ggml.h 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_DEFAULT_N_THREADS 4
  196. #define GGML_ASSERT(x) \
  197. do { \
  198. if (!(x)) { \
  199. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  200. abort(); \
  201. } \
  202. } while (0)
  203. #ifdef __cplusplus
  204. extern "C" {
  205. #endif
  206. #ifdef __ARM_NEON
  207. // we use the built-in 16-bit float type
  208. typedef __fp16 ggml_fp16_t;
  209. #else
  210. typedef uint16_t ggml_fp16_t;
  211. #endif
  212. // convert FP16 <-> FP32
  213. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  214. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  215. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  216. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  217. struct ggml_object;
  218. struct ggml_context;
  219. enum ggml_type {
  220. GGML_TYPE_F32 = 0,
  221. GGML_TYPE_F16 = 1,
  222. GGML_TYPE_Q4_0 = 2,
  223. GGML_TYPE_Q4_1 = 3,
  224. // GGML_TYPE_Q4_2 = 4, support has been removed
  225. // GGML_TYPE_Q4_3 (5) support has been removed
  226. GGML_TYPE_Q5_0 = 6,
  227. GGML_TYPE_Q5_1 = 7,
  228. GGML_TYPE_Q8_0 = 8,
  229. GGML_TYPE_Q8_1 = 9,
  230. GGML_TYPE_I8,
  231. GGML_TYPE_I16,
  232. GGML_TYPE_I32,
  233. GGML_TYPE_COUNT,
  234. };
  235. enum ggml_backend {
  236. GGML_BACKEND_CPU = 0,
  237. GGML_BACKEND_CUDA = 1,
  238. GGML_BACKEND_CL = 2,
  239. };
  240. // model file types
  241. enum ggml_ftype {
  242. GGML_FTYPE_UNKNOWN = -1,
  243. GGML_FTYPE_ALL_F32 = 0,
  244. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  245. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  246. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  247. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  248. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  249. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  250. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  251. };
  252. // available tensor operations:
  253. enum ggml_op {
  254. GGML_OP_NONE = 0,
  255. GGML_OP_DUP,
  256. GGML_OP_ADD,
  257. GGML_OP_ADD1,
  258. GGML_OP_ACC,
  259. GGML_OP_SUB,
  260. GGML_OP_MUL,
  261. GGML_OP_DIV,
  262. GGML_OP_SQR,
  263. GGML_OP_SQRT,
  264. GGML_OP_LOG,
  265. GGML_OP_SUM,
  266. GGML_OP_SUM_ROWS,
  267. GGML_OP_MEAN,
  268. GGML_OP_REPEAT,
  269. GGML_OP_ABS,
  270. GGML_OP_SGN,
  271. GGML_OP_NEG,
  272. GGML_OP_STEP,
  273. GGML_OP_RELU,
  274. GGML_OP_GELU,
  275. GGML_OP_SILU,
  276. GGML_OP_SILU_BACK,
  277. GGML_OP_NORM, // normalize
  278. GGML_OP_RMS_NORM,
  279. GGML_OP_RMS_NORM_BACK,
  280. GGML_OP_MUL_MAT,
  281. GGML_OP_SCALE,
  282. GGML_OP_SET,
  283. GGML_OP_CPY,
  284. GGML_OP_CONT,
  285. GGML_OP_RESHAPE,
  286. GGML_OP_VIEW,
  287. GGML_OP_PERMUTE,
  288. GGML_OP_TRANSPOSE,
  289. GGML_OP_GET_ROWS,
  290. GGML_OP_GET_ROWS_BACK,
  291. GGML_OP_DIAG,
  292. GGML_OP_DIAG_MASK_INF,
  293. GGML_OP_DIAG_MASK_ZERO,
  294. GGML_OP_SOFT_MAX,
  295. GGML_OP_ROPE,
  296. GGML_OP_ROPE_BACK,
  297. GGML_OP_ALIBI,
  298. GGML_OP_CLAMP,
  299. GGML_OP_CONV_1D_1S,
  300. GGML_OP_CONV_1D_2S,
  301. GGML_OP_FLASH_ATTN,
  302. GGML_OP_FLASH_FF,
  303. GGML_OP_MAP_UNARY,
  304. GGML_OP_MAP_BINARY,
  305. GGML_OP_COUNT,
  306. };
  307. // ggml object
  308. struct ggml_object {
  309. size_t offs;
  310. size_t size;
  311. struct ggml_object * next;
  312. char padding[8];
  313. };
  314. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  315. // n-dimensional tensor
  316. struct ggml_tensor {
  317. enum ggml_type type;
  318. enum ggml_backend backend;
  319. int n_dims;
  320. int64_t ne[GGML_MAX_DIMS]; // number of elements
  321. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  322. // nb[0] = sizeof(type)
  323. // nb[1] = nb[0] * ne[0] + padding
  324. // nb[i] = nb[i-1] * ne[i-1]
  325. // compute data
  326. enum ggml_op op;
  327. bool is_param;
  328. struct ggml_tensor * grad;
  329. struct ggml_tensor * src0;
  330. struct ggml_tensor * src1;
  331. struct ggml_tensor * opt[GGML_MAX_OPT];
  332. // thread scheduling
  333. int n_tasks;
  334. // performance
  335. int perf_runs;
  336. int64_t perf_cycles;
  337. int64_t perf_time_us;
  338. void * data;
  339. char name[32];
  340. char padding[16];
  341. };
  342. // computation graph
  343. struct ggml_cgraph {
  344. int n_nodes;
  345. int n_leafs;
  346. int n_threads;
  347. size_t work_size;
  348. struct ggml_tensor * work;
  349. struct ggml_tensor * nodes[GGML_MAX_NODES];
  350. struct ggml_tensor * grads[GGML_MAX_NODES];
  351. struct ggml_tensor * leafs[GGML_MAX_NODES];
  352. // performance
  353. int perf_runs;
  354. int64_t perf_cycles;
  355. int64_t perf_time_us;
  356. };
  357. // scratch buffer
  358. struct ggml_scratch {
  359. size_t offs;
  360. size_t size;
  361. void * data;
  362. };
  363. struct ggml_init_params {
  364. // memory pool
  365. size_t mem_size; // bytes
  366. void * mem_buffer; // if NULL, memory will be allocated internally
  367. bool no_alloc; // don't allocate memory for the tensor data
  368. };
  369. // misc
  370. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  371. GGML_API int64_t ggml_time_ms(void);
  372. GGML_API int64_t ggml_time_us(void);
  373. GGML_API int64_t ggml_cycles(void);
  374. GGML_API int64_t ggml_cycles_per_ms(void);
  375. GGML_API void ggml_print_object (const struct ggml_object * obj);
  376. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  377. GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
  378. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  379. GGML_API int ggml_blck_size (enum ggml_type type);
  380. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  381. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  382. GGML_API const char * ggml_type_name(enum ggml_type type);
  383. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  384. GGML_API bool ggml_is_quantized(enum ggml_type type);
  385. // TODO: temporary until model loading of ggml examples is refactored
  386. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  387. // main
  388. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  389. GGML_API void ggml_free(struct ggml_context * ctx);
  390. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  391. GGML_API size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
  392. GGML_API struct ggml_tensor * ggml_new_tensor(
  393. struct ggml_context * ctx,
  394. enum ggml_type type,
  395. int n_dims,
  396. const int64_t *ne);
  397. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  398. struct ggml_context * ctx,
  399. enum ggml_type type,
  400. int64_t ne0);
  401. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  402. struct ggml_context * ctx,
  403. enum ggml_type type,
  404. int64_t ne0,
  405. int64_t ne1);
  406. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  407. struct ggml_context * ctx,
  408. enum ggml_type type,
  409. int64_t ne0,
  410. int64_t ne1,
  411. int64_t ne2);
  412. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  413. struct ggml_context * ctx,
  414. enum ggml_type type,
  415. int64_t ne0,
  416. int64_t ne1,
  417. int64_t ne2,
  418. int64_t ne3);
  419. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  420. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  421. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  422. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  423. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  424. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  425. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  426. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  427. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  428. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  429. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  430. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  431. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  432. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  433. GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
  434. //
  435. // operations on tensors with backpropagation
  436. //
  437. GGML_API struct ggml_tensor * ggml_dup(
  438. struct ggml_context * ctx,
  439. struct ggml_tensor * a);
  440. GGML_API struct ggml_tensor * ggml_add(
  441. struct ggml_context * ctx,
  442. struct ggml_tensor * a,
  443. struct ggml_tensor * b);
  444. GGML_API struct ggml_tensor * ggml_add_inplace(
  445. struct ggml_context * ctx,
  446. struct ggml_tensor * a,
  447. struct ggml_tensor * b);
  448. GGML_API struct ggml_tensor * ggml_add1(
  449. struct ggml_context * ctx,
  450. struct ggml_tensor * a,
  451. struct ggml_tensor * b);
  452. GGML_API struct ggml_tensor * ggml_acc(
  453. struct ggml_context * ctx,
  454. struct ggml_tensor * a,
  455. struct ggml_tensor * b,
  456. size_t nb1,
  457. size_t nb2,
  458. size_t nb3,
  459. size_t offset);
  460. GGML_API struct ggml_tensor * ggml_acc_inplace(
  461. struct ggml_context * ctx,
  462. struct ggml_tensor * a,
  463. struct ggml_tensor * b,
  464. size_t nb1,
  465. size_t nb2,
  466. size_t nb3,
  467. size_t offset);
  468. GGML_API struct ggml_tensor * ggml_sub(
  469. struct ggml_context * ctx,
  470. struct ggml_tensor * a,
  471. struct ggml_tensor * b);
  472. GGML_API struct ggml_tensor * ggml_mul(
  473. struct ggml_context * ctx,
  474. struct ggml_tensor * a,
  475. struct ggml_tensor * b);
  476. GGML_API struct ggml_tensor * ggml_div(
  477. struct ggml_context * ctx,
  478. struct ggml_tensor * a,
  479. struct ggml_tensor * b);
  480. GGML_API struct ggml_tensor * ggml_sqr(
  481. struct ggml_context * ctx,
  482. struct ggml_tensor * a);
  483. GGML_API struct ggml_tensor * ggml_sqrt(
  484. struct ggml_context * ctx,
  485. struct ggml_tensor * a);
  486. GGML_API struct ggml_tensor * ggml_log(
  487. struct ggml_context * ctx,
  488. struct ggml_tensor * a);
  489. GGML_API struct ggml_tensor * ggml_log_inplace(
  490. struct ggml_context * ctx,
  491. struct ggml_tensor * a);
  492. // return scalar
  493. GGML_API struct ggml_tensor * ggml_sum(
  494. struct ggml_context * ctx,
  495. struct ggml_tensor * a);
  496. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  497. GGML_API struct ggml_tensor * ggml_sum_rows(
  498. struct ggml_context * ctx,
  499. struct ggml_tensor * a);
  500. // mean along rows
  501. GGML_API struct ggml_tensor * ggml_mean(
  502. struct ggml_context * ctx,
  503. struct ggml_tensor * a);
  504. // if a is the same shape as b, and a is not parameter, return a
  505. // otherwise, return a new tensor: repeat(a) to fit in b
  506. GGML_API struct ggml_tensor * ggml_repeat(
  507. struct ggml_context * ctx,
  508. struct ggml_tensor * a,
  509. struct ggml_tensor * b);
  510. GGML_API struct ggml_tensor * ggml_abs(
  511. struct ggml_context * ctx,
  512. struct ggml_tensor * a);
  513. GGML_API struct ggml_tensor * ggml_sgn(
  514. struct ggml_context * ctx,
  515. struct ggml_tensor * a);
  516. GGML_API struct ggml_tensor * ggml_neg(
  517. struct ggml_context * ctx,
  518. struct ggml_tensor * a);
  519. GGML_API struct ggml_tensor * ggml_step(
  520. struct ggml_context * ctx,
  521. struct ggml_tensor * a);
  522. GGML_API struct ggml_tensor * ggml_relu(
  523. struct ggml_context * ctx,
  524. struct ggml_tensor * a);
  525. // TODO: double-check this computation is correct
  526. GGML_API struct ggml_tensor * ggml_gelu(
  527. struct ggml_context * ctx,
  528. struct ggml_tensor * a);
  529. GGML_API struct ggml_tensor * ggml_silu(
  530. struct ggml_context * ctx,
  531. struct ggml_tensor * a);
  532. // a - x
  533. // b - dy
  534. GGML_API struct ggml_tensor * ggml_silu_back(
  535. struct ggml_context * ctx,
  536. struct ggml_tensor * a,
  537. struct ggml_tensor * b);
  538. // normalize along rows
  539. // TODO: eps is hardcoded to 1e-5 for now
  540. GGML_API struct ggml_tensor * ggml_norm(
  541. struct ggml_context * ctx,
  542. struct ggml_tensor * a);
  543. GGML_API struct ggml_tensor * ggml_rms_norm(
  544. struct ggml_context * ctx,
  545. struct ggml_tensor * a);
  546. // a - x
  547. // b - dy
  548. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  549. struct ggml_context * ctx,
  550. struct ggml_tensor * a,
  551. struct ggml_tensor * b);
  552. // A: m rows, n columns
  553. // B: p rows, n columns (i.e. we transpose it internally)
  554. // result is m columns, p rows
  555. GGML_API struct ggml_tensor * ggml_mul_mat(
  556. struct ggml_context * ctx,
  557. struct ggml_tensor * a,
  558. struct ggml_tensor * b);
  559. //
  560. // operations on tensors without backpropagation
  561. //
  562. GGML_API struct ggml_tensor * ggml_scale(
  563. struct ggml_context * ctx,
  564. struct ggml_tensor * a,
  565. struct ggml_tensor * b);
  566. // in-place, returns view(a)
  567. GGML_API struct ggml_tensor * ggml_scale_inplace(
  568. struct ggml_context * ctx,
  569. struct ggml_tensor * a,
  570. struct ggml_tensor * b);
  571. // b -> view(a,offset,nb1,nb2,3), return modified a
  572. GGML_API struct ggml_tensor * ggml_set(
  573. struct ggml_context * ctx,
  574. struct ggml_tensor * a,
  575. struct ggml_tensor * b,
  576. size_t nb1,
  577. size_t nb2,
  578. size_t nb3,
  579. size_t offset);
  580. // b -> view(a,offset,nb1,nb2,3), return view(a)
  581. GGML_API struct ggml_tensor * ggml_set_inplace(
  582. struct ggml_context * ctx,
  583. struct ggml_tensor * a,
  584. struct ggml_tensor * b,
  585. size_t nb1,
  586. size_t nb2,
  587. size_t nb3,
  588. size_t offset);
  589. GGML_API struct ggml_tensor * ggml_set_1d(
  590. struct ggml_context * ctx,
  591. struct ggml_tensor * a,
  592. struct ggml_tensor * b,
  593. size_t offset);
  594. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  595. struct ggml_context * ctx,
  596. struct ggml_tensor * a,
  597. struct ggml_tensor * b,
  598. size_t offset);
  599. // b -> view(a,offset,nb1,nb2,3), return modified a
  600. GGML_API struct ggml_tensor * ggml_set_2d(
  601. struct ggml_context * ctx,
  602. struct ggml_tensor * a,
  603. struct ggml_tensor * b,
  604. size_t nb1,
  605. size_t offset);
  606. // b -> view(a,offset,nb1,nb2,3), return view(a)
  607. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  608. struct ggml_context * ctx,
  609. struct ggml_tensor * a,
  610. struct ggml_tensor * b,
  611. size_t nb1,
  612. size_t offset);
  613. // a -> b, return view(b)
  614. GGML_API struct ggml_tensor * ggml_cpy(
  615. struct ggml_context * ctx,
  616. struct ggml_tensor * a,
  617. struct ggml_tensor * b);
  618. // make contiguous
  619. GGML_API struct ggml_tensor * ggml_cont(
  620. struct ggml_context * ctx,
  621. struct ggml_tensor * a);
  622. // return view(a), b specifies the new shape
  623. // TODO: when we start computing gradient, make a copy instead of view
  624. GGML_API struct ggml_tensor * ggml_reshape(
  625. struct ggml_context * ctx,
  626. struct ggml_tensor * a,
  627. struct ggml_tensor * b);
  628. // return view(a)
  629. // TODO: when we start computing gradient, make a copy instead of view
  630. GGML_API struct ggml_tensor * ggml_reshape_1d(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a,
  633. int64_t ne0);
  634. GGML_API struct ggml_tensor * ggml_reshape_2d(
  635. struct ggml_context * ctx,
  636. struct ggml_tensor * a,
  637. int64_t ne0,
  638. int64_t ne1);
  639. // return view(a)
  640. // TODO: when we start computing gradient, make a copy instead of view
  641. GGML_API struct ggml_tensor * ggml_reshape_3d(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a,
  644. int64_t ne0,
  645. int64_t ne1,
  646. int64_t ne2);
  647. GGML_API struct ggml_tensor * ggml_reshape_4d(
  648. struct ggml_context * ctx,
  649. struct ggml_tensor * a,
  650. int64_t ne0,
  651. int64_t ne1,
  652. int64_t ne2,
  653. int64_t ne3);
  654. // offset in bytes
  655. GGML_API struct ggml_tensor * ggml_view_1d(
  656. struct ggml_context * ctx,
  657. struct ggml_tensor * a,
  658. int64_t ne0,
  659. size_t offset);
  660. GGML_API struct ggml_tensor * ggml_view_2d(
  661. struct ggml_context * ctx,
  662. struct ggml_tensor * a,
  663. int64_t ne0,
  664. int64_t ne1,
  665. size_t nb1, // row stride in bytes
  666. size_t offset);
  667. GGML_API struct ggml_tensor * ggml_view_3d(
  668. struct ggml_context * ctx,
  669. struct ggml_tensor * a,
  670. int64_t ne0,
  671. int64_t ne1,
  672. int64_t ne2,
  673. size_t nb1, // row stride in bytes
  674. size_t nb2, // slice stride in bytes
  675. size_t offset);
  676. GGML_API struct ggml_tensor * ggml_view_4d(
  677. struct ggml_context * ctx,
  678. struct ggml_tensor * a,
  679. int64_t ne0,
  680. int64_t ne1,
  681. int64_t ne2,
  682. int64_t ne3,
  683. size_t nb1, // row stride in bytes
  684. size_t nb2, // slice stride in bytes
  685. size_t nb3,
  686. size_t offset);
  687. GGML_API struct ggml_tensor * ggml_permute(
  688. struct ggml_context * ctx,
  689. struct ggml_tensor * a,
  690. int axis0,
  691. int axis1,
  692. int axis2,
  693. int axis3);
  694. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  695. GGML_API struct ggml_tensor * ggml_transpose(
  696. struct ggml_context * ctx,
  697. struct ggml_tensor * a);
  698. GGML_API struct ggml_tensor * ggml_get_rows(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a,
  701. struct ggml_tensor * b);
  702. GGML_API struct ggml_tensor * ggml_get_rows_back(
  703. struct ggml_context * ctx,
  704. struct ggml_tensor * a,
  705. struct ggml_tensor * b,
  706. struct ggml_tensor * c);
  707. GGML_API struct ggml_tensor * ggml_diag(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a);
  710. // set elements above the diagonal to -INF
  711. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  712. struct ggml_context * ctx,
  713. struct ggml_tensor * a,
  714. int n_past);
  715. // in-place, returns view(a)
  716. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a,
  719. int n_past);
  720. // set elements above the diagonal to 0
  721. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a,
  724. int n_past);
  725. // in-place, returns view(a)
  726. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a,
  729. int n_past);
  730. GGML_API struct ggml_tensor * ggml_soft_max(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a);
  733. // in-place, returns view(a)
  734. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a);
  737. // rotary position embedding
  738. // if mode & 1 == 1, skip n_past elements
  739. // if mode & 2 == 1, GPT-NeoX style
  740. // TODO: avoid creating a new tensor every time
  741. GGML_API struct ggml_tensor * ggml_rope(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. int n_past,
  745. int n_dims,
  746. int mode);
  747. // in-place, returns view(a)
  748. GGML_API struct ggml_tensor * ggml_rope_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a,
  751. int n_past,
  752. int n_dims,
  753. int mode);
  754. // rotary position embedding backward, i.e compute dx from dy
  755. // a - dy
  756. GGML_API struct ggml_tensor * ggml_rope_back(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a,
  759. int n_past,
  760. int n_dims,
  761. int mode);
  762. // alibi position embedding
  763. // in-place, returns view(a)
  764. struct ggml_tensor * ggml_alibi(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a,
  767. int n_past,
  768. int n_head,
  769. float bias_max);
  770. // clamp
  771. // in-place, returns view(a)
  772. struct ggml_tensor * ggml_clamp(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a,
  775. float min,
  776. float max);
  777. // padding = 1
  778. // TODO: we don't support extra parameters for now
  779. // that's why we are hard-coding the stride, padding, and dilation
  780. // not great ..
  781. GGML_API struct ggml_tensor * ggml_conv_1d_1s(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a,
  784. struct ggml_tensor * b);
  785. GGML_API struct ggml_tensor * ggml_conv_1d_2s(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a,
  788. struct ggml_tensor * b);
  789. GGML_API struct ggml_tensor * ggml_flash_attn(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * q,
  792. struct ggml_tensor * k,
  793. struct ggml_tensor * v,
  794. bool masked);
  795. GGML_API struct ggml_tensor * ggml_flash_ff(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a,
  798. struct ggml_tensor * b0,
  799. struct ggml_tensor * b1,
  800. struct ggml_tensor * c0,
  801. struct ggml_tensor * c1);
  802. // Mapping operations
  803. typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
  804. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  805. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a,
  808. ggml_unary_op_f32_t fun);
  809. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a,
  812. struct ggml_tensor * b,
  813. ggml_binary_op_f32_t fun);
  814. //
  815. // automatic differentiation
  816. //
  817. GGML_API void ggml_set_param(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * tensor);
  820. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  821. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  822. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  823. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  824. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  825. // print info and performance information for the graph
  826. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  827. // dump the graph into a file using the dot format
  828. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  829. //
  830. // optimization
  831. //
  832. // optimization methods
  833. enum ggml_opt_type {
  834. GGML_OPT_ADAM,
  835. GGML_OPT_LBFGS,
  836. };
  837. // linesearch methods
  838. enum ggml_linesearch {
  839. GGML_LINESEARCH_DEFAULT = 1,
  840. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  841. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  842. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  843. };
  844. // optimization return values
  845. enum ggml_opt_result {
  846. GGML_OPT_OK = 0,
  847. GGML_OPT_DID_NOT_CONVERGE,
  848. GGML_OPT_NO_CONTEXT,
  849. GGML_OPT_INVALID_WOLFE,
  850. GGML_OPT_FAIL,
  851. GGML_LINESEARCH_FAIL = -128,
  852. GGML_LINESEARCH_MINIMUM_STEP,
  853. GGML_LINESEARCH_MAXIMUM_STEP,
  854. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  855. GGML_LINESEARCH_INVALID_PARAMETERS,
  856. };
  857. // optimization parameters
  858. //
  859. // see ggml.c (ggml_opt_default_params) for default values
  860. //
  861. struct ggml_opt_params {
  862. enum ggml_opt_type type;
  863. int n_threads;
  864. // delta-based convergence test
  865. //
  866. // if past == 0 - disabled
  867. // if past > 0:
  868. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  869. //
  870. int past;
  871. float delta;
  872. // maximum number of iterations without improvement
  873. //
  874. // if 0 - disabled
  875. // if > 0:
  876. // assume convergence if no cost improvement in this number of iterations
  877. //
  878. int max_no_improvement;
  879. bool print_forward_graph;
  880. bool print_backward_graph;
  881. // ADAM parameters
  882. struct {
  883. int n_iter;
  884. float alpha; // learning rate
  885. float beta1;
  886. float beta2;
  887. float eps; // epsilon for numerical stability
  888. float eps_f; // epsilon for convergence test
  889. float eps_g; // epsilon for convergence test
  890. } adam;
  891. // LBFGS parameters
  892. struct {
  893. int m; // number of corrections to approximate the inv. Hessian
  894. int n_iter;
  895. int max_linesearch;
  896. float eps; // convergence tolerance
  897. float ftol; // line search tolerance
  898. float wolfe;
  899. float min_step;
  900. float max_step;
  901. enum ggml_linesearch linesearch;
  902. } lbfgs;
  903. };
  904. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  905. // optimize the function defined by the tensor f
  906. GGML_API enum ggml_opt_result ggml_opt(
  907. struct ggml_context * ctx,
  908. struct ggml_opt_params params,
  909. struct ggml_tensor * f);
  910. //
  911. // quantization
  912. //
  913. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  914. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  915. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  916. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  917. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  918. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  919. //
  920. // system info
  921. //
  922. GGML_API int ggml_cpu_has_avx (void);
  923. GGML_API int ggml_cpu_has_avx2 (void);
  924. GGML_API int ggml_cpu_has_avx512 (void);
  925. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  926. GGML_API int ggml_cpu_has_avx512_vnni(void);
  927. GGML_API int ggml_cpu_has_fma (void);
  928. GGML_API int ggml_cpu_has_neon (void);
  929. GGML_API int ggml_cpu_has_arm_fma (void);
  930. GGML_API int ggml_cpu_has_f16c (void);
  931. GGML_API int ggml_cpu_has_fp16_va (void);
  932. GGML_API int ggml_cpu_has_wasm_simd (void);
  933. GGML_API int ggml_cpu_has_blas (void);
  934. GGML_API int ggml_cpu_has_cublas (void);
  935. GGML_API int ggml_cpu_has_clblast (void);
  936. GGML_API int ggml_cpu_has_gpublas (void);
  937. GGML_API int ggml_cpu_has_sse3 (void);
  938. GGML_API int ggml_cpu_has_vsx (void);
  939. //
  940. // Internal types and functions exposed for tests and benchmarks
  941. //
  942. #ifdef __cplusplus
  943. // restrict not standard in C++
  944. #define GGML_RESTRICT
  945. #else
  946. #define GGML_RESTRICT restrict
  947. #endif
  948. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  949. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  950. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  951. typedef struct {
  952. dequantize_row_q_t dequantize_row_q;
  953. quantize_row_q_t quantize_row_q;
  954. quantize_row_q_t quantize_row_q_reference;
  955. quantize_row_q_t quantize_row_q_dot;
  956. vec_dot_q_t vec_dot_q;
  957. enum ggml_type vec_dot_type;
  958. } quantize_fns_t;
  959. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  960. #ifdef __cplusplus
  961. }
  962. #endif