ggml.c 494 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if defined(__AVX2__) || defined(__AVX512F__)
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  462. #if __AVXVNNI__
  463. const __m256i zero = _mm256_setzero_si256();
  464. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  465. return _mm256_cvtepi32_ps(summed_pairs);
  466. #else
  467. // Perform multiplication and create 16-bit values
  468. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  469. return sum_i16_pairs_float(dot);
  470. #endif
  471. }
  472. // multiply int8_t, add results pairwise twice and return as float vector
  473. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  474. #if __AVXVNNIINT8__
  475. const __m256i zero = _mm256_setzero_si256();
  476. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. #else
  479. // Get absolute values of x vectors
  480. const __m256i ax = _mm256_sign_epi8(x, x);
  481. // Sign the values of the y vectors
  482. const __m256i sy = _mm256_sign_epi8(y, x);
  483. return mul_sum_us8_pairs_float(ax, sy);
  484. #endif
  485. }
  486. static inline __m128i packNibbles( __m256i bytes )
  487. {
  488. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  489. #if __AVX512F__
  490. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  491. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  492. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  493. #else
  494. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  495. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  496. __m256i low = _mm256_and_si256( lowByte, bytes );
  497. high = _mm256_srli_epi16( high, 4 );
  498. bytes = _mm256_or_si256( low, high );
  499. // Compress uint16_t lanes into bytes
  500. __m128i r0 = _mm256_castsi256_si128( bytes );
  501. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  502. return _mm_packus_epi16( r0, r1 );
  503. #endif
  504. }
  505. #elif defined(__AVX__)
  506. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  507. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  508. uint32_t x32;
  509. memcpy(&x32, x, sizeof(uint32_t));
  510. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  511. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  512. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  513. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  514. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  515. bytesl = _mm_or_si128(bytesl, bit_mask);
  516. bytesh = _mm_or_si128(bytesh, bit_mask);
  517. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  518. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  519. return _mm256_set_m128i(bytesh, bytesl);
  520. }
  521. // Unpack 32 4-bit fields into 32 bytes
  522. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  523. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  524. {
  525. // Load 16 bytes from memory
  526. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  527. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  528. const __m128i lowMask = _mm_set1_epi8(0xF);
  529. tmpl = _mm_and_si128(lowMask, tmpl);
  530. tmph = _mm_and_si128(lowMask, tmph);
  531. return _mm256_set_m128i(tmph, tmpl);
  532. }
  533. // add int16_t pairwise and return as float vector
  534. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  535. const __m128i ones = _mm_set1_epi16(1);
  536. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  537. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  538. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  539. return _mm256_cvtepi32_ps(summed_pairs);
  540. }
  541. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  542. const __m128i axl = _mm256_castsi256_si128(ax);
  543. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  544. const __m128i syl = _mm256_castsi256_si128(sy);
  545. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  546. // Perform multiplication and create 16-bit values
  547. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  548. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  549. return sum_i16_pairs_float(doth, dotl);
  550. }
  551. // multiply int8_t, add results pairwise twice and return as float vector
  552. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  553. const __m128i xl = _mm256_castsi256_si128(x);
  554. const __m128i xh = _mm256_extractf128_si256(x, 1);
  555. const __m128i yl = _mm256_castsi256_si128(y);
  556. const __m128i yh = _mm256_extractf128_si256(y, 1);
  557. // Get absolute values of x vectors
  558. const __m128i axl = _mm_sign_epi8(xl, xl);
  559. const __m128i axh = _mm_sign_epi8(xh, xh);
  560. // Sign the values of the y vectors
  561. const __m128i syl = _mm_sign_epi8(yl, xl);
  562. const __m128i syh = _mm_sign_epi8(yh, xh);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  572. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  573. __m128i low = _mm_and_si128( lowByte, bytes1 );
  574. high = _mm_srli_epi16( high, 4 );
  575. bytes1 = _mm_or_si128( low, high );
  576. high = _mm_andnot_si128( lowByte, bytes2 );
  577. low = _mm_and_si128( lowByte, bytes2 );
  578. high = _mm_srli_epi16( high, 4 );
  579. bytes2 = _mm_or_si128( low, high );
  580. return _mm_packus_epi16( bytes1, bytes2);
  581. }
  582. #endif
  583. #elif defined(__SSSE3__)
  584. // horizontally add 4x4 floats
  585. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  586. __m128 res_0 =_mm_hadd_ps(a, b);
  587. __m128 res_1 =_mm_hadd_ps(c, d);
  588. __m128 res =_mm_hadd_ps(res_0, res_1);
  589. res =_mm_hadd_ps(res, res);
  590. res =_mm_hadd_ps(res, res);
  591. return _mm_cvtss_f32(res);
  592. }
  593. #endif // __AVX__ || __AVX2__ || __AVX512F__
  594. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  595. #if defined(__ARM_NEON)
  596. #if !defined(__aarch64__)
  597. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  598. return
  599. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  600. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  601. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  602. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  603. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  604. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  605. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  606. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  607. }
  608. inline static int16_t vaddvq_s8(int8x16_t v) {
  609. return
  610. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  611. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  612. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  613. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  614. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  615. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  616. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  617. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  618. }
  619. inline static int32_t vaddvq_s16(int16x8_t v) {
  620. return
  621. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  622. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  623. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  624. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  625. }
  626. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  627. return
  628. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  629. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  630. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  631. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  632. }
  633. inline static int32_t vaddvq_s32(int32x4_t v) {
  634. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  635. }
  636. inline static float vaddvq_f32(float32x4_t v) {
  637. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  638. }
  639. inline static float vminvq_f32(float32x4_t v) {
  640. return
  641. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  642. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  643. }
  644. inline static float vmaxvq_f32(float32x4_t v) {
  645. return
  646. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  647. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  648. }
  649. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  650. int32x4_t res;
  651. res[0] = roundf(vgetq_lane_f32(v, 0));
  652. res[1] = roundf(vgetq_lane_f32(v, 1));
  653. res[2] = roundf(vgetq_lane_f32(v, 2));
  654. res[3] = roundf(vgetq_lane_f32(v, 3));
  655. return res;
  656. }
  657. #endif
  658. #endif
  659. #define QK4_0 32
  660. typedef struct {
  661. ggml_fp16_t d; // delta
  662. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  663. } block_q4_0;
  664. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  665. #define QK4_1 32
  666. typedef struct {
  667. ggml_fp16_t d; // delta
  668. ggml_fp16_t m; // min
  669. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  670. } block_q4_1;
  671. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  672. #define QK5_0 32
  673. typedef struct {
  674. ggml_fp16_t d; // delta
  675. uint8_t qh[4]; // 5-th bit of quants
  676. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  677. } block_q5_0;
  678. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  679. #define QK5_1 32
  680. typedef struct {
  681. ggml_fp16_t d; // delta
  682. ggml_fp16_t m; // min
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  685. } block_q5_1;
  686. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  687. #define QK8_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. int8_t qs[QK8_0]; // quants
  691. } block_q8_0;
  692. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  693. #define QK8_1 32
  694. typedef struct {
  695. float d; // delta
  696. float s; // d * sum(qs[i])
  697. int8_t qs[QK8_1]; // quants
  698. } block_q8_1;
  699. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  700. // reference implementation for deterministic creation of model files
  701. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  702. static const int qk = QK4_0;
  703. assert(k % qk == 0);
  704. const int nb = k / qk;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. float max = 0.0f;
  708. for (int j = 0; j < qk; j++) {
  709. const float v = x[i*qk + j];
  710. if (amax < fabsf(v)) {
  711. amax = fabsf(v);
  712. max = v;
  713. }
  714. }
  715. const float d = max / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = GGML_FP32_TO_FP16(d);
  718. for (int j = 0; j < qk/2; ++j) {
  719. const float x0 = x[i*qk + 0 + j]*id;
  720. const float x1 = x[i*qk + qk/2 + j]*id;
  721. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  722. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  723. y[i].qs[j] = xi0;
  724. y[i].qs[j] |= xi1 << 4;
  725. }
  726. }
  727. }
  728. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  729. quantize_row_q4_0_reference(x, y, k);
  730. }
  731. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  732. const int qk = QK4_1;
  733. assert(k % qk == 0);
  734. const int nb = k / qk;
  735. for (int i = 0; i < nb; i++) {
  736. float min = FLT_MAX;
  737. float max = -FLT_MAX;
  738. for (int j = 0; j < qk; j++) {
  739. const float v = x[i*qk + j];
  740. if (v < min) min = v;
  741. if (v > max) max = v;
  742. }
  743. const float d = (max - min) / ((1 << 4) - 1);
  744. const float id = d ? 1.0f/d : 0.0f;
  745. y[i].d = GGML_FP32_TO_FP16(d);
  746. y[i].m = GGML_FP32_TO_FP16(min);
  747. for (int j = 0; j < qk/2; ++j) {
  748. const float x0 = (x[i*qk + 0 + j] - min)*id;
  749. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  750. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  751. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  752. y[i].qs[j] = xi0;
  753. y[i].qs[j] |= xi1 << 4;
  754. }
  755. }
  756. }
  757. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  758. quantize_row_q4_1_reference(x, y, k);
  759. }
  760. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  761. static const int qk = QK5_0;
  762. assert(k % qk == 0);
  763. const int nb = k / qk;
  764. for (int i = 0; i < nb; i++) {
  765. float amax = 0.0f; // absolute max
  766. float max = 0.0f;
  767. for (int j = 0; j < qk; j++) {
  768. const float v = x[i*qk + j];
  769. if (amax < fabsf(v)) {
  770. amax = fabsf(v);
  771. max = v;
  772. }
  773. }
  774. const float d = max / -16;
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. uint32_t qh = 0;
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  782. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  783. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  784. // get the 5-th bit and store it in qh at the right position
  785. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  786. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  787. }
  788. memcpy(&y[i].qh, &qh, sizeof(qh));
  789. }
  790. }
  791. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q5_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  795. const int qk = QK5_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 5) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. uint32_t qh = 0;
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  815. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  816. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  817. // get the 5-th bit and store it in qh at the right position
  818. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  819. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  820. }
  821. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  822. }
  823. }
  824. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  825. quantize_row_q5_1_reference(x, y, k);
  826. }
  827. // reference implementation for deterministic creation of model files
  828. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. for (int j = 0; j < QK8_0; j++) {
  834. const float v = x[i*QK8_0 + j];
  835. amax = MAX(amax, fabsf(v));
  836. }
  837. const float d = amax / ((1 << 7) - 1);
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = GGML_FP32_TO_FP16(d);
  840. for (int j = 0; j < QK8_0; ++j) {
  841. const float x0 = x[i*QK8_0 + j]*id;
  842. y[i].qs[j] = roundf(x0);
  843. }
  844. }
  845. }
  846. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  847. assert(QK8_0 == 32);
  848. assert(k % QK8_0 == 0);
  849. const int nb = k / QK8_0;
  850. block_q8_0 * restrict y = vy;
  851. #if defined(__ARM_NEON)
  852. for (int i = 0; i < nb; i++) {
  853. float32x4_t srcv [8];
  854. float32x4_t asrcv[8];
  855. float32x4_t amaxv[8];
  856. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  857. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  858. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  859. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  860. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  861. const float amax = vmaxvq_f32(amaxv[0]);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. for (int j = 0; j < 8; j++) {
  866. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  867. const int32x4_t vi = vcvtnq_s32_f32(v);
  868. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  869. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  870. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  871. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  872. }
  873. }
  874. #elif defined(__wasm_simd128__)
  875. for (int i = 0; i < nb; i++) {
  876. v128_t srcv [8];
  877. v128_t asrcv[8];
  878. v128_t amaxv[8];
  879. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  880. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  881. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  882. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  883. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  884. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  885. wasm_f32x4_extract_lane(amaxv[0], 1)),
  886. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  887. wasm_f32x4_extract_lane(amaxv[0], 3)));
  888. const float d = amax / ((1 << 7) - 1);
  889. const float id = d ? 1.0f/d : 0.0f;
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. for (int j = 0; j < 8; j++) {
  892. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  893. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  894. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  895. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  896. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  897. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  898. }
  899. }
  900. #elif defined(__AVX2__) || defined(__AVX__)
  901. for (int i = 0; i < nb; i++) {
  902. // Load elements into 4 AVX vectors
  903. __m256 v0 = _mm256_loadu_ps( x );
  904. __m256 v1 = _mm256_loadu_ps( x + 8 );
  905. __m256 v2 = _mm256_loadu_ps( x + 16 );
  906. __m256 v3 = _mm256_loadu_ps( x + 24 );
  907. x += 32;
  908. // Compute max(abs(e)) for the block
  909. const __m256 signBit = _mm256_set1_ps( -0.0f );
  910. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  912. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  914. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  915. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  916. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  917. const float maxScalar = _mm_cvtss_f32( max4 );
  918. // Quantize these floats
  919. const float d = maxScalar / 127.f;
  920. y[i].d = GGML_FP32_TO_FP16(d);
  921. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  922. const __m256 mul = _mm256_set1_ps( id );
  923. // Apply the multiplier
  924. v0 = _mm256_mul_ps( v0, mul );
  925. v1 = _mm256_mul_ps( v1, mul );
  926. v2 = _mm256_mul_ps( v2, mul );
  927. v3 = _mm256_mul_ps( v3, mul );
  928. // Round to nearest integer
  929. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  930. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  931. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  932. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  933. // Convert floats to integers
  934. __m256i i0 = _mm256_cvtps_epi32( v0 );
  935. __m256i i1 = _mm256_cvtps_epi32( v1 );
  936. __m256i i2 = _mm256_cvtps_epi32( v2 );
  937. __m256i i3 = _mm256_cvtps_epi32( v3 );
  938. #if defined(__AVX2__)
  939. // Convert int32 to int16
  940. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  941. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  942. // Convert int16 to int8
  943. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  944. // We got our precious signed bytes, but the order is now wrong
  945. // These AVX2 pack instructions process 16-byte pieces independently
  946. // The following instruction is fixing the order
  947. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  948. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  949. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  950. #else
  951. // Since we don't have in AVX some necessary functions,
  952. // we split the registers in half and call AVX2 analogs from SSE
  953. __m128i ni0 = _mm256_castsi256_si128( i0 );
  954. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  955. __m128i ni2 = _mm256_castsi256_si128( i1 );
  956. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  957. __m128i ni4 = _mm256_castsi256_si128( i2 );
  958. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  959. __m128i ni6 = _mm256_castsi256_si128( i3 );
  960. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  961. // Convert int32 to int16
  962. ni0 = _mm_packs_epi32( ni0, ni1 );
  963. ni2 = _mm_packs_epi32( ni2, ni3 );
  964. ni4 = _mm_packs_epi32( ni4, ni5 );
  965. ni6 = _mm_packs_epi32( ni6, ni7 );
  966. // Convert int16 to int8
  967. ni0 = _mm_packs_epi16( ni0, ni2 );
  968. ni4 = _mm_packs_epi16( ni4, ni6 );
  969. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  970. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  971. #endif
  972. }
  973. #else
  974. // scalar
  975. quantize_row_q8_0_reference(x, y, k);
  976. #endif
  977. }
  978. // reference implementation for deterministic creation of model files
  979. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  980. assert(QK8_1 == 32);
  981. assert(k % QK8_1 == 0);
  982. const int nb = k / QK8_1;
  983. for (int i = 0; i < nb; i++) {
  984. float amax = 0.0f; // absolute max
  985. for (int j = 0; j < QK8_1; j++) {
  986. const float v = x[i*QK8_1 + j];
  987. amax = MAX(amax, fabsf(v));
  988. }
  989. const float d = amax / ((1 << 7) - 1);
  990. const float id = d ? 1.0f/d : 0.0f;
  991. y[i].d = d;
  992. int sum = 0;
  993. for (int j = 0; j < QK8_1/2; ++j) {
  994. const float v0 = x[i*QK8_1 + j]*id;
  995. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  996. y[i].qs[ j] = roundf(v0);
  997. y[i].qs[QK8_1/2 + j] = roundf(v1);
  998. sum += y[i].qs[ j];
  999. sum += y[i].qs[QK8_1/2 + j];
  1000. }
  1001. y[i].s = sum*d;
  1002. }
  1003. }
  1004. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1005. assert(k % QK8_1 == 0);
  1006. const int nb = k / QK8_1;
  1007. block_q8_1 * restrict y = vy;
  1008. #if defined(__ARM_NEON)
  1009. for (int i = 0; i < nb; i++) {
  1010. float32x4_t srcv [8];
  1011. float32x4_t asrcv[8];
  1012. float32x4_t amaxv[8];
  1013. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1014. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1015. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1016. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1017. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1018. const float amax = vmaxvq_f32(amaxv[0]);
  1019. const float d = amax / ((1 << 7) - 1);
  1020. const float id = d ? 1.0f/d : 0.0f;
  1021. y[i].d = d;
  1022. int32x4_t accv = vdupq_n_s32(0);
  1023. for (int j = 0; j < 8; j++) {
  1024. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1025. const int32x4_t vi = vcvtnq_s32_f32(v);
  1026. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1027. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1028. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1029. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1030. accv = vaddq_s32(accv, vi);
  1031. }
  1032. y[i].s = d * vaddvq_s32(accv);
  1033. }
  1034. #elif defined(__wasm_simd128__)
  1035. for (int i = 0; i < nb; i++) {
  1036. v128_t srcv [8];
  1037. v128_t asrcv[8];
  1038. v128_t amaxv[8];
  1039. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1040. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1041. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1042. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1043. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1044. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1045. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1046. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1047. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1048. const float d = amax / ((1 << 7) - 1);
  1049. const float id = d ? 1.0f/d : 0.0f;
  1050. y[i].d = d;
  1051. v128_t accv = wasm_i32x4_splat(0);
  1052. for (int j = 0; j < 8; j++) {
  1053. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1054. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1055. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1056. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1057. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1058. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1059. accv = wasm_i32x4_add(accv, vi);
  1060. }
  1061. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1062. wasm_i32x4_extract_lane(accv, 1) +
  1063. wasm_i32x4_extract_lane(accv, 2) +
  1064. wasm_i32x4_extract_lane(accv, 3));
  1065. }
  1066. #elif defined(__AVX2__) || defined(__AVX__)
  1067. for (int i = 0; i < nb; i++) {
  1068. // Load elements into 4 AVX vectors
  1069. __m256 v0 = _mm256_loadu_ps( x );
  1070. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1071. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1072. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1073. x += 32;
  1074. // Compute max(abs(e)) for the block
  1075. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1076. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1077. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1078. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1079. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1080. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1081. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1082. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1083. const float maxScalar = _mm_cvtss_f32( max4 );
  1084. // Quantize these floats
  1085. const float d = maxScalar / 127.f;
  1086. y[i].d = d;
  1087. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1088. const __m256 mul = _mm256_set1_ps( id );
  1089. // Apply the multiplier
  1090. v0 = _mm256_mul_ps( v0, mul );
  1091. v1 = _mm256_mul_ps( v1, mul );
  1092. v2 = _mm256_mul_ps( v2, mul );
  1093. v3 = _mm256_mul_ps( v3, mul );
  1094. // Round to nearest integer
  1095. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1096. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1097. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1098. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1099. // Convert floats to integers
  1100. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1101. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1102. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1103. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1104. #if defined(__AVX2__)
  1105. // Compute the sum of the quants and set y[i].s
  1106. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1107. // Convert int32 to int16
  1108. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1109. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1110. // Convert int16 to int8
  1111. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1112. // We got our precious signed bytes, but the order is now wrong
  1113. // These AVX2 pack instructions process 16-byte pieces independently
  1114. // The following instruction is fixing the order
  1115. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1116. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1117. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1118. #else
  1119. // Since we don't have in AVX some necessary functions,
  1120. // we split the registers in half and call AVX2 analogs from SSE
  1121. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1122. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1123. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1124. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1125. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1126. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1127. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1128. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1129. // Compute the sum of the quants and set y[i].s
  1130. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1131. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1132. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1133. // Convert int32 to int16
  1134. ni0 = _mm_packs_epi32( ni0, ni1 );
  1135. ni2 = _mm_packs_epi32( ni2, ni3 );
  1136. ni4 = _mm_packs_epi32( ni4, ni5 );
  1137. ni6 = _mm_packs_epi32( ni6, ni7 );
  1138. // Convert int16 to int8
  1139. ni0 = _mm_packs_epi16( ni0, ni2 );
  1140. ni4 = _mm_packs_epi16( ni4, ni6 );
  1141. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1142. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1143. #endif
  1144. }
  1145. #else
  1146. // scalar
  1147. quantize_row_q8_1_reference(x, y, k);
  1148. #endif
  1149. }
  1150. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1151. static const int qk = QK4_0;
  1152. assert(k % qk == 0);
  1153. const int nb = k / qk;
  1154. for (int i = 0; i < nb; i++) {
  1155. const float d = GGML_FP16_TO_FP32(x[i].d);
  1156. for (int j = 0; j < qk/2; ++j) {
  1157. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1158. const int x1 = (x[i].qs[j] >> 4) - 8;
  1159. y[i*qk + j + 0 ] = x0*d;
  1160. y[i*qk + j + qk/2] = x1*d;
  1161. }
  1162. }
  1163. }
  1164. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1165. static const int qk = QK4_1;
  1166. assert(k % qk == 0);
  1167. const int nb = k / qk;
  1168. for (int i = 0; i < nb; i++) {
  1169. const float d = GGML_FP16_TO_FP32(x[i].d);
  1170. const float m = GGML_FP16_TO_FP32(x[i].m);
  1171. for (int j = 0; j < qk/2; ++j) {
  1172. const int x0 = (x[i].qs[j] & 0x0F);
  1173. const int x1 = (x[i].qs[j] >> 4);
  1174. y[i*qk + j + 0 ] = x0*d + m;
  1175. y[i*qk + j + qk/2] = x1*d + m;
  1176. }
  1177. }
  1178. }
  1179. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1180. static const int qk = QK5_0;
  1181. assert(k % qk == 0);
  1182. const int nb = k / qk;
  1183. for (int i = 0; i < nb; i++) {
  1184. const float d = GGML_FP16_TO_FP32(x[i].d);
  1185. uint32_t qh;
  1186. memcpy(&qh, x[i].qh, sizeof(qh));
  1187. for (int j = 0; j < qk/2; ++j) {
  1188. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1189. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1190. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1191. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1192. y[i*qk + j + 0 ] = x0*d;
  1193. y[i*qk + j + qk/2] = x1*d;
  1194. }
  1195. }
  1196. }
  1197. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1198. static const int qk = QK5_1;
  1199. assert(k % qk == 0);
  1200. const int nb = k / qk;
  1201. for (int i = 0; i < nb; i++) {
  1202. const float d = GGML_FP16_TO_FP32(x[i].d);
  1203. const float m = GGML_FP16_TO_FP32(x[i].m);
  1204. uint32_t qh;
  1205. memcpy(&qh, x[i].qh, sizeof(qh));
  1206. for (int j = 0; j < qk/2; ++j) {
  1207. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1208. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1209. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1210. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1211. y[i*qk + j + 0 ] = x0*d + m;
  1212. y[i*qk + j + qk/2] = x1*d + m;
  1213. }
  1214. }
  1215. }
  1216. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1217. static const int qk = QK8_0;
  1218. assert(k % qk == 0);
  1219. const int nb = k / qk;
  1220. const block_q8_0 * restrict x = vx;
  1221. for (int i = 0; i < nb; i++) {
  1222. const float d = GGML_FP16_TO_FP32(x[i].d);
  1223. for (int j = 0; j < qk; ++j) {
  1224. y[i*qk + j] = x[i].qs[j]*d;
  1225. }
  1226. }
  1227. }
  1228. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1229. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1230. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1231. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1234. [GGML_TYPE_Q4_0] = {
  1235. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1236. .quantize_row_q = quantize_row_q4_0,
  1237. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1238. .quantize_row_q_dot = quantize_row_q8_0,
  1239. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1240. .vec_dot_type = GGML_TYPE_Q8_0,
  1241. },
  1242. [GGML_TYPE_Q4_1] = {
  1243. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1244. .quantize_row_q = quantize_row_q4_1,
  1245. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1246. .quantize_row_q_dot = quantize_row_q8_1,
  1247. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1248. .vec_dot_type = GGML_TYPE_Q8_1,
  1249. },
  1250. [GGML_TYPE_Q5_0] = {
  1251. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1252. .quantize_row_q = quantize_row_q5_0,
  1253. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1254. .quantize_row_q_dot = quantize_row_q8_0,
  1255. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1256. .vec_dot_type = GGML_TYPE_Q8_0,
  1257. },
  1258. [GGML_TYPE_Q5_1] = {
  1259. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1260. .quantize_row_q = quantize_row_q5_1,
  1261. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1262. .quantize_row_q_dot = quantize_row_q8_1,
  1263. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1264. .vec_dot_type = GGML_TYPE_Q8_1,
  1265. },
  1266. [GGML_TYPE_Q8_0] = {
  1267. .dequantize_row_q = dequantize_row_q8_0,
  1268. .quantize_row_q = quantize_row_q8_0,
  1269. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1270. .quantize_row_q_dot = quantize_row_q8_0,
  1271. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1272. .vec_dot_type = GGML_TYPE_Q8_0,
  1273. },
  1274. [GGML_TYPE_Q8_1] = {
  1275. .dequantize_row_q = NULL, // TODO
  1276. .quantize_row_q = quantize_row_q8_1,
  1277. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1278. .quantize_row_q_dot = quantize_row_q8_1,
  1279. .vec_dot_q = NULL, // TODO
  1280. .vec_dot_type = GGML_TYPE_Q8_1,
  1281. },
  1282. };
  1283. // For internal test use
  1284. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1285. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1286. return quantize_fns[i];
  1287. }
  1288. //
  1289. // simd mappings
  1290. //
  1291. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1292. // we then implement the fundamental computation operations below using only these macros
  1293. // adding support for new architectures requires to define the corresponding SIMD macros
  1294. //
  1295. // GGML_F32_STEP / GGML_F16_STEP
  1296. // number of elements to process in a single step
  1297. //
  1298. // GGML_F32_EPR / GGML_F16_EPR
  1299. // number of elements to fit in a single register
  1300. //
  1301. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1302. #define GGML_SIMD
  1303. // F32 NEON
  1304. #define GGML_F32_STEP 16
  1305. #define GGML_F32_EPR 4
  1306. #define GGML_F32x4 float32x4_t
  1307. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1308. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1309. #define GGML_F32x4_LOAD vld1q_f32
  1310. #define GGML_F32x4_STORE vst1q_f32
  1311. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1312. #define GGML_F32x4_ADD vaddq_f32
  1313. #define GGML_F32x4_MUL vmulq_f32
  1314. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1315. #define GGML_F32x4_REDUCE(res, x) \
  1316. { \
  1317. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1318. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1319. } \
  1320. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1321. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1322. } \
  1323. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1324. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1325. } \
  1326. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1327. }
  1328. #define GGML_F32_VEC GGML_F32x4
  1329. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1330. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1331. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1332. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1333. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1334. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1335. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1336. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1337. // F16 NEON
  1338. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1339. #define GGML_F16_STEP 32
  1340. #define GGML_F16_EPR 8
  1341. #define GGML_F16x8 float16x8_t
  1342. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1343. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1344. #define GGML_F16x8_LOAD vld1q_f16
  1345. #define GGML_F16x8_STORE vst1q_f16
  1346. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1347. #define GGML_F16x8_ADD vaddq_f16
  1348. #define GGML_F16x8_MUL vmulq_f16
  1349. #define GGML_F16x8_REDUCE(res, x) \
  1350. { \
  1351. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1352. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1353. } \
  1354. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1355. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1356. } \
  1357. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1358. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1359. } \
  1360. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1361. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1362. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1363. }
  1364. #define GGML_F16_VEC GGML_F16x8
  1365. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1366. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1367. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1368. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1369. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1370. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1371. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1372. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1373. #else
  1374. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1375. // and take advantage of the vcvt_ functions to convert to/from FP16
  1376. #define GGML_F16_STEP 16
  1377. #define GGML_F16_EPR 4
  1378. #define GGML_F32Cx4 float32x4_t
  1379. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1380. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1381. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1382. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1383. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1384. #define GGML_F32Cx4_ADD vaddq_f32
  1385. #define GGML_F32Cx4_MUL vmulq_f32
  1386. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1387. #define GGML_F16_VEC GGML_F32Cx4
  1388. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1389. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1390. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1391. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1392. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1393. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1394. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1395. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1396. #endif
  1397. #elif defined(__AVX__)
  1398. #define GGML_SIMD
  1399. // F32 AVX
  1400. #define GGML_F32_STEP 32
  1401. #define GGML_F32_EPR 8
  1402. #define GGML_F32x8 __m256
  1403. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1404. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1405. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1406. #define GGML_F32x8_STORE _mm256_storeu_ps
  1407. #if defined(__FMA__)
  1408. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1409. #else
  1410. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1411. #endif
  1412. #define GGML_F32x8_ADD _mm256_add_ps
  1413. #define GGML_F32x8_MUL _mm256_mul_ps
  1414. #define GGML_F32x8_REDUCE(res, x) \
  1415. { \
  1416. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1417. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1420. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1421. } \
  1422. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1423. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1424. } \
  1425. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1426. _mm256_extractf128_ps(x[0], 1)); \
  1427. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1428. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1429. }
  1430. // TODO: is this optimal ?
  1431. #define GGML_F32_VEC GGML_F32x8
  1432. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1433. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1434. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1435. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1436. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1437. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1438. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1439. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1440. // F16 AVX
  1441. #define GGML_F16_STEP 32
  1442. #define GGML_F16_EPR 8
  1443. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1444. #define GGML_F32Cx8 __m256
  1445. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1446. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1447. #if defined(__F16C__)
  1448. // the _mm256_cvt intrinsics require F16C
  1449. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1450. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1451. #else
  1452. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1453. float tmp[8];
  1454. for (int i = 0; i < 8; i++) {
  1455. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1456. }
  1457. return _mm256_loadu_ps(tmp);
  1458. }
  1459. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1460. float arr[8];
  1461. _mm256_storeu_ps(arr, y);
  1462. for (int i = 0; i < 8; i++)
  1463. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1464. }
  1465. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1466. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1467. #endif
  1468. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1469. #define GGML_F32Cx8_ADD _mm256_add_ps
  1470. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1471. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1472. #define GGML_F16_VEC GGML_F32Cx8
  1473. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1474. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1475. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1476. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1477. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1478. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1479. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1480. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1481. #elif defined(__POWER9_VECTOR__)
  1482. #define GGML_SIMD
  1483. // F32 POWER9
  1484. #define GGML_F32_STEP 32
  1485. #define GGML_F32_EPR 4
  1486. #define GGML_F32x4 vector float
  1487. #define GGML_F32x4_ZERO 0.0f
  1488. #define GGML_F32x4_SET1 vec_splats
  1489. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1490. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1491. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1492. #define GGML_F32x4_ADD vec_add
  1493. #define GGML_F32x4_MUL vec_mul
  1494. #define GGML_F32x4_REDUCE(res, x) \
  1495. { \
  1496. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1497. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1498. } \
  1499. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1500. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1501. } \
  1502. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1503. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1504. } \
  1505. res = vec_extract(x[0], 0) + \
  1506. vec_extract(x[0], 1) + \
  1507. vec_extract(x[0], 2) + \
  1508. vec_extract(x[0], 3); \
  1509. }
  1510. #define GGML_F32_VEC GGML_F32x4
  1511. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1512. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1513. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1514. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1515. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1516. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1517. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1518. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1519. // F16 POWER9
  1520. #define GGML_F16_STEP GGML_F32_STEP
  1521. #define GGML_F16_EPR GGML_F32_EPR
  1522. #define GGML_F16_VEC GGML_F32x4
  1523. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1524. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1525. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1526. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1527. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1528. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1529. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1530. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1531. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1532. #define GGML_F16_VEC_STORE(p, r, i) \
  1533. if (i & 0x1) \
  1534. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1535. r[i - GGML_ENDIAN_BYTE(0)]), \
  1536. 0, p - GGML_F16_EPR)
  1537. #elif defined(__wasm_simd128__)
  1538. #define GGML_SIMD
  1539. // F32 WASM
  1540. #define GGML_F32_STEP 16
  1541. #define GGML_F32_EPR 4
  1542. #define GGML_F32x4 v128_t
  1543. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1544. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1545. #define GGML_F32x4_LOAD wasm_v128_load
  1546. #define GGML_F32x4_STORE wasm_v128_store
  1547. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1548. #define GGML_F32x4_ADD wasm_f32x4_add
  1549. #define GGML_F32x4_MUL wasm_f32x4_mul
  1550. #define GGML_F32x4_REDUCE(res, x) \
  1551. { \
  1552. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1553. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1554. } \
  1555. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1556. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1557. } \
  1558. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1559. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1560. } \
  1561. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1562. wasm_f32x4_extract_lane(x[0], 1) + \
  1563. wasm_f32x4_extract_lane(x[0], 2) + \
  1564. wasm_f32x4_extract_lane(x[0], 3); \
  1565. }
  1566. #define GGML_F32_VEC GGML_F32x4
  1567. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1568. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1569. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1570. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1571. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1572. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1573. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1574. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1575. // F16 WASM
  1576. #define GGML_F16_STEP 16
  1577. #define GGML_F16_EPR 4
  1578. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1579. float tmp[4];
  1580. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1581. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1582. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1583. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1584. return wasm_v128_load(tmp);
  1585. }
  1586. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1587. float tmp[4];
  1588. wasm_v128_store(tmp, x);
  1589. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1590. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1591. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1592. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1593. }
  1594. #define GGML_F16x4 v128_t
  1595. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1596. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1597. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1598. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1599. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1600. #define GGML_F16x4_ADD wasm_f32x4_add
  1601. #define GGML_F16x4_MUL wasm_f32x4_mul
  1602. #define GGML_F16x4_REDUCE(res, x) \
  1603. { \
  1604. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1605. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1606. } \
  1607. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1608. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1609. } \
  1610. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1611. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1612. } \
  1613. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1614. wasm_f32x4_extract_lane(x[0], 1) + \
  1615. wasm_f32x4_extract_lane(x[0], 2) + \
  1616. wasm_f32x4_extract_lane(x[0], 3); \
  1617. }
  1618. #define GGML_F16_VEC GGML_F16x4
  1619. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1620. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1621. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1622. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1623. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1624. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1625. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1626. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1627. #elif defined(__SSE3__)
  1628. #define GGML_SIMD
  1629. // F32 SSE
  1630. #define GGML_F32_STEP 32
  1631. #define GGML_F32_EPR 4
  1632. #define GGML_F32x4 __m128
  1633. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1634. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1635. #define GGML_F32x4_LOAD _mm_loadu_ps
  1636. #define GGML_F32x4_STORE _mm_storeu_ps
  1637. #if defined(__FMA__)
  1638. // TODO: Does this work?
  1639. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1640. #else
  1641. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1642. #endif
  1643. #define GGML_F32x4_ADD _mm_add_ps
  1644. #define GGML_F32x4_MUL _mm_mul_ps
  1645. #define GGML_F32x4_REDUCE(res, x) \
  1646. { \
  1647. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1648. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1649. } \
  1650. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1651. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1652. } \
  1653. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1654. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1655. } \
  1656. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1657. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1658. }
  1659. // TODO: is this optimal ?
  1660. #define GGML_F32_VEC GGML_F32x4
  1661. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1662. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1663. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1664. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1665. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1666. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1667. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1668. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1669. // F16 SSE
  1670. #define GGML_F16_STEP 32
  1671. #define GGML_F16_EPR 4
  1672. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1673. float tmp[4];
  1674. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1675. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1676. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1677. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1678. return _mm_loadu_ps(tmp);
  1679. }
  1680. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1681. float arr[4];
  1682. _mm_storeu_ps(arr, y);
  1683. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1684. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1685. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1686. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1687. }
  1688. #define GGML_F32Cx4 __m128
  1689. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1690. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1691. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1692. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1693. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1694. #define GGML_F32Cx4_ADD _mm_add_ps
  1695. #define GGML_F32Cx4_MUL _mm_mul_ps
  1696. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1697. #define GGML_F16_VEC GGML_F32Cx4
  1698. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1699. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1700. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1701. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1702. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1703. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1704. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1705. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1706. #endif
  1707. // GGML_F32_ARR / GGML_F16_ARR
  1708. // number of registers to use per step
  1709. #ifdef GGML_SIMD
  1710. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1711. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1712. #endif
  1713. //
  1714. // fundamental operations
  1715. //
  1716. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1717. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1718. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1719. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1720. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1721. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1722. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1723. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1724. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1725. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1726. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1727. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1728. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1729. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1730. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1731. #ifdef GGML_SIMD
  1732. float sumf = 0.0f;
  1733. const int np = (n & ~(GGML_F32_STEP - 1));
  1734. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1735. GGML_F32_VEC ax[GGML_F32_ARR];
  1736. GGML_F32_VEC ay[GGML_F32_ARR];
  1737. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1738. for (int j = 0; j < GGML_F32_ARR; j++) {
  1739. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1740. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1741. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1742. }
  1743. }
  1744. // reduce sum0..sum3 to sum0
  1745. GGML_F32_VEC_REDUCE(sumf, sum);
  1746. // leftovers
  1747. for (int i = np; i < n; ++i) {
  1748. sumf += x[i]*y[i];
  1749. }
  1750. #else
  1751. // scalar
  1752. ggml_float sumf = 0.0;
  1753. for (int i = 0; i < n; ++i) {
  1754. sumf += (ggml_float)(x[i]*y[i]);
  1755. }
  1756. #endif
  1757. *s = sumf;
  1758. }
  1759. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1760. ggml_float sumf = 0.0;
  1761. #if defined(GGML_SIMD)
  1762. const int np = (n & ~(GGML_F16_STEP - 1));
  1763. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1764. GGML_F16_VEC ax[GGML_F16_ARR];
  1765. GGML_F16_VEC ay[GGML_F16_ARR];
  1766. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1767. for (int j = 0; j < GGML_F16_ARR; j++) {
  1768. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1769. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1770. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1771. }
  1772. }
  1773. // reduce sum0..sum3 to sum0
  1774. GGML_F16_VEC_REDUCE(sumf, sum);
  1775. // leftovers
  1776. for (int i = np; i < n; ++i) {
  1777. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1778. }
  1779. #else
  1780. for (int i = 0; i < n; ++i) {
  1781. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1782. }
  1783. #endif
  1784. *s = sumf;
  1785. }
  1786. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1787. const int qk = QK8_0;
  1788. const int nb = n / qk;
  1789. assert(n % qk == 0);
  1790. assert(nb % 2 == 0);
  1791. const block_q4_0 * restrict x = vx;
  1792. const block_q8_0 * restrict y = vy;
  1793. #if defined(__ARM_NEON)
  1794. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1795. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1796. for (int i = 0; i < nb; i += 2) {
  1797. const block_q4_0 * restrict x0 = &x[i + 0];
  1798. const block_q4_0 * restrict x1 = &x[i + 1];
  1799. const block_q8_0 * restrict y0 = &y[i + 0];
  1800. const block_q8_0 * restrict y1 = &y[i + 1];
  1801. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1802. const int8x16_t s8b = vdupq_n_s8(0x8);
  1803. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1804. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1805. // 4-bit -> 8-bit
  1806. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1807. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1808. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1809. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1810. // sub 8
  1811. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1812. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1813. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1814. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1815. // load y
  1816. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1817. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1818. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1819. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1820. #if defined(__ARM_FEATURE_DOTPROD)
  1821. // dot product into int32x4_t
  1822. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1823. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1824. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1825. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1826. #else
  1827. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1828. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1829. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1830. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1831. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1832. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1833. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1834. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1835. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1836. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1837. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1838. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1839. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1840. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1841. #endif
  1842. }
  1843. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1844. #elif defined(__AVX2__)
  1845. // Initialize accumulator with zeros
  1846. __m256 acc = _mm256_setzero_ps();
  1847. // Main loop
  1848. for (int i = 0; i < nb; ++i) {
  1849. /* Compute combined scale for the block */
  1850. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1851. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1852. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1853. const __m256i off = _mm256_set1_epi8( 8 );
  1854. bx = _mm256_sub_epi8( bx, off );
  1855. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1856. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1857. /* Multiply q with scale and accumulate */
  1858. acc = _mm256_fmadd_ps( d, q, acc );
  1859. }
  1860. *s = hsum_float_8(acc);
  1861. #elif defined(__AVX__)
  1862. // Initialize accumulator with zeros
  1863. __m256 acc = _mm256_setzero_ps();
  1864. // Main loop
  1865. for (int i = 0; i < nb; ++i) {
  1866. // Compute combined scale for the block
  1867. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1868. const __m128i lowMask = _mm_set1_epi8(0xF);
  1869. const __m128i off = _mm_set1_epi8(8);
  1870. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1871. __m128i bx = _mm_and_si128(lowMask, tmp);
  1872. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1873. bx = _mm_sub_epi8(bx, off);
  1874. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1875. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1876. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1877. bx = _mm_sub_epi8(bx, off);
  1878. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1879. // Convert int32_t to float
  1880. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1881. // Apply the scale, and accumulate
  1882. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1883. }
  1884. *s = hsum_float_8(acc);
  1885. #elif defined(__SSSE3__)
  1886. // set constants
  1887. const __m128i lowMask = _mm_set1_epi8(0xF);
  1888. const __m128i off = _mm_set1_epi8(8);
  1889. // Initialize accumulator with zeros
  1890. __m128 acc_0 = _mm_setzero_ps();
  1891. __m128 acc_1 = _mm_setzero_ps();
  1892. __m128 acc_2 = _mm_setzero_ps();
  1893. __m128 acc_3 = _mm_setzero_ps();
  1894. // First round without accumulation
  1895. {
  1896. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1897. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1898. // Compute combined scale for the block 0 and 1
  1899. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1900. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1901. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1902. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1903. bx_0 = _mm_sub_epi8(bx_0, off);
  1904. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1905. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1906. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1907. bx_1 = _mm_sub_epi8(bx_1, off);
  1908. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1909. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1910. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1911. // Compute combined scale for the block 2 and 3
  1912. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1913. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1914. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1915. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1916. bx_2 = _mm_sub_epi8(bx_2, off);
  1917. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1918. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1919. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1920. bx_3 = _mm_sub_epi8(bx_3, off);
  1921. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1922. // Convert int32_t to float
  1923. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1924. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1925. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1926. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1927. // Apply the scale
  1928. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1929. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1930. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1931. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1932. }
  1933. // Main loop
  1934. for (int i = 2; i < nb; i+=2) {
  1935. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1936. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1937. // Compute combined scale for the block 0 and 1
  1938. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1939. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1940. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1941. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1942. bx_0 = _mm_sub_epi8(bx_0, off);
  1943. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1944. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1945. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1946. bx_1 = _mm_sub_epi8(bx_1, off);
  1947. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1948. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1949. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1950. // Compute combined scale for the block 2 and 3
  1951. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1952. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1953. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1954. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1955. bx_2 = _mm_sub_epi8(bx_2, off);
  1956. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1957. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1958. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1959. bx_3 = _mm_sub_epi8(bx_3, off);
  1960. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1961. // Convert int32_t to float
  1962. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1963. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1964. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1965. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1966. // Apply the scale
  1967. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1968. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1969. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1970. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1971. // Acummulate
  1972. acc_0 = _mm_add_ps(p0_d, acc_0);
  1973. acc_1 = _mm_add_ps(p1_d, acc_1);
  1974. acc_2 = _mm_add_ps(p2_d, acc_2);
  1975. acc_3 = _mm_add_ps(p3_d, acc_3);
  1976. }
  1977. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1978. #else
  1979. // scalar
  1980. float sumf = 0.0;
  1981. for (int i = 0; i < nb; i++) {
  1982. int sumi = 0;
  1983. for (int j = 0; j < qk/2; ++j) {
  1984. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1985. const int v1 = (x[i].qs[j] >> 4) - 8;
  1986. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1987. }
  1988. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1989. }
  1990. *s = sumf;
  1991. #endif
  1992. }
  1993. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1994. const int qk = QK8_1;
  1995. const int nb = n / qk;
  1996. assert(n % qk == 0);
  1997. assert(nb % 2 == 0);
  1998. const block_q4_1 * restrict x = vx;
  1999. const block_q8_1 * restrict y = vy;
  2000. // TODO: add WASM SIMD
  2001. #if defined(__ARM_NEON)
  2002. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2003. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2004. float summs = 0;
  2005. for (int i = 0; i < nb; i += 2) {
  2006. const block_q4_1 * restrict x0 = &x[i + 0];
  2007. const block_q4_1 * restrict x1 = &x[i + 1];
  2008. const block_q8_1 * restrict y0 = &y[i + 0];
  2009. const block_q8_1 * restrict y1 = &y[i + 1];
  2010. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2011. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2012. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2013. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2014. // 4-bit -> 8-bit
  2015. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2016. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2017. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2018. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2019. // load y
  2020. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2021. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2022. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2023. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2024. #if defined(__ARM_FEATURE_DOTPROD)
  2025. // dot product into int32x4_t
  2026. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2027. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2028. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2029. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2030. #else
  2031. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2032. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2033. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2034. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2035. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2036. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2037. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2038. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2039. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2040. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2041. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2042. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2043. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2044. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2045. #endif
  2046. }
  2047. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2048. #elif defined(__AVX2__) || defined(__AVX__)
  2049. // Initialize accumulator with zeros
  2050. __m256 acc = _mm256_setzero_ps();
  2051. float summs = 0;
  2052. // Main loop
  2053. for (int i = 0; i < nb; ++i) {
  2054. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2055. const float d1 = y[i].d;
  2056. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2057. const __m256 d0v = _mm256_set1_ps( d0 );
  2058. const __m256 d1v = _mm256_set1_ps( d1 );
  2059. // Compute combined scales
  2060. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2061. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2062. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2063. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2064. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2065. // Accumulate d0*d1*x*y
  2066. #if defined(__AVX2__)
  2067. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2068. #else
  2069. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2070. #endif
  2071. }
  2072. *s = hsum_float_8(acc) + summs;
  2073. #else
  2074. // scalar
  2075. float sumf = 0.0;
  2076. for (int i = 0; i < nb; i++) {
  2077. int sumi = 0;
  2078. for (int j = 0; j < qk/2; ++j) {
  2079. const int v0 = (x[i].qs[j] & 0x0F);
  2080. const int v1 = (x[i].qs[j] >> 4);
  2081. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2082. }
  2083. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2084. }
  2085. *s = sumf;
  2086. #endif
  2087. }
  2088. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2089. const int qk = QK8_0;
  2090. const int nb = n / qk;
  2091. assert(n % qk == 0);
  2092. assert(nb % 2 == 0);
  2093. assert(qk == QK5_0);
  2094. const block_q5_0 * restrict x = vx;
  2095. const block_q8_0 * restrict y = vy;
  2096. #if defined(__ARM_NEON)
  2097. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2098. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2099. uint32_t qh0;
  2100. uint32_t qh1;
  2101. uint64_t tmp0[4];
  2102. uint64_t tmp1[4];
  2103. for (int i = 0; i < nb; i += 2) {
  2104. const block_q5_0 * restrict x0 = &x[i];
  2105. const block_q5_0 * restrict x1 = &x[i + 1];
  2106. const block_q8_0 * restrict y0 = &y[i];
  2107. const block_q8_0 * restrict y1 = &y[i + 1];
  2108. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2109. // extract the 5th bit via lookup table ((!b) << 4)
  2110. memcpy(&qh0, x0->qh, sizeof(qh0));
  2111. memcpy(&qh1, x1->qh, sizeof(qh1));
  2112. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2113. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2114. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2115. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2116. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2117. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2118. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2119. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2120. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2121. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2122. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2123. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2124. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2125. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2126. // 4-bit -> 8-bit
  2127. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2128. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2129. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2130. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2131. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2132. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2133. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2134. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2135. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2136. // load y
  2137. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2138. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2139. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2140. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2141. #if defined(__ARM_FEATURE_DOTPROD)
  2142. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2143. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2144. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2145. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2146. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2147. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2148. #else
  2149. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2150. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2151. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2152. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2153. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2154. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2155. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2156. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2157. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2158. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2159. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2160. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2161. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2162. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2163. #endif
  2164. }
  2165. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2166. #elif defined(__wasm_simd128__)
  2167. v128_t sumv = wasm_f32x4_splat(0.0f);
  2168. uint32_t qh;
  2169. uint64_t tmp[4];
  2170. // TODO: check if unrolling this is better
  2171. for (int i = 0; i < nb; ++i) {
  2172. const block_q5_0 * restrict x0 = &x[i];
  2173. const block_q8_0 * restrict y0 = &y[i];
  2174. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2175. // extract the 5th bit
  2176. memcpy(&qh, x0->qh, sizeof(qh));
  2177. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2178. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2179. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2180. tmp[3] = table_b2b_1[(qh >> 24) ];
  2181. const v128_t qhl = wasm_v128_load(tmp + 0);
  2182. const v128_t qhh = wasm_v128_load(tmp + 2);
  2183. const v128_t v0 = wasm_v128_load(x0->qs);
  2184. // 4-bit -> 8-bit
  2185. const v128_t v0l = wasm_v128_and (v0, m4b);
  2186. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2187. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2188. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2189. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2190. // load y
  2191. const v128_t v1l = wasm_v128_load(y0->qs);
  2192. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2193. // int8x16 -> int16x8
  2194. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2195. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2196. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2197. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2198. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2199. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2200. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2201. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2202. // dot product
  2203. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2204. wasm_i32x4_add(
  2205. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2206. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2208. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2209. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2210. }
  2211. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2212. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2213. #elif defined(__AVX2__)
  2214. // Initialize accumulator with zeros
  2215. __m256 acc = _mm256_setzero_ps();
  2216. // Main loop
  2217. for (int i = 0; i < nb; i++) {
  2218. /* Compute combined scale for the block */
  2219. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2220. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2221. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2222. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2223. bx = _mm256_or_si256(bx, bxhi);
  2224. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2225. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2226. /* Multiply q with scale and accumulate */
  2227. acc = _mm256_fmadd_ps(d, q, acc);
  2228. }
  2229. *s = hsum_float_8(acc);
  2230. #elif defined(__AVX__)
  2231. // Initialize accumulator with zeros
  2232. __m256 acc = _mm256_setzero_ps();
  2233. __m128i mask = _mm_set1_epi8((char)0xF0);
  2234. // Main loop
  2235. for (int i = 0; i < nb; i++) {
  2236. /* Compute combined scale for the block */
  2237. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2238. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2239. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2240. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2241. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2242. bxhil = _mm_andnot_si128(bxhil, mask);
  2243. bxhih = _mm_andnot_si128(bxhih, mask);
  2244. __m128i bxl = _mm256_castsi256_si128(bx);
  2245. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2246. bxl = _mm_or_si128(bxl, bxhil);
  2247. bxh = _mm_or_si128(bxh, bxhih);
  2248. bx = _mm256_set_m128i(bxh, bxl);
  2249. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2250. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2251. /* Multiply q with scale and accumulate */
  2252. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2253. }
  2254. *s = hsum_float_8(acc);
  2255. #else
  2256. // scalar
  2257. float sumf = 0.0;
  2258. for (int i = 0; i < nb; i++) {
  2259. uint32_t qh;
  2260. memcpy(&qh, x[i].qh, sizeof(qh));
  2261. int sumi = 0;
  2262. for (int j = 0; j < qk/2; ++j) {
  2263. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2264. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2265. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2266. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2267. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2268. }
  2269. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2270. }
  2271. *s = sumf;
  2272. #endif
  2273. }
  2274. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2275. const int qk = QK8_1;
  2276. const int nb = n / qk;
  2277. assert(n % qk == 0);
  2278. assert(nb % 2 == 0);
  2279. assert(qk == QK5_1);
  2280. const block_q5_1 * restrict x = vx;
  2281. const block_q8_1 * restrict y = vy;
  2282. #if defined(__ARM_NEON)
  2283. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2284. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2285. float summs0 = 0.0f;
  2286. float summs1 = 0.0f;
  2287. uint32_t qh0;
  2288. uint32_t qh1;
  2289. uint64_t tmp0[4];
  2290. uint64_t tmp1[4];
  2291. for (int i = 0; i < nb; i += 2) {
  2292. const block_q5_1 * restrict x0 = &x[i];
  2293. const block_q5_1 * restrict x1 = &x[i + 1];
  2294. const block_q8_1 * restrict y0 = &y[i];
  2295. const block_q8_1 * restrict y1 = &y[i + 1];
  2296. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2297. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2298. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2299. // extract the 5th bit via lookup table ((b) << 4)
  2300. memcpy(&qh0, x0->qh, sizeof(qh0));
  2301. memcpy(&qh1, x1->qh, sizeof(qh1));
  2302. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2303. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2304. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2305. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2306. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2307. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2308. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2309. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2310. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2311. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2312. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2313. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2314. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2315. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2316. // 4-bit -> 8-bit
  2317. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2318. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2319. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2320. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2321. // add high bit
  2322. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2323. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2324. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2325. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2326. // load y
  2327. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2328. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2329. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2330. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2331. #if defined(__ARM_FEATURE_DOTPROD)
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2333. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2334. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2335. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2336. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2337. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2338. #else
  2339. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2340. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2341. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2342. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2343. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2344. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2345. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2346. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2347. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2348. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2349. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2350. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2353. #endif
  2354. }
  2355. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2356. #elif defined(__wasm_simd128__)
  2357. v128_t sumv = wasm_f32x4_splat(0.0f);
  2358. float summs = 0.0f;
  2359. uint32_t qh;
  2360. uint64_t tmp[4];
  2361. // TODO: check if unrolling this is better
  2362. for (int i = 0; i < nb; ++i) {
  2363. const block_q5_1 * restrict x0 = &x[i];
  2364. const block_q8_1 * restrict y0 = &y[i];
  2365. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2366. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2367. // extract the 5th bit
  2368. memcpy(&qh, x0->qh, sizeof(qh));
  2369. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2370. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2371. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2372. tmp[3] = table_b2b_0[(qh >> 24) ];
  2373. const v128_t qhl = wasm_v128_load(tmp + 0);
  2374. const v128_t qhh = wasm_v128_load(tmp + 2);
  2375. const v128_t v0 = wasm_v128_load(x0->qs);
  2376. // 4-bit -> 8-bit
  2377. const v128_t v0l = wasm_v128_and (v0, m4b);
  2378. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2379. // add high bit
  2380. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2381. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2382. // load y
  2383. const v128_t v1l = wasm_v128_load(y0->qs);
  2384. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2385. // int8x16 -> int16x8
  2386. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2387. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2388. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2389. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2390. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2391. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2392. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2393. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2394. // dot product
  2395. sumv = wasm_f32x4_add(sumv,
  2396. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2397. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2398. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2400. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2401. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2402. }
  2403. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2404. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2405. #elif defined(__AVX2__)
  2406. // Initialize accumulator with zeros
  2407. __m256 acc = _mm256_setzero_ps();
  2408. float summs = 0.0f;
  2409. // Main loop
  2410. for (int i = 0; i < nb; i++) {
  2411. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2412. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2413. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2414. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2415. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2416. bx = _mm256_or_si256(bx, bxhi);
  2417. const __m256 dy = _mm256_set1_ps(y[i].d);
  2418. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2419. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2420. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2421. }
  2422. *s = hsum_float_8(acc) + summs;
  2423. #elif defined(__AVX__)
  2424. // Initialize accumulator with zeros
  2425. __m256 acc = _mm256_setzero_ps();
  2426. __m128i mask = _mm_set1_epi8(0x10);
  2427. float summs = 0.0f;
  2428. // Main loop
  2429. for (int i = 0; i < nb; i++) {
  2430. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2431. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2432. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2433. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2434. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2435. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2436. bxhil = _mm_and_si128(bxhil, mask);
  2437. bxhih = _mm_and_si128(bxhih, mask);
  2438. __m128i bxl = _mm256_castsi256_si128(bx);
  2439. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2440. bxl = _mm_or_si128(bxl, bxhil);
  2441. bxh = _mm_or_si128(bxh, bxhih);
  2442. bx = _mm256_set_m128i(bxh, bxl);
  2443. const __m256 dy = _mm256_set1_ps(y[i].d);
  2444. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2445. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2446. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2447. }
  2448. *s = hsum_float_8(acc) + summs;
  2449. #else
  2450. // scalar
  2451. float sumf = 0.0;
  2452. for (int i = 0; i < nb; i++) {
  2453. uint32_t qh;
  2454. memcpy(&qh, x[i].qh, sizeof(qh));
  2455. int sumi = 0;
  2456. for (int j = 0; j < qk/2; ++j) {
  2457. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2458. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2459. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2460. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2461. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2462. }
  2463. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2464. }
  2465. *s = sumf;
  2466. #endif
  2467. }
  2468. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2469. const int qk = QK8_0;
  2470. const int nb = n / qk;
  2471. assert(n % qk == 0);
  2472. assert(nb % 2 == 0);
  2473. const block_q8_0 * restrict x = vx;
  2474. const block_q8_0 * restrict y = vy;
  2475. #if defined(__ARM_NEON)
  2476. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2477. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2478. for (int i = 0; i < nb; i += 2) {
  2479. const block_q8_0 * restrict x0 = &x[i + 0];
  2480. const block_q8_0 * restrict x1 = &x[i + 1];
  2481. const block_q8_0 * restrict y0 = &y[i + 0];
  2482. const block_q8_0 * restrict y1 = &y[i + 1];
  2483. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2484. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2485. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2486. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2487. // load y
  2488. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2489. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2490. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2491. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2492. #if defined(__ARM_FEATURE_DOTPROD)
  2493. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2494. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2495. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2496. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2497. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2498. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2499. #else
  2500. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2501. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2502. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2503. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2504. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2505. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2506. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2507. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2508. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2509. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2510. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2511. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2512. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2513. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2514. #endif
  2515. }
  2516. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2517. #elif defined(__AVX2__) || defined(__AVX__)
  2518. // Initialize accumulator with zeros
  2519. __m256 acc = _mm256_setzero_ps();
  2520. // Main loop
  2521. for (int i = 0; i < nb; ++i) {
  2522. // Compute combined scale for the block
  2523. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2524. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2525. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2526. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2527. // Multiply q with scale and accumulate
  2528. #if defined(__AVX2__)
  2529. acc = _mm256_fmadd_ps( d, q, acc );
  2530. #else
  2531. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2532. #endif
  2533. }
  2534. *s = hsum_float_8(acc);
  2535. #else
  2536. // scalar
  2537. float sumf = 0.0;
  2538. for (int i = 0; i < nb; i++) {
  2539. int sumi = 0;
  2540. for (int j = 0; j < qk; j++) {
  2541. sumi += x[i].qs[j]*y[i].qs[j];
  2542. }
  2543. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2544. }
  2545. *s = sumf;
  2546. #endif
  2547. }
  2548. // compute GGML_VEC_DOT_UNROLL dot products at once
  2549. // xs - x row stride in bytes
  2550. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2551. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2552. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2553. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2554. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2555. }
  2556. #if defined(GGML_SIMD)
  2557. const int np = (n & ~(GGML_F16_STEP - 1));
  2558. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2559. GGML_F16_VEC ax[GGML_F16_ARR];
  2560. GGML_F16_VEC ay[GGML_F16_ARR];
  2561. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2562. for (int j = 0; j < GGML_F16_ARR; j++) {
  2563. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2564. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2565. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2566. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2567. }
  2568. }
  2569. }
  2570. // reduce sum0..sum3 to sum0
  2571. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2572. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2573. }
  2574. // leftovers
  2575. for (int i = np; i < n; ++i) {
  2576. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2577. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2578. }
  2579. }
  2580. #else
  2581. for (int i = 0; i < n; ++i) {
  2582. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2583. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2584. }
  2585. }
  2586. #endif
  2587. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2588. s[i] = sumf[i];
  2589. }
  2590. }
  2591. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2592. #if defined(GGML_SIMD)
  2593. const int np = (n & ~(GGML_F32_STEP - 1));
  2594. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2595. GGML_F32_VEC ax[GGML_F32_ARR];
  2596. GGML_F32_VEC ay[GGML_F32_ARR];
  2597. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2598. for (int j = 0; j < GGML_F32_ARR; j++) {
  2599. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2600. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2601. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2602. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2603. }
  2604. }
  2605. // leftovers
  2606. for (int i = np; i < n; ++i) {
  2607. y[i] += x[i]*v;
  2608. }
  2609. #else
  2610. // scalar
  2611. for (int i = 0; i < n; ++i) {
  2612. y[i] += x[i]*v;
  2613. }
  2614. #endif
  2615. }
  2616. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2617. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2618. #if defined(GGML_SIMD)
  2619. const int np = (n & ~(GGML_F32_STEP - 1));
  2620. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2621. GGML_F32_VEC ay[GGML_F32_ARR];
  2622. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2623. for (int j = 0; j < GGML_F32_ARR; j++) {
  2624. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2625. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2626. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2627. }
  2628. }
  2629. // leftovers
  2630. for (int i = np; i < n; ++i) {
  2631. y[i] *= v;
  2632. }
  2633. #else
  2634. // scalar
  2635. for (int i = 0; i < n; ++i) {
  2636. y[i] *= v;
  2637. }
  2638. #endif
  2639. }
  2640. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2641. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2642. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2643. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2644. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2645. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2646. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2647. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2648. static const float GELU_COEF_A = 0.044715f;
  2649. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2650. inline static float ggml_gelu_f32(float x) {
  2651. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2652. }
  2653. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2654. const uint16_t * i16 = (const uint16_t *) x;
  2655. for (int i = 0; i < n; ++i) {
  2656. y[i] = table_gelu_f16[i16[i]];
  2657. }
  2658. }
  2659. #ifdef GGML_GELU_FP16
  2660. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2661. uint16_t t;
  2662. for (int i = 0; i < n; ++i) {
  2663. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2664. memcpy(&t, &fp16, sizeof(uint16_t));
  2665. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2666. }
  2667. }
  2668. #else
  2669. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2670. for (int i = 0; i < n; ++i) {
  2671. y[i] = ggml_gelu_f32(x[i]);
  2672. }
  2673. }
  2674. #endif
  2675. // Sigmoid Linear Unit (SiLU) function
  2676. inline static float ggml_silu_f32(float x) {
  2677. return x/(1.0f + expf(-x));
  2678. }
  2679. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2680. // const uint16_t * i16 = (const uint16_t *) x;
  2681. // for (int i = 0; i < n; ++i) {
  2682. // y[i] = table_silu_f16[i16[i]];
  2683. // }
  2684. //}
  2685. #ifdef GGML_SILU_FP16
  2686. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2687. uint16_t t;
  2688. for (int i = 0; i < n; ++i) {
  2689. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2690. memcpy(&t, &fp16, sizeof(uint16_t));
  2691. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2692. }
  2693. }
  2694. #else
  2695. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2696. for (int i = 0; i < n; ++i) {
  2697. y[i] = ggml_silu_f32(x[i]);
  2698. }
  2699. }
  2700. #endif
  2701. inline static float ggml_silu_backward_f32(float x, float dy) {
  2702. const float s = 1.0f/(1.0f + expf(-x));
  2703. return dy*s*(1.0f + x*(1.0f - s));
  2704. }
  2705. #ifdef GGML_SILU_FP16
  2706. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2707. for (int i = 0; i < n; ++i) {
  2708. // we did not use x[i] to compute forward silu but its f16 equivalent
  2709. // take derivative at f16 of x[i]:
  2710. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2711. float usedx = GGML_FP16_TO_FP32(fp16);
  2712. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2713. }
  2714. }
  2715. #else
  2716. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2717. for (int i = 0; i < n; ++i) {
  2718. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2719. }
  2720. }
  2721. #endif
  2722. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2723. #ifndef GGML_USE_ACCELERATE
  2724. ggml_float sum = 0.0;
  2725. for (int i = 0; i < n; ++i) {
  2726. sum += (ggml_float)x[i];
  2727. }
  2728. *s = sum;
  2729. #else
  2730. vDSP_sve(x, 1, s, n);
  2731. #endif
  2732. }
  2733. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2734. ggml_float sum = 0.0;
  2735. for (int i = 0; i < n; ++i) {
  2736. sum += (ggml_float)x[i];
  2737. }
  2738. *s = sum;
  2739. }
  2740. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2741. #ifndef GGML_USE_ACCELERATE
  2742. float max = -INFINITY;
  2743. for (int i = 0; i < n; ++i) {
  2744. max = MAX(max, x[i]);
  2745. }
  2746. *s = max;
  2747. #else
  2748. vDSP_maxv(x, 1, s, n);
  2749. #endif
  2750. }
  2751. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2752. ggml_vec_norm_f32(n, s, x);
  2753. *s = 1.f/(*s);
  2754. }
  2755. //
  2756. // logging
  2757. //
  2758. #if (GGML_DEBUG >= 1)
  2759. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2760. #else
  2761. #define GGML_PRINT_DEBUG(...)
  2762. #endif
  2763. #if (GGML_DEBUG >= 5)
  2764. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2765. #else
  2766. #define GGML_PRINT_DEBUG_5(...)
  2767. #endif
  2768. #if (GGML_DEBUG >= 10)
  2769. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2770. #else
  2771. #define GGML_PRINT_DEBUG_10(...)
  2772. #endif
  2773. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2774. //
  2775. // data types
  2776. //
  2777. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2778. [GGML_TYPE_F32] = 1,
  2779. [GGML_TYPE_F16] = 1,
  2780. [GGML_TYPE_Q4_0] = QK4_0,
  2781. [GGML_TYPE_Q4_1] = QK4_1,
  2782. [GGML_TYPE_Q5_0] = QK5_0,
  2783. [GGML_TYPE_Q5_1] = QK5_1,
  2784. [GGML_TYPE_Q8_0] = QK8_0,
  2785. [GGML_TYPE_Q8_1] = QK8_1,
  2786. [GGML_TYPE_I8] = 1,
  2787. [GGML_TYPE_I16] = 1,
  2788. [GGML_TYPE_I32] = 1,
  2789. };
  2790. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2791. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2792. [GGML_TYPE_F32] = sizeof(float),
  2793. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2794. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2795. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2796. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2797. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2798. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2799. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2800. [GGML_TYPE_I8] = sizeof(int8_t),
  2801. [GGML_TYPE_I16] = sizeof(int16_t),
  2802. [GGML_TYPE_I32] = sizeof(int32_t),
  2803. };
  2804. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2805. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2806. [GGML_TYPE_F32] = "f32",
  2807. [GGML_TYPE_F16] = "f16",
  2808. [GGML_TYPE_Q4_0] = "q4_0",
  2809. [GGML_TYPE_Q4_1] = "q4_1",
  2810. [GGML_TYPE_Q5_0] = "q5_0",
  2811. [GGML_TYPE_Q5_1] = "q5_1",
  2812. [GGML_TYPE_Q8_0] = "q8_0",
  2813. [GGML_TYPE_Q8_1] = "q8_1",
  2814. [GGML_TYPE_I8] = "i8",
  2815. [GGML_TYPE_I16] = "i16",
  2816. [GGML_TYPE_I32] = "i32",
  2817. };
  2818. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2819. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2820. [GGML_TYPE_F32] = false,
  2821. [GGML_TYPE_F16] = false,
  2822. [GGML_TYPE_Q4_0] = true,
  2823. [GGML_TYPE_Q4_1] = true,
  2824. [GGML_TYPE_Q5_0] = true,
  2825. [GGML_TYPE_Q5_1] = true,
  2826. [GGML_TYPE_Q8_0] = true,
  2827. [GGML_TYPE_Q8_1] = true,
  2828. [GGML_TYPE_I8] = false,
  2829. [GGML_TYPE_I16] = false,
  2830. [GGML_TYPE_I32] = false,
  2831. };
  2832. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2833. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2834. "NONE",
  2835. "DUP",
  2836. "ADD",
  2837. "ADD1",
  2838. "ACC",
  2839. "SUB",
  2840. "MUL",
  2841. "DIV",
  2842. "SQR",
  2843. "SQRT",
  2844. "LOG",
  2845. "SUM",
  2846. "SUM_ROWS",
  2847. "MEAN",
  2848. "REPEAT",
  2849. "ABS",
  2850. "SGN",
  2851. "NEG",
  2852. "STEP",
  2853. "RELU",
  2854. "GELU",
  2855. "SILU",
  2856. "SILU_BACK",
  2857. "NORM",
  2858. "RMS_NORM",
  2859. "RMS_NORM_BACK",
  2860. "MUL_MAT",
  2861. "SCALE",
  2862. "SET",
  2863. "CPY",
  2864. "CONT",
  2865. "RESHAPE",
  2866. "VIEW",
  2867. "PERMUTE",
  2868. "TRANSPOSE",
  2869. "GET_ROWS",
  2870. "GET_ROWS_BACK",
  2871. "DIAG",
  2872. "DIAG_MASK_INF",
  2873. "DIAG_MASK_ZERO",
  2874. "SOFT_MAX",
  2875. "ROPE",
  2876. "ROPE_BACK",
  2877. "ALIBI",
  2878. "CLAMP",
  2879. "CONV_1D_1S",
  2880. "CONV_1D_2S",
  2881. "FLASH_ATTN",
  2882. "FLASH_FF",
  2883. "MAP_UNARY",
  2884. "MAP_BINARY",
  2885. };
  2886. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2887. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2888. "none",
  2889. "x",
  2890. "x+y",
  2891. "x+y",
  2892. "view(x,nb,offset)+=y->x",
  2893. "x-y",
  2894. "x*y",
  2895. "x/y",
  2896. "x^2",
  2897. "√x",
  2898. "log(x)",
  2899. "Σx",
  2900. "Σx_k",
  2901. "Σx/n",
  2902. "repeat(x)",
  2903. "abs(x)",
  2904. "sgn(x)",
  2905. "-x",
  2906. "step(x)",
  2907. "relu(x)",
  2908. "gelu(x)",
  2909. "silu(x)",
  2910. "silu_back(x)",
  2911. "norm(x)",
  2912. "rms_norm(x)",
  2913. "rms_norm_back(x)",
  2914. "X*Y",
  2915. "x*v",
  2916. "y-\\>view(x)",
  2917. "x-\\>y",
  2918. "cont(x)",
  2919. "reshape(x)",
  2920. "view(x)",
  2921. "permute(x)",
  2922. "transpose(x)",
  2923. "get_rows(x)",
  2924. "get_rows_back(x)",
  2925. "diag(x)",
  2926. "diag_mask_inf(x)",
  2927. "diag_mask_zero(x)",
  2928. "soft_max(x)",
  2929. "rope(x)",
  2930. "rope_back(x)",
  2931. "alibi(x)",
  2932. "clamp(x)",
  2933. "conv_1d_1s(x)",
  2934. "conv_1d_2s(x)",
  2935. "flash_attn(x)",
  2936. "flash_ff(x)",
  2937. "f(x)",
  2938. "f(x,y)",
  2939. };
  2940. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2941. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2942. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2943. //
  2944. // ggml context
  2945. //
  2946. struct ggml_context {
  2947. size_t mem_size;
  2948. void * mem_buffer;
  2949. bool mem_buffer_owned;
  2950. bool no_alloc;
  2951. int n_objects;
  2952. struct ggml_object * objects_begin;
  2953. struct ggml_object * objects_end;
  2954. struct ggml_scratch scratch;
  2955. struct ggml_scratch scratch_save;
  2956. };
  2957. struct ggml_context_container {
  2958. bool used;
  2959. struct ggml_context context;
  2960. };
  2961. //
  2962. // compute types
  2963. //
  2964. enum ggml_task_type {
  2965. GGML_TASK_INIT = 0,
  2966. GGML_TASK_COMPUTE,
  2967. GGML_TASK_FINALIZE,
  2968. };
  2969. struct ggml_compute_params {
  2970. enum ggml_task_type type;
  2971. int ith, nth;
  2972. // work buffer for all threads
  2973. size_t wsize;
  2974. void * wdata;
  2975. };
  2976. //
  2977. // ggml state
  2978. //
  2979. struct ggml_state {
  2980. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2981. };
  2982. // global state
  2983. static struct ggml_state g_state;
  2984. static atomic_int g_state_barrier = 0;
  2985. // barrier via spin lock
  2986. inline static void ggml_critical_section_start(void) {
  2987. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2988. while (processing > 0) {
  2989. // wait for other threads to finish
  2990. atomic_fetch_sub(&g_state_barrier, 1);
  2991. sched_yield(); // TODO: reconsider this
  2992. processing = atomic_fetch_add(&g_state_barrier, 1);
  2993. }
  2994. }
  2995. // TODO: make this somehow automatically executed
  2996. // some sort of "sentry" mechanism
  2997. inline static void ggml_critical_section_end(void) {
  2998. atomic_fetch_sub(&g_state_barrier, 1);
  2999. }
  3000. ////////////////////////////////////////////////////////////////////////////////
  3001. void ggml_print_object(const struct ggml_object * obj) {
  3002. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3003. obj->offs, obj->size, (const void *) obj->next);
  3004. }
  3005. void ggml_print_objects(const struct ggml_context * ctx) {
  3006. struct ggml_object * obj = ctx->objects_begin;
  3007. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3008. while (obj != NULL) {
  3009. ggml_print_object(obj);
  3010. obj = obj->next;
  3011. }
  3012. GGML_PRINT("%s: --- end ---\n", __func__);
  3013. }
  3014. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3015. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3016. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3017. }
  3018. int ggml_nrows(const struct ggml_tensor * tensor) {
  3019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3020. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3021. }
  3022. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3023. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3024. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3025. }
  3026. int ggml_blck_size(enum ggml_type type) {
  3027. return GGML_BLCK_SIZE[type];
  3028. }
  3029. size_t ggml_type_size(enum ggml_type type) {
  3030. return GGML_TYPE_SIZE[type];
  3031. }
  3032. float ggml_type_sizef(enum ggml_type type) {
  3033. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3034. }
  3035. const char * ggml_type_name(enum ggml_type type) {
  3036. return GGML_TYPE_NAME[type];
  3037. }
  3038. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3039. return GGML_TYPE_SIZE[tensor->type];
  3040. }
  3041. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3042. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3043. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3044. }
  3045. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3046. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3047. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3048. }
  3049. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3050. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3051. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3052. }
  3053. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3054. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3055. return
  3056. (t0->ne[0] == t1->ne[0]) &&
  3057. (t0->ne[2] == t1->ne[2]) &&
  3058. (t0->ne[3] == t1->ne[3]);
  3059. }
  3060. bool ggml_is_quantized(enum ggml_type type) {
  3061. return GGML_IS_QUANTIZED[type];
  3062. }
  3063. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3064. enum ggml_type wtype = GGML_TYPE_COUNT;
  3065. switch (ftype) {
  3066. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3067. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3068. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3069. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3070. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3071. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3072. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3073. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3074. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3075. }
  3076. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3077. return wtype;
  3078. }
  3079. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3080. return tensor->nb[0] > tensor->nb[1];
  3081. }
  3082. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3083. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3084. return
  3085. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3086. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3087. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3088. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3089. }
  3090. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3092. return
  3093. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3094. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3095. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3096. }
  3097. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3098. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3099. return
  3100. (t0->ne[0] == t1->ne[0] ) &&
  3101. (t0->ne[1] == t1->ne[1] ) &&
  3102. (t0->ne[2] == t1->ne[2] ) &&
  3103. (t0->ne[3] == t1->ne[3] );
  3104. }
  3105. // check if t1 can be represented as a repeatition of t0
  3106. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3107. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3108. return
  3109. (t1->ne[0]%t0->ne[0] == 0) &&
  3110. (t1->ne[1]%t0->ne[1] == 0) &&
  3111. (t1->ne[2]%t0->ne[2] == 0) &&
  3112. (t1->ne[3]%t0->ne[3] == 0);
  3113. }
  3114. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3115. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3116. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3117. }
  3118. static inline int ggml_up32(int n) {
  3119. return (n + 31) & ~31;
  3120. }
  3121. //static inline int ggml_up64(int n) {
  3122. // return (n + 63) & ~63;
  3123. //}
  3124. static inline int ggml_up(int n, int m) {
  3125. // assert m is a power of 2
  3126. GGML_ASSERT((m & (m - 1)) == 0);
  3127. return (n + m - 1) & ~(m - 1);
  3128. }
  3129. // assert that pointer is aligned to GGML_MEM_ALIGN
  3130. #define ggml_assert_aligned(ptr) \
  3131. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3132. ////////////////////////////////////////////////////////////////////////////////
  3133. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3134. // make this function thread safe
  3135. ggml_critical_section_start();
  3136. static bool is_first_call = true;
  3137. if (is_first_call) {
  3138. // initialize time system (required on Windows)
  3139. ggml_time_init();
  3140. // initialize GELU, SILU and EXP F32 tables
  3141. {
  3142. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3143. ggml_fp16_t ii;
  3144. for (int i = 0; i < (1 << 16); ++i) {
  3145. uint16_t ui = i;
  3146. memcpy(&ii, &ui, sizeof(ii));
  3147. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3148. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3149. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3150. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3151. }
  3152. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3153. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3154. }
  3155. // initialize g_state
  3156. {
  3157. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3158. g_state = (struct ggml_state) {
  3159. /*.contexts =*/ { { 0 } },
  3160. };
  3161. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3162. g_state.contexts[i].used = false;
  3163. }
  3164. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3165. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3166. }
  3167. #if defined(GGML_USE_CUBLAS)
  3168. ggml_init_cublas();
  3169. #elif defined(GGML_USE_CLBLAST)
  3170. ggml_cl_init();
  3171. #endif
  3172. is_first_call = false;
  3173. }
  3174. // find non-used context in g_state
  3175. struct ggml_context * ctx = NULL;
  3176. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3177. if (!g_state.contexts[i].used) {
  3178. g_state.contexts[i].used = true;
  3179. ctx = &g_state.contexts[i].context;
  3180. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3181. break;
  3182. }
  3183. }
  3184. if (ctx == NULL) {
  3185. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3186. ggml_critical_section_end();
  3187. return NULL;
  3188. }
  3189. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3190. *ctx = (struct ggml_context) {
  3191. /*.mem_size =*/ mem_size,
  3192. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3193. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3194. /*.no_alloc =*/ params.no_alloc,
  3195. /*.n_objects =*/ 0,
  3196. /*.objects_begin =*/ NULL,
  3197. /*.objects_end =*/ NULL,
  3198. /*.scratch =*/ { 0, 0, NULL, },
  3199. /*.scratch_save =*/ { 0, 0, NULL, },
  3200. };
  3201. GGML_ASSERT(ctx->mem_buffer != NULL);
  3202. ggml_assert_aligned(ctx->mem_buffer);
  3203. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3204. ggml_critical_section_end();
  3205. return ctx;
  3206. }
  3207. void ggml_free(struct ggml_context * ctx) {
  3208. // make this function thread safe
  3209. ggml_critical_section_start();
  3210. bool found = false;
  3211. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3212. if (&g_state.contexts[i].context == ctx) {
  3213. g_state.contexts[i].used = false;
  3214. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3215. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3216. if (ctx->mem_buffer_owned) {
  3217. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3218. }
  3219. found = true;
  3220. break;
  3221. }
  3222. }
  3223. if (!found) {
  3224. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3225. }
  3226. ggml_critical_section_end();
  3227. }
  3228. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3229. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3230. }
  3231. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3232. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3233. ctx->scratch = scratch;
  3234. return result;
  3235. }
  3236. // IMPORTANT:
  3237. // when creating "opt" tensors, always save and load the scratch buffer
  3238. // this is an error prone process, but it is necessary to support inplace
  3239. // operators when using scratch buffers
  3240. // TODO: implement a better way
  3241. void ggml_scratch_save(struct ggml_context * ctx) {
  3242. ctx->scratch_save = ctx->scratch;
  3243. ctx->scratch.data = NULL;
  3244. }
  3245. void ggml_scratch_load(struct ggml_context * ctx) {
  3246. ctx->scratch = ctx->scratch_save;
  3247. }
  3248. ////////////////////////////////////////////////////////////////////////////////
  3249. struct ggml_tensor * ggml_new_tensor_impl(
  3250. struct ggml_context * ctx,
  3251. enum ggml_type type,
  3252. int n_dims,
  3253. const int64_t* ne,
  3254. void* data) {
  3255. // always insert objects at the end of the context's memory pool
  3256. struct ggml_object * obj_cur = ctx->objects_end;
  3257. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3258. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3259. const size_t cur_end = cur_offs + cur_size;
  3260. size_t size_needed = 0;
  3261. if (data == NULL && !ctx->no_alloc) {
  3262. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3263. for (int i = 1; i < n_dims; i++) {
  3264. size_needed *= ne[i];
  3265. }
  3266. // align to GGML_MEM_ALIGN
  3267. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3268. }
  3269. char * const mem_buffer = ctx->mem_buffer;
  3270. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3271. if (ctx->scratch.data == NULL || data != NULL) {
  3272. size_needed += sizeof(struct ggml_tensor);
  3273. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3274. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3275. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3276. assert(false);
  3277. return NULL;
  3278. }
  3279. *obj_new = (struct ggml_object) {
  3280. .offs = cur_end + GGML_OBJECT_SIZE,
  3281. .size = size_needed,
  3282. .next = NULL,
  3283. };
  3284. } else {
  3285. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3286. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3287. assert(false);
  3288. return NULL;
  3289. }
  3290. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3291. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3292. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3293. assert(false);
  3294. return NULL;
  3295. }
  3296. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3297. *obj_new = (struct ggml_object) {
  3298. .offs = cur_end + GGML_OBJECT_SIZE,
  3299. .size = sizeof(struct ggml_tensor),
  3300. .next = NULL,
  3301. };
  3302. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3303. ctx->scratch.offs += size_needed;
  3304. }
  3305. if (obj_cur != NULL) {
  3306. obj_cur->next = obj_new;
  3307. } else {
  3308. // this is the first object in this context
  3309. ctx->objects_begin = obj_new;
  3310. }
  3311. ctx->objects_end = obj_new;
  3312. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3313. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3314. ggml_assert_aligned(result);
  3315. *result = (struct ggml_tensor) {
  3316. /*.type =*/ type,
  3317. /*.backend =*/ GGML_BACKEND_CPU,
  3318. /*.n_dims =*/ n_dims,
  3319. /*.ne =*/ { 1, 1, 1, 1 },
  3320. /*.nb =*/ { 0, 0, 0, 0 },
  3321. /*.op =*/ GGML_OP_NONE,
  3322. /*.is_param =*/ false,
  3323. /*.grad =*/ NULL,
  3324. /*.src0 =*/ NULL,
  3325. /*.src1 =*/ NULL,
  3326. /*.opt =*/ { NULL },
  3327. /*.n_tasks =*/ 0,
  3328. /*.perf_runs =*/ 0,
  3329. /*.perf_cycles =*/ 0,
  3330. /*.perf_time_us =*/ 0,
  3331. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3332. /*.name =*/ { 0 },
  3333. /*.pad =*/ { 0 },
  3334. };
  3335. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3336. //ggml_assert_aligned(result->data);
  3337. for (int i = 0; i < n_dims; i++) {
  3338. result->ne[i] = ne[i];
  3339. }
  3340. result->nb[0] = GGML_TYPE_SIZE[type];
  3341. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3342. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3343. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3344. }
  3345. ctx->n_objects++;
  3346. return result;
  3347. }
  3348. struct ggml_tensor * ggml_new_tensor(
  3349. struct ggml_context * ctx,
  3350. enum ggml_type type,
  3351. int n_dims,
  3352. const int64_t * ne) {
  3353. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3354. }
  3355. struct ggml_tensor * ggml_new_tensor_1d(
  3356. struct ggml_context * ctx,
  3357. enum ggml_type type,
  3358. int64_t ne0) {
  3359. return ggml_new_tensor(ctx, type, 1, &ne0);
  3360. }
  3361. struct ggml_tensor * ggml_new_tensor_2d(
  3362. struct ggml_context * ctx,
  3363. enum ggml_type type,
  3364. int64_t ne0,
  3365. int64_t ne1) {
  3366. const int64_t ne[2] = { ne0, ne1 };
  3367. return ggml_new_tensor(ctx, type, 2, ne);
  3368. }
  3369. struct ggml_tensor * ggml_new_tensor_3d(
  3370. struct ggml_context * ctx,
  3371. enum ggml_type type,
  3372. int64_t ne0,
  3373. int64_t ne1,
  3374. int64_t ne2) {
  3375. const int64_t ne[3] = { ne0, ne1, ne2 };
  3376. return ggml_new_tensor(ctx, type, 3, ne);
  3377. }
  3378. struct ggml_tensor * ggml_new_tensor_4d(
  3379. struct ggml_context * ctx,
  3380. enum ggml_type type,
  3381. int64_t ne0,
  3382. int64_t ne1,
  3383. int64_t ne2,
  3384. int64_t ne3) {
  3385. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3386. return ggml_new_tensor(ctx, type, 4, ne);
  3387. }
  3388. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3389. ggml_scratch_save(ctx);
  3390. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3391. ggml_scratch_load(ctx);
  3392. ggml_set_i32(result, value);
  3393. return result;
  3394. }
  3395. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3396. ggml_scratch_save(ctx);
  3397. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3398. ggml_scratch_load(ctx);
  3399. ggml_set_f32(result, value);
  3400. return result;
  3401. }
  3402. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3403. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3404. }
  3405. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3406. memset(tensor->data, 0, ggml_nbytes(tensor));
  3407. return tensor;
  3408. }
  3409. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3410. const int n = ggml_nrows(tensor);
  3411. const int nc = tensor->ne[0];
  3412. const size_t n1 = tensor->nb[1];
  3413. char * const data = tensor->data;
  3414. switch (tensor->type) {
  3415. case GGML_TYPE_I8:
  3416. {
  3417. assert(tensor->nb[0] == sizeof(int8_t));
  3418. for (int i = 0; i < n; i++) {
  3419. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3420. }
  3421. } break;
  3422. case GGML_TYPE_I16:
  3423. {
  3424. assert(tensor->nb[0] == sizeof(int16_t));
  3425. for (int i = 0; i < n; i++) {
  3426. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3427. }
  3428. } break;
  3429. case GGML_TYPE_I32:
  3430. {
  3431. assert(tensor->nb[0] == sizeof(int32_t));
  3432. for (int i = 0; i < n; i++) {
  3433. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3434. }
  3435. } break;
  3436. case GGML_TYPE_F16:
  3437. {
  3438. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3439. for (int i = 0; i < n; i++) {
  3440. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3441. }
  3442. } break;
  3443. case GGML_TYPE_F32:
  3444. {
  3445. assert(tensor->nb[0] == sizeof(float));
  3446. for (int i = 0; i < n; i++) {
  3447. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3448. }
  3449. } break;
  3450. default:
  3451. {
  3452. GGML_ASSERT(false);
  3453. } break;
  3454. }
  3455. return tensor;
  3456. }
  3457. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3458. const int n = ggml_nrows(tensor);
  3459. const int nc = tensor->ne[0];
  3460. const size_t n1 = tensor->nb[1];
  3461. char * const data = tensor->data;
  3462. switch (tensor->type) {
  3463. case GGML_TYPE_I8:
  3464. {
  3465. assert(tensor->nb[0] == sizeof(int8_t));
  3466. for (int i = 0; i < n; i++) {
  3467. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3468. }
  3469. } break;
  3470. case GGML_TYPE_I16:
  3471. {
  3472. assert(tensor->nb[0] == sizeof(int16_t));
  3473. for (int i = 0; i < n; i++) {
  3474. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3475. }
  3476. } break;
  3477. case GGML_TYPE_I32:
  3478. {
  3479. assert(tensor->nb[0] == sizeof(int32_t));
  3480. for (int i = 0; i < n; i++) {
  3481. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3482. }
  3483. } break;
  3484. case GGML_TYPE_F16:
  3485. {
  3486. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3487. for (int i = 0; i < n; i++) {
  3488. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3489. }
  3490. } break;
  3491. case GGML_TYPE_F32:
  3492. {
  3493. assert(tensor->nb[0] == sizeof(float));
  3494. for (int i = 0; i < n; i++) {
  3495. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3496. }
  3497. } break;
  3498. default:
  3499. {
  3500. GGML_ASSERT(false);
  3501. } break;
  3502. }
  3503. return tensor;
  3504. }
  3505. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3506. switch (tensor->type) {
  3507. case GGML_TYPE_I8:
  3508. {
  3509. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3510. return ((int8_t *)(tensor->data))[i];
  3511. } break;
  3512. case GGML_TYPE_I16:
  3513. {
  3514. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3515. return ((int16_t *)(tensor->data))[i];
  3516. } break;
  3517. case GGML_TYPE_I32:
  3518. {
  3519. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3520. return ((int32_t *)(tensor->data))[i];
  3521. } break;
  3522. case GGML_TYPE_F16:
  3523. {
  3524. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3525. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3526. } break;
  3527. case GGML_TYPE_F32:
  3528. {
  3529. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3530. return ((float *)(tensor->data))[i];
  3531. } break;
  3532. default:
  3533. {
  3534. GGML_ASSERT(false);
  3535. } break;
  3536. }
  3537. return 0.0f;
  3538. }
  3539. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3540. switch (tensor->type) {
  3541. case GGML_TYPE_I8:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3544. ((int8_t *)(tensor->data))[i] = value;
  3545. } break;
  3546. case GGML_TYPE_I16:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3549. ((int16_t *)(tensor->data))[i] = value;
  3550. } break;
  3551. case GGML_TYPE_I32:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3554. ((int32_t *)(tensor->data))[i] = value;
  3555. } break;
  3556. case GGML_TYPE_F16:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3559. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3560. } break;
  3561. case GGML_TYPE_F32:
  3562. {
  3563. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3564. ((float *)(tensor->data))[i] = value;
  3565. } break;
  3566. default:
  3567. {
  3568. GGML_ASSERT(false);
  3569. } break;
  3570. }
  3571. }
  3572. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3573. switch (tensor->type) {
  3574. case GGML_TYPE_I8:
  3575. {
  3576. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3577. return ((int8_t *)(tensor->data))[i];
  3578. } break;
  3579. case GGML_TYPE_I16:
  3580. {
  3581. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3582. return ((int16_t *)(tensor->data))[i];
  3583. } break;
  3584. case GGML_TYPE_I32:
  3585. {
  3586. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3587. return ((int32_t *)(tensor->data))[i];
  3588. } break;
  3589. case GGML_TYPE_F16:
  3590. {
  3591. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3592. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3593. } break;
  3594. case GGML_TYPE_F32:
  3595. {
  3596. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3597. return ((float *)(tensor->data))[i];
  3598. } break;
  3599. default:
  3600. {
  3601. GGML_ASSERT(false);
  3602. } break;
  3603. }
  3604. return 0.0f;
  3605. }
  3606. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3607. switch (tensor->type) {
  3608. case GGML_TYPE_I8:
  3609. {
  3610. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3611. ((int8_t *)(tensor->data))[i] = value;
  3612. } break;
  3613. case GGML_TYPE_I16:
  3614. {
  3615. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3616. ((int16_t *)(tensor->data))[i] = value;
  3617. } break;
  3618. case GGML_TYPE_I32:
  3619. {
  3620. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3621. ((int32_t *)(tensor->data))[i] = value;
  3622. } break;
  3623. case GGML_TYPE_F16:
  3624. {
  3625. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3626. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3627. } break;
  3628. case GGML_TYPE_F32:
  3629. {
  3630. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3631. ((float *)(tensor->data))[i] = value;
  3632. } break;
  3633. default:
  3634. {
  3635. GGML_ASSERT(false);
  3636. } break;
  3637. }
  3638. }
  3639. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3640. return tensor->data;
  3641. }
  3642. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3643. assert(tensor->type == GGML_TYPE_F32);
  3644. return (float *)(tensor->data);
  3645. }
  3646. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3647. return tensor->name;
  3648. }
  3649. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3650. strncpy(tensor->name, name, sizeof(tensor->name));
  3651. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3652. }
  3653. struct ggml_tensor * ggml_view_tensor(
  3654. struct ggml_context * ctx,
  3655. const struct ggml_tensor * src) {
  3656. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3657. result->nb[0] = src->nb[0];
  3658. result->nb[1] = src->nb[1];
  3659. result->nb[2] = src->nb[2];
  3660. result->nb[3] = src->nb[3];
  3661. return result;
  3662. }
  3663. ////////////////////////////////////////////////////////////////////////////////
  3664. // ggml_dup
  3665. struct ggml_tensor * ggml_dup_impl(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a,
  3668. bool inplace) {
  3669. bool is_node = false;
  3670. if (!inplace && (a->grad)) {
  3671. is_node = true;
  3672. }
  3673. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3674. result->op = GGML_OP_DUP;
  3675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3676. result->src0 = a;
  3677. result->src1 = NULL;
  3678. return result;
  3679. }
  3680. struct ggml_tensor * ggml_dup(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a) {
  3683. return ggml_dup_impl(ctx, a, false);
  3684. }
  3685. struct ggml_tensor * ggml_dup_inplace(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a) {
  3688. return ggml_dup_impl(ctx, a, true);
  3689. }
  3690. // ggml_add
  3691. struct ggml_tensor * ggml_add_impl(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. struct ggml_tensor * b,
  3695. bool inplace) {
  3696. GGML_ASSERT(ggml_are_same_shape(a, b));
  3697. bool is_node = false;
  3698. if (!inplace && (a->grad || b->grad)) {
  3699. is_node = true;
  3700. }
  3701. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3702. result->op = GGML_OP_ADD;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src0 = a;
  3705. result->src1 = b;
  3706. return result;
  3707. }
  3708. struct ggml_tensor * ggml_add(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. struct ggml_tensor * b) {
  3712. return ggml_add_impl(ctx, a, b, false);
  3713. }
  3714. struct ggml_tensor * ggml_add_inplace(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. struct ggml_tensor * b) {
  3718. return ggml_add_impl(ctx, a, b, true);
  3719. }
  3720. // ggml_add1
  3721. struct ggml_tensor * ggml_add1_impl(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b,
  3725. bool inplace) {
  3726. GGML_ASSERT(ggml_is_scalar(b));
  3727. GGML_ASSERT(ggml_is_padded_1d(a));
  3728. bool is_node = false;
  3729. if (!inplace && (a->grad || b->grad)) {
  3730. is_node = true;
  3731. }
  3732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3733. result->op = GGML_OP_ADD1;
  3734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3735. result->src0 = a;
  3736. result->src1 = b;
  3737. return result;
  3738. }
  3739. struct ggml_tensor * ggml_add1(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. struct ggml_tensor * b) {
  3743. return ggml_add1_impl(ctx, a, b, false);
  3744. }
  3745. struct ggml_tensor * ggml_add1_inplace(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b) {
  3749. return ggml_add1_impl(ctx, a, b, true);
  3750. }
  3751. // ggml_acc
  3752. struct ggml_tensor * ggml_acc_impl(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. struct ggml_tensor * b,
  3756. size_t nb1,
  3757. size_t nb2,
  3758. size_t nb3,
  3759. size_t offset,
  3760. bool inplace) {
  3761. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3762. GGML_ASSERT(ggml_is_contiguous(a));
  3763. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3764. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3765. bool is_node = false;
  3766. if (!inplace && (a->grad || b->grad)) {
  3767. is_node = true;
  3768. }
  3769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3770. ggml_scratch_save(ctx);
  3771. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3772. ((int32_t *) c->data)[0] = nb1;
  3773. ((int32_t *) c->data)[1] = nb2;
  3774. ((int32_t *) c->data)[2] = nb3;
  3775. ((int32_t *) c->data)[3] = offset;
  3776. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3777. ggml_scratch_load(ctx);
  3778. result->op = GGML_OP_ACC;
  3779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3780. result->src0 = a;
  3781. result->src1 = b;
  3782. result->opt[0] = c;
  3783. return result;
  3784. }
  3785. struct ggml_tensor * ggml_acc(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a,
  3788. struct ggml_tensor * b,
  3789. size_t nb1,
  3790. size_t nb2,
  3791. size_t nb3,
  3792. size_t offset) {
  3793. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3794. }
  3795. struct ggml_tensor * ggml_acc_inplace(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. struct ggml_tensor * b,
  3799. size_t nb1,
  3800. size_t nb2,
  3801. size_t nb3,
  3802. size_t offset) {
  3803. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3804. }
  3805. // ggml_sub
  3806. struct ggml_tensor * ggml_sub_impl(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. struct ggml_tensor * b,
  3810. bool inplace) {
  3811. GGML_ASSERT(ggml_are_same_shape(a, b));
  3812. bool is_node = false;
  3813. if (!inplace && (a->grad || b->grad)) {
  3814. is_node = true;
  3815. }
  3816. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3817. result->op = GGML_OP_SUB;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src0 = a;
  3820. result->src1 = b;
  3821. return result;
  3822. }
  3823. struct ggml_tensor * ggml_sub(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a,
  3826. struct ggml_tensor * b) {
  3827. return ggml_sub_impl(ctx, a, b, false);
  3828. }
  3829. struct ggml_tensor * ggml_sub_inplace(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. struct ggml_tensor * b) {
  3833. return ggml_sub_impl(ctx, a, b, true);
  3834. }
  3835. // ggml_mul
  3836. struct ggml_tensor * ggml_mul_impl(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. struct ggml_tensor * b,
  3840. bool inplace) {
  3841. // TODO: support less-strict constraint
  3842. // GGML_ASSERT(ggml_can_repeat(b, a));
  3843. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3844. bool is_node = false;
  3845. if (!inplace && (a->grad || b->grad)) {
  3846. // TODO: support backward pass for broadcasting
  3847. GGML_ASSERT(ggml_are_same_shape(a, b));
  3848. is_node = true;
  3849. }
  3850. if (inplace) {
  3851. GGML_ASSERT(is_node == false);
  3852. }
  3853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3854. result->op = GGML_OP_MUL;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src0 = a;
  3857. result->src1 = b;
  3858. return result;
  3859. }
  3860. struct ggml_tensor * ggml_mul(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b) {
  3864. return ggml_mul_impl(ctx, a, b, false);
  3865. }
  3866. struct ggml_tensor * ggml_mul_inplace(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. struct ggml_tensor * b) {
  3870. return ggml_mul_impl(ctx, a, b, true);
  3871. }
  3872. // ggml_div
  3873. struct ggml_tensor * ggml_div_impl(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. struct ggml_tensor * b,
  3877. bool inplace) {
  3878. GGML_ASSERT(ggml_are_same_shape(a, b));
  3879. bool is_node = false;
  3880. if (!inplace && (a->grad || b->grad)) {
  3881. is_node = true;
  3882. }
  3883. if (inplace) {
  3884. GGML_ASSERT(is_node == false);
  3885. }
  3886. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3887. result->op = GGML_OP_DIV;
  3888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3889. result->src0 = a;
  3890. result->src1 = b;
  3891. return result;
  3892. }
  3893. struct ggml_tensor * ggml_div(
  3894. struct ggml_context * ctx,
  3895. struct ggml_tensor * a,
  3896. struct ggml_tensor * b) {
  3897. return ggml_div_impl(ctx, a, b, false);
  3898. }
  3899. struct ggml_tensor * ggml_div_inplace(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a,
  3902. struct ggml_tensor * b) {
  3903. return ggml_div_impl(ctx, a, b, true);
  3904. }
  3905. // ggml_sqr
  3906. struct ggml_tensor * ggml_sqr_impl(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. bool inplace) {
  3910. bool is_node = false;
  3911. if (!inplace && (a->grad)) {
  3912. is_node = true;
  3913. }
  3914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3915. result->op = GGML_OP_SQR;
  3916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3917. result->src0 = a;
  3918. result->src1 = NULL;
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_sqr(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a) {
  3924. return ggml_sqr_impl(ctx, a, false);
  3925. }
  3926. struct ggml_tensor * ggml_sqr_inplace(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a) {
  3929. return ggml_sqr_impl(ctx, a, true);
  3930. }
  3931. // ggml_sqrt
  3932. struct ggml_tensor * ggml_sqrt_impl(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. bool inplace) {
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad)) {
  3938. is_node = true;
  3939. }
  3940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3941. result->op = GGML_OP_SQRT;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src0 = a;
  3944. result->src1 = NULL;
  3945. return result;
  3946. }
  3947. struct ggml_tensor * ggml_sqrt(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a) {
  3950. return ggml_sqrt_impl(ctx, a, false);
  3951. }
  3952. struct ggml_tensor * ggml_sqrt_inplace(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a) {
  3955. return ggml_sqrt_impl(ctx, a, true);
  3956. }
  3957. // ggml_log
  3958. struct ggml_tensor * ggml_log_impl(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a,
  3961. bool inplace) {
  3962. bool is_node = false;
  3963. if (!inplace && (a->grad)) {
  3964. is_node = true;
  3965. }
  3966. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3967. result->op = GGML_OP_LOG;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src0 = a;
  3970. result->src1 = NULL;
  3971. return result;
  3972. }
  3973. struct ggml_tensor * ggml_log(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a) {
  3976. return ggml_log_impl(ctx, a, false);
  3977. }
  3978. struct ggml_tensor * ggml_log_inplace(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a) {
  3981. return ggml_log_impl(ctx, a, true);
  3982. }
  3983. // ggml_sum
  3984. struct ggml_tensor * ggml_sum(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a) {
  3987. bool is_node = false;
  3988. if (a->grad) {
  3989. is_node = true;
  3990. }
  3991. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3992. result->op = GGML_OP_SUM;
  3993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3994. result->src0 = a;
  3995. result->src1 = NULL;
  3996. return result;
  3997. }
  3998. // ggml_sum_rows
  3999. struct ggml_tensor * ggml_sum_rows(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a) {
  4002. bool is_node = false;
  4003. if (a->grad) {
  4004. is_node = true;
  4005. }
  4006. int64_t ne[4] = {1,1,1,1};
  4007. for (int i=1; i<a->n_dims; ++i) {
  4008. ne[i] = a->ne[i];
  4009. }
  4010. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4011. result->op = GGML_OP_SUM_ROWS;
  4012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4013. result->src0 = a;
  4014. result->src1 = NULL;
  4015. return result;
  4016. }
  4017. // ggml_mean
  4018. struct ggml_tensor * ggml_mean(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a) {
  4021. bool is_node = false;
  4022. if (a->grad) {
  4023. GGML_ASSERT(false); // TODO: implement
  4024. is_node = true;
  4025. }
  4026. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4027. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4028. result->op = GGML_OP_MEAN;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src0 = a;
  4031. result->src1 = NULL;
  4032. return result;
  4033. }
  4034. // ggml_repeat
  4035. struct ggml_tensor * ggml_repeat(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. struct ggml_tensor * b) {
  4039. GGML_ASSERT(ggml_can_repeat(a, b));
  4040. bool is_node = false;
  4041. if (a->grad) {
  4042. is_node = true;
  4043. }
  4044. if (ggml_are_same_shape(a, b) && !is_node) {
  4045. return a;
  4046. }
  4047. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4048. result->op = GGML_OP_REPEAT;
  4049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4050. result->src0 = a;
  4051. result->src1 = b;
  4052. return result;
  4053. }
  4054. // ggml_abs
  4055. struct ggml_tensor * ggml_abs_impl(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. bool inplace) {
  4059. bool is_node = false;
  4060. if (!inplace && (a->grad)) {
  4061. is_node = true;
  4062. }
  4063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4064. result->op = GGML_OP_ABS;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src0 = a;
  4067. result->src1 = NULL;
  4068. return result;
  4069. }
  4070. struct ggml_tensor * ggml_abs(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a) {
  4073. return ggml_abs_impl(ctx, a, false);
  4074. }
  4075. struct ggml_tensor * ggml_abs_inplace(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a) {
  4078. return ggml_abs_impl(ctx, a, true);
  4079. }
  4080. // ggml_sgn
  4081. struct ggml_tensor * ggml_sgn_impl(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. bool inplace) {
  4085. bool is_node = false;
  4086. if (!inplace && (a->grad)) {
  4087. is_node = true;
  4088. }
  4089. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4090. result->op = GGML_OP_SGN;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src0 = a;
  4093. result->src1 = NULL;
  4094. return result;
  4095. }
  4096. struct ggml_tensor * ggml_sgn(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a) {
  4099. return ggml_sgn_impl(ctx, a, false);
  4100. }
  4101. struct ggml_tensor * ggml_sgn_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a) {
  4104. return ggml_sgn_impl(ctx, a, true);
  4105. }
  4106. // ggml_neg
  4107. struct ggml_tensor * ggml_neg_impl(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. bool inplace) {
  4111. bool is_node = false;
  4112. if (!inplace && (a->grad)) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4116. result->op = GGML_OP_NEG;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src0 = a;
  4119. result->src1 = NULL;
  4120. return result;
  4121. }
  4122. struct ggml_tensor * ggml_neg(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a) {
  4125. return ggml_neg_impl(ctx, a, false);
  4126. }
  4127. struct ggml_tensor * ggml_neg_inplace(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a) {
  4130. return ggml_neg_impl(ctx, a, true);
  4131. }
  4132. // ggml_step
  4133. struct ggml_tensor * ggml_step_impl(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. bool inplace) {
  4137. bool is_node = false;
  4138. if (!inplace && (a->grad)) {
  4139. is_node = true;
  4140. }
  4141. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4142. result->op = GGML_OP_STEP;
  4143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4144. result->src0 = a;
  4145. result->src1 = NULL;
  4146. return result;
  4147. }
  4148. struct ggml_tensor * ggml_step(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a) {
  4151. return ggml_step_impl(ctx, a, false);
  4152. }
  4153. struct ggml_tensor * ggml_step_inplace(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a) {
  4156. return ggml_step_impl(ctx, a, true);
  4157. }
  4158. // ggml_relu
  4159. struct ggml_tensor * ggml_relu_impl(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. bool inplace) {
  4163. bool is_node = false;
  4164. if (!inplace && (a->grad)) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4168. result->op = GGML_OP_RELU;
  4169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4170. result->src0 = a;
  4171. result->src1 = NULL;
  4172. return result;
  4173. }
  4174. struct ggml_tensor * ggml_relu(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. return ggml_relu_impl(ctx, a, false);
  4178. }
  4179. struct ggml_tensor * ggml_relu_inplace(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. return ggml_relu_impl(ctx, a, true);
  4183. }
  4184. // ggml_gelu
  4185. struct ggml_tensor * ggml_gelu_impl(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. bool inplace) {
  4189. bool is_node = false;
  4190. if (!inplace && (a->grad)) {
  4191. is_node = true;
  4192. }
  4193. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4194. result->op = GGML_OP_GELU;
  4195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4196. result->src0 = a;
  4197. result->src1 = NULL;
  4198. return result;
  4199. }
  4200. struct ggml_tensor * ggml_gelu(
  4201. struct ggml_context * ctx,
  4202. struct ggml_tensor * a) {
  4203. return ggml_gelu_impl(ctx, a, false);
  4204. }
  4205. struct ggml_tensor * ggml_gelu_inplace(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a) {
  4208. return ggml_gelu_impl(ctx, a, true);
  4209. }
  4210. // ggml_silu
  4211. struct ggml_tensor * ggml_silu_impl(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. bool inplace) {
  4215. bool is_node = false;
  4216. if (!inplace && (a->grad)) {
  4217. is_node = true;
  4218. }
  4219. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4220. result->op = GGML_OP_SILU;
  4221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4222. result->src0 = a;
  4223. result->src1 = NULL;
  4224. return result;
  4225. }
  4226. struct ggml_tensor * ggml_silu(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a) {
  4229. return ggml_silu_impl(ctx, a, false);
  4230. }
  4231. struct ggml_tensor * ggml_silu_inplace(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_silu_impl(ctx, a, true);
  4235. }
  4236. // ggml_silu_back
  4237. struct ggml_tensor * ggml_silu_back(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b) {
  4241. bool is_node = false;
  4242. if (a->grad || b->grad) {
  4243. // TODO: implement backward
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4247. result->op = GGML_OP_SILU_BACK;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src0 = a;
  4250. result->src1 = b;
  4251. return result;
  4252. }
  4253. // ggml_norm
  4254. struct ggml_tensor * ggml_norm_impl(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a,
  4257. bool inplace) {
  4258. bool is_node = false;
  4259. if (!inplace && (a->grad)) {
  4260. GGML_ASSERT(false); // TODO: implement backward
  4261. is_node = true;
  4262. }
  4263. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4264. result->op = GGML_OP_NORM;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src0 = a;
  4267. result->src1 = NULL; // TODO: maybe store epsilon here?
  4268. return result;
  4269. }
  4270. struct ggml_tensor * ggml_norm(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_norm_impl(ctx, a, false);
  4274. }
  4275. struct ggml_tensor * ggml_norm_inplace(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a) {
  4278. return ggml_norm_impl(ctx, a, true);
  4279. }
  4280. struct ggml_tensor * ggml_rms_norm_impl(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. bool inplace) {
  4284. bool is_node = false;
  4285. if (!inplace && (a->grad)) {
  4286. is_node = true;
  4287. }
  4288. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4289. result->op = GGML_OP_RMS_NORM;
  4290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4291. result->src0 = a;
  4292. result->src1 = NULL; // TODO: maybe store epsilon here?
  4293. return result;
  4294. }
  4295. struct ggml_tensor * ggml_rms_norm(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. return ggml_rms_norm_impl(ctx, a, false);
  4299. }
  4300. struct ggml_tensor * ggml_rms_norm_inplace(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a) {
  4303. return ggml_rms_norm_impl(ctx, a, true);
  4304. }
  4305. struct ggml_tensor * ggml_rms_norm_back(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a,
  4308. struct ggml_tensor * b) {
  4309. bool is_node = false;
  4310. if (a->grad) {
  4311. // TODO: implement backward
  4312. is_node = true;
  4313. }
  4314. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4315. result->op = GGML_OP_RMS_NORM_BACK;
  4316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4317. result->src0 = a;
  4318. result->src1 = b;
  4319. return result;
  4320. }
  4321. // ggml_mul_mat
  4322. struct ggml_tensor * ggml_mul_mat(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4327. GGML_ASSERT(!ggml_is_transposed(a));
  4328. bool is_node = false;
  4329. if (a->grad || b->grad) {
  4330. is_node = true;
  4331. }
  4332. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4333. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4334. result->op = GGML_OP_MUL_MAT;
  4335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4336. result->src0 = a;
  4337. result->src1 = b;
  4338. return result;
  4339. }
  4340. // ggml_scale
  4341. struct ggml_tensor * ggml_scale_impl(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b,
  4345. bool inplace) {
  4346. GGML_ASSERT(ggml_is_scalar(b));
  4347. GGML_ASSERT(ggml_is_padded_1d(a));
  4348. bool is_node = false;
  4349. if (!inplace && (a->grad || b->grad)) {
  4350. is_node = true;
  4351. }
  4352. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4353. result->op = GGML_OP_SCALE;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src0 = a;
  4356. result->src1 = b;
  4357. return result;
  4358. }
  4359. struct ggml_tensor * ggml_scale(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. struct ggml_tensor * b) {
  4363. return ggml_scale_impl(ctx, a, b, false);
  4364. }
  4365. struct ggml_tensor * ggml_scale_inplace(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. struct ggml_tensor * b) {
  4369. return ggml_scale_impl(ctx, a, b, true);
  4370. }
  4371. // ggml_set
  4372. struct ggml_tensor * ggml_set_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. struct ggml_tensor * b,
  4376. size_t nb1,
  4377. size_t nb2,
  4378. size_t nb3,
  4379. size_t offset,
  4380. bool inplace) {
  4381. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4382. bool is_node = false;
  4383. if (!inplace && (a->grad || b->grad)) {
  4384. is_node = true;
  4385. }
  4386. // make a view of the destination
  4387. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4388. ggml_scratch_save(ctx);
  4389. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4390. (( int32_t * ) c->data)[0] = nb1;
  4391. (( int32_t * ) c->data)[1] = nb2;
  4392. (( int32_t * ) c->data)[2] = nb3;
  4393. (( int32_t * ) c->data)[3] = offset;
  4394. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4395. ggml_scratch_load(ctx);
  4396. result->op = GGML_OP_SET;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src0 = a;
  4399. result->src1 = b;
  4400. result->opt[0] = c;
  4401. return result;
  4402. }
  4403. struct ggml_tensor * ggml_set(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. struct ggml_tensor * b,
  4407. size_t nb1,
  4408. size_t nb2,
  4409. size_t nb3,
  4410. size_t offset) {
  4411. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4412. }
  4413. struct ggml_tensor * ggml_set_inplace(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. struct ggml_tensor * b,
  4417. size_t nb1,
  4418. size_t nb2,
  4419. size_t nb3,
  4420. size_t offset) {
  4421. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4422. }
  4423. struct ggml_tensor * ggml_set_1d(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b,
  4427. size_t offset) {
  4428. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4429. }
  4430. struct ggml_tensor * ggml_set_1d_inplace(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b,
  4434. size_t offset) {
  4435. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4436. }
  4437. struct ggml_tensor * ggml_set_2d(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * b,
  4441. size_t nb1,
  4442. size_t offset) {
  4443. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4444. }
  4445. struct ggml_tensor * ggml_set_2d_inplace(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. struct ggml_tensor * b,
  4449. size_t nb1,
  4450. size_t offset) {
  4451. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4452. }
  4453. // ggml_cpy
  4454. struct ggml_tensor * ggml_cpy_impl(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. struct ggml_tensor * b,
  4458. bool inplace) {
  4459. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4460. bool is_node = false;
  4461. if (!inplace && (a->grad || b->grad)) {
  4462. is_node = true;
  4463. }
  4464. // make a view of the destination
  4465. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4466. result->op = GGML_OP_CPY;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src0 = a;
  4469. result->src1 = b;
  4470. return result;
  4471. }
  4472. struct ggml_tensor * ggml_cpy(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a,
  4475. struct ggml_tensor * b) {
  4476. return ggml_cpy_impl(ctx, a, b, false);
  4477. }
  4478. struct ggml_tensor * ggml_cpy_inplace(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b) {
  4482. return ggml_cpy_impl(ctx, a, b, true);
  4483. }
  4484. // ggml_cont
  4485. struct ggml_tensor * ggml_cont_impl(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. bool inplace) {
  4489. bool is_node = false;
  4490. if (!inplace && a->grad) {
  4491. is_node = true;
  4492. }
  4493. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4494. result->op = GGML_OP_CONT;
  4495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4496. result->src0 = a;
  4497. result->src1 = NULL;
  4498. return result;
  4499. }
  4500. struct ggml_tensor * ggml_cont(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a) {
  4503. return ggml_cont_impl(ctx, a, false);
  4504. }
  4505. struct ggml_tensor * ggml_cont_inplace(
  4506. struct ggml_context * ctx,
  4507. struct ggml_tensor * a) {
  4508. return ggml_cont_impl(ctx, a, true);
  4509. }
  4510. // ggml_reshape
  4511. struct ggml_tensor * ggml_reshape(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b) {
  4515. GGML_ASSERT(ggml_is_contiguous(a));
  4516. GGML_ASSERT(ggml_is_contiguous(b));
  4517. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4518. bool is_node = false;
  4519. if (a->grad) {
  4520. is_node = true;
  4521. }
  4522. if (b->grad) {
  4523. // gradient propagation is not supported
  4524. //GGML_ASSERT(false);
  4525. }
  4526. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4527. result->op = GGML_OP_RESHAPE;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src0 = a;
  4530. result->src1 = NULL;
  4531. return result;
  4532. }
  4533. struct ggml_tensor * ggml_reshape_1d(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a,
  4536. int64_t ne0) {
  4537. GGML_ASSERT(ggml_is_contiguous(a));
  4538. GGML_ASSERT(ggml_nelements(a) == ne0);
  4539. bool is_node = false;
  4540. if (a->grad) {
  4541. is_node = true;
  4542. }
  4543. const int64_t ne[1] = { ne0 };
  4544. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4545. result->op = GGML_OP_RESHAPE;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src0 = a;
  4548. result->src1 = NULL;
  4549. return result;
  4550. }
  4551. struct ggml_tensor * ggml_reshape_2d(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. int64_t ne0,
  4555. int64_t ne1) {
  4556. GGML_ASSERT(ggml_is_contiguous(a));
  4557. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4558. bool is_node = false;
  4559. if (a->grad) {
  4560. is_node = true;
  4561. }
  4562. const int64_t ne[2] = { ne0, ne1 };
  4563. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4564. result->op = GGML_OP_RESHAPE;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src0 = a;
  4567. result->src1 = NULL;
  4568. return result;
  4569. }
  4570. struct ggml_tensor * ggml_reshape_3d(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a,
  4573. int64_t ne0,
  4574. int64_t ne1,
  4575. int64_t ne2) {
  4576. GGML_ASSERT(ggml_is_contiguous(a));
  4577. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4578. bool is_node = false;
  4579. if (a->grad) {
  4580. is_node = true;
  4581. }
  4582. const int64_t ne[3] = { ne0, ne1, ne2 };
  4583. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4584. result->op = GGML_OP_RESHAPE;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src0 = a;
  4587. result->src1 = NULL;
  4588. return result;
  4589. }
  4590. struct ggml_tensor * ggml_reshape_4d(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. int64_t ne0,
  4594. int64_t ne1,
  4595. int64_t ne2,
  4596. int64_t ne3) {
  4597. GGML_ASSERT(ggml_is_contiguous(a));
  4598. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4599. bool is_node = false;
  4600. if (a->grad) {
  4601. is_node = true;
  4602. }
  4603. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4605. result->op = GGML_OP_RESHAPE;
  4606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4607. result->src0 = a;
  4608. result->src1 = NULL;
  4609. return result;
  4610. }
  4611. // ggml_view_1d
  4612. struct ggml_tensor * ggml_view_1d(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. int64_t ne0,
  4616. size_t offset) {
  4617. bool is_node = false;
  4618. if (a->grad) {
  4619. is_node = true;
  4620. }
  4621. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4622. result->op = GGML_OP_VIEW;
  4623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4624. result->src0 = a;
  4625. result->src1 = NULL;
  4626. if (is_node) {
  4627. memcpy(result->padding, &offset, sizeof(offset));
  4628. }
  4629. return result;
  4630. }
  4631. // ggml_view_2d
  4632. struct ggml_tensor * ggml_view_2d(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a,
  4635. int64_t ne0,
  4636. int64_t ne1,
  4637. size_t nb1,
  4638. size_t offset) {
  4639. bool is_node = false;
  4640. if (a->grad) {
  4641. is_node = true;
  4642. }
  4643. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4644. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4645. result->nb[1] = nb1;
  4646. result->nb[2] = result->nb[1]*ne1;
  4647. result->nb[3] = result->nb[2];
  4648. result->op = GGML_OP_VIEW;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src0 = a;
  4651. result->src1 = NULL;
  4652. if (is_node) {
  4653. memcpy(result->padding, &offset, sizeof(offset));
  4654. }
  4655. return result;
  4656. }
  4657. // ggml_view_3d
  4658. struct ggml_tensor * ggml_view_3d(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. int64_t ne0,
  4662. int64_t ne1,
  4663. int64_t ne2,
  4664. size_t nb1,
  4665. size_t nb2,
  4666. size_t offset) {
  4667. bool is_node = false;
  4668. if (a->grad) {
  4669. is_node = true;
  4670. }
  4671. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4672. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4673. result->nb[1] = nb1;
  4674. result->nb[2] = nb2;
  4675. result->nb[3] = result->nb[2]*ne2;
  4676. result->op = GGML_OP_VIEW;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src0 = a;
  4679. result->src1 = NULL;
  4680. if (is_node) {
  4681. memcpy(result->padding, &offset, sizeof(offset));
  4682. }
  4683. return result;
  4684. }
  4685. // ggml_view_4d
  4686. struct ggml_tensor * ggml_view_4d(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. int64_t ne0,
  4690. int64_t ne1,
  4691. int64_t ne2,
  4692. int64_t ne3,
  4693. size_t nb1,
  4694. size_t nb2,
  4695. size_t nb3,
  4696. size_t offset) {
  4697. bool is_node = false;
  4698. if (a->grad) {
  4699. is_node = true;
  4700. }
  4701. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4702. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4703. result->nb[1] = nb1;
  4704. result->nb[2] = nb2;
  4705. result->nb[3] = nb3;
  4706. result->op = GGML_OP_VIEW;
  4707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4708. result->src0 = a;
  4709. result->src1 = NULL;
  4710. if (is_node) {
  4711. memcpy(result->padding, &offset, sizeof(offset));
  4712. }
  4713. return result;
  4714. }
  4715. // ggml_permute
  4716. struct ggml_tensor * ggml_permute(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. int axis0,
  4720. int axis1,
  4721. int axis2,
  4722. int axis3) {
  4723. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4724. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4725. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4726. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4727. GGML_ASSERT(axis0 != axis1);
  4728. GGML_ASSERT(axis0 != axis2);
  4729. GGML_ASSERT(axis0 != axis3);
  4730. GGML_ASSERT(axis1 != axis2);
  4731. GGML_ASSERT(axis1 != axis3);
  4732. GGML_ASSERT(axis2 != axis3);
  4733. bool is_node = false;
  4734. if (a->grad) {
  4735. is_node = true;
  4736. }
  4737. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4738. int ne[GGML_MAX_DIMS];
  4739. int nb[GGML_MAX_DIMS];
  4740. ne[axis0] = a->ne[0];
  4741. ne[axis1] = a->ne[1];
  4742. ne[axis2] = a->ne[2];
  4743. ne[axis3] = a->ne[3];
  4744. nb[axis0] = a->nb[0];
  4745. nb[axis1] = a->nb[1];
  4746. nb[axis2] = a->nb[2];
  4747. nb[axis3] = a->nb[3];
  4748. result->ne[0] = ne[0];
  4749. result->ne[1] = ne[1];
  4750. result->ne[2] = ne[2];
  4751. result->ne[3] = ne[3];
  4752. result->nb[0] = nb[0];
  4753. result->nb[1] = nb[1];
  4754. result->nb[2] = nb[2];
  4755. result->nb[3] = nb[3];
  4756. result->op = GGML_OP_PERMUTE;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src0 = a;
  4759. result->src1 = NULL;
  4760. if (is_node) {
  4761. result->padding[0] = axis0;
  4762. result->padding[1] = axis1;
  4763. result->padding[2] = axis2;
  4764. result->padding[3] = axis3;
  4765. }
  4766. return result;
  4767. }
  4768. // ggml_transpose
  4769. struct ggml_tensor * ggml_transpose(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a) {
  4772. bool is_node = false;
  4773. if (a->grad) {
  4774. is_node = true;
  4775. }
  4776. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4777. result->ne[0] = a->ne[1];
  4778. result->ne[1] = a->ne[0];
  4779. result->nb[0] = a->nb[1];
  4780. result->nb[1] = a->nb[0];
  4781. result->op = GGML_OP_TRANSPOSE;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src0 = a;
  4784. result->src1 = NULL;
  4785. return result;
  4786. }
  4787. // ggml_get_rows
  4788. struct ggml_tensor * ggml_get_rows(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. struct ggml_tensor * b) {
  4792. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4793. bool is_node = false;
  4794. if (a->grad || b->grad) {
  4795. is_node = true;
  4796. }
  4797. // TODO: implement non F32 return
  4798. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4799. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4800. result->op = GGML_OP_GET_ROWS;
  4801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4802. result->src0 = a;
  4803. result->src1 = b;
  4804. return result;
  4805. }
  4806. // ggml_get_rows_back
  4807. struct ggml_tensor * ggml_get_rows_back(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. struct ggml_tensor * b,
  4811. struct ggml_tensor * c) {
  4812. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4813. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4814. bool is_node = false;
  4815. if (a->grad || b->grad) {
  4816. is_node = true;
  4817. }
  4818. // TODO: implement non F32 return
  4819. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4820. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4821. result->op = GGML_OP_GET_ROWS_BACK;
  4822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4823. result->src0 = a;
  4824. result->src1 = b;
  4825. result->opt[0] = c;
  4826. return result;
  4827. }
  4828. // ggml_diag
  4829. struct ggml_tensor * ggml_diag(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a) {
  4832. GGML_ASSERT(a->ne[1] == 1);
  4833. bool is_node = false;
  4834. if (a->grad) {
  4835. is_node = true;
  4836. }
  4837. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4838. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4839. result->op = GGML_OP_DIAG;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src0 = a;
  4842. result->src1 = NULL;
  4843. return result;
  4844. }
  4845. // ggml_diag_mask_inf
  4846. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. int n_past,
  4850. bool inplace) {
  4851. bool is_node = false;
  4852. if (a->grad) {
  4853. is_node = true;
  4854. }
  4855. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4856. ggml_scratch_save(ctx);
  4857. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4858. ((int32_t *) b->data)[0] = n_past;
  4859. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4860. ggml_scratch_load(ctx);
  4861. result->op = GGML_OP_DIAG_MASK_INF;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src0 = a;
  4864. result->src1 = b;
  4865. return result;
  4866. }
  4867. struct ggml_tensor * ggml_diag_mask_inf(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. int n_past) {
  4871. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4872. }
  4873. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. int n_past) {
  4877. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4878. }
  4879. // ggml_diag_mask_zero
  4880. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int n_past,
  4884. bool inplace) {
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. is_node = true;
  4888. }
  4889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4890. ggml_scratch_save(ctx);
  4891. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4892. ggml_set_name(b, "n_past, inplace");
  4893. ((int32_t *) b->data)[0] = n_past;
  4894. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4895. ggml_scratch_load(ctx);
  4896. result->op = GGML_OP_DIAG_MASK_ZERO;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src0 = a;
  4899. result->src1 = b;
  4900. return result;
  4901. }
  4902. struct ggml_tensor * ggml_diag_mask_zero(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. int n_past) {
  4906. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4907. }
  4908. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. int n_past) {
  4912. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4913. }
  4914. // ggml_soft_max
  4915. struct ggml_tensor * ggml_soft_max_impl(
  4916. struct ggml_context * ctx,
  4917. struct ggml_tensor * a,
  4918. bool inplace) {
  4919. bool is_node = false;
  4920. if (a->grad) {
  4921. is_node = true;
  4922. }
  4923. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4924. result->op = GGML_OP_SOFT_MAX;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src0 = a;
  4927. result->src1 = NULL;
  4928. return result;
  4929. }
  4930. struct ggml_tensor * ggml_soft_max(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a) {
  4933. return ggml_soft_max_impl(ctx, a, false);
  4934. }
  4935. struct ggml_tensor * ggml_soft_max_inplace(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a) {
  4938. return ggml_soft_max_impl(ctx, a, true);
  4939. }
  4940. // ggml_rope
  4941. struct ggml_tensor * ggml_rope_impl(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a,
  4944. int n_past,
  4945. int n_dims,
  4946. int mode,
  4947. bool inplace) {
  4948. GGML_ASSERT(n_past >= 0);
  4949. bool is_node = false;
  4950. if (!inplace && a->grad) {
  4951. is_node = true;
  4952. }
  4953. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4954. ggml_scratch_save(ctx);
  4955. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4956. ((int32_t *) b->data)[0] = n_past;
  4957. ((int32_t *) b->data)[1] = n_dims;
  4958. ((int32_t *) b->data)[2] = mode;
  4959. ggml_scratch_load(ctx);
  4960. result->op = GGML_OP_ROPE;
  4961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4962. result->src0 = a;
  4963. result->src1 = b;
  4964. return result;
  4965. }
  4966. struct ggml_tensor * ggml_rope(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. int n_past,
  4970. int n_dims,
  4971. int mode) {
  4972. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4973. }
  4974. struct ggml_tensor * ggml_rope_inplace(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. int n_past,
  4978. int n_dims,
  4979. int mode) {
  4980. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4981. }
  4982. // ggml_rope_back
  4983. struct ggml_tensor * ggml_rope_back(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. int n_past,
  4987. int n_dims,
  4988. int mode) {
  4989. GGML_ASSERT(n_past >= 0);
  4990. bool is_node = false;
  4991. if (a->grad) {
  4992. GGML_ASSERT(false); // TODO: implement backward
  4993. is_node = true;
  4994. }
  4995. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4996. ggml_scratch_save(ctx);
  4997. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4998. ggml_set_name(b, "n_past, n_dims, mode");
  4999. ((int32_t *) b->data)[0] = n_past;
  5000. ((int32_t *) b->data)[1] = n_dims;
  5001. ((int32_t *) b->data)[2] = mode;
  5002. ggml_scratch_load(ctx);
  5003. result->op = GGML_OP_ROPE_BACK;
  5004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5005. result->src0 = a;
  5006. result->src1 = b;
  5007. return result;
  5008. }
  5009. // ggml_alibi
  5010. struct ggml_tensor * ggml_alibi(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. int n_past,
  5014. int n_head,
  5015. float bias_max) {
  5016. GGML_ASSERT(n_past >= 0);
  5017. bool is_node = false;
  5018. if (a->grad) {
  5019. GGML_ASSERT(false); // TODO: implement backward
  5020. is_node = true;
  5021. }
  5022. // TODO: when implement backward, fix this:
  5023. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5024. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5025. ggml_scratch_save(ctx);
  5026. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5027. ((int32_t *) b->data)[0] = n_past;
  5028. ((int32_t *) b->data)[1] = n_head;
  5029. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5030. (((float *) b->data)[2]) = bias_max;
  5031. ggml_scratch_load(ctx);
  5032. result->op = GGML_OP_ALIBI;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src0 = a;
  5035. result->src1 = b;
  5036. return result;
  5037. }
  5038. // ggml_clamp
  5039. struct ggml_tensor * ggml_clamp(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. float min,
  5043. float max) {
  5044. bool is_node = false;
  5045. if (a->grad) {
  5046. GGML_ASSERT(false); // TODO: implement backward
  5047. is_node = true;
  5048. }
  5049. // TODO: when implement backward, fix this:
  5050. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5051. ggml_scratch_save(ctx);
  5052. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5053. ((float *) b->data)[0] = min;
  5054. ((float *) b->data)[1] = max;
  5055. ggml_scratch_load(ctx);
  5056. result->op = GGML_OP_CLAMP;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src0 = a;
  5059. result->src1 = b;
  5060. return result;
  5061. }
  5062. // ggml_conv_1d_1s
  5063. struct ggml_tensor * ggml_conv_1d_1s(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. struct ggml_tensor * b) {
  5067. GGML_ASSERT(ggml_is_matrix(b));
  5068. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5069. GGML_ASSERT(a->ne[3] == 1);
  5070. bool is_node = false;
  5071. if (a->grad || b->grad) {
  5072. GGML_ASSERT(false); // TODO: implement backward
  5073. is_node = true;
  5074. }
  5075. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5076. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5077. result->op = GGML_OP_CONV_1D_1S;
  5078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5079. result->src0 = a;
  5080. result->src1 = b;
  5081. return result;
  5082. }
  5083. // ggml_conv_1d_2s
  5084. struct ggml_tensor * ggml_conv_1d_2s(
  5085. struct ggml_context * ctx,
  5086. struct ggml_tensor * a,
  5087. struct ggml_tensor * b) {
  5088. GGML_ASSERT(ggml_is_matrix(b));
  5089. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5090. GGML_ASSERT(a->ne[3] == 1);
  5091. bool is_node = false;
  5092. if (a->grad || b->grad) {
  5093. GGML_ASSERT(false); // TODO: implement backward
  5094. is_node = true;
  5095. }
  5096. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5097. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5098. result->op = GGML_OP_CONV_1D_2S;
  5099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5100. result->src0 = a;
  5101. result->src1 = b;
  5102. return result;
  5103. }
  5104. // ggml_flash_attn
  5105. struct ggml_tensor * ggml_flash_attn(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * q,
  5108. struct ggml_tensor * k,
  5109. struct ggml_tensor * v,
  5110. bool masked) {
  5111. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5112. // TODO: check if vT can be multiplied by (k*qT)
  5113. bool is_node = false;
  5114. if (q->grad || k->grad || v->grad) {
  5115. GGML_ASSERT(false); // TODO: implement backward
  5116. is_node = true;
  5117. }
  5118. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5119. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5120. result->op = GGML_OP_FLASH_ATTN;
  5121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5122. result->src0 = q;
  5123. result->src1 = k;
  5124. result->opt[0] = v;
  5125. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5126. return result;
  5127. }
  5128. // ggml_flash_ff
  5129. struct ggml_tensor * ggml_flash_ff(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. struct ggml_tensor * b0,
  5133. struct ggml_tensor * b1,
  5134. struct ggml_tensor * c0,
  5135. struct ggml_tensor * c1) {
  5136. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5137. // TODO: more checks
  5138. bool is_node = false;
  5139. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5140. GGML_ASSERT(false); // TODO: implement backward
  5141. is_node = true;
  5142. }
  5143. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5144. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5145. result->op = GGML_OP_FLASH_FF;
  5146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5147. result->src0 = a;
  5148. result->src1 = b0;
  5149. result->opt[0] = b1;
  5150. result->opt[1] = c0;
  5151. result->opt[2] = c1;
  5152. return result;
  5153. }
  5154. // ggml_map_unary
  5155. struct ggml_tensor * ggml_map_unary_impl_f32(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. const ggml_unary_op_f32_t fun,
  5159. bool inplace) {
  5160. bool is_node = false;
  5161. if (!inplace && a->grad) {
  5162. is_node = true;
  5163. }
  5164. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5165. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5166. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5167. result->op = GGML_OP_MAP_UNARY;
  5168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5169. result->src0 = a;
  5170. result->opt[0] = addr_tensor;
  5171. return result;
  5172. }
  5173. struct ggml_tensor * ggml_map_unary_f32(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. const ggml_unary_op_f32_t fun) {
  5177. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5178. }
  5179. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. const ggml_unary_op_f32_t fun) {
  5183. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5184. }
  5185. // ggml_map_binary
  5186. struct ggml_tensor * ggml_map_binary_impl_f32(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a,
  5189. struct ggml_tensor * b,
  5190. const ggml_binary_op_f32_t fun,
  5191. bool inplace) {
  5192. GGML_ASSERT(ggml_are_same_shape(a, b));
  5193. bool is_node = false;
  5194. if (!inplace && (a->grad || b->grad)) {
  5195. is_node = true;
  5196. }
  5197. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5198. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5199. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5200. result->op = GGML_OP_MAP_BINARY;
  5201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5202. result->src0 = a;
  5203. result->src1 = b;
  5204. result->opt[0] = addr_tensor;
  5205. return result;
  5206. }
  5207. struct ggml_tensor * ggml_map_binary_f32(
  5208. struct ggml_context * ctx,
  5209. struct ggml_tensor * a,
  5210. struct ggml_tensor * b,
  5211. const ggml_binary_op_f32_t fun) {
  5212. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5213. }
  5214. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. struct ggml_tensor * b,
  5218. const ggml_binary_op_f32_t fun) {
  5219. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5220. }
  5221. ////////////////////////////////////////////////////////////////////////////////
  5222. void ggml_set_param(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * tensor) {
  5225. tensor->is_param = true;
  5226. GGML_ASSERT(tensor->grad == NULL);
  5227. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5228. }
  5229. // ggml_compute_forward_dup
  5230. static void ggml_compute_forward_dup_same_cont(
  5231. const struct ggml_compute_params * params,
  5232. const struct ggml_tensor * src0,
  5233. struct ggml_tensor * dst) {
  5234. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5235. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5236. GGML_ASSERT(src0->type == dst->type);
  5237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5238. return;
  5239. }
  5240. const size_t nb00 = src0->nb[0];
  5241. const size_t nb0 = dst->nb[0];
  5242. const int ith = params->ith; // thread index
  5243. const int nth = params->nth; // number of threads
  5244. // parallelize by elements
  5245. const int ne = ggml_nelements(dst);
  5246. const int dr = (ne + nth - 1) / nth;
  5247. const int ie0 = dr * ith;
  5248. const int ie1 = MIN(ie0 + dr, ne);
  5249. if (ie0 < ie1) {
  5250. memcpy(
  5251. ((char *) dst->data + ie0*nb0),
  5252. ((char *) src0->data + ie0*nb00),
  5253. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5254. }
  5255. }
  5256. static void ggml_compute_forward_dup_f16(
  5257. const struct ggml_compute_params * params,
  5258. const struct ggml_tensor * src0,
  5259. struct ggml_tensor * dst) {
  5260. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5262. return;
  5263. }
  5264. const int64_t ne00 = src0->ne[0];
  5265. const int64_t ne01 = src0->ne[1];
  5266. const int64_t ne02 = src0->ne[2];
  5267. const int64_t ne03 = src0->ne[3];
  5268. const int64_t ne0 = dst->ne[0];
  5269. const int64_t ne1 = dst->ne[1];
  5270. const int64_t ne2 = dst->ne[2];
  5271. const int64_t ne3 = dst->ne[3];
  5272. const size_t nb00 = src0->nb[0];
  5273. const size_t nb01 = src0->nb[1];
  5274. const size_t nb02 = src0->nb[2];
  5275. const size_t nb03 = src0->nb[3];
  5276. const size_t nb0 = dst->nb[0];
  5277. const size_t nb1 = dst->nb[1];
  5278. const size_t nb2 = dst->nb[2];
  5279. const size_t nb3 = dst->nb[3];
  5280. const int ith = params->ith; // thread index
  5281. const int nth = params->nth; // number of threads
  5282. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5283. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5284. return;
  5285. }
  5286. // parallelize by rows
  5287. const int nr = ne01;
  5288. // number of rows per thread
  5289. const int dr = (nr + nth - 1) / nth;
  5290. // row range for this thread
  5291. const int ir0 = dr * ith;
  5292. const int ir1 = MIN(ir0 + dr, nr);
  5293. if (src0->type == dst->type &&
  5294. ne00 == ne0 &&
  5295. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5296. // copy by rows
  5297. const size_t rs = ne00*nb00;
  5298. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5299. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5300. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5301. memcpy(
  5302. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5303. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5304. rs);
  5305. }
  5306. }
  5307. }
  5308. return;
  5309. }
  5310. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5311. if (ggml_is_contiguous(dst)) {
  5312. if (nb00 == sizeof(ggml_fp16_t)) {
  5313. if (dst->type == GGML_TYPE_F16) {
  5314. size_t id = 0;
  5315. const size_t rs = ne00 * nb00;
  5316. char * dst_ptr = (char *) dst->data;
  5317. for (int i03 = 0; i03 < ne03; i03++) {
  5318. for (int i02 = 0; i02 < ne02; i02++) {
  5319. id += rs * ir0;
  5320. for (int i01 = ir0; i01 < ir1; i01++) {
  5321. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5322. memcpy(dst_ptr + id, src0_ptr, rs);
  5323. id += rs;
  5324. }
  5325. id += rs * (ne01 - ir1);
  5326. }
  5327. }
  5328. } else if (dst->type == GGML_TYPE_F32) {
  5329. size_t id = 0;
  5330. float * dst_ptr = (float *) dst->data;
  5331. for (int i03 = 0; i03 < ne03; i03++) {
  5332. for (int i02 = 0; i02 < ne02; i02++) {
  5333. id += ne00 * ir0;
  5334. for (int i01 = ir0; i01 < ir1; i01++) {
  5335. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5336. for (int i00 = 0; i00 < ne00; i00++) {
  5337. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5338. id++;
  5339. }
  5340. }
  5341. id += ne00 * (ne01 - ir1);
  5342. }
  5343. }
  5344. } else if (ggml_is_quantized(dst->type)) {
  5345. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5346. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5347. size_t id = 0;
  5348. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5349. char * dst_ptr = (char *) dst->data;
  5350. for (int i03 = 0; i03 < ne03; i03++) {
  5351. for (int i02 = 0; i02 < ne02; i02++) {
  5352. id += rs * ir0;
  5353. for (int i01 = ir0; i01 < ir1; i01++) {
  5354. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5355. for (int i00 = 0; i00 < ne00; i00++) {
  5356. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5357. }
  5358. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5359. id += rs;
  5360. }
  5361. id += rs * (ne01 - ir1);
  5362. }
  5363. }
  5364. } else {
  5365. GGML_ASSERT(false); // TODO: implement
  5366. }
  5367. } else {
  5368. //printf("%s: this is not optimal - fix me\n", __func__);
  5369. if (dst->type == GGML_TYPE_F32) {
  5370. size_t id = 0;
  5371. float * dst_ptr = (float *) dst->data;
  5372. for (int i03 = 0; i03 < ne03; i03++) {
  5373. for (int i02 = 0; i02 < ne02; i02++) {
  5374. id += ne00 * ir0;
  5375. for (int i01 = ir0; i01 < ir1; i01++) {
  5376. for (int i00 = 0; i00 < ne00; i00++) {
  5377. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5378. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5379. id++;
  5380. }
  5381. }
  5382. id += ne00 * (ne01 - ir1);
  5383. }
  5384. }
  5385. } else if (dst->type == GGML_TYPE_F16) {
  5386. size_t id = 0;
  5387. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5388. for (int i03 = 0; i03 < ne03; i03++) {
  5389. for (int i02 = 0; i02 < ne02; i02++) {
  5390. id += ne00 * ir0;
  5391. for (int i01 = ir0; i01 < ir1; i01++) {
  5392. for (int i00 = 0; i00 < ne00; i00++) {
  5393. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5394. dst_ptr[id] = *src0_ptr;
  5395. id++;
  5396. }
  5397. }
  5398. id += ne00 * (ne01 - ir1);
  5399. }
  5400. }
  5401. } else {
  5402. GGML_ASSERT(false); // TODO: implement
  5403. }
  5404. }
  5405. return;
  5406. }
  5407. // dst counters
  5408. int64_t i10 = 0;
  5409. int64_t i11 = 0;
  5410. int64_t i12 = 0;
  5411. int64_t i13 = 0;
  5412. if (dst->type == GGML_TYPE_F16) {
  5413. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5414. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5415. i10 += ne00 * ir0;
  5416. while (i10 >= ne0) {
  5417. i10 -= ne0;
  5418. if (++i11 == ne1) {
  5419. i11 = 0;
  5420. if (++i12 == ne2) {
  5421. i12 = 0;
  5422. if (++i13 == ne3) {
  5423. i13 = 0;
  5424. }
  5425. }
  5426. }
  5427. }
  5428. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5429. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5430. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5431. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5432. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5433. if (++i10 == ne00) {
  5434. i10 = 0;
  5435. if (++i11 == ne01) {
  5436. i11 = 0;
  5437. if (++i12 == ne02) {
  5438. i12 = 0;
  5439. if (++i13 == ne03) {
  5440. i13 = 0;
  5441. }
  5442. }
  5443. }
  5444. }
  5445. }
  5446. }
  5447. i10 += ne00 * (ne01 - ir1);
  5448. while (i10 >= ne0) {
  5449. i10 -= ne0;
  5450. if (++i11 == ne1) {
  5451. i11 = 0;
  5452. if (++i12 == ne2) {
  5453. i12 = 0;
  5454. if (++i13 == ne3) {
  5455. i13 = 0;
  5456. }
  5457. }
  5458. }
  5459. }
  5460. }
  5461. }
  5462. } else if (dst->type == GGML_TYPE_F32) {
  5463. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5465. i10 += ne00 * ir0;
  5466. while (i10 >= ne0) {
  5467. i10 -= ne0;
  5468. if (++i11 == ne1) {
  5469. i11 = 0;
  5470. if (++i12 == ne2) {
  5471. i12 = 0;
  5472. if (++i13 == ne3) {
  5473. i13 = 0;
  5474. }
  5475. }
  5476. }
  5477. }
  5478. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5479. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5480. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5481. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5482. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5483. if (++i10 == ne0) {
  5484. i10 = 0;
  5485. if (++i11 == ne1) {
  5486. i11 = 0;
  5487. if (++i12 == ne2) {
  5488. i12 = 0;
  5489. if (++i13 == ne3) {
  5490. i13 = 0;
  5491. }
  5492. }
  5493. }
  5494. }
  5495. }
  5496. }
  5497. i10 += ne00 * (ne01 - ir1);
  5498. while (i10 >= ne0) {
  5499. i10 -= ne0;
  5500. if (++i11 == ne1) {
  5501. i11 = 0;
  5502. if (++i12 == ne2) {
  5503. i12 = 0;
  5504. if (++i13 == ne3) {
  5505. i13 = 0;
  5506. }
  5507. }
  5508. }
  5509. }
  5510. }
  5511. }
  5512. } else {
  5513. GGML_ASSERT(false); // TODO: implement
  5514. }
  5515. }
  5516. static void ggml_compute_forward_dup_f32(
  5517. const struct ggml_compute_params * params,
  5518. const struct ggml_tensor * src0,
  5519. struct ggml_tensor * dst) {
  5520. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5522. return;
  5523. }
  5524. const int64_t ne00 = src0->ne[0];
  5525. const int64_t ne01 = src0->ne[1];
  5526. const int64_t ne02 = src0->ne[2];
  5527. const int64_t ne03 = src0->ne[3];
  5528. const int64_t ne0 = dst->ne[0];
  5529. const int64_t ne1 = dst->ne[1];
  5530. const int64_t ne2 = dst->ne[2];
  5531. const int64_t ne3 = dst->ne[3];
  5532. const size_t nb00 = src0->nb[0];
  5533. const size_t nb01 = src0->nb[1];
  5534. const size_t nb02 = src0->nb[2];
  5535. const size_t nb03 = src0->nb[3];
  5536. const size_t nb0 = dst->nb[0];
  5537. const size_t nb1 = dst->nb[1];
  5538. const size_t nb2 = dst->nb[2];
  5539. const size_t nb3 = dst->nb[3];
  5540. const int ith = params->ith; // thread index
  5541. const int nth = params->nth; // number of threads
  5542. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5543. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5544. return;
  5545. }
  5546. // parallelize by rows
  5547. const int nr = ne01;
  5548. // number of rows per thread
  5549. const int dr = (nr + nth - 1) / nth;
  5550. // row range for this thread
  5551. const int ir0 = dr * ith;
  5552. const int ir1 = MIN(ir0 + dr, nr);
  5553. if (src0->type == dst->type &&
  5554. ne00 == ne0 &&
  5555. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5556. // copy by rows
  5557. const size_t rs = ne00*nb00;
  5558. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5559. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5560. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5561. memcpy(
  5562. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5563. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5564. rs);
  5565. }
  5566. }
  5567. }
  5568. return;
  5569. }
  5570. if (ggml_is_contiguous(dst)) {
  5571. // TODO: simplify
  5572. if (nb00 == sizeof(float)) {
  5573. if (dst->type == GGML_TYPE_F32) {
  5574. size_t id = 0;
  5575. const size_t rs = ne00 * nb00;
  5576. char * dst_ptr = (char *) dst->data;
  5577. for (int i03 = 0; i03 < ne03; i03++) {
  5578. for (int i02 = 0; i02 < ne02; i02++) {
  5579. id += rs * ir0;
  5580. for (int i01 = ir0; i01 < ir1; i01++) {
  5581. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5582. memcpy(dst_ptr + id, src0_ptr, rs);
  5583. id += rs;
  5584. }
  5585. id += rs * (ne01 - ir1);
  5586. }
  5587. }
  5588. } else if (dst->type == GGML_TYPE_F16) {
  5589. size_t id = 0;
  5590. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5591. for (int i03 = 0; i03 < ne03; i03++) {
  5592. for (int i02 = 0; i02 < ne02; i02++) {
  5593. id += ne00 * ir0;
  5594. for (int i01 = ir0; i01 < ir1; i01++) {
  5595. for (int i00 = 0; i00 < ne00; i00++) {
  5596. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5597. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5598. id++;
  5599. }
  5600. }
  5601. id += ne00 * (ne01 - ir1);
  5602. }
  5603. }
  5604. } else if (ggml_is_quantized(dst->type)) {
  5605. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5606. size_t id = 0;
  5607. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5608. char * dst_ptr = (char *) dst->data;
  5609. for (int i03 = 0; i03 < ne03; i03++) {
  5610. for (int i02 = 0; i02 < ne02; i02++) {
  5611. id += rs * ir0;
  5612. for (int i01 = ir0; i01 < ir1; i01++) {
  5613. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5614. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5615. id += rs;
  5616. }
  5617. id += rs * (ne01 - ir1);
  5618. }
  5619. }
  5620. } else {
  5621. GGML_ASSERT(false); // TODO: implement
  5622. }
  5623. } else {
  5624. //printf("%s: this is not optimal - fix me\n", __func__);
  5625. if (dst->type == GGML_TYPE_F32) {
  5626. size_t id = 0;
  5627. float * dst_ptr = (float *) dst->data;
  5628. for (int i03 = 0; i03 < ne03; i03++) {
  5629. for (int i02 = 0; i02 < ne02; i02++) {
  5630. id += ne00 * ir0;
  5631. for (int i01 = ir0; i01 < ir1; i01++) {
  5632. for (int i00 = 0; i00 < ne00; i00++) {
  5633. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5634. dst_ptr[id] = *src0_ptr;
  5635. id++;
  5636. }
  5637. }
  5638. id += ne00 * (ne01 - ir1);
  5639. }
  5640. }
  5641. } else if (dst->type == GGML_TYPE_F16) {
  5642. size_t id = 0;
  5643. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5644. for (int i03 = 0; i03 < ne03; i03++) {
  5645. for (int i02 = 0; i02 < ne02; i02++) {
  5646. id += ne00 * ir0;
  5647. for (int i01 = ir0; i01 < ir1; i01++) {
  5648. for (int i00 = 0; i00 < ne00; i00++) {
  5649. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5650. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5651. id++;
  5652. }
  5653. }
  5654. id += ne00 * (ne01 - ir1);
  5655. }
  5656. }
  5657. } else {
  5658. GGML_ASSERT(false); // TODO: implement
  5659. }
  5660. }
  5661. return;
  5662. }
  5663. // dst counters
  5664. int64_t i10 = 0;
  5665. int64_t i11 = 0;
  5666. int64_t i12 = 0;
  5667. int64_t i13 = 0;
  5668. if (dst->type == GGML_TYPE_F32) {
  5669. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5670. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5671. i10 += ne00 * ir0;
  5672. while (i10 >= ne0) {
  5673. i10 -= ne0;
  5674. if (++i11 == ne1) {
  5675. i11 = 0;
  5676. if (++i12 == ne2) {
  5677. i12 = 0;
  5678. if (++i13 == ne3) {
  5679. i13 = 0;
  5680. }
  5681. }
  5682. }
  5683. }
  5684. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5685. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5686. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5687. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5688. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5689. if (++i10 == ne0) {
  5690. i10 = 0;
  5691. if (++i11 == ne1) {
  5692. i11 = 0;
  5693. if (++i12 == ne2) {
  5694. i12 = 0;
  5695. if (++i13 == ne3) {
  5696. i13 = 0;
  5697. }
  5698. }
  5699. }
  5700. }
  5701. }
  5702. }
  5703. i10 += ne00 * (ne01 - ir1);
  5704. while (i10 >= ne0) {
  5705. i10 -= ne0;
  5706. if (++i11 == ne1) {
  5707. i11 = 0;
  5708. if (++i12 == ne2) {
  5709. i12 = 0;
  5710. if (++i13 == ne3) {
  5711. i13 = 0;
  5712. }
  5713. }
  5714. }
  5715. }
  5716. }
  5717. }
  5718. } else if (dst->type == GGML_TYPE_F16) {
  5719. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5720. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5721. i10 += ne00 * ir0;
  5722. while (i10 >= ne0) {
  5723. i10 -= ne0;
  5724. if (++i11 == ne1) {
  5725. i11 = 0;
  5726. if (++i12 == ne2) {
  5727. i12 = 0;
  5728. if (++i13 == ne3) {
  5729. i13 = 0;
  5730. }
  5731. }
  5732. }
  5733. }
  5734. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5735. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5736. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5737. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5738. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5739. if (++i10 == ne0) {
  5740. i10 = 0;
  5741. if (++i11 == ne1) {
  5742. i11 = 0;
  5743. if (++i12 == ne2) {
  5744. i12 = 0;
  5745. if (++i13 == ne3) {
  5746. i13 = 0;
  5747. }
  5748. }
  5749. }
  5750. }
  5751. }
  5752. }
  5753. i10 += ne00 * (ne01 - ir1);
  5754. while (i10 >= ne0) {
  5755. i10 -= ne0;
  5756. if (++i11 == ne1) {
  5757. i11 = 0;
  5758. if (++i12 == ne2) {
  5759. i12 = 0;
  5760. if (++i13 == ne3) {
  5761. i13 = 0;
  5762. }
  5763. }
  5764. }
  5765. }
  5766. }
  5767. }
  5768. } else {
  5769. GGML_ASSERT(false); // TODO: implement
  5770. }
  5771. }
  5772. static void ggml_compute_forward_dup(
  5773. const struct ggml_compute_params * params,
  5774. const struct ggml_tensor * src0,
  5775. struct ggml_tensor * dst) {
  5776. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5777. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5778. return;
  5779. }
  5780. switch (src0->type) {
  5781. case GGML_TYPE_F16:
  5782. {
  5783. ggml_compute_forward_dup_f16(params, src0, dst);
  5784. } break;
  5785. case GGML_TYPE_F32:
  5786. {
  5787. ggml_compute_forward_dup_f32(params, src0, dst);
  5788. } break;
  5789. default:
  5790. {
  5791. GGML_ASSERT(false);
  5792. } break;
  5793. }
  5794. }
  5795. // ggml_compute_forward_add
  5796. static void ggml_compute_forward_add_f32(
  5797. const struct ggml_compute_params * params,
  5798. const struct ggml_tensor * src0,
  5799. const struct ggml_tensor * src1,
  5800. struct ggml_tensor * dst) {
  5801. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5803. return;
  5804. }
  5805. const int ith = params->ith;
  5806. const int nth = params->nth;
  5807. const int nr = ggml_nrows(src0);
  5808. const int64_t ne0 = src0->ne[0];
  5809. const int64_t ne1 = src0->ne[1];
  5810. const int64_t ne2 = src0->ne[2];
  5811. const size_t nb00 = src0->nb[0];
  5812. const size_t nb01 = src0->nb[1];
  5813. const size_t nb02 = src0->nb[2];
  5814. const size_t nb03 = src0->nb[3];
  5815. const size_t nb10 = src1->nb[0];
  5816. const size_t nb11 = src1->nb[1];
  5817. const size_t nb12 = src1->nb[2];
  5818. const size_t nb13 = src1->nb[3];
  5819. const size_t nb0 = dst->nb[0];
  5820. const size_t nb1 = dst->nb[1];
  5821. const size_t nb2 = dst->nb[2];
  5822. const size_t nb3 = dst->nb[3];
  5823. GGML_ASSERT( nb0 == sizeof(float));
  5824. GGML_ASSERT(nb00 == sizeof(float));
  5825. // rows per thread
  5826. const int dr = (nr + nth - 1)/nth;
  5827. // row range for this thread
  5828. const int ir0 = dr*ith;
  5829. const int ir1 = MIN(ir0 + dr, nr);
  5830. if (nb10 == sizeof(float)) {
  5831. for (int ir = ir0; ir < ir1; ++ir) {
  5832. // src0, src1 and dst are same shape => same indices
  5833. const int i3 = ir/(ne2*ne1);
  5834. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5835. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5836. #ifdef GGML_USE_ACCELERATE
  5837. vDSP_vadd(
  5838. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5839. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5840. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5841. ne0);
  5842. #else
  5843. ggml_vec_add_f32(ne0,
  5844. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5845. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5846. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5847. #endif
  5848. // }
  5849. // }
  5850. }
  5851. } else {
  5852. // src1 is not contiguous
  5853. for (int ir = ir0; ir < ir1; ++ir) {
  5854. // src0, src1 and dst are same shape => same indices
  5855. const int i3 = ir/(ne2*ne1);
  5856. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5857. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5858. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5859. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5860. for (int i0 = 0; i0 < ne0; i0++) {
  5861. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5862. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5863. }
  5864. }
  5865. }
  5866. }
  5867. static void ggml_compute_forward_add_f16_f32(
  5868. const struct ggml_compute_params * params,
  5869. const struct ggml_tensor * src0,
  5870. const struct ggml_tensor * src1,
  5871. struct ggml_tensor * dst) {
  5872. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5874. return;
  5875. }
  5876. const int ith = params->ith;
  5877. const int nth = params->nth;
  5878. const int nr = ggml_nrows(src0);
  5879. const int64_t ne0 = src0->ne[0];
  5880. const int64_t ne1 = src0->ne[1];
  5881. const int64_t ne2 = src0->ne[2];
  5882. const size_t nb00 = src0->nb[0];
  5883. const size_t nb01 = src0->nb[1];
  5884. const size_t nb02 = src0->nb[2];
  5885. const size_t nb03 = src0->nb[3];
  5886. const size_t nb10 = src1->nb[0];
  5887. const size_t nb11 = src1->nb[1];
  5888. const size_t nb12 = src1->nb[2];
  5889. const size_t nb13 = src1->nb[3];
  5890. const size_t nb0 = dst->nb[0];
  5891. const size_t nb1 = dst->nb[1];
  5892. const size_t nb2 = dst->nb[2];
  5893. const size_t nb3 = dst->nb[3];
  5894. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5895. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5896. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5897. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5898. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5899. // rows per thread
  5900. const int dr = (nr + nth - 1)/nth;
  5901. // row range for this thread
  5902. const int ir0 = dr*ith;
  5903. const int ir1 = MIN(ir0 + dr, nr);
  5904. if (nb10 == sizeof(float)) {
  5905. for (int ir = ir0; ir < ir1; ++ir) {
  5906. // src0, src1 and dst are same shape => same indices
  5907. const int i3 = ir/(ne2*ne1);
  5908. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5909. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5910. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5911. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5912. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5913. for (int i = 0; i < ne0; i++) {
  5914. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5915. }
  5916. }
  5917. }
  5918. else {
  5919. // src1 is not contiguous
  5920. GGML_ASSERT(false);
  5921. }
  5922. }
  5923. static void ggml_compute_forward_add_f16_f16(
  5924. const struct ggml_compute_params * params,
  5925. const struct ggml_tensor * src0,
  5926. const struct ggml_tensor * src1,
  5927. struct ggml_tensor * dst) {
  5928. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5930. return;
  5931. }
  5932. const int ith = params->ith;
  5933. const int nth = params->nth;
  5934. const int nr = ggml_nrows(src0);
  5935. const int64_t ne0 = src0->ne[0];
  5936. const int64_t ne1 = src0->ne[1];
  5937. const int64_t ne2 = src0->ne[2];
  5938. const size_t nb00 = src0->nb[0];
  5939. const size_t nb01 = src0->nb[1];
  5940. const size_t nb02 = src0->nb[2];
  5941. const size_t nb03 = src0->nb[3];
  5942. const size_t nb10 = src1->nb[0];
  5943. const size_t nb11 = src1->nb[1];
  5944. const size_t nb12 = src1->nb[2];
  5945. const size_t nb13 = src1->nb[3];
  5946. const size_t nb0 = dst->nb[0];
  5947. const size_t nb1 = dst->nb[1];
  5948. const size_t nb2 = dst->nb[2];
  5949. const size_t nb3 = dst->nb[3];
  5950. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5951. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5952. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5953. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5954. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5955. // rows per thread
  5956. const int dr = (nr + nth - 1)/nth;
  5957. // row range for this thread
  5958. const int ir0 = dr*ith;
  5959. const int ir1 = MIN(ir0 + dr, nr);
  5960. if (nb10 == sizeof(ggml_fp16_t)) {
  5961. for (int ir = ir0; ir < ir1; ++ir) {
  5962. // src0, src1 and dst are same shape => same indices
  5963. const int i3 = ir/(ne2*ne1);
  5964. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5965. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5966. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5967. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5968. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5969. for (int i = 0; i < ne0; i++) {
  5970. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5971. }
  5972. }
  5973. }
  5974. else {
  5975. // src1 is not contiguous
  5976. GGML_ASSERT(false);
  5977. }
  5978. }
  5979. static void ggml_compute_forward_add_q_f32(
  5980. const struct ggml_compute_params * params,
  5981. const struct ggml_tensor * src0,
  5982. const struct ggml_tensor * src1,
  5983. struct ggml_tensor * dst) {
  5984. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5986. return;
  5987. }
  5988. const int nr = ggml_nrows(src0);
  5989. const int64_t ne00 = src0->ne[0];
  5990. const int64_t ne01 = src0->ne[1];
  5991. const int64_t ne02 = src0->ne[2];
  5992. //const int64_t ne03 = src0->ne[3];
  5993. const size_t nb00 = src0->nb[0];
  5994. const size_t nb01 = src0->nb[1];
  5995. const size_t nb02 = src0->nb[2];
  5996. const size_t nb03 = src0->nb[3];
  5997. const size_t nb10 = src1->nb[0];
  5998. const size_t nb11 = src1->nb[1];
  5999. const size_t nb12 = src1->nb[2];
  6000. const size_t nb13 = src1->nb[3];
  6001. const size_t nb0 = dst->nb[0];
  6002. const size_t nb1 = dst->nb[1];
  6003. const size_t nb2 = dst->nb[2];
  6004. const size_t nb3 = dst->nb[3];
  6005. const int ith = params->ith;
  6006. const int nth = params->nth;
  6007. const enum ggml_type type = src0->type;
  6008. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6009. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6010. // we don't support permuted src0 or src1
  6011. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6012. GGML_ASSERT(nb10 == sizeof(float));
  6013. // dst cannot be transposed or permuted
  6014. GGML_ASSERT(nb0 <= nb1);
  6015. GGML_ASSERT(nb1 <= nb2);
  6016. GGML_ASSERT(nb2 <= nb3);
  6017. GGML_ASSERT(ggml_is_quantized(src0->type));
  6018. GGML_ASSERT(dst->type == src0->type);
  6019. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6020. // rows per thread
  6021. const int dr = (nr + nth - 1)/nth;
  6022. // row range for this thread
  6023. const int ir0 = dr*ith;
  6024. const int ir1 = MIN(ir0 + dr, nr);
  6025. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6026. for (int ir = ir0; ir < ir1; ++ir) {
  6027. // src0 indices
  6028. const int i03 = ir/(ne02*ne01);
  6029. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6030. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6031. // src1 and dst are same shape as src0 => same indices
  6032. const int i13 = i03;
  6033. const int i12 = i02;
  6034. const int i11 = i01;
  6035. const int i3 = i03;
  6036. const int i2 = i02;
  6037. const int i1 = i01;
  6038. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6039. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6040. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6041. assert(ne00 % 32 == 0);
  6042. // unquantize row from src0 to temp buffer
  6043. dequantize_row_q(src0_row, wdata, ne00);
  6044. // add src1
  6045. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6046. // quantize row to dst
  6047. quantize_row_q(wdata, dst_row, ne00);
  6048. }
  6049. }
  6050. static void ggml_compute_forward_add(
  6051. const struct ggml_compute_params * params,
  6052. const struct ggml_tensor * src0,
  6053. const struct ggml_tensor * src1,
  6054. struct ggml_tensor * dst) {
  6055. switch (src0->type) {
  6056. case GGML_TYPE_F32:
  6057. {
  6058. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6059. } break;
  6060. case GGML_TYPE_F16:
  6061. {
  6062. if (src1->type == GGML_TYPE_F16) {
  6063. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6064. }
  6065. else if (src1->type == GGML_TYPE_F32) {
  6066. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6067. }
  6068. else {
  6069. GGML_ASSERT(false);
  6070. }
  6071. } break;
  6072. case GGML_TYPE_Q4_0:
  6073. case GGML_TYPE_Q4_1:
  6074. case GGML_TYPE_Q5_0:
  6075. case GGML_TYPE_Q5_1:
  6076. case GGML_TYPE_Q8_0:
  6077. {
  6078. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6079. } break;
  6080. default:
  6081. {
  6082. GGML_ASSERT(false);
  6083. } break;
  6084. }
  6085. }
  6086. // ggml_compute_forward_add1
  6087. static void ggml_compute_forward_add1_f32(
  6088. const struct ggml_compute_params * params,
  6089. const struct ggml_tensor * src0,
  6090. const struct ggml_tensor * src1,
  6091. struct ggml_tensor * dst) {
  6092. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6093. GGML_ASSERT(ggml_is_scalar(src1));
  6094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6095. return;
  6096. }
  6097. const int ith = params->ith;
  6098. const int nth = params->nth;
  6099. const int nr = ggml_nrows(src0);
  6100. const int64_t ne0 = src0->ne[0];
  6101. const int64_t ne1 = src0->ne[1];
  6102. const int64_t ne2 = src0->ne[2];
  6103. const size_t nb00 = src0->nb[0];
  6104. const size_t nb01 = src0->nb[1];
  6105. const size_t nb02 = src0->nb[2];
  6106. const size_t nb03 = src0->nb[3];
  6107. const size_t nb0 = dst->nb[0];
  6108. const size_t nb1 = dst->nb[1];
  6109. const size_t nb2 = dst->nb[2];
  6110. const size_t nb3 = dst->nb[3];
  6111. GGML_ASSERT( nb0 == sizeof(float));
  6112. GGML_ASSERT(nb00 == sizeof(float));
  6113. // rows per thread
  6114. const int dr = (nr + nth - 1)/nth;
  6115. // row range for this thread
  6116. const int ir0 = dr*ith;
  6117. const int ir1 = MIN(ir0 + dr, nr);
  6118. for (int ir = ir0; ir < ir1; ++ir) {
  6119. // src0 and dst are same shape => same indices
  6120. const int i3 = ir/(ne2*ne1);
  6121. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6122. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6123. #ifdef GGML_USE_ACCELERATE
  6124. UNUSED(ggml_vec_add1_f32);
  6125. vDSP_vadd(
  6126. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6127. (float *) ((char *) src1->data), 0,
  6128. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6129. ne0);
  6130. #else
  6131. ggml_vec_add1_f32(ne0,
  6132. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6133. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6134. *(float *) src1->data);
  6135. #endif
  6136. }
  6137. }
  6138. static void ggml_compute_forward_add1_f16_f32(
  6139. const struct ggml_compute_params * params,
  6140. const struct ggml_tensor * src0,
  6141. const struct ggml_tensor * src1,
  6142. struct ggml_tensor * dst) {
  6143. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6144. GGML_ASSERT(ggml_is_scalar(src1));
  6145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6146. return;
  6147. }
  6148. // scalar to add
  6149. const float v = *(float *) src1->data;
  6150. const int ith = params->ith;
  6151. const int nth = params->nth;
  6152. const int nr = ggml_nrows(src0);
  6153. const int64_t ne0 = src0->ne[0];
  6154. const int64_t ne1 = src0->ne[1];
  6155. const int64_t ne2 = src0->ne[2];
  6156. const size_t nb00 = src0->nb[0];
  6157. const size_t nb01 = src0->nb[1];
  6158. const size_t nb02 = src0->nb[2];
  6159. const size_t nb03 = src0->nb[3];
  6160. const size_t nb0 = dst->nb[0];
  6161. const size_t nb1 = dst->nb[1];
  6162. const size_t nb2 = dst->nb[2];
  6163. const size_t nb3 = dst->nb[3];
  6164. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6165. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6166. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6167. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6168. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6169. // rows per thread
  6170. const int dr = (nr + nth - 1)/nth;
  6171. // row range for this thread
  6172. const int ir0 = dr*ith;
  6173. const int ir1 = MIN(ir0 + dr, nr);
  6174. for (int ir = ir0; ir < ir1; ++ir) {
  6175. // src0 and dst are same shape => same indices
  6176. const int i3 = ir/(ne2*ne1);
  6177. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6178. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6179. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6180. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6181. for (int i = 0; i < ne0; i++) {
  6182. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6183. }
  6184. }
  6185. }
  6186. static void ggml_compute_forward_add1_f16_f16(
  6187. const struct ggml_compute_params * params,
  6188. const struct ggml_tensor * src0,
  6189. const struct ggml_tensor * src1,
  6190. struct ggml_tensor * dst) {
  6191. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6192. GGML_ASSERT(ggml_is_scalar(src1));
  6193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6194. return;
  6195. }
  6196. // scalar to add
  6197. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6198. const int ith = params->ith;
  6199. const int nth = params->nth;
  6200. const int nr = ggml_nrows(src0);
  6201. const int64_t ne0 = src0->ne[0];
  6202. const int64_t ne1 = src0->ne[1];
  6203. const int64_t ne2 = src0->ne[2];
  6204. const size_t nb00 = src0->nb[0];
  6205. const size_t nb01 = src0->nb[1];
  6206. const size_t nb02 = src0->nb[2];
  6207. const size_t nb03 = src0->nb[3];
  6208. const size_t nb0 = dst->nb[0];
  6209. const size_t nb1 = dst->nb[1];
  6210. const size_t nb2 = dst->nb[2];
  6211. const size_t nb3 = dst->nb[3];
  6212. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6213. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6214. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6215. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6216. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6217. // rows per thread
  6218. const int dr = (nr + nth - 1)/nth;
  6219. // row range for this thread
  6220. const int ir0 = dr*ith;
  6221. const int ir1 = MIN(ir0 + dr, nr);
  6222. for (int ir = ir0; ir < ir1; ++ir) {
  6223. // src0 and dst are same shape => same indices
  6224. const int i3 = ir/(ne2*ne1);
  6225. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6226. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6227. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6228. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6229. for (int i = 0; i < ne0; i++) {
  6230. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6231. }
  6232. }
  6233. }
  6234. static void ggml_compute_forward_add1_q_f32(
  6235. const struct ggml_compute_params * params,
  6236. const struct ggml_tensor * src0,
  6237. const struct ggml_tensor * src1,
  6238. struct ggml_tensor * dst) {
  6239. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6240. GGML_ASSERT(ggml_is_scalar(src1));
  6241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6242. return;
  6243. }
  6244. // scalar to add
  6245. const float v = *(float *) src1->data;
  6246. const int ith = params->ith;
  6247. const int nth = params->nth;
  6248. const int nr = ggml_nrows(src0);
  6249. const int64_t ne0 = src0->ne[0];
  6250. const int64_t ne1 = src0->ne[1];
  6251. const int64_t ne2 = src0->ne[2];
  6252. const size_t nb00 = src0->nb[0];
  6253. const size_t nb01 = src0->nb[1];
  6254. const size_t nb02 = src0->nb[2];
  6255. const size_t nb03 = src0->nb[3];
  6256. const size_t nb0 = dst->nb[0];
  6257. const size_t nb1 = dst->nb[1];
  6258. const size_t nb2 = dst->nb[2];
  6259. const size_t nb3 = dst->nb[3];
  6260. const enum ggml_type type = src0->type;
  6261. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6262. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6263. // we don't support permuted src0
  6264. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6265. // dst cannot be transposed or permuted
  6266. GGML_ASSERT(nb0 <= nb1);
  6267. GGML_ASSERT(nb1 <= nb2);
  6268. GGML_ASSERT(nb2 <= nb3);
  6269. GGML_ASSERT(ggml_is_quantized(src0->type));
  6270. GGML_ASSERT(dst->type == src0->type);
  6271. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6272. // rows per thread
  6273. const int dr = (nr + nth - 1)/nth;
  6274. // row range for this thread
  6275. const int ir0 = dr*ith;
  6276. const int ir1 = MIN(ir0 + dr, nr);
  6277. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6278. for (int ir = ir0; ir < ir1; ++ir) {
  6279. // src0 and dst are same shape => same indices
  6280. const int i3 = ir/(ne2*ne1);
  6281. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6282. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6283. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6284. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6285. assert(ne0 % 32 == 0);
  6286. // unquantize row from src0 to temp buffer
  6287. dequantize_row_q(src0_row, wdata, ne0);
  6288. // add src1
  6289. ggml_vec_acc1_f32(ne0, wdata, v);
  6290. // quantize row to dst
  6291. quantize_row_q(wdata, dst_row, ne0);
  6292. }
  6293. }
  6294. static void ggml_compute_forward_add1(
  6295. const struct ggml_compute_params * params,
  6296. const struct ggml_tensor * src0,
  6297. const struct ggml_tensor * src1,
  6298. struct ggml_tensor * dst) {
  6299. switch (src0->type) {
  6300. case GGML_TYPE_F32:
  6301. {
  6302. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6303. } break;
  6304. case GGML_TYPE_F16:
  6305. {
  6306. if (src1->type == GGML_TYPE_F16) {
  6307. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6308. }
  6309. else if (src1->type == GGML_TYPE_F32) {
  6310. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6311. }
  6312. else {
  6313. GGML_ASSERT(false);
  6314. }
  6315. } break;
  6316. case GGML_TYPE_Q4_0:
  6317. case GGML_TYPE_Q4_1:
  6318. case GGML_TYPE_Q5_0:
  6319. case GGML_TYPE_Q5_1:
  6320. case GGML_TYPE_Q8_0:
  6321. case GGML_TYPE_Q8_1:
  6322. {
  6323. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6324. } break;
  6325. default:
  6326. {
  6327. GGML_ASSERT(false);
  6328. } break;
  6329. }
  6330. }
  6331. // ggml_compute_forward_acc
  6332. static void ggml_compute_forward_acc_f32(
  6333. const struct ggml_compute_params * params,
  6334. const struct ggml_tensor * src0,
  6335. const struct ggml_tensor * src1,
  6336. const struct ggml_tensor * opt0,
  6337. struct ggml_tensor * dst) {
  6338. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6339. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6340. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6341. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6342. // view src0 and dst with these strides and data offset inbytes during acc
  6343. // nb0 is implicitely element_size because src0 and dst are contiguous
  6344. size_t nb1 = ((int32_t *) opt0->data)[0];
  6345. size_t nb2 = ((int32_t *) opt0->data)[1];
  6346. size_t nb3 = ((int32_t *) opt0->data)[2];
  6347. size_t offset = ((int32_t *) opt0->data)[3];
  6348. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6349. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6350. // memcpy needs to be synchronized across threads to avoid race conditions.
  6351. // => do it in INIT phase
  6352. memcpy(
  6353. ((char *) dst->data),
  6354. ((char *) src0->data),
  6355. ggml_nbytes(dst));
  6356. }
  6357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6358. return;
  6359. }
  6360. const int ith = params->ith;
  6361. const int nth = params->nth;
  6362. const int nr = ggml_nrows(src1);
  6363. const int nc = src1->ne[0];
  6364. const int64_t ne10 = src1->ne[0];
  6365. const int64_t ne11 = src1->ne[1];
  6366. const int64_t ne12 = src1->ne[2];
  6367. const int64_t ne13 = src1->ne[3];
  6368. const size_t nb10 = src1->nb[0];
  6369. const size_t nb11 = src1->nb[1];
  6370. const size_t nb12 = src1->nb[2];
  6371. const size_t nb13 = src1->nb[3];
  6372. // src0 and dst as viewed during acc
  6373. const size_t nb0 = ggml_element_size(src0);
  6374. const size_t nb00 = nb0;
  6375. const size_t nb01 = nb1;
  6376. const size_t nb02 = nb2;
  6377. const size_t nb03 = nb3;
  6378. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6379. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6380. GGML_ASSERT(nb10 == sizeof(float));
  6381. // rows per thread
  6382. const int dr = (nr + nth - 1)/nth;
  6383. // row range for this thread
  6384. const int ir0 = dr*ith;
  6385. const int ir1 = MIN(ir0 + dr, nr);
  6386. for (int ir = ir0; ir < ir1; ++ir) {
  6387. // src0 and dst are viewed with shape of src1 and offset
  6388. // => same indices
  6389. const int i3 = ir/(ne12*ne11);
  6390. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6391. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6392. #ifdef GGML_USE_ACCELERATE
  6393. vDSP_vadd(
  6394. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6396. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6397. #else
  6398. ggml_vec_add_f32(nc,
  6399. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6400. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6401. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6402. #endif
  6403. }
  6404. }
  6405. static void ggml_compute_forward_acc(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. const struct ggml_tensor * src1,
  6409. const struct ggml_tensor * opt0,
  6410. struct ggml_tensor * dst) {
  6411. switch (src0->type) {
  6412. case GGML_TYPE_F32:
  6413. {
  6414. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6415. } break;
  6416. case GGML_TYPE_F16:
  6417. case GGML_TYPE_Q4_0:
  6418. case GGML_TYPE_Q4_1:
  6419. case GGML_TYPE_Q5_0:
  6420. case GGML_TYPE_Q5_1:
  6421. case GGML_TYPE_Q8_0:
  6422. case GGML_TYPE_Q8_1:
  6423. default:
  6424. {
  6425. GGML_ASSERT(false);
  6426. } break;
  6427. }
  6428. }
  6429. // ggml_compute_forward_sub
  6430. static void ggml_compute_forward_sub_f32(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. const struct ggml_tensor * src1,
  6434. struct ggml_tensor * dst) {
  6435. assert(params->ith == 0);
  6436. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6438. return;
  6439. }
  6440. const int nr = ggml_nrows(src0);
  6441. const int64_t ne0 = src0->ne[0];
  6442. const int64_t ne1 = src0->ne[1];
  6443. const int64_t ne2 = src0->ne[2];
  6444. const size_t nb00 = src0->nb[0];
  6445. const size_t nb01 = src0->nb[1];
  6446. const size_t nb02 = src0->nb[2];
  6447. const size_t nb03 = src0->nb[3];
  6448. const size_t nb10 = src1->nb[0];
  6449. const size_t nb11 = src1->nb[1];
  6450. const size_t nb12 = src1->nb[2];
  6451. const size_t nb13 = src1->nb[3];
  6452. const size_t nb0 = dst->nb[0];
  6453. const size_t nb1 = dst->nb[1];
  6454. const size_t nb2 = dst->nb[2];
  6455. const size_t nb3 = dst->nb[3];
  6456. GGML_ASSERT( nb0 == sizeof(float));
  6457. GGML_ASSERT(nb00 == sizeof(float));
  6458. if (nb10 == sizeof(float)) {
  6459. for (int ir = 0; ir < nr; ++ir) {
  6460. // src0, src1 and dst are same shape => same indices
  6461. const int i3 = ir/(ne2*ne1);
  6462. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6463. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6464. #ifdef GGML_USE_ACCELERATE
  6465. vDSP_vsub(
  6466. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6467. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6468. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6469. ne0);
  6470. #else
  6471. ggml_vec_sub_f32(ne0,
  6472. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6473. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6474. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6475. #endif
  6476. // }
  6477. // }
  6478. }
  6479. } else {
  6480. // src1 is not contiguous
  6481. for (int ir = 0; ir < nr; ++ir) {
  6482. // src0, src1 and dst are same shape => same indices
  6483. const int i3 = ir/(ne2*ne1);
  6484. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6485. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6486. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6487. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6488. for (int i0 = 0; i0 < ne0; i0++) {
  6489. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6490. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6491. }
  6492. }
  6493. }
  6494. }
  6495. static void ggml_compute_forward_sub(
  6496. const struct ggml_compute_params * params,
  6497. const struct ggml_tensor * src0,
  6498. const struct ggml_tensor * src1,
  6499. struct ggml_tensor * dst) {
  6500. switch (src0->type) {
  6501. case GGML_TYPE_F32:
  6502. {
  6503. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6504. } break;
  6505. default:
  6506. {
  6507. GGML_ASSERT(false);
  6508. } break;
  6509. }
  6510. }
  6511. // ggml_compute_forward_mul
  6512. static void ggml_compute_forward_mul_f32(
  6513. const struct ggml_compute_params * params,
  6514. const struct ggml_tensor * src0,
  6515. const struct ggml_tensor * src1,
  6516. struct ggml_tensor * dst) {
  6517. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6519. return;
  6520. }
  6521. const int ith = params->ith;
  6522. const int nth = params->nth;
  6523. #ifdef GGML_USE_CUBLAS
  6524. if (src1->backend == GGML_BACKEND_CUDA) {
  6525. if (ith == 0) {
  6526. ggml_cuda_mul(src0, src1, dst);
  6527. }
  6528. return;
  6529. }
  6530. #endif
  6531. const int64_t nr = ggml_nrows(src0);
  6532. const int64_t ne00 = src0->ne[0];
  6533. const int64_t ne01 = src0->ne[1];
  6534. const int64_t ne02 = src0->ne[2];
  6535. const int64_t ne10 = src1->ne[0];
  6536. const int64_t ne11 = src1->ne[1];
  6537. const int64_t ne12 = src1->ne[2];
  6538. const int64_t ne13 = src1->ne[3];
  6539. const size_t nb00 = src0->nb[0];
  6540. const size_t nb01 = src0->nb[1];
  6541. const size_t nb02 = src0->nb[2];
  6542. const size_t nb03 = src0->nb[3];
  6543. const size_t nb10 = src1->nb[0];
  6544. const size_t nb11 = src1->nb[1];
  6545. const size_t nb12 = src1->nb[2];
  6546. const size_t nb13 = src1->nb[3];
  6547. const size_t nb0 = dst->nb[0];
  6548. const size_t nb1 = dst->nb[1];
  6549. const size_t nb2 = dst->nb[2];
  6550. const size_t nb3 = dst->nb[3];
  6551. GGML_ASSERT( nb0 == sizeof(float));
  6552. GGML_ASSERT(nb00 == sizeof(float));
  6553. GGML_ASSERT(ne00 == ne10);
  6554. if (nb10 == sizeof(float)) {
  6555. for (int64_t ir = ith; ir < nr; ir += nth) {
  6556. // src0 and dst are same shape => same indices
  6557. const int64_t i03 = ir/(ne02*ne01);
  6558. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6559. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6560. const int64_t i13 = i03 % ne13;
  6561. const int64_t i12 = i02 % ne12;
  6562. const int64_t i11 = i01 % ne11;
  6563. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6564. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6565. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6566. #ifdef GGML_USE_ACCELERATE
  6567. UNUSED(ggml_vec_mul_f32);
  6568. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6569. #else
  6570. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6571. #endif
  6572. // }
  6573. // }
  6574. }
  6575. } else {
  6576. // src1 is not contiguous
  6577. for (int64_t ir = ith; ir < nr; ir += nth) {
  6578. // src0 and dst are same shape => same indices
  6579. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6580. const int64_t i03 = ir/(ne02*ne01);
  6581. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6582. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6583. const int64_t i13 = i03 % ne13;
  6584. const int64_t i12 = i02 % ne12;
  6585. const int64_t i11 = i01 % ne11;
  6586. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6587. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6588. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6589. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6590. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6591. }
  6592. }
  6593. }
  6594. }
  6595. static void ggml_compute_forward_mul(
  6596. const struct ggml_compute_params * params,
  6597. const struct ggml_tensor * src0,
  6598. const struct ggml_tensor * src1,
  6599. struct ggml_tensor * dst) {
  6600. switch (src0->type) {
  6601. case GGML_TYPE_F32:
  6602. {
  6603. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6604. } break;
  6605. default:
  6606. {
  6607. GGML_ASSERT(false);
  6608. } break;
  6609. }
  6610. }
  6611. // ggml_compute_forward_div
  6612. static void ggml_compute_forward_div_f32(
  6613. const struct ggml_compute_params * params,
  6614. const struct ggml_tensor * src0,
  6615. const struct ggml_tensor * src1,
  6616. struct ggml_tensor * dst) {
  6617. assert(params->ith == 0);
  6618. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6619. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6620. return;
  6621. }
  6622. const int nr = ggml_nrows(src0);
  6623. const int64_t ne0 = src0->ne[0];
  6624. const int64_t ne1 = src0->ne[1];
  6625. const int64_t ne2 = src0->ne[2];
  6626. const size_t nb00 = src0->nb[0];
  6627. const size_t nb01 = src0->nb[1];
  6628. const size_t nb02 = src0->nb[2];
  6629. const size_t nb03 = src0->nb[3];
  6630. const size_t nb10 = src1->nb[0];
  6631. const size_t nb11 = src1->nb[1];
  6632. const size_t nb12 = src1->nb[2];
  6633. const size_t nb13 = src1->nb[3];
  6634. const size_t nb0 = dst->nb[0];
  6635. const size_t nb1 = dst->nb[1];
  6636. const size_t nb2 = dst->nb[2];
  6637. const size_t nb3 = dst->nb[3];
  6638. GGML_ASSERT( nb0 == sizeof(float));
  6639. GGML_ASSERT(nb00 == sizeof(float));
  6640. if (nb10 == sizeof(float)) {
  6641. for (int ir = 0; ir < nr; ++ir) {
  6642. // src0, src1 and dst are same shape => same indices
  6643. const int i3 = ir/(ne2*ne1);
  6644. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6645. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6646. #ifdef GGML_USE_ACCELERATE
  6647. vDSP_vdiv(
  6648. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6649. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6650. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6651. ne0);
  6652. #else
  6653. ggml_vec_div_f32(ne0,
  6654. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6655. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6656. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6657. #endif
  6658. // }
  6659. // }
  6660. }
  6661. } else {
  6662. // src1 is not contiguous
  6663. for (int ir = 0; ir < nr; ++ir) {
  6664. // src0, src1 and dst are same shape => same indices
  6665. const int i3 = ir/(ne2*ne1);
  6666. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6667. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6668. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6669. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6670. for (int i0 = 0; i0 < ne0; i0++) {
  6671. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6672. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6673. }
  6674. }
  6675. }
  6676. }
  6677. static void ggml_compute_forward_div(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. const struct ggml_tensor * src1,
  6681. struct ggml_tensor * dst) {
  6682. switch (src0->type) {
  6683. case GGML_TYPE_F32:
  6684. {
  6685. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6686. } break;
  6687. default:
  6688. {
  6689. GGML_ASSERT(false);
  6690. } break;
  6691. }
  6692. }
  6693. // ggml_compute_forward_sqr
  6694. static void ggml_compute_forward_sqr_f32(
  6695. const struct ggml_compute_params * params,
  6696. const struct ggml_tensor * src0,
  6697. struct ggml_tensor * dst) {
  6698. assert(params->ith == 0);
  6699. assert(ggml_are_same_shape(src0, dst));
  6700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6701. return;
  6702. }
  6703. const int n = ggml_nrows(src0);
  6704. const int nc = src0->ne[0];
  6705. assert( dst->nb[0] == sizeof(float));
  6706. assert(src0->nb[0] == sizeof(float));
  6707. for (int i = 0; i < n; i++) {
  6708. ggml_vec_sqr_f32(nc,
  6709. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6710. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6711. }
  6712. }
  6713. static void ggml_compute_forward_sqr(
  6714. const struct ggml_compute_params * params,
  6715. const struct ggml_tensor * src0,
  6716. struct ggml_tensor * dst) {
  6717. switch (src0->type) {
  6718. case GGML_TYPE_F32:
  6719. {
  6720. ggml_compute_forward_sqr_f32(params, src0, dst);
  6721. } break;
  6722. default:
  6723. {
  6724. GGML_ASSERT(false);
  6725. } break;
  6726. }
  6727. }
  6728. // ggml_compute_forward_sqrt
  6729. static void ggml_compute_forward_sqrt_f32(
  6730. const struct ggml_compute_params * params,
  6731. const struct ggml_tensor * src0,
  6732. struct ggml_tensor * dst) {
  6733. assert(params->ith == 0);
  6734. assert(ggml_are_same_shape(src0, dst));
  6735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6736. return;
  6737. }
  6738. const int n = ggml_nrows(src0);
  6739. const int nc = src0->ne[0];
  6740. assert( dst->nb[0] == sizeof(float));
  6741. assert(src0->nb[0] == sizeof(float));
  6742. for (int i = 0; i < n; i++) {
  6743. ggml_vec_sqrt_f32(nc,
  6744. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6745. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6746. }
  6747. }
  6748. static void ggml_compute_forward_sqrt(
  6749. const struct ggml_compute_params * params,
  6750. const struct ggml_tensor * src0,
  6751. struct ggml_tensor * dst) {
  6752. switch (src0->type) {
  6753. case GGML_TYPE_F32:
  6754. {
  6755. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6756. } break;
  6757. default:
  6758. {
  6759. GGML_ASSERT(false);
  6760. } break;
  6761. }
  6762. }
  6763. // ggml_compute_forward_log
  6764. static void ggml_compute_forward_log_f32(
  6765. const struct ggml_compute_params * params,
  6766. const struct ggml_tensor * src0,
  6767. struct ggml_tensor * dst) {
  6768. GGML_ASSERT(params->ith == 0);
  6769. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6771. return;
  6772. }
  6773. const int n = ggml_nrows(src0);
  6774. const int nc = src0->ne[0];
  6775. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6776. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6777. for (int i = 0; i < n; i++) {
  6778. ggml_vec_log_f32(nc,
  6779. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6780. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6781. }
  6782. }
  6783. static void ggml_compute_forward_log(
  6784. const struct ggml_compute_params * params,
  6785. const struct ggml_tensor * src0,
  6786. struct ggml_tensor * dst) {
  6787. switch (src0->type) {
  6788. case GGML_TYPE_F32:
  6789. {
  6790. ggml_compute_forward_log_f32(params, src0, dst);
  6791. } break;
  6792. default:
  6793. {
  6794. GGML_ASSERT(false);
  6795. } break;
  6796. }
  6797. }
  6798. // ggml_compute_forward_sum
  6799. static void ggml_compute_forward_sum_f32(
  6800. const struct ggml_compute_params * params,
  6801. const struct ggml_tensor * src0,
  6802. struct ggml_tensor * dst) {
  6803. assert(params->ith == 0);
  6804. assert(ggml_is_scalar(dst));
  6805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6806. return;
  6807. }
  6808. assert(ggml_is_scalar(dst));
  6809. assert(src0->nb[0] == sizeof(float));
  6810. const int64_t ne00 = src0->ne[0];
  6811. const int64_t ne01 = src0->ne[1];
  6812. const int64_t ne02 = src0->ne[2];
  6813. const int64_t ne03 = src0->ne[3];
  6814. const size_t nb01 = src0->nb[1];
  6815. const size_t nb02 = src0->nb[2];
  6816. const size_t nb03 = src0->nb[3];
  6817. ggml_float sum = 0;
  6818. ggml_float row_sum = 0;
  6819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6821. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6822. ggml_vec_sum_ggf(ne00,
  6823. &row_sum,
  6824. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6825. sum += row_sum;
  6826. }
  6827. }
  6828. }
  6829. ((float *) dst->data)[0] = sum;
  6830. }
  6831. static void ggml_compute_forward_sum(
  6832. const struct ggml_compute_params * params,
  6833. const struct ggml_tensor * src0,
  6834. struct ggml_tensor * dst) {
  6835. switch (src0->type) {
  6836. case GGML_TYPE_F32:
  6837. {
  6838. ggml_compute_forward_sum_f32(params, src0, dst);
  6839. } break;
  6840. default:
  6841. {
  6842. GGML_ASSERT(false);
  6843. } break;
  6844. }
  6845. }
  6846. // ggml_compute_forward_sum_rows
  6847. static void ggml_compute_forward_sum_rows_f32(
  6848. const struct ggml_compute_params * params,
  6849. const struct ggml_tensor * src0,
  6850. struct ggml_tensor * dst) {
  6851. GGML_ASSERT(params->ith == 0);
  6852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6853. return;
  6854. }
  6855. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6856. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6857. const int64_t ne00 = src0->ne[0];
  6858. const int64_t ne01 = src0->ne[1];
  6859. const int64_t ne02 = src0->ne[2];
  6860. const int64_t ne03 = src0->ne[3];
  6861. const int64_t ne0 = dst->ne[0];
  6862. const int64_t ne1 = dst->ne[1];
  6863. const int64_t ne2 = dst->ne[2];
  6864. const int64_t ne3 = dst->ne[3];
  6865. GGML_ASSERT(ne0 == 1);
  6866. GGML_ASSERT(ne1 == ne01);
  6867. GGML_ASSERT(ne2 == ne02);
  6868. GGML_ASSERT(ne3 == ne03);
  6869. const size_t nb01 = src0->nb[1];
  6870. const size_t nb02 = src0->nb[2];
  6871. const size_t nb03 = src0->nb[3];
  6872. const size_t nb1 = dst->nb[1];
  6873. const size_t nb2 = dst->nb[2];
  6874. const size_t nb3 = dst->nb[3];
  6875. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6876. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6877. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6878. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6879. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6880. float row_sum = 0;
  6881. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6882. dst_row[0] = row_sum;
  6883. }
  6884. }
  6885. }
  6886. }
  6887. static void ggml_compute_forward_sum_rows(
  6888. const struct ggml_compute_params * params,
  6889. const struct ggml_tensor * src0,
  6890. struct ggml_tensor * dst) {
  6891. switch (src0->type) {
  6892. case GGML_TYPE_F32:
  6893. {
  6894. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6895. } break;
  6896. default:
  6897. {
  6898. GGML_ASSERT(false);
  6899. } break;
  6900. }
  6901. }
  6902. // ggml_compute_forward_mean
  6903. static void ggml_compute_forward_mean_f32(
  6904. const struct ggml_compute_params * params,
  6905. const struct ggml_tensor * src0,
  6906. struct ggml_tensor * dst) {
  6907. assert(params->ith == 0);
  6908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6909. return;
  6910. }
  6911. assert(src0->nb[0] == sizeof(float));
  6912. const int64_t ne00 = src0->ne[0];
  6913. const int64_t ne01 = src0->ne[1];
  6914. const int64_t ne02 = src0->ne[2];
  6915. const int64_t ne03 = src0->ne[3];
  6916. const size_t nb01 = src0->nb[1];
  6917. const size_t nb02 = src0->nb[2];
  6918. const size_t nb03 = src0->nb[3];
  6919. const int64_t ne0 = dst->ne[0];
  6920. const int64_t ne1 = dst->ne[1];
  6921. const int64_t ne2 = dst->ne[2];
  6922. const int64_t ne3 = dst->ne[3];
  6923. assert(ne0 == 1);
  6924. assert(ne1 == ne01);
  6925. assert(ne2 == ne02);
  6926. assert(ne3 == ne03);
  6927. UNUSED(ne0);
  6928. UNUSED(ne1);
  6929. UNUSED(ne2);
  6930. UNUSED(ne3);
  6931. const size_t nb1 = dst->nb[1];
  6932. const size_t nb2 = dst->nb[2];
  6933. const size_t nb3 = dst->nb[3];
  6934. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6935. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6936. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6937. ggml_vec_sum_f32(ne00,
  6938. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6939. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6940. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6941. }
  6942. }
  6943. }
  6944. }
  6945. static void ggml_compute_forward_mean(
  6946. const struct ggml_compute_params * params,
  6947. const struct ggml_tensor * src0,
  6948. struct ggml_tensor * dst) {
  6949. switch (src0->type) {
  6950. case GGML_TYPE_F32:
  6951. {
  6952. ggml_compute_forward_mean_f32(params, src0, dst);
  6953. } break;
  6954. default:
  6955. {
  6956. GGML_ASSERT(false);
  6957. } break;
  6958. }
  6959. }
  6960. // ggml_compute_forward_repeat
  6961. static void ggml_compute_forward_repeat_f32(
  6962. const struct ggml_compute_params * params,
  6963. const struct ggml_tensor * src0,
  6964. struct ggml_tensor * dst) {
  6965. GGML_ASSERT(params->ith == 0);
  6966. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6968. return;
  6969. }
  6970. const int64_t ne0 = dst->ne[0];
  6971. const int64_t ne1 = dst->ne[1];
  6972. const int64_t ne2 = dst->ne[2];
  6973. const int64_t ne3 = dst->ne[3];
  6974. const int64_t ne00 = src0->ne[0];
  6975. const int64_t ne01 = src0->ne[1];
  6976. const int64_t ne02 = src0->ne[2];
  6977. const int64_t ne03 = src0->ne[3];
  6978. const size_t nb0 = dst->nb[0];
  6979. const size_t nb1 = dst->nb[1];
  6980. const size_t nb2 = dst->nb[2];
  6981. const size_t nb3 = dst->nb[3];
  6982. const size_t nb00 = src0->nb[0];
  6983. const size_t nb01 = src0->nb[1];
  6984. const size_t nb02 = src0->nb[2];
  6985. const size_t nb03 = src0->nb[3];
  6986. // guaranteed to be an integer due to the check in ggml_can_repeat
  6987. const int nr0 = (int)(ne0/ne00);
  6988. const int nr1 = (int)(ne1/ne01);
  6989. const int nr2 = (int)(ne2/ne02);
  6990. const int nr3 = (int)(ne3/ne03);
  6991. // TODO: support for transposed / permuted tensors
  6992. GGML_ASSERT(nb0 == sizeof(float));
  6993. GGML_ASSERT(nb00 == sizeof(float));
  6994. // TODO: maybe this is not optimal?
  6995. for (int i3 = 0; i3 < nr3; i3++) {
  6996. for (int k3 = 0; k3 < ne03; k3++) {
  6997. for (int i2 = 0; i2 < nr2; i2++) {
  6998. for (int k2 = 0; k2 < ne02; k2++) {
  6999. for (int i1 = 0; i1 < nr1; i1++) {
  7000. for (int k1 = 0; k1 < ne01; k1++) {
  7001. for (int i0 = 0; i0 < nr0; i0++) {
  7002. ggml_vec_cpy_f32(ne00,
  7003. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7004. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. }
  7011. }
  7012. }
  7013. static void ggml_compute_forward_repeat(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * src0,
  7016. struct ggml_tensor * dst) {
  7017. switch (src0->type) {
  7018. case GGML_TYPE_F32:
  7019. {
  7020. ggml_compute_forward_repeat_f32(params, src0, dst);
  7021. } break;
  7022. default:
  7023. {
  7024. GGML_ASSERT(false);
  7025. } break;
  7026. }
  7027. }
  7028. // ggml_compute_forward_abs
  7029. static void ggml_compute_forward_abs_f32(
  7030. const struct ggml_compute_params * params,
  7031. const struct ggml_tensor * src0,
  7032. struct ggml_tensor * dst) {
  7033. assert(params->ith == 0);
  7034. assert(ggml_are_same_shape(src0, dst));
  7035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7036. return;
  7037. }
  7038. const int n = ggml_nrows(src0);
  7039. const int nc = src0->ne[0];
  7040. assert(dst->nb[0] == sizeof(float));
  7041. assert(src0->nb[0] == sizeof(float));
  7042. for (int i = 0; i < n; i++) {
  7043. ggml_vec_abs_f32(nc,
  7044. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7045. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7046. }
  7047. }
  7048. static void ggml_compute_forward_abs(
  7049. const struct ggml_compute_params * params,
  7050. const struct ggml_tensor * src0,
  7051. struct ggml_tensor * dst) {
  7052. switch (src0->type) {
  7053. case GGML_TYPE_F32:
  7054. {
  7055. ggml_compute_forward_abs_f32(params, src0, dst);
  7056. } break;
  7057. default:
  7058. {
  7059. GGML_ASSERT(false);
  7060. } break;
  7061. }
  7062. }
  7063. // ggml_compute_forward_sgn
  7064. static void ggml_compute_forward_sgn_f32(
  7065. const struct ggml_compute_params * params,
  7066. const struct ggml_tensor * src0,
  7067. struct ggml_tensor * dst) {
  7068. assert(params->ith == 0);
  7069. assert(ggml_are_same_shape(src0, dst));
  7070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7071. return;
  7072. }
  7073. const int n = ggml_nrows(src0);
  7074. const int nc = src0->ne[0];
  7075. assert(dst->nb[0] == sizeof(float));
  7076. assert(src0->nb[0] == sizeof(float));
  7077. for (int i = 0; i < n; i++) {
  7078. ggml_vec_sgn_f32(nc,
  7079. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7080. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7081. }
  7082. }
  7083. static void ggml_compute_forward_sgn(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. struct ggml_tensor * dst) {
  7087. switch (src0->type) {
  7088. case GGML_TYPE_F32:
  7089. {
  7090. ggml_compute_forward_sgn_f32(params, src0, dst);
  7091. } break;
  7092. default:
  7093. {
  7094. GGML_ASSERT(false);
  7095. } break;
  7096. }
  7097. }
  7098. // ggml_compute_forward_neg
  7099. static void ggml_compute_forward_neg_f32(
  7100. const struct ggml_compute_params * params,
  7101. const struct ggml_tensor * src0,
  7102. struct ggml_tensor * dst) {
  7103. assert(params->ith == 0);
  7104. assert(ggml_are_same_shape(src0, dst));
  7105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7106. return;
  7107. }
  7108. const int n = ggml_nrows(src0);
  7109. const int nc = src0->ne[0];
  7110. assert(dst->nb[0] == sizeof(float));
  7111. assert(src0->nb[0] == sizeof(float));
  7112. for (int i = 0; i < n; i++) {
  7113. ggml_vec_neg_f32(nc,
  7114. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7115. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7116. }
  7117. }
  7118. static void ggml_compute_forward_neg(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. switch (src0->type) {
  7123. case GGML_TYPE_F32:
  7124. {
  7125. ggml_compute_forward_neg_f32(params, src0, dst);
  7126. } break;
  7127. default:
  7128. {
  7129. GGML_ASSERT(false);
  7130. } break;
  7131. }
  7132. }
  7133. // ggml_compute_forward_step
  7134. static void ggml_compute_forward_step_f32(
  7135. const struct ggml_compute_params * params,
  7136. const struct ggml_tensor * src0,
  7137. struct ggml_tensor * dst) {
  7138. assert(params->ith == 0);
  7139. assert(ggml_are_same_shape(src0, dst));
  7140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7141. return;
  7142. }
  7143. const int n = ggml_nrows(src0);
  7144. const int nc = src0->ne[0];
  7145. assert(dst->nb[0] == sizeof(float));
  7146. assert(src0->nb[0] == sizeof(float));
  7147. for (int i = 0; i < n; i++) {
  7148. ggml_vec_step_f32(nc,
  7149. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7150. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7151. }
  7152. }
  7153. static void ggml_compute_forward_step(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. struct ggml_tensor * dst) {
  7157. switch (src0->type) {
  7158. case GGML_TYPE_F32:
  7159. {
  7160. ggml_compute_forward_step_f32(params, src0, dst);
  7161. } break;
  7162. default:
  7163. {
  7164. GGML_ASSERT(false);
  7165. } break;
  7166. }
  7167. }
  7168. // ggml_compute_forward_relu
  7169. static void ggml_compute_forward_relu_f32(
  7170. const struct ggml_compute_params * params,
  7171. const struct ggml_tensor * src0,
  7172. struct ggml_tensor * dst) {
  7173. assert(params->ith == 0);
  7174. assert(ggml_are_same_shape(src0, dst));
  7175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7176. return;
  7177. }
  7178. const int n = ggml_nrows(src0);
  7179. const int nc = src0->ne[0];
  7180. assert(dst->nb[0] == sizeof(float));
  7181. assert(src0->nb[0] == sizeof(float));
  7182. for (int i = 0; i < n; i++) {
  7183. ggml_vec_relu_f32(nc,
  7184. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7185. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7186. }
  7187. }
  7188. static void ggml_compute_forward_relu(
  7189. const struct ggml_compute_params * params,
  7190. const struct ggml_tensor * src0,
  7191. struct ggml_tensor * dst) {
  7192. switch (src0->type) {
  7193. case GGML_TYPE_F32:
  7194. {
  7195. ggml_compute_forward_relu_f32(params, src0, dst);
  7196. } break;
  7197. default:
  7198. {
  7199. GGML_ASSERT(false);
  7200. } break;
  7201. }
  7202. }
  7203. // ggml_compute_forward_gelu
  7204. static void ggml_compute_forward_gelu_f32(
  7205. const struct ggml_compute_params * params,
  7206. const struct ggml_tensor * src0,
  7207. struct ggml_tensor * dst) {
  7208. GGML_ASSERT(ggml_is_contiguous(src0));
  7209. GGML_ASSERT(ggml_is_contiguous(dst));
  7210. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7212. return;
  7213. }
  7214. const int ith = params->ith;
  7215. const int nth = params->nth;
  7216. const int nc = src0->ne[0];
  7217. const int nr = ggml_nrows(src0);
  7218. // rows per thread
  7219. const int dr = (nr + nth - 1)/nth;
  7220. // row range for this thread
  7221. const int ir0 = dr*ith;
  7222. const int ir1 = MIN(ir0 + dr, nr);
  7223. for (int i1 = ir0; i1 < ir1; i1++) {
  7224. ggml_vec_gelu_f32(nc,
  7225. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7226. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7227. #ifndef NDEBUG
  7228. for (int k = 0; k < nc; k++) {
  7229. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7230. UNUSED(x);
  7231. assert(!isnan(x));
  7232. assert(!isinf(x));
  7233. }
  7234. #endif
  7235. }
  7236. }
  7237. static void ggml_compute_forward_gelu(
  7238. const struct ggml_compute_params * params,
  7239. const struct ggml_tensor * src0,
  7240. struct ggml_tensor * dst) {
  7241. switch (src0->type) {
  7242. case GGML_TYPE_F32:
  7243. {
  7244. ggml_compute_forward_gelu_f32(params, src0, dst);
  7245. } break;
  7246. default:
  7247. {
  7248. GGML_ASSERT(false);
  7249. } break;
  7250. }
  7251. //printf("XXXXXXXX gelu\n");
  7252. }
  7253. // ggml_compute_forward_silu
  7254. static void ggml_compute_forward_silu_f32(
  7255. const struct ggml_compute_params * params,
  7256. const struct ggml_tensor * src0,
  7257. struct ggml_tensor * dst) {
  7258. GGML_ASSERT(ggml_is_contiguous(src0));
  7259. GGML_ASSERT(ggml_is_contiguous(dst));
  7260. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7262. return;
  7263. }
  7264. const int ith = params->ith;
  7265. const int nth = params->nth;
  7266. const int nc = src0->ne[0];
  7267. const int nr = ggml_nrows(src0);
  7268. // rows per thread
  7269. const int dr = (nr + nth - 1)/nth;
  7270. // row range for this thread
  7271. const int ir0 = dr*ith;
  7272. const int ir1 = MIN(ir0 + dr, nr);
  7273. for (int i1 = ir0; i1 < ir1; i1++) {
  7274. ggml_vec_silu_f32(nc,
  7275. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7276. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7277. #ifndef NDEBUG
  7278. for (int k = 0; k < nc; k++) {
  7279. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7280. UNUSED(x);
  7281. assert(!isnan(x));
  7282. assert(!isinf(x));
  7283. }
  7284. #endif
  7285. }
  7286. }
  7287. static void ggml_compute_forward_silu(
  7288. const struct ggml_compute_params * params,
  7289. const struct ggml_tensor * src0,
  7290. struct ggml_tensor * dst) {
  7291. switch (src0->type) {
  7292. case GGML_TYPE_F32:
  7293. {
  7294. ggml_compute_forward_silu_f32(params, src0, dst);
  7295. } break;
  7296. default:
  7297. {
  7298. GGML_ASSERT(false);
  7299. } break;
  7300. }
  7301. }
  7302. // ggml_compute_forward_silu_back
  7303. static void ggml_compute_forward_silu_back_f32(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. const struct ggml_tensor * grad,
  7307. struct ggml_tensor * dst) {
  7308. GGML_ASSERT(ggml_is_contiguous(grad));
  7309. GGML_ASSERT(ggml_is_contiguous(src0));
  7310. GGML_ASSERT(ggml_is_contiguous(dst));
  7311. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7312. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7314. return;
  7315. }
  7316. const int ith = params->ith;
  7317. const int nth = params->nth;
  7318. const int nc = src0->ne[0];
  7319. const int nr = ggml_nrows(src0);
  7320. // rows per thread
  7321. const int dr = (nr + nth - 1)/nth;
  7322. // row range for this thread
  7323. const int ir0 = dr*ith;
  7324. const int ir1 = MIN(ir0 + dr, nr);
  7325. for (int i1 = ir0; i1 < ir1; i1++) {
  7326. ggml_vec_silu_backward_f32(nc,
  7327. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7328. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7329. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7330. #ifndef NDEBUG
  7331. for (int k = 0; k < nc; k++) {
  7332. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7333. UNUSED(x);
  7334. assert(!isnan(x));
  7335. assert(!isinf(x));
  7336. }
  7337. #endif
  7338. }
  7339. }
  7340. static void ggml_compute_forward_silu_back(
  7341. const struct ggml_compute_params * params,
  7342. const struct ggml_tensor * src0,
  7343. const struct ggml_tensor * grad,
  7344. struct ggml_tensor * dst) {
  7345. switch (src0->type) {
  7346. case GGML_TYPE_F32:
  7347. {
  7348. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7349. } break;
  7350. default:
  7351. {
  7352. GGML_ASSERT(false);
  7353. } break;
  7354. }
  7355. }
  7356. // ggml_compute_forward_norm
  7357. static void ggml_compute_forward_norm_f32(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7363. return;
  7364. }
  7365. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7366. const int ith = params->ith;
  7367. const int nth = params->nth;
  7368. const int64_t ne00 = src0->ne[0];
  7369. const int64_t ne01 = src0->ne[1];
  7370. const int64_t ne02 = src0->ne[2];
  7371. const int64_t ne03 = src0->ne[3];
  7372. const size_t nb01 = src0->nb[1];
  7373. const size_t nb02 = src0->nb[2];
  7374. const size_t nb03 = src0->nb[3];
  7375. const size_t nb1 = dst->nb[1];
  7376. const size_t nb2 = dst->nb[2];
  7377. const size_t nb3 = dst->nb[3];
  7378. const float eps = 1e-5f; // TODO: make this a parameter
  7379. // TODO: optimize
  7380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7383. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7384. ggml_float sum = 0.0;
  7385. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7386. sum += (ggml_float)x[i00];
  7387. }
  7388. float mean = sum/ne00;
  7389. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7390. ggml_float sum2 = 0.0;
  7391. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7392. float v = x[i00] - mean;
  7393. y[i00] = v;
  7394. sum2 += (ggml_float)(v*v);
  7395. }
  7396. float variance = sum2/ne00;
  7397. const float scale = 1.0f/sqrtf(variance + eps);
  7398. ggml_vec_scale_f32(ne00, y, scale);
  7399. }
  7400. }
  7401. }
  7402. }
  7403. static void ggml_compute_forward_norm(
  7404. const struct ggml_compute_params * params,
  7405. const struct ggml_tensor * src0,
  7406. struct ggml_tensor * dst) {
  7407. switch (src0->type) {
  7408. case GGML_TYPE_F32:
  7409. {
  7410. ggml_compute_forward_norm_f32(params, src0, dst);
  7411. } break;
  7412. default:
  7413. {
  7414. GGML_ASSERT(false);
  7415. } break;
  7416. }
  7417. }
  7418. static void ggml_compute_forward_rms_norm_f32(
  7419. const struct ggml_compute_params * params,
  7420. const struct ggml_tensor * src0,
  7421. struct ggml_tensor * dst) {
  7422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7424. return;
  7425. }
  7426. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7427. const int ith = params->ith;
  7428. const int nth = params->nth;
  7429. const int64_t ne00 = src0->ne[0];
  7430. const int64_t ne01 = src0->ne[1];
  7431. const int64_t ne02 = src0->ne[2];
  7432. const int64_t ne03 = src0->ne[3];
  7433. const size_t nb01 = src0->nb[1];
  7434. const size_t nb02 = src0->nb[2];
  7435. const size_t nb03 = src0->nb[3];
  7436. const size_t nb1 = dst->nb[1];
  7437. const size_t nb2 = dst->nb[2];
  7438. const size_t nb3 = dst->nb[3];
  7439. const float eps = 1e-6f; // TODO: make this a parameter
  7440. // TODO: optimize
  7441. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7442. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7443. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7444. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7445. ggml_float sum = 0.0;
  7446. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7447. sum += (ggml_float)(x[i00] * x[i00]);
  7448. }
  7449. float mean = sum/ne00;
  7450. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7451. memcpy(y, x, ne00 * sizeof(float));
  7452. // for (int i00 = 0; i00 < ne00; i00++) {
  7453. // y[i00] = x[i00];
  7454. // }
  7455. const float scale = 1.0f/sqrtf(mean + eps);
  7456. ggml_vec_scale_f32(ne00, y, scale);
  7457. }
  7458. }
  7459. }
  7460. }
  7461. static void ggml_compute_forward_rms_norm(
  7462. const struct ggml_compute_params * params,
  7463. const struct ggml_tensor * src0,
  7464. struct ggml_tensor * dst) {
  7465. switch (src0->type) {
  7466. case GGML_TYPE_F32:
  7467. {
  7468. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7469. } break;
  7470. default:
  7471. {
  7472. GGML_ASSERT(false);
  7473. } break;
  7474. }
  7475. }
  7476. static void ggml_compute_forward_rms_norm_back_f32(
  7477. const struct ggml_compute_params * params,
  7478. const struct ggml_tensor * src0,
  7479. const struct ggml_tensor * src1,
  7480. struct ggml_tensor * dst) {
  7481. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7483. return;
  7484. }
  7485. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7486. const int ith = params->ith;
  7487. const int nth = params->nth;
  7488. const int64_t ne00 = src0->ne[0];
  7489. const int64_t ne01 = src0->ne[1];
  7490. const int64_t ne02 = src0->ne[2];
  7491. const int64_t ne03 = src0->ne[3];
  7492. const size_t nb01 = src0->nb[1];
  7493. const size_t nb02 = src0->nb[2];
  7494. const size_t nb03 = src0->nb[3];
  7495. const size_t nb11 = src1->nb[1];
  7496. const size_t nb12 = src1->nb[2];
  7497. const size_t nb13 = src1->nb[3];
  7498. const size_t nb1 = dst->nb[1];
  7499. const size_t nb2 = dst->nb[2];
  7500. const size_t nb3 = dst->nb[3];
  7501. const float eps = 1e-6f; // TODO: make this a parameter
  7502. // TODO: optimize
  7503. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7504. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7505. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7506. // src1 is same shape as src0 => same indices
  7507. const int64_t i11 = i01;
  7508. const int64_t i12 = i02;
  7509. const int64_t i13 = i03;
  7510. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7511. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7512. ggml_float sum_xx = 0.0;
  7513. ggml_float sum_xdz = 0.0;
  7514. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7515. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7516. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7517. }
  7518. //const float mean = (float)(sum_xx)/ne00;
  7519. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7520. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7521. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7522. // we could cache rms from forward pass to improve performance.
  7523. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7524. //const float rms = sqrtf(mean_eps);
  7525. const float rrms = 1.0f / sqrtf(mean_eps);
  7526. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7527. {
  7528. // z = rms_norm(x)
  7529. //
  7530. // rms_norm(src0) =
  7531. // scale(
  7532. // src0,
  7533. // div(
  7534. // 1,
  7535. // sqrt(
  7536. // add(
  7537. // scale(
  7538. // sum(
  7539. // sqr(
  7540. // src0)),
  7541. // (1.0/N)),
  7542. // eps))));
  7543. // postorder:
  7544. // ## op args grad
  7545. // 00 param src0 grad[#00]
  7546. // 01 const 1
  7547. // 02 sqr (#00) grad[#02]
  7548. // 03 sum (#02) grad[#03]
  7549. // 04 const 1/N
  7550. // 05 scale (#03, #04) grad[#05]
  7551. // 06 const eps
  7552. // 07 add (#05, #06) grad[#07]
  7553. // 08 sqrt (#07) grad[#08]
  7554. // 09 div (#01,#08) grad[#09]
  7555. // 10 scale (#00,#09) grad[#10]
  7556. //
  7557. // backward pass, given grad[#10]
  7558. // #10: scale
  7559. // grad[#00] += scale(grad[#10],#09)
  7560. // grad[#09] += sum(mul(grad[#10],#00))
  7561. // #09: div
  7562. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7563. // #08: sqrt
  7564. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7565. // #07: add
  7566. // grad[#05] += grad[#07]
  7567. // #05: scale
  7568. // grad[#03] += scale(grad[#05],#04)
  7569. // #03: sum
  7570. // grad[#02] += repeat(grad[#03], #02)
  7571. // #02:
  7572. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7573. //
  7574. // substitute and simplify:
  7575. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7576. // grad[#02] = repeat(grad[#03], #02)
  7577. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7578. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7579. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7580. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7581. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7582. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7583. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7584. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7585. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7586. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7587. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7588. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7589. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7590. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7591. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7592. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7593. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7594. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7595. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7596. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7597. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7598. // a = b*c + d*e
  7599. // a = b*c*f/f + d*e*f/f
  7600. // a = (b*c*f + d*e*f)*(1/f)
  7601. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7602. // a = (b + d*e/c)*c
  7603. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7604. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7605. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7606. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7607. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7608. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7609. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7610. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7611. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7612. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7613. }
  7614. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7615. // post-order:
  7616. // dx := x
  7617. // dx := scale(dx,-mean_xdz/mean_eps)
  7618. // dx := add(dx, dz)
  7619. // dx := scale(dx, rrms)
  7620. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7621. ggml_vec_cpy_f32 (ne00, dx, x);
  7622. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7623. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7624. ggml_vec_acc_f32 (ne00, dx, dz);
  7625. ggml_vec_scale_f32(ne00, dx, rrms);
  7626. }
  7627. }
  7628. }
  7629. }
  7630. static void ggml_compute_forward_rms_norm_back(
  7631. const struct ggml_compute_params * params,
  7632. const struct ggml_tensor * src0,
  7633. const struct ggml_tensor * src1,
  7634. struct ggml_tensor * dst) {
  7635. switch (src0->type) {
  7636. case GGML_TYPE_F32:
  7637. {
  7638. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7639. } break;
  7640. default:
  7641. {
  7642. GGML_ASSERT(false);
  7643. } break;
  7644. }
  7645. }
  7646. // ggml_compute_forward_mul_mat
  7647. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7648. // helper function to determine if it is better to use BLAS or not
  7649. // for large matrices, BLAS is faster
  7650. static bool ggml_compute_forward_mul_mat_use_blas(
  7651. const struct ggml_tensor * src0,
  7652. const struct ggml_tensor * src1,
  7653. struct ggml_tensor * dst) {
  7654. //const int64_t ne00 = src0->ne[0];
  7655. //const int64_t ne01 = src0->ne[1];
  7656. const int64_t ne10 = src1->ne[0];
  7657. const int64_t ne0 = dst->ne[0];
  7658. const int64_t ne1 = dst->ne[1];
  7659. // TODO: find the optimal values for these
  7660. if (ggml_is_contiguous(src0) &&
  7661. ggml_is_contiguous(src1) &&
  7662. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7663. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7664. return true;
  7665. }
  7666. return false;
  7667. }
  7668. #endif
  7669. static void ggml_compute_forward_mul_mat_f32(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. const struct ggml_tensor * src1,
  7673. struct ggml_tensor * dst) {
  7674. int64_t t0 = ggml_perf_time_us();
  7675. UNUSED(t0);
  7676. const int64_t ne00 = src0->ne[0];
  7677. const int64_t ne01 = src0->ne[1];
  7678. const int64_t ne02 = src0->ne[2];
  7679. const int64_t ne03 = src0->ne[3];
  7680. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7681. const int64_t ne10 = src1->ne[0];
  7682. #endif
  7683. const int64_t ne11 = src1->ne[1];
  7684. #ifndef NDEBUG
  7685. const int64_t ne12 = src1->ne[2];
  7686. const int64_t ne13 = src1->ne[3];
  7687. const int64_t ne0 = dst->ne[0];
  7688. const int64_t ne1 = dst->ne[1];
  7689. const int64_t ne2 = dst->ne[2];
  7690. const int64_t ne3 = dst->ne[3];
  7691. const int nb00 = src0->nb[0];
  7692. #endif
  7693. const int nb01 = src0->nb[1];
  7694. const int nb02 = src0->nb[2];
  7695. const int nb03 = src0->nb[3];
  7696. #ifndef NDEBUG
  7697. const int nb10 = src1->nb[0];
  7698. #endif
  7699. const int nb11 = src1->nb[1];
  7700. const int nb12 = src1->nb[2];
  7701. const int nb13 = src1->nb[3];
  7702. const int nb0 = dst->nb[0];
  7703. const int nb1 = dst->nb[1];
  7704. const int nb2 = dst->nb[2];
  7705. const int nb3 = dst->nb[3];
  7706. const int ith = params->ith;
  7707. const int nth = params->nth;
  7708. assert(ne02 == ne12);
  7709. assert(ne03 == ne13);
  7710. assert(ne2 == ne12);
  7711. assert(ne3 == ne13);
  7712. // we don't support permuted src0 or src1
  7713. assert(nb00 == sizeof(float));
  7714. assert(nb10 == sizeof(float));
  7715. // dst cannot be transposed or permuted
  7716. assert(nb0 == sizeof(float));
  7717. assert(nb0 <= nb1);
  7718. assert(nb1 <= nb2);
  7719. assert(nb2 <= nb3);
  7720. assert(ne0 == ne01);
  7721. assert(ne1 == ne11);
  7722. assert(ne2 == ne02);
  7723. assert(ne3 == ne03);
  7724. // nb01 >= nb00 - src0 is not transposed
  7725. // compute by src0 rows
  7726. #if defined(GGML_USE_CUBLAS)
  7727. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7728. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7729. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7730. }
  7731. return;
  7732. }
  7733. #elif defined(GGML_USE_CLBLAST)
  7734. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7735. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7736. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7737. }
  7738. return;
  7739. }
  7740. #endif
  7741. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7742. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7743. if (params->ith != 0) {
  7744. return;
  7745. }
  7746. if (params->type == GGML_TASK_INIT) {
  7747. return;
  7748. }
  7749. if (params->type == GGML_TASK_FINALIZE) {
  7750. return;
  7751. }
  7752. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7753. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7754. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7755. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7756. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7757. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7758. ne11, ne01, ne10,
  7759. 1.0f, y, ne10,
  7760. x, ne00,
  7761. 0.0f, d, ne01);
  7762. }
  7763. }
  7764. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7765. return;
  7766. }
  7767. #endif
  7768. if (params->type == GGML_TASK_INIT) {
  7769. return;
  7770. }
  7771. if (params->type == GGML_TASK_FINALIZE) {
  7772. return;
  7773. }
  7774. // parallelize by src0 rows using ggml_vec_dot_f32
  7775. // total rows in src0
  7776. const int nr = ne01*ne02*ne03;
  7777. // rows per thread
  7778. const int dr = (nr + nth - 1)/nth;
  7779. // row range for this thread
  7780. const int ir0 = dr*ith;
  7781. const int ir1 = MIN(ir0 + dr, nr);
  7782. for (int ir = ir0; ir < ir1; ++ir) {
  7783. // src0 indices
  7784. const int i03 = ir/(ne02*ne01);
  7785. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7786. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7787. for (int64_t ic = 0; ic < ne11; ++ic) {
  7788. // src1 indices
  7789. const int i13 = i03;
  7790. const int i12 = i02;
  7791. const int i11 = ic;
  7792. // dst indices
  7793. const int i0 = i01;
  7794. const int i1 = i11;
  7795. const int i2 = i02;
  7796. const int i3 = i03;
  7797. ggml_vec_dot_f32(ne00,
  7798. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7799. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7800. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7801. }
  7802. }
  7803. //int64_t t1 = ggml_perf_time_us();
  7804. //static int64_t acc = 0;
  7805. //acc += t1 - t0;
  7806. //if (t1 - t0 > 10) {
  7807. // printf("\n");
  7808. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7809. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7810. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7811. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7812. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7813. //}
  7814. }
  7815. static void ggml_compute_forward_mul_mat_f16_f32(
  7816. const struct ggml_compute_params * params,
  7817. const struct ggml_tensor * src0,
  7818. const struct ggml_tensor * src1,
  7819. struct ggml_tensor * dst) {
  7820. int64_t t0 = ggml_perf_time_us();
  7821. UNUSED(t0);
  7822. const int64_t ne00 = src0->ne[0];
  7823. const int64_t ne01 = src0->ne[1];
  7824. const int64_t ne02 = src0->ne[2];
  7825. const int64_t ne03 = src0->ne[3];
  7826. const int64_t ne10 = src1->ne[0];
  7827. const int64_t ne11 = src1->ne[1];
  7828. const int64_t ne12 = src1->ne[2];
  7829. const int64_t ne13 = src1->ne[3];
  7830. const int64_t ne0 = dst->ne[0];
  7831. const int64_t ne1 = dst->ne[1];
  7832. const int64_t ne2 = dst->ne[2];
  7833. const int64_t ne3 = dst->ne[3];
  7834. //const int64_t ne = ne0*ne1*ne2*ne3;
  7835. const int nb00 = src0->nb[0];
  7836. const int nb01 = src0->nb[1];
  7837. const int nb02 = src0->nb[2];
  7838. const int nb03 = src0->nb[3];
  7839. const int nb10 = src1->nb[0];
  7840. const int nb11 = src1->nb[1];
  7841. const int nb12 = src1->nb[2];
  7842. const int nb13 = src1->nb[3];
  7843. const int nb0 = dst->nb[0];
  7844. const int nb1 = dst->nb[1];
  7845. const int nb2 = dst->nb[2];
  7846. const int nb3 = dst->nb[3];
  7847. const int ith = params->ith;
  7848. const int nth = params->nth;
  7849. GGML_ASSERT(ne02 == ne12);
  7850. GGML_ASSERT(ne03 == ne13);
  7851. GGML_ASSERT(ne2 == ne12);
  7852. GGML_ASSERT(ne3 == ne13);
  7853. // TODO: we don't support permuted src0
  7854. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7855. // dst cannot be transposed or permuted
  7856. GGML_ASSERT(nb0 == sizeof(float));
  7857. GGML_ASSERT(nb0 <= nb1);
  7858. GGML_ASSERT(nb1 <= nb2);
  7859. GGML_ASSERT(nb2 <= nb3);
  7860. GGML_ASSERT(ne0 == ne01);
  7861. GGML_ASSERT(ne1 == ne11);
  7862. GGML_ASSERT(ne2 == ne02);
  7863. GGML_ASSERT(ne3 == ne03);
  7864. // nb01 >= nb00 - src0 is not transposed
  7865. // compute by src0 rows
  7866. #if defined(GGML_USE_CUBLAS)
  7867. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7868. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7869. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7870. }
  7871. return;
  7872. }
  7873. #elif defined(GGML_USE_CLBLAST)
  7874. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7875. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7876. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7877. }
  7878. return;
  7879. }
  7880. #endif
  7881. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7882. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7883. GGML_ASSERT(nb10 == sizeof(float));
  7884. if (params->ith != 0) {
  7885. return;
  7886. }
  7887. if (params->type == GGML_TASK_INIT) {
  7888. return;
  7889. }
  7890. if (params->type == GGML_TASK_FINALIZE) {
  7891. return;
  7892. }
  7893. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7894. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7895. float * const wdata = params->wdata;
  7896. {
  7897. size_t id = 0;
  7898. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7899. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7900. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7901. }
  7902. }
  7903. assert(id*sizeof(float) <= params->wsize);
  7904. }
  7905. const float * x = wdata;
  7906. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7907. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7908. // zT = y * xT
  7909. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7910. ne11, ne01, ne10,
  7911. 1.0f, y, ne10,
  7912. x, ne00,
  7913. 0.0f, d, ne01);
  7914. }
  7915. }
  7916. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7917. return;
  7918. }
  7919. #endif
  7920. if (params->type == GGML_TASK_INIT) {
  7921. ggml_fp16_t * const wdata = params->wdata;
  7922. size_t id = 0;
  7923. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7924. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7925. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7926. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7927. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7928. }
  7929. }
  7930. }
  7931. }
  7932. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7933. return;
  7934. }
  7935. if (params->type == GGML_TASK_FINALIZE) {
  7936. return;
  7937. }
  7938. // fp16 -> half the size, so divide by 2
  7939. // TODO: do not support transposed src1
  7940. assert(nb10/2 == sizeof(ggml_fp16_t));
  7941. // parallelize by src0 rows using ggml_vec_dot_f16
  7942. // total rows in src0
  7943. const int nr = ne01*ne02*ne03;
  7944. // rows per thread
  7945. const int dr = (nr + nth - 1)/nth;
  7946. // row range for this thread
  7947. const int ir0 = dr*ith;
  7948. const int ir1 = MIN(ir0 + dr, nr);
  7949. ggml_fp16_t * wdata = params->wdata;
  7950. for (int ir = ir0; ir < ir1; ++ir) {
  7951. // src0 indices
  7952. const int i03 = ir/(ne02*ne01);
  7953. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7954. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7955. const int i13 = i03;
  7956. const int i12 = i02;
  7957. const int i0 = i01;
  7958. const int i2 = i02;
  7959. const int i3 = i03;
  7960. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7961. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7962. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7963. for (int64_t ic = 0; ic < ne11; ++ic) {
  7964. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7965. }
  7966. }
  7967. //int64_t t1 = ggml_time_us();
  7968. //static int64_t acc = 0;
  7969. //acc += t1 - t0;
  7970. //if (t1 - t0 > 10) {
  7971. // printf("\n");
  7972. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7973. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7974. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7975. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7976. //}
  7977. }
  7978. static void ggml_compute_forward_mul_mat_q_f32(
  7979. const struct ggml_compute_params * params,
  7980. const struct ggml_tensor * src0,
  7981. const struct ggml_tensor * src1,
  7982. struct ggml_tensor * dst) {
  7983. int64_t t0 = ggml_perf_time_us();
  7984. UNUSED(t0);
  7985. const int64_t ne00 = src0->ne[0];
  7986. const int64_t ne01 = src0->ne[1];
  7987. const int64_t ne02 = src0->ne[2];
  7988. const int64_t ne03 = src0->ne[3];
  7989. const int64_t ne10 = src1->ne[0];
  7990. const int64_t ne11 = src1->ne[1];
  7991. const int64_t ne12 = src1->ne[2];
  7992. const int64_t ne13 = src1->ne[3];
  7993. const int64_t ne0 = dst->ne[0];
  7994. const int64_t ne1 = dst->ne[1];
  7995. const int64_t ne2 = dst->ne[2];
  7996. const int64_t ne3 = dst->ne[3];
  7997. const int nb00 = src0->nb[0];
  7998. const int nb01 = src0->nb[1];
  7999. const int nb02 = src0->nb[2];
  8000. const int nb03 = src0->nb[3];
  8001. const int nb10 = src1->nb[0];
  8002. const int nb11 = src1->nb[1];
  8003. const int nb12 = src1->nb[2];
  8004. const int nb13 = src1->nb[3];
  8005. const int nb0 = dst->nb[0];
  8006. const int nb1 = dst->nb[1];
  8007. const int nb2 = dst->nb[2];
  8008. const int nb3 = dst->nb[3];
  8009. const int ith = params->ith;
  8010. const int nth = params->nth;
  8011. GGML_ASSERT(ne02 == ne12);
  8012. GGML_ASSERT(ne03 == ne13);
  8013. GGML_ASSERT(ne2 == ne12);
  8014. GGML_ASSERT(ne3 == ne13);
  8015. const enum ggml_type type = src0->type;
  8016. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8017. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8018. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8019. // we don't support permuted src0 or src1
  8020. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8021. GGML_ASSERT(nb10 == sizeof(float));
  8022. // dst cannot be transposed or permuted
  8023. GGML_ASSERT(nb0 == sizeof(float));
  8024. GGML_ASSERT(nb0 <= nb1);
  8025. GGML_ASSERT(nb1 <= nb2);
  8026. GGML_ASSERT(nb2 <= nb3);
  8027. GGML_ASSERT(ne0 == ne01);
  8028. GGML_ASSERT(ne1 == ne11);
  8029. GGML_ASSERT(ne2 == ne02);
  8030. GGML_ASSERT(ne3 == ne03);
  8031. // nb01 >= nb00 - src0 is not transposed
  8032. // compute by src0 rows
  8033. #if defined(GGML_USE_CUBLAS)
  8034. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8035. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8036. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8037. }
  8038. return;
  8039. }
  8040. #elif defined(GGML_USE_CLBLAST)
  8041. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8042. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8043. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8044. }
  8045. return;
  8046. }
  8047. #endif
  8048. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8049. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8050. if (params->ith != 0) {
  8051. return;
  8052. }
  8053. if (params->type == GGML_TASK_INIT) {
  8054. return;
  8055. }
  8056. if (params->type == GGML_TASK_FINALIZE) {
  8057. return;
  8058. }
  8059. float * const wdata = params->wdata;
  8060. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8061. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8062. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8063. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8064. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8065. {
  8066. size_t id = 0;
  8067. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8068. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8069. id += ne00;
  8070. }
  8071. assert(id*sizeof(float) <= params->wsize);
  8072. }
  8073. const float * x = wdata;
  8074. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8075. ne11, ne01, ne10,
  8076. 1.0f, y, ne10,
  8077. x, ne00,
  8078. 0.0f, d, ne01);
  8079. }
  8080. }
  8081. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8082. return;
  8083. }
  8084. #endif
  8085. if (params->type == GGML_TASK_INIT) {
  8086. char * wdata = params->wdata;
  8087. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8088. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8089. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8090. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8091. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8092. wdata += row_size;
  8093. }
  8094. }
  8095. }
  8096. return;
  8097. }
  8098. if (params->type == GGML_TASK_FINALIZE) {
  8099. return;
  8100. }
  8101. // parallelize by src0 rows using ggml_vec_dot_q
  8102. // total rows in src0
  8103. const int nr = ne01*ne02*ne03;
  8104. // rows per thread
  8105. const int dr = (nr + nth - 1)/nth;
  8106. // row range for this thread
  8107. const int ir0 = dr*ith;
  8108. const int ir1 = MIN(ir0 + dr, nr);
  8109. void * wdata = params->wdata;
  8110. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8111. for (int ir = ir0; ir < ir1; ++ir) {
  8112. // src0 indices
  8113. const int i03 = ir/(ne02*ne01);
  8114. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8115. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8116. const int i13 = i03;
  8117. const int i12 = i02;
  8118. const int i0 = i01;
  8119. const int i2 = i02;
  8120. const int i3 = i03;
  8121. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8122. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8123. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8124. assert(ne00 % 32 == 0);
  8125. for (int64_t ic = 0; ic < ne11; ++ic) {
  8126. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8127. }
  8128. }
  8129. //int64_t t1 = ggml_time_us();
  8130. //static int64_t acc = 0;
  8131. //acc += t1 - t0;
  8132. //if (t1 - t0 > 10) {
  8133. // printf("\n");
  8134. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8135. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8136. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8137. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8138. //}
  8139. }
  8140. static void ggml_compute_forward_mul_mat(
  8141. const struct ggml_compute_params * params,
  8142. const struct ggml_tensor * src0,
  8143. const struct ggml_tensor * src1,
  8144. struct ggml_tensor * dst) {
  8145. switch (src0->type) {
  8146. case GGML_TYPE_Q4_0:
  8147. case GGML_TYPE_Q4_1:
  8148. case GGML_TYPE_Q5_0:
  8149. case GGML_TYPE_Q5_1:
  8150. case GGML_TYPE_Q8_0:
  8151. case GGML_TYPE_Q8_1:
  8152. {
  8153. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8154. } break;
  8155. case GGML_TYPE_F16:
  8156. {
  8157. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8158. } break;
  8159. case GGML_TYPE_F32:
  8160. {
  8161. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8162. } break;
  8163. default:
  8164. {
  8165. GGML_ASSERT(false);
  8166. } break;
  8167. }
  8168. }
  8169. // ggml_compute_forward_scale
  8170. static void ggml_compute_forward_scale_f32(
  8171. const struct ggml_compute_params * params,
  8172. const struct ggml_tensor * src0,
  8173. const struct ggml_tensor * src1,
  8174. struct ggml_tensor * dst) {
  8175. GGML_ASSERT(ggml_is_contiguous(src0));
  8176. GGML_ASSERT(ggml_is_contiguous(dst));
  8177. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8178. GGML_ASSERT(ggml_is_scalar(src1));
  8179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8180. return;
  8181. }
  8182. // scale factor
  8183. const float v = *(float *) src1->data;
  8184. const int ith = params->ith;
  8185. const int nth = params->nth;
  8186. const int nc = src0->ne[0];
  8187. const int nr = ggml_nrows(src0);
  8188. // rows per thread
  8189. const int dr = (nr + nth - 1)/nth;
  8190. // row range for this thread
  8191. const int ir0 = dr*ith;
  8192. const int ir1 = MIN(ir0 + dr, nr);
  8193. const size_t nb01 = src0->nb[1];
  8194. const size_t nb1 = dst->nb[1];
  8195. for (int i1 = ir0; i1 < ir1; i1++) {
  8196. if (dst->data != src0->data) {
  8197. // src0 is same shape as dst => same indices
  8198. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8199. }
  8200. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8201. }
  8202. }
  8203. static void ggml_compute_forward_scale(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. const struct ggml_tensor * src1,
  8207. struct ggml_tensor * dst) {
  8208. switch (src0->type) {
  8209. case GGML_TYPE_F32:
  8210. {
  8211. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8212. } break;
  8213. default:
  8214. {
  8215. GGML_ASSERT(false);
  8216. } break;
  8217. }
  8218. }
  8219. // ggml_compute_forward_set
  8220. static void ggml_compute_forward_set_f32(
  8221. const struct ggml_compute_params * params,
  8222. const struct ggml_tensor * src0,
  8223. const struct ggml_tensor * src1,
  8224. const struct ggml_tensor * opt0,
  8225. struct ggml_tensor * dst) {
  8226. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8227. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8228. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8229. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8230. // view src0 and dst with these strides and data offset inbytes during set
  8231. // nb0 is implicitely element_size because src0 and dst are contiguous
  8232. size_t nb1 = ((int32_t *) opt0->data)[0];
  8233. size_t nb2 = ((int32_t *) opt0->data)[1];
  8234. size_t nb3 = ((int32_t *) opt0->data)[2];
  8235. size_t offset = ((int32_t *) opt0->data)[3];
  8236. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8237. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8238. // memcpy needs to be synchronized across threads to avoid race conditions.
  8239. // => do it in INIT phase
  8240. memcpy(
  8241. ((char *) dst->data),
  8242. ((char *) src0->data),
  8243. ggml_nbytes(dst));
  8244. }
  8245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8246. return;
  8247. }
  8248. const int ith = params->ith;
  8249. const int nth = params->nth;
  8250. const int nr = ggml_nrows(src1);
  8251. const int nc = src1->ne[0];
  8252. const int64_t ne10 = src1->ne[0];
  8253. const int64_t ne11 = src1->ne[1];
  8254. const int64_t ne12 = src1->ne[2];
  8255. const int64_t ne13 = src1->ne[3];
  8256. const size_t nb10 = src1->nb[0];
  8257. const size_t nb11 = src1->nb[1];
  8258. const size_t nb12 = src1->nb[2];
  8259. const size_t nb13 = src1->nb[3];
  8260. // src0 and dst as viewed during set
  8261. const size_t nb0 = ggml_element_size(src0);
  8262. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8263. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8264. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8265. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8266. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8267. GGML_ASSERT(nb10 == sizeof(float));
  8268. // rows per thread
  8269. const int dr = (nr + nth - 1)/nth;
  8270. // row range for this thread
  8271. const int ir0 = dr*ith;
  8272. const int ir1 = MIN(ir0 + dr, nr);
  8273. for (int ir = ir0; ir < ir1; ++ir) {
  8274. // src0 and dst are viewed with shape of src1 and offset
  8275. // => same indices
  8276. const int i3 = ir/(ne12*ne11);
  8277. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8278. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8279. ggml_vec_cpy_f32(nc,
  8280. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8281. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8282. }
  8283. }
  8284. static void ggml_compute_forward_set(
  8285. const struct ggml_compute_params * params,
  8286. const struct ggml_tensor * src0,
  8287. const struct ggml_tensor * src1,
  8288. const struct ggml_tensor * opt0,
  8289. struct ggml_tensor * dst) {
  8290. switch (src0->type) {
  8291. case GGML_TYPE_F32:
  8292. {
  8293. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8294. } break;
  8295. case GGML_TYPE_F16:
  8296. case GGML_TYPE_Q4_0:
  8297. case GGML_TYPE_Q4_1:
  8298. case GGML_TYPE_Q5_0:
  8299. case GGML_TYPE_Q5_1:
  8300. case GGML_TYPE_Q8_0:
  8301. case GGML_TYPE_Q8_1:
  8302. default:
  8303. {
  8304. GGML_ASSERT(false);
  8305. } break;
  8306. }
  8307. }
  8308. // ggml_compute_forward_cpy
  8309. static void ggml_compute_forward_cpy(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. struct ggml_tensor * dst) {
  8313. ggml_compute_forward_dup(params, src0, dst);
  8314. }
  8315. // ggml_compute_forward_cont
  8316. static void ggml_compute_forward_cont(
  8317. const struct ggml_compute_params * params,
  8318. const struct ggml_tensor * src0,
  8319. struct ggml_tensor * dst) {
  8320. ggml_compute_forward_dup(params, src0, dst);
  8321. }
  8322. // ggml_compute_forward_reshape
  8323. static void ggml_compute_forward_reshape(
  8324. const struct ggml_compute_params * params,
  8325. const struct ggml_tensor * src0,
  8326. struct ggml_tensor * dst) {
  8327. // NOP
  8328. UNUSED(params);
  8329. UNUSED(src0);
  8330. UNUSED(dst);
  8331. }
  8332. // ggml_compute_forward_view
  8333. static void ggml_compute_forward_view(
  8334. const struct ggml_compute_params * params,
  8335. const struct ggml_tensor * src0) {
  8336. // NOP
  8337. UNUSED(params);
  8338. UNUSED(src0);
  8339. }
  8340. // ggml_compute_forward_permute
  8341. static void ggml_compute_forward_permute(
  8342. const struct ggml_compute_params * params,
  8343. const struct ggml_tensor * src0) {
  8344. // NOP
  8345. UNUSED(params);
  8346. UNUSED(src0);
  8347. }
  8348. // ggml_compute_forward_transpose
  8349. static void ggml_compute_forward_transpose(
  8350. const struct ggml_compute_params * params,
  8351. const struct ggml_tensor * src0) {
  8352. // NOP
  8353. UNUSED(params);
  8354. UNUSED(src0);
  8355. }
  8356. // ggml_compute_forward_get_rows
  8357. static void ggml_compute_forward_get_rows_q(
  8358. const struct ggml_compute_params * params,
  8359. const struct ggml_tensor * src0,
  8360. const struct ggml_tensor * src1,
  8361. struct ggml_tensor * dst) {
  8362. assert(params->ith == 0);
  8363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8364. return;
  8365. }
  8366. const int nc = src0->ne[0];
  8367. const int nr = ggml_nelements(src1);
  8368. const enum ggml_type type = src0->type;
  8369. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8370. assert( dst->ne[0] == nc);
  8371. assert( dst->ne[1] == nr);
  8372. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8373. for (int i = 0; i < nr; ++i) {
  8374. const int r = ((int32_t *) src1->data)[i];
  8375. dequantize_row_q(
  8376. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8377. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8378. }
  8379. }
  8380. static void ggml_compute_forward_get_rows_f16(
  8381. const struct ggml_compute_params * params,
  8382. const struct ggml_tensor * src0,
  8383. const struct ggml_tensor * src1,
  8384. struct ggml_tensor * dst) {
  8385. assert(params->ith == 0);
  8386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8387. return;
  8388. }
  8389. const int nc = src0->ne[0];
  8390. const int nr = ggml_nelements(src1);
  8391. assert( dst->ne[0] == nc);
  8392. assert( dst->ne[1] == nr);
  8393. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8394. for (int i = 0; i < nr; ++i) {
  8395. const int r = ((int32_t *) src1->data)[i];
  8396. for (int j = 0; j < nc; ++j) {
  8397. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8398. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8399. }
  8400. }
  8401. }
  8402. static void ggml_compute_forward_get_rows_f32(
  8403. const struct ggml_compute_params * params,
  8404. const struct ggml_tensor * src0,
  8405. const struct ggml_tensor * src1,
  8406. struct ggml_tensor * dst) {
  8407. assert(params->ith == 0);
  8408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8409. return;
  8410. }
  8411. const int nc = src0->ne[0];
  8412. const int nr = ggml_nelements(src1);
  8413. assert( dst->ne[0] == nc);
  8414. assert( dst->ne[1] == nr);
  8415. assert(src0->nb[0] == sizeof(float));
  8416. for (int i = 0; i < nr; ++i) {
  8417. const int r = ((int32_t *) src1->data)[i];
  8418. ggml_vec_cpy_f32(nc,
  8419. (float *) ((char *) dst->data + i*dst->nb[1]),
  8420. (float *) ((char *) src0->data + r*src0->nb[1]));
  8421. }
  8422. }
  8423. static void ggml_compute_forward_get_rows(
  8424. const struct ggml_compute_params * params,
  8425. const struct ggml_tensor * src0,
  8426. const struct ggml_tensor * src1,
  8427. struct ggml_tensor * dst) {
  8428. switch (src0->type) {
  8429. case GGML_TYPE_Q4_0:
  8430. case GGML_TYPE_Q4_1:
  8431. case GGML_TYPE_Q5_0:
  8432. case GGML_TYPE_Q5_1:
  8433. case GGML_TYPE_Q8_0:
  8434. case GGML_TYPE_Q8_1:
  8435. {
  8436. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8437. } break;
  8438. case GGML_TYPE_F16:
  8439. {
  8440. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8441. } break;
  8442. case GGML_TYPE_F32:
  8443. {
  8444. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8445. } break;
  8446. default:
  8447. {
  8448. GGML_ASSERT(false);
  8449. } break;
  8450. }
  8451. //static bool first = true;
  8452. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8453. //if (first) {
  8454. // first = false;
  8455. //} else {
  8456. // for (int k = 0; k < dst->ne[1]; ++k) {
  8457. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8458. // for (int i = 0; i < 16; ++i) {
  8459. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8460. // }
  8461. // printf("\n");
  8462. // }
  8463. // printf("\n");
  8464. // }
  8465. // printf("\n");
  8466. // exit(0);
  8467. //}
  8468. }
  8469. // ggml_compute_forward_get_rows_back
  8470. static void ggml_compute_forward_get_rows_back_f32_f16(
  8471. const struct ggml_compute_params * params,
  8472. const struct ggml_tensor * src0,
  8473. const struct ggml_tensor * src1,
  8474. const struct ggml_tensor * opt0,
  8475. struct ggml_tensor * dst) {
  8476. GGML_ASSERT(params->ith == 0);
  8477. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8478. GGML_ASSERT(ggml_is_contiguous(opt0));
  8479. GGML_ASSERT(ggml_is_contiguous(dst));
  8480. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8482. return;
  8483. }
  8484. const int nc = src0->ne[0];
  8485. const int nr = ggml_nelements(src1);
  8486. GGML_ASSERT( dst->ne[0] == nc);
  8487. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8488. for (int i = 0; i < nr; ++i) {
  8489. const int r = ((int32_t *) src1->data)[i];
  8490. for (int j = 0; j < nc; ++j) {
  8491. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8492. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8493. }
  8494. }
  8495. }
  8496. static void ggml_compute_forward_get_rows_back_f32(
  8497. const struct ggml_compute_params * params,
  8498. const struct ggml_tensor * src0,
  8499. const struct ggml_tensor * src1,
  8500. const struct ggml_tensor * opt0,
  8501. struct ggml_tensor * dst) {
  8502. GGML_ASSERT(params->ith == 0);
  8503. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8504. GGML_ASSERT(ggml_is_contiguous(opt0));
  8505. GGML_ASSERT(ggml_is_contiguous(dst));
  8506. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8508. return;
  8509. }
  8510. const int nc = src0->ne[0];
  8511. const int nr = ggml_nelements(src1);
  8512. GGML_ASSERT( dst->ne[0] == nc);
  8513. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8514. for (int i = 0; i < nr; ++i) {
  8515. const int r = ((int32_t *) src1->data)[i];
  8516. ggml_vec_add_f32(nc,
  8517. (float *) ((char *) dst->data + r*dst->nb[1]),
  8518. (float *) ((char *) dst->data + r*dst->nb[1]),
  8519. (float *) ((char *) src0->data + i*src0->nb[1]));
  8520. }
  8521. }
  8522. static void ggml_compute_forward_get_rows_back(
  8523. const struct ggml_compute_params * params,
  8524. const struct ggml_tensor * src0,
  8525. const struct ggml_tensor * src1,
  8526. const struct ggml_tensor * opt0,
  8527. struct ggml_tensor * dst) {
  8528. switch (src0->type) {
  8529. case GGML_TYPE_F16:
  8530. {
  8531. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8532. } break;
  8533. case GGML_TYPE_F32:
  8534. {
  8535. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8536. } break;
  8537. default:
  8538. {
  8539. GGML_ASSERT(false);
  8540. } break;
  8541. }
  8542. //static bool first = true;
  8543. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8544. //if (first) {
  8545. // first = false;
  8546. //} else {
  8547. // for (int k = 0; k < dst->ne[1]; ++k) {
  8548. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8549. // for (int i = 0; i < 16; ++i) {
  8550. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8551. // }
  8552. // printf("\n");
  8553. // }
  8554. // printf("\n");
  8555. // }
  8556. // printf("\n");
  8557. // exit(0);
  8558. //}
  8559. }
  8560. // ggml_compute_forward_diag
  8561. static void ggml_compute_forward_diag_f32(
  8562. const struct ggml_compute_params * params,
  8563. const struct ggml_tensor * src0,
  8564. struct ggml_tensor * dst) {
  8565. GGML_ASSERT(params->ith == 0);
  8566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8567. return;
  8568. }
  8569. // TODO: handle transposed/permuted matrices
  8570. const int ne00 = src0->ne[0];
  8571. const int ne01 = src0->ne[1];
  8572. const int ne02 = src0->ne[2];
  8573. const int ne03 = src0->ne[3];
  8574. const int ne0 = dst->ne[0];
  8575. const int ne1 = dst->ne[1];
  8576. const int ne2 = dst->ne[2];
  8577. const int ne3 = dst->ne[3];
  8578. GGML_ASSERT(ne00 == ne0);
  8579. GGML_ASSERT(ne00 == ne1);
  8580. GGML_ASSERT(ne01 == 1);
  8581. GGML_ASSERT(ne02 == ne2);
  8582. GGML_ASSERT(ne03 == ne3);
  8583. const int nb00 = src0->nb[0];
  8584. //const int nb01 = src0->nb[1];
  8585. const int nb02 = src0->nb[2];
  8586. const int nb03 = src0->nb[3];
  8587. const int nb0 = dst->nb[0];
  8588. const int nb1 = dst->nb[1];
  8589. const int nb2 = dst->nb[2];
  8590. const int nb3 = dst->nb[3];
  8591. GGML_ASSERT(nb00 == sizeof(float));
  8592. GGML_ASSERT(nb0 == sizeof(float));
  8593. for (int i3 = 0; i3 < ne3; i3++) {
  8594. for (int i2 = 0; i2 < ne2; i2++) {
  8595. for (int i1 = 0; i1 < ne1; i1++) {
  8596. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8597. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8598. for (int i0 = 0; i0 < i1; i0++) {
  8599. d[i0] = 0;
  8600. }
  8601. d[i1] = s[i1];
  8602. for (int i0 = i1+1; i0 < ne0; i0++) {
  8603. d[i0] = 0;
  8604. }
  8605. }
  8606. }
  8607. }
  8608. }
  8609. static void ggml_compute_forward_diag(
  8610. const struct ggml_compute_params * params,
  8611. const struct ggml_tensor * src0,
  8612. struct ggml_tensor * dst) {
  8613. switch (src0->type) {
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_diag_f32(params, src0, dst);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_diag_mask_inf
  8625. static void ggml_compute_forward_diag_mask_f32(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. const struct ggml_tensor * src1,
  8629. struct ggml_tensor * dst,
  8630. const float value) {
  8631. assert(src1->type == GGML_TYPE_I32);
  8632. assert(ggml_nelements(src1) == 2);
  8633. const int ith = params->ith;
  8634. const int nth = params->nth;
  8635. const int n_past = ((int32_t *) src1->data)[0];
  8636. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8637. assert(n_past >= 0);
  8638. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8639. // memcpy needs to be synchronized across threads to avoid race conditions.
  8640. // => do it in INIT phase
  8641. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8642. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8643. memcpy(
  8644. ((char *) dst->data),
  8645. ((char *) src0->data),
  8646. ggml_nbytes(dst));
  8647. }
  8648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8649. return;
  8650. }
  8651. // TODO: handle transposed/permuted matrices
  8652. const int n = ggml_nrows(src0);
  8653. const int nc = src0->ne[0];
  8654. const int nr = src0->ne[1];
  8655. const int nz = n/nr;
  8656. assert( dst->nb[0] == sizeof(float));
  8657. assert(src0->nb[0] == sizeof(float));
  8658. for (int k = 0; k < nz; k++) {
  8659. for (int j = ith; j < nr; j += nth) {
  8660. for (int i = n_past; i < nc; i++) {
  8661. if (i > n_past + j) {
  8662. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8663. }
  8664. }
  8665. }
  8666. }
  8667. }
  8668. static void ggml_compute_forward_diag_mask_inf(
  8669. const struct ggml_compute_params * params,
  8670. const struct ggml_tensor * src0,
  8671. const struct ggml_tensor * src1,
  8672. struct ggml_tensor * dst) {
  8673. switch (src0->type) {
  8674. case GGML_TYPE_F32:
  8675. {
  8676. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8677. } break;
  8678. default:
  8679. {
  8680. GGML_ASSERT(false);
  8681. } break;
  8682. }
  8683. }
  8684. static void ggml_compute_forward_diag_mask_zero(
  8685. const struct ggml_compute_params * params,
  8686. const struct ggml_tensor * src0,
  8687. const struct ggml_tensor * src1,
  8688. struct ggml_tensor * dst) {
  8689. switch (src0->type) {
  8690. case GGML_TYPE_F32:
  8691. {
  8692. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8693. } break;
  8694. default:
  8695. {
  8696. GGML_ASSERT(false);
  8697. } break;
  8698. }
  8699. }
  8700. // ggml_compute_forward_soft_max
  8701. static void ggml_compute_forward_soft_max_f32(
  8702. const struct ggml_compute_params * params,
  8703. const struct ggml_tensor * src0,
  8704. struct ggml_tensor * dst) {
  8705. GGML_ASSERT(ggml_is_contiguous(src0));
  8706. GGML_ASSERT(ggml_is_contiguous(dst));
  8707. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8709. return;
  8710. }
  8711. // TODO: handle transposed/permuted matrices
  8712. const int ith = params->ith;
  8713. const int nth = params->nth;
  8714. const int nc = src0->ne[0];
  8715. const int nr = ggml_nrows(src0);
  8716. // rows per thread
  8717. const int dr = (nr + nth - 1)/nth;
  8718. // row range for this thread
  8719. const int ir0 = dr*ith;
  8720. const int ir1 = MIN(ir0 + dr, nr);
  8721. for (int i1 = ir0; i1 < ir1; i1++) {
  8722. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8723. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8724. #ifndef NDEBUG
  8725. for (int i = 0; i < nc; ++i) {
  8726. //printf("p[%d] = %f\n", i, p[i]);
  8727. assert(!isnan(sp[i]));
  8728. }
  8729. #endif
  8730. float max = -INFINITY;
  8731. ggml_vec_max_f32(nc, &max, sp);
  8732. ggml_float sum = 0.0;
  8733. uint16_t scvt;
  8734. for (int i = 0; i < nc; i++) {
  8735. if (sp[i] == -INFINITY) {
  8736. dp[i] = 0.0f;
  8737. } else {
  8738. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8739. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8740. memcpy(&scvt, &s, sizeof(scvt));
  8741. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8742. sum += (ggml_float)val;
  8743. dp[i] = val;
  8744. }
  8745. }
  8746. assert(sum > 0.0);
  8747. sum = 1.0/sum;
  8748. ggml_vec_scale_f32(nc, dp, sum);
  8749. #ifndef NDEBUG
  8750. for (int i = 0; i < nc; ++i) {
  8751. assert(!isnan(dp[i]));
  8752. assert(!isinf(dp[i]));
  8753. }
  8754. #endif
  8755. }
  8756. }
  8757. static void ggml_compute_forward_soft_max(
  8758. const struct ggml_compute_params * params,
  8759. const struct ggml_tensor * src0,
  8760. struct ggml_tensor * dst) {
  8761. switch (src0->type) {
  8762. case GGML_TYPE_F32:
  8763. {
  8764. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8765. } break;
  8766. default:
  8767. {
  8768. GGML_ASSERT(false);
  8769. } break;
  8770. }
  8771. }
  8772. // ggml_compute_forward_alibi
  8773. static void ggml_compute_forward_alibi_f32(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0,
  8776. const struct ggml_tensor * src1,
  8777. struct ggml_tensor * dst) {
  8778. assert(params->ith == 0);
  8779. assert(src1->type == GGML_TYPE_I32);
  8780. assert(ggml_nelements(src1) == 3);
  8781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8782. return;
  8783. }
  8784. const int n_past = ((int32_t *) src1->data)[0];
  8785. const int n_head = ((int32_t *) src1->data)[1];
  8786. const float max_bias = ((float *) src1->data)[2];
  8787. assert(n_past >= 0);
  8788. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8789. const int ne1 = src0->ne[1]; // seq_len_without_past
  8790. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8791. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8792. const int n = ggml_nrows(src0);
  8793. const int ne2_ne3 = n/ne1; // ne2*ne3
  8794. const int nb0 = src0->nb[0];
  8795. const int nb1 = src0->nb[1];
  8796. const int nb2 = src0->nb[2];
  8797. //const int nb3 = src0->nb[3];
  8798. assert(nb0 == sizeof(float));
  8799. assert(ne1 + n_past == ne0); (void) n_past;
  8800. // add alibi to src0 (KQ_scaled)
  8801. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8802. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8803. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8804. for (int i = 0; i < ne0; i++) {
  8805. for (int j = 0; j < ne1; j++) {
  8806. for (int k = 0; k < ne2_ne3; k++) {
  8807. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8808. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8809. // TODO: k*nb2 or k*nb3
  8810. float m_k;
  8811. if (k < n_heads_log2_floor) {
  8812. m_k = powf(m0, k + 1);
  8813. } else {
  8814. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8815. }
  8816. pdst[0] = (i-ne0+1) * m_k + src[0];
  8817. }
  8818. }
  8819. }
  8820. }
  8821. static void ggml_compute_forward_alibi_f16(
  8822. const struct ggml_compute_params * params,
  8823. const struct ggml_tensor * src0,
  8824. const struct ggml_tensor * src1,
  8825. struct ggml_tensor * dst) {
  8826. assert(params->ith == 0);
  8827. assert(src1->type == GGML_TYPE_I32);
  8828. assert(ggml_nelements(src1) == 3);
  8829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8830. return;
  8831. }
  8832. const int n_past = ((int32_t *) src1->data)[0];
  8833. const int n_head = ((int32_t *) src1->data)[1];
  8834. const float max_bias = ((float *) src1->data)[2];
  8835. assert(n_past >= 0);
  8836. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8837. const int ne1 = src0->ne[1]; // seq_len_without_past
  8838. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8839. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8840. const int n = ggml_nrows(src0);
  8841. const int ne2_ne3 = n/ne1; // ne2*ne3
  8842. const int nb0 = src0->nb[0];
  8843. const int nb1 = src0->nb[1];
  8844. const int nb2 = src0->nb[2];
  8845. //const int nb3 = src0->nb[3];
  8846. assert(nb0 == sizeof(ggml_fp16_t));
  8847. assert(ne1 + n_past == ne0); (void) n_past;
  8848. // add alibi to src0 (KQ_scaled)
  8849. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8850. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8851. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8852. for (int i = 0; i < ne0; i++) {
  8853. for (int j = 0; j < ne1; j++) {
  8854. for (int k = 0; k < ne2_ne3; k++) {
  8855. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8856. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8857. // TODO: k*nb2 or k*nb3
  8858. float m_k;
  8859. if (k < n_heads_log2_floor) {
  8860. m_k = powf(m0, k + 1);
  8861. } else {
  8862. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8863. }
  8864. // we return F32
  8865. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8866. }
  8867. }
  8868. }
  8869. }
  8870. static void ggml_compute_forward_alibi(
  8871. const struct ggml_compute_params * params,
  8872. const struct ggml_tensor * src0,
  8873. const struct ggml_tensor * src1,
  8874. struct ggml_tensor * dst) {
  8875. switch (src0->type) {
  8876. case GGML_TYPE_F16:
  8877. {
  8878. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8879. } break;
  8880. case GGML_TYPE_F32:
  8881. {
  8882. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8883. } break;
  8884. case GGML_TYPE_Q4_0:
  8885. case GGML_TYPE_Q4_1:
  8886. case GGML_TYPE_Q5_0:
  8887. case GGML_TYPE_Q5_1:
  8888. case GGML_TYPE_Q8_0:
  8889. case GGML_TYPE_Q8_1:
  8890. case GGML_TYPE_I8:
  8891. case GGML_TYPE_I16:
  8892. case GGML_TYPE_I32:
  8893. case GGML_TYPE_COUNT:
  8894. {
  8895. GGML_ASSERT(false);
  8896. } break;
  8897. }
  8898. }
  8899. // ggml_compute_forward_clamp
  8900. static void ggml_compute_forward_clamp_f32(
  8901. const struct ggml_compute_params * params,
  8902. const struct ggml_tensor * src0,
  8903. const struct ggml_tensor * src1,
  8904. struct ggml_tensor * dst) {
  8905. assert(params->ith == 0);
  8906. assert(src1->type == GGML_TYPE_I32);
  8907. assert(ggml_nelements(src1) == 2);
  8908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8909. return;
  8910. }
  8911. const int min = ((float *) src1->data)[0];
  8912. const int max = ((float *) src1->data)[1];
  8913. const int ith = params->ith;
  8914. const int nth = params->nth;
  8915. const int n = ggml_nrows(src0);
  8916. const int nc = src0->ne[0];
  8917. const size_t nb00 = src0->nb[0];
  8918. const size_t nb01 = src0->nb[1];
  8919. const size_t nb0 = dst->nb[0];
  8920. const size_t nb1 = dst->nb[1];
  8921. GGML_ASSERT( nb0 == sizeof(float));
  8922. GGML_ASSERT(nb00 == sizeof(float));
  8923. for (int j = ith; j < n; j += nth) {
  8924. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8925. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8926. for (int i = 0; i < nc; i++) {
  8927. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8928. }
  8929. }
  8930. }
  8931. static void ggml_compute_forward_clamp(
  8932. const struct ggml_compute_params * params,
  8933. const struct ggml_tensor * src0,
  8934. const struct ggml_tensor * src1,
  8935. struct ggml_tensor * dst) {
  8936. switch (src0->type) {
  8937. case GGML_TYPE_F32:
  8938. {
  8939. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  8940. } break;
  8941. case GGML_TYPE_F16:
  8942. case GGML_TYPE_Q4_0:
  8943. case GGML_TYPE_Q4_1:
  8944. case GGML_TYPE_Q5_0:
  8945. case GGML_TYPE_Q5_1:
  8946. case GGML_TYPE_Q8_0:
  8947. case GGML_TYPE_Q8_1:
  8948. case GGML_TYPE_I8:
  8949. case GGML_TYPE_I16:
  8950. case GGML_TYPE_I32:
  8951. case GGML_TYPE_COUNT:
  8952. {
  8953. GGML_ASSERT(false);
  8954. } break;
  8955. }
  8956. }
  8957. // ggml_compute_forward_rope
  8958. static void ggml_compute_forward_rope_f32(
  8959. const struct ggml_compute_params * params,
  8960. const struct ggml_tensor * src0,
  8961. const struct ggml_tensor * src1,
  8962. struct ggml_tensor * dst) {
  8963. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8964. GGML_ASSERT(ggml_nelements(src1) == 3);
  8965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8966. return;
  8967. }
  8968. const int n_past = ((int32_t *) src1->data)[0];
  8969. const int n_dims = ((int32_t *) src1->data)[1];
  8970. const int mode = ((int32_t *) src1->data)[2];
  8971. assert(n_past >= 0);
  8972. const size_t nb00 = src0->nb[0];
  8973. const size_t nb01 = src0->nb[1];
  8974. const size_t nb02 = src0->nb[2];
  8975. const size_t nb03 = src0->nb[3];
  8976. const int64_t ne0 = dst->ne[0];
  8977. const int64_t ne1 = dst->ne[1];
  8978. const int64_t ne2 = dst->ne[2];
  8979. const int64_t ne3 = dst->ne[3];
  8980. const size_t nb0 = dst->nb[0];
  8981. const size_t nb1 = dst->nb[1];
  8982. const size_t nb2 = dst->nb[2];
  8983. const size_t nb3 = dst->nb[3];
  8984. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8985. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8986. GGML_ASSERT(nb00 == sizeof(float));
  8987. const int ith = params->ith;
  8988. const int nth = params->nth;
  8989. const int nr = ggml_nrows(dst);
  8990. GGML_ASSERT(n_dims <= ne0);
  8991. GGML_ASSERT(n_dims % 2 == 0);
  8992. // rows per thread
  8993. const int dr = (nr + nth - 1)/nth;
  8994. // row range for this thread
  8995. const int ir0 = dr*ith;
  8996. const int ir1 = MIN(ir0 + dr, nr);
  8997. // row index used to determine which thread to use
  8998. int ir = 0;
  8999. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9000. const bool is_neox = mode & 2;
  9001. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9002. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9003. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9004. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9005. if (ir++ < ir0) continue;
  9006. if (ir > ir1) break;
  9007. float theta = (float)p;
  9008. if (!is_neox) {
  9009. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9010. const float cos_theta = cosf(theta);
  9011. const float sin_theta = sinf(theta);
  9012. theta *= theta_scale;
  9013. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9014. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9015. const float x0 = src[0];
  9016. const float x1 = src[1];
  9017. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9018. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9019. }
  9020. } else {
  9021. // TODO: this is probably wrong, but I can't figure it out ..
  9022. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9023. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9024. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9025. const float cos_theta = cosf(theta);
  9026. const float sin_theta = sinf(theta);
  9027. theta *= theta_scale;
  9028. const int64_t i0 = ib*n_dims + ic/2;
  9029. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9030. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9031. const float x0 = src[0];
  9032. const float x1 = src[n_dims/2];
  9033. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9034. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9035. }
  9036. }
  9037. }
  9038. }
  9039. }
  9040. }
  9041. }
  9042. static void ggml_compute_forward_rope_f16(
  9043. const struct ggml_compute_params * params,
  9044. const struct ggml_tensor * src0,
  9045. const struct ggml_tensor * src1,
  9046. struct ggml_tensor * dst) {
  9047. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9048. GGML_ASSERT(ggml_nelements(src1) == 3);
  9049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9050. return;
  9051. }
  9052. const int n_past = ((int32_t *) src1->data)[0];
  9053. const int n_dims = ((int32_t *) src1->data)[1];
  9054. const int mode = ((int32_t *) src1->data)[2];
  9055. assert(n_past >= 0);
  9056. const size_t nb00 = src0->nb[0];
  9057. const size_t nb01 = src0->nb[1];
  9058. const size_t nb02 = src0->nb[2];
  9059. const size_t nb03 = src0->nb[3];
  9060. const int64_t ne0 = dst->ne[0];
  9061. const int64_t ne1 = dst->ne[1];
  9062. const int64_t ne2 = dst->ne[2];
  9063. const int64_t ne3 = dst->ne[3];
  9064. const size_t nb0 = dst->nb[0];
  9065. const size_t nb1 = dst->nb[1];
  9066. const size_t nb2 = dst->nb[2];
  9067. const size_t nb3 = dst->nb[3];
  9068. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9069. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9070. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9071. const int ith = params->ith;
  9072. const int nth = params->nth;
  9073. const int nr = ggml_nrows(dst);
  9074. GGML_ASSERT(n_dims <= ne0);
  9075. GGML_ASSERT(n_dims % 2 == 0);
  9076. // rows per thread
  9077. const int dr = (nr + nth - 1)/nth;
  9078. // row range for this thread
  9079. const int ir0 = dr*ith;
  9080. const int ir1 = MIN(ir0 + dr, nr);
  9081. // row index used to determine which thread to use
  9082. int ir = 0;
  9083. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9084. const bool is_neox = mode & 2;
  9085. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9086. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9087. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9088. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9089. if (ir++ < ir0) continue;
  9090. if (ir > ir1) break;
  9091. float theta = (float)p;
  9092. if (!is_neox) {
  9093. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9094. const float cos_theta = cosf(theta);
  9095. const float sin_theta = sinf(theta);
  9096. theta *= theta_scale;
  9097. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9098. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9099. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9100. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9101. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9102. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9103. }
  9104. } else {
  9105. // TODO: this is probably wrong, but I can't figure it out ..
  9106. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9107. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9108. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9109. const float cos_theta = cosf(theta);
  9110. const float sin_theta = sinf(theta);
  9111. theta *= theta_scale;
  9112. const int64_t i0 = ib*n_dims + ic/2;
  9113. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9114. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9115. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9116. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9117. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9118. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9119. }
  9120. }
  9121. }
  9122. }
  9123. }
  9124. }
  9125. }
  9126. static void ggml_compute_forward_rope(
  9127. const struct ggml_compute_params * params,
  9128. const struct ggml_tensor * src0,
  9129. const struct ggml_tensor * src1,
  9130. struct ggml_tensor * dst) {
  9131. switch (src0->type) {
  9132. case GGML_TYPE_F16:
  9133. {
  9134. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9135. } break;
  9136. case GGML_TYPE_F32:
  9137. {
  9138. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9139. } break;
  9140. default:
  9141. {
  9142. GGML_ASSERT(false);
  9143. } break;
  9144. }
  9145. }
  9146. // ggml_compute_forward_rope_back
  9147. static void ggml_compute_forward_rope_back_f32(
  9148. const struct ggml_compute_params * params,
  9149. const struct ggml_tensor * src0,
  9150. const struct ggml_tensor * src1,
  9151. struct ggml_tensor * dst) {
  9152. assert(src1->type == GGML_TYPE_I32);
  9153. assert(ggml_nelements(src1) == 3);
  9154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9155. return;
  9156. }
  9157. // y = rope(x, src1)
  9158. // dx = rope_back(dy, src1)
  9159. // src0 is dy, src1 contains options
  9160. const int n_past = ((int32_t *) src1->data)[0];
  9161. const int n_dims = ((int32_t *) src1->data)[1];
  9162. const int mode = ((int32_t *) src1->data)[2];
  9163. assert(n_past >= 0);
  9164. const size_t nb00 = src0->nb[0];
  9165. const size_t nb01 = src0->nb[1];
  9166. const size_t nb02 = src0->nb[2];
  9167. const size_t nb03 = src0->nb[3];
  9168. const int64_t ne0 = dst->ne[0];
  9169. const int64_t ne1 = dst->ne[1];
  9170. const int64_t ne2 = dst->ne[2];
  9171. const int64_t ne3 = dst->ne[3];
  9172. const size_t nb0 = dst->nb[0];
  9173. const size_t nb1 = dst->nb[1];
  9174. const size_t nb2 = dst->nb[2];
  9175. const size_t nb3 = dst->nb[3];
  9176. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9177. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9178. assert(nb0 == sizeof(float));
  9179. const int ith = params->ith;
  9180. const int nth = params->nth;
  9181. const int nr = ggml_nrows(dst);
  9182. // rows per thread
  9183. const int dr = (nr + nth - 1)/nth;
  9184. // row range for this thread
  9185. const int ir0 = dr*ith;
  9186. const int ir1 = MIN(ir0 + dr, nr);
  9187. // row index used to determine which thread to use
  9188. int ir = 0;
  9189. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9190. const bool is_neox = mode & 2;
  9191. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9192. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9193. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9194. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9195. if (ir++ < ir0) continue;
  9196. if (ir > ir1) break;
  9197. float theta = (float)p;
  9198. if (!is_neox) {
  9199. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9200. const float cos_theta = cosf(theta);
  9201. const float sin_theta = sinf(theta);
  9202. theta *= theta_scale;
  9203. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9204. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9205. const float dy0 = dy[0];
  9206. const float dy1 = dy[1];
  9207. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9208. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9209. }
  9210. } else {
  9211. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9212. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9213. const float cos_theta = cosf(theta);
  9214. const float sin_theta = sinf(theta);
  9215. theta *= theta_scale;
  9216. const int64_t i0 = ib*n_dims + ic/2;
  9217. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9218. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9219. const float dy0 = dy[0];
  9220. const float dy1 = dy[n_dims/2];
  9221. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9222. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9223. }
  9224. }
  9225. }
  9226. }
  9227. }
  9228. }
  9229. }
  9230. static void ggml_compute_forward_rope_back_f16(
  9231. const struct ggml_compute_params * params,
  9232. const struct ggml_tensor * src0,
  9233. const struct ggml_tensor * src1,
  9234. struct ggml_tensor * dst) {
  9235. assert(src1->type == GGML_TYPE_I32);
  9236. assert(ggml_nelements(src1) == 3);
  9237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9238. return;
  9239. }
  9240. // y = rope(x, src1)
  9241. // dx = rope_back(dy, src1)
  9242. // src0 is dy, src1 contains options
  9243. const int n_past = ((int32_t *) src1->data)[0];
  9244. const int n_dims = ((int32_t *) src1->data)[1];
  9245. const int mode = ((int32_t *) src1->data)[2];
  9246. assert(n_past >= 0);
  9247. const size_t nb00 = src0->nb[0];
  9248. const size_t nb01 = src0->nb[1];
  9249. const size_t nb02 = src0->nb[2];
  9250. const size_t nb03 = src0->nb[3];
  9251. const int64_t ne0 = dst->ne[0];
  9252. const int64_t ne1 = dst->ne[1];
  9253. const int64_t ne2 = dst->ne[2];
  9254. const int64_t ne3 = dst->ne[3];
  9255. const size_t nb0 = dst->nb[0];
  9256. const size_t nb1 = dst->nb[1];
  9257. const size_t nb2 = dst->nb[2];
  9258. const size_t nb3 = dst->nb[3];
  9259. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9260. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9261. assert(nb0 == sizeof(ggml_fp16_t));
  9262. const int ith = params->ith;
  9263. const int nth = params->nth;
  9264. const int nr = ggml_nrows(dst);
  9265. // rows per thread
  9266. const int dr = (nr + nth - 1)/nth;
  9267. // row range for this thread
  9268. const int ir0 = dr*ith;
  9269. const int ir1 = MIN(ir0 + dr, nr);
  9270. // row index used to determine which thread to use
  9271. int ir = 0;
  9272. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9273. const bool is_neox = mode & 2;
  9274. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9275. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9276. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9277. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9278. if (ir++ < ir0) continue;
  9279. if (ir > ir1) break;
  9280. float theta = (float)p;
  9281. if (!is_neox) {
  9282. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9283. const float cos_theta = cosf(theta);
  9284. const float sin_theta = sinf(theta);
  9285. theta *= theta_scale;
  9286. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9287. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9288. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9289. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9290. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9291. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9292. }
  9293. } else {
  9294. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9295. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9296. const float cos_theta = cosf(theta);
  9297. const float sin_theta = sinf(theta);
  9298. theta *= theta_scale;
  9299. const int64_t i0 = ib*n_dims + ic/2;
  9300. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9301. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9302. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9303. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9304. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9305. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9306. }
  9307. }
  9308. }
  9309. }
  9310. }
  9311. }
  9312. }
  9313. static void ggml_compute_forward_rope_back(
  9314. const struct ggml_compute_params * params,
  9315. const struct ggml_tensor * src0,
  9316. const struct ggml_tensor * src1,
  9317. struct ggml_tensor * dst) {
  9318. switch (src0->type) {
  9319. case GGML_TYPE_F16:
  9320. {
  9321. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9322. } break;
  9323. case GGML_TYPE_F32:
  9324. {
  9325. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9326. } break;
  9327. default:
  9328. {
  9329. GGML_ASSERT(false);
  9330. } break;
  9331. }
  9332. }
  9333. // ggml_compute_forward_conv_1d_1s
  9334. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9335. const struct ggml_compute_params * params,
  9336. const struct ggml_tensor * src0,
  9337. const struct ggml_tensor * src1,
  9338. struct ggml_tensor * dst) {
  9339. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9340. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9341. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9342. int64_t t0 = ggml_perf_time_us();
  9343. UNUSED(t0);
  9344. const int64_t ne00 = src0->ne[0];
  9345. const int64_t ne01 = src0->ne[1];
  9346. const int64_t ne02 = src0->ne[2];
  9347. //const int64_t ne03 = src0->ne[3];
  9348. const int64_t ne10 = src1->ne[0];
  9349. const int64_t ne11 = src1->ne[1];
  9350. //const int64_t ne12 = src1->ne[2];
  9351. //const int64_t ne13 = src1->ne[3];
  9352. //const int64_t ne0 = dst->ne[0];
  9353. //const int64_t ne1 = dst->ne[1];
  9354. //const int64_t ne2 = dst->ne[2];
  9355. //const int64_t ne3 = dst->ne[3];
  9356. //const int64_t ne = ne0*ne1*ne2*ne3;
  9357. const int nb00 = src0->nb[0];
  9358. const int nb01 = src0->nb[1];
  9359. const int nb02 = src0->nb[2];
  9360. //const int nb03 = src0->nb[3];
  9361. const int nb10 = src1->nb[0];
  9362. const int nb11 = src1->nb[1];
  9363. //const int nb12 = src1->nb[2];
  9364. //const int nb13 = src1->nb[3];
  9365. //const int nb0 = dst->nb[0];
  9366. const int nb1 = dst->nb[1];
  9367. //const int nb2 = dst->nb[2];
  9368. //const int nb3 = dst->nb[3];
  9369. const int ith = params->ith;
  9370. const int nth = params->nth;
  9371. const int nk = ne00;
  9372. const int nh = nk/2;
  9373. const int ew0 = ggml_up32(ne01);
  9374. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9375. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9376. GGML_ASSERT(nb10 == sizeof(float));
  9377. if (params->type == GGML_TASK_INIT) {
  9378. // TODO: fix this memset (wsize is overestimated)
  9379. memset(params->wdata, 0, params->wsize);
  9380. // prepare kernel data (src0)
  9381. {
  9382. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9383. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9384. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9385. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9386. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9387. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9388. dst_data[i00*ew0 + i01] = src[i00];
  9389. }
  9390. }
  9391. }
  9392. }
  9393. // prepare source data (src1)
  9394. {
  9395. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9396. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9397. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9398. ggml_fp16_t * dst_data = wdata;
  9399. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9400. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9401. }
  9402. }
  9403. }
  9404. return;
  9405. }
  9406. if (params->type == GGML_TASK_FINALIZE) {
  9407. return;
  9408. }
  9409. // total rows in dst
  9410. const int nr = ne02;
  9411. // rows per thread
  9412. const int dr = (nr + nth - 1)/nth;
  9413. // row range for this thread
  9414. const int ir0 = dr*ith;
  9415. const int ir1 = MIN(ir0 + dr, nr);
  9416. for (int i1 = ir0; i1 < ir1; i1++) {
  9417. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9418. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9419. dst_data[i0] = 0;
  9420. for (int k = -nh; k <= nh; k++) {
  9421. float v = 0.0f;
  9422. ggml_vec_dot_f16(ew0, &v,
  9423. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9424. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9425. dst_data[i0] += v;
  9426. }
  9427. }
  9428. }
  9429. }
  9430. static void ggml_compute_forward_conv_1d_1s_f32(
  9431. const struct ggml_compute_params * params,
  9432. const struct ggml_tensor * src0,
  9433. const struct ggml_tensor * src1,
  9434. struct ggml_tensor * dst) {
  9435. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9436. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9437. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9438. int64_t t0 = ggml_perf_time_us();
  9439. UNUSED(t0);
  9440. const int64_t ne00 = src0->ne[0];
  9441. const int64_t ne01 = src0->ne[1];
  9442. const int64_t ne02 = src0->ne[2];
  9443. //const int64_t ne03 = src0->ne[3];
  9444. const int64_t ne10 = src1->ne[0];
  9445. const int64_t ne11 = src1->ne[1];
  9446. //const int64_t ne12 = src1->ne[2];
  9447. //const int64_t ne13 = src1->ne[3];
  9448. //const int64_t ne0 = dst->ne[0];
  9449. //const int64_t ne1 = dst->ne[1];
  9450. //const int64_t ne2 = dst->ne[2];
  9451. //const int64_t ne3 = dst->ne[3];
  9452. //const int64_t ne = ne0*ne1*ne2*ne3;
  9453. const int nb00 = src0->nb[0];
  9454. const int nb01 = src0->nb[1];
  9455. const int nb02 = src0->nb[2];
  9456. //const int nb03 = src0->nb[3];
  9457. const int nb10 = src1->nb[0];
  9458. const int nb11 = src1->nb[1];
  9459. //const int nb12 = src1->nb[2];
  9460. //const int nb13 = src1->nb[3];
  9461. //const int nb0 = dst->nb[0];
  9462. const int nb1 = dst->nb[1];
  9463. //const int nb2 = dst->nb[2];
  9464. //const int nb3 = dst->nb[3];
  9465. const int ith = params->ith;
  9466. const int nth = params->nth;
  9467. const int nk = ne00;
  9468. const int nh = nk/2;
  9469. const int ew0 = ggml_up32(ne01);
  9470. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9471. GGML_ASSERT(nb00 == sizeof(float));
  9472. GGML_ASSERT(nb10 == sizeof(float));
  9473. if (params->type == GGML_TASK_INIT) {
  9474. // TODO: fix this memset (wsize is overestimated)
  9475. memset(params->wdata, 0, params->wsize);
  9476. // prepare kernel data (src0)
  9477. {
  9478. float * const wdata = (float *) params->wdata + 0;
  9479. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9480. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9481. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9482. float * dst_data = wdata + i02*ew0*ne00;
  9483. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9484. dst_data[i00*ew0 + i01] = src[i00];
  9485. }
  9486. }
  9487. }
  9488. }
  9489. // prepare source data (src1)
  9490. {
  9491. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9492. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9493. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9494. float * dst_data = wdata;
  9495. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9496. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9497. }
  9498. }
  9499. }
  9500. return;
  9501. }
  9502. if (params->type == GGML_TASK_FINALIZE) {
  9503. return;
  9504. }
  9505. // total rows in dst
  9506. const int nr = ne02;
  9507. // rows per thread
  9508. const int dr = (nr + nth - 1)/nth;
  9509. // row range for this thread
  9510. const int ir0 = dr*ith;
  9511. const int ir1 = MIN(ir0 + dr, nr);
  9512. for (int i1 = ir0; i1 < ir1; i1++) {
  9513. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9514. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9515. dst_data[i0] = 0;
  9516. for (int k = -nh; k <= nh; k++) {
  9517. float v = 0.0f;
  9518. ggml_vec_dot_f32(ew0, &v,
  9519. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9520. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9521. dst_data[i0] += v;
  9522. }
  9523. }
  9524. }
  9525. }
  9526. static void ggml_compute_forward_conv_1d_1s(
  9527. const struct ggml_compute_params * params,
  9528. const struct ggml_tensor * src0,
  9529. const struct ggml_tensor * src1,
  9530. struct ggml_tensor * dst) {
  9531. switch (src0->type) {
  9532. case GGML_TYPE_F16:
  9533. {
  9534. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9535. } break;
  9536. case GGML_TYPE_F32:
  9537. {
  9538. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9539. } break;
  9540. default:
  9541. {
  9542. GGML_ASSERT(false);
  9543. } break;
  9544. }
  9545. }
  9546. // ggml_compute_forward_conv_1d_2s
  9547. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9548. const struct ggml_compute_params * params,
  9549. const struct ggml_tensor * src0,
  9550. const struct ggml_tensor * src1,
  9551. struct ggml_tensor * dst) {
  9552. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9553. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9554. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9555. int64_t t0 = ggml_perf_time_us();
  9556. UNUSED(t0);
  9557. const int64_t ne00 = src0->ne[0];
  9558. const int64_t ne01 = src0->ne[1];
  9559. const int64_t ne02 = src0->ne[2];
  9560. //const int64_t ne03 = src0->ne[3];
  9561. const int64_t ne10 = src1->ne[0];
  9562. const int64_t ne11 = src1->ne[1];
  9563. //const int64_t ne12 = src1->ne[2];
  9564. //const int64_t ne13 = src1->ne[3];
  9565. //const int64_t ne0 = dst->ne[0];
  9566. //const int64_t ne1 = dst->ne[1];
  9567. //const int64_t ne2 = dst->ne[2];
  9568. //const int64_t ne3 = dst->ne[3];
  9569. //const int64_t ne = ne0*ne1*ne2*ne3;
  9570. const int nb00 = src0->nb[0];
  9571. const int nb01 = src0->nb[1];
  9572. const int nb02 = src0->nb[2];
  9573. //const int nb03 = src0->nb[3];
  9574. const int nb10 = src1->nb[0];
  9575. const int nb11 = src1->nb[1];
  9576. //const int nb12 = src1->nb[2];
  9577. //const int nb13 = src1->nb[3];
  9578. //const int nb0 = dst->nb[0];
  9579. const int nb1 = dst->nb[1];
  9580. //const int nb2 = dst->nb[2];
  9581. //const int nb3 = dst->nb[3];
  9582. const int ith = params->ith;
  9583. const int nth = params->nth;
  9584. const int nk = ne00;
  9585. const int nh = nk/2;
  9586. const int ew0 = ggml_up32(ne01);
  9587. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9588. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9589. GGML_ASSERT(nb10 == sizeof(float));
  9590. if (params->type == GGML_TASK_INIT) {
  9591. // TODO: fix this memset (wsize is overestimated)
  9592. memset(params->wdata, 0, params->wsize);
  9593. // prepare kernel data (src0)
  9594. {
  9595. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9596. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9597. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9598. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9599. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9600. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9601. dst_data[i00*ew0 + i01] = src[i00];
  9602. }
  9603. }
  9604. }
  9605. }
  9606. // prepare source data (src1)
  9607. {
  9608. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9609. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9610. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9611. ggml_fp16_t * dst_data = wdata;
  9612. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9613. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9614. }
  9615. }
  9616. }
  9617. return;
  9618. }
  9619. if (params->type == GGML_TASK_FINALIZE) {
  9620. return;
  9621. }
  9622. // total rows in dst
  9623. const int nr = ne02;
  9624. // rows per thread
  9625. const int dr = (nr + nth - 1)/nth;
  9626. // row range for this thread
  9627. const int ir0 = dr*ith;
  9628. const int ir1 = MIN(ir0 + dr, nr);
  9629. for (int i1 = ir0; i1 < ir1; i1++) {
  9630. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9631. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9632. dst_data[i0/2] = 0;
  9633. for (int k = -nh; k <= nh; k++) {
  9634. float v = 0.0f;
  9635. ggml_vec_dot_f16(ew0, &v,
  9636. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9637. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9638. dst_data[i0/2] += v;
  9639. }
  9640. }
  9641. }
  9642. }
  9643. static void ggml_compute_forward_conv_1d_2s_f32(
  9644. const struct ggml_compute_params * params,
  9645. const struct ggml_tensor * src0,
  9646. const struct ggml_tensor * src1,
  9647. struct ggml_tensor * dst) {
  9648. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9649. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9650. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9651. int64_t t0 = ggml_perf_time_us();
  9652. UNUSED(t0);
  9653. const int64_t ne00 = src0->ne[0];
  9654. const int64_t ne01 = src0->ne[1];
  9655. const int64_t ne02 = src0->ne[2];
  9656. //const int64_t ne03 = src0->ne[3];
  9657. const int64_t ne10 = src1->ne[0];
  9658. const int64_t ne11 = src1->ne[1];
  9659. //const int64_t ne12 = src1->ne[2];
  9660. //const int64_t ne13 = src1->ne[3];
  9661. //const int64_t ne0 = dst->ne[0];
  9662. //const int64_t ne1 = dst->ne[1];
  9663. //const int64_t ne2 = dst->ne[2];
  9664. //const int64_t ne3 = dst->ne[3];
  9665. //const int64_t ne = ne0*ne1*ne2*ne3;
  9666. const int nb00 = src0->nb[0];
  9667. const int nb01 = src0->nb[1];
  9668. const int nb02 = src0->nb[2];
  9669. //const int nb03 = src0->nb[3];
  9670. const int nb10 = src1->nb[0];
  9671. const int nb11 = src1->nb[1];
  9672. //const int nb12 = src1->nb[2];
  9673. //const int nb13 = src1->nb[3];
  9674. //const int nb0 = dst->nb[0];
  9675. const int nb1 = dst->nb[1];
  9676. //const int nb2 = dst->nb[2];
  9677. //const int nb3 = dst->nb[3];
  9678. const int ith = params->ith;
  9679. const int nth = params->nth;
  9680. const int nk = ne00;
  9681. const int nh = nk/2;
  9682. const int ew0 = ggml_up32(ne01);
  9683. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9684. GGML_ASSERT(nb00 == sizeof(float));
  9685. GGML_ASSERT(nb10 == sizeof(float));
  9686. if (params->type == GGML_TASK_INIT) {
  9687. // TODO: fix this memset (wsize is overestimated)
  9688. memset(params->wdata, 0, params->wsize);
  9689. // prepare kernel data (src0)
  9690. {
  9691. float * const wdata = (float *) params->wdata + 0;
  9692. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9693. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9694. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9695. float * dst_data = wdata + i02*ew0*ne00;
  9696. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9697. dst_data[i00*ew0 + i01] = src[i00];
  9698. }
  9699. }
  9700. }
  9701. }
  9702. // prepare source data (src1)
  9703. {
  9704. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9705. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9706. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9707. float * dst_data = wdata;
  9708. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9709. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9710. }
  9711. }
  9712. }
  9713. return;
  9714. }
  9715. if (params->type == GGML_TASK_FINALIZE) {
  9716. return;
  9717. }
  9718. // total rows in dst
  9719. const int nr = ne02;
  9720. // rows per thread
  9721. const int dr = (nr + nth - 1)/nth;
  9722. // row range for this thread
  9723. const int ir0 = dr*ith;
  9724. const int ir1 = MIN(ir0 + dr, nr);
  9725. for (int i1 = ir0; i1 < ir1; i1++) {
  9726. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9727. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9728. dst_data[i0/2] = 0;
  9729. for (int k = -nh; k <= nh; k++) {
  9730. float v = 0.0f;
  9731. ggml_vec_dot_f32(ew0, &v,
  9732. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9733. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9734. dst_data[i0/2] += v;
  9735. }
  9736. }
  9737. }
  9738. }
  9739. static void ggml_compute_forward_conv_1d_2s(
  9740. const struct ggml_compute_params * params,
  9741. const struct ggml_tensor * src0,
  9742. const struct ggml_tensor * src1,
  9743. struct ggml_tensor * dst) {
  9744. switch (src0->type) {
  9745. case GGML_TYPE_F16:
  9746. {
  9747. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9748. } break;
  9749. case GGML_TYPE_F32:
  9750. {
  9751. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9752. } break;
  9753. default:
  9754. {
  9755. GGML_ASSERT(false);
  9756. } break;
  9757. }
  9758. }
  9759. // ggml_compute_forward_flash_attn
  9760. static void ggml_compute_forward_flash_attn_f32(
  9761. const struct ggml_compute_params * params,
  9762. const struct ggml_tensor * q,
  9763. const struct ggml_tensor * k,
  9764. const struct ggml_tensor * v,
  9765. const bool masked,
  9766. struct ggml_tensor * dst) {
  9767. int64_t t0 = ggml_perf_time_us();
  9768. UNUSED(t0);
  9769. const int64_t neq0 = q->ne[0];
  9770. const int64_t neq1 = q->ne[1];
  9771. const int64_t neq2 = q->ne[2];
  9772. const int64_t neq3 = q->ne[3];
  9773. const int64_t nek0 = k->ne[0];
  9774. const int64_t nek1 = k->ne[1];
  9775. //const int64_t nek2 = k->ne[2];
  9776. //const int64_t nek3 = k->ne[3];
  9777. //const int64_t nev0 = v->ne[0];
  9778. const int64_t nev1 = v->ne[1];
  9779. //const int64_t nev2 = v->ne[2];
  9780. //const int64_t nev3 = v->ne[3];
  9781. const int64_t ne0 = dst->ne[0];
  9782. const int64_t ne1 = dst->ne[1];
  9783. //const int64_t ne2 = dst->ne[2];
  9784. //const int64_t ne3 = dst->ne[3];
  9785. const int nbk0 = k->nb[0];
  9786. const int nbk1 = k->nb[1];
  9787. const int nbk2 = k->nb[2];
  9788. const int nbk3 = k->nb[3];
  9789. const int nbq0 = q->nb[0];
  9790. const int nbq1 = q->nb[1];
  9791. const int nbq2 = q->nb[2];
  9792. const int nbq3 = q->nb[3];
  9793. const int nbv0 = v->nb[0];
  9794. const int nbv1 = v->nb[1];
  9795. const int nbv2 = v->nb[2];
  9796. const int nbv3 = v->nb[3];
  9797. const int nb0 = dst->nb[0];
  9798. const int nb1 = dst->nb[1];
  9799. const int nb2 = dst->nb[2];
  9800. const int nb3 = dst->nb[3];
  9801. const int ith = params->ith;
  9802. const int nth = params->nth;
  9803. const int64_t D = neq0;
  9804. const int64_t N = neq1;
  9805. const int64_t P = nek1 - N;
  9806. const int64_t M = P + N;
  9807. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9808. GGML_ASSERT(ne0 == D);
  9809. GGML_ASSERT(ne1 == N);
  9810. GGML_ASSERT(P >= 0);
  9811. GGML_ASSERT(nbq0 == sizeof(float));
  9812. GGML_ASSERT(nbk0 == sizeof(float));
  9813. GGML_ASSERT(nbv0 == sizeof(float));
  9814. GGML_ASSERT(neq0 == D);
  9815. GGML_ASSERT(nek0 == D);
  9816. GGML_ASSERT(nev1 == D);
  9817. GGML_ASSERT(neq1 == N);
  9818. GGML_ASSERT(nek1 == N + P);
  9819. GGML_ASSERT(nev1 == D);
  9820. // dst cannot be transposed or permuted
  9821. GGML_ASSERT(nb0 == sizeof(float));
  9822. GGML_ASSERT(nb0 <= nb1);
  9823. GGML_ASSERT(nb1 <= nb2);
  9824. GGML_ASSERT(nb2 <= nb3);
  9825. if (params->type == GGML_TASK_INIT) {
  9826. return;
  9827. }
  9828. if (params->type == GGML_TASK_FINALIZE) {
  9829. return;
  9830. }
  9831. // parallelize by q rows using ggml_vec_dot_f32
  9832. // total rows in q
  9833. const int nr = neq1*neq2*neq3;
  9834. // rows per thread
  9835. const int dr = (nr + nth - 1)/nth;
  9836. // row range for this thread
  9837. const int ir0 = dr*ith;
  9838. const int ir1 = MIN(ir0 + dr, nr);
  9839. const float scale = 1.0f/sqrtf(D);
  9840. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9841. for (int ir = ir0; ir < ir1; ++ir) {
  9842. // q indices
  9843. const int iq3 = ir/(neq2*neq1);
  9844. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9845. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9846. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9847. for (int i = M; i < Mup; ++i) {
  9848. S[i] = -INFINITY;
  9849. }
  9850. for (int64_t ic = 0; ic < nek1; ++ic) {
  9851. // k indices
  9852. const int ik3 = iq3;
  9853. const int ik2 = iq2;
  9854. const int ik1 = ic;
  9855. // S indices
  9856. const int i1 = ik1;
  9857. ggml_vec_dot_f32(neq0,
  9858. S + i1,
  9859. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9860. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9861. }
  9862. // scale
  9863. ggml_vec_scale_f32(nek1, S, scale);
  9864. if (masked) {
  9865. for (int64_t i = P; i < M; i++) {
  9866. if (i > P + iq1) {
  9867. S[i] = -INFINITY;
  9868. }
  9869. }
  9870. }
  9871. // softmax
  9872. {
  9873. float max = -INFINITY;
  9874. ggml_vec_max_f32(M, &max, S);
  9875. ggml_float sum = 0.0;
  9876. {
  9877. #ifdef GGML_SOFT_MAX_ACCELERATE
  9878. max = -max;
  9879. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9880. vvexpf(S, S, &Mup);
  9881. ggml_vec_sum_f32(Mup, &sum, S);
  9882. #else
  9883. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9884. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9885. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9886. float * SS = S + i;
  9887. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9888. if (SS[j] == -INFINITY) {
  9889. SS[j] = 0.0f;
  9890. } else {
  9891. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9892. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9893. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9894. sump[j] += (ggml_float)val;
  9895. SS[j] = val;
  9896. }
  9897. }
  9898. }
  9899. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9900. sum += sump[i];
  9901. }
  9902. #endif
  9903. }
  9904. assert(sum > 0.0);
  9905. sum = 1.0/sum;
  9906. ggml_vec_scale_f32(M, S, sum);
  9907. #ifndef NDEBUG
  9908. for (int i = 0; i < M; ++i) {
  9909. assert(!isnan(S[i]));
  9910. assert(!isinf(S[i]));
  9911. }
  9912. #endif
  9913. }
  9914. for (int64_t ic = 0; ic < nev1; ++ic) {
  9915. // dst indices
  9916. const int i1 = iq1;
  9917. const int i2 = iq2;
  9918. const int i3 = iq3;
  9919. ggml_vec_dot_f32(nek1,
  9920. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9921. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9922. S);
  9923. }
  9924. }
  9925. }
  9926. static void ggml_compute_forward_flash_attn_f16(
  9927. const struct ggml_compute_params * params,
  9928. const struct ggml_tensor * q,
  9929. const struct ggml_tensor * k,
  9930. const struct ggml_tensor * v,
  9931. const bool masked,
  9932. struct ggml_tensor * dst) {
  9933. int64_t t0 = ggml_perf_time_us();
  9934. UNUSED(t0);
  9935. const int64_t neq0 = q->ne[0];
  9936. const int64_t neq1 = q->ne[1];
  9937. const int64_t neq2 = q->ne[2];
  9938. const int64_t neq3 = q->ne[3];
  9939. const int64_t nek0 = k->ne[0];
  9940. const int64_t nek1 = k->ne[1];
  9941. //const int64_t nek2 = k->ne[2];
  9942. //const int64_t nek3 = k->ne[3];
  9943. //const int64_t nev0 = v->ne[0];
  9944. const int64_t nev1 = v->ne[1];
  9945. //const int64_t nev2 = v->ne[2];
  9946. //const int64_t nev3 = v->ne[3];
  9947. const int64_t ne0 = dst->ne[0];
  9948. const int64_t ne1 = dst->ne[1];
  9949. //const int64_t ne2 = dst->ne[2];
  9950. //const int64_t ne3 = dst->ne[3];
  9951. const int nbk0 = k->nb[0];
  9952. const int nbk1 = k->nb[1];
  9953. const int nbk2 = k->nb[2];
  9954. const int nbk3 = k->nb[3];
  9955. const int nbq0 = q->nb[0];
  9956. const int nbq1 = q->nb[1];
  9957. const int nbq2 = q->nb[2];
  9958. const int nbq3 = q->nb[3];
  9959. const int nbv0 = v->nb[0];
  9960. const int nbv1 = v->nb[1];
  9961. const int nbv2 = v->nb[2];
  9962. const int nbv3 = v->nb[3];
  9963. const int nb0 = dst->nb[0];
  9964. const int nb1 = dst->nb[1];
  9965. const int nb2 = dst->nb[2];
  9966. const int nb3 = dst->nb[3];
  9967. const int ith = params->ith;
  9968. const int nth = params->nth;
  9969. const int64_t D = neq0;
  9970. const int64_t N = neq1;
  9971. const int64_t P = nek1 - N;
  9972. const int64_t M = P + N;
  9973. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9974. GGML_ASSERT(ne0 == D);
  9975. GGML_ASSERT(ne1 == N);
  9976. GGML_ASSERT(P >= 0);
  9977. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9978. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9979. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9980. GGML_ASSERT(neq0 == D);
  9981. GGML_ASSERT(nek0 == D);
  9982. GGML_ASSERT(nev1 == D);
  9983. GGML_ASSERT(neq1 == N);
  9984. GGML_ASSERT(nek1 == N + P);
  9985. GGML_ASSERT(nev1 == D);
  9986. // dst cannot be transposed or permuted
  9987. GGML_ASSERT(nb0 == sizeof(float));
  9988. GGML_ASSERT(nb0 <= nb1);
  9989. GGML_ASSERT(nb1 <= nb2);
  9990. GGML_ASSERT(nb2 <= nb3);
  9991. if (params->type == GGML_TASK_INIT) {
  9992. return;
  9993. }
  9994. if (params->type == GGML_TASK_FINALIZE) {
  9995. return;
  9996. }
  9997. // parallelize by q rows using ggml_vec_dot_f32
  9998. // total rows in q
  9999. const int nr = neq1*neq2*neq3;
  10000. // rows per thread
  10001. const int dr = (nr + nth - 1)/nth;
  10002. // row range for this thread
  10003. const int ir0 = dr*ith;
  10004. const int ir1 = MIN(ir0 + dr, nr);
  10005. const float scale = 1.0f/sqrtf(D);
  10006. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10007. for (int ir = ir0; ir < ir1; ++ir) {
  10008. // q indices
  10009. const int iq3 = ir/(neq2*neq1);
  10010. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10011. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10012. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10013. for (int i = M; i < Mup; ++i) {
  10014. S[i] = -INFINITY;
  10015. }
  10016. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10017. for (int64_t ic = 0; ic < nek1; ++ic) {
  10018. // k indices
  10019. const int ik3 = iq3;
  10020. const int ik2 = iq2;
  10021. const int ik1 = ic;
  10022. // S indices
  10023. const int i1 = ik1;
  10024. ggml_vec_dot_f16(neq0,
  10025. S + i1,
  10026. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10027. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10028. }
  10029. } else {
  10030. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10031. // k indices
  10032. const int ik3 = iq3;
  10033. const int ik2 = iq2;
  10034. const int ik1 = ic;
  10035. // S indices
  10036. const int i1 = ik1;
  10037. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10038. S + i1,
  10039. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10040. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10041. }
  10042. }
  10043. // scale
  10044. ggml_vec_scale_f32(nek1, S, scale);
  10045. if (masked) {
  10046. for (int64_t i = P; i < M; i++) {
  10047. if (i > P + iq1) {
  10048. S[i] = -INFINITY;
  10049. }
  10050. }
  10051. }
  10052. // softmax
  10053. {
  10054. float max = -INFINITY;
  10055. ggml_vec_max_f32(M, &max, S);
  10056. ggml_float sum = 0.0;
  10057. {
  10058. #ifdef GGML_SOFT_MAX_ACCELERATE
  10059. max = -max;
  10060. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10061. vvexpf(S, S, &Mup);
  10062. ggml_vec_sum_f32(Mup, &sum, S);
  10063. #else
  10064. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10065. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10066. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10067. float * SS = S + i;
  10068. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10069. if (SS[j] == -INFINITY) {
  10070. SS[j] = 0.0f;
  10071. } else {
  10072. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10073. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10074. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10075. sump[j] += (ggml_float)val;
  10076. SS[j] = val;
  10077. }
  10078. }
  10079. }
  10080. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10081. sum += sump[i];
  10082. }
  10083. #endif
  10084. }
  10085. assert(sum > 0.0);
  10086. sum = 1.0/sum;
  10087. ggml_vec_scale_f32(M, S, sum);
  10088. #ifndef NDEBUG
  10089. for (int i = 0; i < M; ++i) {
  10090. assert(!isnan(S[i]));
  10091. assert(!isinf(S[i]));
  10092. }
  10093. #endif
  10094. }
  10095. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10096. for (int64_t i = 0; i < M; i++) {
  10097. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10098. }
  10099. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10100. for (int64_t ic = 0; ic < nev1; ++ic) {
  10101. // dst indices
  10102. const int i1 = iq1;
  10103. const int i2 = iq2;
  10104. const int i3 = iq3;
  10105. ggml_vec_dot_f16(nek1,
  10106. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10107. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10108. S16);
  10109. }
  10110. } else {
  10111. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10112. // dst indices
  10113. const int i1 = iq1;
  10114. const int i2 = iq2;
  10115. const int i3 = iq3;
  10116. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10117. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10118. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10119. S16);
  10120. }
  10121. }
  10122. }
  10123. }
  10124. static void ggml_compute_forward_flash_attn(
  10125. const struct ggml_compute_params * params,
  10126. const struct ggml_tensor * q,
  10127. const struct ggml_tensor * k,
  10128. const struct ggml_tensor * v,
  10129. const bool masked,
  10130. struct ggml_tensor * dst) {
  10131. switch (q->type) {
  10132. case GGML_TYPE_F16:
  10133. {
  10134. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10135. } break;
  10136. case GGML_TYPE_F32:
  10137. {
  10138. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10139. } break;
  10140. default:
  10141. {
  10142. GGML_ASSERT(false);
  10143. } break;
  10144. }
  10145. }
  10146. // ggml_compute_forward_flash_ff
  10147. static void ggml_compute_forward_flash_ff_f16(
  10148. const struct ggml_compute_params * params,
  10149. const struct ggml_tensor * a, // F16
  10150. const struct ggml_tensor * b0, // F16 fc_w
  10151. const struct ggml_tensor * b1, // F32 fc_b
  10152. const struct ggml_tensor * c0, // F16 proj_w
  10153. const struct ggml_tensor * c1, // F32 proj_b
  10154. struct ggml_tensor * dst) {
  10155. int64_t t0 = ggml_perf_time_us();
  10156. UNUSED(t0);
  10157. const int64_t nea0 = a->ne[0];
  10158. const int64_t nea1 = a->ne[1];
  10159. const int64_t nea2 = a->ne[2];
  10160. const int64_t nea3 = a->ne[3];
  10161. const int64_t neb00 = b0->ne[0];
  10162. const int64_t neb01 = b0->ne[1];
  10163. //const int64_t neb02 = b0->ne[2];
  10164. //const int64_t neb03 = b0->ne[3];
  10165. const int64_t neb10 = b1->ne[0];
  10166. const int64_t neb11 = b1->ne[1];
  10167. //const int64_t neb12 = b1->ne[2];
  10168. //const int64_t neb13 = b1->ne[3];
  10169. const int64_t nec00 = c0->ne[0];
  10170. const int64_t nec01 = c0->ne[1];
  10171. //const int64_t nec02 = c0->ne[2];
  10172. //const int64_t nec03 = c0->ne[3];
  10173. const int64_t nec10 = c1->ne[0];
  10174. const int64_t nec11 = c1->ne[1];
  10175. //const int64_t nec12 = c1->ne[2];
  10176. //const int64_t nec13 = c1->ne[3];
  10177. const int64_t ne0 = dst->ne[0];
  10178. const int64_t ne1 = dst->ne[1];
  10179. const int64_t ne2 = dst->ne[2];
  10180. //const int64_t ne3 = dst->ne[3];
  10181. const int nba0 = a->nb[0];
  10182. const int nba1 = a->nb[1];
  10183. const int nba2 = a->nb[2];
  10184. const int nba3 = a->nb[3];
  10185. const int nbb00 = b0->nb[0];
  10186. const int nbb01 = b0->nb[1];
  10187. const int nbb02 = b0->nb[2];
  10188. const int nbb03 = b0->nb[3];
  10189. const int nbb10 = b1->nb[0];
  10190. //const int nbb11 = b1->nb[1];
  10191. //const int nbb12 = b1->nb[2];
  10192. //const int nbb13 = b1->nb[3];
  10193. const int nbc00 = c0->nb[0];
  10194. const int nbc01 = c0->nb[1];
  10195. const int nbc02 = c0->nb[2];
  10196. const int nbc03 = c0->nb[3];
  10197. const int nbc10 = c1->nb[0];
  10198. //const int nbc11 = c1->nb[1];
  10199. //const int nbc12 = c1->nb[2];
  10200. //const int nbc13 = c1->nb[3];
  10201. const int nb0 = dst->nb[0];
  10202. const int nb1 = dst->nb[1];
  10203. const int nb2 = dst->nb[2];
  10204. const int nb3 = dst->nb[3];
  10205. const int ith = params->ith;
  10206. const int nth = params->nth;
  10207. const int64_t D = nea0;
  10208. //const int64_t N = nea1;
  10209. const int64_t M = neb01;
  10210. GGML_ASSERT(ne0 == nea0);
  10211. GGML_ASSERT(ne1 == nea1);
  10212. GGML_ASSERT(ne2 == nea2);
  10213. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10214. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10215. GGML_ASSERT(nbb10 == sizeof(float));
  10216. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10217. GGML_ASSERT(nbc10 == sizeof(float));
  10218. GGML_ASSERT(neb00 == D);
  10219. GGML_ASSERT(neb01 == M);
  10220. GGML_ASSERT(neb10 == M);
  10221. GGML_ASSERT(neb11 == 1);
  10222. GGML_ASSERT(nec00 == M);
  10223. GGML_ASSERT(nec01 == D);
  10224. GGML_ASSERT(nec10 == D);
  10225. GGML_ASSERT(nec11 == 1);
  10226. // dst cannot be transposed or permuted
  10227. GGML_ASSERT(nb0 == sizeof(float));
  10228. GGML_ASSERT(nb0 <= nb1);
  10229. GGML_ASSERT(nb1 <= nb2);
  10230. GGML_ASSERT(nb2 <= nb3);
  10231. if (params->type == GGML_TASK_INIT) {
  10232. return;
  10233. }
  10234. if (params->type == GGML_TASK_FINALIZE) {
  10235. return;
  10236. }
  10237. // parallelize by a rows using ggml_vec_dot_f32
  10238. // total rows in a
  10239. const int nr = nea1*nea2*nea3;
  10240. // rows per thread
  10241. const int dr = (nr + nth - 1)/nth;
  10242. // row range for this thread
  10243. const int ir0 = dr*ith;
  10244. const int ir1 = MIN(ir0 + dr, nr);
  10245. for (int ir = ir0; ir < ir1; ++ir) {
  10246. // a indices
  10247. const int ia3 = ir/(nea2*nea1);
  10248. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10249. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10250. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10251. for (int64_t ic = 0; ic < neb01; ++ic) {
  10252. // b0 indices
  10253. const int ib03 = ia3;
  10254. const int ib02 = ia2;
  10255. const int ib01 = ic;
  10256. // S indices
  10257. const int i1 = ib01;
  10258. ggml_vec_dot_f16(nea0,
  10259. S + i1,
  10260. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10261. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10262. }
  10263. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10264. //ggml_vec_gelu_f32(neb01, S, S);
  10265. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10266. for (int64_t i = 0; i < M; i++) {
  10267. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10268. }
  10269. ggml_vec_gelu_f16(neb01, S16, S16);
  10270. {
  10271. // dst indices
  10272. const int i1 = ia1;
  10273. const int i2 = ia2;
  10274. const int i3 = ia3;
  10275. for (int64_t ic = 0; ic < nec01; ++ic) {
  10276. ggml_vec_dot_f16(neb01,
  10277. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10278. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10279. S16);
  10280. }
  10281. ggml_vec_add_f32(nec01,
  10282. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10283. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10284. (float *) c1->data);
  10285. }
  10286. }
  10287. }
  10288. static void ggml_compute_forward_flash_ff(
  10289. const struct ggml_compute_params * params,
  10290. const struct ggml_tensor * a,
  10291. const struct ggml_tensor * b0,
  10292. const struct ggml_tensor * b1,
  10293. const struct ggml_tensor * c0,
  10294. const struct ggml_tensor * c1,
  10295. struct ggml_tensor * dst) {
  10296. switch (b0->type) {
  10297. case GGML_TYPE_F16:
  10298. {
  10299. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10300. } break;
  10301. case GGML_TYPE_F32:
  10302. {
  10303. GGML_ASSERT(false); // TODO
  10304. } break;
  10305. default:
  10306. {
  10307. GGML_ASSERT(false);
  10308. } break;
  10309. }
  10310. }
  10311. // ggml_compute_forward_map_unary
  10312. static void ggml_compute_forward_map_unary_f32(
  10313. const struct ggml_compute_params * params,
  10314. const struct ggml_tensor * src0,
  10315. struct ggml_tensor * dst,
  10316. const ggml_unary_op_f32_t fun) {
  10317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10319. return;
  10320. }
  10321. const int n = ggml_nrows(src0);
  10322. const int nc = src0->ne[0];
  10323. assert( dst->nb[0] == sizeof(float));
  10324. assert(src0->nb[0] == sizeof(float));
  10325. for (int i = 0; i < n; i++) {
  10326. fun(nc,
  10327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10329. }
  10330. }
  10331. static void ggml_compute_forward_map_unary(
  10332. const struct ggml_compute_params * params,
  10333. const struct ggml_tensor * src0,
  10334. struct ggml_tensor * dst,
  10335. const ggml_unary_op_f32_t fun) {
  10336. switch (src0->type) {
  10337. case GGML_TYPE_F32:
  10338. {
  10339. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10340. } break;
  10341. default:
  10342. {
  10343. GGML_ASSERT(false);
  10344. } break;
  10345. }
  10346. }
  10347. // ggml_compute_forward_map_binary
  10348. static void ggml_compute_forward_map_binary_f32(
  10349. const struct ggml_compute_params * params,
  10350. const struct ggml_tensor * src0,
  10351. const struct ggml_tensor * src1,
  10352. struct ggml_tensor * dst,
  10353. const ggml_binary_op_f32_t fun) {
  10354. assert(params->ith == 0);
  10355. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10357. return;
  10358. }
  10359. const int n = ggml_nrows(src0);
  10360. const int nc = src0->ne[0];
  10361. assert( dst->nb[0] == sizeof(float));
  10362. assert(src0->nb[0] == sizeof(float));
  10363. assert(src1->nb[0] == sizeof(float));
  10364. for (int i = 0; i < n; i++) {
  10365. fun(nc,
  10366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10367. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10368. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10369. }
  10370. }
  10371. static void ggml_compute_forward_map_binary(
  10372. const struct ggml_compute_params * params,
  10373. const struct ggml_tensor * src0,
  10374. const struct ggml_tensor * src1,
  10375. struct ggml_tensor * dst,
  10376. const ggml_binary_op_f32_t fun) {
  10377. switch (src0->type) {
  10378. case GGML_TYPE_F32:
  10379. {
  10380. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10381. } break;
  10382. default:
  10383. {
  10384. GGML_ASSERT(false);
  10385. } break;
  10386. }
  10387. }
  10388. /////////////////////////////////
  10389. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10390. GGML_ASSERT(params);
  10391. switch (tensor->op) {
  10392. case GGML_OP_DUP:
  10393. {
  10394. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10395. } break;
  10396. case GGML_OP_ADD:
  10397. {
  10398. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10399. } break;
  10400. case GGML_OP_ADD1:
  10401. {
  10402. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10403. } break;
  10404. case GGML_OP_ACC:
  10405. {
  10406. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10407. } break;
  10408. case GGML_OP_SUB:
  10409. {
  10410. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10411. } break;
  10412. case GGML_OP_MUL:
  10413. {
  10414. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10415. } break;
  10416. case GGML_OP_DIV:
  10417. {
  10418. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10419. } break;
  10420. case GGML_OP_SQR:
  10421. {
  10422. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10423. } break;
  10424. case GGML_OP_SQRT:
  10425. {
  10426. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10427. } break;
  10428. case GGML_OP_LOG:
  10429. {
  10430. ggml_compute_forward_log(params, tensor->src0, tensor);
  10431. } break;
  10432. case GGML_OP_SUM:
  10433. {
  10434. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10435. } break;
  10436. case GGML_OP_SUM_ROWS:
  10437. {
  10438. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10439. } break;
  10440. case GGML_OP_MEAN:
  10441. {
  10442. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10443. } break;
  10444. case GGML_OP_REPEAT:
  10445. {
  10446. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10447. } break;
  10448. case GGML_OP_ABS:
  10449. {
  10450. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10451. } break;
  10452. case GGML_OP_SGN:
  10453. {
  10454. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10455. } break;
  10456. case GGML_OP_NEG:
  10457. {
  10458. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10459. } break;
  10460. case GGML_OP_STEP:
  10461. {
  10462. ggml_compute_forward_step(params, tensor->src0, tensor);
  10463. } break;
  10464. case GGML_OP_RELU:
  10465. {
  10466. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10467. } break;
  10468. case GGML_OP_GELU:
  10469. {
  10470. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10471. } break;
  10472. case GGML_OP_SILU:
  10473. {
  10474. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10475. } break;
  10476. case GGML_OP_SILU_BACK:
  10477. {
  10478. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10479. } break;
  10480. case GGML_OP_NORM:
  10481. {
  10482. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10483. } break;
  10484. case GGML_OP_RMS_NORM:
  10485. {
  10486. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10487. } break;
  10488. case GGML_OP_RMS_NORM_BACK:
  10489. {
  10490. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10491. } break;
  10492. case GGML_OP_MUL_MAT:
  10493. {
  10494. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10495. } break;
  10496. case GGML_OP_SCALE:
  10497. {
  10498. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10499. } break;
  10500. case GGML_OP_SET:
  10501. {
  10502. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10503. } break;
  10504. case GGML_OP_CPY:
  10505. {
  10506. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10507. } break;
  10508. case GGML_OP_CONT:
  10509. {
  10510. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10511. } break;
  10512. case GGML_OP_RESHAPE:
  10513. {
  10514. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10515. } break;
  10516. case GGML_OP_VIEW:
  10517. {
  10518. ggml_compute_forward_view(params, tensor->src0);
  10519. } break;
  10520. case GGML_OP_PERMUTE:
  10521. {
  10522. ggml_compute_forward_permute(params, tensor->src0);
  10523. } break;
  10524. case GGML_OP_TRANSPOSE:
  10525. {
  10526. ggml_compute_forward_transpose(params, tensor->src0);
  10527. } break;
  10528. case GGML_OP_GET_ROWS:
  10529. {
  10530. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10531. } break;
  10532. case GGML_OP_GET_ROWS_BACK:
  10533. {
  10534. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10535. } break;
  10536. case GGML_OP_DIAG:
  10537. {
  10538. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10539. } break;
  10540. case GGML_OP_DIAG_MASK_INF:
  10541. {
  10542. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10543. } break;
  10544. case GGML_OP_DIAG_MASK_ZERO:
  10545. {
  10546. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10547. } break;
  10548. case GGML_OP_SOFT_MAX:
  10549. {
  10550. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10551. } break;
  10552. case GGML_OP_ROPE:
  10553. {
  10554. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10555. } break;
  10556. case GGML_OP_ROPE_BACK:
  10557. {
  10558. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10559. } break;
  10560. case GGML_OP_ALIBI:
  10561. {
  10562. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10563. } break;
  10564. case GGML_OP_CLAMP:
  10565. {
  10566. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10567. } break;
  10568. case GGML_OP_CONV_1D_1S:
  10569. {
  10570. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10571. } break;
  10572. case GGML_OP_CONV_1D_2S:
  10573. {
  10574. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10575. } break;
  10576. case GGML_OP_FLASH_ATTN:
  10577. {
  10578. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10579. GGML_ASSERT(t == 0 || t == 1);
  10580. bool masked = t != 0;
  10581. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10582. } break;
  10583. case GGML_OP_FLASH_FF:
  10584. {
  10585. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10586. } break;
  10587. case GGML_OP_MAP_UNARY:
  10588. {
  10589. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10590. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10591. }
  10592. break;
  10593. case GGML_OP_MAP_BINARY:
  10594. {
  10595. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10596. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10597. }
  10598. break;
  10599. case GGML_OP_NONE:
  10600. {
  10601. // nop
  10602. } break;
  10603. case GGML_OP_COUNT:
  10604. {
  10605. GGML_ASSERT(false);
  10606. } break;
  10607. }
  10608. }
  10609. ////////////////////////////////////////////////////////////////////////////////
  10610. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10611. struct ggml_tensor * src0 = tensor->src0;
  10612. struct ggml_tensor * src1 = tensor->src1;
  10613. switch (tensor->op) {
  10614. case GGML_OP_DUP:
  10615. {
  10616. if (src0->grad) {
  10617. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10618. }
  10619. } break;
  10620. case GGML_OP_ADD:
  10621. {
  10622. if (src0->grad) {
  10623. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10624. }
  10625. if (src1->grad) {
  10626. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10627. }
  10628. } break;
  10629. case GGML_OP_ADD1:
  10630. {
  10631. if (src0->grad) {
  10632. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10633. }
  10634. if (src1->grad) {
  10635. src1->grad = ggml_add_impl(ctx,
  10636. src1->grad,
  10637. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10638. inplace);
  10639. }
  10640. } break;
  10641. case GGML_OP_ACC:
  10642. {
  10643. if (src0->grad) {
  10644. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10645. }
  10646. if (src1->grad) {
  10647. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10648. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10649. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10650. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10651. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10652. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10653. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10654. tensor->grad,
  10655. src1->grad->ne[0],
  10656. src1->grad->ne[1],
  10657. src1->grad->ne[2],
  10658. src1->grad->ne[3],
  10659. nb1, nb2, nb3, offset);
  10660. src1->grad =
  10661. ggml_add_impl(ctx,
  10662. src1->grad,
  10663. ggml_reshape(ctx,
  10664. ggml_cont(ctx, tensor_grad_view),
  10665. src1->grad),
  10666. inplace);
  10667. }
  10668. } break;
  10669. case GGML_OP_SUB:
  10670. {
  10671. if (src0->grad) {
  10672. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10673. }
  10674. if (src1->grad) {
  10675. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10676. }
  10677. } break;
  10678. case GGML_OP_MUL:
  10679. {
  10680. if (src0->grad) {
  10681. src0->grad =
  10682. ggml_add_impl(ctx,
  10683. src0->grad,
  10684. ggml_mul(ctx, src1, tensor->grad),
  10685. inplace);
  10686. }
  10687. if (src1->grad) {
  10688. src1->grad =
  10689. ggml_add_impl(ctx,
  10690. src1->grad,
  10691. ggml_mul(ctx, src0, tensor->grad),
  10692. inplace);
  10693. }
  10694. } break;
  10695. case GGML_OP_DIV:
  10696. {
  10697. if (src0->grad) {
  10698. src0->grad =
  10699. ggml_add_impl(ctx,
  10700. src0->grad,
  10701. ggml_div(ctx, tensor->grad, src1),
  10702. inplace);
  10703. }
  10704. if (src1->grad) {
  10705. src1->grad =
  10706. ggml_sub_impl(ctx,
  10707. src1->grad,
  10708. ggml_mul(ctx,
  10709. tensor->grad,
  10710. ggml_div(ctx, tensor, src1)),
  10711. inplace);
  10712. }
  10713. } break;
  10714. case GGML_OP_SQR:
  10715. {
  10716. if (src0->grad) {
  10717. src0->grad =
  10718. ggml_add_impl(ctx,
  10719. src0->grad,
  10720. ggml_scale(ctx,
  10721. ggml_mul(ctx, src0, tensor->grad),
  10722. ggml_new_f32(ctx, 2.0f)),
  10723. inplace);
  10724. }
  10725. } break;
  10726. case GGML_OP_SQRT:
  10727. {
  10728. if (src0->grad) {
  10729. src0->grad =
  10730. ggml_add_impl(ctx,
  10731. src0->grad,
  10732. ggml_mul(ctx,
  10733. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10734. ggml_div(ctx,
  10735. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10736. tensor)),
  10737. inplace);
  10738. }
  10739. } break;
  10740. case GGML_OP_LOG:
  10741. {
  10742. if (src0->grad) {
  10743. src0->grad =
  10744. ggml_add_impl(ctx,
  10745. src0->grad,
  10746. ggml_div(ctx,
  10747. tensor->grad,
  10748. src0),
  10749. inplace);
  10750. }
  10751. } break;
  10752. case GGML_OP_SUM:
  10753. {
  10754. if (src0->grad) {
  10755. src0->grad =
  10756. ggml_add1_impl(ctx,
  10757. src0->grad,
  10758. tensor->grad,
  10759. inplace);
  10760. }
  10761. } break;
  10762. case GGML_OP_SUM_ROWS:
  10763. {
  10764. if (src0->grad) {
  10765. src0->grad =
  10766. ggml_add_impl(ctx,
  10767. src0->grad,
  10768. ggml_repeat(ctx,
  10769. tensor->grad,
  10770. src0->grad),
  10771. inplace);
  10772. }
  10773. } break;
  10774. case GGML_OP_MEAN:
  10775. {
  10776. GGML_ASSERT(false); // TODO: implement
  10777. } break;
  10778. case GGML_OP_REPEAT:
  10779. {
  10780. // necessary for llama
  10781. if (src0->grad) {
  10782. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10783. const int nc = tensor->ne[0];
  10784. const int nr = tensor->ne[1];
  10785. const int nc0 = src0->ne[0];
  10786. const int nr0 = src0->ne[1];
  10787. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10788. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10789. // tensor->grad [nc,nr,1,1]
  10790. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10791. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10792. // substitute [nc0,nr0,ncr,nrr]
  10793. // reshape [nc0*nr0,ncr*nrr,1,1]
  10794. // transpose [ncr*nrr,nc0*nr0,1,1]
  10795. // sum rows [1,nc0*nr0,1,1]
  10796. // transpose [nc0*nr0,1,1]
  10797. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10798. // add to src0->grad
  10799. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10800. struct ggml_tensor* F00 = tensor->grad;
  10801. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10802. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10803. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10804. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10805. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10806. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10807. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10808. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10809. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10810. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10811. src0->grad =
  10812. ggml_add_impl(ctx,
  10813. src0->grad,
  10814. F10,
  10815. inplace);
  10816. }
  10817. } break;
  10818. case GGML_OP_ABS:
  10819. {
  10820. if (src0->grad) {
  10821. src0->grad =
  10822. ggml_add_impl(ctx,
  10823. src0->grad,
  10824. ggml_mul(ctx,
  10825. ggml_sgn(ctx, src0),
  10826. tensor->grad),
  10827. inplace);
  10828. }
  10829. } break;
  10830. case GGML_OP_SGN:
  10831. {
  10832. if (src0->grad) {
  10833. // noop
  10834. }
  10835. } break;
  10836. case GGML_OP_NEG:
  10837. {
  10838. if (src0->grad) {
  10839. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10840. }
  10841. } break;
  10842. case GGML_OP_STEP:
  10843. {
  10844. if (src0->grad) {
  10845. // noop
  10846. }
  10847. } break;
  10848. case GGML_OP_RELU:
  10849. {
  10850. if (src0->grad) {
  10851. src0->grad = ggml_sub_impl(ctx,
  10852. src0->grad,
  10853. ggml_mul(ctx,
  10854. ggml_step(ctx, src0),
  10855. tensor->grad),
  10856. inplace);
  10857. }
  10858. } break;
  10859. case GGML_OP_GELU:
  10860. {
  10861. GGML_ASSERT(false); // TODO: not implemented
  10862. } break;
  10863. case GGML_OP_ALIBI:
  10864. {
  10865. GGML_ASSERT(false); // TODO: not implemented
  10866. } break;
  10867. case GGML_OP_CLAMP:
  10868. {
  10869. GGML_ASSERT(false); // TODO: not implemented
  10870. } break;
  10871. case GGML_OP_SILU:
  10872. {
  10873. // necessary for llama
  10874. if (src0->grad) {
  10875. src0->grad = ggml_add_impl(ctx,
  10876. src0->grad,
  10877. ggml_silu_back(ctx, src0, tensor->grad),
  10878. inplace);
  10879. }
  10880. } break;
  10881. case GGML_OP_SILU_BACK:
  10882. {
  10883. GGML_ASSERT(false); // TODO: not implemented
  10884. } break;
  10885. case GGML_OP_NORM:
  10886. {
  10887. GGML_ASSERT(false); // TODO: not implemented
  10888. } break;
  10889. case GGML_OP_RMS_NORM:
  10890. {
  10891. // necessary for llama
  10892. if (src0->grad) {
  10893. src0->grad = ggml_add_impl(ctx,
  10894. src0->grad,
  10895. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10896. inplace);
  10897. }
  10898. } break;
  10899. case GGML_OP_RMS_NORM_BACK:
  10900. {
  10901. GGML_ASSERT(false); // TODO: not implemented
  10902. } break;
  10903. case GGML_OP_MUL_MAT:
  10904. {
  10905. // https://cs231n.github.io/optimization-2/#staged
  10906. // # forward pass
  10907. // s0 = np.random.randn(5, 10)
  10908. // s1 = np.random.randn(10, 3)
  10909. // t = s0.dot(s1)
  10910. // # now suppose we had the gradient on t from above in the circuit
  10911. // dt = np.random.randn(*t.shape) # same shape as t
  10912. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10913. // ds1 = t.T.dot(dt)
  10914. // tensor.shape [m,p]
  10915. // src0.shape [n,m]
  10916. // src1.shape [n,p]
  10917. // necessary for llama
  10918. if (src0->grad) {
  10919. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10920. src0->grad =
  10921. ggml_add_impl(ctx,
  10922. src0->grad,
  10923. // ds0 = dt.dot(s1.T)
  10924. // ggml_out_prod(ctx, // [n,m]
  10925. // src1, // [n,p]
  10926. // tensor->grad), // [m,p]
  10927. // for now just using A*B==(B.T*A.T).T
  10928. ggml_cont(ctx, // [n,m]
  10929. ggml_transpose(ctx, // [n,m]
  10930. ggml_mul_mat(ctx, // [m,n]
  10931. ggml_cont(ctx, // [p,m]
  10932. ggml_transpose(ctx, // [p,m]
  10933. tensor->grad)), // [m,p]
  10934. ggml_cont(ctx, // [p,n]
  10935. ggml_transpose(ctx, // [p,n]
  10936. src1))))), // [n,p]
  10937. inplace);
  10938. }
  10939. if (src1->grad) {
  10940. src1->grad =
  10941. ggml_add_impl(ctx,
  10942. src1->grad,
  10943. // ds1 = s0.T.dot(dt):
  10944. ggml_mul_mat(ctx, // [n,p]
  10945. ggml_cont(ctx, // [m,n]
  10946. ggml_transpose(ctx, src0)), // [m,n]
  10947. tensor->grad), // [m,p]
  10948. inplace);
  10949. }
  10950. } break;
  10951. case GGML_OP_SCALE:
  10952. {
  10953. // necessary for llama
  10954. if (src0->grad) {
  10955. src0->grad =
  10956. ggml_add_impl(ctx,
  10957. src0->grad,
  10958. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10959. inplace);
  10960. }
  10961. if (src1->grad) {
  10962. src1->grad =
  10963. ggml_add_impl(ctx,
  10964. src1->grad,
  10965. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10966. inplace);
  10967. }
  10968. } break;
  10969. case GGML_OP_SET:
  10970. {
  10971. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10972. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10973. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10974. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10975. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10976. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10977. struct ggml_tensor * tensor_grad_view = NULL;
  10978. if (src0->grad || src1->grad) {
  10979. GGML_ASSERT(src0->type == tensor->type);
  10980. GGML_ASSERT(tensor->grad->type == tensor->type);
  10981. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10982. tensor_grad_view = ggml_view_4d(ctx,
  10983. tensor->grad,
  10984. src1->grad->ne[0],
  10985. src1->grad->ne[1],
  10986. src1->grad->ne[2],
  10987. src1->grad->ne[3],
  10988. nb1, nb2, nb3, offset);
  10989. }
  10990. if (src0->grad) {
  10991. src0->grad = ggml_add_impl(ctx,
  10992. src0->grad,
  10993. ggml_acc_impl(ctx,
  10994. tensor->grad,
  10995. ggml_neg(ctx, tensor_grad_view),
  10996. nb1, nb2, nb3, offset, false),
  10997. inplace);
  10998. }
  10999. if (src1->grad) {
  11000. src1->grad =
  11001. ggml_add_impl(ctx,
  11002. src1->grad,
  11003. ggml_reshape(ctx,
  11004. ggml_cont(ctx, tensor_grad_view),
  11005. src1->grad),
  11006. inplace);
  11007. }
  11008. } break;
  11009. case GGML_OP_CPY:
  11010. {
  11011. // necessary for llama
  11012. // cpy overwrites value of src1 by src0 and returns view(src1)
  11013. // the overwriting is mathematically equivalent to:
  11014. // tensor = src0 * 1 + src1 * 0
  11015. if (src0->grad) {
  11016. // dsrc0 = dtensor * 1
  11017. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11018. }
  11019. if (src1->grad) {
  11020. // dsrc1 = dtensor * 0 -> noop
  11021. }
  11022. } break;
  11023. case GGML_OP_CONT:
  11024. {
  11025. // same as cpy
  11026. if (src0->grad) {
  11027. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11028. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11029. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11030. }
  11031. } break;
  11032. case GGML_OP_RESHAPE:
  11033. {
  11034. // necessary for llama
  11035. if (src0->grad) {
  11036. src0->grad =
  11037. ggml_add_impl(ctx, src0->grad,
  11038. ggml_reshape(ctx, tensor->grad, src0->grad),
  11039. inplace);
  11040. }
  11041. } break;
  11042. case GGML_OP_VIEW:
  11043. {
  11044. // necessary for llama
  11045. if (src0->grad) {
  11046. size_t offset;
  11047. memcpy(&offset, tensor->padding, sizeof(offset));
  11048. size_t nb1 = tensor->nb[1];
  11049. size_t nb2 = tensor->nb[2];
  11050. size_t nb3 = tensor->nb[3];
  11051. if (src0->type != src0->grad->type) {
  11052. // gradient is typically F32, but src0 could be other type
  11053. size_t ng = ggml_element_size(src0->grad);
  11054. size_t n0 = ggml_element_size(src0);
  11055. GGML_ASSERT(offset % n0 == 0);
  11056. GGML_ASSERT(nb1 % n0 == 0);
  11057. GGML_ASSERT(nb2 % n0 == 0);
  11058. GGML_ASSERT(nb3 % n0 == 0);
  11059. offset = (offset / n0) * ng;
  11060. nb1 = (nb1 / n0) * ng;
  11061. nb2 = (nb2 / n0) * ng;
  11062. nb3 = (nb3 / n0) * ng;
  11063. }
  11064. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11065. }
  11066. } break;
  11067. case GGML_OP_PERMUTE:
  11068. {
  11069. // necessary for llama
  11070. if (src0->grad) {
  11071. int axis0 = tensor->padding[0] & 0x3;
  11072. int axis1 = tensor->padding[1] & 0x3;
  11073. int axis2 = tensor->padding[2] & 0x3;
  11074. int axis3 = tensor->padding[3] & 0x3;
  11075. int axes_backward[4] = {0,0,0,0};
  11076. axes_backward[axis0] = 0;
  11077. axes_backward[axis1] = 1;
  11078. axes_backward[axis2] = 2;
  11079. axes_backward[axis3] = 3;
  11080. src0->grad =
  11081. ggml_add_impl(ctx, src0->grad,
  11082. ggml_permute(ctx,
  11083. tensor->grad,
  11084. axes_backward[0],
  11085. axes_backward[1],
  11086. axes_backward[2],
  11087. axes_backward[3]),
  11088. inplace);
  11089. }
  11090. } break;
  11091. case GGML_OP_TRANSPOSE:
  11092. {
  11093. // necessary for llama
  11094. if (src0->grad) {
  11095. src0->grad =
  11096. ggml_add_impl(ctx, src0->grad,
  11097. ggml_transpose(ctx, tensor->grad),
  11098. inplace);
  11099. }
  11100. } break;
  11101. case GGML_OP_GET_ROWS:
  11102. {
  11103. // necessary for llama (only for tokenizer)
  11104. if (src0->grad) {
  11105. src0->grad =
  11106. ggml_add_impl(ctx, src0->grad,
  11107. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11108. inplace);
  11109. }
  11110. if (src1->grad) {
  11111. // noop
  11112. }
  11113. } break;
  11114. case GGML_OP_GET_ROWS_BACK:
  11115. {
  11116. GGML_ASSERT(false); // TODO: not implemented
  11117. } break;
  11118. case GGML_OP_DIAG:
  11119. {
  11120. GGML_ASSERT(false); // TODO: not implemented
  11121. } break;
  11122. case GGML_OP_DIAG_MASK_INF:
  11123. {
  11124. // necessary for llama
  11125. if (src0->grad) {
  11126. assert(src1->type == GGML_TYPE_I32);
  11127. assert(ggml_nelements(src1) == 2);
  11128. const int n_past = ((int32_t *) src1->data)[0];
  11129. src0->grad =
  11130. ggml_add_impl(ctx, src0->grad,
  11131. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11132. inplace);
  11133. }
  11134. if (src1->grad) {
  11135. // noop
  11136. }
  11137. } break;
  11138. case GGML_OP_DIAG_MASK_ZERO:
  11139. {
  11140. // necessary for llama
  11141. if (src0->grad) {
  11142. assert(src1->type == GGML_TYPE_I32);
  11143. assert(ggml_nelements(src1) == 2);
  11144. const int n_past = ((int32_t *) src1->data)[0];
  11145. src0->grad =
  11146. ggml_add_impl(ctx, src0->grad,
  11147. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11148. inplace);
  11149. }
  11150. if (src1->grad) {
  11151. // noop
  11152. }
  11153. } break;
  11154. case GGML_OP_SOFT_MAX:
  11155. {
  11156. // necessary for llama
  11157. if (src0->grad) {
  11158. // y = softmax(x)
  11159. //
  11160. // Jii = yi - yi*yi
  11161. // Jij = -yi*yj
  11162. // J = diag(y)-y.*y
  11163. // dx = J * dy
  11164. // dxk = sum(Jkj * dyk)
  11165. int64_t ne2[4] = {
  11166. tensor->ne[0],
  11167. 1,
  11168. tensor->ne[1]*tensor->ne[2],
  11169. tensor->ne[3]
  11170. };
  11171. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11172. ggml_reshape_4d(ctx,
  11173. ggml_cont(ctx, tensor),
  11174. ne2[0], ne2[1], ne2[2], ne2[3]));
  11175. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11176. ggml_reshape_4d(ctx,
  11177. ggml_cont(ctx, tensor->grad),
  11178. ne2[0], ne2[1], ne2[2], ne2[3]));
  11179. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11180. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11181. tensor2, // [ne0,1,ne1*ne2,ne3]
  11182. 1, 0, 2, 3));
  11183. src0->grad =
  11184. ggml_add_impl(ctx,
  11185. src0->grad, // [ne0,ne1,ne2,ne3]
  11186. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11187. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11188. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11189. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11190. tensor2), // [ne0,1,ne1*ne2,ne3]
  11191. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11192. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11193. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11194. grad2), // [ne0,1,ne1*ne2,ne3]
  11195. src0->grad),
  11196. inplace);
  11197. }
  11198. } break;
  11199. case GGML_OP_ROPE:
  11200. {
  11201. // necessary for llama
  11202. if (src0->grad) {
  11203. assert(src1->type == GGML_TYPE_I32);
  11204. assert(ggml_nelements(src1) == 3);
  11205. const int n_past = ((int32_t *) src1->data)[0];
  11206. const int n_dims = ((int32_t *) src1->data)[1];
  11207. const int mode = ((int32_t *) src1->data)[2];
  11208. src0->grad = ggml_add_impl(ctx,
  11209. src0->grad,
  11210. ggml_rope_back(ctx,
  11211. tensor->grad,
  11212. n_past,
  11213. n_dims,
  11214. mode),
  11215. inplace);
  11216. }
  11217. if (src1->grad) {
  11218. // noop
  11219. }
  11220. } break;
  11221. case GGML_OP_ROPE_BACK:
  11222. {
  11223. if (src0->grad) {
  11224. assert(src1->type == GGML_TYPE_I32);
  11225. assert(ggml_nelements(src1) == 3);
  11226. const int n_past = ((int32_t *) src1->data)[0];
  11227. const int n_dims = ((int32_t *) src1->data)[1];
  11228. const int mode = ((int32_t *) src1->data)[2];
  11229. src0->grad = ggml_add_impl(ctx,
  11230. src0->grad,
  11231. ggml_rope(ctx,
  11232. tensor->grad,
  11233. n_past,
  11234. n_dims,
  11235. mode),
  11236. inplace);
  11237. }
  11238. if (src1->grad) {
  11239. // noop
  11240. }
  11241. } break;
  11242. case GGML_OP_CONV_1D_1S:
  11243. {
  11244. GGML_ASSERT(false); // TODO: not implemented
  11245. } break;
  11246. case GGML_OP_CONV_1D_2S:
  11247. {
  11248. GGML_ASSERT(false); // TODO: not implemented
  11249. } break;
  11250. case GGML_OP_FLASH_ATTN:
  11251. {
  11252. GGML_ASSERT(false); // not supported
  11253. } break;
  11254. case GGML_OP_FLASH_FF:
  11255. {
  11256. GGML_ASSERT(false); // not supported
  11257. } break;
  11258. case GGML_OP_MAP_UNARY:
  11259. case GGML_OP_MAP_BINARY:
  11260. {
  11261. GGML_ASSERT(false); // not supported
  11262. } break;
  11263. case GGML_OP_NONE:
  11264. {
  11265. // nop
  11266. } break;
  11267. case GGML_OP_COUNT:
  11268. {
  11269. GGML_ASSERT(false);
  11270. } break;
  11271. }
  11272. }
  11273. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11274. if (node->grad == NULL) {
  11275. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11276. // it can also happen during forward pass, if the user performs computations with constants
  11277. if (node->op != GGML_OP_NONE) {
  11278. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11279. }
  11280. }
  11281. // check if already visited
  11282. for (int i = 0; i < cgraph->n_nodes; i++) {
  11283. if (cgraph->nodes[i] == node) {
  11284. return;
  11285. }
  11286. }
  11287. for (int i = 0; i < cgraph->n_leafs; i++) {
  11288. if (cgraph->leafs[i] == node) {
  11289. return;
  11290. }
  11291. }
  11292. if (node->src0) {
  11293. ggml_visit_parents(cgraph, node->src0);
  11294. }
  11295. if (node->src1) {
  11296. ggml_visit_parents(cgraph, node->src1);
  11297. }
  11298. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11299. if (node->opt[i]) {
  11300. ggml_visit_parents(cgraph, node->opt[i]);
  11301. }
  11302. }
  11303. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11304. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11305. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11306. cgraph->leafs[cgraph->n_leafs] = node;
  11307. cgraph->n_leafs++;
  11308. } else {
  11309. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11310. cgraph->nodes[cgraph->n_nodes] = node;
  11311. cgraph->grads[cgraph->n_nodes] = node->grad;
  11312. cgraph->n_nodes++;
  11313. }
  11314. }
  11315. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11316. if (!expand) {
  11317. cgraph->n_nodes = 0;
  11318. cgraph->n_leafs = 0;
  11319. }
  11320. const int n0 = cgraph->n_nodes;
  11321. UNUSED(n0);
  11322. ggml_visit_parents(cgraph, tensor);
  11323. const int n_new = cgraph->n_nodes - n0;
  11324. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11325. if (n_new > 0) {
  11326. // the last added node should always be starting point
  11327. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11328. }
  11329. }
  11330. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11331. ggml_build_forward_impl(cgraph, tensor, true);
  11332. }
  11333. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11334. struct ggml_cgraph result = {
  11335. /*.n_nodes =*/ 0,
  11336. /*.n_leafs =*/ 0,
  11337. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11338. /*.work_size =*/ 0,
  11339. /*.work =*/ NULL,
  11340. /*.nodes =*/ { NULL },
  11341. /*.grads =*/ { NULL },
  11342. /*.leafs =*/ { NULL },
  11343. /*.perf_runs =*/ 0,
  11344. /*.perf_cycles =*/ 0,
  11345. /*.perf_time_us =*/ 0,
  11346. };
  11347. ggml_build_forward_impl(&result, tensor, false);
  11348. return result;
  11349. }
  11350. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11351. struct ggml_cgraph result = *gf;
  11352. GGML_ASSERT(gf->n_nodes > 0);
  11353. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11354. if (keep) {
  11355. for (int i = 0; i < gf->n_nodes; i++) {
  11356. struct ggml_tensor * node = gf->nodes[i];
  11357. if (node->grad) {
  11358. node->grad = ggml_dup_tensor(ctx, node);
  11359. gf->grads[i] = node->grad;
  11360. }
  11361. }
  11362. }
  11363. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11364. struct ggml_tensor * node = gf->nodes[i];
  11365. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11366. if (node->grad) {
  11367. ggml_compute_backward(ctx, node, keep);
  11368. }
  11369. }
  11370. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11371. struct ggml_tensor * node = gf->nodes[i];
  11372. if (node->is_param) {
  11373. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11374. ggml_build_forward_impl(&result, node->grad, true);
  11375. }
  11376. }
  11377. return result;
  11378. }
  11379. //
  11380. // thread data
  11381. //
  11382. // synchronization is done via busy loops
  11383. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11384. //
  11385. #ifdef __APPLE__
  11386. //#include <os/lock.h>
  11387. //
  11388. //typedef os_unfair_lock ggml_lock_t;
  11389. //
  11390. //#define ggml_lock_init(x) UNUSED(x)
  11391. //#define ggml_lock_destroy(x) UNUSED(x)
  11392. //#define ggml_lock_lock os_unfair_lock_lock
  11393. //#define ggml_lock_unlock os_unfair_lock_unlock
  11394. //
  11395. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11396. typedef int ggml_lock_t;
  11397. #define ggml_lock_init(x) UNUSED(x)
  11398. #define ggml_lock_destroy(x) UNUSED(x)
  11399. #define ggml_lock_lock(x) UNUSED(x)
  11400. #define ggml_lock_unlock(x) UNUSED(x)
  11401. #define GGML_LOCK_INITIALIZER 0
  11402. typedef pthread_t ggml_thread_t;
  11403. #define ggml_thread_create pthread_create
  11404. #define ggml_thread_join pthread_join
  11405. #else
  11406. //typedef pthread_spinlock_t ggml_lock_t;
  11407. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11408. //#define ggml_lock_destroy pthread_spin_destroy
  11409. //#define ggml_lock_lock pthread_spin_lock
  11410. //#define ggml_lock_unlock pthread_spin_unlock
  11411. typedef int ggml_lock_t;
  11412. #define ggml_lock_init(x) UNUSED(x)
  11413. #define ggml_lock_destroy(x) UNUSED(x)
  11414. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11415. #define ggml_lock_lock(x) _mm_pause()
  11416. #else
  11417. #define ggml_lock_lock(x) UNUSED(x)
  11418. #endif
  11419. #define ggml_lock_unlock(x) UNUSED(x)
  11420. #define GGML_LOCK_INITIALIZER 0
  11421. typedef pthread_t ggml_thread_t;
  11422. #define ggml_thread_create pthread_create
  11423. #define ggml_thread_join pthread_join
  11424. #endif
  11425. struct ggml_compute_state_shared {
  11426. ggml_lock_t spin;
  11427. int n_threads;
  11428. // synchronization primitives
  11429. atomic_int n_ready;
  11430. atomic_bool has_work;
  11431. atomic_bool stop; // stop all threads
  11432. };
  11433. struct ggml_compute_state {
  11434. ggml_thread_t thrd;
  11435. struct ggml_compute_params params;
  11436. struct ggml_tensor * node;
  11437. struct ggml_compute_state_shared * shared;
  11438. };
  11439. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11440. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11441. const int n_threads = state->shared->n_threads;
  11442. while (true) {
  11443. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11444. atomic_store(&state->shared->has_work, false);
  11445. } else {
  11446. while (atomic_load(&state->shared->has_work)) {
  11447. if (atomic_load(&state->shared->stop)) {
  11448. return 0;
  11449. }
  11450. ggml_lock_lock (&state->shared->spin);
  11451. ggml_lock_unlock(&state->shared->spin);
  11452. }
  11453. }
  11454. atomic_fetch_sub(&state->shared->n_ready, 1);
  11455. // wait for work
  11456. while (!atomic_load(&state->shared->has_work)) {
  11457. if (atomic_load(&state->shared->stop)) {
  11458. return 0;
  11459. }
  11460. ggml_lock_lock (&state->shared->spin);
  11461. ggml_lock_unlock(&state->shared->spin);
  11462. }
  11463. // check if we should stop
  11464. if (atomic_load(&state->shared->stop)) {
  11465. break;
  11466. }
  11467. if (state->node) {
  11468. if (state->params.ith < state->params.nth) {
  11469. ggml_compute_forward(&state->params, state->node);
  11470. }
  11471. state->node = NULL;
  11472. } else {
  11473. break;
  11474. }
  11475. }
  11476. return 0;
  11477. }
  11478. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11479. const int n_threads = cgraph->n_threads;
  11480. struct ggml_compute_state_shared state_shared = {
  11481. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11482. /*.n_threads =*/ n_threads,
  11483. /*.n_ready =*/ 0,
  11484. /*.has_work =*/ false,
  11485. /*.stop =*/ false,
  11486. };
  11487. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11488. // create thread pool
  11489. if (n_threads > 1) {
  11490. ggml_lock_init(&state_shared.spin);
  11491. atomic_store(&state_shared.has_work, true);
  11492. for (int j = 0; j < n_threads - 1; j++) {
  11493. workers[j] = (struct ggml_compute_state) {
  11494. .thrd = 0,
  11495. .params = {
  11496. .type = GGML_TASK_COMPUTE,
  11497. .ith = j + 1,
  11498. .nth = n_threads,
  11499. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11500. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11501. },
  11502. .node = NULL,
  11503. .shared = &state_shared,
  11504. };
  11505. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11506. GGML_ASSERT(rc == 0);
  11507. UNUSED(rc);
  11508. }
  11509. }
  11510. // initialize tasks + work buffer
  11511. {
  11512. size_t work_size = 0;
  11513. // thread scheduling for the different operations
  11514. for (int i = 0; i < cgraph->n_nodes; i++) {
  11515. struct ggml_tensor * node = cgraph->nodes[i];
  11516. switch (node->op) {
  11517. case GGML_OP_CPY:
  11518. case GGML_OP_DUP:
  11519. {
  11520. node->n_tasks = n_threads;
  11521. size_t cur = 0;
  11522. if (ggml_is_quantized(node->type)) {
  11523. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11524. }
  11525. work_size = MAX(work_size, cur);
  11526. } break;
  11527. case GGML_OP_ADD:
  11528. case GGML_OP_ADD1:
  11529. {
  11530. node->n_tasks = n_threads;
  11531. size_t cur = 0;
  11532. if (ggml_is_quantized(node->src0->type)) {
  11533. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11534. }
  11535. work_size = MAX(work_size, cur);
  11536. } break;
  11537. case GGML_OP_ACC:
  11538. {
  11539. node->n_tasks = n_threads;
  11540. size_t cur = 0;
  11541. if (ggml_is_quantized(node->src0->type)) {
  11542. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11543. }
  11544. work_size = MAX(work_size, cur);
  11545. } break;
  11546. case GGML_OP_SUB:
  11547. case GGML_OP_DIV:
  11548. case GGML_OP_SQR:
  11549. case GGML_OP_SQRT:
  11550. case GGML_OP_LOG:
  11551. case GGML_OP_SUM:
  11552. case GGML_OP_SUM_ROWS:
  11553. case GGML_OP_MEAN:
  11554. case GGML_OP_REPEAT:
  11555. case GGML_OP_ABS:
  11556. case GGML_OP_SGN:
  11557. case GGML_OP_NEG:
  11558. case GGML_OP_STEP:
  11559. case GGML_OP_RELU:
  11560. {
  11561. node->n_tasks = 1;
  11562. } break;
  11563. case GGML_OP_MUL:
  11564. case GGML_OP_GELU:
  11565. case GGML_OP_SILU:
  11566. case GGML_OP_SILU_BACK:
  11567. case GGML_OP_NORM:
  11568. case GGML_OP_RMS_NORM:
  11569. case GGML_OP_RMS_NORM_BACK:
  11570. {
  11571. node->n_tasks = n_threads;
  11572. } break;
  11573. case GGML_OP_MUL_MAT:
  11574. {
  11575. node->n_tasks = n_threads;
  11576. // TODO: use different scheduling for different matrix sizes
  11577. //const int nr0 = ggml_nrows(node->src0);
  11578. //const int nr1 = ggml_nrows(node->src1);
  11579. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11580. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11581. size_t cur = 0;
  11582. #if defined(GGML_USE_CUBLAS)
  11583. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11584. node->n_tasks = 1; // TODO: this actually is doing nothing
  11585. // the threads are still spinning
  11586. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11587. }
  11588. else
  11589. #elif defined(GGML_USE_CLBLAST)
  11590. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11591. node->n_tasks = 1; // TODO: this actually is doing nothing
  11592. // the threads are still spinning
  11593. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11594. }
  11595. else
  11596. #endif
  11597. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11598. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11599. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11600. node->n_tasks = 1; // TODO: this actually is doing nothing
  11601. // the threads are still spinning
  11602. // here we need memory just for single 2D matrix from src0
  11603. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11604. } else {
  11605. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11606. }
  11607. #else
  11608. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11609. #endif
  11610. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11611. cur = 0;
  11612. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11613. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11614. node->n_tasks = 1;
  11615. }
  11616. #endif
  11617. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11618. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11619. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11620. node->n_tasks = 1;
  11621. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11622. } else
  11623. #endif
  11624. {
  11625. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11626. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11627. }
  11628. } else {
  11629. GGML_ASSERT(false);
  11630. }
  11631. work_size = MAX(work_size, cur);
  11632. } break;
  11633. case GGML_OP_SCALE:
  11634. {
  11635. node->n_tasks = n_threads;
  11636. } break;
  11637. case GGML_OP_SET:
  11638. case GGML_OP_CONT:
  11639. case GGML_OP_RESHAPE:
  11640. case GGML_OP_VIEW:
  11641. case GGML_OP_PERMUTE:
  11642. case GGML_OP_TRANSPOSE:
  11643. case GGML_OP_GET_ROWS:
  11644. case GGML_OP_GET_ROWS_BACK:
  11645. case GGML_OP_DIAG:
  11646. case GGML_OP_DIAG_MASK_ZERO:
  11647. {
  11648. node->n_tasks = 1;
  11649. } break;
  11650. case GGML_OP_DIAG_MASK_INF:
  11651. case GGML_OP_SOFT_MAX:
  11652. case GGML_OP_ROPE:
  11653. case GGML_OP_ROPE_BACK:
  11654. {
  11655. node->n_tasks = n_threads;
  11656. } break;
  11657. case GGML_OP_ALIBI:
  11658. {
  11659. node->n_tasks = 1; //TODO
  11660. } break;
  11661. case GGML_OP_CLAMP:
  11662. {
  11663. node->n_tasks = 1; //TODO
  11664. } break;
  11665. case GGML_OP_CONV_1D_1S:
  11666. case GGML_OP_CONV_1D_2S:
  11667. {
  11668. node->n_tasks = n_threads;
  11669. GGML_ASSERT(node->src0->ne[3] == 1);
  11670. GGML_ASSERT(node->src1->ne[2] == 1);
  11671. GGML_ASSERT(node->src1->ne[3] == 1);
  11672. size_t cur = 0;
  11673. const int nk = node->src0->ne[0];
  11674. if (node->src0->type == GGML_TYPE_F16 &&
  11675. node->src1->type == GGML_TYPE_F32) {
  11676. cur = sizeof(ggml_fp16_t)*(
  11677. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11678. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11679. );
  11680. } else if (node->src0->type == GGML_TYPE_F32 &&
  11681. node->src1->type == GGML_TYPE_F32) {
  11682. cur = sizeof(float)*(
  11683. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11684. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11685. );
  11686. } else {
  11687. GGML_ASSERT(false);
  11688. }
  11689. work_size = MAX(work_size, cur);
  11690. } break;
  11691. case GGML_OP_FLASH_ATTN:
  11692. {
  11693. node->n_tasks = n_threads;
  11694. size_t cur = 0;
  11695. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11696. if (node->src1->type == GGML_TYPE_F32) {
  11697. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11698. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11699. }
  11700. if (node->src1->type == GGML_TYPE_F16) {
  11701. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11702. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11703. }
  11704. work_size = MAX(work_size, cur);
  11705. } break;
  11706. case GGML_OP_FLASH_FF:
  11707. {
  11708. node->n_tasks = n_threads;
  11709. size_t cur = 0;
  11710. if (node->src1->type == GGML_TYPE_F32) {
  11711. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11712. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11713. }
  11714. if (node->src1->type == GGML_TYPE_F16) {
  11715. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11716. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11717. }
  11718. work_size = MAX(work_size, cur);
  11719. } break;
  11720. case GGML_OP_MAP_UNARY:
  11721. case GGML_OP_MAP_BINARY:
  11722. {
  11723. node->n_tasks = 1;
  11724. } break;
  11725. case GGML_OP_NONE:
  11726. {
  11727. node->n_tasks = 1;
  11728. } break;
  11729. case GGML_OP_COUNT:
  11730. {
  11731. GGML_ASSERT(false);
  11732. } break;
  11733. }
  11734. }
  11735. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11736. GGML_ASSERT(false); // TODO: better handling
  11737. }
  11738. if (work_size > 0 && cgraph->work == NULL) {
  11739. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11740. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11741. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11742. }
  11743. }
  11744. const int64_t perf_start_cycles = ggml_perf_cycles();
  11745. const int64_t perf_start_time_us = ggml_perf_time_us();
  11746. for (int i = 0; i < cgraph->n_nodes; i++) {
  11747. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11748. struct ggml_tensor * node = cgraph->nodes[i];
  11749. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11750. //if (node->grad == NULL && node->perf_runs > 0) {
  11751. // continue;
  11752. //}
  11753. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11754. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11755. // INIT
  11756. struct ggml_compute_params params = {
  11757. /*.type =*/ GGML_TASK_INIT,
  11758. /*.ith =*/ 0,
  11759. /*.nth =*/ node->n_tasks,
  11760. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11761. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11762. };
  11763. ggml_compute_forward(&params, node);
  11764. // COMPUTE
  11765. if (node->n_tasks > 1) {
  11766. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11767. atomic_store(&state_shared.has_work, false);
  11768. }
  11769. while (atomic_load(&state_shared.has_work)) {
  11770. ggml_lock_lock (&state_shared.spin);
  11771. ggml_lock_unlock(&state_shared.spin);
  11772. }
  11773. // launch thread pool
  11774. for (int j = 0; j < n_threads - 1; j++) {
  11775. workers[j].params = (struct ggml_compute_params) {
  11776. .type = GGML_TASK_COMPUTE,
  11777. .ith = j + 1,
  11778. .nth = node->n_tasks,
  11779. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11780. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11781. };
  11782. workers[j].node = node;
  11783. }
  11784. atomic_fetch_sub(&state_shared.n_ready, 1);
  11785. while (atomic_load(&state_shared.n_ready) > 0) {
  11786. ggml_lock_lock (&state_shared.spin);
  11787. ggml_lock_unlock(&state_shared.spin);
  11788. }
  11789. atomic_store(&state_shared.has_work, true);
  11790. }
  11791. params.type = GGML_TASK_COMPUTE;
  11792. ggml_compute_forward(&params, node);
  11793. // wait for thread pool
  11794. if (node->n_tasks > 1) {
  11795. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11796. atomic_store(&state_shared.has_work, false);
  11797. }
  11798. while (atomic_load(&state_shared.has_work)) {
  11799. ggml_lock_lock (&state_shared.spin);
  11800. ggml_lock_unlock(&state_shared.spin);
  11801. }
  11802. atomic_fetch_sub(&state_shared.n_ready, 1);
  11803. while (atomic_load(&state_shared.n_ready) != 0) {
  11804. ggml_lock_lock (&state_shared.spin);
  11805. ggml_lock_unlock(&state_shared.spin);
  11806. }
  11807. }
  11808. // FINALIZE
  11809. if (node->n_tasks > 1) {
  11810. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11811. atomic_store(&state_shared.has_work, false);
  11812. }
  11813. while (atomic_load(&state_shared.has_work)) {
  11814. ggml_lock_lock (&state_shared.spin);
  11815. ggml_lock_unlock(&state_shared.spin);
  11816. }
  11817. // launch thread pool
  11818. for (int j = 0; j < n_threads - 1; j++) {
  11819. workers[j].params = (struct ggml_compute_params) {
  11820. .type = GGML_TASK_FINALIZE,
  11821. .ith = j + 1,
  11822. .nth = node->n_tasks,
  11823. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11824. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11825. };
  11826. workers[j].node = node;
  11827. }
  11828. atomic_fetch_sub(&state_shared.n_ready, 1);
  11829. while (atomic_load(&state_shared.n_ready) > 0) {
  11830. ggml_lock_lock (&state_shared.spin);
  11831. ggml_lock_unlock(&state_shared.spin);
  11832. }
  11833. atomic_store(&state_shared.has_work, true);
  11834. }
  11835. params.type = GGML_TASK_FINALIZE;
  11836. ggml_compute_forward(&params, node);
  11837. // wait for thread pool
  11838. if (node->n_tasks > 1) {
  11839. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11840. atomic_store(&state_shared.has_work, false);
  11841. }
  11842. while (atomic_load(&state_shared.has_work)) {
  11843. ggml_lock_lock (&state_shared.spin);
  11844. ggml_lock_unlock(&state_shared.spin);
  11845. }
  11846. atomic_fetch_sub(&state_shared.n_ready, 1);
  11847. while (atomic_load(&state_shared.n_ready) != 0) {
  11848. ggml_lock_lock (&state_shared.spin);
  11849. ggml_lock_unlock(&state_shared.spin);
  11850. }
  11851. }
  11852. // performance stats (node)
  11853. {
  11854. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11855. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11856. node->perf_runs++;
  11857. node->perf_cycles += perf_cycles_cur;
  11858. node->perf_time_us += perf_time_us_cur;
  11859. }
  11860. }
  11861. // join thread pool
  11862. if (n_threads > 1) {
  11863. atomic_store(&state_shared.stop, true);
  11864. atomic_store(&state_shared.has_work, true);
  11865. for (int j = 0; j < n_threads - 1; j++) {
  11866. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11867. GGML_ASSERT(rc == 0);
  11868. UNUSED(rc);
  11869. }
  11870. ggml_lock_destroy(&state_shared.spin);
  11871. }
  11872. // performance stats (graph)
  11873. {
  11874. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11875. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11876. cgraph->perf_runs++;
  11877. cgraph->perf_cycles += perf_cycles_cur;
  11878. cgraph->perf_time_us += perf_time_us_cur;
  11879. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11880. __func__, cgraph->perf_runs,
  11881. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11882. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11883. (double) perf_time_us_cur / 1000.0,
  11884. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11885. }
  11886. }
  11887. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11888. for (int i = 0; i < cgraph->n_nodes; i++) {
  11889. struct ggml_tensor * grad = cgraph->grads[i];
  11890. if (grad) {
  11891. ggml_set_zero(grad);
  11892. }
  11893. }
  11894. }
  11895. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11896. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11897. GGML_PRINT("=== GRAPH ===\n");
  11898. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11899. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11900. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11901. for (int i = 0; i < cgraph->n_nodes; i++) {
  11902. struct ggml_tensor * node = cgraph->nodes[i];
  11903. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11904. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11905. i,
  11906. node->ne[0], node->ne[1], node->ne[2],
  11907. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11908. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11909. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11910. (double) node->perf_time_us / 1000.0,
  11911. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11912. }
  11913. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11914. for (int i = 0; i < cgraph->n_leafs; i++) {
  11915. struct ggml_tensor * node = cgraph->leafs[i];
  11916. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11917. i,
  11918. node->ne[0], node->ne[1],
  11919. GGML_OP_LABEL[node->op]);
  11920. }
  11921. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11922. if (perf_total_per_op_us[i] == 0) {
  11923. continue;
  11924. }
  11925. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11926. }
  11927. GGML_PRINT("========================================\n");
  11928. }
  11929. // check if node is part of the graph
  11930. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11931. if (cgraph == NULL) {
  11932. return true;
  11933. }
  11934. for (int i = 0; i < cgraph->n_nodes; i++) {
  11935. if (cgraph->nodes[i] == node) {
  11936. return true;
  11937. }
  11938. }
  11939. return false;
  11940. }
  11941. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11942. for (int i = 0; i < cgraph->n_nodes; i++) {
  11943. struct ggml_tensor * parent = cgraph->nodes[i];
  11944. if (parent->grad == node) {
  11945. return parent;
  11946. }
  11947. }
  11948. return NULL;
  11949. }
  11950. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11951. char color[16];
  11952. FILE * fp = fopen(filename, "w");
  11953. GGML_ASSERT(fp);
  11954. fprintf(fp, "digraph G {\n");
  11955. fprintf(fp, " newrank = true;\n");
  11956. fprintf(fp, " rankdir = LR;\n");
  11957. for (int i = 0; i < gb->n_nodes; i++) {
  11958. struct ggml_tensor * node = gb->nodes[i];
  11959. if (ggml_graph_get_parent(gb, node) != NULL) {
  11960. continue;
  11961. }
  11962. if (node->is_param) {
  11963. snprintf(color, sizeof(color), "yellow");
  11964. } else if (node->grad) {
  11965. if (ggml_graph_find(gf, node)) {
  11966. snprintf(color, sizeof(color), "green");
  11967. } else {
  11968. snprintf(color, sizeof(color), "lightblue");
  11969. }
  11970. } else {
  11971. snprintf(color, sizeof(color), "white");
  11972. }
  11973. fprintf(fp, " \"%p\" [ "
  11974. "style = filled; fillcolor = %s; shape = record; "
  11975. "label=\"",
  11976. (void *) node, color);
  11977. if (strlen(node->name) > 0) {
  11978. fprintf(fp, "%s |", node->name);
  11979. }
  11980. if (node->n_dims == 2) {
  11981. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  11982. } else {
  11983. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  11984. }
  11985. if (node->grad) {
  11986. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11987. } else {
  11988. fprintf(fp, "\"; ]\n");
  11989. }
  11990. }
  11991. for (int i = 0; i < gb->n_leafs; i++) {
  11992. struct ggml_tensor * node = gb->leafs[i];
  11993. snprintf(color, sizeof(color), "pink");
  11994. fprintf(fp, " \"%p\" [ "
  11995. "style = filled; fillcolor = %s; shape = record; "
  11996. "label=\"<x>",
  11997. (void *) node, color);
  11998. if (strlen(node->name) > 0) {
  11999. fprintf(fp, "%s | ", node->name);
  12000. }
  12001. if (ggml_nelements(node) == 1) {
  12002. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12003. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12004. }
  12005. else {
  12006. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12007. }
  12008. }
  12009. else {
  12010. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12011. }
  12012. fprintf(fp, "\"; ]\n");
  12013. }
  12014. for (int i = 0; i < gb->n_nodes; i++) {
  12015. struct ggml_tensor * node = gb->nodes[i];
  12016. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12017. if (node->src0) {
  12018. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12019. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12020. parent0 ? (void *) parent0 : (void *) node->src0,
  12021. parent0 ? "g" : "x",
  12022. parent ? (void *) parent : (void *) node,
  12023. parent ? "g" : "x",
  12024. parent ? "empty" : "vee",
  12025. parent ? "dashed" : "solid");
  12026. }
  12027. if (node->src1) {
  12028. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12029. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12030. parent1 ? (void *) parent1 : (void *) node->src1,
  12031. parent1 ? "g" : "x",
  12032. parent ? (void *) parent : (void *) node,
  12033. parent ? "g" : "x",
  12034. parent ? "empty" : "vee",
  12035. parent ? "dashed" : "solid");
  12036. }
  12037. }
  12038. for (int i = 0; i < gb->n_leafs; i++) {
  12039. struct ggml_tensor * node = gb->leafs[i];
  12040. if (node->src0) {
  12041. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12042. (void *) node->src0, "x",
  12043. (void *) node, "x");
  12044. }
  12045. if (node->src1) {
  12046. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12047. (void *) node->src1, "x",
  12048. (void *) node, "x");
  12049. }
  12050. }
  12051. fprintf(fp, "}\n");
  12052. fclose(fp);
  12053. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12054. }
  12055. ////////////////////////////////////////////////////////////////////////////////
  12056. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12057. int i = 0;
  12058. for (int p = 0; p < np; ++p) {
  12059. const int64_t ne = ggml_nelements(ps[p]) ;
  12060. // TODO: add function to set tensor from array
  12061. for (int64_t j = 0; j < ne; ++j) {
  12062. ggml_set_f32_1d(ps[p], j, x[i++]);
  12063. }
  12064. }
  12065. }
  12066. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12067. int i = 0;
  12068. for (int p = 0; p < np; ++p) {
  12069. const int64_t ne = ggml_nelements(ps[p]) ;
  12070. // TODO: add function to get all elements at once
  12071. for (int64_t j = 0; j < ne; ++j) {
  12072. x[i++] = ggml_get_f32_1d(ps[p], j);
  12073. }
  12074. }
  12075. }
  12076. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12077. int i = 0;
  12078. for (int p = 0; p < np; ++p) {
  12079. const int64_t ne = ggml_nelements(ps[p]) ;
  12080. // TODO: add function to get all elements at once
  12081. for (int64_t j = 0; j < ne; ++j) {
  12082. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12083. }
  12084. }
  12085. }
  12086. //
  12087. // ADAM
  12088. //
  12089. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12090. //
  12091. static enum ggml_opt_result ggml_opt_adam(
  12092. struct ggml_context * ctx,
  12093. struct ggml_opt_params params,
  12094. struct ggml_tensor * f,
  12095. struct ggml_cgraph * gf,
  12096. struct ggml_cgraph * gb) {
  12097. GGML_ASSERT(ggml_is_scalar(f));
  12098. gf->n_threads = params.n_threads;
  12099. gb->n_threads = params.n_threads;
  12100. // these will store the parameters we want to optimize
  12101. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12102. int np = 0;
  12103. int nx = 0;
  12104. for (int i = 0; i < gf->n_nodes; ++i) {
  12105. if (gf->nodes[i]->is_param) {
  12106. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12107. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12108. ps[np++] = gf->nodes[i];
  12109. nx += ggml_nelements(gf->nodes[i]);
  12110. }
  12111. }
  12112. // constants
  12113. const float alpha = params.adam.alpha;
  12114. const float beta1 = params.adam.beta1;
  12115. const float beta2 = params.adam.beta2;
  12116. const float eps = params.adam.eps;
  12117. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12118. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12119. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12120. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12121. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12122. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12123. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12124. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12125. // initialize
  12126. ggml_vec_set_f32(nx, m, 0.0f);
  12127. ggml_vec_set_f32(nx, v, 0.0f);
  12128. // update view
  12129. ggml_opt_get_params(np, ps, x);
  12130. // compute the function value
  12131. ggml_graph_reset (gf);
  12132. ggml_set_f32 (f->grad, 1.0f);
  12133. ggml_graph_compute(ctx, gb);
  12134. float fx_prev = ggml_get_f32_1d(f, 0);
  12135. if (pf) {
  12136. pf[0] = fx_prev;
  12137. }
  12138. int n_no_improvement = 0;
  12139. float fx_best = fx_prev;
  12140. // run the optimizer
  12141. for (int t = 0; t < params.adam.n_iter; ++t) {
  12142. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12143. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12144. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12145. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12146. for (int i = 0; i < np; ++i) {
  12147. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12148. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12149. }
  12150. const int64_t t_start_wall = ggml_time_us();
  12151. const int64_t t_start_cpu = ggml_cycles();
  12152. UNUSED(t_start_wall);
  12153. UNUSED(t_start_cpu);
  12154. {
  12155. // update the gradient
  12156. ggml_opt_get_grad(np, ps, g1);
  12157. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12158. ggml_vec_scale_f32(nx, m, beta1);
  12159. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12160. // g2 = g1^2
  12161. ggml_vec_sqr_f32 (nx, g2, g1);
  12162. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12163. ggml_vec_scale_f32(nx, v, beta2);
  12164. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12165. // m^hat = m_t / (1 - beta1^t)
  12166. // v^hat = v_t / (1 - beta2^t)
  12167. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12168. ggml_vec_cpy_f32 (nx, mh, m);
  12169. ggml_vec_cpy_f32 (nx, vh, v);
  12170. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12171. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12172. ggml_vec_sqrt_f32 (nx, vh, vh);
  12173. ggml_vec_acc1_f32 (nx, vh, eps);
  12174. ggml_vec_div_f32 (nx, mh, mh, vh);
  12175. ggml_vec_sub_f32 (nx, x, x, mh);
  12176. // update the parameters
  12177. ggml_opt_set_params(np, ps, x);
  12178. }
  12179. ggml_graph_reset (gf);
  12180. ggml_set_f32 (f->grad, 1.0f);
  12181. ggml_graph_compute(ctx, gb);
  12182. const float fx = ggml_get_f32_1d(f, 0);
  12183. // check convergence
  12184. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12185. GGML_PRINT_DEBUG("converged\n");
  12186. return GGML_OPT_OK;
  12187. }
  12188. // delta-based convergence test
  12189. if (pf != NULL) {
  12190. // need at least params.past iterations to start checking for convergence
  12191. if (params.past <= t) {
  12192. const float rate = (pf[t%params.past] - fx)/fx;
  12193. if (fabsf(rate) < params.delta) {
  12194. return GGML_OPT_OK;
  12195. }
  12196. }
  12197. pf[t%params.past] = fx;
  12198. }
  12199. // check for improvement
  12200. if (params.max_no_improvement > 0) {
  12201. if (fx_best > fx) {
  12202. fx_best = fx;
  12203. n_no_improvement = 0;
  12204. } else {
  12205. ++n_no_improvement;
  12206. if (n_no_improvement >= params.max_no_improvement) {
  12207. return GGML_OPT_OK;
  12208. }
  12209. }
  12210. }
  12211. fx_prev = fx;
  12212. {
  12213. const int64_t t_end_cpu = ggml_cycles();
  12214. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12215. UNUSED(t_end_cpu);
  12216. const int64_t t_end_wall = ggml_time_us();
  12217. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12218. UNUSED(t_end_wall);
  12219. }
  12220. }
  12221. return GGML_OPT_DID_NOT_CONVERGE;
  12222. }
  12223. //
  12224. // L-BFGS
  12225. //
  12226. // the L-BFGS implementation below is based on the following implementation:
  12227. //
  12228. // https://github.com/chokkan/liblbfgs
  12229. //
  12230. struct ggml_lbfgs_iteration_data {
  12231. float alpha;
  12232. float ys;
  12233. float * s;
  12234. float * y;
  12235. };
  12236. static enum ggml_opt_result linesearch_backtracking(
  12237. struct ggml_context * ctx,
  12238. const struct ggml_opt_params * params,
  12239. int nx,
  12240. float * x,
  12241. float * fx,
  12242. float * g,
  12243. float * d,
  12244. float * step,
  12245. const float * xp,
  12246. struct ggml_tensor * f,
  12247. struct ggml_cgraph * gf,
  12248. struct ggml_cgraph * gb,
  12249. const int np,
  12250. struct ggml_tensor * ps[]) {
  12251. int count = 0;
  12252. float width = 0.0f;
  12253. float dg = 0.0f;
  12254. float finit = 0.0f;
  12255. float dginit = 0.0f;
  12256. float dgtest = 0.0f;
  12257. const float dec = 0.5f;
  12258. const float inc = 2.1f;
  12259. if (*step <= 0.f) {
  12260. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12261. }
  12262. // compute the initial gradient in the search direction
  12263. ggml_vec_dot_f32(nx, &dginit, g, d);
  12264. // make sure that d points to a descent direction
  12265. if (0 < dginit) {
  12266. return GGML_LINESEARCH_FAIL;
  12267. }
  12268. // initialize local variables
  12269. finit = *fx;
  12270. dgtest = params->lbfgs.ftol*dginit;
  12271. while (true) {
  12272. ggml_vec_cpy_f32(nx, x, xp);
  12273. ggml_vec_mad_f32(nx, x, d, *step);
  12274. // evaluate the function and gradient values
  12275. {
  12276. ggml_opt_set_params(np, ps, x);
  12277. ggml_graph_reset (gf);
  12278. ggml_set_f32 (f->grad, 1.0f);
  12279. ggml_graph_compute(ctx, gb);
  12280. ggml_opt_get_grad(np, ps, g);
  12281. *fx = ggml_get_f32_1d(f, 0);
  12282. }
  12283. ++count;
  12284. if (*fx > finit + (*step)*dgtest) {
  12285. width = dec;
  12286. } else {
  12287. // Armijo condition is satisfied
  12288. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12289. return count;
  12290. }
  12291. ggml_vec_dot_f32(nx, &dg, g, d);
  12292. // check the Wolfe condition
  12293. if (dg < params->lbfgs.wolfe * dginit) {
  12294. width = inc;
  12295. } else {
  12296. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12297. // regular Wolfe conditions
  12298. return count;
  12299. }
  12300. if(dg > -params->lbfgs.wolfe*dginit) {
  12301. width = dec;
  12302. } else {
  12303. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12304. return count;
  12305. }
  12306. return count;
  12307. }
  12308. }
  12309. if (*step < params->lbfgs.min_step) {
  12310. return GGML_LINESEARCH_MINIMUM_STEP;
  12311. }
  12312. if (*step > params->lbfgs.max_step) {
  12313. return GGML_LINESEARCH_MAXIMUM_STEP;
  12314. }
  12315. if (params->lbfgs.max_linesearch <= count) {
  12316. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12317. }
  12318. (*step) *= width;
  12319. }
  12320. return GGML_LINESEARCH_FAIL;
  12321. }
  12322. static enum ggml_opt_result ggml_opt_lbfgs(
  12323. struct ggml_context * ctx,
  12324. struct ggml_opt_params params,
  12325. struct ggml_tensor * f,
  12326. struct ggml_cgraph * gf,
  12327. struct ggml_cgraph * gb) {
  12328. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12329. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12330. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12331. return GGML_OPT_INVALID_WOLFE;
  12332. }
  12333. }
  12334. gf->n_threads = params.n_threads;
  12335. gb->n_threads = params.n_threads;
  12336. const int m = params.lbfgs.m;
  12337. // these will store the parameters we want to optimize
  12338. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12339. int np = 0;
  12340. int nx = 0;
  12341. for (int i = 0; i < gf->n_nodes; ++i) {
  12342. if (gf->nodes[i]->is_param) {
  12343. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12344. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12345. ps[np++] = gf->nodes[i];
  12346. nx += ggml_nelements(gf->nodes[i]);
  12347. }
  12348. }
  12349. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12350. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12351. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12352. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12353. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12354. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12355. float fx = 0.0f; // cost function value
  12356. float xnorm = 0.0f; // ||x||
  12357. float gnorm = 0.0f; // ||g||
  12358. float step = 0.0f;
  12359. // initialize x from the graph nodes
  12360. ggml_opt_get_params(np, ps, x);
  12361. // the L-BFGS memory
  12362. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12363. for (int i = 0; i < m; ++i) {
  12364. lm[i].alpha = 0.0f;
  12365. lm[i].ys = 0.0f;
  12366. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12367. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12368. }
  12369. // evaluate the function value and its gradient
  12370. {
  12371. ggml_opt_set_params(np, ps, x);
  12372. ggml_graph_reset (gf);
  12373. ggml_set_f32 (f->grad, 1.0f);
  12374. ggml_graph_compute(ctx, gb);
  12375. ggml_opt_get_grad(np, ps, g);
  12376. fx = ggml_get_f32_1d(f, 0);
  12377. }
  12378. if (pf) {
  12379. pf[0] = fx;
  12380. }
  12381. float fx_best = fx;
  12382. // search direction = -gradient
  12383. ggml_vec_neg_f32(nx, d, g);
  12384. // ||x||, ||g||
  12385. ggml_vec_norm_f32(nx, &xnorm, x);
  12386. ggml_vec_norm_f32(nx, &gnorm, g);
  12387. if (xnorm < 1.0f) {
  12388. xnorm = 1.0f;
  12389. }
  12390. // already optimized
  12391. if (gnorm/xnorm <= params.lbfgs.eps) {
  12392. return GGML_OPT_OK;
  12393. }
  12394. // initial step
  12395. ggml_vec_norm_inv_f32(nx, &step, d);
  12396. int j = 0;
  12397. int k = 1;
  12398. int ls = 0;
  12399. int end = 0;
  12400. int bound = 0;
  12401. int n_no_improvement = 0;
  12402. float ys = 0.0f;
  12403. float yy = 0.0f;
  12404. float beta = 0.0f;
  12405. while (true) {
  12406. // store the current position and gradient vectors
  12407. ggml_vec_cpy_f32(nx, xp, x);
  12408. ggml_vec_cpy_f32(nx, gp, g);
  12409. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12410. if (ls < 0) {
  12411. // linesearch failed - go back to the previous point and return
  12412. ggml_vec_cpy_f32(nx, x, xp);
  12413. ggml_vec_cpy_f32(nx, g, gp);
  12414. return ls;
  12415. }
  12416. ggml_vec_norm_f32(nx, &xnorm, x);
  12417. ggml_vec_norm_f32(nx, &gnorm, g);
  12418. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12419. if (xnorm < 1.0f) {
  12420. xnorm = 1.0f;
  12421. }
  12422. if (gnorm/xnorm <= params.lbfgs.eps) {
  12423. // converged
  12424. return GGML_OPT_OK;
  12425. }
  12426. // delta-based convergence test
  12427. if (pf != NULL) {
  12428. // need at least params.past iterations to start checking for convergence
  12429. if (params.past <= k) {
  12430. const float rate = (pf[k%params.past] - fx)/fx;
  12431. if (fabsf(rate) < params.delta) {
  12432. return GGML_OPT_OK;
  12433. }
  12434. }
  12435. pf[k%params.past] = fx;
  12436. }
  12437. // check for improvement
  12438. if (params.max_no_improvement > 0) {
  12439. if (fx < fx_best) {
  12440. fx_best = fx;
  12441. n_no_improvement = 0;
  12442. } else {
  12443. n_no_improvement++;
  12444. if (n_no_improvement >= params.max_no_improvement) {
  12445. return GGML_OPT_OK;
  12446. }
  12447. }
  12448. }
  12449. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12450. // reached the maximum number of iterations
  12451. return GGML_OPT_DID_NOT_CONVERGE;
  12452. }
  12453. // update vectors s and y:
  12454. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12455. // y_{k+1} = g_{k+1} - g_{k}.
  12456. //
  12457. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12458. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12459. // compute scalars ys and yy:
  12460. // ys = y^t \cdot s -> 1 / \rho.
  12461. // yy = y^t \cdot y.
  12462. //
  12463. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12464. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12465. lm[end].ys = ys;
  12466. // find new search direction
  12467. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12468. bound = (m <= k) ? m : k;
  12469. k++;
  12470. end = (end + 1)%m;
  12471. // initialize search direction with -g
  12472. ggml_vec_neg_f32(nx, d, g);
  12473. j = end;
  12474. for (int i = 0; i < bound; ++i) {
  12475. j = (j + m - 1) % m;
  12476. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12477. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12478. lm[j].alpha /= lm[j].ys;
  12479. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12480. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12481. }
  12482. ggml_vec_scale_f32(nx, d, ys/yy);
  12483. for (int i = 0; i < bound; ++i) {
  12484. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12485. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12486. beta /= lm[j].ys;
  12487. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12488. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12489. j = (j + 1)%m;
  12490. }
  12491. step = 1.0;
  12492. }
  12493. return GGML_OPT_DID_NOT_CONVERGE;
  12494. }
  12495. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12496. struct ggml_opt_params result;
  12497. switch (type) {
  12498. case GGML_OPT_ADAM:
  12499. {
  12500. result = (struct ggml_opt_params) {
  12501. .type = GGML_OPT_ADAM,
  12502. .n_threads = 1,
  12503. .past = 0,
  12504. .delta = 1e-5f,
  12505. .max_no_improvement = 100,
  12506. .print_forward_graph = true,
  12507. .print_backward_graph = true,
  12508. .adam = {
  12509. .n_iter = 10000,
  12510. .alpha = 0.001f,
  12511. .beta1 = 0.9f,
  12512. .beta2 = 0.999f,
  12513. .eps = 1e-8f,
  12514. .eps_f = 1e-5f,
  12515. .eps_g = 1e-3f,
  12516. },
  12517. };
  12518. } break;
  12519. case GGML_OPT_LBFGS:
  12520. {
  12521. result = (struct ggml_opt_params) {
  12522. .type = GGML_OPT_LBFGS,
  12523. .n_threads = 1,
  12524. .past = 0,
  12525. .delta = 1e-5f,
  12526. .max_no_improvement = 0,
  12527. .print_forward_graph = true,
  12528. .print_backward_graph = true,
  12529. .lbfgs = {
  12530. .m = 6,
  12531. .n_iter = 100,
  12532. .max_linesearch = 20,
  12533. .eps = 1e-5f,
  12534. .ftol = 1e-4f,
  12535. .wolfe = 0.9f,
  12536. .min_step = 1e-20f,
  12537. .max_step = 1e+20f,
  12538. .linesearch = GGML_LINESEARCH_DEFAULT,
  12539. },
  12540. };
  12541. } break;
  12542. }
  12543. return result;
  12544. }
  12545. enum ggml_opt_result ggml_opt(
  12546. struct ggml_context * ctx,
  12547. struct ggml_opt_params params,
  12548. struct ggml_tensor * f) {
  12549. bool free_ctx = false;
  12550. if (ctx == NULL) {
  12551. struct ggml_init_params params_ctx = {
  12552. .mem_size = 16*1024*1024,
  12553. .mem_buffer = NULL,
  12554. .no_alloc = false,
  12555. };
  12556. ctx = ggml_init(params_ctx);
  12557. if (ctx == NULL) {
  12558. return GGML_OPT_NO_CONTEXT;
  12559. }
  12560. free_ctx = true;
  12561. }
  12562. enum ggml_opt_result result = GGML_OPT_OK;
  12563. // build forward + backward compute graphs
  12564. struct ggml_cgraph gf = ggml_build_forward (f);
  12565. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12566. switch (params.type) {
  12567. case GGML_OPT_ADAM:
  12568. {
  12569. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12570. } break;
  12571. case GGML_OPT_LBFGS:
  12572. {
  12573. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12574. } break;
  12575. }
  12576. if (params.print_forward_graph) {
  12577. ggml_graph_print (&gf);
  12578. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12579. }
  12580. if (params.print_backward_graph) {
  12581. ggml_graph_print (&gb);
  12582. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12583. }
  12584. if (free_ctx) {
  12585. ggml_free(ctx);
  12586. }
  12587. return result;
  12588. }
  12589. ////////////////////////////////////////////////////////////////////////////////
  12590. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12591. assert(k % QK4_0 == 0);
  12592. const int nb = k / QK4_0;
  12593. for (int b = 0; b < n; b += k) {
  12594. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12595. quantize_row_q4_0_reference(src + b, y, k);
  12596. for (int i = 0; i < nb; i++) {
  12597. for (int j = 0; j < QK4_0; j += 2) {
  12598. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12599. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12600. hist[vi0]++;
  12601. hist[vi1]++;
  12602. }
  12603. }
  12604. }
  12605. return (n/QK4_0*sizeof(block_q4_0));
  12606. }
  12607. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12608. assert(k % QK4_1 == 0);
  12609. const int nb = k / QK4_1;
  12610. for (int b = 0; b < n; b += k) {
  12611. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12612. quantize_row_q4_1_reference(src + b, y, k);
  12613. for (int i = 0; i < nb; i++) {
  12614. for (int j = 0; j < QK4_1; j += 2) {
  12615. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12616. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12617. hist[vi0]++;
  12618. hist[vi1]++;
  12619. }
  12620. }
  12621. }
  12622. return (n/QK4_1*sizeof(block_q4_1));
  12623. }
  12624. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12625. assert(k % QK5_0 == 0);
  12626. const int nb = k / QK5_0;
  12627. for (int b = 0; b < n; b += k) {
  12628. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12629. quantize_row_q5_0_reference(src + b, y, k);
  12630. for (int i = 0; i < nb; i++) {
  12631. uint32_t qh;
  12632. memcpy(&qh, &y[i].qh, sizeof(qh));
  12633. for (int j = 0; j < QK5_0; j += 2) {
  12634. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12635. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12636. // cast to 16 bins
  12637. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12638. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12639. hist[vi0]++;
  12640. hist[vi1]++;
  12641. }
  12642. }
  12643. }
  12644. return (n/QK5_0*sizeof(block_q5_0));
  12645. }
  12646. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12647. assert(k % QK5_1 == 0);
  12648. const int nb = k / QK5_1;
  12649. for (int b = 0; b < n; b += k) {
  12650. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12651. quantize_row_q5_1_reference(src + b, y, k);
  12652. for (int i = 0; i < nb; i++) {
  12653. uint32_t qh;
  12654. memcpy(&qh, &y[i].qh, sizeof(qh));
  12655. for (int j = 0; j < QK5_1; j += 2) {
  12656. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12657. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12658. // cast to 16 bins
  12659. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12660. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12661. hist[vi0]++;
  12662. hist[vi1]++;
  12663. }
  12664. }
  12665. }
  12666. return (n/QK5_1*sizeof(block_q5_1));
  12667. }
  12668. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12669. assert(k % QK8_0 == 0);
  12670. const int nb = k / QK8_0;
  12671. for (int b = 0; b < n; b += k) {
  12672. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12673. quantize_row_q8_0_reference(src + b, y, k);
  12674. for (int i = 0; i < nb; i++) {
  12675. for (int j = 0; j < QK8_0; ++j) {
  12676. const int8_t vi = y[i].qs[j];
  12677. hist[vi/16 + 8]++;
  12678. }
  12679. }
  12680. }
  12681. return (n/QK8_0*sizeof(block_q8_0));
  12682. }
  12683. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12684. size_t result = 0;
  12685. switch (type) {
  12686. case GGML_TYPE_Q4_0:
  12687. {
  12688. GGML_ASSERT(start % QK4_0 == 0);
  12689. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12690. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12691. } break;
  12692. case GGML_TYPE_Q4_1:
  12693. {
  12694. GGML_ASSERT(start % QK4_1 == 0);
  12695. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12696. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12697. } break;
  12698. case GGML_TYPE_Q5_0:
  12699. {
  12700. GGML_ASSERT(start % QK5_0 == 0);
  12701. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12702. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12703. } break;
  12704. case GGML_TYPE_Q5_1:
  12705. {
  12706. GGML_ASSERT(start % QK5_1 == 0);
  12707. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12708. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12709. } break;
  12710. case GGML_TYPE_Q8_0:
  12711. {
  12712. GGML_ASSERT(start % QK8_0 == 0);
  12713. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12714. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12715. } break;
  12716. default:
  12717. assert(false);
  12718. }
  12719. return result;
  12720. }
  12721. ////////////////////////////////////////////////////////////////////////////////
  12722. int ggml_cpu_has_avx(void) {
  12723. #if defined(__AVX__)
  12724. return 1;
  12725. #else
  12726. return 0;
  12727. #endif
  12728. }
  12729. int ggml_cpu_has_avx2(void) {
  12730. #if defined(__AVX2__)
  12731. return 1;
  12732. #else
  12733. return 0;
  12734. #endif
  12735. }
  12736. int ggml_cpu_has_avx512(void) {
  12737. #if defined(__AVX512F__)
  12738. return 1;
  12739. #else
  12740. return 0;
  12741. #endif
  12742. }
  12743. int ggml_cpu_has_avx512_vbmi(void) {
  12744. #if defined(__AVX512VBMI__)
  12745. return 1;
  12746. #else
  12747. return 0;
  12748. #endif
  12749. }
  12750. int ggml_cpu_has_avx512_vnni(void) {
  12751. #if defined(__AVX512VNNI__)
  12752. return 1;
  12753. #else
  12754. return 0;
  12755. #endif
  12756. }
  12757. int ggml_cpu_has_fma(void) {
  12758. #if defined(__FMA__)
  12759. return 1;
  12760. #else
  12761. return 0;
  12762. #endif
  12763. }
  12764. int ggml_cpu_has_neon(void) {
  12765. #if defined(__ARM_NEON)
  12766. return 1;
  12767. #else
  12768. return 0;
  12769. #endif
  12770. }
  12771. int ggml_cpu_has_arm_fma(void) {
  12772. #if defined(__ARM_FEATURE_FMA)
  12773. return 1;
  12774. #else
  12775. return 0;
  12776. #endif
  12777. }
  12778. int ggml_cpu_has_f16c(void) {
  12779. #if defined(__F16C__)
  12780. return 1;
  12781. #else
  12782. return 0;
  12783. #endif
  12784. }
  12785. int ggml_cpu_has_fp16_va(void) {
  12786. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12787. return 1;
  12788. #else
  12789. return 0;
  12790. #endif
  12791. }
  12792. int ggml_cpu_has_wasm_simd(void) {
  12793. #if defined(__wasm_simd128__)
  12794. return 1;
  12795. #else
  12796. return 0;
  12797. #endif
  12798. }
  12799. int ggml_cpu_has_blas(void) {
  12800. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12801. return 1;
  12802. #else
  12803. return 0;
  12804. #endif
  12805. }
  12806. int ggml_cpu_has_cublas(void) {
  12807. #if defined(GGML_USE_CUBLAS)
  12808. return 1;
  12809. #else
  12810. return 0;
  12811. #endif
  12812. }
  12813. int ggml_cpu_has_clblast(void) {
  12814. #if defined(GGML_USE_CLBLAST)
  12815. return 1;
  12816. #else
  12817. return 0;
  12818. #endif
  12819. }
  12820. int ggml_cpu_has_gpublas(void) {
  12821. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12822. }
  12823. int ggml_cpu_has_sse3(void) {
  12824. #if defined(__SSE3__)
  12825. return 1;
  12826. #else
  12827. return 0;
  12828. #endif
  12829. }
  12830. int ggml_cpu_has_vsx(void) {
  12831. #if defined(__POWER9_VECTOR__)
  12832. return 1;
  12833. #else
  12834. return 0;
  12835. #endif
  12836. }
  12837. ////////////////////////////////////////////////////////////////////////////////