (auto & slot : slots) {
  2523. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2524. continue; // continue loop of slots
  2525. }
  2526. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2527. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2528. // prompt evaluated for embedding
  2529. send_embedding(slot, batch_view);
  2530. slot.release();
  2531. slot.i_batch = -1;
  2532. continue; // continue loop of slots
  2533. }
  2534. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2535. send_rerank(slot, batch_view);
  2536. slot.release();
  2537. slot.i_batch = -1;
  2538. continue; // continue loop of slots
  2539. }
  2540. // prompt evaluated for next-token prediction
  2541. slot.state = SLOT_STATE_GENERATING;
  2542. } else if (slot.state != SLOT_STATE_GENERATING) {
  2543. continue; // continue loop of slots
  2544. }
  2545. const int tok_idx = slot.i_batch - i;
  2546. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2547. slot.i_batch = -1;
  2548. common_sampler_accept(slot.smpl, id, true);
  2549. slot.n_decoded += 1;
  2550. const int64_t t_current = ggml_time_us();
  2551. if (slot.n_decoded == 1) {
  2552. slot.t_start_generation = t_current;
  2553. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2554. metrics.on_prompt_eval(slot);
  2555. }
  2556. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2557. completion_token_output result;
  2558. result.tok = id;
  2559. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2560. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2561. if (slot.params.sampling.n_probs > 0) {
  2562. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2563. }
  2564. if (!process_token(result, slot)) {
  2565. // release slot because of stop condition
  2566. slot.release();
  2567. slot.print_timings();
  2568. send_final_response(slot);
  2569. metrics.on_prediction(slot);
  2570. continue;
  2571. }
  2572. }
  2573. // do speculative decoding
  2574. for (auto & slot : slots) {
  2575. if (!slot.is_processing() || !slot.can_speculate()) {
  2576. continue;
  2577. }
  2578. if (slot.state != SLOT_STATE_GENERATING) {
  2579. continue;
  2580. }
  2581. // determine the max draft that fits the current slot state
  2582. int n_draft_max = slot.params.speculative.n_max;
  2583. // note: n_past is not yet increased for the `id` token sampled above
  2584. // also, need to leave space for 1 extra token to allow context shifts
  2585. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2586. if (slot.n_remaining > 0) {
  2587. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2588. }
  2589. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2590. if (n_draft_max < slot.params.speculative.n_min) {
  2591. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2592. continue;
  2593. }
  2594. llama_token id = slot.sampled;
  2595. struct common_speculative_params params_spec;
  2596. params_spec.n_draft = n_draft_max;
  2597. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2598. params_spec.p_min = slot.params.speculative.p_min;
  2599. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2600. // ignore small drafts
  2601. if (slot.params.speculative.n_min > (int) draft.size()) {
  2602. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2603. continue;
  2604. }
  2605. // construct the speculation batch
  2606. common_batch_clear(slot.batch_spec);
  2607. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2608. for (size_t i = 0; i < draft.size(); ++i) {
  2609. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2610. }
  2611. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2612. llama_decode(ctx, slot.batch_spec);
  2613. // the accepted tokens from the speculation
  2614. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2615. slot.n_past += ids.size();
  2616. slot.n_decoded += ids.size();
  2617. slot.cache_tokens.push_back(id);
  2618. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2619. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2620. for (size_t i = 0; i < ids.size(); ++i) {
  2621. completion_token_output result;
  2622. result.tok = ids[i];
  2623. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2624. result.prob = 1.0f; // set later
  2625. // TODO: set result.probs
  2626. if (!process_token(result, slot)) {
  2627. // release slot because of stop condition
  2628. slot.release();
  2629. slot.print_timings();
  2630. send_final_response(slot);
  2631. metrics.on_prediction(slot);
  2632. break;
  2633. }
  2634. }
  2635. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2636. }
  2637. }
  2638. SRV_DBG("%s", "run slots completed\n");
  2639. }
  2640. json model_meta() const {
  2641. return json {
  2642. {"vocab_type", llama_vocab_type (vocab)},
  2643. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2644. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2645. {"n_embd", llama_model_n_embd (model)},
  2646. {"n_params", llama_model_n_params (model)},
  2647. {"size", llama_model_size (model)},
  2648. };
  2649. }
  2650. };
  2651. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2652. // skip GH copilot requests when using default port
  2653. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2654. return;
  2655. }
  2656. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2657. LOG_DBG("request: %s\n", req.body.c_str());
  2658. LOG_DBG("response: %s\n", res.body.c_str());
  2659. }
  2660. std::function<void(int)> shutdown_handler;
  2661. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2662. inline void signal_handler(int signal) {
  2663. if (is_terminating.test_and_set()) {
  2664. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2665. // this is for better developer experience, we can remove when the server is stable enough
  2666. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2667. exit(1);
  2668. }
  2669. shutdown_handler(signal);
  2670. }
  2671. int main(int argc, char ** argv) {
  2672. // own arguments required by this example
  2673. common_params params;
  2674. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2675. return 1;
  2676. }
  2677. common_init();
  2678. // struct that contains llama context and inference
  2679. server_context ctx_server;
  2680. llama_backend_init();
  2681. llama_numa_init(params.numa);
  2682. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2683. LOG_INF("\n");
  2684. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2685. LOG_INF("\n");
  2686. std::unique_ptr<httplib::Server> svr;
  2687. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2688. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2689. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2690. svr.reset(
  2691. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2692. );
  2693. } else {
  2694. LOG_INF("Running without SSL\n");
  2695. svr.reset(new httplib::Server());
  2696. }
  2697. #else
  2698. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2699. LOG_ERR("Server is built without SSL support\n");
  2700. return 1;
  2701. }
  2702. svr.reset(new httplib::Server());
  2703. #endif
  2704. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2705. svr->set_default_headers({{"Server", "llama.cpp"}});
  2706. svr->set_logger(log_server_request);
  2707. auto res_error = [](httplib::Response & res, const json & error_data) {
  2708. json final_response {{"error", error_data}};
  2709. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2710. res.status = json_value(error_data, "code", 500);
  2711. };
  2712. auto res_ok = [](httplib::Response & res, const json & data) {
  2713. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2714. res.status = 200;
  2715. };
  2716. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2717. std::string message;
  2718. try {
  2719. std::rethrow_exception(ep);
  2720. } catch (const std::exception & e) {
  2721. message = e.what();
  2722. } catch (...) {
  2723. message = "Unknown Exception";
  2724. }
  2725. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2726. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2727. res_error(res, formatted_error);
  2728. });
  2729. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2730. if (res.status == 404) {
  2731. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2732. }
  2733. // for other error codes, we skip processing here because it's already done by res_error()
  2734. });
  2735. // set timeouts and change hostname and port
  2736. svr->set_read_timeout (params.timeout_read);
  2737. svr->set_write_timeout(params.timeout_write);
  2738. std::unordered_map<std::string, std::string> log_data;
  2739. log_data["hostname"] = params.hostname;
  2740. log_data["port"] = std::to_string(params.port);
  2741. if (params.api_keys.size() == 1) {
  2742. auto key = params.api_keys[0];
  2743. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2744. } else if (params.api_keys.size() > 1) {
  2745. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2746. }
  2747. // Necessary similarity of prompt for slot selection
  2748. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2749. //
  2750. // Middlewares
  2751. //
  2752. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2753. static const std::unordered_set<std::string> public_endpoints = {
  2754. "/health",
  2755. "/models",
  2756. "/v1/models",
  2757. };
  2758. // If API key is not set, skip validation
  2759. if (params.api_keys.empty()) {
  2760. return true;
  2761. }
  2762. // If path is public or is static file, skip validation
  2763. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2764. return true;
  2765. }
  2766. // Check for API key in the header
  2767. auto auth_header = req.get_header_value("Authorization");
  2768. std::string prefix = "Bearer ";
  2769. if (auth_header.substr(0, prefix.size()) == prefix) {
  2770. std::string received_api_key = auth_header.substr(prefix.size());
  2771. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2772. return true; // API key is valid
  2773. }
  2774. }
  2775. // API key is invalid or not provided
  2776. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2777. LOG_WRN("Unauthorized: Invalid API Key\n");
  2778. return false;
  2779. };
  2780. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2781. server_state current_state = state.load();
  2782. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2783. auto tmp = string_split<std::string>(req.path, '.');
  2784. if (req.path == "/" || tmp.back() == "html") {
  2785. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2786. res.status = 503;
  2787. } else {
  2788. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2789. }
  2790. return false;
  2791. }
  2792. return true;
  2793. };
  2794. // register server middlewares
  2795. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2796. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2797. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2798. if (req.method == "OPTIONS") {
  2799. res.set_header("Access-Control-Allow-Credentials", "true");
  2800. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2801. res.set_header("Access-Control-Allow-Headers", "*");
  2802. res.set_content("", "text/html"); // blank response, no data
  2803. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2804. }
  2805. if (!middleware_server_state(req, res)) {
  2806. return httplib::Server::HandlerResponse::Handled;
  2807. }
  2808. if (!middleware_validate_api_key(req, res)) {
  2809. return httplib::Server::HandlerResponse::Handled;
  2810. }
  2811. return httplib::Server::HandlerResponse::Unhandled;
  2812. });
  2813. //
  2814. // Route handlers (or controllers)
  2815. //
  2816. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2817. // error and loading states are handled by middleware
  2818. json health = {{"status", "ok"}};
  2819. res_ok(res, health);
  2820. };
  2821. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2822. if (!params.endpoint_slots) {
  2823. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2824. return;
  2825. }
  2826. // request slots data using task queue
  2827. server_task task(SERVER_TASK_TYPE_METRICS);
  2828. task.id = ctx_server.queue_tasks.get_new_id();
  2829. ctx_server.queue_results.add_waiting_task_id(task.id);
  2830. ctx_server.queue_tasks.post(task, true); // high-priority task
  2831. // get the result
  2832. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2833. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2834. if (result->is_error()) {
  2835. res_error(res, result->to_json());
  2836. return;
  2837. }
  2838. // TODO: get rid of this dynamic_cast
  2839. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2840. GGML_ASSERT(res_metrics != nullptr);
  2841. // optionally return "fail_on_no_slot" error
  2842. if (req.has_param("fail_on_no_slot")) {
  2843. if (res_metrics->n_idle_slots == 0) {
  2844. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2845. return;
  2846. }
  2847. }
  2848. res_ok(res, res_metrics->slots_data);
  2849. };
  2850. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2851. if (!params.endpoint_metrics) {
  2852. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2853. return;
  2854. }
  2855. // request slots data using task queue
  2856. server_task task(SERVER_TASK_TYPE_METRICS);
  2857. task.id = ctx_server.queue_tasks.get_new_id();
  2858. task.metrics_reset_bucket = true;
  2859. ctx_server.queue_results.add_waiting_task_id(task.id);
  2860. ctx_server.queue_tasks.post(task, true); // high-priority task
  2861. // get the result
  2862. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2863. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2864. if (result->is_error()) {
  2865. res_error(res, result->to_json());
  2866. return;
  2867. }
  2868. // TODO: get rid of this dynamic_cast
  2869. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2870. GGML_ASSERT(res_metrics != nullptr);
  2871. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2872. json all_metrics_def = json {
  2873. {"counter", {{
  2874. {"name", "prompt_tokens_total"},
  2875. {"help", "Number of prompt tokens processed."},
  2876. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2877. }, {
  2878. {"name", "prompt_seconds_total"},
  2879. {"help", "Prompt process time"},
  2880. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2881. }, {
  2882. {"name", "tokens_predicted_total"},
  2883. {"help", "Number of generation tokens processed."},
  2884. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2885. }, {
  2886. {"name", "tokens_predicted_seconds_total"},
  2887. {"help", "Predict process time"},
  2888. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2889. }, {
  2890. {"name", "n_decode_total"},
  2891. {"help", "Total number of llama_decode() calls"},
  2892. {"value", res_metrics->n_decode_total}
  2893. }, {
  2894. {"name", "n_busy_slots_per_decode"},
  2895. {"help", "Average number of busy slots per llama_decode() call"},
  2896. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2897. }}},
  2898. {"gauge", {{
  2899. {"name", "prompt_tokens_seconds"},
  2900. {"help", "Average prompt throughput in tokens/s."},
  2901. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2902. },{
  2903. {"name", "predicted_tokens_seconds"},
  2904. {"help", "Average generation throughput in tokens/s."},
  2905. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2906. },{
  2907. {"name", "kv_cache_usage_ratio"},
  2908. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2909. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2910. },{
  2911. {"name", "kv_cache_tokens"},
  2912. {"help", "KV-cache tokens."},
  2913. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2914. },{
  2915. {"name", "requests_processing"},
  2916. {"help", "Number of request processing."},
  2917. {"value", (uint64_t) res_metrics->n_processing_slots}
  2918. },{
  2919. {"name", "requests_deferred"},
  2920. {"help", "Number of request deferred."},
  2921. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2922. }}}
  2923. };
  2924. std::stringstream prometheus;
  2925. for (const auto & el : all_metrics_def.items()) {
  2926. const auto & type = el.key();
  2927. const auto & metrics_def = el.value();
  2928. for (const auto & metric_def : metrics_def) {
  2929. const std::string name = metric_def.at("name");
  2930. const std::string help = metric_def.at("help");
  2931. auto value = json_value(metric_def, "value", 0.);
  2932. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2933. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2934. << "llamacpp:" << name << " " << value << "\n";
  2935. }
  2936. }
  2937. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2938. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2939. res.status = 200; // HTTP OK
  2940. };
  2941. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2942. json request_data = json::parse(req.body);
  2943. std::string filename = request_data.at("filename");
  2944. if (!fs_validate_filename(filename)) {
  2945. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2946. return;
  2947. }
  2948. std::string filepath = params.slot_save_path + filename;
  2949. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2950. task.id = ctx_server.queue_tasks.get_new_id();
  2951. task.slot_action.slot_id = id_slot;
  2952. task.slot_action.filename = filename;
  2953. task.slot_action.filepath = filepath;
  2954. ctx_server.queue_results.add_waiting_task_id(task.id);
  2955. ctx_server.queue_tasks.post(task);
  2956. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2957. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2958. if (result->is_error()) {
  2959. res_error(res, result->to_json());
  2960. return;
  2961. }
  2962. res_ok(res, result->to_json());
  2963. };
  2964. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2965. json request_data = json::parse(req.body);
  2966. std::string filename = request_data.at("filename");
  2967. if (!fs_validate_filename(filename)) {
  2968. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2969. return;
  2970. }
  2971. std::string filepath = params.slot_save_path + filename;
  2972. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2973. task.id = ctx_server.queue_tasks.get_new_id();
  2974. task.slot_action.slot_id = id_slot;
  2975. task.slot_action.filename = filename;
  2976. task.slot_action.filepath = filepath;
  2977. ctx_server.queue_results.add_waiting_task_id(task.id);
  2978. ctx_server.queue_tasks.post(task);
  2979. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2980. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2981. if (result->is_error()) {
  2982. res_error(res, result->to_json());
  2983. return;
  2984. }
  2985. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2986. res_ok(res, result->to_json());
  2987. };
  2988. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2989. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2990. task.id = ctx_server.queue_tasks.get_new_id();
  2991. task.slot_action.slot_id = id_slot;
  2992. ctx_server.queue_results.add_waiting_task_id(task.id);
  2993. ctx_server.queue_tasks.post(task);
  2994. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2995. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2996. if (result->is_error()) {
  2997. res_error(res, result->to_json());
  2998. return;
  2999. }
  3000. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3001. res_ok(res, result->to_json());
  3002. };
  3003. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3004. if (params.slot_save_path.empty()) {
  3005. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3006. return;
  3007. }
  3008. std::string id_slot_str = req.path_params.at("id_slot");
  3009. int id_slot;
  3010. try {
  3011. id_slot = std::stoi(id_slot_str);
  3012. } catch (const std::exception &) {
  3013. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3014. return;
  3015. }
  3016. std::string action = req.get_param_value("action");
  3017. if (action == "save") {
  3018. handle_slots_save(req, res, id_slot);
  3019. } else if (action == "restore") {
  3020. handle_slots_restore(req, res, id_slot);
  3021. } else if (action == "erase") {
  3022. handle_slots_erase(req, res, id_slot);
  3023. } else {
  3024. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3025. }
  3026. };
  3027. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3028. // this endpoint is publicly available, please only return what is safe to be exposed
  3029. json data = {
  3030. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3031. { "total_slots", ctx_server.params_base.n_parallel },
  3032. { "model_path", ctx_server.params_base.model },
  3033. { "chat_template", ctx_server.chat_templates.template_default->source() },
  3034. { "build_info", build_info },
  3035. };
  3036. if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
  3037. data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
  3038. }
  3039. res_ok(res, data);
  3040. };
  3041. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3042. if (!ctx_server.params_base.endpoint_props) {
  3043. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3044. return;
  3045. }
  3046. json data = json::parse(req.body);
  3047. // update any props here
  3048. res_ok(res, {{ "success", true }});
  3049. };
  3050. // handle completion-like requests (completion, chat, infill)
  3051. // we can optionally provide a custom format for partial results and final results
  3052. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3053. server_task_type type,
  3054. json & data,
  3055. std::function<bool()> is_connection_closed,
  3056. httplib::Response & res,
  3057. oaicompat_type oaicompat) {
  3058. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3059. if (ctx_server.params_base.embedding) {
  3060. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3061. return;
  3062. }
  3063. auto completion_id = gen_chatcmplid();
  3064. std::vector<server_task> tasks;
  3065. try {
  3066. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, data.at("prompt"), true, true);
  3067. tasks.reserve(tokenized_prompts.size());
  3068. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3069. server_task task = server_task(type);
  3070. task.id = ctx_server.queue_tasks.get_new_id();
  3071. task.index = i;
  3072. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3073. task.params = server_task::params_from_json_cmpl(
  3074. ctx_server.ctx,
  3075. ctx_server.params_base,
  3076. data);
  3077. task.id_selected_slot = json_value(data, "id_slot", -1);
  3078. // OAI-compat
  3079. task.params.oaicompat = oaicompat;
  3080. task.params.oaicompat_cmpl_id = completion_id;
  3081. // oaicompat_model is already populated by params_from_json_cmpl
  3082. tasks.push_back(task);
  3083. }
  3084. } catch (const std::exception & e) {
  3085. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3086. return;
  3087. }
  3088. ctx_server.queue_results.add_waiting_tasks(tasks);
  3089. ctx_server.queue_tasks.post(tasks);
  3090. bool stream = json_value(data, "stream", false);
  3091. const auto task_ids = server_task::get_list_id(tasks);
  3092. if (!stream) {
  3093. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3094. if (results.size() == 1) {
  3095. // single result
  3096. res_ok(res, results[0]->to_json());
  3097. } else {
  3098. // multiple results (multitask)
  3099. json arr = json::array();
  3100. for (auto & res : results) {
  3101. arr.push_back(res->to_json());
  3102. }
  3103. res_ok(res, arr);
  3104. }
  3105. }, [&](const json & error_data) {
  3106. res_error(res, error_data);
  3107. }, is_connection_closed);
  3108. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3109. } else {
  3110. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3111. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3112. json res_json = result->to_json();
  3113. if (res_json.is_array()) {
  3114. for (const auto & res : res_json) {
  3115. if (!server_sent_event(sink, "data", res)) {
  3116. // sending failed (HTTP connection closed), cancel the generation
  3117. return false;
  3118. }
  3119. }
  3120. return true;
  3121. } else {
  3122. return server_sent_event(sink, "data", res_json);
  3123. }
  3124. }, [&](const json & error_data) {
  3125. server_sent_event(sink, "error", error_data);
  3126. }, [&sink]() {
  3127. // note: do not use req.is_connection_closed here because req is already destroyed
  3128. return !sink.is_writable();
  3129. });
  3130. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3131. static const std::string ev_done = "data: [DONE]\n\n";
  3132. sink.write(ev_done.data(), ev_done.size());
  3133. }
  3134. sink.done();
  3135. return false;
  3136. };
  3137. auto on_complete = [task_ids, &ctx_server] (bool) {
  3138. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3139. };
  3140. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3141. }
  3142. };
  3143. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3144. json data = json::parse(req.body);
  3145. return handle_completions_impl(
  3146. SERVER_TASK_TYPE_COMPLETION,
  3147. data,
  3148. req.is_connection_closed,
  3149. res,
  3150. OAICOMPAT_TYPE_NONE);
  3151. };
  3152. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3153. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3154. return handle_completions_impl(
  3155. SERVER_TASK_TYPE_COMPLETION,
  3156. data,
  3157. req.is_connection_closed,
  3158. res,
  3159. OAICOMPAT_TYPE_COMPLETION);
  3160. };
  3161. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3162. // check model compatibility
  3163. std::string err;
  3164. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3165. err += "prefix token is missing. ";
  3166. }
  3167. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3168. err += "suffix token is missing. ";
  3169. }
  3170. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3171. err += "middle token is missing. ";
  3172. }
  3173. if (!err.empty()) {
  3174. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3175. return;
  3176. }
  3177. json data = json::parse(req.body);
  3178. // validate input
  3179. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3180. // prompt is optional
  3181. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3182. }
  3183. if (!data.contains("input_prefix")) {
  3184. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3185. }
  3186. if (!data.contains("input_suffix")) {
  3187. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3188. }
  3189. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3190. // input_extra is optional
  3191. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3192. return;
  3193. }
  3194. json input_extra = json_value(data, "input_extra", json::array());
  3195. for (const auto & chunk : input_extra) {
  3196. // { "text": string, "filename": string }
  3197. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3198. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3199. return;
  3200. }
  3201. // filename is optional
  3202. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3203. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3204. return;
  3205. }
  3206. }
  3207. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3208. std::string prompt = json_value(data, "prompt", std::string());
  3209. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3210. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3211. data["prompt"] = format_infill(
  3212. ctx_server.vocab,
  3213. data.at("input_prefix"),
  3214. data.at("input_suffix"),
  3215. data.at("input_extra"),
  3216. ctx_server.params_base.n_batch,
  3217. ctx_server.params_base.n_predict,
  3218. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3219. ctx_server.params_base.spm_infill,
  3220. tokenized_prompts[0]
  3221. );
  3222. return handle_completions_impl(
  3223. SERVER_TASK_TYPE_INFILL,
  3224. data,
  3225. req.is_connection_closed,
  3226. res,
  3227. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3228. };
  3229. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3230. if (ctx_server.params_base.embedding) {
  3231. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3232. return;
  3233. }
  3234. auto body = json::parse(req.body);
  3235. const auto & chat_template = body.contains("tools") && ctx_server.chat_templates.template_tool_use ? *ctx_server.chat_templates.template_tool_use : *ctx_server.chat_templates.template_default;
  3236. json data = oaicompat_completion_params_parse(body, chat_template, params.use_jinja);
  3237. return handle_completions_impl(
  3238. SERVER_TASK_TYPE_COMPLETION,
  3239. data,
  3240. req.is_connection_closed,
  3241. res,
  3242. OAICOMPAT_TYPE_CHAT);
  3243. };
  3244. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3245. json models = {
  3246. {"object", "list"},
  3247. {"data", {
  3248. {
  3249. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3250. {"object", "model"},
  3251. {"created", std::time(0)},
  3252. {"owned_by", "llamacpp"},
  3253. {"meta", ctx_server.model_meta()}
  3254. },
  3255. }}
  3256. };
  3257. res_ok(res, models);
  3258. };
  3259. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3260. const json body = json::parse(req.body);
  3261. json tokens_response = json::array();
  3262. if (body.count("content") != 0) {
  3263. const bool add_special = json_value(body, "add_special", false);
  3264. const bool with_pieces = json_value(body, "with_pieces", false);
  3265. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3266. if (with_pieces) {
  3267. for (const auto& token : tokens) {
  3268. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3269. json piece_json;
  3270. // Check if the piece is valid UTF-8
  3271. if (is_valid_utf8(piece)) {
  3272. piece_json = piece;
  3273. } else {
  3274. // If not valid UTF-8, store as array of byte values
  3275. piece_json = json::array();
  3276. for (unsigned char c : piece) {
  3277. piece_json.push_back(static_cast<int>(c));
  3278. }
  3279. }
  3280. tokens_response.push_back({
  3281. {"id", token},
  3282. {"piece", piece_json}
  3283. });
  3284. }
  3285. } else {
  3286. tokens_response = tokens;
  3287. }
  3288. }
  3289. const json data = format_tokenizer_response(tokens_response);
  3290. res_ok(res, data);
  3291. };
  3292. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3293. const json body = json::parse(req.body);
  3294. std::string content;
  3295. if (body.count("tokens") != 0) {
  3296. const llama_tokens tokens = body.at("tokens");
  3297. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3298. }
  3299. const json data = format_detokenized_response(content);
  3300. res_ok(res, data);
  3301. };
  3302. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3303. const json body = json::parse(req.body);
  3304. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3305. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3306. return;
  3307. }
  3308. // for the shape of input/content, see tokenize_input_prompts()
  3309. json prompt;
  3310. if (body.count("input") != 0) {
  3311. prompt = body.at("input");
  3312. } else if (body.contains("content")) {
  3313. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3314. prompt = body.at("content");
  3315. } else {
  3316. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3317. return;
  3318. }
  3319. bool use_base64 = false;
  3320. if (body.count("encoding_format") != 0) {
  3321. const std::string& format = body.at("encoding_format");
  3322. if (format == "base64") {
  3323. use_base64 = true;
  3324. } else if (format != "float") {
  3325. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3326. return;
  3327. }
  3328. }
  3329. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3330. for (const auto & tokens : tokenized_prompts) {
  3331. // this check is necessary for models that do not add BOS token to the input
  3332. if (tokens.empty()) {
  3333. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3334. return;
  3335. }
  3336. }
  3337. // create and queue the task
  3338. json responses = json::array();
  3339. bool error = false;
  3340. {
  3341. std::vector<server_task> tasks;
  3342. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3343. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3344. task.id = ctx_server.queue_tasks.get_new_id();
  3345. task.index = i;
  3346. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3347. // OAI-compat
  3348. task.params.oaicompat = oaicompat;
  3349. tasks.push_back(task);
  3350. }
  3351. ctx_server.queue_results.add_waiting_tasks(tasks);
  3352. ctx_server.queue_tasks.post(tasks);
  3353. // get the result
  3354. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3355. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3356. for (auto & res : results) {
  3357. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3358. responses.push_back(res->to_json());
  3359. }
  3360. }, [&](const json & error_data) {
  3361. res_error(res, error_data);
  3362. error = true;
  3363. }, req.is_connection_closed);
  3364. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3365. }
  3366. if (error) {
  3367. return;
  3368. }
  3369. // write JSON response
  3370. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3371. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3372. : json(responses);
  3373. res_ok(res, root);
  3374. };
  3375. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3376. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3377. };
  3378. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3379. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3380. };
  3381. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3382. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3383. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3384. return;
  3385. }
  3386. const json body = json::parse(req.body);
  3387. // TODO: implement
  3388. //int top_n = 1;
  3389. //if (body.count("top_n") != 1) {
  3390. // top_n = body.at("top_n");
  3391. //} else {
  3392. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3393. // return;
  3394. //}
  3395. json query;
  3396. if (body.count("query") == 1) {
  3397. query = body.at("query");
  3398. if (!query.is_string()) {
  3399. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3400. return;
  3401. }
  3402. } else {
  3403. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3404. return;
  3405. }
  3406. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3407. if (documents.empty()) {
  3408. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3409. return;
  3410. }
  3411. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3412. // create and queue the task
  3413. json responses = json::array();
  3414. bool error = false;
  3415. {
  3416. std::vector<server_task> tasks;
  3417. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3418. tasks.reserve(tokenized_docs.size());
  3419. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3420. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3421. task.id = ctx_server.queue_tasks.get_new_id();
  3422. task.index = i;
  3423. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3424. tasks.push_back(task);
  3425. }
  3426. ctx_server.queue_results.add_waiting_tasks(tasks);
  3427. ctx_server.queue_tasks.post(tasks);
  3428. // get the result
  3429. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3430. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3431. for (auto & res : results) {
  3432. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3433. responses.push_back(res->to_json());
  3434. }
  3435. }, [&](const json & error_data) {
  3436. res_error(res, error_data);
  3437. error = true;
  3438. }, req.is_connection_closed);
  3439. }
  3440. if (error) {
  3441. return;
  3442. }
  3443. // write JSON response
  3444. json root = format_response_rerank(body, responses);
  3445. res_ok(res, root);
  3446. };
  3447. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3448. json result = json::array();
  3449. const auto & loras = ctx_server.params_base.lora_adapters;
  3450. for (size_t i = 0; i < loras.size(); ++i) {
  3451. auto & lora = loras[i];
  3452. result.push_back({
  3453. {"id", i},
  3454. {"path", lora.path},
  3455. {"scale", lora.scale},
  3456. });
  3457. }
  3458. res_ok(res, result);
  3459. res.status = 200; // HTTP OK
  3460. };
  3461. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3462. const json body = json::parse(req.body);
  3463. if (!body.is_array()) {
  3464. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3465. return;
  3466. }
  3467. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3468. task.id = ctx_server.queue_tasks.get_new_id();
  3469. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3470. ctx_server.queue_results.add_waiting_task_id(task.id);
  3471. ctx_server.queue_tasks.post(task);
  3472. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3473. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3474. if (result->is_error()) {
  3475. res_error(res, result->to_json());
  3476. return;
  3477. }
  3478. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3479. res_ok(res, result->to_json());
  3480. };
  3481. //
  3482. // Router
  3483. //
  3484. if (!params.webui) {
  3485. LOG_INF("Web UI is disabled\n");
  3486. } else {
  3487. // register static assets routes
  3488. if (!params.public_path.empty()) {
  3489. // Set the base directory for serving static files
  3490. bool is_found = svr->set_mount_point("/", params.public_path);
  3491. if (!is_found) {
  3492. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3493. return 1;
  3494. }
  3495. } else {
  3496. // using embedded static index.html
  3497. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3498. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3499. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3500. } else {
  3501. res.set_header("Content-Encoding", "gzip");
  3502. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3503. }
  3504. return false;
  3505. });
  3506. }
  3507. }
  3508. // register API routes
  3509. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3510. svr->Get ("/metrics", handle_metrics);
  3511. svr->Get ("/props", handle_props);
  3512. svr->Post("/props", handle_props_change);
  3513. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3514. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3515. svr->Post("/completion", handle_completions); // legacy
  3516. svr->Post("/completions", handle_completions);
  3517. svr->Post("/v1/completions", handle_completions_oai);
  3518. svr->Post("/chat/completions", handle_chat_completions);
  3519. svr->Post("/v1/chat/completions", handle_chat_completions);
  3520. svr->Post("/infill", handle_infill);
  3521. svr->Post("/embedding", handle_embeddings); // legacy
  3522. svr->Post("/embeddings", handle_embeddings);
  3523. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3524. svr->Post("/rerank", handle_rerank);
  3525. svr->Post("/reranking", handle_rerank);
  3526. svr->Post("/v1/rerank", handle_rerank);
  3527. svr->Post("/v1/reranking", handle_rerank);
  3528. svr->Post("/tokenize", handle_tokenize);
  3529. svr->Post("/detokenize", handle_detokenize);
  3530. // LoRA adapters hotswap
  3531. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3532. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3533. // Save & load slots
  3534. svr->Get ("/slots", handle_slots);
  3535. svr->Post("/slots/:id_slot", handle_slots_action);
  3536. //
  3537. // Start the server
  3538. //
  3539. if (params.n_threads_http < 1) {
  3540. // +2 threads for monitoring endpoints
  3541. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3542. }
  3543. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3544. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3545. // clean up function, to be called before exit
  3546. auto clean_up = [&svr]() {
  3547. svr->stop();
  3548. llama_backend_free();
  3549. };
  3550. // bind HTTP listen port
  3551. bool was_bound = false;
  3552. if (params.port == 0) {
  3553. int bound_port = svr->bind_to_any_port(params.hostname);
  3554. if ((was_bound = (bound_port >= 0))) {
  3555. params.port = bound_port;
  3556. }
  3557. } else {
  3558. was_bound = svr->bind_to_port(params.hostname, params.port);
  3559. }
  3560. if (!was_bound) {
  3561. //LOG_ERROR("couldn't bind HTTP server socket", {
  3562. // {"hostname", params.hostname},
  3563. // {"port", params.port},
  3564. //});
  3565. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3566. clean_up();
  3567. return 1;
  3568. }
  3569. // run the HTTP server in a thread
  3570. std::thread t([&]() { svr->listen_after_bind(); });
  3571. svr->wait_until_ready();
  3572. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3573. // load the model
  3574. LOG_INF("%s: loading model\n", __func__);
  3575. if (!ctx_server.load_model(params)) {
  3576. clean_up();
  3577. t.join();
  3578. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3579. return 1;
  3580. }
  3581. ctx_server.init();
  3582. state.store(SERVER_STATE_READY);
  3583. LOG_INF("%s: model loaded\n", __func__);
  3584. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3585. if (params.chat_template.empty()) {
  3586. if (!ctx_server.validate_builtin_chat_template(params.use_jinja)) {
  3587. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3588. params.chat_template = "chatml";
  3589. }
  3590. }
  3591. // print sample chat example to make it clear which template is used
  3592. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3593. ctx_server.chat_templates.template_default->source().c_str(),
  3594. common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
  3595. ctx_server.queue_tasks.on_new_task(std::bind(
  3596. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3597. ctx_server.queue_tasks.on_update_slots(std::bind(
  3598. &server_context::update_slots, &ctx_server));
  3599. shutdown_handler = [&](int) {
  3600. ctx_server.queue_tasks.terminate();
  3601. };
  3602. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3603. ctx_server.queue_tasks.start_loop();
  3604. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3605. struct sigaction sigint_action;
  3606. sigint_action.sa_handler = signal_handler;
  3607. sigemptyset (&sigint_action.sa_mask);
  3608. sigint_action.sa_flags = 0;
  3609. sigaction(SIGINT, &sigint_action, NULL);
  3610. sigaction(SIGTERM, &sigint_action, NULL);
  3611. #elif defined (_WIN32)
  3612. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3613. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3614. };
  3615. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3616. #endif
  3617. clean_up();
  3618. t.join();
  3619. return 0;
  3620. }