ggml.c 671 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #endif
  234. #elif defined(GGML_USE_OPENBLAS)
  235. #if defined(GGML_BLAS_USE_MKL)
  236. #include <mkl.h>
  237. #else
  238. #include <cblas.h>
  239. #endif
  240. #elif defined(GGML_USE_CUBLAS)
  241. #include "ggml-cuda.h"
  242. #elif defined(GGML_USE_CLBLAST)
  243. #include "ggml-opencl.h"
  244. #elif defined(GGML_USE_VULKAN)
  245. #include "ggml-vulkan.h"
  246. #elif defined(GGML_USE_SYCL)
  247. #include "ggml-sycl.h"
  248. #endif
  249. // floating point type used to accumulate sums
  250. typedef double ggml_float;
  251. #undef MIN
  252. #undef MAX
  253. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  254. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  255. //
  256. // global data
  257. //
  258. // precomputed gelu table for f16 (128 KB)
  259. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  260. // precomputed quick gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  267. float ggml_table_f32_f16[1 << 16];
  268. // note: do not use these inside ggml.c
  269. // these are meant to be used via the ggml.h API
  270. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  271. return (float) GGML_FP16_TO_FP32(x);
  272. }
  273. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  274. return GGML_FP32_TO_FP16(x);
  275. }
  276. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  277. for (int i = 0; i < n; i++) {
  278. y[i] = GGML_FP16_TO_FP32(x[i]);
  279. }
  280. }
  281. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  282. int i = 0;
  283. #if defined(__F16C__)
  284. for (; i + 7 < n; i += 8) {
  285. __m256 x_vec = _mm256_loadu_ps(x + i);
  286. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  287. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  288. }
  289. for(; i + 3 < n; i += 4) {
  290. __m128 x_vec = _mm_loadu_ps(x + i);
  291. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  292. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  293. }
  294. #endif
  295. for (; i < n; i++) {
  296. y[i] = GGML_FP32_TO_FP16(x[i]);
  297. }
  298. }
  299. //
  300. // timing
  301. //
  302. #if defined(_MSC_VER) || defined(__MINGW32__)
  303. static int64_t timer_freq, timer_start;
  304. void ggml_time_init(void) {
  305. LARGE_INTEGER t;
  306. QueryPerformanceFrequency(&t);
  307. timer_freq = t.QuadPart;
  308. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  309. // and the uptime is high enough.
  310. // We subtract the program start time to reduce the likelihood of that happening.
  311. QueryPerformanceCounter(&t);
  312. timer_start = t.QuadPart;
  313. }
  314. int64_t ggml_time_ms(void) {
  315. LARGE_INTEGER t;
  316. QueryPerformanceCounter(&t);
  317. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  318. }
  319. int64_t ggml_time_us(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceCounter(&t);
  322. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  323. }
  324. #else
  325. void ggml_time_init(void) {}
  326. int64_t ggml_time_ms(void) {
  327. struct timespec ts;
  328. clock_gettime(CLOCK_MONOTONIC, &ts);
  329. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  330. }
  331. int64_t ggml_time_us(void) {
  332. struct timespec ts;
  333. clock_gettime(CLOCK_MONOTONIC, &ts);
  334. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  335. }
  336. #endif
  337. int64_t ggml_cycles(void) {
  338. return clock();
  339. }
  340. int64_t ggml_cycles_per_ms(void) {
  341. return CLOCKS_PER_SEC/1000;
  342. }
  343. #ifdef GGML_PERF
  344. #define ggml_perf_time_ms() ggml_time_ms()
  345. #define ggml_perf_time_us() ggml_time_us()
  346. #define ggml_perf_cycles() ggml_cycles()
  347. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  348. #else
  349. #define ggml_perf_time_ms() 0
  350. #define ggml_perf_time_us() 0
  351. #define ggml_perf_cycles() 0
  352. #define ggml_perf_cycles_per_ms() 0
  353. #endif
  354. //
  355. // cache line
  356. //
  357. #if defined(__cpp_lib_hardware_interference_size)
  358. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  359. #else
  360. #if defined(__POWER9_VECTOR__)
  361. #define CACHE_LINE_SIZE 128
  362. #else
  363. #define CACHE_LINE_SIZE 64
  364. #endif
  365. #endif
  366. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  367. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  368. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  369. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  370. [GGML_TYPE_I8] = {
  371. .type_name = "i8",
  372. .blck_size = 1,
  373. .type_size = sizeof(int8_t),
  374. .is_quantized = false,
  375. },
  376. [GGML_TYPE_I16] = {
  377. .type_name = "i16",
  378. .blck_size = 1,
  379. .type_size = sizeof(int16_t),
  380. .is_quantized = false,
  381. },
  382. [GGML_TYPE_I32] = {
  383. .type_name = "i32",
  384. .blck_size = 1,
  385. .type_size = sizeof(int32_t),
  386. .is_quantized = false,
  387. },
  388. [GGML_TYPE_F32] = {
  389. .type_name = "f32",
  390. .blck_size = 1,
  391. .type_size = sizeof(float),
  392. .is_quantized = false,
  393. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  394. .vec_dot_type = GGML_TYPE_F32,
  395. .nrows = 1,
  396. },
  397. [GGML_TYPE_F16] = {
  398. .type_name = "f16",
  399. .blck_size = 1,
  400. .type_size = sizeof(ggml_fp16_t),
  401. .is_quantized = false,
  402. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  403. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  404. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  405. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  406. .vec_dot_type = GGML_TYPE_F16,
  407. .nrows = 1,
  408. },
  409. [GGML_TYPE_Q4_0] = {
  410. .type_name = "q4_0",
  411. .blck_size = QK4_0,
  412. .type_size = sizeof(block_q4_0),
  413. .is_quantized = true,
  414. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  415. .from_float = quantize_row_q4_0,
  416. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  417. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  418. .vec_dot_type = GGML_TYPE_Q8_0,
  419. #if defined (__ARM_FEATURE_MATMUL_INT8)
  420. .nrows = 2,
  421. #else
  422. .nrows = 1,
  423. #endif
  424. },
  425. [GGML_TYPE_Q4_1] = {
  426. .type_name = "q4_1",
  427. .blck_size = QK4_1,
  428. .type_size = sizeof(block_q4_1),
  429. .is_quantized = true,
  430. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  431. .from_float = quantize_row_q4_1,
  432. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  433. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  434. .vec_dot_type = GGML_TYPE_Q8_1,
  435. #if defined (__ARM_FEATURE_MATMUL_INT8)
  436. .nrows = 2,
  437. #else
  438. .nrows = 1,
  439. #endif
  440. },
  441. [4] = { // GGML_TYPE_Q4_2
  442. .type_name = "DEPRECATED",
  443. .blck_size = 0,
  444. .type_size = 0,
  445. .is_quantized = false,
  446. .to_float = NULL,
  447. .from_float = NULL,
  448. .from_float_reference = NULL,
  449. .vec_dot = NULL,
  450. .vec_dot_type = GGML_TYPE_COUNT,
  451. .nrows = 1,
  452. },
  453. [5] = { // GGML_TYPE_Q4_3
  454. .type_name = "DEPRECATED",
  455. .blck_size = 0,
  456. .type_size = 0,
  457. .is_quantized = false,
  458. .to_float = NULL,
  459. .from_float = NULL,
  460. .from_float_reference = NULL,
  461. .vec_dot = NULL,
  462. .vec_dot_type = GGML_TYPE_COUNT,
  463. .nrows = 1,
  464. },
  465. [GGML_TYPE_Q5_0] = {
  466. .type_name = "q5_0",
  467. .blck_size = QK5_0,
  468. .type_size = sizeof(block_q5_0),
  469. .is_quantized = true,
  470. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  471. .from_float = quantize_row_q5_0,
  472. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  473. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  474. .vec_dot_type = GGML_TYPE_Q8_0,
  475. .nrows = 1,
  476. },
  477. [GGML_TYPE_Q5_1] = {
  478. .type_name = "q5_1",
  479. .blck_size = QK5_1,
  480. .type_size = sizeof(block_q5_1),
  481. .is_quantized = true,
  482. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  483. .from_float = quantize_row_q5_1,
  484. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  485. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  486. .vec_dot_type = GGML_TYPE_Q8_1,
  487. .nrows = 1,
  488. },
  489. [GGML_TYPE_Q8_0] = {
  490. .type_name = "q8_0",
  491. .blck_size = QK8_0,
  492. .type_size = sizeof(block_q8_0),
  493. .is_quantized = true,
  494. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  495. .from_float = quantize_row_q8_0,
  496. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  497. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  498. .vec_dot_type = GGML_TYPE_Q8_0,
  499. #if defined (__ARM_FEATURE_MATMUL_INT8)
  500. .nrows = 2,
  501. #else
  502. .nrows = 1,
  503. #endif
  504. },
  505. [GGML_TYPE_Q8_1] = {
  506. .type_name = "q8_1",
  507. .blck_size = QK8_1,
  508. .type_size = sizeof(block_q8_1),
  509. .is_quantized = true,
  510. .from_float = quantize_row_q8_1,
  511. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  512. .vec_dot_type = GGML_TYPE_Q8_1,
  513. .nrows = 1,
  514. },
  515. [GGML_TYPE_Q2_K] = {
  516. .type_name = "q2_K",
  517. .blck_size = QK_K,
  518. .type_size = sizeof(block_q2_K),
  519. .is_quantized = true,
  520. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  521. .from_float = quantize_row_q2_K,
  522. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  523. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  524. .vec_dot_type = GGML_TYPE_Q8_K,
  525. .nrows = 1,
  526. },
  527. [GGML_TYPE_Q3_K] = {
  528. .type_name = "q3_K",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_q3_K),
  531. .is_quantized = true,
  532. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  533. .from_float = quantize_row_q3_K,
  534. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  535. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  536. .vec_dot_type = GGML_TYPE_Q8_K,
  537. .nrows = 1,
  538. },
  539. [GGML_TYPE_Q4_K] = {
  540. .type_name = "q4_K",
  541. .blck_size = QK_K,
  542. .type_size = sizeof(block_q4_K),
  543. .is_quantized = true,
  544. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  545. .from_float = quantize_row_q4_K,
  546. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  547. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  548. .vec_dot_type = GGML_TYPE_Q8_K,
  549. .nrows = 1,
  550. },
  551. [GGML_TYPE_Q5_K] = {
  552. .type_name = "q5_K",
  553. .blck_size = QK_K,
  554. .type_size = sizeof(block_q5_K),
  555. .is_quantized = true,
  556. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  557. .from_float = quantize_row_q5_K,
  558. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  559. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  560. .vec_dot_type = GGML_TYPE_Q8_K,
  561. .nrows = 1,
  562. },
  563. [GGML_TYPE_Q6_K] = {
  564. .type_name = "q6_K",
  565. .blck_size = QK_K,
  566. .type_size = sizeof(block_q6_K),
  567. .is_quantized = true,
  568. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  569. .from_float = quantize_row_q6_K,
  570. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  571. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  572. .vec_dot_type = GGML_TYPE_Q8_K,
  573. .nrows = 1,
  574. },
  575. [GGML_TYPE_IQ2_XXS] = {
  576. .type_name = "iq2_xxs",
  577. .blck_size = QK_K,
  578. .type_size = sizeof(block_iq2_xxs),
  579. .is_quantized = true,
  580. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  581. .from_float = NULL,
  582. .from_float_reference = NULL,
  583. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  584. .vec_dot_type = GGML_TYPE_Q8_K,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_IQ2_XS] = {
  588. .type_name = "iq2_xs",
  589. .blck_size = QK_K,
  590. .type_size = sizeof(block_iq2_xs),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  593. .from_float = NULL,
  594. .from_float_reference = NULL,
  595. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  596. .vec_dot_type = GGML_TYPE_Q8_K,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_IQ3_XXS] = {
  600. .type_name = "iq3_xxs",
  601. .blck_size = QK_K,
  602. .type_size = sizeof(block_iq3_xxs),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  605. .from_float = quantize_row_iq3_xxs,
  606. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  607. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  608. .vec_dot_type = GGML_TYPE_Q8_K,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_IQ1_S] = {
  612. .type_name = "iq1_s",
  613. .blck_size = QK_K,
  614. .type_size = sizeof(block_iq1_s),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  617. .from_float = NULL,
  618. .from_float_reference = NULL,
  619. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  620. .vec_dot_type = GGML_TYPE_Q8_K,
  621. .nrows = 1,
  622. },
  623. [GGML_TYPE_Q8_K] = {
  624. .type_name = "q8_K",
  625. .blck_size = QK_K,
  626. .type_size = sizeof(block_q8_K),
  627. .is_quantized = true,
  628. .from_float = quantize_row_q8_K,
  629. }
  630. };
  631. // For internal test use
  632. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  633. GGML_ASSERT(type < GGML_TYPE_COUNT);
  634. return type_traits[type];
  635. }
  636. //
  637. // simd mappings
  638. //
  639. #if defined(__ARM_NEON)
  640. #if !defined(__aarch64__)
  641. // 64-bit compatibility
  642. inline static float vaddvq_f32(float32x4_t v) {
  643. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  644. }
  645. #endif
  646. #endif
  647. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  648. // we then implement the fundamental computation operations below using only these macros
  649. // adding support for new architectures requires to define the corresponding SIMD macros
  650. //
  651. // GGML_F32_STEP / GGML_F16_STEP
  652. // number of elements to process in a single step
  653. //
  654. // GGML_F32_EPR / GGML_F16_EPR
  655. // number of elements to fit in a single register
  656. //
  657. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  658. #define GGML_SIMD
  659. // F32 NEON
  660. #define GGML_F32_STEP 16
  661. #define GGML_F32_EPR 4
  662. #define GGML_F32x4 float32x4_t
  663. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  664. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  665. #define GGML_F32x4_LOAD vld1q_f32
  666. #define GGML_F32x4_STORE vst1q_f32
  667. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  668. #define GGML_F32x4_ADD vaddq_f32
  669. #define GGML_F32x4_MUL vmulq_f32
  670. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  671. #define GGML_F32x4_REDUCE(res, x) \
  672. { \
  673. int offset = GGML_F32_ARR >> 1; \
  674. for (int i = 0; i < offset; ++i) { \
  675. x[i] = vaddq_f32(x[i], x[offset+i]); \
  676. } \
  677. offset >>= 1; \
  678. for (int i = 0; i < offset; ++i) { \
  679. x[i] = vaddq_f32(x[i], x[offset+i]); \
  680. } \
  681. offset >>= 1; \
  682. for (int i = 0; i < offset; ++i) { \
  683. x[i] = vaddq_f32(x[i], x[offset+i]); \
  684. } \
  685. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  686. }
  687. #define GGML_F32_VEC GGML_F32x4
  688. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  689. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  690. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  691. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  692. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  693. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  694. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  695. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  696. // F16 NEON
  697. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  698. #define GGML_F16_STEP 32
  699. #define GGML_F16_EPR 8
  700. #define GGML_F16x8 float16x8_t
  701. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  702. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  703. #define GGML_F16x8_LOAD vld1q_f16
  704. #define GGML_F16x8_STORE vst1q_f16
  705. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  706. #define GGML_F16x8_ADD vaddq_f16
  707. #define GGML_F16x8_MUL vmulq_f16
  708. #define GGML_F16x8_REDUCE(res, x) \
  709. do { \
  710. int offset = GGML_F16_ARR >> 1; \
  711. for (int i = 0; i < offset; ++i) { \
  712. x[i] = vaddq_f16(x[i], x[offset+i]); \
  713. } \
  714. offset >>= 1; \
  715. for (int i = 0; i < offset; ++i) { \
  716. x[i] = vaddq_f16(x[i], x[offset+i]); \
  717. } \
  718. offset >>= 1; \
  719. for (int i = 0; i < offset; ++i) { \
  720. x[i] = vaddq_f16(x[i], x[offset+i]); \
  721. } \
  722. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  723. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  724. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  725. } while (0)
  726. #define GGML_F16_VEC GGML_F16x8
  727. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  735. #else
  736. // if FP16 vector arithmetic is not supported, we use FP32 instead
  737. // and take advantage of the vcvt_ functions to convert to/from FP16
  738. #define GGML_F16_STEP 16
  739. #define GGML_F16_EPR 4
  740. #define GGML_F32Cx4 float32x4_t
  741. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  742. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  743. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  744. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  745. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  746. #define GGML_F32Cx4_ADD vaddq_f32
  747. #define GGML_F32Cx4_MUL vmulq_f32
  748. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  749. #define GGML_F16_VEC GGML_F32Cx4
  750. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  751. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  752. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  753. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  754. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  755. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  756. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  757. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  758. #endif
  759. #elif defined(__AVX__)
  760. #define GGML_SIMD
  761. // F32 AVX
  762. #define GGML_F32_STEP 32
  763. #define GGML_F32_EPR 8
  764. #define GGML_F32x8 __m256
  765. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  766. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  767. #define GGML_F32x8_LOAD _mm256_loadu_ps
  768. #define GGML_F32x8_STORE _mm256_storeu_ps
  769. #if defined(__FMA__)
  770. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  771. #else
  772. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  773. #endif
  774. #define GGML_F32x8_ADD _mm256_add_ps
  775. #define GGML_F32x8_MUL _mm256_mul_ps
  776. #define GGML_F32x8_REDUCE(res, x) \
  777. do { \
  778. int offset = GGML_F32_ARR >> 1; \
  779. for (int i = 0; i < offset; ++i) { \
  780. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  781. } \
  782. offset >>= 1; \
  783. for (int i = 0; i < offset; ++i) { \
  784. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  785. } \
  786. offset >>= 1; \
  787. for (int i = 0; i < offset; ++i) { \
  788. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  789. } \
  790. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  791. _mm256_extractf128_ps(x[0], 1)); \
  792. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  793. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  794. } while (0)
  795. // TODO: is this optimal ?
  796. #define GGML_F32_VEC GGML_F32x8
  797. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  798. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  799. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  800. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  801. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  802. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  803. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  804. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  805. // F16 AVX
  806. #define GGML_F16_STEP 32
  807. #define GGML_F16_EPR 8
  808. // F16 arithmetic is not supported by AVX, so we use F32 instead
  809. #define GGML_F32Cx8 __m256
  810. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  811. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  812. #if defined(__F16C__)
  813. // the _mm256_cvt intrinsics require F16C
  814. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  815. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  816. #else
  817. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  818. float tmp[8];
  819. for (int i = 0; i < 8; i++) {
  820. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  821. }
  822. return _mm256_loadu_ps(tmp);
  823. }
  824. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  825. float arr[8];
  826. _mm256_storeu_ps(arr, y);
  827. for (int i = 0; i < 8; i++)
  828. x[i] = GGML_FP32_TO_FP16(arr[i]);
  829. }
  830. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  831. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  832. #endif
  833. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  834. #define GGML_F32Cx8_ADD _mm256_add_ps
  835. #define GGML_F32Cx8_MUL _mm256_mul_ps
  836. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  837. #define GGML_F16_VEC GGML_F32Cx8
  838. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  839. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  840. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  841. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  842. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  843. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  844. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  845. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  846. #elif defined(__POWER9_VECTOR__)
  847. #define GGML_SIMD
  848. // F32 POWER9
  849. #define GGML_F32_STEP 32
  850. #define GGML_F32_EPR 4
  851. #define GGML_F32x4 vector float
  852. #define GGML_F32x4_ZERO 0.0f
  853. #define GGML_F32x4_SET1 vec_splats
  854. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  855. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  856. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  857. #define GGML_F32x4_ADD vec_add
  858. #define GGML_F32x4_MUL vec_mul
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vec_add(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vec_add(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vec_add(x[i], x[offset+i]); \
  872. } \
  873. res = vec_extract(x[0], 0) + \
  874. vec_extract(x[0], 1) + \
  875. vec_extract(x[0], 2) + \
  876. vec_extract(x[0], 3); \
  877. }
  878. #define GGML_F32_VEC GGML_F32x4
  879. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  880. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  881. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  882. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  883. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  884. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  885. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  886. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  887. // F16 POWER9
  888. #define GGML_F16_STEP GGML_F32_STEP
  889. #define GGML_F16_EPR GGML_F32_EPR
  890. #define GGML_F16_VEC GGML_F32x4
  891. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  892. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  893. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  894. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  895. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  896. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  897. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  898. vec_extract_fp32_from_shortl(vec_xl(0, p))
  899. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  900. #define GGML_F16_VEC_STORE(p, r, i) \
  901. if (i & 0x1) \
  902. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  903. r[i - GGML_ENDIAN_BYTE(0)]), \
  904. 0, p - GGML_F16_EPR)
  905. #elif defined(__wasm_simd128__)
  906. #define GGML_SIMD
  907. // F32 WASM
  908. #define GGML_F32_STEP 16
  909. #define GGML_F32_EPR 4
  910. #define GGML_F32x4 v128_t
  911. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  912. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  913. #define GGML_F32x4_LOAD wasm_v128_load
  914. #define GGML_F32x4_STORE wasm_v128_store
  915. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  916. #define GGML_F32x4_ADD wasm_f32x4_add
  917. #define GGML_F32x4_MUL wasm_f32x4_mul
  918. #define GGML_F32x4_REDUCE(res, x) \
  919. { \
  920. int offset = GGML_F32_ARR >> 1; \
  921. for (int i = 0; i < offset; ++i) { \
  922. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  923. } \
  924. offset >>= 1; \
  925. for (int i = 0; i < offset; ++i) { \
  926. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  927. } \
  928. offset >>= 1; \
  929. for (int i = 0; i < offset; ++i) { \
  930. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  931. } \
  932. res = wasm_f32x4_extract_lane(x[0], 0) + \
  933. wasm_f32x4_extract_lane(x[0], 1) + \
  934. wasm_f32x4_extract_lane(x[0], 2) + \
  935. wasm_f32x4_extract_lane(x[0], 3); \
  936. }
  937. #define GGML_F32_VEC GGML_F32x4
  938. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  939. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  940. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  941. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  942. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  943. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  944. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  945. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  946. // F16 WASM
  947. #define GGML_F16_STEP 16
  948. #define GGML_F16_EPR 4
  949. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  950. float tmp[4];
  951. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  952. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  953. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  954. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  955. return wasm_v128_load(tmp);
  956. }
  957. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  958. float tmp[4];
  959. wasm_v128_store(tmp, x);
  960. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  961. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  962. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  963. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  964. }
  965. #define GGML_F16x4 v128_t
  966. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  967. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  968. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  969. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  970. #define GGML_F16x4_FMA GGML_F32x4_FMA
  971. #define GGML_F16x4_ADD wasm_f32x4_add
  972. #define GGML_F16x4_MUL wasm_f32x4_mul
  973. #define GGML_F16x4_REDUCE(res, x) \
  974. { \
  975. int offset = GGML_F16_ARR >> 1; \
  976. for (int i = 0; i < offset; ++i) { \
  977. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  978. } \
  979. offset >>= 1; \
  980. for (int i = 0; i < offset; ++i) { \
  981. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  982. } \
  983. offset >>= 1; \
  984. for (int i = 0; i < offset; ++i) { \
  985. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  986. } \
  987. res = wasm_f32x4_extract_lane(x[0], 0) + \
  988. wasm_f32x4_extract_lane(x[0], 1) + \
  989. wasm_f32x4_extract_lane(x[0], 2) + \
  990. wasm_f32x4_extract_lane(x[0], 3); \
  991. }
  992. #define GGML_F16_VEC GGML_F16x4
  993. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  994. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  995. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  996. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  997. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  998. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  999. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1000. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1001. #elif defined(__SSE3__)
  1002. #define GGML_SIMD
  1003. // F32 SSE
  1004. #define GGML_F32_STEP 32
  1005. #define GGML_F32_EPR 4
  1006. #define GGML_F32x4 __m128
  1007. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1008. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1009. #define GGML_F32x4_LOAD _mm_loadu_ps
  1010. #define GGML_F32x4_STORE _mm_storeu_ps
  1011. #if defined(__FMA__)
  1012. // TODO: Does this work?
  1013. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1014. #else
  1015. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1016. #endif
  1017. #define GGML_F32x4_ADD _mm_add_ps
  1018. #define GGML_F32x4_MUL _mm_mul_ps
  1019. #define GGML_F32x4_REDUCE(res, x) \
  1020. { \
  1021. int offset = GGML_F32_ARR >> 1; \
  1022. for (int i = 0; i < offset; ++i) { \
  1023. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1024. } \
  1025. offset >>= 1; \
  1026. for (int i = 0; i < offset; ++i) { \
  1027. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1028. } \
  1029. offset >>= 1; \
  1030. for (int i = 0; i < offset; ++i) { \
  1031. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1032. } \
  1033. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1034. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1035. }
  1036. // TODO: is this optimal ?
  1037. #define GGML_F32_VEC GGML_F32x4
  1038. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1039. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1040. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1041. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1042. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1043. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1044. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1045. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1046. // F16 SSE
  1047. #define GGML_F16_STEP 32
  1048. #define GGML_F16_EPR 4
  1049. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1050. float tmp[4];
  1051. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1052. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1053. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1054. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1055. return _mm_loadu_ps(tmp);
  1056. }
  1057. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1058. float arr[4];
  1059. _mm_storeu_ps(arr, y);
  1060. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1061. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1062. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1063. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1064. }
  1065. #define GGML_F32Cx4 __m128
  1066. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1067. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1068. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1069. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1070. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1071. #define GGML_F32Cx4_ADD _mm_add_ps
  1072. #define GGML_F32Cx4_MUL _mm_mul_ps
  1073. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1074. #define GGML_F16_VEC GGML_F32Cx4
  1075. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1076. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1077. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1078. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1079. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1080. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1081. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1082. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1083. #endif
  1084. // GGML_F32_ARR / GGML_F16_ARR
  1085. // number of registers to use per step
  1086. #ifdef GGML_SIMD
  1087. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1088. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1089. #endif
  1090. //
  1091. // fundamental operations
  1092. //
  1093. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1094. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1095. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1096. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1097. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1098. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1099. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1100. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1101. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1102. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1103. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1104. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1105. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1106. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1107. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1108. assert(nrc == 1);
  1109. UNUSED(nrc);
  1110. UNUSED(bx);
  1111. UNUSED(by);
  1112. UNUSED(bs);
  1113. #ifdef GGML_SIMD
  1114. float sumf = 0.0f;
  1115. const int np = (n & ~(GGML_F32_STEP - 1));
  1116. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1117. GGML_F32_VEC ax[GGML_F32_ARR];
  1118. GGML_F32_VEC ay[GGML_F32_ARR];
  1119. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1120. for (int j = 0; j < GGML_F32_ARR; j++) {
  1121. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1122. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1123. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1124. }
  1125. }
  1126. // reduce sum0..sum3 to sum0
  1127. GGML_F32_VEC_REDUCE(sumf, sum);
  1128. // leftovers
  1129. for (int i = np; i < n; ++i) {
  1130. sumf += x[i]*y[i];
  1131. }
  1132. #else
  1133. // scalar
  1134. ggml_float sumf = 0.0;
  1135. for (int i = 0; i < n; ++i) {
  1136. sumf += (ggml_float)(x[i]*y[i]);
  1137. }
  1138. #endif
  1139. *s = sumf;
  1140. }
  1141. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1142. assert(nrc == 1);
  1143. UNUSED(nrc);
  1144. UNUSED(bx);
  1145. UNUSED(by);
  1146. UNUSED(bs);
  1147. ggml_float sumf = 0.0;
  1148. #if defined(GGML_SIMD)
  1149. const int np = (n & ~(GGML_F16_STEP - 1));
  1150. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1151. GGML_F16_VEC ax[GGML_F16_ARR];
  1152. GGML_F16_VEC ay[GGML_F16_ARR];
  1153. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1154. for (int j = 0; j < GGML_F16_ARR; j++) {
  1155. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1156. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1157. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1158. }
  1159. }
  1160. // reduce sum0..sum3 to sum0
  1161. GGML_F16_VEC_REDUCE(sumf, sum);
  1162. // leftovers
  1163. for (int i = np; i < n; ++i) {
  1164. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1165. }
  1166. #else
  1167. for (int i = 0; i < n; ++i) {
  1168. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1169. }
  1170. #endif
  1171. *s = sumf;
  1172. }
  1173. // compute GGML_VEC_DOT_UNROLL dot products at once
  1174. // xs - x row stride in bytes
  1175. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1176. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1177. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1178. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1179. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1180. }
  1181. #if defined(GGML_SIMD)
  1182. const int np = (n & ~(GGML_F16_STEP - 1));
  1183. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1184. GGML_F16_VEC ax[GGML_F16_ARR];
  1185. GGML_F16_VEC ay[GGML_F16_ARR];
  1186. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1187. for (int j = 0; j < GGML_F16_ARR; j++) {
  1188. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1189. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1190. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1191. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1192. }
  1193. }
  1194. }
  1195. // reduce sum0..sum3 to sum0
  1196. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1197. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1198. }
  1199. // leftovers
  1200. for (int i = np; i < n; ++i) {
  1201. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1202. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1203. }
  1204. }
  1205. #else
  1206. for (int i = 0; i < n; ++i) {
  1207. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1208. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1209. }
  1210. }
  1211. #endif
  1212. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1213. s[i] = sumf[i];
  1214. }
  1215. }
  1216. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1217. #if defined(GGML_SIMD)
  1218. const int np = (n & ~(GGML_F32_STEP - 1));
  1219. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1220. GGML_F32_VEC ax[GGML_F32_ARR];
  1221. GGML_F32_VEC ay[GGML_F32_ARR];
  1222. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1223. for (int j = 0; j < GGML_F32_ARR; j++) {
  1224. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1225. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1226. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1227. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1228. }
  1229. }
  1230. // leftovers
  1231. for (int i = np; i < n; ++i) {
  1232. y[i] += x[i]*v;
  1233. }
  1234. #else
  1235. // scalar
  1236. for (int i = 0; i < n; ++i) {
  1237. y[i] += x[i]*v;
  1238. }
  1239. #endif
  1240. }
  1241. // xs and vs are byte strides of x and v
  1242. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1243. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1244. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1245. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1246. x[i] = (const float *) ((const char *) xv + i*xs);
  1247. v[i] = (const float *) ((const char *) vv + i*vs);
  1248. }
  1249. #if defined(GGML_SIMD)
  1250. const int np = (n & ~(GGML_F32_STEP - 1));
  1251. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1252. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1253. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1254. }
  1255. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1256. GGML_F32_VEC ay[GGML_F32_ARR];
  1257. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1258. for (int j = 0; j < GGML_F32_ARR; j++) {
  1259. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1260. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1261. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1262. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1263. }
  1264. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1265. }
  1266. }
  1267. // leftovers
  1268. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1269. for (int i = np; i < n; ++i) {
  1270. y[i] += x[k][i]*v[k][0];
  1271. }
  1272. }
  1273. #else
  1274. // scalar
  1275. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1276. for (int i = 0; i < n; ++i) {
  1277. y[i] += x[k][i]*v[k][0];
  1278. }
  1279. }
  1280. #endif
  1281. }
  1282. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1283. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1284. #if defined(GGML_USE_ACCELERATE)
  1285. vDSP_vsmul(y, 1, &v, y, 1, n);
  1286. #elif defined(GGML_SIMD)
  1287. const int np = (n & ~(GGML_F32_STEP - 1));
  1288. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1289. GGML_F32_VEC ay[GGML_F32_ARR];
  1290. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1291. for (int j = 0; j < GGML_F32_ARR; j++) {
  1292. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1293. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1294. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1295. }
  1296. }
  1297. // leftovers
  1298. for (int i = np; i < n; ++i) {
  1299. y[i] *= v;
  1300. }
  1301. #else
  1302. // scalar
  1303. for (int i = 0; i < n; ++i) {
  1304. y[i] *= v;
  1305. }
  1306. #endif
  1307. }
  1308. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1309. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1310. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1311. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1312. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1313. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1314. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1315. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1316. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1317. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1318. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1319. // TODO: optimize performance
  1320. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1321. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1322. static const float GELU_COEF_A = 0.044715f;
  1323. static const float GELU_QUICK_COEF = -1.702f;
  1324. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1325. inline static float ggml_gelu_f32(float x) {
  1326. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1327. }
  1328. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1329. const uint16_t * i16 = (const uint16_t *) x;
  1330. for (int i = 0; i < n; ++i) {
  1331. y[i] = ggml_table_gelu_f16[i16[i]];
  1332. }
  1333. }
  1334. #ifdef GGML_GELU_FP16
  1335. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1336. uint16_t t;
  1337. for (int i = 0; i < n; ++i) {
  1338. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1339. memcpy(&t, &fp16, sizeof(uint16_t));
  1340. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1341. }
  1342. }
  1343. #else
  1344. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1345. for (int i = 0; i < n; ++i) {
  1346. y[i] = ggml_gelu_f32(x[i]);
  1347. }
  1348. }
  1349. #endif
  1350. inline static float ggml_gelu_quick_f32(float x) {
  1351. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1352. }
  1353. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1354. // const uint16_t * i16 = (const uint16_t *) x;
  1355. // for (int i = 0; i < n; ++i) {
  1356. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1357. // }
  1358. //}
  1359. #ifdef GGML_GELU_QUICK_FP16
  1360. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1361. uint16_t t;
  1362. for (int i = 0; i < n; ++i) {
  1363. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1364. memcpy(&t, &fp16, sizeof(uint16_t));
  1365. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1366. }
  1367. }
  1368. #else
  1369. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1370. for (int i = 0; i < n; ++i) {
  1371. y[i] = ggml_gelu_quick_f32(x[i]);
  1372. }
  1373. }
  1374. #endif
  1375. // Sigmoid Linear Unit (SiLU) function
  1376. inline static float ggml_silu_f32(float x) {
  1377. return x/(1.0f + expf(-x));
  1378. }
  1379. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1380. // const uint16_t * i16 = (const uint16_t *) x;
  1381. // for (int i = 0; i < n; ++i) {
  1382. // y[i] = ggml_table_silu_f16[i16[i]];
  1383. // }
  1384. //}
  1385. #ifdef GGML_SILU_FP16
  1386. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1387. uint16_t t;
  1388. for (int i = 0; i < n; ++i) {
  1389. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1390. memcpy(&t, &fp16, sizeof(uint16_t));
  1391. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1392. }
  1393. }
  1394. #else
  1395. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1396. for (int i = 0; i < n; ++i) {
  1397. y[i] = ggml_silu_f32(x[i]);
  1398. }
  1399. }
  1400. #endif
  1401. inline static float ggml_silu_backward_f32(float x, float dy) {
  1402. const float s = 1.0f/(1.0f + expf(-x));
  1403. return dy*s*(1.0f + x*(1.0f - s));
  1404. }
  1405. #ifdef GGML_SILU_FP16
  1406. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1407. for (int i = 0; i < n; ++i) {
  1408. // we did not use x[i] to compute forward silu but its f16 equivalent
  1409. // take derivative at f16 of x[i]:
  1410. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1411. float usedx = GGML_FP16_TO_FP32(fp16);
  1412. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1413. }
  1414. }
  1415. #else
  1416. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1417. for (int i = 0; i < n; ++i) {
  1418. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1419. }
  1420. }
  1421. #endif
  1422. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1423. #ifndef GGML_USE_ACCELERATE
  1424. ggml_float sum = 0.0;
  1425. for (int i = 0; i < n; ++i) {
  1426. sum += (ggml_float)x[i];
  1427. }
  1428. *s = sum;
  1429. #else
  1430. vDSP_sve(x, 1, s, n);
  1431. #endif
  1432. }
  1433. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1434. ggml_float sum = 0.0;
  1435. for (int i = 0; i < n; ++i) {
  1436. sum += (ggml_float)x[i];
  1437. }
  1438. *s = sum;
  1439. }
  1440. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1441. float sum = 0.0f;
  1442. for (int i = 0; i < n; ++i) {
  1443. sum += GGML_FP16_TO_FP32(x[i]);
  1444. }
  1445. *s = sum;
  1446. }
  1447. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1448. #ifndef GGML_USE_ACCELERATE
  1449. float max = -INFINITY;
  1450. for (int i = 0; i < n; ++i) {
  1451. max = MAX(max, x[i]);
  1452. }
  1453. *s = max;
  1454. #else
  1455. vDSP_maxv(x, 1, s, n);
  1456. #endif
  1457. }
  1458. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1459. ggml_vec_norm_f32(n, s, x);
  1460. *s = 1.f/(*s);
  1461. }
  1462. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1463. float max = -INFINITY;
  1464. int idx = 0;
  1465. for (int i = 0; i < n; ++i) {
  1466. max = MAX(max, x[i]);
  1467. if (max == x[i]) { idx = i; }
  1468. }
  1469. *s = idx;
  1470. }
  1471. //
  1472. // data types
  1473. //
  1474. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1475. "NONE",
  1476. "DUP",
  1477. "ADD",
  1478. "ADD1",
  1479. "ACC",
  1480. "SUB",
  1481. "MUL",
  1482. "DIV",
  1483. "SQR",
  1484. "SQRT",
  1485. "LOG",
  1486. "SUM",
  1487. "SUM_ROWS",
  1488. "MEAN",
  1489. "ARGMAX",
  1490. "REPEAT",
  1491. "REPEAT_BACK",
  1492. "CONCAT",
  1493. "SILU_BACK",
  1494. "NORM",
  1495. "RMS_NORM",
  1496. "RMS_NORM_BACK",
  1497. "GROUP_NORM",
  1498. "MUL_MAT",
  1499. "MUL_MAT_ID",
  1500. "OUT_PROD",
  1501. "SCALE",
  1502. "SET",
  1503. "CPY",
  1504. "CONT",
  1505. "RESHAPE",
  1506. "VIEW",
  1507. "PERMUTE",
  1508. "TRANSPOSE",
  1509. "GET_ROWS",
  1510. "GET_ROWS_BACK",
  1511. "DIAG",
  1512. "DIAG_MASK_INF",
  1513. "DIAG_MASK_ZERO",
  1514. "SOFT_MAX",
  1515. "SOFT_MAX_BACK",
  1516. "ROPE",
  1517. "ROPE_BACK",
  1518. "ALIBI",
  1519. "CLAMP",
  1520. "CONV_TRANSPOSE_1D",
  1521. "IM2COL",
  1522. "CONV_TRANSPOSE_2D",
  1523. "POOL_1D",
  1524. "POOL_2D",
  1525. "UPSCALE",
  1526. "PAD",
  1527. "ARGSORT",
  1528. "LEAKY_RELU",
  1529. "FLASH_ATTN",
  1530. "FLASH_FF",
  1531. "FLASH_ATTN_BACK",
  1532. "WIN_PART",
  1533. "WIN_UNPART",
  1534. "GET_REL_POS",
  1535. "ADD_REL_POS",
  1536. "UNARY",
  1537. "MAP_UNARY",
  1538. "MAP_BINARY",
  1539. "MAP_CUSTOM1_F32",
  1540. "MAP_CUSTOM2_F32",
  1541. "MAP_CUSTOM3_F32",
  1542. "MAP_CUSTOM1",
  1543. "MAP_CUSTOM2",
  1544. "MAP_CUSTOM3",
  1545. "CROSS_ENTROPY_LOSS",
  1546. "CROSS_ENTROPY_LOSS_BACK",
  1547. };
  1548. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1549. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1550. "none",
  1551. "x",
  1552. "x+y",
  1553. "x+y",
  1554. "view(x,nb,offset)+=y->x",
  1555. "x-y",
  1556. "x*y",
  1557. "x/y",
  1558. "x^2",
  1559. "√x",
  1560. "log(x)",
  1561. "Σx",
  1562. "Σx_k",
  1563. "Σx/n",
  1564. "argmax(x)",
  1565. "repeat(x)",
  1566. "repeat_back(x)",
  1567. "concat(x, y)",
  1568. "silu_back(x)",
  1569. "norm(x)",
  1570. "rms_norm(x)",
  1571. "rms_norm_back(x)",
  1572. "group_norm(x)",
  1573. "X*Y",
  1574. "X[i]*Y",
  1575. "X*Y",
  1576. "x*v",
  1577. "y-\\>view(x)",
  1578. "x-\\>y",
  1579. "cont(x)",
  1580. "reshape(x)",
  1581. "view(x)",
  1582. "permute(x)",
  1583. "transpose(x)",
  1584. "get_rows(x)",
  1585. "get_rows_back(x)",
  1586. "diag(x)",
  1587. "diag_mask_inf(x)",
  1588. "diag_mask_zero(x)",
  1589. "soft_max(x)",
  1590. "soft_max_back(x)",
  1591. "rope(x)",
  1592. "rope_back(x)",
  1593. "alibi(x)",
  1594. "clamp(x)",
  1595. "conv_transpose_1d(x)",
  1596. "im2col(x)",
  1597. "conv_transpose_2d(x)",
  1598. "pool_1d(x)",
  1599. "pool_2d(x)",
  1600. "upscale(x)",
  1601. "pad(x)",
  1602. "argsort(x)",
  1603. "leaky_relu(x)",
  1604. "flash_attn(x)",
  1605. "flash_ff(x)",
  1606. "flash_attn_back(x)",
  1607. "win_part(x)",
  1608. "win_unpart(x)",
  1609. "get_rel_pos(x)",
  1610. "add_rel_pos(x)",
  1611. "unary(x)",
  1612. "f(x)",
  1613. "f(x,y)",
  1614. "custom_f32(x)",
  1615. "custom_f32(x,y)",
  1616. "custom_f32(x,y,z)",
  1617. "custom(x)",
  1618. "custom(x,y)",
  1619. "custom(x,y,z)",
  1620. "cross_entropy_loss(x,y)",
  1621. "cross_entropy_loss_back(x,y)",
  1622. };
  1623. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1624. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1625. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1626. "ABS",
  1627. "SGN",
  1628. "NEG",
  1629. "STEP",
  1630. "TANH",
  1631. "ELU",
  1632. "RELU",
  1633. "GELU",
  1634. "GELU_QUICK",
  1635. "SILU",
  1636. "HARDSWISH",
  1637. "HARDSIGMOID",
  1638. };
  1639. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1640. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1641. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1642. // WARN:
  1643. // Mis-configuration can lead to problem that's hard to reason about:
  1644. // * At best it crash or talks nosense.
  1645. // * At worst it talks slightly difference but hard to perceive.
  1646. //
  1647. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1648. // Take care about compile options (e.g., GGML_USE_xxx).
  1649. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1650. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1651. static void ggml_setup_op_has_task_pass(void) {
  1652. { // INIT
  1653. bool * p = GGML_OP_HAS_INIT;
  1654. p[GGML_OP_ACC ] = true;
  1655. p[GGML_OP_MUL_MAT ] = true;
  1656. p[GGML_OP_MUL_MAT_ID ] = true;
  1657. p[GGML_OP_OUT_PROD ] = true;
  1658. p[GGML_OP_SET ] = true;
  1659. p[GGML_OP_GET_ROWS_BACK ] = true;
  1660. p[GGML_OP_DIAG_MASK_INF ] = true;
  1661. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1662. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1663. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1664. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1665. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1666. p[GGML_OP_ADD_REL_POS ] = true;
  1667. }
  1668. { // FINALIZE
  1669. bool * p = GGML_OP_HAS_FINALIZE;
  1670. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1671. }
  1672. }
  1673. //
  1674. // ggml context
  1675. //
  1676. struct ggml_context {
  1677. size_t mem_size;
  1678. void * mem_buffer;
  1679. bool mem_buffer_owned;
  1680. bool no_alloc;
  1681. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1682. int n_objects;
  1683. struct ggml_object * objects_begin;
  1684. struct ggml_object * objects_end;
  1685. struct ggml_scratch scratch;
  1686. struct ggml_scratch scratch_save;
  1687. };
  1688. struct ggml_context_container {
  1689. bool used;
  1690. struct ggml_context context;
  1691. };
  1692. //
  1693. // NUMA support
  1694. //
  1695. #define GGML_NUMA_MAX_NODES 8
  1696. #define GGML_NUMA_MAX_CPUS 512
  1697. struct ggml_numa_node {
  1698. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1699. uint32_t n_cpus;
  1700. };
  1701. struct ggml_numa_nodes {
  1702. enum ggml_numa_strategy numa_strategy;
  1703. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1704. uint32_t n_nodes;
  1705. uint32_t total_cpus; // hardware threads on system
  1706. uint32_t current_node; // node on which main process is execting
  1707. #if defined(__gnu_linux__)
  1708. cpu_set_t cpuset; // cpuset from numactl
  1709. #else
  1710. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1711. #endif
  1712. };
  1713. //
  1714. // ggml state
  1715. //
  1716. struct ggml_state {
  1717. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1718. struct ggml_numa_nodes numa;
  1719. };
  1720. // global state
  1721. static struct ggml_state g_state;
  1722. static atomic_int g_state_barrier = 0;
  1723. // barrier via spin lock
  1724. inline static void ggml_critical_section_start(void) {
  1725. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1726. while (processing > 0) {
  1727. // wait for other threads to finish
  1728. atomic_fetch_sub(&g_state_barrier, 1);
  1729. sched_yield(); // TODO: reconsider this
  1730. processing = atomic_fetch_add(&g_state_barrier, 1);
  1731. }
  1732. }
  1733. // TODO: make this somehow automatically executed
  1734. // some sort of "sentry" mechanism
  1735. inline static void ggml_critical_section_end(void) {
  1736. atomic_fetch_sub(&g_state_barrier, 1);
  1737. }
  1738. #if defined(__gnu_linux__)
  1739. static cpu_set_t ggml_get_numa_affinity(void) {
  1740. cpu_set_t cpuset;
  1741. pthread_t thread;
  1742. thread = pthread_self();
  1743. CPU_ZERO(&cpuset);
  1744. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1745. return cpuset;
  1746. }
  1747. #else
  1748. static uint32_t ggml_get_numa_affinity(void) {
  1749. return 0; // no NUMA support
  1750. }
  1751. #endif
  1752. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1753. if (g_state.numa.n_nodes > 0) {
  1754. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1755. return;
  1756. }
  1757. #if defined(__gnu_linux__)
  1758. struct stat st;
  1759. char path[256];
  1760. int rv;
  1761. // set numa scheme
  1762. g_state.numa.numa_strategy = numa_flag;
  1763. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1764. g_state.numa.cpuset = ggml_get_numa_affinity();
  1765. // enumerate nodes
  1766. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1767. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1768. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1769. if (stat(path, &st) != 0) { break; }
  1770. ++g_state.numa.n_nodes;
  1771. }
  1772. // enumerate CPUs
  1773. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1774. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1775. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1776. if (stat(path, &st) != 0) { break; }
  1777. ++g_state.numa.total_cpus;
  1778. }
  1779. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1780. // figure out which node we're on
  1781. uint current_cpu;
  1782. int getcpu_ret = 0;
  1783. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1784. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1785. #else
  1786. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1787. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1788. #endif
  1789. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1790. g_state.numa.n_nodes = 0;
  1791. return;
  1792. }
  1793. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1794. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1795. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1796. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1797. node->n_cpus = 0;
  1798. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1799. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1800. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1801. if (stat(path, &st) == 0) {
  1802. node->cpus[node->n_cpus++] = c;
  1803. GGML_PRINT_DEBUG(" %u", c);
  1804. }
  1805. }
  1806. GGML_PRINT_DEBUG("\n");
  1807. }
  1808. if (ggml_is_numa()) {
  1809. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1810. if (fptr != NULL) {
  1811. char buf[42];
  1812. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1813. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1814. }
  1815. fclose(fptr);
  1816. }
  1817. }
  1818. #else
  1819. GGML_UNUSED(numa_flag);
  1820. // TODO
  1821. #endif
  1822. }
  1823. bool ggml_is_numa(void) {
  1824. return g_state.numa.n_nodes > 1;
  1825. }
  1826. ////////////////////////////////////////////////////////////////////////////////
  1827. void ggml_print_object(const struct ggml_object * obj) {
  1828. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1829. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1830. }
  1831. void ggml_print_objects(const struct ggml_context * ctx) {
  1832. struct ggml_object * obj = ctx->objects_begin;
  1833. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1834. while (obj != NULL) {
  1835. ggml_print_object(obj);
  1836. obj = obj->next;
  1837. }
  1838. GGML_PRINT("%s: --- end ---\n", __func__);
  1839. }
  1840. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1842. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1843. }
  1844. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1845. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1846. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1847. }
  1848. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1849. size_t nbytes;
  1850. size_t blck_size = ggml_blck_size(tensor->type);
  1851. if (blck_size == 1) {
  1852. nbytes = ggml_type_size(tensor->type);
  1853. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1854. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1855. }
  1856. }
  1857. else {
  1858. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1859. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1860. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1861. }
  1862. }
  1863. return nbytes;
  1864. }
  1865. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1866. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1867. }
  1868. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1869. return type_traits[type].blck_size;
  1870. }
  1871. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1872. return type_traits[type].type_size;
  1873. }
  1874. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1875. assert(ne % ggml_blck_size(type) == 0);
  1876. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1877. }
  1878. double ggml_type_sizef(enum ggml_type type) {
  1879. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1880. }
  1881. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1882. return type_traits[type].type_name;
  1883. }
  1884. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1885. return type_traits[type].is_quantized;
  1886. }
  1887. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1888. return GGML_OP_NAME[op];
  1889. }
  1890. const char * ggml_op_symbol(enum ggml_op op) {
  1891. return GGML_OP_SYMBOL[op];
  1892. }
  1893. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1894. return GGML_UNARY_OP_NAME[op];
  1895. }
  1896. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1897. if (t->op == GGML_OP_UNARY) {
  1898. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1899. return ggml_unary_op_name(uop);
  1900. }
  1901. else {
  1902. return ggml_op_name(t->op);
  1903. }
  1904. }
  1905. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1906. return ggml_type_size(tensor->type);
  1907. }
  1908. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1909. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1910. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1911. }
  1912. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1914. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1915. }
  1916. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1917. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1918. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1919. }
  1920. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1921. return tensor->ne[3] == 1;
  1922. }
  1923. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1924. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1925. if (tensor->ne[i] > 1) {
  1926. return i + 1;
  1927. }
  1928. }
  1929. return 1;
  1930. }
  1931. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1932. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1933. return (t0->ne[0] == t1->ne[0]) &&
  1934. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1935. (t1->ne[3]%t0->ne[3] == 0);
  1936. }
  1937. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1938. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1939. return (t0->ne[1] == t1->ne[1]) &&
  1940. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1941. (t1->ne[3]%t0->ne[3] == 0);
  1942. }
  1943. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1944. enum ggml_type wtype = GGML_TYPE_COUNT;
  1945. switch (ftype) {
  1946. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1947. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1948. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1949. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1950. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1951. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1952. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1953. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1954. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1955. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1956. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1957. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1958. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1959. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1960. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1961. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  1962. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1963. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1964. }
  1965. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1966. return wtype;
  1967. }
  1968. size_t ggml_tensor_overhead(void) {
  1969. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1970. }
  1971. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1972. return tensor->nb[0] > tensor->nb[1];
  1973. }
  1974. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1975. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1976. return
  1977. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1978. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1979. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1980. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1981. }
  1982. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1983. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1984. return
  1985. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1986. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1987. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1988. }
  1989. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1990. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1991. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1992. }
  1993. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1994. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1995. return
  1996. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1997. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1998. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1999. }
  2000. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2001. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2002. return
  2003. (t0->ne[0] == t1->ne[0] ) &&
  2004. (t0->ne[1] == t1->ne[1] ) &&
  2005. (t0->ne[2] == t1->ne[2] ) &&
  2006. (t0->ne[3] == t1->ne[3] );
  2007. }
  2008. // check if t1 can be represented as a repeatition of t0
  2009. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2010. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2011. return
  2012. (t1->ne[0]%t0->ne[0] == 0) &&
  2013. (t1->ne[1]%t0->ne[1] == 0) &&
  2014. (t1->ne[2]%t0->ne[2] == 0) &&
  2015. (t1->ne[3]%t0->ne[3] == 0);
  2016. }
  2017. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2019. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2020. }
  2021. static inline int ggml_up32(int n) {
  2022. return (n + 31) & ~31;
  2023. }
  2024. //static inline int ggml_up64(int n) {
  2025. // return (n + 63) & ~63;
  2026. //}
  2027. static inline int ggml_up(int n, int m) {
  2028. // assert m is a power of 2
  2029. GGML_ASSERT((m & (m - 1)) == 0);
  2030. return (n + m - 1) & ~(m - 1);
  2031. }
  2032. // assert that pointer is aligned to GGML_MEM_ALIGN
  2033. #define ggml_assert_aligned(ptr) \
  2034. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2035. ////////////////////////////////////////////////////////////////////////////////
  2036. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2037. // make this function thread safe
  2038. ggml_critical_section_start();
  2039. static bool is_first_call = true;
  2040. if (is_first_call) {
  2041. // initialize time system (required on Windows)
  2042. ggml_time_init();
  2043. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2044. {
  2045. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2046. ggml_fp16_t ii;
  2047. for (int i = 0; i < (1 << 16); ++i) {
  2048. uint16_t ui = i;
  2049. memcpy(&ii, &ui, sizeof(ii));
  2050. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2051. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2052. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2053. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2054. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2055. }
  2056. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2057. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2058. }
  2059. // initialize g_state
  2060. {
  2061. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2062. g_state = (struct ggml_state) {
  2063. /*.contexts =*/ { { 0 } },
  2064. /*.numa =*/ {
  2065. .n_nodes = 0,
  2066. .total_cpus = 0,
  2067. },
  2068. };
  2069. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2070. g_state.contexts[i].used = false;
  2071. }
  2072. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2073. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2074. }
  2075. #if defined(GGML_USE_CUBLAS)
  2076. ggml_init_cublas();
  2077. #elif defined(GGML_USE_CLBLAST)
  2078. ggml_cl_init();
  2079. #elif defined(GGML_USE_VULKAN)
  2080. ggml_vk_init_cpu_assist();
  2081. #elif defined(GGML_USE_SYCL)
  2082. ggml_init_sycl();
  2083. #endif
  2084. ggml_setup_op_has_task_pass();
  2085. is_first_call = false;
  2086. }
  2087. // find non-used context in g_state
  2088. struct ggml_context * ctx = NULL;
  2089. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2090. if (!g_state.contexts[i].used) {
  2091. g_state.contexts[i].used = true;
  2092. ctx = &g_state.contexts[i].context;
  2093. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2094. break;
  2095. }
  2096. }
  2097. if (ctx == NULL) {
  2098. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2099. ggml_critical_section_end();
  2100. return NULL;
  2101. }
  2102. // allow to call ggml_init with 0 size
  2103. if (params.mem_size == 0) {
  2104. params.mem_size = GGML_MEM_ALIGN;
  2105. }
  2106. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2107. *ctx = (struct ggml_context) {
  2108. /*.mem_size =*/ mem_size,
  2109. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2110. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2111. /*.no_alloc =*/ params.no_alloc,
  2112. /*.no_alloc_save =*/ params.no_alloc,
  2113. /*.n_objects =*/ 0,
  2114. /*.objects_begin =*/ NULL,
  2115. /*.objects_end =*/ NULL,
  2116. /*.scratch =*/ { 0, 0, NULL, },
  2117. /*.scratch_save =*/ { 0, 0, NULL, },
  2118. };
  2119. GGML_ASSERT(ctx->mem_buffer != NULL);
  2120. ggml_assert_aligned(ctx->mem_buffer);
  2121. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2122. ggml_critical_section_end();
  2123. return ctx;
  2124. }
  2125. void ggml_free(struct ggml_context * ctx) {
  2126. if (ctx == NULL) {
  2127. return;
  2128. }
  2129. // make this function thread safe
  2130. ggml_critical_section_start();
  2131. bool found = false;
  2132. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2133. if (&g_state.contexts[i].context == ctx) {
  2134. g_state.contexts[i].used = false;
  2135. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2136. __func__, i, ggml_used_mem(ctx));
  2137. if (ctx->mem_buffer_owned) {
  2138. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2139. }
  2140. found = true;
  2141. break;
  2142. }
  2143. }
  2144. if (!found) {
  2145. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2146. }
  2147. ggml_critical_section_end();
  2148. }
  2149. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2150. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2151. }
  2152. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2153. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2154. ctx->scratch = scratch;
  2155. return result;
  2156. }
  2157. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2158. return ctx->no_alloc;
  2159. }
  2160. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2161. ctx->no_alloc = no_alloc;
  2162. }
  2163. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2164. return ctx->mem_buffer;
  2165. }
  2166. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2167. return ctx->mem_size;
  2168. }
  2169. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2170. size_t max_size = 0;
  2171. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2172. size_t bytes = ggml_nbytes(tensor);
  2173. max_size = MAX(max_size, bytes);
  2174. }
  2175. return max_size;
  2176. }
  2177. // IMPORTANT:
  2178. // when creating "opt" tensors, always save and load the scratch buffer
  2179. // this is an error prone process, but it is necessary to support inplace
  2180. // operators when using scratch buffers
  2181. // TODO: implement a better way
  2182. static void ggml_scratch_save(struct ggml_context * ctx) {
  2183. // this is needed to allow opt tensors to store their data
  2184. // TODO: again, need to find a better way
  2185. ctx->no_alloc_save = ctx->no_alloc;
  2186. ctx->no_alloc = false;
  2187. ctx->scratch_save = ctx->scratch;
  2188. ctx->scratch.data = NULL;
  2189. }
  2190. static void ggml_scratch_load(struct ggml_context * ctx) {
  2191. ctx->no_alloc = ctx->no_alloc_save;
  2192. ctx->scratch = ctx->scratch_save;
  2193. }
  2194. ////////////////////////////////////////////////////////////////////////////////
  2195. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2196. // always insert objects at the end of the context's memory pool
  2197. struct ggml_object * obj_cur = ctx->objects_end;
  2198. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2199. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2200. const size_t cur_end = cur_offs + cur_size;
  2201. // align to GGML_MEM_ALIGN
  2202. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2203. char * const mem_buffer = ctx->mem_buffer;
  2204. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2205. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2206. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2207. __func__, cur_end + size_needed, ctx->mem_size);
  2208. assert(false);
  2209. return NULL;
  2210. }
  2211. *obj_new = (struct ggml_object) {
  2212. .offs = cur_end + GGML_OBJECT_SIZE,
  2213. .size = size_needed,
  2214. .next = NULL,
  2215. .type = type,
  2216. };
  2217. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2218. if (obj_cur != NULL) {
  2219. obj_cur->next = obj_new;
  2220. } else {
  2221. // this is the first object in this context
  2222. ctx->objects_begin = obj_new;
  2223. }
  2224. ctx->objects_end = obj_new;
  2225. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2226. return obj_new;
  2227. }
  2228. static struct ggml_tensor * ggml_new_tensor_impl(
  2229. struct ggml_context * ctx,
  2230. enum ggml_type type,
  2231. int n_dims,
  2232. const int64_t * ne,
  2233. struct ggml_tensor * view_src,
  2234. size_t view_offs) {
  2235. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2236. // find the base tensor and absolute offset
  2237. if (view_src != NULL && view_src->view_src != NULL) {
  2238. view_offs += view_src->view_offs;
  2239. view_src = view_src->view_src;
  2240. }
  2241. size_t data_size = ggml_row_size(type, ne[0]);
  2242. for (int i = 1; i < n_dims; i++) {
  2243. data_size *= ne[i];
  2244. }
  2245. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2246. void * data = view_src != NULL ? view_src->data : NULL;
  2247. if (data != NULL) {
  2248. data = (char *) data + view_offs;
  2249. }
  2250. size_t obj_alloc_size = 0;
  2251. if (view_src == NULL && !ctx->no_alloc) {
  2252. if (ctx->scratch.data != NULL) {
  2253. // allocate tensor data in the scratch buffer
  2254. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2255. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2256. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2257. assert(false);
  2258. return NULL;
  2259. }
  2260. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2261. ctx->scratch.offs += data_size;
  2262. } else {
  2263. // allocate tensor data in the context's memory pool
  2264. obj_alloc_size = data_size;
  2265. }
  2266. }
  2267. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2268. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2269. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2270. *result = (struct ggml_tensor) {
  2271. /*.type =*/ type,
  2272. /*.backend =*/ GGML_BACKEND_CPU,
  2273. /*.buffer =*/ NULL,
  2274. /*.ne =*/ { 1, 1, 1, 1 },
  2275. /*.nb =*/ { 0, 0, 0, 0 },
  2276. /*.op =*/ GGML_OP_NONE,
  2277. /*.op_params =*/ { 0 },
  2278. /*.flags =*/ 0,
  2279. /*.grad =*/ NULL,
  2280. /*.src =*/ { NULL },
  2281. /*.perf_runs =*/ 0,
  2282. /*.perf_cycles =*/ 0,
  2283. /*.perf_time_us =*/ 0,
  2284. /*.view_src =*/ view_src,
  2285. /*.view_offs =*/ view_offs,
  2286. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2287. /*.name =*/ { 0 },
  2288. /*.extra =*/ NULL,
  2289. /*.padding =*/ { 0 },
  2290. };
  2291. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2292. //ggml_assert_aligned(result->data);
  2293. for (int i = 0; i < n_dims; i++) {
  2294. result->ne[i] = ne[i];
  2295. }
  2296. result->nb[0] = ggml_type_size(type);
  2297. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2298. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2299. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2300. }
  2301. ctx->n_objects++;
  2302. return result;
  2303. }
  2304. struct ggml_tensor * ggml_new_tensor(
  2305. struct ggml_context * ctx,
  2306. enum ggml_type type,
  2307. int n_dims,
  2308. const int64_t * ne) {
  2309. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2310. }
  2311. struct ggml_tensor * ggml_new_tensor_1d(
  2312. struct ggml_context * ctx,
  2313. enum ggml_type type,
  2314. int64_t ne0) {
  2315. return ggml_new_tensor(ctx, type, 1, &ne0);
  2316. }
  2317. struct ggml_tensor * ggml_new_tensor_2d(
  2318. struct ggml_context * ctx,
  2319. enum ggml_type type,
  2320. int64_t ne0,
  2321. int64_t ne1) {
  2322. const int64_t ne[2] = { ne0, ne1 };
  2323. return ggml_new_tensor(ctx, type, 2, ne);
  2324. }
  2325. struct ggml_tensor * ggml_new_tensor_3d(
  2326. struct ggml_context * ctx,
  2327. enum ggml_type type,
  2328. int64_t ne0,
  2329. int64_t ne1,
  2330. int64_t ne2) {
  2331. const int64_t ne[3] = { ne0, ne1, ne2 };
  2332. return ggml_new_tensor(ctx, type, 3, ne);
  2333. }
  2334. struct ggml_tensor * ggml_new_tensor_4d(
  2335. struct ggml_context * ctx,
  2336. enum ggml_type type,
  2337. int64_t ne0,
  2338. int64_t ne1,
  2339. int64_t ne2,
  2340. int64_t ne3) {
  2341. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2342. return ggml_new_tensor(ctx, type, 4, ne);
  2343. }
  2344. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2345. ggml_scratch_save(ctx);
  2346. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2347. ggml_scratch_load(ctx);
  2348. ggml_set_i32(result, value);
  2349. return result;
  2350. }
  2351. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2352. ggml_scratch_save(ctx);
  2353. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2354. ggml_scratch_load(ctx);
  2355. ggml_set_f32(result, value);
  2356. return result;
  2357. }
  2358. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2359. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2360. }
  2361. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2362. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2363. assert(params_size <= GGML_MAX_OP_PARAMS);
  2364. memcpy(tensor->op_params, params, params_size);
  2365. }
  2366. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2367. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2368. return ((const int32_t *)(tensor->op_params))[i];
  2369. }
  2370. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2371. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2372. ((int32_t *)(tensor->op_params))[i] = value;
  2373. }
  2374. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2375. memset(tensor->data, 0, ggml_nbytes(tensor));
  2376. return tensor;
  2377. }
  2378. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2379. const int n = ggml_nrows(tensor);
  2380. const int nc = tensor->ne[0];
  2381. const size_t n1 = tensor->nb[1];
  2382. char * const data = tensor->data;
  2383. switch (tensor->type) {
  2384. case GGML_TYPE_I8:
  2385. {
  2386. assert(tensor->nb[0] == sizeof(int8_t));
  2387. for (int i = 0; i < n; i++) {
  2388. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2389. }
  2390. } break;
  2391. case GGML_TYPE_I16:
  2392. {
  2393. assert(tensor->nb[0] == sizeof(int16_t));
  2394. for (int i = 0; i < n; i++) {
  2395. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2396. }
  2397. } break;
  2398. case GGML_TYPE_I32:
  2399. {
  2400. assert(tensor->nb[0] == sizeof(int32_t));
  2401. for (int i = 0; i < n; i++) {
  2402. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2403. }
  2404. } break;
  2405. case GGML_TYPE_F16:
  2406. {
  2407. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2408. for (int i = 0; i < n; i++) {
  2409. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2410. }
  2411. } break;
  2412. case GGML_TYPE_F32:
  2413. {
  2414. assert(tensor->nb[0] == sizeof(float));
  2415. for (int i = 0; i < n; i++) {
  2416. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2417. }
  2418. } break;
  2419. default:
  2420. {
  2421. GGML_ASSERT(false);
  2422. } break;
  2423. }
  2424. return tensor;
  2425. }
  2426. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2427. const int n = ggml_nrows(tensor);
  2428. const int nc = tensor->ne[0];
  2429. const size_t n1 = tensor->nb[1];
  2430. char * const data = tensor->data;
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. assert(tensor->nb[0] == sizeof(int8_t));
  2435. for (int i = 0; i < n; i++) {
  2436. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2437. }
  2438. } break;
  2439. case GGML_TYPE_I16:
  2440. {
  2441. assert(tensor->nb[0] == sizeof(int16_t));
  2442. for (int i = 0; i < n; i++) {
  2443. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2444. }
  2445. } break;
  2446. case GGML_TYPE_I32:
  2447. {
  2448. assert(tensor->nb[0] == sizeof(int32_t));
  2449. for (int i = 0; i < n; i++) {
  2450. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2451. }
  2452. } break;
  2453. case GGML_TYPE_F16:
  2454. {
  2455. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2456. for (int i = 0; i < n; i++) {
  2457. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2458. }
  2459. } break;
  2460. case GGML_TYPE_F32:
  2461. {
  2462. assert(tensor->nb[0] == sizeof(float));
  2463. for (int i = 0; i < n; i++) {
  2464. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2465. }
  2466. } break;
  2467. default:
  2468. {
  2469. GGML_ASSERT(false);
  2470. } break;
  2471. }
  2472. return tensor;
  2473. }
  2474. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2475. const int64_t ne2 = tensor->ne[2];
  2476. const int64_t ne1 = tensor->ne[1];
  2477. const int64_t ne0 = tensor->ne[0];
  2478. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2479. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2480. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2481. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2482. if (i0) {
  2483. * i0 = i0_;
  2484. }
  2485. if (i1) {
  2486. * i1 = i1_;
  2487. }
  2488. if (i2) {
  2489. * i2 = i2_;
  2490. }
  2491. if (i3) {
  2492. * i3 = i3_;
  2493. }
  2494. }
  2495. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2496. if (!ggml_is_contiguous(tensor)) {
  2497. int64_t id[4] = { 0, 0, 0, 0 };
  2498. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2499. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2500. }
  2501. switch (tensor->type) {
  2502. case GGML_TYPE_I8:
  2503. {
  2504. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2505. return ((int8_t *)(tensor->data))[i];
  2506. }
  2507. case GGML_TYPE_I16:
  2508. {
  2509. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2510. return ((int16_t *)(tensor->data))[i];
  2511. }
  2512. case GGML_TYPE_I32:
  2513. {
  2514. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2515. return ((int32_t *)(tensor->data))[i];
  2516. }
  2517. case GGML_TYPE_F16:
  2518. {
  2519. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2520. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2521. }
  2522. case GGML_TYPE_F32:
  2523. {
  2524. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2525. return ((float *)(tensor->data))[i];
  2526. }
  2527. default:
  2528. {
  2529. GGML_ASSERT(false);
  2530. }
  2531. }
  2532. return 0.0f;
  2533. }
  2534. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2535. if (!ggml_is_contiguous(tensor)) {
  2536. int64_t id[4] = { 0, 0, 0, 0 };
  2537. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2538. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2539. return;
  2540. }
  2541. switch (tensor->type) {
  2542. case GGML_TYPE_I8:
  2543. {
  2544. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2545. ((int8_t *)(tensor->data))[i] = value;
  2546. } break;
  2547. case GGML_TYPE_I16:
  2548. {
  2549. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2550. ((int16_t *)(tensor->data))[i] = value;
  2551. } break;
  2552. case GGML_TYPE_I32:
  2553. {
  2554. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2555. ((int32_t *)(tensor->data))[i] = value;
  2556. } break;
  2557. case GGML_TYPE_F16:
  2558. {
  2559. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2560. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2561. } break;
  2562. case GGML_TYPE_F32:
  2563. {
  2564. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2565. ((float *)(tensor->data))[i] = value;
  2566. } break;
  2567. default:
  2568. {
  2569. GGML_ASSERT(false);
  2570. } break;
  2571. }
  2572. }
  2573. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2574. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2575. switch (tensor->type) {
  2576. case GGML_TYPE_I8:
  2577. return ((int8_t *) data)[0];
  2578. case GGML_TYPE_I16:
  2579. return ((int16_t *) data)[0];
  2580. case GGML_TYPE_I32:
  2581. return ((int32_t *) data)[0];
  2582. case GGML_TYPE_F16:
  2583. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2584. case GGML_TYPE_F32:
  2585. return ((float *) data)[0];
  2586. default:
  2587. GGML_ASSERT(false);
  2588. }
  2589. return 0.0f;
  2590. }
  2591. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2592. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2593. switch (tensor->type) {
  2594. case GGML_TYPE_I8:
  2595. {
  2596. ((int8_t *)(data))[0] = value;
  2597. } break;
  2598. case GGML_TYPE_I16:
  2599. {
  2600. ((int16_t *)(data))[0] = value;
  2601. } break;
  2602. case GGML_TYPE_I32:
  2603. {
  2604. ((int32_t *)(data))[0] = value;
  2605. } break;
  2606. case GGML_TYPE_F16:
  2607. {
  2608. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2609. } break;
  2610. case GGML_TYPE_F32:
  2611. {
  2612. ((float *)(data))[0] = value;
  2613. } break;
  2614. default:
  2615. {
  2616. GGML_ASSERT(false);
  2617. } break;
  2618. }
  2619. }
  2620. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2621. if (!ggml_is_contiguous(tensor)) {
  2622. int64_t id[4] = { 0, 0, 0, 0 };
  2623. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2624. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2625. }
  2626. switch (tensor->type) {
  2627. case GGML_TYPE_I8:
  2628. {
  2629. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2630. return ((int8_t *)(tensor->data))[i];
  2631. }
  2632. case GGML_TYPE_I16:
  2633. {
  2634. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2635. return ((int16_t *)(tensor->data))[i];
  2636. }
  2637. case GGML_TYPE_I32:
  2638. {
  2639. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2640. return ((int32_t *)(tensor->data))[i];
  2641. }
  2642. case GGML_TYPE_F16:
  2643. {
  2644. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2645. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2646. }
  2647. case GGML_TYPE_F32:
  2648. {
  2649. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2650. return ((float *)(tensor->data))[i];
  2651. }
  2652. default:
  2653. {
  2654. GGML_ASSERT(false);
  2655. }
  2656. }
  2657. return 0.0f;
  2658. }
  2659. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2660. if (!ggml_is_contiguous(tensor)) {
  2661. int64_t id[4] = { 0, 0, 0, 0 };
  2662. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2663. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2664. return;
  2665. }
  2666. switch (tensor->type) {
  2667. case GGML_TYPE_I8:
  2668. {
  2669. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2670. ((int8_t *)(tensor->data))[i] = value;
  2671. } break;
  2672. case GGML_TYPE_I16:
  2673. {
  2674. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2675. ((int16_t *)(tensor->data))[i] = value;
  2676. } break;
  2677. case GGML_TYPE_I32:
  2678. {
  2679. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2680. ((int32_t *)(tensor->data))[i] = value;
  2681. } break;
  2682. case GGML_TYPE_F16:
  2683. {
  2684. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2685. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2686. } break;
  2687. case GGML_TYPE_F32:
  2688. {
  2689. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2690. ((float *)(tensor->data))[i] = value;
  2691. } break;
  2692. default:
  2693. {
  2694. GGML_ASSERT(false);
  2695. } break;
  2696. }
  2697. }
  2698. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2699. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2700. switch (tensor->type) {
  2701. case GGML_TYPE_I8:
  2702. return ((int8_t *) data)[0];
  2703. case GGML_TYPE_I16:
  2704. return ((int16_t *) data)[0];
  2705. case GGML_TYPE_I32:
  2706. return ((int32_t *) data)[0];
  2707. case GGML_TYPE_F16:
  2708. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2709. case GGML_TYPE_F32:
  2710. return ((float *) data)[0];
  2711. default:
  2712. GGML_ASSERT(false);
  2713. }
  2714. return 0.0f;
  2715. }
  2716. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2717. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2718. switch (tensor->type) {
  2719. case GGML_TYPE_I8:
  2720. {
  2721. ((int8_t *)(data))[0] = value;
  2722. } break;
  2723. case GGML_TYPE_I16:
  2724. {
  2725. ((int16_t *)(data))[0] = value;
  2726. } break;
  2727. case GGML_TYPE_I32:
  2728. {
  2729. ((int32_t *)(data))[0] = value;
  2730. } break;
  2731. case GGML_TYPE_F16:
  2732. {
  2733. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2734. } break;
  2735. case GGML_TYPE_F32:
  2736. {
  2737. ((float *)(data))[0] = value;
  2738. } break;
  2739. default:
  2740. {
  2741. GGML_ASSERT(false);
  2742. } break;
  2743. }
  2744. }
  2745. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2746. return tensor->data;
  2747. }
  2748. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2749. assert(tensor->type == GGML_TYPE_F32);
  2750. return (float *)(tensor->data);
  2751. }
  2752. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2753. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2754. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2755. }
  2756. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2757. return tensor->name;
  2758. }
  2759. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2760. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2761. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2762. return tensor;
  2763. }
  2764. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2765. va_list args;
  2766. va_start(args, fmt);
  2767. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2768. va_end(args);
  2769. return tensor;
  2770. }
  2771. struct ggml_tensor * ggml_view_tensor(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * src) {
  2774. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2775. ggml_format_name(result, "%s (view)", src->name);
  2776. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2777. result->nb[i] = src->nb[i];
  2778. }
  2779. return result;
  2780. }
  2781. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2782. struct ggml_object * obj = ctx->objects_begin;
  2783. char * const mem_buffer = ctx->mem_buffer;
  2784. while (obj != NULL) {
  2785. if (obj->type == GGML_OBJECT_TENSOR) {
  2786. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2787. }
  2788. obj = obj->next;
  2789. }
  2790. return NULL;
  2791. }
  2792. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2793. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2794. obj = obj->next;
  2795. char * const mem_buffer = ctx->mem_buffer;
  2796. while (obj != NULL) {
  2797. if (obj->type == GGML_OBJECT_TENSOR) {
  2798. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2799. }
  2800. obj = obj->next;
  2801. }
  2802. return NULL;
  2803. }
  2804. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2805. struct ggml_object * obj = ctx->objects_begin;
  2806. char * const mem_buffer = ctx->mem_buffer;
  2807. while (obj != NULL) {
  2808. if (obj->type == GGML_OBJECT_TENSOR) {
  2809. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2810. if (strcmp(cur->name, name) == 0) {
  2811. return cur;
  2812. }
  2813. }
  2814. obj = obj->next;
  2815. }
  2816. return NULL;
  2817. }
  2818. ////////////////////////////////////////////////////////////////////////////////
  2819. // ggml_dup
  2820. static struct ggml_tensor * ggml_dup_impl(
  2821. struct ggml_context * ctx,
  2822. struct ggml_tensor * a,
  2823. bool inplace) {
  2824. bool is_node = false;
  2825. if (!inplace && (a->grad)) {
  2826. is_node = true;
  2827. }
  2828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2829. result->op = GGML_OP_DUP;
  2830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2831. result->src[0] = a;
  2832. return result;
  2833. }
  2834. struct ggml_tensor * ggml_dup(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a) {
  2837. return ggml_dup_impl(ctx, a, false);
  2838. }
  2839. struct ggml_tensor * ggml_dup_inplace(
  2840. struct ggml_context * ctx,
  2841. struct ggml_tensor * a) {
  2842. return ggml_dup_impl(ctx, a, true);
  2843. }
  2844. // ggml_add
  2845. static struct ggml_tensor * ggml_add_impl(
  2846. struct ggml_context * ctx,
  2847. struct ggml_tensor * a,
  2848. struct ggml_tensor * b,
  2849. bool inplace) {
  2850. GGML_ASSERT(ggml_can_repeat(b, a));
  2851. bool is_node = false;
  2852. if (!inplace && (a->grad || b->grad)) {
  2853. // TODO: support backward pass for broadcasting
  2854. GGML_ASSERT(ggml_are_same_shape(a, b));
  2855. is_node = true;
  2856. }
  2857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2858. result->op = GGML_OP_ADD;
  2859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2860. result->src[0] = a;
  2861. result->src[1] = b;
  2862. return result;
  2863. }
  2864. struct ggml_tensor * ggml_add(
  2865. struct ggml_context * ctx,
  2866. struct ggml_tensor * a,
  2867. struct ggml_tensor * b) {
  2868. return ggml_add_impl(ctx, a, b, false);
  2869. }
  2870. struct ggml_tensor * ggml_add_inplace(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * a,
  2873. struct ggml_tensor * b) {
  2874. return ggml_add_impl(ctx, a, b, true);
  2875. }
  2876. // ggml_add_cast
  2877. static struct ggml_tensor * ggml_add_cast_impl(
  2878. struct ggml_context * ctx,
  2879. struct ggml_tensor * a,
  2880. struct ggml_tensor * b,
  2881. enum ggml_type type) {
  2882. // TODO: support less-strict constraint
  2883. // GGML_ASSERT(ggml_can_repeat(b, a));
  2884. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2885. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2886. bool is_node = false;
  2887. if (a->grad || b->grad) {
  2888. // TODO: support backward pass for broadcasting
  2889. GGML_ASSERT(ggml_are_same_shape(a, b));
  2890. is_node = true;
  2891. }
  2892. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2893. result->op = GGML_OP_ADD;
  2894. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2895. result->src[0] = a;
  2896. result->src[1] = b;
  2897. return result;
  2898. }
  2899. struct ggml_tensor * ggml_add_cast(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a,
  2902. struct ggml_tensor * b,
  2903. enum ggml_type type) {
  2904. return ggml_add_cast_impl(ctx, a, b, type);
  2905. }
  2906. // ggml_add1
  2907. static struct ggml_tensor * ggml_add1_impl(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a,
  2910. struct ggml_tensor * b,
  2911. bool inplace) {
  2912. GGML_ASSERT(ggml_is_scalar(b));
  2913. GGML_ASSERT(ggml_is_padded_1d(a));
  2914. bool is_node = false;
  2915. if (a->grad || b->grad) {
  2916. is_node = true;
  2917. }
  2918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2919. result->op = GGML_OP_ADD1;
  2920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2921. result->src[0] = a;
  2922. result->src[1] = b;
  2923. return result;
  2924. }
  2925. struct ggml_tensor * ggml_add1(
  2926. struct ggml_context * ctx,
  2927. struct ggml_tensor * a,
  2928. struct ggml_tensor * b) {
  2929. return ggml_add1_impl(ctx, a, b, false);
  2930. }
  2931. struct ggml_tensor * ggml_add1_inplace(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a,
  2934. struct ggml_tensor * b) {
  2935. return ggml_add1_impl(ctx, a, b, true);
  2936. }
  2937. // ggml_acc
  2938. static struct ggml_tensor * ggml_acc_impl(
  2939. struct ggml_context * ctx,
  2940. struct ggml_tensor * a,
  2941. struct ggml_tensor * b,
  2942. size_t nb1,
  2943. size_t nb2,
  2944. size_t nb3,
  2945. size_t offset,
  2946. bool inplace) {
  2947. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2948. GGML_ASSERT(ggml_is_contiguous(a));
  2949. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2950. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2951. bool is_node = false;
  2952. if (!inplace && (a->grad || b->grad)) {
  2953. is_node = true;
  2954. }
  2955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2956. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2957. ggml_set_op_params(result, params, sizeof(params));
  2958. result->op = GGML_OP_ACC;
  2959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2960. result->src[0] = a;
  2961. result->src[1] = b;
  2962. return result;
  2963. }
  2964. struct ggml_tensor * ggml_acc(
  2965. struct ggml_context * ctx,
  2966. struct ggml_tensor * a,
  2967. struct ggml_tensor * b,
  2968. size_t nb1,
  2969. size_t nb2,
  2970. size_t nb3,
  2971. size_t offset) {
  2972. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2973. }
  2974. struct ggml_tensor * ggml_acc_inplace(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a,
  2977. struct ggml_tensor * b,
  2978. size_t nb1,
  2979. size_t nb2,
  2980. size_t nb3,
  2981. size_t offset) {
  2982. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2983. }
  2984. // ggml_sub
  2985. static struct ggml_tensor * ggml_sub_impl(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. struct ggml_tensor * b,
  2989. bool inplace) {
  2990. GGML_ASSERT(ggml_are_same_shape(a, b));
  2991. bool is_node = false;
  2992. if (!inplace && (a->grad || b->grad)) {
  2993. is_node = true;
  2994. }
  2995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2996. result->op = GGML_OP_SUB;
  2997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2998. result->src[0] = a;
  2999. result->src[1] = b;
  3000. return result;
  3001. }
  3002. struct ggml_tensor * ggml_sub(
  3003. struct ggml_context * ctx,
  3004. struct ggml_tensor * a,
  3005. struct ggml_tensor * b) {
  3006. return ggml_sub_impl(ctx, a, b, false);
  3007. }
  3008. struct ggml_tensor * ggml_sub_inplace(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a,
  3011. struct ggml_tensor * b) {
  3012. return ggml_sub_impl(ctx, a, b, true);
  3013. }
  3014. // ggml_mul
  3015. static struct ggml_tensor * ggml_mul_impl(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b,
  3019. bool inplace) {
  3020. GGML_ASSERT(ggml_can_repeat(b, a));
  3021. bool is_node = false;
  3022. if (!inplace && (a->grad || b->grad)) {
  3023. // TODO: support backward pass for broadcasting
  3024. GGML_ASSERT(ggml_are_same_shape(a, b));
  3025. is_node = true;
  3026. }
  3027. if (inplace) {
  3028. GGML_ASSERT(!is_node);
  3029. }
  3030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3031. result->op = GGML_OP_MUL;
  3032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3033. result->src[0] = a;
  3034. result->src[1] = b;
  3035. return result;
  3036. }
  3037. struct ggml_tensor * ggml_mul(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b) {
  3041. return ggml_mul_impl(ctx, a, b, false);
  3042. }
  3043. struct ggml_tensor * ggml_mul_inplace(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b) {
  3047. return ggml_mul_impl(ctx, a, b, true);
  3048. }
  3049. // ggml_div
  3050. static struct ggml_tensor * ggml_div_impl(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a,
  3053. struct ggml_tensor * b,
  3054. bool inplace) {
  3055. GGML_ASSERT(ggml_can_repeat(b, a));
  3056. bool is_node = false;
  3057. if (!inplace && (a->grad || b->grad)) {
  3058. is_node = true;
  3059. }
  3060. if (inplace) {
  3061. GGML_ASSERT(!is_node);
  3062. }
  3063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3064. result->op = GGML_OP_DIV;
  3065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3066. result->src[0] = a;
  3067. result->src[1] = b;
  3068. return result;
  3069. }
  3070. struct ggml_tensor * ggml_div(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a,
  3073. struct ggml_tensor * b) {
  3074. return ggml_div_impl(ctx, a, b, false);
  3075. }
  3076. struct ggml_tensor * ggml_div_inplace(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. return ggml_div_impl(ctx, a, b, true);
  3081. }
  3082. // ggml_sqr
  3083. static struct ggml_tensor * ggml_sqr_impl(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a,
  3086. bool inplace) {
  3087. bool is_node = false;
  3088. if (!inplace && (a->grad)) {
  3089. is_node = true;
  3090. }
  3091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3092. result->op = GGML_OP_SQR;
  3093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3094. result->src[0] = a;
  3095. return result;
  3096. }
  3097. struct ggml_tensor * ggml_sqr(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a) {
  3100. return ggml_sqr_impl(ctx, a, false);
  3101. }
  3102. struct ggml_tensor * ggml_sqr_inplace(
  3103. struct ggml_context * ctx,
  3104. struct ggml_tensor * a) {
  3105. return ggml_sqr_impl(ctx, a, true);
  3106. }
  3107. // ggml_sqrt
  3108. static struct ggml_tensor * ggml_sqrt_impl(
  3109. struct ggml_context * ctx,
  3110. struct ggml_tensor * a,
  3111. bool inplace) {
  3112. bool is_node = false;
  3113. if (!inplace && (a->grad)) {
  3114. is_node = true;
  3115. }
  3116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3117. result->op = GGML_OP_SQRT;
  3118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3119. result->src[0] = a;
  3120. return result;
  3121. }
  3122. struct ggml_tensor * ggml_sqrt(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_sqrt_impl(ctx, a, false);
  3126. }
  3127. struct ggml_tensor * ggml_sqrt_inplace(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_sqrt_impl(ctx, a, true);
  3131. }
  3132. // ggml_log
  3133. static struct ggml_tensor * ggml_log_impl(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a,
  3136. bool inplace) {
  3137. bool is_node = false;
  3138. if (!inplace && (a->grad)) {
  3139. is_node = true;
  3140. }
  3141. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3142. result->op = GGML_OP_LOG;
  3143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3144. result->src[0] = a;
  3145. return result;
  3146. }
  3147. struct ggml_tensor * ggml_log(
  3148. struct ggml_context * ctx,
  3149. struct ggml_tensor * a) {
  3150. return ggml_log_impl(ctx, a, false);
  3151. }
  3152. struct ggml_tensor * ggml_log_inplace(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a) {
  3155. return ggml_log_impl(ctx, a, true);
  3156. }
  3157. // ggml_sum
  3158. struct ggml_tensor * ggml_sum(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a) {
  3161. bool is_node = false;
  3162. if (a->grad) {
  3163. is_node = true;
  3164. }
  3165. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3166. result->op = GGML_OP_SUM;
  3167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3168. result->src[0] = a;
  3169. return result;
  3170. }
  3171. // ggml_sum_rows
  3172. struct ggml_tensor * ggml_sum_rows(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. bool is_node = false;
  3176. if (a->grad) {
  3177. is_node = true;
  3178. }
  3179. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3180. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3181. ne[i] = a->ne[i];
  3182. }
  3183. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3184. result->op = GGML_OP_SUM_ROWS;
  3185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3186. result->src[0] = a;
  3187. return result;
  3188. }
  3189. // ggml_mean
  3190. struct ggml_tensor * ggml_mean(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. bool is_node = false;
  3194. if (a->grad) {
  3195. GGML_ASSERT(false); // TODO: implement
  3196. is_node = true;
  3197. }
  3198. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3199. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3200. result->op = GGML_OP_MEAN;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src[0] = a;
  3203. return result;
  3204. }
  3205. // ggml_argmax
  3206. struct ggml_tensor * ggml_argmax(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. GGML_ASSERT(ggml_is_matrix(a));
  3210. bool is_node = false;
  3211. if (a->grad) {
  3212. GGML_ASSERT(false);
  3213. is_node = true;
  3214. }
  3215. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3216. result->op = GGML_OP_ARGMAX;
  3217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3218. result->src[0] = a;
  3219. return result;
  3220. }
  3221. // ggml_repeat
  3222. struct ggml_tensor * ggml_repeat(
  3223. struct ggml_context * ctx,
  3224. struct ggml_tensor * a,
  3225. struct ggml_tensor * b) {
  3226. GGML_ASSERT(ggml_can_repeat(a, b));
  3227. bool is_node = false;
  3228. if (a->grad) {
  3229. is_node = true;
  3230. }
  3231. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3232. result->op = GGML_OP_REPEAT;
  3233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3234. result->src[0] = a;
  3235. return result;
  3236. }
  3237. // ggml_repeat_back
  3238. struct ggml_tensor * ggml_repeat_back(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. struct ggml_tensor * b) {
  3242. GGML_ASSERT(ggml_can_repeat(b, a));
  3243. bool is_node = false;
  3244. if (a->grad) {
  3245. is_node = true;
  3246. }
  3247. if (ggml_are_same_shape(a, b) && !is_node) {
  3248. return a;
  3249. }
  3250. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3251. result->op = GGML_OP_REPEAT_BACK;
  3252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3253. result->src[0] = a;
  3254. return result;
  3255. }
  3256. // ggml_concat
  3257. struct ggml_tensor * ggml_concat(
  3258. struct ggml_context* ctx,
  3259. struct ggml_tensor* a,
  3260. struct ggml_tensor* b) {
  3261. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3262. bool is_node = false;
  3263. if (a->grad || b->grad) {
  3264. is_node = true;
  3265. }
  3266. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3267. result->op = GGML_OP_CONCAT;
  3268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3269. result->src[0] = a;
  3270. result->src[1] = b;
  3271. return result;
  3272. }
  3273. // ggml_abs
  3274. struct ggml_tensor * ggml_abs(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3278. }
  3279. struct ggml_tensor * ggml_abs_inplace(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a) {
  3282. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3283. }
  3284. // ggml_sgn
  3285. struct ggml_tensor * ggml_sgn(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a) {
  3288. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3289. }
  3290. struct ggml_tensor * ggml_sgn_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a) {
  3293. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3294. }
  3295. // ggml_neg
  3296. struct ggml_tensor * ggml_neg(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a) {
  3299. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3300. }
  3301. struct ggml_tensor * ggml_neg_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a) {
  3304. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3305. }
  3306. // ggml_step
  3307. struct ggml_tensor * ggml_step(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3311. }
  3312. struct ggml_tensor * ggml_step_inplace(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a) {
  3315. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3316. }
  3317. // ggml_tanh
  3318. struct ggml_tensor * ggml_tanh(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a) {
  3321. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3322. }
  3323. struct ggml_tensor * ggml_tanh_inplace(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a) {
  3326. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3327. }
  3328. // ggml_elu
  3329. struct ggml_tensor * ggml_elu(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a) {
  3332. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3333. }
  3334. struct ggml_tensor * ggml_elu_inplace(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a) {
  3337. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3338. }
  3339. // ggml_relu
  3340. struct ggml_tensor * ggml_relu(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a) {
  3343. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3344. }
  3345. struct ggml_tensor * ggml_relu_inplace(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a) {
  3348. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3349. }
  3350. // ggml_leaky_relu
  3351. struct ggml_tensor * ggml_leaky_relu(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3354. bool is_node = false;
  3355. if (!inplace && (a->grad)) {
  3356. is_node = true;
  3357. }
  3358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3359. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3360. result->op = GGML_OP_LEAKY_RELU;
  3361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3362. result->src[0] = a;
  3363. return result;
  3364. }
  3365. // ggml_gelu
  3366. struct ggml_tensor * ggml_gelu(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3370. }
  3371. struct ggml_tensor * ggml_gelu_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3375. }
  3376. // ggml_gelu_quick
  3377. struct ggml_tensor * ggml_gelu_quick(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3381. }
  3382. struct ggml_tensor * ggml_gelu_quick_inplace(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3386. }
  3387. // ggml_silu
  3388. struct ggml_tensor * ggml_silu(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a) {
  3391. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3392. }
  3393. struct ggml_tensor * ggml_silu_inplace(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a) {
  3396. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3397. }
  3398. // ggml_silu_back
  3399. struct ggml_tensor * ggml_silu_back(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a,
  3402. struct ggml_tensor * b) {
  3403. bool is_node = false;
  3404. if (a->grad || b->grad) {
  3405. // TODO: implement backward
  3406. is_node = true;
  3407. }
  3408. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3409. result->op = GGML_OP_SILU_BACK;
  3410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3411. result->src[0] = a;
  3412. result->src[1] = b;
  3413. return result;
  3414. }
  3415. // ggml hardswish
  3416. struct ggml_tensor * ggml_hardswish(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a) {
  3419. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3420. }
  3421. // ggml hardsigmoid
  3422. struct ggml_tensor * ggml_hardsigmoid(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a) {
  3425. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3426. }
  3427. // ggml_norm
  3428. static struct ggml_tensor * ggml_norm_impl(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a,
  3431. float eps,
  3432. bool inplace) {
  3433. bool is_node = false;
  3434. if (!inplace && (a->grad)) {
  3435. GGML_ASSERT(false); // TODO: implement backward
  3436. is_node = true;
  3437. }
  3438. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3439. ggml_set_op_params(result, &eps, sizeof(eps));
  3440. result->op = GGML_OP_NORM;
  3441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3442. result->src[0] = a;
  3443. return result;
  3444. }
  3445. struct ggml_tensor * ggml_norm(
  3446. struct ggml_context * ctx,
  3447. struct ggml_tensor * a,
  3448. float eps) {
  3449. return ggml_norm_impl(ctx, a, eps, false);
  3450. }
  3451. struct ggml_tensor * ggml_norm_inplace(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a,
  3454. float eps) {
  3455. return ggml_norm_impl(ctx, a, eps, true);
  3456. }
  3457. // ggml_rms_norm
  3458. static struct ggml_tensor * ggml_rms_norm_impl(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. float eps,
  3462. bool inplace) {
  3463. bool is_node = false;
  3464. if (!inplace && (a->grad)) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. ggml_set_op_params(result, &eps, sizeof(eps));
  3469. result->op = GGML_OP_RMS_NORM;
  3470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3471. result->src[0] = a;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_rms_norm(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. float eps) {
  3478. return ggml_rms_norm_impl(ctx, a, eps, false);
  3479. }
  3480. struct ggml_tensor * ggml_rms_norm_inplace(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. float eps) {
  3484. return ggml_rms_norm_impl(ctx, a, eps, true);
  3485. }
  3486. // ggml_rms_norm_back
  3487. struct ggml_tensor * ggml_rms_norm_back(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. float eps) {
  3492. bool is_node = false;
  3493. if (a->grad) {
  3494. // TODO: implement backward
  3495. is_node = true;
  3496. }
  3497. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3498. ggml_set_op_params(result, &eps, sizeof(eps));
  3499. result->op = GGML_OP_RMS_NORM_BACK;
  3500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3501. result->src[0] = a;
  3502. result->src[1] = b;
  3503. return result;
  3504. }
  3505. // ggml_group_norm
  3506. static struct ggml_tensor * ggml_group_norm_impl(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. int n_groups,
  3510. bool inplace) {
  3511. bool is_node = false;
  3512. if (!inplace && (a->grad)) {
  3513. GGML_ASSERT(false); // TODO: implement backward
  3514. is_node = true;
  3515. }
  3516. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3517. result->op_params[0] = n_groups;
  3518. result->op = GGML_OP_GROUP_NORM;
  3519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3520. result->src[0] = a;
  3521. return result;
  3522. }
  3523. struct ggml_tensor * ggml_group_norm(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. int n_groups) {
  3527. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3528. }
  3529. struct ggml_tensor * ggml_group_norm_inplace(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a,
  3532. int n_groups) {
  3533. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3534. }
  3535. // ggml_mul_mat
  3536. struct ggml_tensor * ggml_mul_mat(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. struct ggml_tensor * b) {
  3540. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3541. GGML_ASSERT(!ggml_is_transposed(a));
  3542. bool is_node = false;
  3543. if (a->grad || b->grad) {
  3544. is_node = true;
  3545. }
  3546. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3547. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3548. result->op = GGML_OP_MUL_MAT;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src[0] = a;
  3551. result->src[1] = b;
  3552. return result;
  3553. }
  3554. void ggml_mul_mat_set_prec(
  3555. struct ggml_tensor * a,
  3556. enum ggml_prec prec) {
  3557. const int32_t prec_i32 = (int32_t) prec;
  3558. ggml_set_op_params_i32(a, 0, prec_i32);
  3559. }
  3560. // ggml_mul_mat_id
  3561. struct ggml_tensor * ggml_mul_mat_id(
  3562. struct ggml_context * ctx,
  3563. struct ggml_tensor * const as[],
  3564. int n_as,
  3565. struct ggml_tensor * ids,
  3566. int id,
  3567. struct ggml_tensor * b) {
  3568. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3569. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3570. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3571. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3572. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3573. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3574. bool is_node = false;
  3575. if (as[0]->grad || b->grad) {
  3576. is_node = true;
  3577. }
  3578. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3579. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3580. ggml_set_op_params_i32(result, 0, id);
  3581. ggml_set_op_params_i32(result, 1, n_as);
  3582. result->op = GGML_OP_MUL_MAT_ID;
  3583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3584. result->src[0] = ids;
  3585. result->src[1] = b;
  3586. for (int i = 0; i < n_as; i++) {
  3587. struct ggml_tensor * a = as[i];
  3588. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3589. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3590. GGML_ASSERT(!ggml_is_transposed(a));
  3591. result->src[i + 2] = a;
  3592. }
  3593. return result;
  3594. }
  3595. // ggml_out_prod
  3596. struct ggml_tensor * ggml_out_prod(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. struct ggml_tensor * b) {
  3600. GGML_ASSERT(ggml_can_out_prod(a, b));
  3601. GGML_ASSERT(!ggml_is_transposed(a));
  3602. bool is_node = false;
  3603. if (a->grad || b->grad) {
  3604. is_node = true;
  3605. }
  3606. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3607. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3608. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3609. result->op = GGML_OP_OUT_PROD;
  3610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3611. result->src[0] = a;
  3612. result->src[1] = b;
  3613. return result;
  3614. }
  3615. // ggml_scale
  3616. static struct ggml_tensor * ggml_scale_impl(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. float s,
  3620. bool inplace) {
  3621. GGML_ASSERT(ggml_is_padded_1d(a));
  3622. bool is_node = false;
  3623. if (a->grad) {
  3624. is_node = true;
  3625. }
  3626. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3627. ggml_set_op_params(result, &s, sizeof(s));
  3628. result->op = GGML_OP_SCALE;
  3629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3630. result->src[0] = a;
  3631. return result;
  3632. }
  3633. struct ggml_tensor * ggml_scale(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a,
  3636. float s) {
  3637. return ggml_scale_impl(ctx, a, s, false);
  3638. }
  3639. struct ggml_tensor * ggml_scale_inplace(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a,
  3642. float s) {
  3643. return ggml_scale_impl(ctx, a, s, true);
  3644. }
  3645. // ggml_set
  3646. static struct ggml_tensor * ggml_set_impl(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. struct ggml_tensor * b,
  3650. size_t nb1,
  3651. size_t nb2,
  3652. size_t nb3,
  3653. size_t offset,
  3654. bool inplace) {
  3655. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3656. bool is_node = false;
  3657. if (a->grad || b->grad) {
  3658. is_node = true;
  3659. }
  3660. // make a view of the destination
  3661. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3662. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3663. ggml_set_op_params(result, params, sizeof(params));
  3664. result->op = GGML_OP_SET;
  3665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3666. result->src[0] = a;
  3667. result->src[1] = b;
  3668. return result;
  3669. }
  3670. struct ggml_tensor * ggml_set(
  3671. struct ggml_context * ctx,
  3672. struct ggml_tensor * a,
  3673. struct ggml_tensor * b,
  3674. size_t nb1,
  3675. size_t nb2,
  3676. size_t nb3,
  3677. size_t offset) {
  3678. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3679. }
  3680. struct ggml_tensor * ggml_set_inplace(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. struct ggml_tensor * b,
  3684. size_t nb1,
  3685. size_t nb2,
  3686. size_t nb3,
  3687. size_t offset) {
  3688. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3689. }
  3690. struct ggml_tensor * ggml_set_1d(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. struct ggml_tensor * b,
  3694. size_t offset) {
  3695. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3696. }
  3697. struct ggml_tensor * ggml_set_1d_inplace(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. struct ggml_tensor * b,
  3701. size_t offset) {
  3702. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3703. }
  3704. struct ggml_tensor * ggml_set_2d(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. struct ggml_tensor * b,
  3708. size_t nb1,
  3709. size_t offset) {
  3710. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3711. }
  3712. struct ggml_tensor * ggml_set_2d_inplace(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a,
  3715. struct ggml_tensor * b,
  3716. size_t nb1,
  3717. size_t offset) {
  3718. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3719. }
  3720. // ggml_cpy
  3721. static struct ggml_tensor * ggml_cpy_impl(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b) {
  3725. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3726. bool is_node = false;
  3727. if (a->grad || b->grad) {
  3728. // inplace is false and either one have a grad
  3729. is_node = true;
  3730. }
  3731. // make a view of the destination
  3732. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3733. if (strlen(b->name) > 0) {
  3734. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3735. } else {
  3736. ggml_format_name(result, "%s (copy)", a->name);
  3737. }
  3738. result->op = GGML_OP_CPY;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src[0] = a;
  3741. result->src[1] = b;
  3742. return result;
  3743. }
  3744. struct ggml_tensor * ggml_cpy(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b) {
  3748. return ggml_cpy_impl(ctx, a, b);
  3749. }
  3750. struct ggml_tensor * ggml_cast(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. enum ggml_type type) {
  3754. bool is_node = false;
  3755. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3756. ggml_format_name(result, "%s (copy)", a->name);
  3757. result->op = GGML_OP_CPY;
  3758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3759. result->src[0] = a;
  3760. result->src[1] = result;
  3761. return result;
  3762. }
  3763. // ggml_cont
  3764. static struct ggml_tensor * ggml_cont_impl(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a) {
  3767. bool is_node = false;
  3768. if (a->grad) {
  3769. is_node = true;
  3770. }
  3771. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3772. ggml_format_name(result, "%s (cont)", a->name);
  3773. result->op = GGML_OP_CONT;
  3774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3775. result->src[0] = a;
  3776. return result;
  3777. }
  3778. struct ggml_tensor * ggml_cont(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a) {
  3781. return ggml_cont_impl(ctx, a);
  3782. }
  3783. // make contiguous, with new shape
  3784. GGML_API struct ggml_tensor * ggml_cont_1d(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a,
  3787. int64_t ne0) {
  3788. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3789. }
  3790. GGML_API struct ggml_tensor * ggml_cont_2d(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. int64_t ne0,
  3794. int64_t ne1) {
  3795. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3796. }
  3797. GGML_API struct ggml_tensor * ggml_cont_3d(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. int64_t ne0,
  3801. int64_t ne1,
  3802. int64_t ne2) {
  3803. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3804. }
  3805. struct ggml_tensor * ggml_cont_4d(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. int64_t ne0,
  3809. int64_t ne1,
  3810. int64_t ne2,
  3811. int64_t ne3) {
  3812. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3813. bool is_node = false;
  3814. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3815. ggml_format_name(result, "%s (cont)", a->name);
  3816. result->op = GGML_OP_CONT;
  3817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3818. result->src[0] = a;
  3819. return result;
  3820. }
  3821. // ggml_reshape
  3822. struct ggml_tensor * ggml_reshape(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. struct ggml_tensor * b) {
  3826. GGML_ASSERT(ggml_is_contiguous(a));
  3827. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3828. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3829. bool is_node = false;
  3830. if (a->grad) {
  3831. is_node = true;
  3832. }
  3833. if (b->grad) {
  3834. // gradient propagation is not supported
  3835. //GGML_ASSERT(false);
  3836. }
  3837. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3838. ggml_format_name(result, "%s (reshaped)", a->name);
  3839. result->op = GGML_OP_RESHAPE;
  3840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3841. result->src[0] = a;
  3842. return result;
  3843. }
  3844. struct ggml_tensor * ggml_reshape_1d(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a,
  3847. int64_t ne0) {
  3848. GGML_ASSERT(ggml_is_contiguous(a));
  3849. GGML_ASSERT(ggml_nelements(a) == ne0);
  3850. bool is_node = false;
  3851. if (a->grad) {
  3852. is_node = true;
  3853. }
  3854. const int64_t ne[1] = { ne0 };
  3855. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3856. ggml_format_name(result, "%s (reshaped)", a->name);
  3857. result->op = GGML_OP_RESHAPE;
  3858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3859. result->src[0] = a;
  3860. return result;
  3861. }
  3862. struct ggml_tensor * ggml_reshape_2d(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. int64_t ne0,
  3866. int64_t ne1) {
  3867. GGML_ASSERT(ggml_is_contiguous(a));
  3868. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3869. bool is_node = false;
  3870. if (a->grad) {
  3871. is_node = true;
  3872. }
  3873. const int64_t ne[2] = { ne0, ne1 };
  3874. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3875. ggml_format_name(result, "%s (reshaped)", a->name);
  3876. result->op = GGML_OP_RESHAPE;
  3877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3878. result->src[0] = a;
  3879. return result;
  3880. }
  3881. struct ggml_tensor * ggml_reshape_3d(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a,
  3884. int64_t ne0,
  3885. int64_t ne1,
  3886. int64_t ne2) {
  3887. GGML_ASSERT(ggml_is_contiguous(a));
  3888. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3889. bool is_node = false;
  3890. if (a->grad) {
  3891. is_node = true;
  3892. }
  3893. const int64_t ne[3] = { ne0, ne1, ne2 };
  3894. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3895. ggml_format_name(result, "%s (reshaped)", a->name);
  3896. result->op = GGML_OP_RESHAPE;
  3897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3898. result->src[0] = a;
  3899. return result;
  3900. }
  3901. struct ggml_tensor * ggml_reshape_4d(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. int64_t ne0,
  3905. int64_t ne1,
  3906. int64_t ne2,
  3907. int64_t ne3) {
  3908. GGML_ASSERT(ggml_is_contiguous(a));
  3909. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3910. bool is_node = false;
  3911. if (a->grad) {
  3912. is_node = true;
  3913. }
  3914. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3915. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3916. ggml_format_name(result, "%s (reshaped)", a->name);
  3917. result->op = GGML_OP_RESHAPE;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. return result;
  3921. }
  3922. static struct ggml_tensor * ggml_view_impl(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. int n_dims,
  3926. const int64_t * ne,
  3927. size_t offset) {
  3928. bool is_node = false;
  3929. if (a->grad) {
  3930. is_node = true;
  3931. }
  3932. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3933. ggml_format_name(result, "%s (view)", a->name);
  3934. ggml_set_op_params(result, &offset, sizeof(offset));
  3935. result->op = GGML_OP_VIEW;
  3936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3937. result->src[0] = a;
  3938. return result;
  3939. }
  3940. // ggml_view_1d
  3941. struct ggml_tensor * ggml_view_1d(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. int64_t ne0,
  3945. size_t offset) {
  3946. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3947. return result;
  3948. }
  3949. // ggml_view_2d
  3950. struct ggml_tensor * ggml_view_2d(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. int64_t ne0,
  3954. int64_t ne1,
  3955. size_t nb1,
  3956. size_t offset) {
  3957. const int64_t ne[2] = { ne0, ne1 };
  3958. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3959. result->nb[1] = nb1;
  3960. result->nb[2] = result->nb[1]*ne1;
  3961. result->nb[3] = result->nb[2];
  3962. return result;
  3963. }
  3964. // ggml_view_3d
  3965. struct ggml_tensor * ggml_view_3d(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. int64_t ne0,
  3969. int64_t ne1,
  3970. int64_t ne2,
  3971. size_t nb1,
  3972. size_t nb2,
  3973. size_t offset) {
  3974. const int64_t ne[3] = { ne0, ne1, ne2 };
  3975. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3976. result->nb[1] = nb1;
  3977. result->nb[2] = nb2;
  3978. result->nb[3] = result->nb[2]*ne2;
  3979. return result;
  3980. }
  3981. // ggml_view_4d
  3982. struct ggml_tensor * ggml_view_4d(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. int64_t ne0,
  3986. int64_t ne1,
  3987. int64_t ne2,
  3988. int64_t ne3,
  3989. size_t nb1,
  3990. size_t nb2,
  3991. size_t nb3,
  3992. size_t offset) {
  3993. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3994. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3995. result->nb[1] = nb1;
  3996. result->nb[2] = nb2;
  3997. result->nb[3] = nb3;
  3998. return result;
  3999. }
  4000. // ggml_permute
  4001. struct ggml_tensor * ggml_permute(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. int axis0,
  4005. int axis1,
  4006. int axis2,
  4007. int axis3) {
  4008. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4009. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4010. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4011. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4012. GGML_ASSERT(axis0 != axis1);
  4013. GGML_ASSERT(axis0 != axis2);
  4014. GGML_ASSERT(axis0 != axis3);
  4015. GGML_ASSERT(axis1 != axis2);
  4016. GGML_ASSERT(axis1 != axis3);
  4017. GGML_ASSERT(axis2 != axis3);
  4018. bool is_node = false;
  4019. if (a->grad) {
  4020. is_node = true;
  4021. }
  4022. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4023. ggml_format_name(result, "%s (permuted)", a->name);
  4024. int ne[GGML_MAX_DIMS];
  4025. int nb[GGML_MAX_DIMS];
  4026. ne[axis0] = a->ne[0];
  4027. ne[axis1] = a->ne[1];
  4028. ne[axis2] = a->ne[2];
  4029. ne[axis3] = a->ne[3];
  4030. nb[axis0] = a->nb[0];
  4031. nb[axis1] = a->nb[1];
  4032. nb[axis2] = a->nb[2];
  4033. nb[axis3] = a->nb[3];
  4034. result->ne[0] = ne[0];
  4035. result->ne[1] = ne[1];
  4036. result->ne[2] = ne[2];
  4037. result->ne[3] = ne[3];
  4038. result->nb[0] = nb[0];
  4039. result->nb[1] = nb[1];
  4040. result->nb[2] = nb[2];
  4041. result->nb[3] = nb[3];
  4042. result->op = GGML_OP_PERMUTE;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src[0] = a;
  4045. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4046. ggml_set_op_params(result, params, sizeof(params));
  4047. return result;
  4048. }
  4049. // ggml_transpose
  4050. struct ggml_tensor * ggml_transpose(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a) {
  4053. bool is_node = false;
  4054. if (a->grad) {
  4055. is_node = true;
  4056. }
  4057. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4058. ggml_format_name(result, "%s (transposed)", a->name);
  4059. result->ne[0] = a->ne[1];
  4060. result->ne[1] = a->ne[0];
  4061. result->nb[0] = a->nb[1];
  4062. result->nb[1] = a->nb[0];
  4063. result->op = GGML_OP_TRANSPOSE;
  4064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4065. result->src[0] = a;
  4066. return result;
  4067. }
  4068. // ggml_get_rows
  4069. struct ggml_tensor * ggml_get_rows(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. struct ggml_tensor * b) {
  4073. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4074. GGML_ASSERT(b->ne[3] == 1);
  4075. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4076. bool is_node = false;
  4077. if (a->grad || b->grad) {
  4078. is_node = true;
  4079. }
  4080. // TODO: implement non F32 return
  4081. enum ggml_type type = GGML_TYPE_F32;
  4082. if (a->type == GGML_TYPE_I32) {
  4083. type = a->type;
  4084. }
  4085. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4086. result->op = GGML_OP_GET_ROWS;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src[0] = a;
  4089. result->src[1] = b;
  4090. return result;
  4091. }
  4092. // ggml_get_rows_back
  4093. struct ggml_tensor * ggml_get_rows_back(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. struct ggml_tensor * b,
  4097. struct ggml_tensor * c) {
  4098. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4099. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4100. bool is_node = false;
  4101. if (a->grad || b->grad) {
  4102. is_node = true;
  4103. }
  4104. // TODO: implement non F32 return
  4105. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4106. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4107. result->op = GGML_OP_GET_ROWS_BACK;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src[0] = a;
  4110. result->src[1] = b;
  4111. return result;
  4112. }
  4113. // ggml_diag
  4114. struct ggml_tensor * ggml_diag(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a) {
  4117. GGML_ASSERT(a->ne[1] == 1);
  4118. bool is_node = false;
  4119. if (a->grad) {
  4120. is_node = true;
  4121. }
  4122. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4123. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4124. result->op = GGML_OP_DIAG;
  4125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4126. result->src[0] = a;
  4127. return result;
  4128. }
  4129. // ggml_diag_mask_inf
  4130. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. int n_past,
  4134. bool inplace) {
  4135. bool is_node = false;
  4136. if (a->grad) {
  4137. is_node = true;
  4138. }
  4139. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4140. int32_t params[] = { n_past };
  4141. ggml_set_op_params(result, params, sizeof(params));
  4142. result->op = GGML_OP_DIAG_MASK_INF;
  4143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4144. result->src[0] = a;
  4145. return result;
  4146. }
  4147. struct ggml_tensor * ggml_diag_mask_inf(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. int n_past) {
  4151. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4152. }
  4153. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. int n_past) {
  4157. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4158. }
  4159. // ggml_diag_mask_zero
  4160. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. int n_past,
  4164. bool inplace) {
  4165. bool is_node = false;
  4166. if (a->grad) {
  4167. is_node = true;
  4168. }
  4169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4170. int32_t params[] = { n_past };
  4171. ggml_set_op_params(result, params, sizeof(params));
  4172. result->op = GGML_OP_DIAG_MASK_ZERO;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src[0] = a;
  4175. return result;
  4176. }
  4177. struct ggml_tensor * ggml_diag_mask_zero(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. int n_past) {
  4181. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4182. }
  4183. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. int n_past) {
  4187. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4188. }
  4189. // ggml_soft_max
  4190. static struct ggml_tensor * ggml_soft_max_impl(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a,
  4193. struct ggml_tensor * mask,
  4194. struct ggml_tensor * pos,
  4195. float scale,
  4196. float max_bias,
  4197. bool inplace) {
  4198. GGML_ASSERT(ggml_is_contiguous(a));
  4199. if (mask) {
  4200. GGML_ASSERT(ggml_is_contiguous(mask));
  4201. GGML_ASSERT(ggml_is_matrix(mask));
  4202. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4203. }
  4204. if (pos) {
  4205. GGML_ASSERT(ggml_is_vector(pos));
  4206. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4207. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4208. }
  4209. if (max_bias > 0.0f) {
  4210. GGML_ASSERT(pos);
  4211. }
  4212. bool is_node = false;
  4213. if (a->grad) {
  4214. is_node = true;
  4215. }
  4216. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4217. float params[] = { scale, max_bias };
  4218. ggml_set_op_params(result, params, sizeof(params));
  4219. result->op = GGML_OP_SOFT_MAX;
  4220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4221. result->src[0] = a;
  4222. result->src[1] = mask;
  4223. result->src[2] = pos;
  4224. return result;
  4225. }
  4226. struct ggml_tensor * ggml_soft_max(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a) {
  4229. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4230. }
  4231. struct ggml_tensor * ggml_soft_max_inplace(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4235. }
  4236. struct ggml_tensor * ggml_soft_max_ext(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. struct ggml_tensor * mask,
  4240. struct ggml_tensor * pos,
  4241. float scale,
  4242. float max_bias) {
  4243. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4244. }
  4245. // ggml_soft_max_back
  4246. static struct ggml_tensor * ggml_soft_max_back_impl(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. struct ggml_tensor * b,
  4250. bool inplace) {
  4251. bool is_node = false;
  4252. if (a->grad || b->grad) {
  4253. is_node = true; // TODO : implement backward pass
  4254. }
  4255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4256. result->op = GGML_OP_SOFT_MAX_BACK;
  4257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4258. result->src[0] = a;
  4259. result->src[1] = b;
  4260. return result;
  4261. }
  4262. struct ggml_tensor * ggml_soft_max_back(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. struct ggml_tensor * b) {
  4266. return ggml_soft_max_back_impl(ctx, a, b, false);
  4267. }
  4268. struct ggml_tensor * ggml_soft_max_back_inplace(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a,
  4271. struct ggml_tensor * b) {
  4272. return ggml_soft_max_back_impl(ctx, a, b, true);
  4273. }
  4274. // ggml_rope
  4275. static struct ggml_tensor * ggml_rope_impl(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. struct ggml_tensor * b,
  4279. int n_dims,
  4280. int mode,
  4281. int n_ctx,
  4282. int n_orig_ctx,
  4283. float freq_base,
  4284. float freq_scale,
  4285. float ext_factor,
  4286. float attn_factor,
  4287. float beta_fast,
  4288. float beta_slow,
  4289. float xpos_base,
  4290. bool xpos_down,
  4291. bool inplace) {
  4292. GGML_ASSERT(ggml_is_vector(b));
  4293. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4294. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4295. bool is_node = false;
  4296. if (a->grad) {
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4300. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4301. memcpy(params + 5, &freq_base, sizeof(float));
  4302. memcpy(params + 6, &freq_scale, sizeof(float));
  4303. memcpy(params + 7, &ext_factor, sizeof(float));
  4304. memcpy(params + 8, &attn_factor, sizeof(float));
  4305. memcpy(params + 9, &beta_fast, sizeof(float));
  4306. memcpy(params + 10, &beta_slow, sizeof(float));
  4307. memcpy(params + 11, &xpos_base, sizeof(float));
  4308. memcpy(params + 12, &xpos_down, sizeof(bool));
  4309. ggml_set_op_params(result, params, sizeof(params));
  4310. result->op = GGML_OP_ROPE;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. result->src[1] = b;
  4314. return result;
  4315. }
  4316. struct ggml_tensor * ggml_rope(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. int n_dims,
  4321. int mode,
  4322. int n_ctx) {
  4323. return ggml_rope_impl(
  4324. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4325. );
  4326. }
  4327. struct ggml_tensor * ggml_rope_inplace(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. struct ggml_tensor * b,
  4331. int n_dims,
  4332. int mode,
  4333. int n_ctx) {
  4334. return ggml_rope_impl(
  4335. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4336. );
  4337. }
  4338. struct ggml_tensor * ggml_rope_custom(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. struct ggml_tensor * b,
  4342. int n_dims,
  4343. int mode,
  4344. int n_ctx,
  4345. int n_orig_ctx,
  4346. float freq_base,
  4347. float freq_scale,
  4348. float ext_factor,
  4349. float attn_factor,
  4350. float beta_fast,
  4351. float beta_slow) {
  4352. return ggml_rope_impl(
  4353. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4354. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4355. );
  4356. }
  4357. struct ggml_tensor * ggml_rope_custom_inplace(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. int n_dims,
  4362. int mode,
  4363. int n_ctx,
  4364. int n_orig_ctx,
  4365. float freq_base,
  4366. float freq_scale,
  4367. float ext_factor,
  4368. float attn_factor,
  4369. float beta_fast,
  4370. float beta_slow) {
  4371. return ggml_rope_impl(
  4372. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4373. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4374. );
  4375. }
  4376. struct ggml_tensor * ggml_rope_xpos_inplace(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b,
  4380. int n_dims,
  4381. float base,
  4382. bool down) {
  4383. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4384. }
  4385. // ggml_rope_back
  4386. struct ggml_tensor * ggml_rope_back(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. struct ggml_tensor * b,
  4390. int n_dims,
  4391. int mode,
  4392. int n_ctx,
  4393. int n_orig_ctx,
  4394. float freq_base,
  4395. float freq_scale,
  4396. float ext_factor,
  4397. float attn_factor,
  4398. float beta_fast,
  4399. float beta_slow,
  4400. float xpos_base,
  4401. bool xpos_down) {
  4402. GGML_ASSERT(ggml_is_vector(b));
  4403. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4404. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4405. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4406. bool is_node = false;
  4407. if (a->grad) {
  4408. is_node = false; // TODO: implement backward
  4409. }
  4410. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4411. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4412. memcpy(params + 5, &freq_base, sizeof(float));
  4413. memcpy(params + 6, &freq_scale, sizeof(float));
  4414. memcpy(params + 7, &ext_factor, sizeof(float));
  4415. memcpy(params + 8, &attn_factor, sizeof(float));
  4416. memcpy(params + 9, &beta_fast, sizeof(float));
  4417. memcpy(params + 10, &beta_slow, sizeof(float));
  4418. memcpy(params + 11, &xpos_base, sizeof(float));
  4419. memcpy(params + 12, &xpos_down, sizeof(bool));
  4420. ggml_set_op_params(result, params, sizeof(params));
  4421. result->op = GGML_OP_ROPE_BACK;
  4422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4423. result->src[0] = a;
  4424. result->src[1] = b;
  4425. return result;
  4426. }
  4427. // ggml_alibi
  4428. struct ggml_tensor * ggml_alibi(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. int n_past,
  4432. int n_head,
  4433. float bias_max) {
  4434. GGML_ASSERT(n_past >= 0);
  4435. bool is_node = false;
  4436. if (a->grad) {
  4437. GGML_ASSERT(false); // TODO: implement backward
  4438. is_node = true;
  4439. }
  4440. // TODO: when implement backward, fix this:
  4441. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4442. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4443. int32_t op_params[3] = { n_past, n_head };
  4444. memcpy(op_params + 2, &bias_max, sizeof(float));
  4445. ggml_set_op_params(result, op_params, sizeof(op_params));
  4446. result->op = GGML_OP_ALIBI;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src[0] = a;
  4449. return result;
  4450. }
  4451. // ggml_clamp
  4452. struct ggml_tensor * ggml_clamp(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. float min,
  4456. float max) {
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. GGML_ASSERT(false); // TODO: implement backward
  4460. is_node = true;
  4461. }
  4462. // TODO: when implement backward, fix this:
  4463. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4464. float params[] = { min, max };
  4465. ggml_set_op_params(result, params, sizeof(params));
  4466. result->op = GGML_OP_CLAMP;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src[0] = a;
  4469. return result;
  4470. }
  4471. // ggml_conv_1d
  4472. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4473. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4474. }
  4475. GGML_API struct ggml_tensor * ggml_conv_1d(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. int s0,
  4480. int p0,
  4481. int d0) {
  4482. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4483. struct ggml_tensor * result =
  4484. ggml_mul_mat(ctx,
  4485. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4486. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4487. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4488. return result;
  4489. }
  4490. // ggml_conv_1d_ph
  4491. struct ggml_tensor* ggml_conv_1d_ph(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b,
  4495. int s,
  4496. int d) {
  4497. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4498. }
  4499. // ggml_conv_transpose_1d
  4500. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4501. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4502. }
  4503. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b,
  4507. int s0,
  4508. int p0,
  4509. int d0) {
  4510. GGML_ASSERT(ggml_is_matrix(b));
  4511. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4512. GGML_ASSERT(a->ne[3] == 1);
  4513. GGML_ASSERT(p0 == 0);
  4514. GGML_ASSERT(d0 == 1);
  4515. bool is_node = false;
  4516. if (a->grad || b->grad) {
  4517. GGML_ASSERT(false); // TODO: implement backward
  4518. is_node = true;
  4519. }
  4520. const int64_t ne[4] = {
  4521. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4522. a->ne[1], b->ne[2], 1,
  4523. };
  4524. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4525. int32_t params[] = { s0, p0, d0 };
  4526. ggml_set_op_params(result, params, sizeof(params));
  4527. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src[0] = a;
  4530. result->src[1] = b;
  4531. return result;
  4532. }
  4533. // ggml_conv_depthwise
  4534. struct ggml_tensor * ggml_conv_depthwise_2d(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. struct ggml_tensor * b,
  4538. int s0,
  4539. int s1,
  4540. int p0,
  4541. int p1,
  4542. int d0,
  4543. int d1) {
  4544. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4545. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4546. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4547. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4548. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4549. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4550. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4551. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4552. return result;
  4553. }
  4554. // ggml_conv_2d
  4555. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4556. // a: [OC,IC, KH, KW]
  4557. // b: [N, IC, IH, IW]
  4558. // result: [N, OH, OW, IC*KH*KW]
  4559. struct ggml_tensor * ggml_im2col(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a,
  4562. struct ggml_tensor * b,
  4563. int s0,
  4564. int s1,
  4565. int p0,
  4566. int p1,
  4567. int d0,
  4568. int d1,
  4569. bool is_2D,
  4570. enum ggml_type dst_type) {
  4571. if(is_2D) {
  4572. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4573. } else {
  4574. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4575. }
  4576. bool is_node = false;
  4577. if (a->grad || b->grad) {
  4578. GGML_ASSERT(false); // TODO: implement backward
  4579. is_node = true;
  4580. }
  4581. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4582. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4583. const int64_t ne[4] = {
  4584. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4585. OW,
  4586. is_2D ? OH : b->ne[2],
  4587. is_2D ? b->ne[3] : 1,
  4588. };
  4589. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4590. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4591. ggml_set_op_params(result, params, sizeof(params));
  4592. result->op = GGML_OP_IM2COL;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src[0] = a;
  4595. result->src[1] = b;
  4596. return result;
  4597. }
  4598. // a: [OC,IC, KH, KW]
  4599. // b: [N, IC, IH, IW]
  4600. // result: [N, OC, OH, OW]
  4601. struct ggml_tensor * ggml_conv_2d(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. struct ggml_tensor * b,
  4605. int s0,
  4606. int s1,
  4607. int p0,
  4608. int p1,
  4609. int d0,
  4610. int d1) {
  4611. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4612. struct ggml_tensor * result =
  4613. ggml_mul_mat(ctx,
  4614. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4615. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4616. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4617. return result;
  4618. }
  4619. // ggml_conv_2d_sk_p0
  4620. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. struct ggml_tensor * b) {
  4624. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4625. }
  4626. // ggml_conv_2d_s1_ph
  4627. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b) {
  4631. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4632. }
  4633. // ggml_conv_transpose_2d_p0
  4634. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4635. return (ins - 1) * s - 2 * p + ks;
  4636. }
  4637. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * a,
  4640. struct ggml_tensor * b,
  4641. int stride) {
  4642. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4643. bool is_node = false;
  4644. if (a->grad || b->grad) {
  4645. GGML_ASSERT(false); // TODO: implement backward
  4646. is_node = true;
  4647. }
  4648. const int64_t ne[4] = {
  4649. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4650. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4651. a->ne[2], b->ne[3],
  4652. };
  4653. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4654. ggml_set_op_params_i32(result, 0, stride);
  4655. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. result->src[1] = b;
  4659. return result;
  4660. }
  4661. // ggml_pool_*
  4662. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4663. return (ins + 2 * p - ks) / s + 1;
  4664. }
  4665. // ggml_pool_1d
  4666. struct ggml_tensor * ggml_pool_1d(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. enum ggml_op_pool op,
  4670. int k0,
  4671. int s0,
  4672. int p0) {
  4673. bool is_node = false;
  4674. if (a->grad) {
  4675. GGML_ASSERT(false); // TODO: implement backward
  4676. is_node = true;
  4677. }
  4678. const int64_t ne[2] = {
  4679. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4680. a->ne[1],
  4681. };
  4682. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4683. int32_t params[] = { op, k0, s0, p0 };
  4684. ggml_set_op_params(result, params, sizeof(params));
  4685. result->op = GGML_OP_POOL_1D;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src[0] = a;
  4688. return result;
  4689. }
  4690. // ggml_pool_2d
  4691. struct ggml_tensor * ggml_pool_2d(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. enum ggml_op_pool op,
  4695. int k0,
  4696. int k1,
  4697. int s0,
  4698. int s1,
  4699. float p0,
  4700. float p1) {
  4701. bool is_node = false;
  4702. if (a->grad) {
  4703. GGML_ASSERT(false); // TODO: implement backward
  4704. is_node = true;
  4705. }
  4706. struct ggml_tensor * result;
  4707. const int64_t ne[3] = {
  4708. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4709. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4710. a->ne[2],
  4711. };
  4712. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4713. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4714. ggml_set_op_params(result, params, sizeof(params));
  4715. result->op = GGML_OP_POOL_2D;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src[0] = a;
  4718. return result;
  4719. }
  4720. // ggml_upscale
  4721. static struct ggml_tensor * ggml_upscale_impl(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. int scale_factor) {
  4725. bool is_node = false;
  4726. if (a->grad) {
  4727. GGML_ASSERT(false); // TODO: implement backward
  4728. is_node = true;
  4729. }
  4730. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4731. a->ne[0] * scale_factor,
  4732. a->ne[1] * scale_factor,
  4733. a->ne[2], a->ne[3]);
  4734. result->op = GGML_OP_UPSCALE;
  4735. result->op_params[0] = scale_factor;
  4736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4737. result->src[0] = a;
  4738. return result;
  4739. }
  4740. struct ggml_tensor * ggml_pad(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. int p0, int p1, int p2, int p3) {
  4744. bool is_node = false;
  4745. if (a->grad) {
  4746. GGML_ASSERT(false); // TODO: implement backward
  4747. is_node = true;
  4748. }
  4749. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4750. a->ne[0] + p0,
  4751. a->ne[1] + p1,
  4752. a->ne[2] + p2,
  4753. a->ne[3] + p3);
  4754. result->op = GGML_OP_PAD;
  4755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4756. result->src[0] = a;
  4757. return result;
  4758. }
  4759. struct ggml_tensor * ggml_upscale(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. int scale_factor) {
  4763. return ggml_upscale_impl(ctx, a, scale_factor);
  4764. }
  4765. // ggml_argsort
  4766. struct ggml_tensor * ggml_argsort(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. enum ggml_sort_order order) {
  4770. bool is_node = false;
  4771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4772. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4773. result->op = GGML_OP_ARGSORT;
  4774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4775. result->src[0] = a;
  4776. return result;
  4777. }
  4778. // ggml_top_k
  4779. struct ggml_tensor * ggml_top_k(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. int k) {
  4783. GGML_ASSERT(a->ne[0] >= k);
  4784. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4785. result = ggml_view_4d(ctx, result,
  4786. k, result->ne[1], result->ne[2], result->ne[3],
  4787. result->nb[1], result->nb[2], result->nb[3],
  4788. 0);
  4789. return result;
  4790. }
  4791. // ggml_flash_attn
  4792. struct ggml_tensor * ggml_flash_attn(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * q,
  4795. struct ggml_tensor * k,
  4796. struct ggml_tensor * v,
  4797. bool masked) {
  4798. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4799. // TODO: check if vT can be multiplied by (k*qT)
  4800. bool is_node = false;
  4801. if (q->grad || k->grad || v->grad) {
  4802. is_node = true;
  4803. }
  4804. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4805. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4806. int32_t t = masked ? 1 : 0;
  4807. ggml_set_op_params(result, &t, sizeof(t));
  4808. result->op = GGML_OP_FLASH_ATTN;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src[0] = q;
  4811. result->src[1] = k;
  4812. result->src[2] = v;
  4813. return result;
  4814. }
  4815. // ggml_flash_ff
  4816. struct ggml_tensor * ggml_flash_ff(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b0,
  4820. struct ggml_tensor * b1,
  4821. struct ggml_tensor * c0,
  4822. struct ggml_tensor * c1) {
  4823. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4824. // TODO: more checks
  4825. bool is_node = false;
  4826. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4827. is_node = true;
  4828. }
  4829. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4830. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4831. result->op = GGML_OP_FLASH_FF;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src[0] = a;
  4834. result->src[1] = b0;
  4835. result->src[2] = b1;
  4836. result->src[3] = c0;
  4837. result->src[4] = c1;
  4838. return result;
  4839. }
  4840. // ggml_flash_attn_back
  4841. struct ggml_tensor * ggml_flash_attn_back(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * q,
  4844. struct ggml_tensor * k,
  4845. struct ggml_tensor * v,
  4846. struct ggml_tensor * d,
  4847. bool masked) {
  4848. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4849. // TODO: check if vT can be multiplied by (k*qT)
  4850. // d shape [D,N,ne2,ne3]
  4851. // q shape [D,N,ne2,ne3]
  4852. // k shape [D,M,kvne2,ne3]
  4853. // v shape [M,D,kvne2,ne3]
  4854. const int64_t D = q->ne[0];
  4855. const int64_t N = q->ne[1];
  4856. const int64_t M = k->ne[1];
  4857. const int64_t ne2 = q->ne[2];
  4858. const int64_t ne3 = q->ne[3];
  4859. const int64_t kvne2 = k->ne[2];
  4860. GGML_ASSERT(k->ne[0] == D);
  4861. GGML_ASSERT(v->ne[0] == M);
  4862. GGML_ASSERT(v->ne[1] == D);
  4863. GGML_ASSERT(d->ne[0] == D);
  4864. GGML_ASSERT(d->ne[1] == N);
  4865. GGML_ASSERT(k->ne[2] == kvne2);
  4866. GGML_ASSERT(k->ne[3] == ne3);
  4867. GGML_ASSERT(v->ne[2] == kvne2);
  4868. GGML_ASSERT(v->ne[3] == ne3);
  4869. GGML_ASSERT(d->ne[2] == ne2);
  4870. GGML_ASSERT(d->ne[3] == ne3);
  4871. GGML_ASSERT(ne2 % kvne2 == 0);
  4872. bool is_node = false;
  4873. if (q->grad || k->grad || v->grad) {
  4874. // when using this operation (in backwards pass) these grads are set.
  4875. // we don't want to create (big) grad of our result, so is_node is false.
  4876. is_node = false;
  4877. }
  4878. // store gradients of q, k and v as continuous tensors concatenated in result.
  4879. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4880. const int64_t elem_q = ggml_nelements(q);
  4881. const int64_t elem_k = ggml_nelements(k);
  4882. const int64_t elem_v = ggml_nelements(v);
  4883. enum ggml_type result_type = GGML_TYPE_F32;
  4884. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4885. const size_t tsize = ggml_type_size(result_type);
  4886. const size_t offs_q = 0;
  4887. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4888. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4889. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4890. const size_t nelements = (end + tsize - 1)/tsize;
  4891. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4892. int32_t masked_i = masked ? 1 : 0;
  4893. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4894. result->op = GGML_OP_FLASH_ATTN_BACK;
  4895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4896. result->src[0] = q;
  4897. result->src[1] = k;
  4898. result->src[2] = v;
  4899. result->src[3] = d;
  4900. return result;
  4901. }
  4902. // ggml_win_part
  4903. struct ggml_tensor * ggml_win_part(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. int w) {
  4907. GGML_ASSERT(a->ne[3] == 1);
  4908. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4909. bool is_node = false;
  4910. if (a->grad) {
  4911. GGML_ASSERT(false); // TODO: implement backward
  4912. is_node = true;
  4913. }
  4914. // padding
  4915. const int px = (w - a->ne[1]%w)%w;
  4916. const int py = (w - a->ne[2]%w)%w;
  4917. const int npx = (px + a->ne[1])/w;
  4918. const int npy = (py + a->ne[2])/w;
  4919. const int np = npx*npy;
  4920. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4921. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4922. int32_t params[] = { npx, npy, w };
  4923. ggml_set_op_params(result, params, sizeof(params));
  4924. result->op = GGML_OP_WIN_PART;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src[0] = a;
  4927. return result;
  4928. }
  4929. // ggml_win_unpart
  4930. struct ggml_tensor * ggml_win_unpart(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. int w0,
  4934. int h0,
  4935. int w) {
  4936. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4937. bool is_node = false;
  4938. if (a->grad) {
  4939. GGML_ASSERT(false); // TODO: implement backward
  4940. is_node = true;
  4941. }
  4942. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4944. int32_t params[] = { w };
  4945. ggml_set_op_params(result, params, sizeof(params));
  4946. result->op = GGML_OP_WIN_UNPART;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src[0] = a;
  4949. return result;
  4950. }
  4951. // ggml_get_rel_pos
  4952. struct ggml_tensor * ggml_get_rel_pos(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. int qh,
  4956. int kh) {
  4957. GGML_ASSERT(qh == kh);
  4958. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4959. bool is_node = false;
  4960. if (a->grad) {
  4961. GGML_ASSERT(false); // TODO: implement backward
  4962. is_node = true;
  4963. }
  4964. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4965. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4966. result->op = GGML_OP_GET_REL_POS;
  4967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4968. result->src[0] = a;
  4969. return result;
  4970. }
  4971. // ggml_add_rel_pos
  4972. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. struct ggml_tensor * pw,
  4976. struct ggml_tensor * ph,
  4977. bool inplace) {
  4978. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4979. GGML_ASSERT(ggml_is_contiguous(a));
  4980. GGML_ASSERT(ggml_is_contiguous(pw));
  4981. GGML_ASSERT(ggml_is_contiguous(ph));
  4982. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4983. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4984. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4985. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4986. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4987. bool is_node = false;
  4988. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4989. is_node = true;
  4990. }
  4991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4992. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4993. result->op = GGML_OP_ADD_REL_POS;
  4994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4995. result->src[0] = a;
  4996. result->src[1] = pw;
  4997. result->src[2] = ph;
  4998. return result;
  4999. }
  5000. struct ggml_tensor * ggml_add_rel_pos(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a,
  5003. struct ggml_tensor * pw,
  5004. struct ggml_tensor * ph) {
  5005. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5006. }
  5007. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * pw,
  5011. struct ggml_tensor * ph) {
  5012. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5013. }
  5014. // gmml_unary
  5015. static struct ggml_tensor * ggml_unary_impl(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. enum ggml_unary_op op,
  5019. bool inplace) {
  5020. bool is_node = false;
  5021. if (!inplace && (a->grad)) {
  5022. is_node = true;
  5023. }
  5024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5025. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5026. result->op = GGML_OP_UNARY;
  5027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5028. result->src[0] = a;
  5029. return result;
  5030. }
  5031. struct ggml_tensor * ggml_unary(
  5032. struct ggml_context * ctx,
  5033. struct ggml_tensor * a,
  5034. enum ggml_unary_op op) {
  5035. return ggml_unary_impl(ctx, a, op, false);
  5036. }
  5037. struct ggml_tensor * ggml_unary_inplace(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. enum ggml_unary_op op) {
  5041. return ggml_unary_impl(ctx, a, op, true);
  5042. }
  5043. // ggml_map_unary
  5044. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. const ggml_unary_op_f32_t fun,
  5048. bool inplace) {
  5049. bool is_node = false;
  5050. if (!inplace && a->grad) {
  5051. is_node = true;
  5052. }
  5053. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5054. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5055. result->op = GGML_OP_MAP_UNARY;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src[0] = a;
  5058. return result;
  5059. }
  5060. struct ggml_tensor * ggml_map_unary_f32(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a,
  5063. const ggml_unary_op_f32_t fun) {
  5064. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5065. }
  5066. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. const ggml_unary_op_f32_t fun) {
  5070. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5071. }
  5072. // ggml_map_binary
  5073. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. struct ggml_tensor * b,
  5077. const ggml_binary_op_f32_t fun,
  5078. bool inplace) {
  5079. GGML_ASSERT(ggml_are_same_shape(a, b));
  5080. bool is_node = false;
  5081. if (!inplace && (a->grad || b->grad)) {
  5082. is_node = true;
  5083. }
  5084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5085. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5086. result->op = GGML_OP_MAP_BINARY;
  5087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5088. result->src[0] = a;
  5089. result->src[1] = b;
  5090. return result;
  5091. }
  5092. struct ggml_tensor * ggml_map_binary_f32(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. struct ggml_tensor * b,
  5096. const ggml_binary_op_f32_t fun) {
  5097. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5098. }
  5099. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. struct ggml_tensor * b,
  5103. const ggml_binary_op_f32_t fun) {
  5104. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5105. }
  5106. // ggml_map_custom1_f32
  5107. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. const ggml_custom1_op_f32_t fun,
  5111. bool inplace) {
  5112. bool is_node = false;
  5113. if (!inplace && a->grad) {
  5114. is_node = true;
  5115. }
  5116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5117. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5118. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. return result;
  5122. }
  5123. struct ggml_tensor * ggml_map_custom1_f32(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. const ggml_custom1_op_f32_t fun) {
  5127. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5128. }
  5129. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. const ggml_custom1_op_f32_t fun) {
  5133. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5134. }
  5135. // ggml_map_custom2_f32
  5136. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. struct ggml_tensor * b,
  5140. const ggml_custom2_op_f32_t fun,
  5141. bool inplace) {
  5142. bool is_node = false;
  5143. if (!inplace && (a->grad || b->grad)) {
  5144. is_node = true;
  5145. }
  5146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5147. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5148. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. result->src[1] = b;
  5152. return result;
  5153. }
  5154. struct ggml_tensor * ggml_map_custom2_f32(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. struct ggml_tensor * b,
  5158. const ggml_custom2_op_f32_t fun) {
  5159. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5160. }
  5161. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a,
  5164. struct ggml_tensor * b,
  5165. const ggml_custom2_op_f32_t fun) {
  5166. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5167. }
  5168. // ggml_map_custom3_f32
  5169. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5170. struct ggml_context * ctx,
  5171. struct ggml_tensor * a,
  5172. struct ggml_tensor * b,
  5173. struct ggml_tensor * c,
  5174. const ggml_custom3_op_f32_t fun,
  5175. bool inplace) {
  5176. bool is_node = false;
  5177. if (!inplace && (a->grad || b->grad || c->grad)) {
  5178. is_node = true;
  5179. }
  5180. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5181. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5182. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5184. result->src[0] = a;
  5185. result->src[1] = b;
  5186. result->src[2] = c;
  5187. return result;
  5188. }
  5189. struct ggml_tensor * ggml_map_custom3_f32(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. struct ggml_tensor * b,
  5193. struct ggml_tensor * c,
  5194. const ggml_custom3_op_f32_t fun) {
  5195. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5196. }
  5197. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. struct ggml_tensor * b,
  5201. struct ggml_tensor * c,
  5202. const ggml_custom3_op_f32_t fun) {
  5203. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5204. }
  5205. // ggml_map_custom1
  5206. struct ggml_map_custom1_op_params {
  5207. ggml_custom1_op_t fun;
  5208. int n_tasks;
  5209. void * userdata;
  5210. };
  5211. static struct ggml_tensor * ggml_map_custom1_impl(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a,
  5214. const ggml_custom1_op_t fun,
  5215. int n_tasks,
  5216. void * userdata,
  5217. bool inplace) {
  5218. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5219. bool is_node = false;
  5220. if (!inplace && a->grad) {
  5221. is_node = true;
  5222. }
  5223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5224. struct ggml_map_custom1_op_params params = {
  5225. /*.fun =*/ fun,
  5226. /*.n_tasks =*/ n_tasks,
  5227. /*.userdata =*/ userdata
  5228. };
  5229. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5230. result->op = GGML_OP_MAP_CUSTOM1;
  5231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5232. result->src[0] = a;
  5233. return result;
  5234. }
  5235. struct ggml_tensor * ggml_map_custom1(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. const ggml_custom1_op_t fun,
  5239. int n_tasks,
  5240. void * userdata) {
  5241. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5242. }
  5243. struct ggml_tensor * ggml_map_custom1_inplace(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * a,
  5246. const ggml_custom1_op_t fun,
  5247. int n_tasks,
  5248. void * userdata) {
  5249. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5250. }
  5251. // ggml_map_custom2
  5252. struct ggml_map_custom2_op_params {
  5253. ggml_custom2_op_t fun;
  5254. int n_tasks;
  5255. void * userdata;
  5256. };
  5257. static struct ggml_tensor * ggml_map_custom2_impl(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. struct ggml_tensor * b,
  5261. const ggml_custom2_op_t fun,
  5262. int n_tasks,
  5263. void * userdata,
  5264. bool inplace) {
  5265. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5266. bool is_node = false;
  5267. if (!inplace && (a->grad || b->grad)) {
  5268. is_node = true;
  5269. }
  5270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5271. struct ggml_map_custom2_op_params params = {
  5272. /*.fun =*/ fun,
  5273. /*.n_tasks =*/ n_tasks,
  5274. /*.userdata =*/ userdata
  5275. };
  5276. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5277. result->op = GGML_OP_MAP_CUSTOM2;
  5278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5279. result->src[0] = a;
  5280. result->src[1] = b;
  5281. return result;
  5282. }
  5283. struct ggml_tensor * ggml_map_custom2(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. struct ggml_tensor * b,
  5287. const ggml_custom2_op_t fun,
  5288. int n_tasks,
  5289. void * userdata) {
  5290. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5291. }
  5292. struct ggml_tensor * ggml_map_custom2_inplace(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. struct ggml_tensor * b,
  5296. const ggml_custom2_op_t fun,
  5297. int n_tasks,
  5298. void * userdata) {
  5299. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5300. }
  5301. // ggml_map_custom3
  5302. struct ggml_map_custom3_op_params {
  5303. ggml_custom3_op_t fun;
  5304. int n_tasks;
  5305. void * userdata;
  5306. };
  5307. static struct ggml_tensor * ggml_map_custom3_impl(
  5308. struct ggml_context * ctx,
  5309. struct ggml_tensor * a,
  5310. struct ggml_tensor * b,
  5311. struct ggml_tensor * c,
  5312. const ggml_custom3_op_t fun,
  5313. int n_tasks,
  5314. void * userdata,
  5315. bool inplace) {
  5316. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5317. bool is_node = false;
  5318. if (!inplace && (a->grad || b->grad || c->grad)) {
  5319. is_node = true;
  5320. }
  5321. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5322. struct ggml_map_custom3_op_params params = {
  5323. /*.fun =*/ fun,
  5324. /*.n_tasks =*/ n_tasks,
  5325. /*.userdata =*/ userdata
  5326. };
  5327. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5328. result->op = GGML_OP_MAP_CUSTOM3;
  5329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5330. result->src[0] = a;
  5331. result->src[1] = b;
  5332. result->src[2] = c;
  5333. return result;
  5334. }
  5335. struct ggml_tensor * ggml_map_custom3(
  5336. struct ggml_context * ctx,
  5337. struct ggml_tensor * a,
  5338. struct ggml_tensor * b,
  5339. struct ggml_tensor * c,
  5340. const ggml_custom3_op_t fun,
  5341. int n_tasks,
  5342. void * userdata) {
  5343. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5344. }
  5345. struct ggml_tensor * ggml_map_custom3_inplace(
  5346. struct ggml_context * ctx,
  5347. struct ggml_tensor * a,
  5348. struct ggml_tensor * b,
  5349. struct ggml_tensor * c,
  5350. const ggml_custom3_op_t fun,
  5351. int n_tasks,
  5352. void * userdata) {
  5353. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5354. }
  5355. // ggml_cross_entropy_loss
  5356. struct ggml_tensor * ggml_cross_entropy_loss(
  5357. struct ggml_context * ctx,
  5358. struct ggml_tensor * a,
  5359. struct ggml_tensor * b) {
  5360. GGML_ASSERT(ggml_are_same_shape(a, b));
  5361. bool is_node = false;
  5362. if (a->grad || b->grad) {
  5363. is_node = true;
  5364. }
  5365. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5366. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5368. result->src[0] = a;
  5369. result->src[1] = b;
  5370. return result;
  5371. }
  5372. // ggml_cross_entropy_loss_back
  5373. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. struct ggml_tensor * b,
  5377. struct ggml_tensor * c) {
  5378. GGML_ASSERT(ggml_are_same_shape(a, b));
  5379. GGML_ASSERT(ggml_is_scalar(c));
  5380. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5381. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5382. result->grad = NULL;
  5383. result->src[0] = a;
  5384. result->src[1] = b;
  5385. result->src[2] = c;
  5386. return result;
  5387. }
  5388. ////////////////////////////////////////////////////////////////////////////////
  5389. void ggml_set_param(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * tensor) {
  5392. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5393. GGML_ASSERT(tensor->grad == NULL);
  5394. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5395. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5396. }
  5397. // ggml_compute_forward_dup
  5398. static void ggml_compute_forward_dup_same_cont(
  5399. const struct ggml_compute_params * params,
  5400. const struct ggml_tensor * src0,
  5401. struct ggml_tensor * dst) {
  5402. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5403. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5404. GGML_ASSERT(src0->type == dst->type);
  5405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5406. return;
  5407. }
  5408. const size_t nb00 = src0->nb[0];
  5409. const size_t nb0 = dst->nb[0];
  5410. const int ith = params->ith; // thread index
  5411. const int nth = params->nth; // number of threads
  5412. // parallelize by elements
  5413. const int ne = ggml_nelements(dst);
  5414. const int dr = (ne + nth - 1) / nth;
  5415. const int ie0 = dr * ith;
  5416. const int ie1 = MIN(ie0 + dr, ne);
  5417. if (ie0 < ie1) {
  5418. memcpy(
  5419. ((char *) dst->data + ie0*nb0),
  5420. ((char *) src0->data + ie0*nb00),
  5421. (ie1 - ie0) * ggml_type_size(src0->type));
  5422. }
  5423. }
  5424. static void ggml_compute_forward_dup_f16(
  5425. const struct ggml_compute_params * params,
  5426. const struct ggml_tensor * src0,
  5427. struct ggml_tensor * dst) {
  5428. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5429. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5430. return;
  5431. }
  5432. GGML_TENSOR_UNARY_OP_LOCALS
  5433. const int ith = params->ith; // thread index
  5434. const int nth = params->nth; // number of threads
  5435. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5436. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5437. return;
  5438. }
  5439. // parallelize by rows
  5440. const int nr = ne01;
  5441. // number of rows per thread
  5442. const int dr = (nr + nth - 1) / nth;
  5443. // row range for this thread
  5444. const int ir0 = dr * ith;
  5445. const int ir1 = MIN(ir0 + dr, nr);
  5446. if (src0->type == dst->type &&
  5447. ne00 == ne0 &&
  5448. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5449. // copy by rows
  5450. const size_t rs = ne00*nb00;
  5451. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5452. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5453. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5454. memcpy(
  5455. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5456. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5457. rs);
  5458. }
  5459. }
  5460. }
  5461. return;
  5462. }
  5463. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5464. if (ggml_is_contiguous(dst)) {
  5465. if (nb00 == sizeof(ggml_fp16_t)) {
  5466. if (dst->type == GGML_TYPE_F16) {
  5467. size_t id = 0;
  5468. const size_t rs = ne00 * nb00;
  5469. char * dst_ptr = (char *) dst->data;
  5470. for (int i03 = 0; i03 < ne03; i03++) {
  5471. for (int i02 = 0; i02 < ne02; i02++) {
  5472. id += rs * ir0;
  5473. for (int i01 = ir0; i01 < ir1; i01++) {
  5474. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5475. memcpy(dst_ptr + id, src0_ptr, rs);
  5476. id += rs;
  5477. }
  5478. id += rs * (ne01 - ir1);
  5479. }
  5480. }
  5481. } else if (dst->type == GGML_TYPE_F32) {
  5482. size_t id = 0;
  5483. float * dst_ptr = (float *) dst->data;
  5484. for (int i03 = 0; i03 < ne03; i03++) {
  5485. for (int i02 = 0; i02 < ne02; i02++) {
  5486. id += ne00 * ir0;
  5487. for (int i01 = ir0; i01 < ir1; i01++) {
  5488. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5489. for (int i00 = 0; i00 < ne00; i00++) {
  5490. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5491. id++;
  5492. }
  5493. }
  5494. id += ne00 * (ne01 - ir1);
  5495. }
  5496. }
  5497. } else if (type_traits[dst->type].from_float) {
  5498. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5499. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5500. size_t id = 0;
  5501. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5502. char * dst_ptr = (char *) dst->data;
  5503. for (int i03 = 0; i03 < ne03; i03++) {
  5504. for (int i02 = 0; i02 < ne02; i02++) {
  5505. id += rs * ir0;
  5506. for (int i01 = ir0; i01 < ir1; i01++) {
  5507. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5508. for (int i00 = 0; i00 < ne00; i00++) {
  5509. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5510. }
  5511. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5512. id += rs;
  5513. }
  5514. id += rs * (ne01 - ir1);
  5515. }
  5516. }
  5517. } else {
  5518. GGML_ASSERT(false); // TODO: implement
  5519. }
  5520. } else {
  5521. //printf("%s: this is not optimal - fix me\n", __func__);
  5522. if (dst->type == GGML_TYPE_F32) {
  5523. size_t id = 0;
  5524. float * dst_ptr = (float *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += ne00 * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. for (int i00 = 0; i00 < ne00; i00++) {
  5530. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5531. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5532. id++;
  5533. }
  5534. }
  5535. id += ne00 * (ne01 - ir1);
  5536. }
  5537. }
  5538. } else if (dst->type == GGML_TYPE_F16) {
  5539. size_t id = 0;
  5540. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5541. for (int i03 = 0; i03 < ne03; i03++) {
  5542. for (int i02 = 0; i02 < ne02; i02++) {
  5543. id += ne00 * ir0;
  5544. for (int i01 = ir0; i01 < ir1; i01++) {
  5545. for (int i00 = 0; i00 < ne00; i00++) {
  5546. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5547. dst_ptr[id] = *src0_ptr;
  5548. id++;
  5549. }
  5550. }
  5551. id += ne00 * (ne01 - ir1);
  5552. }
  5553. }
  5554. } else {
  5555. GGML_ASSERT(false); // TODO: implement
  5556. }
  5557. }
  5558. return;
  5559. }
  5560. // dst counters
  5561. int64_t i10 = 0;
  5562. int64_t i11 = 0;
  5563. int64_t i12 = 0;
  5564. int64_t i13 = 0;
  5565. if (dst->type == GGML_TYPE_F16) {
  5566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5568. i10 += ne00 * ir0;
  5569. while (i10 >= ne0) {
  5570. i10 -= ne0;
  5571. if (++i11 == ne1) {
  5572. i11 = 0;
  5573. if (++i12 == ne2) {
  5574. i12 = 0;
  5575. if (++i13 == ne3) {
  5576. i13 = 0;
  5577. }
  5578. }
  5579. }
  5580. }
  5581. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5582. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5583. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5584. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5585. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5586. if (++i10 == ne00) {
  5587. i10 = 0;
  5588. if (++i11 == ne01) {
  5589. i11 = 0;
  5590. if (++i12 == ne02) {
  5591. i12 = 0;
  5592. if (++i13 == ne03) {
  5593. i13 = 0;
  5594. }
  5595. }
  5596. }
  5597. }
  5598. }
  5599. }
  5600. i10 += ne00 * (ne01 - ir1);
  5601. while (i10 >= ne0) {
  5602. i10 -= ne0;
  5603. if (++i11 == ne1) {
  5604. i11 = 0;
  5605. if (++i12 == ne2) {
  5606. i12 = 0;
  5607. if (++i13 == ne3) {
  5608. i13 = 0;
  5609. }
  5610. }
  5611. }
  5612. }
  5613. }
  5614. }
  5615. } else if (dst->type == GGML_TYPE_F32) {
  5616. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5617. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5618. i10 += ne00 * ir0;
  5619. while (i10 >= ne0) {
  5620. i10 -= ne0;
  5621. if (++i11 == ne1) {
  5622. i11 = 0;
  5623. if (++i12 == ne2) {
  5624. i12 = 0;
  5625. if (++i13 == ne3) {
  5626. i13 = 0;
  5627. }
  5628. }
  5629. }
  5630. }
  5631. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5632. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5633. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5634. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5635. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5636. if (++i10 == ne0) {
  5637. i10 = 0;
  5638. if (++i11 == ne1) {
  5639. i11 = 0;
  5640. if (++i12 == ne2) {
  5641. i12 = 0;
  5642. if (++i13 == ne3) {
  5643. i13 = 0;
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. i10 += ne00 * (ne01 - ir1);
  5651. while (i10 >= ne0) {
  5652. i10 -= ne0;
  5653. if (++i11 == ne1) {
  5654. i11 = 0;
  5655. if (++i12 == ne2) {
  5656. i12 = 0;
  5657. if (++i13 == ne3) {
  5658. i13 = 0;
  5659. }
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. } else {
  5666. GGML_ASSERT(false); // TODO: implement
  5667. }
  5668. }
  5669. static void ggml_compute_forward_dup_f32(
  5670. const struct ggml_compute_params * params,
  5671. const struct ggml_tensor * src0,
  5672. struct ggml_tensor * dst) {
  5673. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5674. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5675. return;
  5676. }
  5677. GGML_TENSOR_UNARY_OP_LOCALS
  5678. const int ith = params->ith; // thread index
  5679. const int nth = params->nth; // number of threads
  5680. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5681. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5682. return;
  5683. }
  5684. // parallelize by rows
  5685. const int nr = ne01;
  5686. // number of rows per thread
  5687. const int dr = (nr + nth - 1) / nth;
  5688. // row range for this thread
  5689. const int ir0 = dr * ith;
  5690. const int ir1 = MIN(ir0 + dr, nr);
  5691. if (src0->type == dst->type &&
  5692. ne00 == ne0 &&
  5693. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5694. // copy by rows
  5695. const size_t rs = ne00*nb00;
  5696. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5697. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5698. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5699. memcpy(
  5700. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5701. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5702. rs);
  5703. }
  5704. }
  5705. }
  5706. return;
  5707. }
  5708. if (ggml_is_contiguous(dst)) {
  5709. // TODO: simplify
  5710. if (nb00 == sizeof(float)) {
  5711. if (dst->type == GGML_TYPE_F32) {
  5712. size_t id = 0;
  5713. const size_t rs = ne00 * nb00;
  5714. char * dst_ptr = (char *) dst->data;
  5715. for (int i03 = 0; i03 < ne03; i03++) {
  5716. for (int i02 = 0; i02 < ne02; i02++) {
  5717. id += rs * ir0;
  5718. for (int i01 = ir0; i01 < ir1; i01++) {
  5719. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5720. memcpy(dst_ptr + id, src0_ptr, rs);
  5721. id += rs;
  5722. }
  5723. id += rs * (ne01 - ir1);
  5724. }
  5725. }
  5726. } else if (type_traits[dst->type].from_float) {
  5727. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5728. size_t id = 0;
  5729. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5730. char * dst_ptr = (char *) dst->data;
  5731. for (int i03 = 0; i03 < ne03; i03++) {
  5732. for (int i02 = 0; i02 < ne02; i02++) {
  5733. id += rs * ir0;
  5734. for (int i01 = ir0; i01 < ir1; i01++) {
  5735. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5736. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5737. id += rs;
  5738. }
  5739. id += rs * (ne01 - ir1);
  5740. }
  5741. }
  5742. } else {
  5743. GGML_ASSERT(false); // TODO: implement
  5744. }
  5745. } else {
  5746. //printf("%s: this is not optimal - fix me\n", __func__);
  5747. if (dst->type == GGML_TYPE_F32) {
  5748. size_t id = 0;
  5749. float * dst_ptr = (float *) dst->data;
  5750. for (int i03 = 0; i03 < ne03; i03++) {
  5751. for (int i02 = 0; i02 < ne02; i02++) {
  5752. id += ne00 * ir0;
  5753. for (int i01 = ir0; i01 < ir1; i01++) {
  5754. for (int i00 = 0; i00 < ne00; i00++) {
  5755. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5756. dst_ptr[id] = *src0_ptr;
  5757. id++;
  5758. }
  5759. }
  5760. id += ne00 * (ne01 - ir1);
  5761. }
  5762. }
  5763. } else if (dst->type == GGML_TYPE_F16) {
  5764. size_t id = 0;
  5765. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5766. for (int i03 = 0; i03 < ne03; i03++) {
  5767. for (int i02 = 0; i02 < ne02; i02++) {
  5768. id += ne00 * ir0;
  5769. for (int i01 = ir0; i01 < ir1; i01++) {
  5770. for (int i00 = 0; i00 < ne00; i00++) {
  5771. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5772. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5773. id++;
  5774. }
  5775. }
  5776. id += ne00 * (ne01 - ir1);
  5777. }
  5778. }
  5779. } else {
  5780. GGML_ASSERT(false); // TODO: implement
  5781. }
  5782. }
  5783. return;
  5784. }
  5785. // dst counters
  5786. int64_t i10 = 0;
  5787. int64_t i11 = 0;
  5788. int64_t i12 = 0;
  5789. int64_t i13 = 0;
  5790. if (dst->type == GGML_TYPE_F32) {
  5791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5793. i10 += ne00 * ir0;
  5794. while (i10 >= ne0) {
  5795. i10 -= ne0;
  5796. if (++i11 == ne1) {
  5797. i11 = 0;
  5798. if (++i12 == ne2) {
  5799. i12 = 0;
  5800. if (++i13 == ne3) {
  5801. i13 = 0;
  5802. }
  5803. }
  5804. }
  5805. }
  5806. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5807. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5808. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5809. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5810. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5811. if (++i10 == ne0) {
  5812. i10 = 0;
  5813. if (++i11 == ne1) {
  5814. i11 = 0;
  5815. if (++i12 == ne2) {
  5816. i12 = 0;
  5817. if (++i13 == ne3) {
  5818. i13 = 0;
  5819. }
  5820. }
  5821. }
  5822. }
  5823. }
  5824. }
  5825. i10 += ne00 * (ne01 - ir1);
  5826. while (i10 >= ne0) {
  5827. i10 -= ne0;
  5828. if (++i11 == ne1) {
  5829. i11 = 0;
  5830. if (++i12 == ne2) {
  5831. i12 = 0;
  5832. if (++i13 == ne3) {
  5833. i13 = 0;
  5834. }
  5835. }
  5836. }
  5837. }
  5838. }
  5839. }
  5840. } else if (dst->type == GGML_TYPE_F16) {
  5841. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5842. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5843. i10 += ne00 * ir0;
  5844. while (i10 >= ne0) {
  5845. i10 -= ne0;
  5846. if (++i11 == ne1) {
  5847. i11 = 0;
  5848. if (++i12 == ne2) {
  5849. i12 = 0;
  5850. if (++i13 == ne3) {
  5851. i13 = 0;
  5852. }
  5853. }
  5854. }
  5855. }
  5856. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5858. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5859. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5860. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5861. if (++i10 == ne0) {
  5862. i10 = 0;
  5863. if (++i11 == ne1) {
  5864. i11 = 0;
  5865. if (++i12 == ne2) {
  5866. i12 = 0;
  5867. if (++i13 == ne3) {
  5868. i13 = 0;
  5869. }
  5870. }
  5871. }
  5872. }
  5873. }
  5874. }
  5875. i10 += ne00 * (ne01 - ir1);
  5876. while (i10 >= ne0) {
  5877. i10 -= ne0;
  5878. if (++i11 == ne1) {
  5879. i11 = 0;
  5880. if (++i12 == ne2) {
  5881. i12 = 0;
  5882. if (++i13 == ne3) {
  5883. i13 = 0;
  5884. }
  5885. }
  5886. }
  5887. }
  5888. }
  5889. }
  5890. } else {
  5891. GGML_ASSERT(false); // TODO: implement
  5892. }
  5893. }
  5894. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5895. static void ggml_compute_forward_dup_bytes(
  5896. const struct ggml_compute_params * params,
  5897. const struct ggml_tensor * src0,
  5898. struct ggml_tensor * dst) {
  5899. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5900. GGML_ASSERT(src0->type == dst->type);
  5901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5902. return;
  5903. }
  5904. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5905. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5906. return;
  5907. }
  5908. GGML_TENSOR_UNARY_OP_LOCALS;
  5909. const size_t type_size = ggml_type_size(src0->type);
  5910. const int ith = params->ith; // thread index
  5911. const int nth = params->nth; // number of threads
  5912. // parallelize by rows
  5913. const int nr = ne01;
  5914. // number of rows per thread
  5915. const int dr = (nr + nth - 1) / nth;
  5916. // row range for this thread
  5917. const int ir0 = dr * ith;
  5918. const int ir1 = MIN(ir0 + dr, nr);
  5919. if (src0->type == dst->type &&
  5920. ne00 == ne0 &&
  5921. nb00 == type_size && nb0 == type_size) {
  5922. // copy by rows
  5923. const size_t rs = ne00 * type_size;
  5924. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5925. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5926. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5927. memcpy(
  5928. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5929. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5930. rs);
  5931. }
  5932. }
  5933. }
  5934. return;
  5935. }
  5936. if (ggml_is_contiguous(dst)) {
  5937. size_t id = 0;
  5938. char * dst_ptr = (char *) dst->data;
  5939. const size_t rs = ne00 * type_size;
  5940. if (nb00 == type_size) {
  5941. // src0 is contigous on first dimension, copy by rows
  5942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5944. id += rs * ir0;
  5945. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5946. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5947. memcpy(dst_ptr + id, src0_ptr, rs);
  5948. id += rs;
  5949. }
  5950. id += rs * (ne01 - ir1);
  5951. }
  5952. }
  5953. } else {
  5954. //printf("%s: this is not optimal - fix me\n", __func__);
  5955. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5956. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5957. id += rs * ir0;
  5958. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5959. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5960. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5961. memcpy(dst_ptr + id, src0_ptr, type_size);
  5962. id += type_size;
  5963. }
  5964. }
  5965. id += rs * (ne01 - ir1);
  5966. }
  5967. }
  5968. }
  5969. return;
  5970. }
  5971. // dst counters
  5972. int64_t i10 = 0;
  5973. int64_t i11 = 0;
  5974. int64_t i12 = 0;
  5975. int64_t i13 = 0;
  5976. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5977. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5978. i10 += ne00 * ir0;
  5979. while (i10 >= ne0) {
  5980. i10 -= ne0;
  5981. if (++i11 == ne1) {
  5982. i11 = 0;
  5983. if (++i12 == ne2) {
  5984. i12 = 0;
  5985. if (++i13 == ne3) {
  5986. i13 = 0;
  5987. }
  5988. }
  5989. }
  5990. }
  5991. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5992. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5993. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5994. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5995. memcpy(dst_ptr, src0_ptr, type_size);
  5996. if (++i10 == ne0) {
  5997. i10 = 0;
  5998. if (++i11 == ne1) {
  5999. i11 = 0;
  6000. if (++i12 == ne2) {
  6001. i12 = 0;
  6002. if (++i13 == ne3) {
  6003. i13 = 0;
  6004. }
  6005. }
  6006. }
  6007. }
  6008. }
  6009. }
  6010. i10 += ne00 * (ne01 - ir1);
  6011. while (i10 >= ne0) {
  6012. i10 -= ne0;
  6013. if (++i11 == ne1) {
  6014. i11 = 0;
  6015. if (++i12 == ne2) {
  6016. i12 = 0;
  6017. if (++i13 == ne3) {
  6018. i13 = 0;
  6019. }
  6020. }
  6021. }
  6022. }
  6023. }
  6024. }
  6025. }
  6026. static void ggml_compute_forward_dup(
  6027. const struct ggml_compute_params * params,
  6028. const struct ggml_tensor * src0,
  6029. struct ggml_tensor * dst) {
  6030. if (src0->type == dst->type) {
  6031. ggml_compute_forward_dup_bytes(params, src0, dst);
  6032. return;
  6033. }
  6034. switch (src0->type) {
  6035. case GGML_TYPE_F16:
  6036. {
  6037. ggml_compute_forward_dup_f16(params, src0, dst);
  6038. } break;
  6039. case GGML_TYPE_F32:
  6040. {
  6041. ggml_compute_forward_dup_f32(params, src0, dst);
  6042. } break;
  6043. default:
  6044. {
  6045. GGML_ASSERT(false);
  6046. } break;
  6047. }
  6048. }
  6049. // ggml_compute_forward_add
  6050. static void ggml_compute_forward_add_f32(
  6051. const struct ggml_compute_params * params,
  6052. const struct ggml_tensor * src0,
  6053. const struct ggml_tensor * src1,
  6054. struct ggml_tensor * dst) {
  6055. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6057. return;
  6058. }
  6059. const int ith = params->ith;
  6060. const int nth = params->nth;
  6061. #ifdef GGML_USE_CLBLAST
  6062. if (src1->backend == GGML_BACKEND_GPU) {
  6063. // TODO: OpenCL kernel support full broadcast
  6064. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6065. if (ith == 0) {
  6066. ggml_cl_add(src0, src1, dst);
  6067. }
  6068. return;
  6069. }
  6070. #endif
  6071. const int nr = ggml_nrows(src0);
  6072. GGML_TENSOR_BINARY_OP_LOCALS
  6073. GGML_ASSERT( nb0 == sizeof(float));
  6074. GGML_ASSERT(nb00 == sizeof(float));
  6075. // rows per thread
  6076. const int dr = (nr + nth - 1)/nth;
  6077. // row range for this thread
  6078. const int ir0 = dr*ith;
  6079. const int ir1 = MIN(ir0 + dr, nr);
  6080. if (nb10 == sizeof(float)) {
  6081. for (int ir = ir0; ir < ir1; ++ir) {
  6082. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6083. const int64_t i03 = ir/(ne02*ne01);
  6084. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6085. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6086. const int64_t i13 = i03 % ne13;
  6087. const int64_t i12 = i02 % ne12;
  6088. const int64_t i11 = i01 % ne11;
  6089. const int64_t nr0 = ne00 / ne10;
  6090. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6091. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6092. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6093. for (int64_t r = 0; r < nr0; ++r) {
  6094. #ifdef GGML_USE_ACCELERATE
  6095. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6096. #else
  6097. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6098. #endif
  6099. }
  6100. }
  6101. } else {
  6102. // src1 is not contiguous
  6103. for (int ir = ir0; ir < ir1; ++ir) {
  6104. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6105. const int64_t i03 = ir/(ne02*ne01);
  6106. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6107. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6108. const int64_t i13 = i03 % ne13;
  6109. const int64_t i12 = i02 % ne12;
  6110. const int64_t i11 = i01 % ne11;
  6111. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6112. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6113. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6114. const int64_t i10 = i0 % ne10;
  6115. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6116. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6117. }
  6118. }
  6119. }
  6120. }
  6121. static void ggml_compute_forward_add_f16_f32(
  6122. const struct ggml_compute_params * params,
  6123. const struct ggml_tensor * src0,
  6124. const struct ggml_tensor * src1,
  6125. struct ggml_tensor * dst) {
  6126. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6128. return;
  6129. }
  6130. const int ith = params->ith;
  6131. const int nth = params->nth;
  6132. const int nr = ggml_nrows(src0);
  6133. GGML_TENSOR_BINARY_OP_LOCALS
  6134. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6135. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6136. if (dst->type == GGML_TYPE_F32) {
  6137. GGML_ASSERT( nb0 == sizeof(float));
  6138. }
  6139. else {
  6140. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6141. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6142. }
  6143. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6144. // rows per thread
  6145. const int dr = (nr + nth - 1)/nth;
  6146. // row range for this thread
  6147. const int ir0 = dr*ith;
  6148. const int ir1 = MIN(ir0 + dr, nr);
  6149. if (nb10 == sizeof(float)) {
  6150. if (dst->type == GGML_TYPE_F16) {
  6151. for (int ir = ir0; ir < ir1; ++ir) {
  6152. // src0, src1 and dst are same shape => same indices
  6153. const int i3 = ir/(ne2*ne1);
  6154. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6155. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6156. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6157. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6158. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6159. for (int i = 0; i < ne0; i++) {
  6160. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6161. }
  6162. }
  6163. } else {
  6164. for (int ir = ir0; ir < ir1; ++ir) {
  6165. // src0, src1 and dst are same shape => same indices
  6166. const int i3 = ir/(ne2*ne1);
  6167. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6168. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6169. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6170. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6171. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6172. for (int i = 0; i < ne0; i++) {
  6173. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6174. }
  6175. }
  6176. }
  6177. }
  6178. else {
  6179. // src1 is not contiguous
  6180. GGML_ASSERT(false);
  6181. }
  6182. }
  6183. static void ggml_compute_forward_add_f16_f16(
  6184. const struct ggml_compute_params * params,
  6185. const struct ggml_tensor * src0,
  6186. const struct ggml_tensor * src1,
  6187. struct ggml_tensor * dst) {
  6188. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6190. return;
  6191. }
  6192. const int ith = params->ith;
  6193. const int nth = params->nth;
  6194. const int nr = ggml_nrows(src0);
  6195. GGML_TENSOR_BINARY_OP_LOCALS
  6196. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6197. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6198. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6199. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6200. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6201. // rows per thread
  6202. const int dr = (nr + nth - 1)/nth;
  6203. // row range for this thread
  6204. const int ir0 = dr*ith;
  6205. const int ir1 = MIN(ir0 + dr, nr);
  6206. if (nb10 == sizeof(ggml_fp16_t)) {
  6207. for (int ir = ir0; ir < ir1; ++ir) {
  6208. // src0, src1 and dst are same shape => same indices
  6209. const int i3 = ir/(ne2*ne1);
  6210. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6211. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6212. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6213. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6214. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6215. for (int i = 0; i < ne0; i++) {
  6216. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6217. }
  6218. }
  6219. }
  6220. else {
  6221. // src1 is not contiguous
  6222. GGML_ASSERT(false);
  6223. }
  6224. }
  6225. static void ggml_compute_forward_add_q_f32(
  6226. const struct ggml_compute_params * params,
  6227. const struct ggml_tensor * src0,
  6228. const struct ggml_tensor * src1,
  6229. struct ggml_tensor * dst) {
  6230. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6232. return;
  6233. }
  6234. const int nr = ggml_nrows(src0);
  6235. GGML_TENSOR_BINARY_OP_LOCALS
  6236. const int ith = params->ith;
  6237. const int nth = params->nth;
  6238. const enum ggml_type type = src0->type;
  6239. const enum ggml_type dtype = dst->type;
  6240. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6241. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6242. // we don't support permuted src0 or src1
  6243. GGML_ASSERT(nb00 == ggml_type_size(type));
  6244. GGML_ASSERT(nb10 == sizeof(float));
  6245. // dst cannot be transposed or permuted
  6246. GGML_ASSERT(nb0 <= nb1);
  6247. GGML_ASSERT(nb1 <= nb2);
  6248. GGML_ASSERT(nb2 <= nb3);
  6249. GGML_ASSERT(ggml_is_quantized(src0->type));
  6250. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6251. // rows per thread
  6252. const int dr = (nr + nth - 1)/nth;
  6253. // row range for this thread
  6254. const int ir0 = dr*ith;
  6255. const int ir1 = MIN(ir0 + dr, nr);
  6256. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6257. for (int ir = ir0; ir < ir1; ++ir) {
  6258. // src0 indices
  6259. const int i03 = ir/(ne02*ne01);
  6260. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6261. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6262. // src1 and dst are same shape as src0 => same indices
  6263. const int i13 = i03;
  6264. const int i12 = i02;
  6265. const int i11 = i01;
  6266. const int i3 = i03;
  6267. const int i2 = i02;
  6268. const int i1 = i01;
  6269. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6270. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6271. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6272. assert(ne00 % 32 == 0);
  6273. // unquantize row from src0 to temp buffer
  6274. dequantize_row_q(src0_row, wdata, ne00);
  6275. // add src1
  6276. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6277. // quantize row to dst
  6278. if (quantize_row_q != NULL) {
  6279. quantize_row_q(wdata, dst_row, ne00);
  6280. } else {
  6281. memcpy(dst_row, wdata, ne0*nb0);
  6282. }
  6283. }
  6284. }
  6285. static void ggml_compute_forward_add(
  6286. const struct ggml_compute_params * params,
  6287. const struct ggml_tensor * src0,
  6288. const struct ggml_tensor * src1,
  6289. struct ggml_tensor * dst) {
  6290. switch (src0->type) {
  6291. case GGML_TYPE_F32:
  6292. {
  6293. if (src1->type == GGML_TYPE_F32) {
  6294. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6295. }
  6296. else {
  6297. GGML_ASSERT(false);
  6298. }
  6299. } break;
  6300. case GGML_TYPE_F16:
  6301. {
  6302. if (src1->type == GGML_TYPE_F16) {
  6303. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6304. }
  6305. else if (src1->type == GGML_TYPE_F32) {
  6306. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6307. }
  6308. else {
  6309. GGML_ASSERT(false);
  6310. }
  6311. } break;
  6312. case GGML_TYPE_Q4_0:
  6313. case GGML_TYPE_Q4_1:
  6314. case GGML_TYPE_Q5_0:
  6315. case GGML_TYPE_Q5_1:
  6316. case GGML_TYPE_Q8_0:
  6317. case GGML_TYPE_Q2_K:
  6318. case GGML_TYPE_Q3_K:
  6319. case GGML_TYPE_Q4_K:
  6320. case GGML_TYPE_Q5_K:
  6321. case GGML_TYPE_Q6_K:
  6322. case GGML_TYPE_IQ2_XXS:
  6323. case GGML_TYPE_IQ2_XS:
  6324. case GGML_TYPE_IQ3_XXS:
  6325. case GGML_TYPE_IQ1_S:
  6326. {
  6327. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6328. } break;
  6329. default:
  6330. {
  6331. GGML_ASSERT(false);
  6332. } break;
  6333. }
  6334. }
  6335. // ggml_compute_forward_add1
  6336. static void ggml_compute_forward_add1_f32(
  6337. const struct ggml_compute_params * params,
  6338. const struct ggml_tensor * src0,
  6339. const struct ggml_tensor * src1,
  6340. struct ggml_tensor * dst) {
  6341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6342. GGML_ASSERT(ggml_is_scalar(src1));
  6343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6344. return;
  6345. }
  6346. const int ith = params->ith;
  6347. const int nth = params->nth;
  6348. const int nr = ggml_nrows(src0);
  6349. GGML_TENSOR_UNARY_OP_LOCALS
  6350. GGML_ASSERT( nb0 == sizeof(float));
  6351. GGML_ASSERT(nb00 == sizeof(float));
  6352. // rows per thread
  6353. const int dr = (nr + nth - 1)/nth;
  6354. // row range for this thread
  6355. const int ir0 = dr*ith;
  6356. const int ir1 = MIN(ir0 + dr, nr);
  6357. for (int ir = ir0; ir < ir1; ++ir) {
  6358. // src0 and dst are same shape => same indices
  6359. const int i3 = ir/(ne2*ne1);
  6360. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6361. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6362. #ifdef GGML_USE_ACCELERATE
  6363. UNUSED(ggml_vec_add1_f32);
  6364. vDSP_vadd(
  6365. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6366. (float *) ((char *) src1->data), 0,
  6367. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6368. ne0);
  6369. #else
  6370. ggml_vec_add1_f32(ne0,
  6371. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6372. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6373. *(float *) src1->data);
  6374. #endif
  6375. }
  6376. }
  6377. static void ggml_compute_forward_add1_f16_f32(
  6378. const struct ggml_compute_params * params,
  6379. const struct ggml_tensor * src0,
  6380. const struct ggml_tensor * src1,
  6381. struct ggml_tensor * dst) {
  6382. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6383. GGML_ASSERT(ggml_is_scalar(src1));
  6384. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6385. return;
  6386. }
  6387. // scalar to add
  6388. const float v = *(float *) src1->data;
  6389. const int ith = params->ith;
  6390. const int nth = params->nth;
  6391. const int nr = ggml_nrows(src0);
  6392. GGML_TENSOR_UNARY_OP_LOCALS
  6393. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6394. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6395. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6396. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6397. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6398. // rows per thread
  6399. const int dr = (nr + nth - 1)/nth;
  6400. // row range for this thread
  6401. const int ir0 = dr*ith;
  6402. const int ir1 = MIN(ir0 + dr, nr);
  6403. for (int ir = ir0; ir < ir1; ++ir) {
  6404. // src0 and dst are same shape => same indices
  6405. const int i3 = ir/(ne2*ne1);
  6406. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6407. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6408. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6409. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6410. for (int i = 0; i < ne0; i++) {
  6411. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6412. }
  6413. }
  6414. }
  6415. static void ggml_compute_forward_add1_f16_f16(
  6416. const struct ggml_compute_params * params,
  6417. const struct ggml_tensor * src0,
  6418. const struct ggml_tensor * src1,
  6419. struct ggml_tensor * dst) {
  6420. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6421. GGML_ASSERT(ggml_is_scalar(src1));
  6422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6423. return;
  6424. }
  6425. // scalar to add
  6426. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. const int nr = ggml_nrows(src0);
  6430. GGML_TENSOR_UNARY_OP_LOCALS
  6431. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6432. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6433. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6434. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6435. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6436. // rows per thread
  6437. const int dr = (nr + nth - 1)/nth;
  6438. // row range for this thread
  6439. const int ir0 = dr*ith;
  6440. const int ir1 = MIN(ir0 + dr, nr);
  6441. for (int ir = ir0; ir < ir1; ++ir) {
  6442. // src0 and dst are same shape => same indices
  6443. const int i3 = ir/(ne2*ne1);
  6444. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6445. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6446. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6447. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6448. for (int i = 0; i < ne0; i++) {
  6449. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6450. }
  6451. }
  6452. }
  6453. static void ggml_compute_forward_add1_q_f32(
  6454. const struct ggml_compute_params * params,
  6455. const struct ggml_tensor * src0,
  6456. const struct ggml_tensor * src1,
  6457. struct ggml_tensor * dst) {
  6458. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6459. GGML_ASSERT(ggml_is_scalar(src1));
  6460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6461. return;
  6462. }
  6463. // scalar to add
  6464. const float v = *(float *) src1->data;
  6465. const int ith = params->ith;
  6466. const int nth = params->nth;
  6467. const int nr = ggml_nrows(src0);
  6468. GGML_TENSOR_UNARY_OP_LOCALS
  6469. const enum ggml_type type = src0->type;
  6470. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6471. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6472. // we don't support permuted src0
  6473. GGML_ASSERT(nb00 == ggml_type_size(type));
  6474. // dst cannot be transposed or permuted
  6475. GGML_ASSERT(nb0 <= nb1);
  6476. GGML_ASSERT(nb1 <= nb2);
  6477. GGML_ASSERT(nb2 <= nb3);
  6478. GGML_ASSERT(ggml_is_quantized(src0->type));
  6479. GGML_ASSERT(dst->type == src0->type);
  6480. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6481. // rows per thread
  6482. const int dr = (nr + nth - 1)/nth;
  6483. // row range for this thread
  6484. const int ir0 = dr*ith;
  6485. const int ir1 = MIN(ir0 + dr, nr);
  6486. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6487. for (int ir = ir0; ir < ir1; ++ir) {
  6488. // src0 and dst are same shape => same indices
  6489. const int i3 = ir/(ne2*ne1);
  6490. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6491. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6492. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6493. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6494. assert(ne0 % 32 == 0);
  6495. // unquantize row from src0 to temp buffer
  6496. dequantize_row_q(src0_row, wdata, ne0);
  6497. // add src1
  6498. ggml_vec_acc1_f32(ne0, wdata, v);
  6499. // quantize row to dst
  6500. quantize_row_q(wdata, dst_row, ne0);
  6501. }
  6502. }
  6503. static void ggml_compute_forward_add1(
  6504. const struct ggml_compute_params * params,
  6505. const struct ggml_tensor * src0,
  6506. const struct ggml_tensor * src1,
  6507. struct ggml_tensor * dst) {
  6508. switch (src0->type) {
  6509. case GGML_TYPE_F32:
  6510. {
  6511. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6512. } break;
  6513. case GGML_TYPE_F16:
  6514. {
  6515. if (src1->type == GGML_TYPE_F16) {
  6516. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6517. }
  6518. else if (src1->type == GGML_TYPE_F32) {
  6519. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6520. }
  6521. else {
  6522. GGML_ASSERT(false);
  6523. }
  6524. } break;
  6525. case GGML_TYPE_Q4_0:
  6526. case GGML_TYPE_Q4_1:
  6527. case GGML_TYPE_Q5_0:
  6528. case GGML_TYPE_Q5_1:
  6529. case GGML_TYPE_Q8_0:
  6530. case GGML_TYPE_Q8_1:
  6531. case GGML_TYPE_Q2_K:
  6532. case GGML_TYPE_Q3_K:
  6533. case GGML_TYPE_Q4_K:
  6534. case GGML_TYPE_Q5_K:
  6535. case GGML_TYPE_Q6_K:
  6536. case GGML_TYPE_IQ2_XXS:
  6537. case GGML_TYPE_IQ2_XS:
  6538. case GGML_TYPE_IQ3_XXS:
  6539. case GGML_TYPE_IQ1_S:
  6540. {
  6541. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6542. } break;
  6543. default:
  6544. {
  6545. GGML_ASSERT(false);
  6546. } break;
  6547. }
  6548. }
  6549. // ggml_compute_forward_acc
  6550. static void ggml_compute_forward_acc_f32(
  6551. const struct ggml_compute_params * params,
  6552. const struct ggml_tensor * src0,
  6553. const struct ggml_tensor * src1,
  6554. struct ggml_tensor * dst) {
  6555. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6556. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6557. // view src0 and dst with these strides and data offset inbytes during acc
  6558. // nb0 is implicitly element_size because src0 and dst are contiguous
  6559. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6560. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6561. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6562. size_t offset = ((int32_t *) dst->op_params)[3];
  6563. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6564. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6565. if (params->ith != 0) {
  6566. return;
  6567. }
  6568. // memcpy needs to be synchronized across threads to avoid race conditions.
  6569. // => do it in INIT phase
  6570. memcpy(
  6571. ((char *) dst->data),
  6572. ((char *) src0->data),
  6573. ggml_nbytes(dst));
  6574. }
  6575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6576. return;
  6577. }
  6578. const int ith = params->ith;
  6579. const int nth = params->nth;
  6580. const int nr = ggml_nrows(src1);
  6581. const int nc = src1->ne[0];
  6582. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6583. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6584. // src0 and dst as viewed during acc
  6585. const size_t nb0 = ggml_element_size(src0);
  6586. const size_t nb00 = nb0;
  6587. const size_t nb01 = nb1;
  6588. const size_t nb02 = nb2;
  6589. const size_t nb03 = nb3;
  6590. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6591. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6592. GGML_ASSERT(nb10 == sizeof(float));
  6593. // rows per thread
  6594. const int dr = (nr + nth - 1)/nth;
  6595. // row range for this thread
  6596. const int ir0 = dr*ith;
  6597. const int ir1 = MIN(ir0 + dr, nr);
  6598. for (int ir = ir0; ir < ir1; ++ir) {
  6599. // src0 and dst are viewed with shape of src1 and offset
  6600. // => same indices
  6601. const int i3 = ir/(ne12*ne11);
  6602. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6603. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6604. #ifdef GGML_USE_ACCELERATE
  6605. vDSP_vadd(
  6606. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6607. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6608. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6609. #else
  6610. ggml_vec_add_f32(nc,
  6611. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6612. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6613. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6614. #endif
  6615. }
  6616. }
  6617. static void ggml_compute_forward_acc(
  6618. const struct ggml_compute_params * params,
  6619. const struct ggml_tensor * src0,
  6620. const struct ggml_tensor * src1,
  6621. struct ggml_tensor * dst) {
  6622. switch (src0->type) {
  6623. case GGML_TYPE_F32:
  6624. {
  6625. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6626. } break;
  6627. case GGML_TYPE_F16:
  6628. case GGML_TYPE_Q4_0:
  6629. case GGML_TYPE_Q4_1:
  6630. case GGML_TYPE_Q5_0:
  6631. case GGML_TYPE_Q5_1:
  6632. case GGML_TYPE_Q8_0:
  6633. case GGML_TYPE_Q8_1:
  6634. case GGML_TYPE_Q2_K:
  6635. case GGML_TYPE_Q3_K:
  6636. case GGML_TYPE_Q4_K:
  6637. case GGML_TYPE_Q5_K:
  6638. case GGML_TYPE_Q6_K:
  6639. case GGML_TYPE_IQ2_XXS:
  6640. case GGML_TYPE_IQ2_XS:
  6641. case GGML_TYPE_IQ3_XXS:
  6642. case GGML_TYPE_IQ1_S:
  6643. default:
  6644. {
  6645. GGML_ASSERT(false);
  6646. } break;
  6647. }
  6648. }
  6649. // ggml_compute_forward_sub
  6650. static void ggml_compute_forward_sub_f32(
  6651. const struct ggml_compute_params * params,
  6652. const struct ggml_tensor * src0,
  6653. const struct ggml_tensor * src1,
  6654. struct ggml_tensor * dst) {
  6655. assert(params->ith == 0);
  6656. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6658. return;
  6659. }
  6660. const int nr = ggml_nrows(src0);
  6661. GGML_TENSOR_BINARY_OP_LOCALS
  6662. GGML_ASSERT( nb0 == sizeof(float));
  6663. GGML_ASSERT(nb00 == sizeof(float));
  6664. if (nb10 == sizeof(float)) {
  6665. for (int ir = 0; ir < nr; ++ir) {
  6666. // src0, src1 and dst are same shape => same indices
  6667. const int i3 = ir/(ne2*ne1);
  6668. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6669. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6670. #ifdef GGML_USE_ACCELERATE
  6671. vDSP_vsub(
  6672. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6673. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6674. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6675. ne0);
  6676. #else
  6677. ggml_vec_sub_f32(ne0,
  6678. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6679. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6680. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6681. #endif
  6682. // }
  6683. // }
  6684. }
  6685. } else {
  6686. // src1 is not contiguous
  6687. for (int ir = 0; ir < nr; ++ir) {
  6688. // src0, src1 and dst are same shape => same indices
  6689. const int i3 = ir/(ne2*ne1);
  6690. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6691. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6692. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6693. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6694. for (int i0 = 0; i0 < ne0; i0++) {
  6695. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6696. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6697. }
  6698. }
  6699. }
  6700. }
  6701. static void ggml_compute_forward_sub(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0,
  6704. const struct ggml_tensor * src1,
  6705. struct ggml_tensor * dst) {
  6706. switch (src0->type) {
  6707. case GGML_TYPE_F32:
  6708. {
  6709. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6710. } break;
  6711. default:
  6712. {
  6713. GGML_ASSERT(false);
  6714. } break;
  6715. }
  6716. }
  6717. // ggml_compute_forward_mul
  6718. static void ggml_compute_forward_mul_f32(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * src0,
  6721. const struct ggml_tensor * src1,
  6722. struct ggml_tensor * dst) {
  6723. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6725. return;
  6726. }
  6727. const int ith = params->ith;
  6728. const int nth = params->nth;
  6729. #if defined(GGML_USE_CLBLAST)
  6730. if (src1->backend == GGML_BACKEND_GPU) {
  6731. // TODO: OpenCL kernel support full broadcast
  6732. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6733. if (ith == 0) {
  6734. ggml_cl_mul(src0, src1, dst);
  6735. }
  6736. return;
  6737. }
  6738. #endif
  6739. const int64_t nr = ggml_nrows(src0);
  6740. GGML_TENSOR_BINARY_OP_LOCALS
  6741. GGML_ASSERT( nb0 == sizeof(float));
  6742. GGML_ASSERT(nb00 == sizeof(float));
  6743. if (nb10 == sizeof(float)) {
  6744. for (int64_t ir = ith; ir < nr; ir += nth) {
  6745. // src0 and dst are same shape => same indices
  6746. const int64_t i03 = ir/(ne02*ne01);
  6747. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6748. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6749. const int64_t i13 = i03 % ne13;
  6750. const int64_t i12 = i02 % ne12;
  6751. const int64_t i11 = i01 % ne11;
  6752. const int64_t nr0 = ne00 / ne10;
  6753. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6754. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6755. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6756. for (int64_t r = 0 ; r < nr0; ++r) {
  6757. #ifdef GGML_USE_ACCELERATE
  6758. UNUSED(ggml_vec_mul_f32);
  6759. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6760. #else
  6761. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6762. #endif
  6763. }
  6764. }
  6765. } else {
  6766. // src1 is not contiguous
  6767. for (int64_t ir = ith; ir < nr; ir += nth) {
  6768. // src0 and dst are same shape => same indices
  6769. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6770. const int64_t i03 = ir/(ne02*ne01);
  6771. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6772. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6773. const int64_t i13 = i03 % ne13;
  6774. const int64_t i12 = i02 % ne12;
  6775. const int64_t i11 = i01 % ne11;
  6776. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6777. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6778. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6779. const int64_t i10 = i0 % ne10;
  6780. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6781. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6782. }
  6783. }
  6784. }
  6785. }
  6786. static void ggml_compute_forward_mul(
  6787. const struct ggml_compute_params * params,
  6788. const struct ggml_tensor * src0,
  6789. const struct ggml_tensor * src1,
  6790. struct ggml_tensor * dst) {
  6791. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6792. switch (src0->type) {
  6793. case GGML_TYPE_F32:
  6794. {
  6795. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6796. } break;
  6797. default:
  6798. {
  6799. GGML_ASSERT(false);
  6800. } break;
  6801. }
  6802. }
  6803. // ggml_compute_forward_div
  6804. static void ggml_compute_forward_div_f32(
  6805. const struct ggml_compute_params * params,
  6806. const struct ggml_tensor * src0,
  6807. const struct ggml_tensor * src1,
  6808. struct ggml_tensor * dst) {
  6809. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6811. return;
  6812. }
  6813. const int ith = params->ith;
  6814. const int nth = params->nth;
  6815. const int64_t nr = ggml_nrows(src0);
  6816. GGML_TENSOR_BINARY_OP_LOCALS
  6817. GGML_ASSERT( nb0 == sizeof(float));
  6818. GGML_ASSERT(nb00 == sizeof(float));
  6819. if (nb10 == sizeof(float)) {
  6820. for (int64_t ir = ith; ir < nr; ir += nth) {
  6821. // src0 and dst are same shape => same indices
  6822. const int64_t i03 = ir/(ne02*ne01);
  6823. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6824. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6825. const int64_t i13 = i03 % ne13;
  6826. const int64_t i12 = i02 % ne12;
  6827. const int64_t i11 = i01 % ne11;
  6828. const int64_t nr0 = ne00 / ne10;
  6829. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6830. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6831. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6832. for (int64_t r = 0; r < nr0; ++r) {
  6833. #ifdef GGML_USE_ACCELERATE
  6834. UNUSED(ggml_vec_div_f32);
  6835. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6836. #else
  6837. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6838. #endif
  6839. }
  6840. }
  6841. } else {
  6842. // src1 is not contiguous
  6843. for (int64_t ir = ith; ir < nr; ir += nth) {
  6844. // src0 and dst are same shape => same indices
  6845. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6846. const int64_t i03 = ir/(ne02*ne01);
  6847. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6848. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6849. const int64_t i13 = i03 % ne13;
  6850. const int64_t i12 = i02 % ne12;
  6851. const int64_t i11 = i01 % ne11;
  6852. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6853. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6854. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6855. const int64_t i10 = i0 % ne10;
  6856. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6857. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6858. }
  6859. }
  6860. }
  6861. }
  6862. static void ggml_compute_forward_div(
  6863. const struct ggml_compute_params * params,
  6864. const struct ggml_tensor * src0,
  6865. const struct ggml_tensor * src1,
  6866. struct ggml_tensor * dst) {
  6867. switch (src0->type) {
  6868. case GGML_TYPE_F32:
  6869. {
  6870. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6871. } break;
  6872. default:
  6873. {
  6874. GGML_ASSERT(false);
  6875. } break;
  6876. }
  6877. }
  6878. // ggml_compute_forward_sqr
  6879. static void ggml_compute_forward_sqr_f32(
  6880. const struct ggml_compute_params * params,
  6881. const struct ggml_tensor * src0,
  6882. struct ggml_tensor * dst) {
  6883. assert(params->ith == 0);
  6884. assert(ggml_are_same_shape(src0, dst));
  6885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6886. return;
  6887. }
  6888. const int n = ggml_nrows(src0);
  6889. const int nc = src0->ne[0];
  6890. assert( dst->nb[0] == sizeof(float));
  6891. assert(src0->nb[0] == sizeof(float));
  6892. for (int i = 0; i < n; i++) {
  6893. ggml_vec_sqr_f32(nc,
  6894. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6895. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6896. }
  6897. }
  6898. static void ggml_compute_forward_sqr(
  6899. const struct ggml_compute_params * params,
  6900. const struct ggml_tensor * src0,
  6901. struct ggml_tensor * dst) {
  6902. switch (src0->type) {
  6903. case GGML_TYPE_F32:
  6904. {
  6905. ggml_compute_forward_sqr_f32(params, src0, dst);
  6906. } break;
  6907. default:
  6908. {
  6909. GGML_ASSERT(false);
  6910. } break;
  6911. }
  6912. }
  6913. // ggml_compute_forward_sqrt
  6914. static void ggml_compute_forward_sqrt_f32(
  6915. const struct ggml_compute_params * params,
  6916. const struct ggml_tensor * src0,
  6917. struct ggml_tensor * dst) {
  6918. assert(params->ith == 0);
  6919. assert(ggml_are_same_shape(src0, dst));
  6920. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6921. return;
  6922. }
  6923. const int n = ggml_nrows(src0);
  6924. const int nc = src0->ne[0];
  6925. assert( dst->nb[0] == sizeof(float));
  6926. assert(src0->nb[0] == sizeof(float));
  6927. for (int i = 0; i < n; i++) {
  6928. ggml_vec_sqrt_f32(nc,
  6929. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6930. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6931. }
  6932. }
  6933. static void ggml_compute_forward_sqrt(
  6934. const struct ggml_compute_params * params,
  6935. const struct ggml_tensor * src0,
  6936. struct ggml_tensor * dst) {
  6937. switch (src0->type) {
  6938. case GGML_TYPE_F32:
  6939. {
  6940. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6941. } break;
  6942. default:
  6943. {
  6944. GGML_ASSERT(false);
  6945. } break;
  6946. }
  6947. }
  6948. // ggml_compute_forward_log
  6949. static void ggml_compute_forward_log_f32(
  6950. const struct ggml_compute_params * params,
  6951. const struct ggml_tensor * src0,
  6952. struct ggml_tensor * dst) {
  6953. GGML_ASSERT(params->ith == 0);
  6954. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6956. return;
  6957. }
  6958. const int n = ggml_nrows(src0);
  6959. const int nc = src0->ne[0];
  6960. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6961. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6962. for (int i = 0; i < n; i++) {
  6963. ggml_vec_log_f32(nc,
  6964. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6965. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6966. }
  6967. }
  6968. static void ggml_compute_forward_log(
  6969. const struct ggml_compute_params * params,
  6970. const struct ggml_tensor * src0,
  6971. struct ggml_tensor * dst) {
  6972. switch (src0->type) {
  6973. case GGML_TYPE_F32:
  6974. {
  6975. ggml_compute_forward_log_f32(params, src0, dst);
  6976. } break;
  6977. default:
  6978. {
  6979. GGML_ASSERT(false);
  6980. } break;
  6981. }
  6982. }
  6983. // ggml_compute_forward_sum
  6984. static void ggml_compute_forward_sum_f32(
  6985. const struct ggml_compute_params * params,
  6986. const struct ggml_tensor * src0,
  6987. struct ggml_tensor * dst) {
  6988. assert(params->ith == 0);
  6989. assert(ggml_is_scalar(dst));
  6990. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6991. return;
  6992. }
  6993. assert(ggml_is_scalar(dst));
  6994. assert(src0->nb[0] == sizeof(float));
  6995. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6996. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6997. ggml_float sum = 0;
  6998. ggml_float row_sum = 0;
  6999. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7000. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7001. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7002. ggml_vec_sum_f32_ggf(ne00,
  7003. &row_sum,
  7004. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7005. sum += row_sum;
  7006. }
  7007. }
  7008. }
  7009. ((float *) dst->data)[0] = sum;
  7010. }
  7011. static void ggml_compute_forward_sum_f16(
  7012. const struct ggml_compute_params * params,
  7013. const struct ggml_tensor * src0,
  7014. struct ggml_tensor * dst) {
  7015. assert(params->ith == 0);
  7016. assert(ggml_is_scalar(dst));
  7017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7018. return;
  7019. }
  7020. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7021. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7022. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7023. float sum = 0;
  7024. float row_sum = 0;
  7025. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7026. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7027. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7028. ggml_vec_sum_f16_ggf(ne00,
  7029. &row_sum,
  7030. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7031. sum += row_sum;
  7032. }
  7033. }
  7034. }
  7035. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7036. }
  7037. static void ggml_compute_forward_sum(
  7038. const struct ggml_compute_params * params,
  7039. const struct ggml_tensor * src0,
  7040. struct ggml_tensor * dst) {
  7041. switch (src0->type) {
  7042. case GGML_TYPE_F32:
  7043. {
  7044. ggml_compute_forward_sum_f32(params, src0, dst);
  7045. } break;
  7046. case GGML_TYPE_F16:
  7047. {
  7048. ggml_compute_forward_sum_f16(params, src0, dst);
  7049. } break;
  7050. default:
  7051. {
  7052. GGML_ASSERT(false);
  7053. } break;
  7054. }
  7055. }
  7056. // ggml_compute_forward_sum_rows
  7057. static void ggml_compute_forward_sum_rows_f32(
  7058. const struct ggml_compute_params * params,
  7059. const struct ggml_tensor * src0,
  7060. struct ggml_tensor * dst) {
  7061. GGML_ASSERT(params->ith == 0);
  7062. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7063. return;
  7064. }
  7065. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7066. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7067. GGML_TENSOR_UNARY_OP_LOCALS
  7068. GGML_ASSERT(ne0 == 1);
  7069. GGML_ASSERT(ne1 == ne01);
  7070. GGML_ASSERT(ne2 == ne02);
  7071. GGML_ASSERT(ne3 == ne03);
  7072. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7073. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7074. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7075. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7076. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7077. float row_sum = 0;
  7078. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7079. dst_row[0] = row_sum;
  7080. }
  7081. }
  7082. }
  7083. }
  7084. static void ggml_compute_forward_sum_rows(
  7085. const struct ggml_compute_params * params,
  7086. const struct ggml_tensor * src0,
  7087. struct ggml_tensor * dst) {
  7088. switch (src0->type) {
  7089. case GGML_TYPE_F32:
  7090. {
  7091. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7092. } break;
  7093. default:
  7094. {
  7095. GGML_ASSERT(false);
  7096. } break;
  7097. }
  7098. }
  7099. // ggml_compute_forward_mean
  7100. static void ggml_compute_forward_mean_f32(
  7101. const struct ggml_compute_params * params,
  7102. const struct ggml_tensor * src0,
  7103. struct ggml_tensor * dst) {
  7104. assert(params->ith == 0);
  7105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7106. return;
  7107. }
  7108. assert(src0->nb[0] == sizeof(float));
  7109. GGML_TENSOR_UNARY_OP_LOCALS
  7110. assert(ne0 == 1);
  7111. assert(ne1 == ne01);
  7112. assert(ne2 == ne02);
  7113. assert(ne3 == ne03);
  7114. UNUSED(ne0);
  7115. UNUSED(ne1);
  7116. UNUSED(ne2);
  7117. UNUSED(ne3);
  7118. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7119. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7120. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7121. ggml_vec_sum_f32(ne00,
  7122. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7123. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7124. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7125. }
  7126. }
  7127. }
  7128. }
  7129. static void ggml_compute_forward_mean(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. struct ggml_tensor * dst) {
  7133. switch (src0->type) {
  7134. case GGML_TYPE_F32:
  7135. {
  7136. ggml_compute_forward_mean_f32(params, src0, dst);
  7137. } break;
  7138. default:
  7139. {
  7140. GGML_ASSERT(false);
  7141. } break;
  7142. }
  7143. }
  7144. // ggml_compute_forward_argmax
  7145. static void ggml_compute_forward_argmax_f32(
  7146. const struct ggml_compute_params * params,
  7147. const struct ggml_tensor * src0,
  7148. struct ggml_tensor * dst) {
  7149. assert(params->ith == 0);
  7150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7151. return;
  7152. }
  7153. assert(src0->nb[0] == sizeof(float));
  7154. assert(dst->nb[0] == sizeof(float));
  7155. const int64_t ne00 = src0->ne[0];
  7156. const int64_t ne01 = src0->ne[1];
  7157. const size_t nb01 = src0->nb[1];
  7158. const size_t nb0 = dst->nb[0];
  7159. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7160. float * src = (float *) ((char *) src0->data + i1*nb01);
  7161. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7162. int v = 0;
  7163. ggml_vec_argmax_f32(ne00, &v, src);
  7164. dst_[0] = v;
  7165. }
  7166. }
  7167. static void ggml_compute_forward_argmax(
  7168. const struct ggml_compute_params * params,
  7169. const struct ggml_tensor * src0,
  7170. struct ggml_tensor * dst) {
  7171. switch (src0->type) {
  7172. case GGML_TYPE_F32:
  7173. {
  7174. ggml_compute_forward_argmax_f32(params, src0, dst);
  7175. } break;
  7176. default:
  7177. {
  7178. GGML_ASSERT(false);
  7179. } break;
  7180. }
  7181. }
  7182. // ggml_compute_forward_repeat
  7183. static void ggml_compute_forward_repeat_f32(
  7184. const struct ggml_compute_params * params,
  7185. const struct ggml_tensor * src0,
  7186. struct ggml_tensor * dst) {
  7187. GGML_ASSERT(params->ith == 0);
  7188. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7190. return;
  7191. }
  7192. GGML_TENSOR_UNARY_OP_LOCALS
  7193. // guaranteed to be an integer due to the check in ggml_can_repeat
  7194. const int nr0 = (int)(ne0/ne00);
  7195. const int nr1 = (int)(ne1/ne01);
  7196. const int nr2 = (int)(ne2/ne02);
  7197. const int nr3 = (int)(ne3/ne03);
  7198. // TODO: support for transposed / permuted tensors
  7199. GGML_ASSERT(nb0 == sizeof(float));
  7200. GGML_ASSERT(nb00 == sizeof(float));
  7201. // TODO: maybe this is not optimal?
  7202. for (int i3 = 0; i3 < nr3; i3++) {
  7203. for (int k3 = 0; k3 < ne03; k3++) {
  7204. for (int i2 = 0; i2 < nr2; i2++) {
  7205. for (int k2 = 0; k2 < ne02; k2++) {
  7206. for (int i1 = 0; i1 < nr1; i1++) {
  7207. for (int k1 = 0; k1 < ne01; k1++) {
  7208. for (int i0 = 0; i0 < nr0; i0++) {
  7209. ggml_vec_cpy_f32(ne00,
  7210. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7211. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7212. }
  7213. }
  7214. }
  7215. }
  7216. }
  7217. }
  7218. }
  7219. }
  7220. static void ggml_compute_forward_repeat_f16(
  7221. const struct ggml_compute_params * params,
  7222. const struct ggml_tensor * src0,
  7223. struct ggml_tensor * dst) {
  7224. GGML_ASSERT(params->ith == 0);
  7225. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7227. return;
  7228. }
  7229. GGML_TENSOR_UNARY_OP_LOCALS
  7230. // guaranteed to be an integer due to the check in ggml_can_repeat
  7231. const int nr0 = (int)(ne0/ne00);
  7232. const int nr1 = (int)(ne1/ne01);
  7233. const int nr2 = (int)(ne2/ne02);
  7234. const int nr3 = (int)(ne3/ne03);
  7235. // TODO: support for transposed / permuted tensors
  7236. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7237. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7238. // TODO: maybe this is not optimal?
  7239. for (int i3 = 0; i3 < nr3; i3++) {
  7240. for (int k3 = 0; k3 < ne03; k3++) {
  7241. for (int i2 = 0; i2 < nr2; i2++) {
  7242. for (int k2 = 0; k2 < ne02; k2++) {
  7243. for (int i1 = 0; i1 < nr1; i1++) {
  7244. for (int k1 = 0; k1 < ne01; k1++) {
  7245. for (int i0 = 0; i0 < nr0; i0++) {
  7246. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7247. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7248. // ggml_vec_cpy_f16(ne00, y, x)
  7249. for (int i = 0; i < ne00; ++i) {
  7250. y[i] = x[i];
  7251. }
  7252. }
  7253. }
  7254. }
  7255. }
  7256. }
  7257. }
  7258. }
  7259. }
  7260. static void ggml_compute_forward_repeat(
  7261. const struct ggml_compute_params * params,
  7262. const struct ggml_tensor * src0,
  7263. struct ggml_tensor * dst) {
  7264. switch (src0->type) {
  7265. case GGML_TYPE_F16:
  7266. case GGML_TYPE_I16:
  7267. {
  7268. ggml_compute_forward_repeat_f16(params, src0, dst);
  7269. } break;
  7270. case GGML_TYPE_F32:
  7271. case GGML_TYPE_I32:
  7272. {
  7273. ggml_compute_forward_repeat_f32(params, src0, dst);
  7274. } break;
  7275. default:
  7276. {
  7277. GGML_ASSERT(false);
  7278. } break;
  7279. }
  7280. }
  7281. // ggml_compute_forward_repeat_back
  7282. static void ggml_compute_forward_repeat_back_f32(
  7283. const struct ggml_compute_params * params,
  7284. const struct ggml_tensor * src0,
  7285. struct ggml_tensor * dst) {
  7286. GGML_ASSERT(params->ith == 0);
  7287. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7288. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7289. return;
  7290. }
  7291. GGML_TENSOR_UNARY_OP_LOCALS
  7292. // guaranteed to be an integer due to the check in ggml_can_repeat
  7293. const int nr0 = (int)(ne00/ne0);
  7294. const int nr1 = (int)(ne01/ne1);
  7295. const int nr2 = (int)(ne02/ne2);
  7296. const int nr3 = (int)(ne03/ne3);
  7297. // TODO: support for transposed / permuted tensors
  7298. GGML_ASSERT(nb0 == sizeof(float));
  7299. GGML_ASSERT(nb00 == sizeof(float));
  7300. if (ggml_is_contiguous(dst)) {
  7301. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7302. } else {
  7303. for (int k3 = 0; k3 < ne3; k3++) {
  7304. for (int k2 = 0; k2 < ne2; k2++) {
  7305. for (int k1 = 0; k1 < ne1; k1++) {
  7306. ggml_vec_set_f32(ne0,
  7307. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7308. 0);
  7309. }
  7310. }
  7311. }
  7312. }
  7313. // TODO: maybe this is not optimal?
  7314. for (int i3 = 0; i3 < nr3; i3++) {
  7315. for (int k3 = 0; k3 < ne3; k3++) {
  7316. for (int i2 = 0; i2 < nr2; i2++) {
  7317. for (int k2 = 0; k2 < ne2; k2++) {
  7318. for (int i1 = 0; i1 < nr1; i1++) {
  7319. for (int k1 = 0; k1 < ne1; k1++) {
  7320. for (int i0 = 0; i0 < nr0; i0++) {
  7321. ggml_vec_acc_f32(ne0,
  7322. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7323. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7324. }
  7325. }
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. }
  7332. static void ggml_compute_forward_repeat_back(
  7333. const struct ggml_compute_params * params,
  7334. const struct ggml_tensor * src0,
  7335. struct ggml_tensor * dst) {
  7336. switch (src0->type) {
  7337. case GGML_TYPE_F32:
  7338. {
  7339. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7340. } break;
  7341. default:
  7342. {
  7343. GGML_ASSERT(false);
  7344. } break;
  7345. }
  7346. }
  7347. // ggml_compute_forward_concat
  7348. static void ggml_compute_forward_concat_f32(
  7349. const struct ggml_compute_params * params,
  7350. const struct ggml_tensor * src0,
  7351. const struct ggml_tensor * src1,
  7352. struct ggml_tensor * dst) {
  7353. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7354. return;
  7355. }
  7356. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7357. const int ith = params->ith;
  7358. const int nth = params->nth;
  7359. GGML_TENSOR_BINARY_OP_LOCALS
  7360. // TODO: support for transposed / permuted tensors
  7361. GGML_ASSERT(nb0 == sizeof(float));
  7362. GGML_ASSERT(nb00 == sizeof(float));
  7363. GGML_ASSERT(nb10 == sizeof(float));
  7364. for (int i3 = 0; i3 < ne3; i3++) {
  7365. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7366. if (i2 < ne02) { // src0
  7367. for (int i1 = 0; i1 < ne1; i1++) {
  7368. for (int i0 = 0; i0 < ne0; i0++) {
  7369. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7370. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7371. *y = *x;
  7372. }
  7373. }
  7374. } // src1
  7375. else {
  7376. for (int i1 = 0; i1 < ne1; i1++) {
  7377. for (int i0 = 0; i0 < ne0; i0++) {
  7378. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7379. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7380. *y = *x;
  7381. }
  7382. }
  7383. }
  7384. }
  7385. }
  7386. }
  7387. static void ggml_compute_forward_concat(
  7388. const struct ggml_compute_params* params,
  7389. const struct ggml_tensor* src0,
  7390. const struct ggml_tensor* src1,
  7391. struct ggml_tensor* dst) {
  7392. switch (src0->type) {
  7393. case GGML_TYPE_F32:
  7394. case GGML_TYPE_I32:
  7395. {
  7396. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7397. } break;
  7398. default:
  7399. {
  7400. GGML_ASSERT(false);
  7401. } break;
  7402. }
  7403. }
  7404. // ggml_compute_forward_abs
  7405. static void ggml_compute_forward_abs_f32(
  7406. const struct ggml_compute_params * params,
  7407. const struct ggml_tensor * src0,
  7408. struct ggml_tensor * dst) {
  7409. assert(params->ith == 0);
  7410. assert(ggml_are_same_shape(src0, dst));
  7411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7412. return;
  7413. }
  7414. const int n = ggml_nrows(src0);
  7415. const int nc = src0->ne[0];
  7416. assert(dst->nb[0] == sizeof(float));
  7417. assert(src0->nb[0] == sizeof(float));
  7418. for (int i = 0; i < n; i++) {
  7419. ggml_vec_abs_f32(nc,
  7420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7421. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7422. }
  7423. }
  7424. static void ggml_compute_forward_abs(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. struct ggml_tensor * dst) {
  7428. switch (src0->type) {
  7429. case GGML_TYPE_F32:
  7430. {
  7431. ggml_compute_forward_abs_f32(params, src0, dst);
  7432. } break;
  7433. default:
  7434. {
  7435. GGML_ASSERT(false);
  7436. } break;
  7437. }
  7438. }
  7439. // ggml_compute_forward_sgn
  7440. static void ggml_compute_forward_sgn_f32(
  7441. const struct ggml_compute_params * params,
  7442. const struct ggml_tensor * src0,
  7443. struct ggml_tensor * dst) {
  7444. assert(params->ith == 0);
  7445. assert(ggml_are_same_shape(src0, dst));
  7446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7447. return;
  7448. }
  7449. const int n = ggml_nrows(src0);
  7450. const int nc = src0->ne[0];
  7451. assert(dst->nb[0] == sizeof(float));
  7452. assert(src0->nb[0] == sizeof(float));
  7453. for (int i = 0; i < n; i++) {
  7454. ggml_vec_sgn_f32(nc,
  7455. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7456. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7457. }
  7458. }
  7459. static void ggml_compute_forward_sgn(
  7460. const struct ggml_compute_params * params,
  7461. const struct ggml_tensor * src0,
  7462. struct ggml_tensor * dst) {
  7463. switch (src0->type) {
  7464. case GGML_TYPE_F32:
  7465. {
  7466. ggml_compute_forward_sgn_f32(params, src0, dst);
  7467. } break;
  7468. default:
  7469. {
  7470. GGML_ASSERT(false);
  7471. } break;
  7472. }
  7473. }
  7474. // ggml_compute_forward_neg
  7475. static void ggml_compute_forward_neg_f32(
  7476. const struct ggml_compute_params * params,
  7477. const struct ggml_tensor * src0,
  7478. struct ggml_tensor * dst) {
  7479. assert(params->ith == 0);
  7480. assert(ggml_are_same_shape(src0, dst));
  7481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7482. return;
  7483. }
  7484. const int n = ggml_nrows(src0);
  7485. const int nc = src0->ne[0];
  7486. assert(dst->nb[0] == sizeof(float));
  7487. assert(src0->nb[0] == sizeof(float));
  7488. for (int i = 0; i < n; i++) {
  7489. ggml_vec_neg_f32(nc,
  7490. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7491. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7492. }
  7493. }
  7494. static void ggml_compute_forward_neg(
  7495. const struct ggml_compute_params * params,
  7496. const struct ggml_tensor * src0,
  7497. struct ggml_tensor * dst) {
  7498. switch (src0->type) {
  7499. case GGML_TYPE_F32:
  7500. {
  7501. ggml_compute_forward_neg_f32(params, src0, dst);
  7502. } break;
  7503. default:
  7504. {
  7505. GGML_ASSERT(false);
  7506. } break;
  7507. }
  7508. }
  7509. // ggml_compute_forward_step
  7510. static void ggml_compute_forward_step_f32(
  7511. const struct ggml_compute_params * params,
  7512. const struct ggml_tensor * src0,
  7513. struct ggml_tensor * dst) {
  7514. assert(params->ith == 0);
  7515. assert(ggml_are_same_shape(src0, dst));
  7516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7517. return;
  7518. }
  7519. const int n = ggml_nrows(src0);
  7520. const int nc = src0->ne[0];
  7521. assert(dst->nb[0] == sizeof(float));
  7522. assert(src0->nb[0] == sizeof(float));
  7523. for (int i = 0; i < n; i++) {
  7524. ggml_vec_step_f32(nc,
  7525. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7526. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7527. }
  7528. }
  7529. static void ggml_compute_forward_step(
  7530. const struct ggml_compute_params * params,
  7531. const struct ggml_tensor * src0,
  7532. struct ggml_tensor * dst) {
  7533. switch (src0->type) {
  7534. case GGML_TYPE_F32:
  7535. {
  7536. ggml_compute_forward_step_f32(params, src0, dst);
  7537. } break;
  7538. default:
  7539. {
  7540. GGML_ASSERT(false);
  7541. } break;
  7542. }
  7543. }
  7544. // ggml_compute_forward_tanh
  7545. static void ggml_compute_forward_tanh_f32(
  7546. const struct ggml_compute_params * params,
  7547. const struct ggml_tensor * src0,
  7548. struct ggml_tensor * dst) {
  7549. assert(params->ith == 0);
  7550. assert(ggml_are_same_shape(src0, dst));
  7551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7552. return;
  7553. }
  7554. const int n = ggml_nrows(src0);
  7555. const int nc = src0->ne[0];
  7556. assert(dst->nb[0] == sizeof(float));
  7557. assert(src0->nb[0] == sizeof(float));
  7558. for (int i = 0; i < n; i++) {
  7559. ggml_vec_tanh_f32(nc,
  7560. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7561. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7562. }
  7563. }
  7564. static void ggml_compute_forward_tanh(
  7565. const struct ggml_compute_params * params,
  7566. const struct ggml_tensor * src0,
  7567. struct ggml_tensor * dst) {
  7568. switch (src0->type) {
  7569. case GGML_TYPE_F32:
  7570. {
  7571. ggml_compute_forward_tanh_f32(params, src0, dst);
  7572. } break;
  7573. default:
  7574. {
  7575. GGML_ASSERT(false);
  7576. } break;
  7577. }
  7578. }
  7579. // ggml_compute_forward_elu
  7580. static void ggml_compute_forward_elu_f32(
  7581. const struct ggml_compute_params * params,
  7582. const struct ggml_tensor * src0,
  7583. struct ggml_tensor * dst) {
  7584. assert(params->ith == 0);
  7585. assert(ggml_are_same_shape(src0, dst));
  7586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7587. return;
  7588. }
  7589. const int n = ggml_nrows(src0);
  7590. const int nc = src0->ne[0];
  7591. assert(dst->nb[0] == sizeof(float));
  7592. assert(src0->nb[0] == sizeof(float));
  7593. for (int i = 0; i < n; i++) {
  7594. ggml_vec_elu_f32(nc,
  7595. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7596. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7597. }
  7598. }
  7599. static void ggml_compute_forward_elu(
  7600. const struct ggml_compute_params * params,
  7601. const struct ggml_tensor * src0,
  7602. struct ggml_tensor * dst) {
  7603. switch (src0->type) {
  7604. case GGML_TYPE_F32:
  7605. {
  7606. ggml_compute_forward_elu_f32(params, src0, dst);
  7607. } break;
  7608. default:
  7609. {
  7610. GGML_ASSERT(false);
  7611. } break;
  7612. }
  7613. }
  7614. // ggml_compute_forward_relu
  7615. static void ggml_compute_forward_relu_f32(
  7616. const struct ggml_compute_params * params,
  7617. const struct ggml_tensor * src0,
  7618. struct ggml_tensor * dst) {
  7619. assert(params->ith == 0);
  7620. assert(ggml_are_same_shape(src0, dst));
  7621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7622. return;
  7623. }
  7624. const int n = ggml_nrows(src0);
  7625. const int nc = src0->ne[0];
  7626. assert(dst->nb[0] == sizeof(float));
  7627. assert(src0->nb[0] == sizeof(float));
  7628. for (int i = 0; i < n; i++) {
  7629. ggml_vec_relu_f32(nc,
  7630. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7631. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7632. }
  7633. }
  7634. static void ggml_compute_forward_relu(
  7635. const struct ggml_compute_params * params,
  7636. const struct ggml_tensor * src0,
  7637. struct ggml_tensor * dst) {
  7638. switch (src0->type) {
  7639. case GGML_TYPE_F32:
  7640. {
  7641. ggml_compute_forward_relu_f32(params, src0, dst);
  7642. } break;
  7643. default:
  7644. {
  7645. GGML_ASSERT(false);
  7646. } break;
  7647. }
  7648. }
  7649. // ggml_compute_forward_gelu
  7650. static void ggml_compute_forward_gelu_f32(
  7651. const struct ggml_compute_params * params,
  7652. const struct ggml_tensor * src0,
  7653. struct ggml_tensor * dst) {
  7654. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7655. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7656. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7658. return;
  7659. }
  7660. const int ith = params->ith;
  7661. const int nth = params->nth;
  7662. const int nc = src0->ne[0];
  7663. const int nr = ggml_nrows(src0);
  7664. // rows per thread
  7665. const int dr = (nr + nth - 1)/nth;
  7666. // row range for this thread
  7667. const int ir0 = dr*ith;
  7668. const int ir1 = MIN(ir0 + dr, nr);
  7669. for (int i1 = ir0; i1 < ir1; i1++) {
  7670. ggml_vec_gelu_f32(nc,
  7671. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7672. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7673. #ifndef NDEBUG
  7674. for (int k = 0; k < nc; k++) {
  7675. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7676. UNUSED(x);
  7677. assert(!isnan(x));
  7678. assert(!isinf(x));
  7679. }
  7680. #endif
  7681. }
  7682. }
  7683. static void ggml_compute_forward_gelu(
  7684. const struct ggml_compute_params * params,
  7685. const struct ggml_tensor * src0,
  7686. struct ggml_tensor * dst) {
  7687. switch (src0->type) {
  7688. case GGML_TYPE_F32:
  7689. {
  7690. ggml_compute_forward_gelu_f32(params, src0, dst);
  7691. } break;
  7692. default:
  7693. {
  7694. GGML_ASSERT(false);
  7695. } break;
  7696. }
  7697. }
  7698. // ggml_compute_forward_gelu_quick
  7699. static void ggml_compute_forward_gelu_quick_f32(
  7700. const struct ggml_compute_params * params,
  7701. const struct ggml_tensor * src0,
  7702. struct ggml_tensor * dst) {
  7703. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7704. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7705. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7707. return;
  7708. }
  7709. const int ith = params->ith;
  7710. const int nth = params->nth;
  7711. const int nc = src0->ne[0];
  7712. const int nr = ggml_nrows(src0);
  7713. // rows per thread
  7714. const int dr = (nr + nth - 1)/nth;
  7715. // row range for this thread
  7716. const int ir0 = dr*ith;
  7717. const int ir1 = MIN(ir0 + dr, nr);
  7718. for (int i1 = ir0; i1 < ir1; i1++) {
  7719. ggml_vec_gelu_quick_f32(nc,
  7720. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7721. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7722. #ifndef NDEBUG
  7723. for (int k = 0; k < nc; k++) {
  7724. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7725. UNUSED(x);
  7726. assert(!isnan(x));
  7727. assert(!isinf(x));
  7728. }
  7729. #endif
  7730. }
  7731. }
  7732. static void ggml_compute_forward_gelu_quick(
  7733. const struct ggml_compute_params * params,
  7734. const struct ggml_tensor * src0,
  7735. struct ggml_tensor * dst) {
  7736. switch (src0->type) {
  7737. case GGML_TYPE_F32:
  7738. {
  7739. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7740. } break;
  7741. default:
  7742. {
  7743. GGML_ASSERT(false);
  7744. } break;
  7745. }
  7746. }
  7747. // ggml_compute_forward_silu
  7748. static void ggml_compute_forward_silu_f32(
  7749. const struct ggml_compute_params * params,
  7750. const struct ggml_tensor * src0,
  7751. struct ggml_tensor * dst) {
  7752. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7753. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7754. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7755. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7756. return;
  7757. }
  7758. const int ith = params->ith;
  7759. const int nth = params->nth;
  7760. const int nc = src0->ne[0];
  7761. const int nr = ggml_nrows(src0);
  7762. // rows per thread
  7763. const int dr = (nr + nth - 1)/nth;
  7764. // row range for this thread
  7765. const int ir0 = dr*ith;
  7766. const int ir1 = MIN(ir0 + dr, nr);
  7767. for (int i1 = ir0; i1 < ir1; i1++) {
  7768. ggml_vec_silu_f32(nc,
  7769. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7770. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7771. #ifndef NDEBUG
  7772. for (int k = 0; k < nc; k++) {
  7773. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7774. UNUSED(x);
  7775. assert(!isnan(x));
  7776. assert(!isinf(x));
  7777. }
  7778. #endif
  7779. }
  7780. }
  7781. static void ggml_compute_forward_silu(
  7782. const struct ggml_compute_params * params,
  7783. const struct ggml_tensor * src0,
  7784. struct ggml_tensor * dst) {
  7785. switch (src0->type) {
  7786. case GGML_TYPE_F32:
  7787. {
  7788. ggml_compute_forward_silu_f32(params, src0, dst);
  7789. } break;
  7790. default:
  7791. {
  7792. GGML_ASSERT(false);
  7793. } break;
  7794. }
  7795. }
  7796. // ggml_compute_forward_leaky_relu
  7797. static void ggml_compute_forward_leaky_relu_f32(
  7798. const struct ggml_compute_params * params,
  7799. const struct ggml_tensor * src0,
  7800. struct ggml_tensor * dst) {
  7801. assert(params->ith == 0);
  7802. assert(ggml_are_same_shape(src0, dst));
  7803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7804. return;
  7805. }
  7806. const int n = ggml_nrows(src0);
  7807. const int nc = src0->ne[0];
  7808. float negative_slope;
  7809. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7810. assert(dst->nb[0] == sizeof(float));
  7811. assert(src0->nb[0] == sizeof(float));
  7812. for (int i = 0; i < n; i++) {
  7813. ggml_vec_leaky_relu_f32(nc,
  7814. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7815. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7816. }
  7817. }
  7818. static void ggml_compute_forward_leaky_relu(
  7819. const struct ggml_compute_params * params,
  7820. const struct ggml_tensor * src0,
  7821. struct ggml_tensor * dst) {
  7822. switch (src0->type) {
  7823. case GGML_TYPE_F32:
  7824. {
  7825. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7826. } break;
  7827. default:
  7828. {
  7829. GGML_ASSERT(false);
  7830. } break;
  7831. }
  7832. }
  7833. // ggml_compute_forward_silu_back
  7834. static void ggml_compute_forward_silu_back_f32(
  7835. const struct ggml_compute_params * params,
  7836. const struct ggml_tensor * src0,
  7837. const struct ggml_tensor * grad,
  7838. struct ggml_tensor * dst) {
  7839. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7840. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7841. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7842. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7843. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7844. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7845. return;
  7846. }
  7847. const int ith = params->ith;
  7848. const int nth = params->nth;
  7849. const int nc = src0->ne[0];
  7850. const int nr = ggml_nrows(src0);
  7851. // rows per thread
  7852. const int dr = (nr + nth - 1)/nth;
  7853. // row range for this thread
  7854. const int ir0 = dr*ith;
  7855. const int ir1 = MIN(ir0 + dr, nr);
  7856. for (int i1 = ir0; i1 < ir1; i1++) {
  7857. ggml_vec_silu_backward_f32(nc,
  7858. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7859. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7860. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7861. #ifndef NDEBUG
  7862. for (int k = 0; k < nc; k++) {
  7863. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7864. UNUSED(x);
  7865. assert(!isnan(x));
  7866. assert(!isinf(x));
  7867. }
  7868. #endif
  7869. }
  7870. }
  7871. static void ggml_compute_forward_silu_back(
  7872. const struct ggml_compute_params * params,
  7873. const struct ggml_tensor * src0,
  7874. const struct ggml_tensor * grad,
  7875. struct ggml_tensor * dst) {
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F32:
  7878. {
  7879. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7880. } break;
  7881. default:
  7882. {
  7883. GGML_ASSERT(false);
  7884. } break;
  7885. }
  7886. }
  7887. static void ggml_compute_forward_hardswish_f32(
  7888. const struct ggml_compute_params * params,
  7889. const struct ggml_tensor * src0,
  7890. struct ggml_tensor * dst) {
  7891. assert(params->ith == 0);
  7892. assert(ggml_are_same_shape(src0, dst));
  7893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7894. return;
  7895. }
  7896. const int n = ggml_nrows(src0);
  7897. const int nc = src0->ne[0];
  7898. assert(dst->nb[0] == sizeof(float));
  7899. assert(src0->nb[0] == sizeof(float));
  7900. for (int i = 0; i < n; i++) {
  7901. ggml_vec_hardswish_f32(nc,
  7902. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7903. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7904. }
  7905. }
  7906. static void ggml_compute_forward_hardswish(
  7907. const struct ggml_compute_params * params,
  7908. const struct ggml_tensor * src0,
  7909. struct ggml_tensor * dst) {
  7910. switch (src0->type) {
  7911. case GGML_TYPE_F32:
  7912. {
  7913. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7914. } break;
  7915. default:
  7916. {
  7917. GGML_ASSERT(false);
  7918. } break;
  7919. }
  7920. }
  7921. static void ggml_compute_forward_hardsigmoid_f32(
  7922. const struct ggml_compute_params * params,
  7923. const struct ggml_tensor * src0,
  7924. struct ggml_tensor * dst) {
  7925. assert(params->ith == 0);
  7926. assert(ggml_are_same_shape(src0, dst));
  7927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7928. return;
  7929. }
  7930. const int n = ggml_nrows(src0);
  7931. const int nc = src0->ne[0];
  7932. assert(dst->nb[0] == sizeof(float));
  7933. assert(src0->nb[0] == sizeof(float));
  7934. for (int i = 0; i < n; i++) {
  7935. ggml_vec_hardsigmoid_f32(nc,
  7936. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7937. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7938. }
  7939. }
  7940. static void ggml_compute_forward_hardsigmoid(
  7941. const struct ggml_compute_params * params,
  7942. const struct ggml_tensor * src0,
  7943. struct ggml_tensor * dst) {
  7944. switch (src0->type) {
  7945. case GGML_TYPE_F32:
  7946. {
  7947. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7948. } break;
  7949. default:
  7950. {
  7951. GGML_ASSERT(false);
  7952. } break;
  7953. }
  7954. }
  7955. // ggml_compute_forward_norm
  7956. static void ggml_compute_forward_norm_f32(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * src0,
  7959. struct ggml_tensor * dst) {
  7960. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7962. return;
  7963. }
  7964. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7965. const int ith = params->ith;
  7966. const int nth = params->nth;
  7967. GGML_TENSOR_UNARY_OP_LOCALS
  7968. float eps;
  7969. memcpy(&eps, dst->op_params, sizeof(float));
  7970. GGML_ASSERT(eps > 0.0f);
  7971. // TODO: optimize
  7972. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7974. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7975. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7976. ggml_float sum = 0.0;
  7977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7978. sum += (ggml_float)x[i00];
  7979. }
  7980. float mean = sum/ne00;
  7981. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7982. ggml_float sum2 = 0.0;
  7983. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7984. float v = x[i00] - mean;
  7985. y[i00] = v;
  7986. sum2 += (ggml_float)(v*v);
  7987. }
  7988. float variance = sum2/ne00;
  7989. const float scale = 1.0f/sqrtf(variance + eps);
  7990. ggml_vec_scale_f32(ne00, y, scale);
  7991. }
  7992. }
  7993. }
  7994. }
  7995. static void ggml_compute_forward_norm(
  7996. const struct ggml_compute_params * params,
  7997. const struct ggml_tensor * src0,
  7998. struct ggml_tensor * dst) {
  7999. switch (src0->type) {
  8000. case GGML_TYPE_F32:
  8001. {
  8002. ggml_compute_forward_norm_f32(params, src0, dst);
  8003. } break;
  8004. default:
  8005. {
  8006. GGML_ASSERT(false);
  8007. } break;
  8008. }
  8009. }
  8010. // ggml_compute_forward_group_rms_norm
  8011. static void ggml_compute_forward_rms_norm_f32(
  8012. const struct ggml_compute_params * params,
  8013. const struct ggml_tensor * src0,
  8014. struct ggml_tensor * dst) {
  8015. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8017. return;
  8018. }
  8019. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8020. const int ith = params->ith;
  8021. const int nth = params->nth;
  8022. GGML_TENSOR_UNARY_OP_LOCALS
  8023. float eps;
  8024. memcpy(&eps, dst->op_params, sizeof(float));
  8025. GGML_ASSERT(eps > 0.0f);
  8026. // TODO: optimize
  8027. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8028. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8029. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8030. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8031. ggml_float sum = 0.0;
  8032. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8033. sum += (ggml_float)(x[i00] * x[i00]);
  8034. }
  8035. const float mean = sum/ne00;
  8036. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8037. memcpy(y, x, ne00 * sizeof(float));
  8038. // for (int i00 = 0; i00 < ne00; i00++) {
  8039. // y[i00] = x[i00];
  8040. // }
  8041. const float scale = 1.0f/sqrtf(mean + eps);
  8042. ggml_vec_scale_f32(ne00, y, scale);
  8043. }
  8044. }
  8045. }
  8046. }
  8047. static void ggml_compute_forward_rms_norm(
  8048. const struct ggml_compute_params * params,
  8049. const struct ggml_tensor * src0,
  8050. struct ggml_tensor * dst) {
  8051. switch (src0->type) {
  8052. case GGML_TYPE_F32:
  8053. {
  8054. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8055. } break;
  8056. default:
  8057. {
  8058. GGML_ASSERT(false);
  8059. } break;
  8060. }
  8061. }
  8062. static void ggml_compute_forward_rms_norm_back_f32(
  8063. const struct ggml_compute_params * params,
  8064. const struct ggml_tensor * src0,
  8065. const struct ggml_tensor * src1,
  8066. struct ggml_tensor * dst) {
  8067. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8069. return;
  8070. }
  8071. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8072. const int ith = params->ith;
  8073. const int nth = params->nth;
  8074. GGML_TENSOR_BINARY_OP_LOCALS
  8075. float eps;
  8076. memcpy(&eps, dst->op_params, sizeof(float));
  8077. // TODO: optimize
  8078. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8079. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8080. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8081. // src1 is same shape as src0 => same indices
  8082. const int64_t i11 = i01;
  8083. const int64_t i12 = i02;
  8084. const int64_t i13 = i03;
  8085. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8086. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8087. ggml_float sum_xx = 0.0;
  8088. ggml_float sum_xdz = 0.0;
  8089. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8090. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8091. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8092. }
  8093. //const float mean = (float)(sum_xx)/ne00;
  8094. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8095. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8096. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8097. // we could cache rms from forward pass to improve performance.
  8098. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8099. //const float rms = sqrtf(mean_eps);
  8100. const float rrms = 1.0f / sqrtf(mean_eps);
  8101. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8102. {
  8103. // z = rms_norm(x)
  8104. //
  8105. // rms_norm(src0) =
  8106. // scale(
  8107. // src0,
  8108. // div(
  8109. // 1,
  8110. // sqrt(
  8111. // add(
  8112. // scale(
  8113. // sum(
  8114. // sqr(
  8115. // src0)),
  8116. // (1.0/N)),
  8117. // eps))));
  8118. // postorder:
  8119. // ## op args grad
  8120. // 00 param src0 grad[#00]
  8121. // 01 const 1
  8122. // 02 sqr (#00) grad[#02]
  8123. // 03 sum (#02) grad[#03]
  8124. // 04 const 1/N
  8125. // 05 scale (#03, #04) grad[#05]
  8126. // 06 const eps
  8127. // 07 add (#05, #06) grad[#07]
  8128. // 08 sqrt (#07) grad[#08]
  8129. // 09 div (#01,#08) grad[#09]
  8130. // 10 scale (#00,#09) grad[#10]
  8131. //
  8132. // backward pass, given grad[#10]
  8133. // #10: scale
  8134. // grad[#00] += scale(grad[#10],#09)
  8135. // grad[#09] += sum(mul(grad[#10],#00))
  8136. // #09: div
  8137. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8138. // #08: sqrt
  8139. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8140. // #07: add
  8141. // grad[#05] += grad[#07]
  8142. // #05: scale
  8143. // grad[#03] += scale(grad[#05],#04)
  8144. // #03: sum
  8145. // grad[#02] += repeat(grad[#03], #02)
  8146. // #02:
  8147. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8148. //
  8149. // substitute and simplify:
  8150. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8151. // grad[#02] = repeat(grad[#03], #02)
  8152. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8153. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8154. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8155. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8156. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8157. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8158. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8159. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8160. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8161. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8162. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8163. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8164. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8165. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8166. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8167. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8168. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8169. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8170. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8171. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8172. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8173. // a = b*c + d*e
  8174. // a = b*c*f/f + d*e*f/f
  8175. // a = (b*c*f + d*e*f)*(1/f)
  8176. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8177. // a = (b + d*e/c)*c
  8178. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8179. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8180. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8181. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8182. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8183. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8184. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8185. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8186. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8187. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8188. }
  8189. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8190. // post-order:
  8191. // dx := x
  8192. // dx := scale(dx,-mean_xdz/mean_eps)
  8193. // dx := add(dx, dz)
  8194. // dx := scale(dx, rrms)
  8195. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8196. ggml_vec_cpy_f32 (ne00, dx, x);
  8197. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8198. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8199. ggml_vec_acc_f32 (ne00, dx, dz);
  8200. ggml_vec_scale_f32(ne00, dx, rrms);
  8201. }
  8202. }
  8203. }
  8204. }
  8205. static void ggml_compute_forward_rms_norm_back(
  8206. const struct ggml_compute_params * params,
  8207. const struct ggml_tensor * src0,
  8208. const struct ggml_tensor * src1,
  8209. struct ggml_tensor * dst) {
  8210. switch (src0->type) {
  8211. case GGML_TYPE_F32:
  8212. {
  8213. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8214. } break;
  8215. default:
  8216. {
  8217. GGML_ASSERT(false);
  8218. } break;
  8219. }
  8220. }
  8221. // ggml_compute_forward_group_norm
  8222. static void ggml_compute_forward_group_norm_f32(
  8223. const struct ggml_compute_params * params,
  8224. const struct ggml_tensor * src0,
  8225. struct ggml_tensor * dst) {
  8226. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8228. return;
  8229. }
  8230. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8231. const int ith = params->ith;
  8232. const int nth = params->nth;
  8233. GGML_TENSOR_UNARY_OP_LOCALS
  8234. const float eps = 1e-6f; // TODO: make this a parameter
  8235. // TODO: optimize
  8236. int n_channels = src0->ne[2];
  8237. int n_groups = dst->op_params[0];
  8238. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8239. for (int i = ith; i < n_groups; i+=nth) {
  8240. int start = i * n_channels_per_group;
  8241. int end = start + n_channels_per_group;
  8242. if (end > n_channels) {
  8243. end = n_channels;
  8244. }
  8245. int step = end - start;
  8246. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8247. ggml_float sum = 0.0;
  8248. for (int64_t i02 = start; i02 < end; i02++) {
  8249. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8250. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8251. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8252. sum += (ggml_float)x[i00];
  8253. }
  8254. }
  8255. }
  8256. float mean = sum / (ne00 * ne01 * step);
  8257. ggml_float sum2 = 0.0;
  8258. for (int64_t i02 = start; i02 < end; i02++) {
  8259. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8260. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8261. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8262. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8263. float v = x[i00] - mean;
  8264. y[i00] = v;
  8265. sum2 += (ggml_float)(v * v);
  8266. }
  8267. }
  8268. }
  8269. float variance = sum2 / (ne00 * ne01 * step);
  8270. const float scale = 1.0f / sqrtf(variance + eps);
  8271. for (int64_t i02 = start; i02 < end; i02++) {
  8272. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8273. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8274. ggml_vec_scale_f32(ne00, y, scale);
  8275. }
  8276. }
  8277. }
  8278. }
  8279. }
  8280. static void ggml_compute_forward_group_norm(
  8281. const struct ggml_compute_params * params,
  8282. const struct ggml_tensor * src0,
  8283. struct ggml_tensor * dst) {
  8284. switch (src0->type) {
  8285. case GGML_TYPE_F32:
  8286. {
  8287. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8288. } break;
  8289. default:
  8290. {
  8291. GGML_ASSERT(false);
  8292. } break;
  8293. }
  8294. }
  8295. // ggml_compute_forward_mul_mat
  8296. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8297. // helper function to determine if it is better to use BLAS or not
  8298. // for large matrices, BLAS is faster
  8299. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8300. const struct ggml_tensor * src0 = dst->src[0];
  8301. const struct ggml_tensor * src1 = dst->src[1];
  8302. //const int64_t ne00 = src0->ne[0];
  8303. //const int64_t ne01 = src0->ne[1];
  8304. const int64_t ne10 = src1->ne[0];
  8305. const int64_t ne0 = dst->ne[0];
  8306. const int64_t ne1 = dst->ne[1];
  8307. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8308. // all the experts for each batch element and the processing would become incredibly slow
  8309. // TODO: find the optimal values for these
  8310. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8311. ggml_is_contiguous(src0) &&
  8312. ggml_is_contiguous(src1) &&
  8313. //src0->type == GGML_TYPE_F32 &&
  8314. src1->type == GGML_TYPE_F32 &&
  8315. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8316. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8317. return true;
  8318. }
  8319. return false;
  8320. }
  8321. #endif
  8322. static void ggml_compute_forward_mul_mat(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. const struct ggml_tensor * src1,
  8326. struct ggml_tensor * dst) {
  8327. int64_t t0 = ggml_perf_time_us();
  8328. UNUSED(t0);
  8329. GGML_TENSOR_BINARY_OP_LOCALS
  8330. const int ith = params->ith;
  8331. const int nth = params->nth;
  8332. const enum ggml_type type = src0->type;
  8333. const bool src1_cont = ggml_is_contiguous(src1);
  8334. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8335. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8336. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8337. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8338. GGML_ASSERT(ne0 == ne01);
  8339. GGML_ASSERT(ne1 == ne11);
  8340. GGML_ASSERT(ne2 == ne12);
  8341. GGML_ASSERT(ne3 == ne13);
  8342. // we don't support permuted src0 or src1
  8343. GGML_ASSERT(nb00 == ggml_type_size(type));
  8344. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8345. // dst cannot be transposed or permuted
  8346. GGML_ASSERT(nb0 == sizeof(float));
  8347. GGML_ASSERT(nb0 <= nb1);
  8348. GGML_ASSERT(nb1 <= nb2);
  8349. GGML_ASSERT(nb2 <= nb3);
  8350. // broadcast factors
  8351. const int64_t r2 = ne12/ne02;
  8352. const int64_t r3 = ne13/ne03;
  8353. // nb01 >= nb00 - src0 is not transposed
  8354. // compute by src0 rows
  8355. #if defined(GGML_USE_CLBLAST)
  8356. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8357. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8358. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8359. }
  8360. return;
  8361. }
  8362. #endif
  8363. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8364. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8365. const int64_t ne_plane = ne01*ne00;
  8366. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8367. UNUSED(desired_wsize);
  8368. if (params->type == GGML_TASK_INIT) {
  8369. if (type != GGML_TYPE_F32) {
  8370. assert(params->wsize >= desired_wsize);
  8371. // parallelize by src0 rows
  8372. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8373. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8374. // broadcast src0 into src1 across 2nd,3rd dimension
  8375. const int64_t i03 = i13/r3;
  8376. const int64_t i02 = i12/r2;
  8377. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8378. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8379. ggml_to_float_t const to_float = type_traits[type].to_float;
  8380. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8381. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8382. }
  8383. }
  8384. }
  8385. }
  8386. return;
  8387. }
  8388. if (params->type == GGML_TASK_FINALIZE) {
  8389. return;
  8390. }
  8391. // perform sgemm, parallelization controlled by blas lib
  8392. if (ith != 0) {
  8393. return;
  8394. }
  8395. //const int64_t tgemm0 = ggml_perf_time_us();
  8396. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8397. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8398. const int64_t i03 = i13/r3;
  8399. const int64_t i02 = i12/r2;
  8400. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8401. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8402. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8403. if (type != GGML_TYPE_F32) {
  8404. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8405. }
  8406. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8407. ne1, ne01, ne10,
  8408. 1.0f, y, ne10,
  8409. x, ne00,
  8410. 0.0f, d, ne01);
  8411. }
  8412. }
  8413. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8414. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8415. return;
  8416. }
  8417. #endif
  8418. if (params->type == GGML_TASK_INIT) {
  8419. if (ith != 0) {
  8420. return;
  8421. }
  8422. if (src1->type != vec_dot_type) {
  8423. char * wdata = params->wdata;
  8424. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8425. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8426. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8427. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8428. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8429. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8430. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8431. wdata += row_size;
  8432. }
  8433. }
  8434. }
  8435. }
  8436. return;
  8437. }
  8438. if (params->type == GGML_TASK_FINALIZE) {
  8439. return;
  8440. }
  8441. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8442. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8443. const int64_t nr0 = ne01; // src0 rows
  8444. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8445. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8446. // distribute the thread work across the inner or outer loop based on which one is larger
  8447. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8448. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8449. const int64_t ith0 = ith % nth0;
  8450. const int64_t ith1 = ith / nth0;
  8451. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8452. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8453. const int64_t ir010 = dr0*ith0;
  8454. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8455. const int64_t ir110 = dr1*ith1;
  8456. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8457. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8458. // threads with no work simply yield (not sure if it helps)
  8459. if (ir010 >= ir011 || ir110 >= ir111) {
  8460. sched_yield();
  8461. return;
  8462. }
  8463. assert(ne12 % ne02 == 0);
  8464. assert(ne13 % ne03 == 0);
  8465. // block-tiling attempt
  8466. const int64_t blck_0 = 16;
  8467. const int64_t blck_1 = 16;
  8468. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8469. int64_t nrc = vec_dot_num_rows;
  8470. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8471. // this check can be removed once they are extended to support odd numbered rows/cols too
  8472. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8473. nrc = 1;
  8474. }
  8475. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8476. // attempt to reduce false-sharing (does not seem to make a difference)
  8477. // 16 * 2, accounting for mmla kernels
  8478. float tmp[32];
  8479. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8480. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8481. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8482. const int64_t i13 = (ir1/(ne12*ne1));
  8483. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8484. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8485. // broadcast src0 into src1
  8486. const int64_t i03 = i13/r3;
  8487. const int64_t i02 = i12/r2;
  8488. const int64_t i1 = i11;
  8489. const int64_t i2 = i12;
  8490. const int64_t i3 = i13;
  8491. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8492. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8493. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8494. // the original src1 data pointer, so we should index using the indices directly
  8495. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8496. const char * src1_col = (const char *) wdata +
  8497. (src1_cont || src1->type != vec_dot_type
  8498. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8499. : (i11*nb11 + i12*nb12 + i13*nb13));
  8500. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8501. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8502. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8503. //}
  8504. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8505. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8506. }
  8507. for (int cn = 0; cn < nrc; ++cn) {
  8508. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8509. }
  8510. }
  8511. }
  8512. }
  8513. }
  8514. // ggml_compute_forward_mul_mat_id
  8515. static void ggml_compute_forward_mul_mat_id(
  8516. const struct ggml_compute_params * params,
  8517. const struct ggml_tensor * ids,
  8518. const struct ggml_tensor * src1,
  8519. struct ggml_tensor * dst) {
  8520. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8521. GGML_TENSOR_BINARY_OP_LOCALS
  8522. const int ith = params->ith;
  8523. const int nth = params->nth;
  8524. const enum ggml_type type = src0->type;
  8525. const bool src1_cont = ggml_is_contiguous(src1);
  8526. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8527. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8528. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8529. GGML_ASSERT(ne0 == ne01);
  8530. GGML_ASSERT(ne1 == ne11);
  8531. GGML_ASSERT(ne2 == ne12);
  8532. GGML_ASSERT(ne3 == ne13);
  8533. // we don't support permuted src0 or src1
  8534. GGML_ASSERT(nb00 == ggml_type_size(type));
  8535. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8536. // dst cannot be transposed or permuted
  8537. GGML_ASSERT(nb0 == sizeof(float));
  8538. GGML_ASSERT(nb0 <= nb1);
  8539. GGML_ASSERT(nb1 <= nb2);
  8540. GGML_ASSERT(nb2 <= nb3);
  8541. // broadcast factors
  8542. const int64_t r2 = ne12/ne02;
  8543. const int64_t r3 = ne13/ne03;
  8544. // row groups
  8545. const int id = ggml_get_op_params_i32(dst, 0);
  8546. const int n_as = ggml_get_op_params_i32(dst, 1);
  8547. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8548. (char *) params->wdata :
  8549. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8550. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8551. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8552. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8553. if (params->type == GGML_TASK_INIT) {
  8554. if (ith != 0) {
  8555. return;
  8556. }
  8557. char * wdata = params->wdata;
  8558. if (src1->type != vec_dot_type) {
  8559. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8560. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8561. assert(src1->type == GGML_TYPE_F32);
  8562. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8563. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8564. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8565. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8566. wdata += row_size;
  8567. }
  8568. }
  8569. }
  8570. }
  8571. // initialize matrix_row_counts
  8572. GGML_ASSERT(wdata == wdata_src1_end);
  8573. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8574. // group rows by src0 matrix
  8575. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8576. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8577. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8578. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8579. matrix_row_counts[row_id] += 1;
  8580. }
  8581. return;
  8582. }
  8583. if (params->type == GGML_TASK_FINALIZE) {
  8584. return;
  8585. }
  8586. // compute each matrix multiplication in sequence
  8587. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8588. const int64_t cne1 = matrix_row_counts[cur_a];
  8589. if (cne1 == 0) {
  8590. continue;
  8591. }
  8592. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8593. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8594. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8595. const int64_t nr0 = ne01; // src0 rows
  8596. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8597. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8598. // distribute the thread work across the inner or outer loop based on which one is larger
  8599. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8600. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8601. const int64_t ith0 = ith % nth0;
  8602. const int64_t ith1 = ith / nth0;
  8603. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8604. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8605. const int64_t ir010 = dr0*ith0;
  8606. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8607. const int64_t ir110 = dr1*ith1;
  8608. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8609. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8610. // threads with no work simply yield (not sure if it helps)
  8611. if (ir010 >= ir011 || ir110 >= ir111) {
  8612. sched_yield();
  8613. continue;
  8614. }
  8615. assert(ne12 % ne02 == 0);
  8616. assert(ne13 % ne03 == 0);
  8617. // block-tiling attempt
  8618. const int64_t blck_0 = 16;
  8619. const int64_t blck_1 = 16;
  8620. // attempt to reduce false-sharing (does not seem to make a difference)
  8621. float tmp[16];
  8622. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8623. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8624. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8625. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8626. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8627. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8628. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8629. // broadcast src0 into src1
  8630. const int64_t i03 = i13/r3;
  8631. const int64_t i02 = i12/r2;
  8632. const int64_t i1 = i11;
  8633. const int64_t i2 = i12;
  8634. const int64_t i3 = i13;
  8635. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8636. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8637. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8638. // the original src1 data pointer, so we should index using the indices directly
  8639. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8640. const char * src1_col = (const char *) wdata +
  8641. (src1_cont || src1->type != vec_dot_type
  8642. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8643. : (i11*nb11 + i12*nb12 + i13*nb13));
  8644. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8645. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8646. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8647. //}
  8648. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8649. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8650. }
  8651. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8652. }
  8653. }
  8654. }
  8655. }
  8656. #undef MMID_MATRIX_ROW
  8657. }
  8658. // ggml_compute_forward_out_prod
  8659. static void ggml_compute_forward_out_prod_f32(
  8660. const struct ggml_compute_params * params,
  8661. const struct ggml_tensor * src0,
  8662. const struct ggml_tensor * src1,
  8663. struct ggml_tensor * dst) {
  8664. // int64_t t0 = ggml_perf_time_us();
  8665. // UNUSED(t0);
  8666. GGML_TENSOR_BINARY_OP_LOCALS
  8667. const int ith = params->ith;
  8668. const int nth = params->nth;
  8669. GGML_ASSERT(ne0 == ne00);
  8670. GGML_ASSERT(ne1 == ne10);
  8671. GGML_ASSERT(ne2 == ne02);
  8672. GGML_ASSERT(ne02 == ne12);
  8673. GGML_ASSERT(ne3 == ne13);
  8674. GGML_ASSERT(ne03 == ne13);
  8675. // we don't support permuted src0 or src1
  8676. GGML_ASSERT(nb00 == sizeof(float));
  8677. // dst cannot be transposed or permuted
  8678. GGML_ASSERT(nb0 == sizeof(float));
  8679. // GGML_ASSERT(nb0 <= nb1);
  8680. // GGML_ASSERT(nb1 <= nb2);
  8681. // GGML_ASSERT(nb2 <= nb3);
  8682. // nb01 >= nb00 - src0 is not transposed
  8683. // compute by src0 rows
  8684. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8685. // TODO: #if defined(GGML_USE_CLBLAST)
  8686. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8687. bool use_blas = ggml_is_matrix(src0) &&
  8688. ggml_is_matrix(src1) &&
  8689. ggml_is_contiguous(src0) &&
  8690. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8691. #endif
  8692. if (params->type == GGML_TASK_INIT) {
  8693. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8694. if (use_blas) {
  8695. return;
  8696. }
  8697. #endif
  8698. if (ith != 0) {
  8699. return;
  8700. }
  8701. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8702. return;
  8703. }
  8704. if (params->type == GGML_TASK_FINALIZE) {
  8705. return;
  8706. }
  8707. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8708. if (use_blas) {
  8709. if (params->ith != 0) { // All threads other than the first do no work.
  8710. return;
  8711. }
  8712. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8713. // src0: (k,n)
  8714. // src1: (k,m)
  8715. // dst: (m,n)
  8716. //
  8717. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8718. // Also expressed as (major,minor)
  8719. // a: (m,k): so src1 transposed
  8720. // b: (k,n): so src0
  8721. // c: (m,n)
  8722. //
  8723. // However, if ggml_is_transposed(src1) is true, then
  8724. // src1->data already contains a transposed version, so sgemm mustn't
  8725. // transpose it further.
  8726. int n = src0->ne[0];
  8727. int k = src0->ne[1];
  8728. int m = src1->ne[0];
  8729. int transposeA, lda;
  8730. if (!ggml_is_transposed(src1)) {
  8731. transposeA = CblasTrans;
  8732. lda = m;
  8733. } else {
  8734. transposeA = CblasNoTrans;
  8735. lda = k;
  8736. }
  8737. float * a = (float *) ((char *) src1->data);
  8738. float * b = (float *) ((char *) src0->data);
  8739. float * c = (float *) ((char *) dst->data);
  8740. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8741. return;
  8742. }
  8743. #endif
  8744. // dst[:,:,:,:] = 0
  8745. // for i2,i3:
  8746. // for i1:
  8747. // for i01:
  8748. // for i0:
  8749. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8750. // parallelize by last three dimensions
  8751. // total rows in dst
  8752. const int64_t nr = ne1*ne2*ne3;
  8753. // rows per thread
  8754. const int64_t dr = (nr + nth - 1)/nth;
  8755. // row range for this thread
  8756. const int64_t ir0 = dr*ith;
  8757. const int64_t ir1 = MIN(ir0 + dr, nr);
  8758. // block-tiling attempt
  8759. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8760. const int64_t blck_1 = 16;
  8761. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8762. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8763. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8764. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8765. for (int64_t ir = bir; ir < bir1; ++ir) {
  8766. // dst indices
  8767. const int64_t i3 = ir/(ne2*ne1);
  8768. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8769. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8770. const int64_t i02 = i2;
  8771. const int64_t i03 = i3;
  8772. //const int64_t i10 = i1;
  8773. const int64_t i12 = i2;
  8774. const int64_t i13 = i3;
  8775. #if GGML_VEC_MAD_UNROLL > 2
  8776. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8777. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8778. const int64_t i11 = i01;
  8779. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8780. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8781. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8782. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8783. }
  8784. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8785. const int64_t i11 = i01;
  8786. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8787. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8788. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8789. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8790. }
  8791. #else
  8792. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8793. const int64_t i11 = i01;
  8794. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8795. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8796. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8797. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8798. }
  8799. #endif
  8800. }
  8801. }
  8802. }
  8803. //int64_t t1 = ggml_perf_time_us();
  8804. //static int64_t acc = 0;
  8805. //acc += t1 - t0;
  8806. //if (t1 - t0 > 10) {
  8807. // printf("\n");
  8808. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8809. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8810. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8811. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8812. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8813. //}
  8814. }
  8815. static void ggml_compute_forward_out_prod_q_f32(
  8816. const struct ggml_compute_params * params,
  8817. const struct ggml_tensor * src0,
  8818. const struct ggml_tensor * src1,
  8819. struct ggml_tensor * dst) {
  8820. // int64_t t0 = ggml_perf_time_us();
  8821. // UNUSED(t0);
  8822. GGML_TENSOR_BINARY_OP_LOCALS;
  8823. const int ith = params->ith;
  8824. const int nth = params->nth;
  8825. const enum ggml_type type = src0->type;
  8826. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8827. GGML_ASSERT(ne02 == ne12);
  8828. GGML_ASSERT(ne03 == ne13);
  8829. GGML_ASSERT(ne2 == ne12);
  8830. GGML_ASSERT(ne3 == ne13);
  8831. // we don't support permuted src0 dim0
  8832. GGML_ASSERT(nb00 == ggml_type_size(type));
  8833. // dst dim0 cannot be transposed or permuted
  8834. GGML_ASSERT(nb0 == sizeof(float));
  8835. // GGML_ASSERT(nb0 <= nb1);
  8836. // GGML_ASSERT(nb1 <= nb2);
  8837. // GGML_ASSERT(nb2 <= nb3);
  8838. GGML_ASSERT(ne0 == ne00);
  8839. GGML_ASSERT(ne1 == ne10);
  8840. GGML_ASSERT(ne2 == ne02);
  8841. GGML_ASSERT(ne3 == ne03);
  8842. // nb01 >= nb00 - src0 is not transposed
  8843. // compute by src0 rows
  8844. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8845. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8846. if (params->type == GGML_TASK_INIT) {
  8847. if (ith != 0) {
  8848. return;
  8849. }
  8850. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8851. return;
  8852. }
  8853. if (params->type == GGML_TASK_FINALIZE) {
  8854. return;
  8855. }
  8856. // parallelize by last three dimensions
  8857. // total rows in dst
  8858. const int64_t nr = ne1*ne2*ne3;
  8859. // rows per thread
  8860. const int64_t dr = (nr + nth - 1)/nth;
  8861. // row range for this thread
  8862. const int64_t ir0 = dr*ith;
  8863. const int64_t ir1 = MIN(ir0 + dr, nr);
  8864. // dst[:,:,:,:] = 0
  8865. // for i2,i3:
  8866. // for i1:
  8867. // for i01:
  8868. // for i0:
  8869. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8870. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8871. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8872. // dst indices
  8873. const int64_t i3 = ir/(ne2*ne1);
  8874. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8875. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8876. const int64_t i02 = i2;
  8877. const int64_t i03 = i3;
  8878. //const int64_t i10 = i1;
  8879. const int64_t i12 = i2;
  8880. const int64_t i13 = i3;
  8881. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8882. const int64_t i11 = i01;
  8883. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8884. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8885. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8886. dequantize_row_q(s0, wdata, ne0);
  8887. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8888. }
  8889. }
  8890. //int64_t t1 = ggml_perf_time_us();
  8891. //static int64_t acc = 0;
  8892. //acc += t1 - t0;
  8893. //if (t1 - t0 > 10) {
  8894. // printf("\n");
  8895. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8896. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8897. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8898. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8899. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8900. //}
  8901. }
  8902. static void ggml_compute_forward_out_prod(
  8903. const struct ggml_compute_params * params,
  8904. const struct ggml_tensor * src0,
  8905. const struct ggml_tensor * src1,
  8906. struct ggml_tensor * dst) {
  8907. switch (src0->type) {
  8908. case GGML_TYPE_Q4_0:
  8909. case GGML_TYPE_Q4_1:
  8910. case GGML_TYPE_Q5_0:
  8911. case GGML_TYPE_Q5_1:
  8912. case GGML_TYPE_Q8_0:
  8913. case GGML_TYPE_Q2_K:
  8914. case GGML_TYPE_Q3_K:
  8915. case GGML_TYPE_Q4_K:
  8916. case GGML_TYPE_Q5_K:
  8917. case GGML_TYPE_Q6_K:
  8918. case GGML_TYPE_IQ2_XXS:
  8919. case GGML_TYPE_IQ2_XS:
  8920. case GGML_TYPE_IQ3_XXS:
  8921. case GGML_TYPE_IQ1_S:
  8922. {
  8923. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8924. } break;
  8925. case GGML_TYPE_F16:
  8926. {
  8927. GGML_ASSERT(false); // todo
  8928. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8929. } break;
  8930. case GGML_TYPE_F32:
  8931. {
  8932. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8933. } break;
  8934. default:
  8935. {
  8936. GGML_ASSERT(false);
  8937. } break;
  8938. }
  8939. }
  8940. // ggml_compute_forward_scale
  8941. static void ggml_compute_forward_scale_f32(
  8942. const struct ggml_compute_params * params,
  8943. const struct ggml_tensor * src0,
  8944. struct ggml_tensor * dst) {
  8945. GGML_ASSERT(ggml_is_contiguous(src0));
  8946. GGML_ASSERT(ggml_is_contiguous(dst));
  8947. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8949. return;
  8950. }
  8951. // scale factor
  8952. float v;
  8953. memcpy(&v, dst->op_params, sizeof(float));
  8954. const int ith = params->ith;
  8955. const int nth = params->nth;
  8956. const int nc = src0->ne[0];
  8957. const int nr = ggml_nrows(src0);
  8958. // rows per thread
  8959. const int dr = (nr + nth - 1)/nth;
  8960. // row range for this thread
  8961. const int ir0 = dr*ith;
  8962. const int ir1 = MIN(ir0 + dr, nr);
  8963. const size_t nb01 = src0->nb[1];
  8964. const size_t nb1 = dst->nb[1];
  8965. for (int i1 = ir0; i1 < ir1; i1++) {
  8966. if (dst->data != src0->data) {
  8967. // src0 is same shape as dst => same indices
  8968. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8969. }
  8970. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8971. }
  8972. }
  8973. static void ggml_compute_forward_scale(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0,
  8976. struct ggml_tensor * dst) {
  8977. switch (src0->type) {
  8978. case GGML_TYPE_F32:
  8979. {
  8980. ggml_compute_forward_scale_f32(params, src0, dst);
  8981. } break;
  8982. default:
  8983. {
  8984. GGML_ASSERT(false);
  8985. } break;
  8986. }
  8987. }
  8988. // ggml_compute_forward_set
  8989. static void ggml_compute_forward_set_f32(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0,
  8992. const struct ggml_tensor * src1,
  8993. struct ggml_tensor * dst) {
  8994. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8995. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8996. // view src0 and dst with these strides and data offset inbytes during set
  8997. // nb0 is implicitly element_size because src0 and dst are contiguous
  8998. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8999. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9000. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9001. size_t offset = ((int32_t *) dst->op_params)[3];
  9002. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9003. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9004. if (params->ith != 0) {
  9005. return;
  9006. }
  9007. // memcpy needs to be synchronized across threads to avoid race conditions.
  9008. // => do it in INIT phase
  9009. memcpy(
  9010. ((char *) dst->data),
  9011. ((char *) src0->data),
  9012. ggml_nbytes(dst));
  9013. }
  9014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9015. return;
  9016. }
  9017. const int ith = params->ith;
  9018. const int nth = params->nth;
  9019. const int nr = ggml_nrows(src1);
  9020. const int nc = src1->ne[0];
  9021. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9022. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9023. // src0 and dst as viewed during set
  9024. const size_t nb0 = ggml_element_size(src0);
  9025. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9026. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9027. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9028. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9029. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9030. GGML_ASSERT(nb10 == sizeof(float));
  9031. // rows per thread
  9032. const int dr = (nr + nth - 1)/nth;
  9033. // row range for this thread
  9034. const int ir0 = dr*ith;
  9035. const int ir1 = MIN(ir0 + dr, nr);
  9036. for (int ir = ir0; ir < ir1; ++ir) {
  9037. // src0 and dst are viewed with shape of src1 and offset
  9038. // => same indices
  9039. const int i3 = ir/(ne12*ne11);
  9040. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9041. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9042. ggml_vec_cpy_f32(nc,
  9043. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9044. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9045. }
  9046. }
  9047. static void ggml_compute_forward_set(
  9048. const struct ggml_compute_params * params,
  9049. const struct ggml_tensor * src0,
  9050. const struct ggml_tensor * src1,
  9051. struct ggml_tensor * dst) {
  9052. switch (src0->type) {
  9053. case GGML_TYPE_F32:
  9054. {
  9055. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9056. } break;
  9057. case GGML_TYPE_F16:
  9058. case GGML_TYPE_Q4_0:
  9059. case GGML_TYPE_Q4_1:
  9060. case GGML_TYPE_Q5_0:
  9061. case GGML_TYPE_Q5_1:
  9062. case GGML_TYPE_Q8_0:
  9063. case GGML_TYPE_Q8_1:
  9064. case GGML_TYPE_Q2_K:
  9065. case GGML_TYPE_Q3_K:
  9066. case GGML_TYPE_Q4_K:
  9067. case GGML_TYPE_Q5_K:
  9068. case GGML_TYPE_Q6_K:
  9069. case GGML_TYPE_IQ2_XXS:
  9070. case GGML_TYPE_IQ2_XS:
  9071. case GGML_TYPE_IQ3_XXS:
  9072. case GGML_TYPE_IQ1_S:
  9073. default:
  9074. {
  9075. GGML_ASSERT(false);
  9076. } break;
  9077. }
  9078. }
  9079. // ggml_compute_forward_cpy
  9080. static void ggml_compute_forward_cpy(
  9081. const struct ggml_compute_params * params,
  9082. const struct ggml_tensor * src0,
  9083. struct ggml_tensor * dst) {
  9084. ggml_compute_forward_dup(params, src0, dst);
  9085. }
  9086. // ggml_compute_forward_cont
  9087. static void ggml_compute_forward_cont(
  9088. const struct ggml_compute_params * params,
  9089. const struct ggml_tensor * src0,
  9090. struct ggml_tensor * dst) {
  9091. ggml_compute_forward_dup(params, src0, dst);
  9092. }
  9093. // ggml_compute_forward_reshape
  9094. static void ggml_compute_forward_reshape(
  9095. const struct ggml_compute_params * params,
  9096. const struct ggml_tensor * src0,
  9097. struct ggml_tensor * dst) {
  9098. // NOP
  9099. UNUSED(params);
  9100. UNUSED(src0);
  9101. UNUSED(dst);
  9102. }
  9103. // ggml_compute_forward_view
  9104. static void ggml_compute_forward_view(
  9105. const struct ggml_compute_params * params,
  9106. const struct ggml_tensor * src0) {
  9107. // NOP
  9108. UNUSED(params);
  9109. UNUSED(src0);
  9110. }
  9111. // ggml_compute_forward_permute
  9112. static void ggml_compute_forward_permute(
  9113. const struct ggml_compute_params * params,
  9114. const struct ggml_tensor * src0) {
  9115. // NOP
  9116. UNUSED(params);
  9117. UNUSED(src0);
  9118. }
  9119. // ggml_compute_forward_transpose
  9120. static void ggml_compute_forward_transpose(
  9121. const struct ggml_compute_params * params,
  9122. const struct ggml_tensor * src0) {
  9123. // NOP
  9124. UNUSED(params);
  9125. UNUSED(src0);
  9126. }
  9127. // ggml_compute_forward_get_rows
  9128. static void ggml_compute_forward_get_rows_q(
  9129. const struct ggml_compute_params * params,
  9130. const struct ggml_tensor * src0,
  9131. const struct ggml_tensor * src1,
  9132. struct ggml_tensor * dst) {
  9133. assert(params->ith == 0);
  9134. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9135. return;
  9136. }
  9137. GGML_TENSOR_BINARY_OP_LOCALS
  9138. const int64_t nc = ne00;
  9139. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9140. const enum ggml_type type = src0->type;
  9141. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9142. assert(ne0 == nc);
  9143. assert(ne02 == ne11);
  9144. assert(nb00 == ggml_type_size(type));
  9145. assert(ggml_nrows(dst) == nr);
  9146. // TODO: multi-thread
  9147. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9148. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9149. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9150. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9151. dequantize_row_q(
  9152. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9153. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9154. }
  9155. }
  9156. }
  9157. }
  9158. static void ggml_compute_forward_get_rows_f16(
  9159. const struct ggml_compute_params * params,
  9160. const struct ggml_tensor * src0,
  9161. const struct ggml_tensor * src1,
  9162. struct ggml_tensor * dst) {
  9163. assert(params->ith == 0);
  9164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9165. return;
  9166. }
  9167. GGML_TENSOR_BINARY_OP_LOCALS
  9168. const int64_t nc = ne00;
  9169. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9170. assert(ne0 == nc);
  9171. assert(ne02 == ne11);
  9172. assert(nb00 == sizeof(ggml_fp16_t));
  9173. assert(ggml_nrows(dst) == nr);
  9174. // TODO: multi-thread
  9175. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9176. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9177. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9178. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9179. ggml_fp16_to_fp32_row(
  9180. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9181. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9182. }
  9183. }
  9184. }
  9185. }
  9186. static void ggml_compute_forward_get_rows_f32(
  9187. const struct ggml_compute_params * params,
  9188. const struct ggml_tensor * src0,
  9189. const struct ggml_tensor * src1,
  9190. struct ggml_tensor * dst) {
  9191. assert(params->ith == 0);
  9192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9193. return;
  9194. }
  9195. GGML_TENSOR_BINARY_OP_LOCALS
  9196. const int64_t nc = ne00;
  9197. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9198. assert(ne0 == nc);
  9199. assert(ne02 == ne11);
  9200. assert(nb00 == sizeof(float));
  9201. assert(ggml_nrows(dst) == nr);
  9202. // TODO: multi-thread
  9203. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9204. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9205. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9206. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9207. ggml_vec_cpy_f32(nc,
  9208. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9209. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9210. }
  9211. }
  9212. }
  9213. }
  9214. static void ggml_compute_forward_get_rows(
  9215. const struct ggml_compute_params * params,
  9216. const struct ggml_tensor * src0,
  9217. const struct ggml_tensor * src1,
  9218. struct ggml_tensor * dst) {
  9219. switch (src0->type) {
  9220. case GGML_TYPE_Q4_0:
  9221. case GGML_TYPE_Q4_1:
  9222. case GGML_TYPE_Q5_0:
  9223. case GGML_TYPE_Q5_1:
  9224. case GGML_TYPE_Q8_0:
  9225. case GGML_TYPE_Q8_1:
  9226. case GGML_TYPE_Q2_K:
  9227. case GGML_TYPE_Q3_K:
  9228. case GGML_TYPE_Q4_K:
  9229. case GGML_TYPE_Q5_K:
  9230. case GGML_TYPE_Q6_K:
  9231. case GGML_TYPE_IQ2_XXS:
  9232. case GGML_TYPE_IQ2_XS:
  9233. case GGML_TYPE_IQ3_XXS:
  9234. case GGML_TYPE_IQ1_S:
  9235. {
  9236. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9237. } break;
  9238. case GGML_TYPE_F16:
  9239. {
  9240. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9241. } break;
  9242. case GGML_TYPE_F32:
  9243. case GGML_TYPE_I32:
  9244. {
  9245. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9246. } break;
  9247. default:
  9248. {
  9249. GGML_ASSERT(false);
  9250. } break;
  9251. }
  9252. //static bool first = true;
  9253. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9254. //if (first) {
  9255. // first = false;
  9256. //} else {
  9257. // for (int k = 0; k < dst->ne[1]; ++k) {
  9258. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9259. // for (int i = 0; i < 16; ++i) {
  9260. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9261. // }
  9262. // printf("\n");
  9263. // }
  9264. // printf("\n");
  9265. // }
  9266. // printf("\n");
  9267. // exit(0);
  9268. //}
  9269. }
  9270. // ggml_compute_forward_get_rows_back
  9271. static void ggml_compute_forward_get_rows_back_f32_f16(
  9272. const struct ggml_compute_params * params,
  9273. const struct ggml_tensor * src0,
  9274. const struct ggml_tensor * src1,
  9275. struct ggml_tensor * dst) {
  9276. GGML_ASSERT(params->ith == 0);
  9277. GGML_ASSERT(ggml_is_contiguous(dst));
  9278. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9279. if (params->type == GGML_TASK_INIT) {
  9280. if (params->ith != 0) {
  9281. return;
  9282. }
  9283. memset(dst->data, 0, ggml_nbytes(dst));
  9284. }
  9285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9286. return;
  9287. }
  9288. const int nc = src0->ne[0];
  9289. const int nr = ggml_nelements(src1);
  9290. GGML_ASSERT( dst->ne[0] == nc);
  9291. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9292. for (int i = 0; i < nr; ++i) {
  9293. const int r = ((int32_t *) src1->data)[i];
  9294. for (int j = 0; j < nc; ++j) {
  9295. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9296. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9297. }
  9298. }
  9299. }
  9300. static void ggml_compute_forward_get_rows_back_f32(
  9301. const struct ggml_compute_params * params,
  9302. const struct ggml_tensor * src0,
  9303. const struct ggml_tensor * src1,
  9304. struct ggml_tensor * dst) {
  9305. GGML_ASSERT(params->ith == 0);
  9306. GGML_ASSERT(ggml_is_contiguous(dst));
  9307. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9308. if (params->type == GGML_TASK_INIT) {
  9309. if (params->ith != 0) {
  9310. return;
  9311. }
  9312. memset(dst->data, 0, ggml_nbytes(dst));
  9313. }
  9314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9315. return;
  9316. }
  9317. const int nc = src0->ne[0];
  9318. const int nr = ggml_nelements(src1);
  9319. GGML_ASSERT( dst->ne[0] == nc);
  9320. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9321. for (int i = 0; i < nr; ++i) {
  9322. const int r = ((int32_t *) src1->data)[i];
  9323. ggml_vec_add_f32(nc,
  9324. (float *) ((char *) dst->data + r*dst->nb[1]),
  9325. (float *) ((char *) dst->data + r*dst->nb[1]),
  9326. (float *) ((char *) src0->data + i*src0->nb[1]));
  9327. }
  9328. }
  9329. static void ggml_compute_forward_get_rows_back(
  9330. const struct ggml_compute_params * params,
  9331. const struct ggml_tensor * src0,
  9332. const struct ggml_tensor * src1,
  9333. struct ggml_tensor * dst) {
  9334. switch (src0->type) {
  9335. case GGML_TYPE_F16:
  9336. {
  9337. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9338. } break;
  9339. case GGML_TYPE_F32:
  9340. {
  9341. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9342. } break;
  9343. default:
  9344. {
  9345. GGML_ASSERT(false);
  9346. } break;
  9347. }
  9348. //static bool first = true;
  9349. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9350. //if (first) {
  9351. // first = false;
  9352. //} else {
  9353. // for (int k = 0; k < dst->ne[1]; ++k) {
  9354. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9355. // for (int i = 0; i < 16; ++i) {
  9356. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9357. // }
  9358. // printf("\n");
  9359. // }
  9360. // printf("\n");
  9361. // }
  9362. // printf("\n");
  9363. // exit(0);
  9364. //}
  9365. }
  9366. // ggml_compute_forward_diag
  9367. static void ggml_compute_forward_diag_f32(
  9368. const struct ggml_compute_params * params,
  9369. const struct ggml_tensor * src0,
  9370. struct ggml_tensor * dst) {
  9371. GGML_ASSERT(params->ith == 0);
  9372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9373. return;
  9374. }
  9375. // TODO: handle transposed/permuted matrices
  9376. GGML_TENSOR_UNARY_OP_LOCALS
  9377. GGML_ASSERT(ne00 == ne0);
  9378. GGML_ASSERT(ne00 == ne1);
  9379. GGML_ASSERT(ne01 == 1);
  9380. GGML_ASSERT(ne02 == ne2);
  9381. GGML_ASSERT(ne03 == ne3);
  9382. GGML_ASSERT(nb00 == sizeof(float));
  9383. GGML_ASSERT(nb0 == sizeof(float));
  9384. for (int i3 = 0; i3 < ne3; i3++) {
  9385. for (int i2 = 0; i2 < ne2; i2++) {
  9386. for (int i1 = 0; i1 < ne1; i1++) {
  9387. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9388. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9389. for (int i0 = 0; i0 < i1; i0++) {
  9390. d[i0] = 0;
  9391. }
  9392. d[i1] = s[i1];
  9393. for (int i0 = i1+1; i0 < ne0; i0++) {
  9394. d[i0] = 0;
  9395. }
  9396. }
  9397. }
  9398. }
  9399. }
  9400. static void ggml_compute_forward_diag(
  9401. const struct ggml_compute_params * params,
  9402. const struct ggml_tensor * src0,
  9403. struct ggml_tensor * dst) {
  9404. switch (src0->type) {
  9405. case GGML_TYPE_F32:
  9406. {
  9407. ggml_compute_forward_diag_f32(params, src0, dst);
  9408. } break;
  9409. default:
  9410. {
  9411. GGML_ASSERT(false);
  9412. } break;
  9413. }
  9414. }
  9415. // ggml_compute_forward_diag_mask_inf
  9416. static void ggml_compute_forward_diag_mask_f32(
  9417. const struct ggml_compute_params * params,
  9418. const struct ggml_tensor * src0,
  9419. struct ggml_tensor * dst,
  9420. const float value) {
  9421. const int ith = params->ith;
  9422. const int nth = params->nth;
  9423. const int n_past = ((int32_t *) dst->op_params)[0];
  9424. const bool inplace = src0->data == dst->data;
  9425. GGML_ASSERT(n_past >= 0);
  9426. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9427. if (ith != 0) {
  9428. return;
  9429. }
  9430. // memcpy needs to be synchronized across threads to avoid race conditions.
  9431. // => do it in INIT phase
  9432. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9433. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9434. memcpy(
  9435. ((char *) dst->data),
  9436. ((char *) src0->data),
  9437. ggml_nbytes(dst));
  9438. }
  9439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9440. return;
  9441. }
  9442. // TODO: handle transposed/permuted matrices
  9443. const int n = ggml_nrows(src0);
  9444. const int nc = src0->ne[0];
  9445. const int nr = src0->ne[1];
  9446. const int nz = n/nr;
  9447. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9448. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9449. for (int k = 0; k < nz; k++) {
  9450. for (int j = ith; j < nr; j += nth) {
  9451. for (int i = n_past; i < nc; i++) {
  9452. if (i > n_past + j) {
  9453. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9454. }
  9455. }
  9456. }
  9457. }
  9458. }
  9459. static void ggml_compute_forward_diag_mask_inf(
  9460. const struct ggml_compute_params * params,
  9461. const struct ggml_tensor * src0,
  9462. struct ggml_tensor * dst) {
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9467. } break;
  9468. default:
  9469. {
  9470. GGML_ASSERT(false);
  9471. } break;
  9472. }
  9473. }
  9474. static void ggml_compute_forward_diag_mask_zero(
  9475. const struct ggml_compute_params * params,
  9476. const struct ggml_tensor * src0,
  9477. struct ggml_tensor * dst) {
  9478. switch (src0->type) {
  9479. case GGML_TYPE_F32:
  9480. {
  9481. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9482. } break;
  9483. default:
  9484. {
  9485. GGML_ASSERT(false);
  9486. } break;
  9487. }
  9488. }
  9489. // ggml_compute_forward_soft_max
  9490. static void ggml_compute_forward_soft_max_f32(
  9491. const struct ggml_compute_params * params,
  9492. const struct ggml_tensor * src0,
  9493. const struct ggml_tensor * src1,
  9494. const struct ggml_tensor * src2,
  9495. struct ggml_tensor * dst) {
  9496. assert(ggml_is_contiguous(dst));
  9497. assert(ggml_are_same_shape(src0, dst));
  9498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9499. return;
  9500. }
  9501. float scale = 1.0f;
  9502. float max_bias = 0.0f;
  9503. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9504. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9505. // TODO: handle transposed/permuted matrices
  9506. const int ith = params->ith;
  9507. const int nth = params->nth;
  9508. GGML_TENSOR_UNARY_OP_LOCALS
  9509. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9510. // TODO: is this supposed to be ceil instead of floor?
  9511. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9512. const uint32_t n_head_kv = ne02;
  9513. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9514. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9515. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9516. const int nc = src0->ne[0];
  9517. const int nr = ggml_nrows(src0);
  9518. // rows per thread
  9519. const int dr = (nr + nth - 1)/nth;
  9520. // row range for this thread
  9521. const int ir0 = dr*ith;
  9522. const int ir1 = MIN(ir0 + dr, nr);
  9523. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9524. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9525. float * pos = src2 ? (float *) src2->data : src0->data;
  9526. for (int i1 = ir0; i1 < ir1; i1++) {
  9527. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9528. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9529. // broadcast the mask across rows
  9530. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9531. ggml_vec_cpy_f32 (nc, wp, sp);
  9532. ggml_vec_scale_f32(nc, wp, scale);
  9533. if (mp) {
  9534. ggml_vec_acc_f32(nc, wp, mp);
  9535. }
  9536. // ALiBi bias
  9537. if (max_bias > 0.0f) {
  9538. const uint32_t h = (i1/ne01)%ne02; // head
  9539. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9540. for (int i = 0; i < nc; i++) {
  9541. wp[i] = wp[i] + slope*pos[i];
  9542. }
  9543. }
  9544. #ifndef NDEBUG
  9545. for (int i = 0; i < nc; ++i) {
  9546. //printf("p[%d] = %f\n", i, p[i]);
  9547. assert(!isnan(wp[i]));
  9548. }
  9549. #endif
  9550. float max = -INFINITY;
  9551. ggml_vec_max_f32(nc, &max, wp);
  9552. ggml_float sum = 0.0;
  9553. uint16_t scvt;
  9554. for (int i = 0; i < nc; i++) {
  9555. if (wp[i] == -INFINITY) {
  9556. dp[i] = 0.0f;
  9557. } else {
  9558. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9559. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9560. memcpy(&scvt, &s, sizeof(scvt));
  9561. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9562. sum += (ggml_float)val;
  9563. dp[i] = val;
  9564. }
  9565. }
  9566. assert(sum > 0.0);
  9567. sum = 1.0/sum;
  9568. ggml_vec_scale_f32(nc, dp, sum);
  9569. #ifndef NDEBUG
  9570. for (int i = 0; i < nc; ++i) {
  9571. assert(!isnan(dp[i]));
  9572. assert(!isinf(dp[i]));
  9573. }
  9574. #endif
  9575. }
  9576. }
  9577. static void ggml_compute_forward_soft_max(
  9578. const struct ggml_compute_params * params,
  9579. const struct ggml_tensor * src0,
  9580. const struct ggml_tensor * src1,
  9581. const struct ggml_tensor * src2,
  9582. struct ggml_tensor * dst) {
  9583. switch (src0->type) {
  9584. case GGML_TYPE_F32:
  9585. {
  9586. ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst);
  9587. } break;
  9588. default:
  9589. {
  9590. GGML_ASSERT(false);
  9591. } break;
  9592. }
  9593. }
  9594. // ggml_compute_forward_soft_max_back
  9595. static void ggml_compute_forward_soft_max_back_f32(
  9596. const struct ggml_compute_params * params,
  9597. const struct ggml_tensor * src0,
  9598. const struct ggml_tensor * src1,
  9599. struct ggml_tensor * dst) {
  9600. GGML_ASSERT(ggml_is_contiguous(src0));
  9601. GGML_ASSERT(ggml_is_contiguous(src1));
  9602. GGML_ASSERT(ggml_is_contiguous(dst));
  9603. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9604. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9606. return;
  9607. }
  9608. // TODO: handle transposed/permuted matrices
  9609. const int ith = params->ith;
  9610. const int nth = params->nth;
  9611. const int nc = src0->ne[0];
  9612. const int nr = ggml_nrows(src0);
  9613. // rows per thread
  9614. const int dr = (nr + nth - 1)/nth;
  9615. // row range for this thread
  9616. const int ir0 = dr*ith;
  9617. const int ir1 = MIN(ir0 + dr, nr);
  9618. for (int i1 = ir0; i1 < ir1; i1++) {
  9619. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9620. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9621. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9622. #ifndef NDEBUG
  9623. for (int i = 0; i < nc; ++i) {
  9624. //printf("p[%d] = %f\n", i, p[i]);
  9625. assert(!isnan(dy[i]));
  9626. assert(!isnan(y[i]));
  9627. }
  9628. #endif
  9629. // Jii = yi - yi*yi
  9630. // Jij = -yi*yj
  9631. // J = diag(y)-y.T*y
  9632. // dx = J * dy
  9633. // dxk = sum_i(Jki * dyi)
  9634. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9635. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9636. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9637. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9638. // dxk = -yk * dot(y, dy) + yk*dyk
  9639. // dxk = yk * (- dot(y, dy) + dyk)
  9640. // dxk = yk * (dyk - dot(y, dy))
  9641. //
  9642. // post-order:
  9643. // dot_y_dy := dot(y, dy)
  9644. // dx := dy
  9645. // dx := dx - dot_y_dy
  9646. // dx := dx * y
  9647. // linear runtime, no additional memory
  9648. float dot_y_dy = 0;
  9649. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9650. ggml_vec_cpy_f32 (nc, dx, dy);
  9651. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9652. ggml_vec_mul_f32 (nc, dx, dx, y);
  9653. #ifndef NDEBUG
  9654. for (int i = 0; i < nc; ++i) {
  9655. assert(!isnan(dx[i]));
  9656. assert(!isinf(dx[i]));
  9657. }
  9658. #endif
  9659. }
  9660. }
  9661. static void ggml_compute_forward_soft_max_back(
  9662. const struct ggml_compute_params * params,
  9663. const struct ggml_tensor * src0,
  9664. const struct ggml_tensor * src1,
  9665. struct ggml_tensor * dst) {
  9666. switch (src0->type) {
  9667. case GGML_TYPE_F32:
  9668. {
  9669. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9670. } break;
  9671. default:
  9672. {
  9673. GGML_ASSERT(false);
  9674. } break;
  9675. }
  9676. }
  9677. // ggml_compute_forward_alibi
  9678. static void ggml_compute_forward_alibi_f32(
  9679. const struct ggml_compute_params * params,
  9680. const struct ggml_tensor * src0,
  9681. struct ggml_tensor * dst) {
  9682. assert(params->ith == 0);
  9683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9684. return;
  9685. }
  9686. //const int n_past = ((int32_t *) dst->op_params)[0];
  9687. const int n_head = ((int32_t *) dst->op_params)[1];
  9688. float max_bias;
  9689. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9690. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9691. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9692. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9693. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9694. const int64_t n = ggml_nrows(src0);
  9695. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9696. const size_t nb0 = src0->nb[0];
  9697. const size_t nb1 = src0->nb[1];
  9698. const size_t nb2 = src0->nb[2];
  9699. //const int nb3 = src0->nb[3];
  9700. GGML_ASSERT(nb0 == sizeof(float));
  9701. GGML_ASSERT(n_head == ne2);
  9702. // add alibi to src0 (KQ_scaled)
  9703. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9704. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9705. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9706. for (int64_t k = 0; k < ne2_ne3; k++) {
  9707. // TODO: k*nb2 or k*nb3
  9708. float m_k;
  9709. if (k < n_heads_log2_floor) {
  9710. m_k = powf(m0, k + 1);
  9711. } else {
  9712. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9713. }
  9714. for (int64_t i = 0; i < ne0; i++) {
  9715. for (int64_t j = 0; j < ne1; j++) {
  9716. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9717. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9718. pdst[0] = i * m_k + src[0];
  9719. }
  9720. }
  9721. }
  9722. }
  9723. static void ggml_compute_forward_alibi_f16(
  9724. const struct ggml_compute_params * params,
  9725. const struct ggml_tensor * src0,
  9726. struct ggml_tensor * dst) {
  9727. assert(params->ith == 0);
  9728. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9729. return;
  9730. }
  9731. //const int n_past = ((int32_t *) dst->op_params)[0];
  9732. const int n_head = ((int32_t *) dst->op_params)[1];
  9733. float max_bias;
  9734. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9735. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9736. const int ne1 = src0->ne[1]; // seq_len_without_past
  9737. const int ne2 = src0->ne[2]; // n_head -> this is k
  9738. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9739. const int n = ggml_nrows(src0);
  9740. const int ne2_ne3 = n/ne1; // ne2*ne3
  9741. const int nb0 = src0->nb[0];
  9742. const int nb1 = src0->nb[1];
  9743. const int nb2 = src0->nb[2];
  9744. //const int nb3 = src0->nb[3];
  9745. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9746. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9747. GGML_ASSERT(n_head == ne2);
  9748. // add alibi to src0 (KQ_scaled)
  9749. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9750. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9751. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9752. for (int k = 0; k < ne2_ne3; k++) {
  9753. // TODO: k*nb2 or k*nb3
  9754. float m_k;
  9755. if (k < n_heads_log2_floor) {
  9756. m_k = powf(m0, k + 1);
  9757. } else {
  9758. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9759. }
  9760. for (int i = 0; i < ne0; i++) {
  9761. for (int j = 0; j < ne1; j++) {
  9762. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9763. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9764. // we return F32
  9765. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9766. }
  9767. }
  9768. }
  9769. }
  9770. static void ggml_compute_forward_alibi(
  9771. const struct ggml_compute_params * params,
  9772. const struct ggml_tensor * src0,
  9773. struct ggml_tensor * dst) {
  9774. switch (src0->type) {
  9775. case GGML_TYPE_F16:
  9776. {
  9777. ggml_compute_forward_alibi_f16(params, src0, dst);
  9778. } break;
  9779. case GGML_TYPE_F32:
  9780. {
  9781. ggml_compute_forward_alibi_f32(params, src0, dst);
  9782. } break;
  9783. case GGML_TYPE_Q4_0:
  9784. case GGML_TYPE_Q4_1:
  9785. case GGML_TYPE_Q5_0:
  9786. case GGML_TYPE_Q5_1:
  9787. case GGML_TYPE_Q8_0:
  9788. case GGML_TYPE_Q8_1:
  9789. case GGML_TYPE_Q2_K:
  9790. case GGML_TYPE_Q3_K:
  9791. case GGML_TYPE_Q4_K:
  9792. case GGML_TYPE_Q5_K:
  9793. case GGML_TYPE_Q6_K:
  9794. case GGML_TYPE_IQ2_XXS:
  9795. case GGML_TYPE_IQ2_XS:
  9796. case GGML_TYPE_IQ3_XXS:
  9797. case GGML_TYPE_IQ1_S:
  9798. case GGML_TYPE_Q8_K:
  9799. case GGML_TYPE_I8:
  9800. case GGML_TYPE_I16:
  9801. case GGML_TYPE_I32:
  9802. case GGML_TYPE_COUNT:
  9803. {
  9804. GGML_ASSERT(false);
  9805. } break;
  9806. }
  9807. }
  9808. // ggml_compute_forward_clamp
  9809. static void ggml_compute_forward_clamp_f32(
  9810. const struct ggml_compute_params * params,
  9811. const struct ggml_tensor * src0,
  9812. struct ggml_tensor * dst) {
  9813. assert(params->ith == 0);
  9814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9815. return;
  9816. }
  9817. float min;
  9818. float max;
  9819. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9820. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9821. const int ith = params->ith;
  9822. const int nth = params->nth;
  9823. const int n = ggml_nrows(src0);
  9824. const int nc = src0->ne[0];
  9825. const size_t nb00 = src0->nb[0];
  9826. const size_t nb01 = src0->nb[1];
  9827. const size_t nb0 = dst->nb[0];
  9828. const size_t nb1 = dst->nb[1];
  9829. GGML_ASSERT( nb0 == sizeof(float));
  9830. GGML_ASSERT(nb00 == sizeof(float));
  9831. for (int j = ith; j < n; j += nth) {
  9832. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9833. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9834. for (int i = 0; i < nc; i++) {
  9835. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9836. }
  9837. }
  9838. }
  9839. static void ggml_compute_forward_clamp(
  9840. const struct ggml_compute_params * params,
  9841. const struct ggml_tensor * src0,
  9842. struct ggml_tensor * dst) {
  9843. switch (src0->type) {
  9844. case GGML_TYPE_F32:
  9845. {
  9846. ggml_compute_forward_clamp_f32(params, src0, dst);
  9847. } break;
  9848. case GGML_TYPE_F16:
  9849. case GGML_TYPE_Q4_0:
  9850. case GGML_TYPE_Q4_1:
  9851. case GGML_TYPE_Q5_0:
  9852. case GGML_TYPE_Q5_1:
  9853. case GGML_TYPE_Q8_0:
  9854. case GGML_TYPE_Q8_1:
  9855. case GGML_TYPE_Q2_K:
  9856. case GGML_TYPE_Q3_K:
  9857. case GGML_TYPE_Q4_K:
  9858. case GGML_TYPE_Q5_K:
  9859. case GGML_TYPE_Q6_K:
  9860. case GGML_TYPE_IQ2_XXS:
  9861. case GGML_TYPE_IQ2_XS:
  9862. case GGML_TYPE_IQ3_XXS:
  9863. case GGML_TYPE_IQ1_S:
  9864. case GGML_TYPE_Q8_K:
  9865. case GGML_TYPE_I8:
  9866. case GGML_TYPE_I16:
  9867. case GGML_TYPE_I32:
  9868. case GGML_TYPE_COUNT:
  9869. {
  9870. GGML_ASSERT(false);
  9871. } break;
  9872. }
  9873. }
  9874. // ggml_compute_forward_rope
  9875. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9876. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9877. return 1 - MIN(1, MAX(0, y));
  9878. }
  9879. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9880. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9881. static void rope_yarn(
  9882. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9883. float * cos_theta, float * sin_theta
  9884. ) {
  9885. // Get n-d rotational scaling corrected for extrapolation
  9886. float theta_interp = freq_scale * theta_extrap;
  9887. float theta = theta_interp;
  9888. if (ext_factor != 0.0f) {
  9889. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9890. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9891. // Get n-d magnitude scaling corrected for interpolation
  9892. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9893. }
  9894. *cos_theta = cosf(theta) * mscale;
  9895. *sin_theta = sinf(theta) * mscale;
  9896. }
  9897. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9898. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9899. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9900. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9901. }
  9902. static void ggml_rope_cache_init(
  9903. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9904. float * cache, float sin_sign, float theta_scale
  9905. ) {
  9906. float theta = theta_base;
  9907. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9908. rope_yarn(
  9909. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9910. );
  9911. cache[i0 + 1] *= sin_sign;
  9912. theta *= theta_scale;
  9913. }
  9914. }
  9915. GGML_CALL void ggml_rope_yarn_corr_dims(
  9916. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9917. ) {
  9918. // start and end correction dims
  9919. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9920. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9921. dims[0] = MAX(0, start);
  9922. dims[1] = MIN(n_dims - 1, end);
  9923. }
  9924. static void ggml_compute_forward_rope_f32(
  9925. const struct ggml_compute_params * params,
  9926. const struct ggml_tensor * src0,
  9927. const struct ggml_tensor * src1,
  9928. struct ggml_tensor * dst,
  9929. const bool forward) {
  9930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9931. return;
  9932. }
  9933. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9934. // these two only relevant for xPos RoPE:
  9935. float xpos_base;
  9936. bool xpos_down;
  9937. //const int n_past = ((int32_t *) dst->op_params)[0];
  9938. const int n_dims = ((int32_t *) dst->op_params)[1];
  9939. const int mode = ((int32_t *) dst->op_params)[2];
  9940. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9941. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9942. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9943. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9944. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9945. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9946. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9947. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9948. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9949. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9950. GGML_TENSOR_UNARY_OP_LOCALS
  9951. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9952. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9953. GGML_ASSERT(nb00 == sizeof(float));
  9954. const int ith = params->ith;
  9955. const int nth = params->nth;
  9956. const int nr = ggml_nrows(dst);
  9957. GGML_ASSERT(n_dims <= ne0);
  9958. GGML_ASSERT(n_dims % 2 == 0);
  9959. // rows per thread
  9960. const int dr = (nr + nth - 1)/nth;
  9961. // row range for this thread
  9962. const int ir0 = dr*ith;
  9963. const int ir1 = MIN(ir0 + dr, nr);
  9964. // row index used to determine which thread to use
  9965. int ir = 0;
  9966. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9967. const float inv_ndims = -1.f/n_dims;
  9968. float corr_dims[2];
  9969. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9970. const bool is_neox = mode & 2;
  9971. const bool is_glm = mode & 4;
  9972. // backward process uses inverse rotation by cos and sin.
  9973. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9974. // this essentially just switches the sign of sin.
  9975. const float sin_sign = forward ? 1.0f : -1.0f;
  9976. const int32_t * pos = (const int32_t *) src1->data;
  9977. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9978. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9979. const int64_t p = pos[i2];
  9980. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9981. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9982. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9983. }
  9984. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9985. if (ir++ < ir0) continue;
  9986. if (ir > ir1) break;
  9987. float theta_base = (float)p;
  9988. if (is_glm) {
  9989. theta_base = MIN(p, n_ctx - 2);
  9990. float block_theta = MAX(p - (n_ctx - 2), 0);
  9991. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9992. const float cos_theta = cosf(theta_base);
  9993. const float sin_theta = sinf(theta_base) * sin_sign;
  9994. const float cos_block_theta = cosf(block_theta);
  9995. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9996. theta_base *= theta_scale;
  9997. block_theta *= theta_scale;
  9998. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9999. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10000. const float x0 = src[0];
  10001. const float x1 = src[n_dims/2];
  10002. const float x2 = src[n_dims];
  10003. const float x3 = src[n_dims/2*3];
  10004. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10005. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10006. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10007. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10008. }
  10009. } else if (!is_neox) {
  10010. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10011. const float cos_theta = cache[i0 + 0];
  10012. const float sin_theta = cache[i0 + 1];
  10013. // zeta scaling for xPos only:
  10014. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10015. if (xpos_down) zeta = 1.0f / zeta;
  10016. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10017. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10018. const float x0 = src[0];
  10019. const float x1 = src[1];
  10020. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10021. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10022. }
  10023. } else {
  10024. // TODO: this might be wrong for ne0 != n_dims - need double check
  10025. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10026. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10027. theta_base *= freq_scale;
  10028. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10029. if (ic < n_dims) {
  10030. const int64_t ib = 0;
  10031. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10032. float cur_rot = inv_ndims * ic - ib;
  10033. float cos_theta, sin_theta;
  10034. rope_yarn(
  10035. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10036. &cos_theta, &sin_theta
  10037. );
  10038. sin_theta *= sin_sign;
  10039. theta_base *= theta_scale;
  10040. const int64_t i0 = ib*n_dims + ic/2;
  10041. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10042. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10043. const float x0 = src[0];
  10044. const float x1 = src[n_dims/2];
  10045. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10046. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10047. } else {
  10048. const int64_t i0 = ic;
  10049. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10050. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10051. dst_data[0] = src[0];
  10052. dst_data[1] = src[1];
  10053. }
  10054. }
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. static void ggml_compute_forward_rope_f16(
  10061. const struct ggml_compute_params * params,
  10062. const struct ggml_tensor * src0,
  10063. const struct ggml_tensor * src1,
  10064. struct ggml_tensor * dst,
  10065. const bool forward) {
  10066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10067. return;
  10068. }
  10069. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10070. //const int n_past = ((int32_t *) dst->op_params)[0];
  10071. const int n_dims = ((int32_t *) dst->op_params)[1];
  10072. const int mode = ((int32_t *) dst->op_params)[2];
  10073. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10074. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10075. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10076. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10077. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10078. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10079. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10080. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10081. GGML_TENSOR_UNARY_OP_LOCALS
  10082. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10083. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10084. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10085. const int ith = params->ith;
  10086. const int nth = params->nth;
  10087. const int nr = ggml_nrows(dst);
  10088. GGML_ASSERT(n_dims <= ne0);
  10089. GGML_ASSERT(n_dims % 2 == 0);
  10090. // rows per thread
  10091. const int dr = (nr + nth - 1)/nth;
  10092. // row range for this thread
  10093. const int ir0 = dr*ith;
  10094. const int ir1 = MIN(ir0 + dr, nr);
  10095. // row index used to determine which thread to use
  10096. int ir = 0;
  10097. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10098. const float inv_ndims = -1.f/n_dims;
  10099. float corr_dims[2];
  10100. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10101. const bool is_neox = mode & 2;
  10102. const bool is_glm = mode & 4;
  10103. // backward process uses inverse rotation by cos and sin.
  10104. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10105. // this essentially just switches the sign of sin.
  10106. const float sin_sign = forward ? 1.0f : -1.0f;
  10107. const int32_t * pos = (const int32_t *) src1->data;
  10108. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10109. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10110. const int64_t p = pos[i2];
  10111. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10112. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10113. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10114. }
  10115. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10116. if (ir++ < ir0) continue;
  10117. if (ir > ir1) break;
  10118. float theta_base = (float)p;
  10119. if (is_glm) {
  10120. theta_base = MIN(p, n_ctx - 2);
  10121. float block_theta = MAX(p - (n_ctx - 2), 0);
  10122. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10123. const float cos_theta = cosf(theta_base);
  10124. const float sin_theta = sinf(theta_base) * sin_sign;
  10125. const float cos_block_theta = cosf(block_theta);
  10126. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10127. theta_base *= theta_scale;
  10128. block_theta *= theta_scale;
  10129. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10130. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10131. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10132. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10133. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10134. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10135. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10136. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10137. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10138. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10139. }
  10140. } else if (!is_neox) {
  10141. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10142. const float cos_theta = cache[i0 + 0];
  10143. const float sin_theta = cache[i0 + 1];
  10144. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10145. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10146. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10147. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10148. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10149. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10150. }
  10151. } else {
  10152. // TODO: this might be wrong for ne0 != n_dims - need double check
  10153. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10154. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10155. theta_base *= freq_scale;
  10156. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10157. if (ic < n_dims) {
  10158. const int64_t ib = 0;
  10159. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10160. float cur_rot = inv_ndims * ic - ib;
  10161. float cos_theta, sin_theta;
  10162. rope_yarn(
  10163. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10164. &cos_theta, &sin_theta
  10165. );
  10166. sin_theta *= sin_sign;
  10167. theta_base *= theta_scale;
  10168. const int64_t i0 = ib*n_dims + ic/2;
  10169. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10170. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10171. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10172. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10173. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10174. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10175. } else {
  10176. const int64_t i0 = ic;
  10177. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10178. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10179. dst_data[0] = src[0];
  10180. dst_data[1] = src[1];
  10181. }
  10182. }
  10183. }
  10184. }
  10185. }
  10186. }
  10187. }
  10188. static void ggml_compute_forward_rope(
  10189. const struct ggml_compute_params * params,
  10190. const struct ggml_tensor * src0,
  10191. const struct ggml_tensor * src1,
  10192. struct ggml_tensor * dst) {
  10193. switch (src0->type) {
  10194. case GGML_TYPE_F16:
  10195. {
  10196. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10197. } break;
  10198. case GGML_TYPE_F32:
  10199. {
  10200. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10201. } break;
  10202. default:
  10203. {
  10204. GGML_ASSERT(false);
  10205. } break;
  10206. }
  10207. }
  10208. // ggml_compute_forward_rope_back
  10209. static void ggml_compute_forward_rope_back(
  10210. const struct ggml_compute_params * params,
  10211. const struct ggml_tensor * src0,
  10212. const struct ggml_tensor * src1,
  10213. struct ggml_tensor * dst) {
  10214. switch (src0->type) {
  10215. case GGML_TYPE_F16:
  10216. {
  10217. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10218. } break;
  10219. case GGML_TYPE_F32:
  10220. {
  10221. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10222. } break;
  10223. default:
  10224. {
  10225. GGML_ASSERT(false);
  10226. } break;
  10227. }
  10228. }
  10229. // ggml_compute_forward_conv_transpose_1d
  10230. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10231. const struct ggml_compute_params * params,
  10232. const struct ggml_tensor * src0,
  10233. const struct ggml_tensor * src1,
  10234. struct ggml_tensor * dst) {
  10235. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10236. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10237. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10238. int64_t t0 = ggml_perf_time_us();
  10239. UNUSED(t0);
  10240. GGML_TENSOR_BINARY_OP_LOCALS
  10241. const int ith = params->ith;
  10242. const int nth = params->nth;
  10243. const int nk = ne00*ne01*ne02;
  10244. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10245. GGML_ASSERT(nb10 == sizeof(float));
  10246. if (params->type == GGML_TASK_INIT) {
  10247. if (ith != 0) {
  10248. return;
  10249. }
  10250. memset(params->wdata, 0, params->wsize);
  10251. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10252. {
  10253. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10254. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10255. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10256. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10257. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10258. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10259. dst_data[i00*ne02 + i02] = src[i00];
  10260. }
  10261. }
  10262. }
  10263. }
  10264. // permute source data (src1) from (L x Cin) to (Cin x L)
  10265. {
  10266. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10267. ggml_fp16_t * dst_data = wdata;
  10268. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10269. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10270. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10271. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10272. }
  10273. }
  10274. }
  10275. // need to zero dst since we are accumulating into it
  10276. memset(dst->data, 0, ggml_nbytes(dst));
  10277. return;
  10278. }
  10279. if (params->type == GGML_TASK_FINALIZE) {
  10280. return;
  10281. }
  10282. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10283. // total rows in dst
  10284. const int nr = ne1;
  10285. // rows per thread
  10286. const int dr = (nr + nth - 1)/nth;
  10287. // row range for this thread
  10288. const int ir0 = dr*ith;
  10289. const int ir1 = MIN(ir0 + dr, nr);
  10290. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10291. ggml_fp16_t * const wdata_src = wdata + nk;
  10292. for (int i1 = ir0; i1 < ir1; i1++) {
  10293. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10294. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10295. for (int i10 = 0; i10 < ne10; i10++) {
  10296. const int i1n = i10*ne11;
  10297. for (int i00 = 0; i00 < ne00; i00++) {
  10298. float v = 0;
  10299. ggml_vec_dot_f16(ne02, &v, 0,
  10300. (ggml_fp16_t *) wdata_src + i1n, 0,
  10301. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10302. dst_data[i10*s0 + i00] += v;
  10303. }
  10304. }
  10305. }
  10306. }
  10307. static void ggml_compute_forward_conv_transpose_1d_f32(
  10308. const struct ggml_compute_params * params,
  10309. const struct ggml_tensor * src0,
  10310. const struct ggml_tensor * src1,
  10311. struct ggml_tensor * dst) {
  10312. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10313. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10314. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10315. int64_t t0 = ggml_perf_time_us();
  10316. UNUSED(t0);
  10317. GGML_TENSOR_BINARY_OP_LOCALS
  10318. const int ith = params->ith;
  10319. const int nth = params->nth;
  10320. const int nk = ne00*ne01*ne02;
  10321. GGML_ASSERT(nb00 == sizeof(float));
  10322. GGML_ASSERT(nb10 == sizeof(float));
  10323. if (params->type == GGML_TASK_INIT) {
  10324. if (ith != 0) {
  10325. return;
  10326. }
  10327. memset(params->wdata, 0, params->wsize);
  10328. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10329. {
  10330. float * const wdata = (float *) params->wdata + 0;
  10331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10332. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10333. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10334. float * dst_data = wdata + i01*ne00*ne02;
  10335. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10336. dst_data[i00*ne02 + i02] = src[i00];
  10337. }
  10338. }
  10339. }
  10340. }
  10341. // prepare source data (src1)
  10342. {
  10343. float * const wdata = (float *) params->wdata + nk;
  10344. float * dst_data = wdata;
  10345. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10346. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10347. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10348. dst_data[i10*ne11 + i11] = src[i10];
  10349. }
  10350. }
  10351. }
  10352. // need to zero dst since we are accumulating into it
  10353. memset(dst->data, 0, ggml_nbytes(dst));
  10354. return;
  10355. }
  10356. if (params->type == GGML_TASK_FINALIZE) {
  10357. return;
  10358. }
  10359. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10360. // total rows in dst
  10361. const int nr = ne1;
  10362. // rows per thread
  10363. const int dr = (nr + nth - 1)/nth;
  10364. // row range for this thread
  10365. const int ir0 = dr*ith;
  10366. const int ir1 = MIN(ir0 + dr, nr);
  10367. float * const wdata = (float *) params->wdata + 0;
  10368. float * const wdata_src = wdata + nk;
  10369. for (int i1 = ir0; i1 < ir1; i1++) {
  10370. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10371. float * wdata_kernel = wdata + i1*ne02*ne00;
  10372. for (int i10 = 0; i10 < ne10; i10++) {
  10373. const int i1n = i10*ne11;
  10374. for (int i00 = 0; i00 < ne00; i00++) {
  10375. float v = 0;
  10376. ggml_vec_dot_f32(ne02, &v, 0,
  10377. wdata_src + i1n, 0,
  10378. wdata_kernel + i00*ne02, 0, 1);
  10379. dst_data[i10*s0 + i00] += v;
  10380. }
  10381. }
  10382. }
  10383. }
  10384. static void ggml_compute_forward_conv_transpose_1d(
  10385. const struct ggml_compute_params * params,
  10386. const struct ggml_tensor * src0,
  10387. const struct ggml_tensor * src1,
  10388. struct ggml_tensor * dst) {
  10389. switch (src0->type) {
  10390. case GGML_TYPE_F16:
  10391. {
  10392. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10393. } break;
  10394. case GGML_TYPE_F32:
  10395. {
  10396. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10397. } break;
  10398. default:
  10399. {
  10400. GGML_ASSERT(false);
  10401. } break;
  10402. }
  10403. }
  10404. // src0: kernel [OC, IC, KH, KW]
  10405. // src1: image [N, IC, IH, IW]
  10406. // dst: result [N, OH, OW, IC*KH*KW]
  10407. static void ggml_compute_forward_im2col_f32(
  10408. const struct ggml_compute_params * params,
  10409. const struct ggml_tensor * src0,
  10410. const struct ggml_tensor * src1,
  10411. struct ggml_tensor * dst) {
  10412. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10413. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10414. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10415. int64_t t0 = ggml_perf_time_us();
  10416. UNUSED(t0);
  10417. GGML_TENSOR_BINARY_OP_LOCALS;
  10418. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10419. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10420. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10421. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10422. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10423. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10424. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10425. const int ith = params->ith;
  10426. const int nth = params->nth;
  10427. const int64_t N = is_2D ? ne13 : ne12;
  10428. const int64_t IC = is_2D ? ne12 : ne11;
  10429. const int64_t IH = is_2D ? ne11 : 1;
  10430. const int64_t IW = ne10;
  10431. const int64_t KH = is_2D ? ne01 : 1;
  10432. const int64_t KW = ne00;
  10433. const int64_t OH = is_2D ? ne2 : 1;
  10434. const int64_t OW = ne1;
  10435. int ofs0 = is_2D ? nb13 : nb12;
  10436. int ofs1 = is_2D ? nb12 : nb11;
  10437. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10438. GGML_ASSERT(nb10 == sizeof(float));
  10439. if (params->type == GGML_TASK_INIT) {
  10440. return;
  10441. }
  10442. if (params->type == GGML_TASK_FINALIZE) {
  10443. return;
  10444. }
  10445. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10446. {
  10447. float * const wdata = (float *) dst->data;
  10448. for (int64_t in = 0; in < N; in++) {
  10449. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10450. for (int64_t iow = 0; iow < OW; iow++) {
  10451. for (int64_t iic = ith; iic < IC; iic += nth) {
  10452. // micro kernel
  10453. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10454. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10455. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10456. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10457. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10458. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10459. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10460. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10461. } else {
  10462. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10463. }
  10464. }
  10465. }
  10466. }
  10467. }
  10468. }
  10469. }
  10470. }
  10471. }
  10472. // src0: kernel [OC, IC, KH, KW]
  10473. // src1: image [N, IC, IH, IW]
  10474. // dst: result [N, OH, OW, IC*KH*KW]
  10475. static void ggml_compute_forward_im2col_f16(
  10476. const struct ggml_compute_params * params,
  10477. const struct ggml_tensor * src0,
  10478. const struct ggml_tensor * src1,
  10479. struct ggml_tensor * dst) {
  10480. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10481. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10482. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10483. int64_t t0 = ggml_perf_time_us();
  10484. UNUSED(t0);
  10485. GGML_TENSOR_BINARY_OP_LOCALS;
  10486. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10487. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10488. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10489. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10490. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10491. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10492. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10493. const int ith = params->ith;
  10494. const int nth = params->nth;
  10495. const int64_t N = is_2D ? ne13 : ne12;
  10496. const int64_t IC = is_2D ? ne12 : ne11;
  10497. const int64_t IH = is_2D ? ne11 : 1;
  10498. const int64_t IW = ne10;
  10499. const int64_t KH = is_2D ? ne01 : 1;
  10500. const int64_t KW = ne00;
  10501. const int64_t OH = is_2D ? ne2 : 1;
  10502. const int64_t OW = ne1;
  10503. int ofs0 = is_2D ? nb13 : nb12;
  10504. int ofs1 = is_2D ? nb12 : nb11;
  10505. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10506. GGML_ASSERT(nb10 == sizeof(float));
  10507. if (params->type == GGML_TASK_INIT) {
  10508. return;
  10509. }
  10510. if (params->type == GGML_TASK_FINALIZE) {
  10511. return;
  10512. }
  10513. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10514. {
  10515. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10516. for (int64_t in = 0; in < N; in++) {
  10517. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10518. for (int64_t iow = 0; iow < OW; iow++) {
  10519. for (int64_t iic = ith; iic < IC; iic += nth) {
  10520. // micro kernel
  10521. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10522. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10523. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10524. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10525. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10526. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10527. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10528. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10529. } else {
  10530. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10531. }
  10532. }
  10533. }
  10534. }
  10535. }
  10536. }
  10537. }
  10538. }
  10539. }
  10540. static void ggml_compute_forward_im2col(
  10541. const struct ggml_compute_params * params,
  10542. const struct ggml_tensor * src0,
  10543. const struct ggml_tensor * src1,
  10544. struct ggml_tensor * dst) {
  10545. switch (dst->type) {
  10546. case GGML_TYPE_F16:
  10547. {
  10548. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10549. } break;
  10550. case GGML_TYPE_F32:
  10551. {
  10552. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10553. } break;
  10554. default:
  10555. {
  10556. GGML_ASSERT(false);
  10557. } break;
  10558. }
  10559. }
  10560. // ggml_compute_forward_conv_transpose_2d
  10561. static void ggml_compute_forward_conv_transpose_2d(
  10562. const struct ggml_compute_params * params,
  10563. const struct ggml_tensor * src0,
  10564. const struct ggml_tensor * src1,
  10565. struct ggml_tensor * dst) {
  10566. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10567. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10568. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10569. int64_t t0 = ggml_perf_time_us();
  10570. UNUSED(t0);
  10571. GGML_TENSOR_BINARY_OP_LOCALS
  10572. const int ith = params->ith;
  10573. const int nth = params->nth;
  10574. const int nk = ne00*ne01*ne02*ne03;
  10575. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10576. GGML_ASSERT(nb10 == sizeof(float));
  10577. if (params->type == GGML_TASK_INIT) {
  10578. if (ith != 0) {
  10579. return;
  10580. }
  10581. memset(params->wdata, 0, params->wsize);
  10582. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10583. {
  10584. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10585. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10586. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10587. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10588. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10589. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10590. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10591. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10592. }
  10593. }
  10594. }
  10595. }
  10596. }
  10597. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10598. {
  10599. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10600. for (int i12 = 0; i12 < ne12; i12++) {
  10601. for (int i11 = 0; i11 < ne11; i11++) {
  10602. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10603. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10604. for (int i10 = 0; i10 < ne10; i10++) {
  10605. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10606. }
  10607. }
  10608. }
  10609. }
  10610. memset(dst->data, 0, ggml_nbytes(dst));
  10611. return;
  10612. }
  10613. if (params->type == GGML_TASK_FINALIZE) {
  10614. return;
  10615. }
  10616. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10617. // total patches in dst
  10618. const int np = ne2;
  10619. // patches per thread
  10620. const int dp = (np + nth - 1)/nth;
  10621. // patch range for this thread
  10622. const int ip0 = dp*ith;
  10623. const int ip1 = MIN(ip0 + dp, np);
  10624. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10625. ggml_fp16_t * const wdata_src = wdata + nk;
  10626. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10627. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10628. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10629. for (int i11 = 0; i11 < ne11; i11++) {
  10630. for (int i10 = 0; i10 < ne10; i10++) {
  10631. const int i1n = i11*ne10*ne12 + i10*ne12;
  10632. for (int i01 = 0; i01 < ne01; i01++) {
  10633. for (int i00 = 0; i00 < ne00; i00++) {
  10634. float v = 0;
  10635. ggml_vec_dot_f16(ne03, &v, 0,
  10636. wdata_src + i1n, 0,
  10637. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10638. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10639. }
  10640. }
  10641. }
  10642. }
  10643. }
  10644. }
  10645. // ggml_compute_forward_pool_1d_sk_p0
  10646. static void ggml_compute_forward_pool_1d_sk_p0(
  10647. const struct ggml_compute_params * params,
  10648. const enum ggml_op_pool op,
  10649. const struct ggml_tensor * src,
  10650. const int k,
  10651. struct ggml_tensor * dst) {
  10652. assert(src->type == GGML_TYPE_F32);
  10653. assert(params->ith == 0);
  10654. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10655. return;
  10656. }
  10657. const char * cdata = (const char *)src->data;
  10658. const char * const data_end = cdata + ggml_nbytes(src);
  10659. float * drow = (float *)dst->data;
  10660. const int64_t rs = dst->ne[0];
  10661. while (cdata < data_end) {
  10662. const float * const srow = (const float *)cdata;
  10663. int j = 0;
  10664. for (int64_t i = 0; i < rs; ++i) {
  10665. switch (op) {
  10666. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10667. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10668. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10669. }
  10670. for (int ki = 0; ki < k; ++ki) {
  10671. switch (op) {
  10672. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10673. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10674. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10675. }
  10676. ++j;
  10677. }
  10678. switch (op) {
  10679. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10680. case GGML_OP_POOL_MAX: break;
  10681. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10682. }
  10683. }
  10684. cdata += src->nb[1];
  10685. drow += rs;
  10686. }
  10687. }
  10688. // ggml_compute_forward_pool_1d
  10689. static void ggml_compute_forward_pool_1d(
  10690. const struct ggml_compute_params * params,
  10691. const struct ggml_tensor * src0,
  10692. struct ggml_tensor * dst) {
  10693. const int32_t * opts = (const int32_t *)dst->op_params;
  10694. enum ggml_op_pool op = opts[0];
  10695. const int k0 = opts[1];
  10696. const int s0 = opts[2];
  10697. const int p0 = opts[3];
  10698. GGML_ASSERT(p0 == 0); // padding not supported
  10699. GGML_ASSERT(k0 == s0); // only s = k supported
  10700. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10701. }
  10702. // ggml_compute_forward_pool_2d
  10703. static void ggml_compute_forward_pool_2d(
  10704. const struct ggml_compute_params * params,
  10705. const struct ggml_tensor * src,
  10706. struct ggml_tensor * dst) {
  10707. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10708. GGML_ASSERT(params->ith == 0);
  10709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10710. return;
  10711. }
  10712. const int32_t * opts = (const int32_t *)dst->op_params;
  10713. enum ggml_op_pool op = opts[0];
  10714. const int k0 = opts[1];
  10715. const int k1 = opts[2];
  10716. const int s0 = opts[3];
  10717. const int s1 = opts[4];
  10718. const int p0 = opts[5];
  10719. const int p1 = opts[6];
  10720. const char * cdata = (const char*)src->data;
  10721. const char * const data_end = cdata + ggml_nbytes(src);
  10722. const int64_t px = dst->ne[0];
  10723. const int64_t py = dst->ne[1];
  10724. const int64_t pa = px * py;
  10725. float * dplane = (float *)dst->data;
  10726. const int ka = k0 * k1;
  10727. const int offset0 = -p0;
  10728. const int offset1 = -p1;
  10729. while (cdata < data_end) {
  10730. for (int oy = 0; oy < py; ++oy) {
  10731. float * const drow = dplane + oy * px;
  10732. for (int ox = 0; ox < px; ++ox) {
  10733. float * const out = drow + ox;
  10734. switch (op) {
  10735. case GGML_OP_POOL_AVG: *out = 0; break;
  10736. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10737. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10738. }
  10739. const int ix = offset0 + ox * s0;
  10740. const int iy = offset1 + oy * s1;
  10741. for (int ky = 0; ky < k1; ++ky) {
  10742. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10743. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10744. for (int kx = 0; kx < k0; ++kx) {
  10745. int j = ix + kx;
  10746. if (j < 0 || j >= src->ne[0]) continue;
  10747. switch (op) {
  10748. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10749. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10750. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10751. }
  10752. }
  10753. }
  10754. switch (op) {
  10755. case GGML_OP_POOL_AVG: *out /= ka; break;
  10756. case GGML_OP_POOL_MAX: break;
  10757. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10758. }
  10759. }
  10760. }
  10761. cdata += src->nb[2];
  10762. dplane += pa;
  10763. }
  10764. }
  10765. // ggml_compute_forward_upscale
  10766. static void ggml_compute_forward_upscale_f32(
  10767. const struct ggml_compute_params * params,
  10768. const struct ggml_tensor * src0,
  10769. struct ggml_tensor * dst) {
  10770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10771. return;
  10772. }
  10773. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10774. const int ith = params->ith;
  10775. const int nth = params->nth;
  10776. GGML_TENSOR_UNARY_OP_LOCALS
  10777. const int scale_factor = dst->op_params[0];
  10778. // TODO: optimize
  10779. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10780. const int64_t i03 = i3;
  10781. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10782. const int64_t i02 = i2;
  10783. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10784. const int64_t i01 = i1 / scale_factor;
  10785. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10786. const int64_t i00 = i0 / scale_factor;
  10787. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10788. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10789. *y = *x;
  10790. }
  10791. }
  10792. }
  10793. }
  10794. }
  10795. static void ggml_compute_forward_upscale(
  10796. const struct ggml_compute_params * params,
  10797. const struct ggml_tensor * src0,
  10798. struct ggml_tensor * dst) {
  10799. switch (src0->type) {
  10800. case GGML_TYPE_F32:
  10801. {
  10802. ggml_compute_forward_upscale_f32(params, src0, dst);
  10803. } break;
  10804. default:
  10805. {
  10806. GGML_ASSERT(false);
  10807. } break;
  10808. }
  10809. }
  10810. // ggml_compute_forward_pad
  10811. static void ggml_compute_forward_pad_f32(
  10812. const struct ggml_compute_params * params,
  10813. const struct ggml_tensor * src0,
  10814. struct ggml_tensor * dst) {
  10815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10816. return;
  10817. }
  10818. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10819. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10820. const int ith = params->ith;
  10821. const int nth = params->nth;
  10822. GGML_TENSOR_UNARY_OP_LOCALS
  10823. float * dst_ptr = (float *) dst->data;
  10824. // TODO: optimize
  10825. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10826. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10827. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10828. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10829. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10830. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10831. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10832. dst_ptr[dst_idx] = *src_ptr;
  10833. } else {
  10834. dst_ptr[dst_idx] = 0;
  10835. }
  10836. }
  10837. }
  10838. }
  10839. }
  10840. }
  10841. static void ggml_compute_forward_pad(
  10842. const struct ggml_compute_params * params,
  10843. const struct ggml_tensor * src0,
  10844. struct ggml_tensor * dst) {
  10845. switch (src0->type) {
  10846. case GGML_TYPE_F32:
  10847. {
  10848. ggml_compute_forward_pad_f32(params, src0, dst);
  10849. } break;
  10850. default:
  10851. {
  10852. GGML_ASSERT(false);
  10853. } break;
  10854. }
  10855. }
  10856. // ggml_compute_forward_argsort
  10857. static void ggml_compute_forward_argsort_f32(
  10858. const struct ggml_compute_params * params,
  10859. const struct ggml_tensor * src0,
  10860. struct ggml_tensor * dst) {
  10861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10862. return;
  10863. }
  10864. GGML_TENSOR_UNARY_OP_LOCALS
  10865. GGML_ASSERT(nb0 == sizeof(float));
  10866. const int ith = params->ith;
  10867. const int nth = params->nth;
  10868. const int64_t nr = ggml_nrows(src0);
  10869. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10870. for (int64_t i = ith; i < nr; i += nth) {
  10871. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10872. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10873. for (int64_t j = 0; j < ne0; j++) {
  10874. dst_data[j] = j;
  10875. }
  10876. // C doesn't have a functional sort, so we do a bubble sort instead
  10877. for (int64_t j = 0; j < ne0; j++) {
  10878. for (int64_t k = j + 1; k < ne0; k++) {
  10879. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10880. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10881. int32_t tmp = dst_data[j];
  10882. dst_data[j] = dst_data[k];
  10883. dst_data[k] = tmp;
  10884. }
  10885. }
  10886. }
  10887. }
  10888. }
  10889. static void ggml_compute_forward_argsort(
  10890. const struct ggml_compute_params * params,
  10891. const struct ggml_tensor * src0,
  10892. struct ggml_tensor * dst) {
  10893. switch (src0->type) {
  10894. case GGML_TYPE_F32:
  10895. {
  10896. ggml_compute_forward_argsort_f32(params, src0, dst);
  10897. } break;
  10898. default:
  10899. {
  10900. GGML_ASSERT(false);
  10901. } break;
  10902. }
  10903. }
  10904. // ggml_compute_forward_flash_attn
  10905. static void ggml_compute_forward_flash_attn_f32(
  10906. const struct ggml_compute_params * params,
  10907. const struct ggml_tensor * q,
  10908. const struct ggml_tensor * k,
  10909. const struct ggml_tensor * v,
  10910. const bool masked,
  10911. struct ggml_tensor * dst) {
  10912. int64_t t0 = ggml_perf_time_us();
  10913. UNUSED(t0);
  10914. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10915. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10916. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10917. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10918. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10919. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10920. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10921. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10922. const int ith = params->ith;
  10923. const int nth = params->nth;
  10924. const int64_t D = neq0;
  10925. const int64_t N = neq1;
  10926. const int64_t P = nek1 - N;
  10927. const int64_t M = P + N;
  10928. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10929. GGML_ASSERT(ne0 == D);
  10930. GGML_ASSERT(ne1 == N);
  10931. GGML_ASSERT(P >= 0);
  10932. GGML_ASSERT(nbq0 == sizeof(float));
  10933. GGML_ASSERT(nbk0 == sizeof(float));
  10934. GGML_ASSERT(nbv0 == sizeof(float));
  10935. GGML_ASSERT(neq0 == D);
  10936. GGML_ASSERT(nek0 == D);
  10937. GGML_ASSERT(nev1 == D);
  10938. GGML_ASSERT(neq1 == N);
  10939. GGML_ASSERT(nek1 == N + P);
  10940. GGML_ASSERT(nev1 == D);
  10941. // dst cannot be transposed or permuted
  10942. GGML_ASSERT(nb0 == sizeof(float));
  10943. GGML_ASSERT(nb0 <= nb1);
  10944. GGML_ASSERT(nb1 <= nb2);
  10945. GGML_ASSERT(nb2 <= nb3);
  10946. if (params->type == GGML_TASK_INIT) {
  10947. return;
  10948. }
  10949. if (params->type == GGML_TASK_FINALIZE) {
  10950. return;
  10951. }
  10952. // parallelize by q rows using ggml_vec_dot_f32
  10953. // total rows in q
  10954. const int nr = neq1*neq2*neq3;
  10955. // rows per thread
  10956. const int dr = (nr + nth - 1)/nth;
  10957. // row range for this thread
  10958. const int ir0 = dr*ith;
  10959. const int ir1 = MIN(ir0 + dr, nr);
  10960. const float scale = 1.0f/sqrtf(D);
  10961. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10962. for (int ir = ir0; ir < ir1; ++ir) {
  10963. // q indices
  10964. const int iq3 = ir/(neq2*neq1);
  10965. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10966. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10967. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10968. for (int i = M; i < Mup; ++i) {
  10969. S[i] = -INFINITY;
  10970. }
  10971. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10972. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10973. // k indices
  10974. const int ik3 = iq3;
  10975. const int ik2 = iq2 % nek2;
  10976. const int ik1 = ic;
  10977. // S indices
  10978. const int i1 = ik1;
  10979. ggml_vec_dot_f32(neq0,
  10980. S + i1, 0,
  10981. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  10982. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  10983. }
  10984. // scale
  10985. ggml_vec_scale_f32(masked_begin, S, scale);
  10986. for (int64_t i = masked_begin; i < M; i++) {
  10987. S[i] = -INFINITY;
  10988. }
  10989. // softmax
  10990. // exclude known -INF S[..] values from max and loop
  10991. // dont forget to set their SW values to zero
  10992. {
  10993. float max = -INFINITY;
  10994. ggml_vec_max_f32(masked_begin, &max, S);
  10995. ggml_float sum = 0.0;
  10996. {
  10997. #ifdef GGML_SOFT_MAX_ACCELERATE
  10998. max = -max;
  10999. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11000. vvexpf(S, S, &Mup);
  11001. ggml_vec_sum_f32(Mup, &sum, S);
  11002. #else
  11003. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11004. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11005. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11006. if (i >= masked_begin) {
  11007. break;
  11008. }
  11009. float * SS = S + i;
  11010. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11011. if (i + j >= masked_begin) {
  11012. break;
  11013. } else if (SS[j] == -INFINITY) {
  11014. SS[j] = 0.0f;
  11015. } else {
  11016. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11017. const float val = expf(SS[j] - max);
  11018. #else
  11019. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11020. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11021. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11022. #endif
  11023. sump[j] += (ggml_float)val;
  11024. SS[j] = val;
  11025. }
  11026. }
  11027. }
  11028. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11029. sum += sump[i];
  11030. }
  11031. #endif
  11032. }
  11033. assert(sum > 0.0);
  11034. sum = 1.0/sum;
  11035. ggml_vec_scale_f32(masked_begin, S, sum);
  11036. #ifndef NDEBUG
  11037. for (int i = 0; i < masked_begin; ++i) {
  11038. assert(!isnan(S[i]));
  11039. assert(!isinf(S[i]));
  11040. }
  11041. #endif
  11042. }
  11043. for (int64_t ic = 0; ic < nev1; ++ic) {
  11044. // dst indices
  11045. const int i1 = iq1;
  11046. const int i2 = iq2;
  11047. const int i3 = iq3;
  11048. // v indices
  11049. const int iv2 = iq2 % nev2;
  11050. const int iv3 = iq3;
  11051. ggml_vec_dot_f32(masked_begin,
  11052. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11053. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11054. S, 0, 1);
  11055. }
  11056. }
  11057. }
  11058. static void ggml_compute_forward_flash_attn_f16(
  11059. const struct ggml_compute_params * params,
  11060. const struct ggml_tensor * q,
  11061. const struct ggml_tensor * k,
  11062. const struct ggml_tensor * v,
  11063. const bool masked,
  11064. struct ggml_tensor * dst) {
  11065. int64_t t0 = ggml_perf_time_us();
  11066. UNUSED(t0);
  11067. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11068. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11069. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11070. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11071. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11072. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11073. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11074. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11075. const int ith = params->ith;
  11076. const int nth = params->nth;
  11077. const int64_t D = neq0;
  11078. const int64_t N = neq1;
  11079. const int64_t P = nek1 - N;
  11080. const int64_t M = P + N;
  11081. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11082. GGML_ASSERT(ne0 == D);
  11083. GGML_ASSERT(ne1 == N);
  11084. GGML_ASSERT(P >= 0);
  11085. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11086. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11087. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11088. GGML_ASSERT(neq0 == D);
  11089. GGML_ASSERT(nek0 == D);
  11090. GGML_ASSERT(nev1 == D);
  11091. GGML_ASSERT(neq1 == N);
  11092. GGML_ASSERT(nek1 == N + P);
  11093. GGML_ASSERT(nev1 == D);
  11094. // dst cannot be transposed or permuted
  11095. GGML_ASSERT(nb0 == sizeof(float));
  11096. GGML_ASSERT(nb0 <= nb1);
  11097. GGML_ASSERT(nb1 <= nb2);
  11098. GGML_ASSERT(nb2 <= nb3);
  11099. if (params->type == GGML_TASK_INIT) {
  11100. return;
  11101. }
  11102. if (params->type == GGML_TASK_FINALIZE) {
  11103. return;
  11104. }
  11105. // parallelize by q rows using ggml_vec_dot_f32
  11106. // total rows in q
  11107. const int nr = neq1*neq2*neq3;
  11108. // rows per thread
  11109. const int dr = (nr + nth - 1)/nth;
  11110. // row range for this thread
  11111. const int ir0 = dr*ith;
  11112. const int ir1 = MIN(ir0 + dr, nr);
  11113. const float scale = 1.0f/sqrtf(D);
  11114. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11115. for (int ir = ir0; ir < ir1; ++ir) {
  11116. // q indices
  11117. const int iq3 = ir/(neq2*neq1);
  11118. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11119. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11120. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11121. for (int i = M; i < Mup; ++i) {
  11122. S[i] = -INFINITY;
  11123. }
  11124. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11125. for (int64_t ic = 0; ic < nek1; ++ic) {
  11126. // k indices
  11127. const int ik3 = iq3;
  11128. const int ik2 = iq2 % nek2;
  11129. const int ik1 = ic;
  11130. // S indices
  11131. const int i1 = ik1;
  11132. ggml_vec_dot_f16(neq0,
  11133. S + i1, 0,
  11134. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11135. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11136. }
  11137. } else {
  11138. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11139. // k indices
  11140. const int ik3 = iq3;
  11141. const int ik2 = iq2 % nek2;
  11142. const int ik1 = ic;
  11143. // S indices
  11144. const int i1 = ik1;
  11145. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11146. S + i1,
  11147. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11148. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11149. }
  11150. }
  11151. // scale
  11152. ggml_vec_scale_f32(nek1, S, scale);
  11153. if (masked) {
  11154. for (int64_t i = P; i < M; i++) {
  11155. if (i > P + iq1) {
  11156. S[i] = -INFINITY;
  11157. }
  11158. }
  11159. }
  11160. // softmax
  11161. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11162. // dont forget to set their S values to zero
  11163. {
  11164. float max = -INFINITY;
  11165. ggml_vec_max_f32(M, &max, S);
  11166. ggml_float sum = 0.0;
  11167. {
  11168. #ifdef GGML_SOFT_MAX_ACCELERATE
  11169. max = -max;
  11170. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11171. vvexpf(S, S, &Mup);
  11172. ggml_vec_sum_f32(Mup, &sum, S);
  11173. #else
  11174. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11175. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11176. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11177. float * SS = S + i;
  11178. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11179. if (SS[j] == -INFINITY) {
  11180. SS[j] = 0.0f;
  11181. } else {
  11182. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11183. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11184. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11185. sump[j] += (ggml_float)val;
  11186. SS[j] = val;
  11187. }
  11188. }
  11189. }
  11190. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11191. sum += sump[i];
  11192. }
  11193. #endif
  11194. }
  11195. assert(sum > 0.0);
  11196. sum = 1.0/sum;
  11197. ggml_vec_scale_f32(M, S, sum);
  11198. #ifndef NDEBUG
  11199. for (int i = 0; i < M; ++i) {
  11200. assert(!isnan(S[i]));
  11201. assert(!isinf(S[i]));
  11202. }
  11203. #endif
  11204. }
  11205. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11206. for (int64_t i = 0; i < M; i++) {
  11207. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11208. }
  11209. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11210. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11211. for (int64_t ic = 0; ic < nev1; ++ic) {
  11212. // dst indices
  11213. const int i1 = iq1;
  11214. const int i2 = iq2;
  11215. const int i3 = iq3;
  11216. // v indices
  11217. const int iv2 = iq2 % nev2;
  11218. const int iv3 = iq3;
  11219. ggml_vec_dot_f16(nev0,
  11220. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11221. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11222. S16, 0, 1);
  11223. }
  11224. } else {
  11225. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11226. // dst indices
  11227. const int i1 = iq1;
  11228. const int i2 = iq2;
  11229. const int i3 = iq3;
  11230. // v indices
  11231. const int iv2 = iq2 % nev2;
  11232. const int iv3 = iq3;
  11233. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11234. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11235. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11236. S16);
  11237. }
  11238. }
  11239. }
  11240. }
  11241. static void ggml_compute_forward_flash_attn(
  11242. const struct ggml_compute_params * params,
  11243. const struct ggml_tensor * q,
  11244. const struct ggml_tensor * k,
  11245. const struct ggml_tensor * v,
  11246. const bool masked,
  11247. struct ggml_tensor * dst) {
  11248. switch (q->type) {
  11249. case GGML_TYPE_F16:
  11250. {
  11251. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11252. } break;
  11253. case GGML_TYPE_F32:
  11254. {
  11255. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11256. } break;
  11257. default:
  11258. {
  11259. GGML_ASSERT(false);
  11260. } break;
  11261. }
  11262. }
  11263. // ggml_compute_forward_flash_ff
  11264. static void ggml_compute_forward_flash_ff_f16(
  11265. const struct ggml_compute_params * params,
  11266. const struct ggml_tensor * a, // F16
  11267. const struct ggml_tensor * b0, // F16 fc_w
  11268. const struct ggml_tensor * b1, // F32 fc_b
  11269. const struct ggml_tensor * c0, // F16 proj_w
  11270. const struct ggml_tensor * c1, // F32 proj_b
  11271. struct ggml_tensor * dst) {
  11272. int64_t t0 = ggml_perf_time_us();
  11273. UNUSED(t0);
  11274. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11275. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11276. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11277. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11278. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11279. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11280. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11281. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11282. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11283. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11285. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11286. const int ith = params->ith;
  11287. const int nth = params->nth;
  11288. const int64_t D = nea0;
  11289. //const int64_t N = nea1;
  11290. const int64_t M = neb01;
  11291. GGML_ASSERT(ne0 == nea0);
  11292. GGML_ASSERT(ne1 == nea1);
  11293. GGML_ASSERT(ne2 == nea2);
  11294. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11295. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11296. GGML_ASSERT(nbb10 == sizeof(float));
  11297. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11298. GGML_ASSERT(nbc10 == sizeof(float));
  11299. GGML_ASSERT(neb00 == D);
  11300. GGML_ASSERT(neb01 == M);
  11301. GGML_ASSERT(neb10 == M);
  11302. GGML_ASSERT(neb11 == 1);
  11303. GGML_ASSERT(nec00 == M);
  11304. GGML_ASSERT(nec01 == D);
  11305. GGML_ASSERT(nec10 == D);
  11306. GGML_ASSERT(nec11 == 1);
  11307. // dst cannot be transposed or permuted
  11308. GGML_ASSERT(nb0 == sizeof(float));
  11309. GGML_ASSERT(nb0 <= nb1);
  11310. GGML_ASSERT(nb1 <= nb2);
  11311. GGML_ASSERT(nb2 <= nb3);
  11312. if (params->type == GGML_TASK_INIT) {
  11313. return;
  11314. }
  11315. if (params->type == GGML_TASK_FINALIZE) {
  11316. return;
  11317. }
  11318. // parallelize by a rows using ggml_vec_dot_f32
  11319. // total rows in a
  11320. const int nr = nea1*nea2*nea3;
  11321. // rows per thread
  11322. const int dr = (nr + nth - 1)/nth;
  11323. // row range for this thread
  11324. const int ir0 = dr*ith;
  11325. const int ir1 = MIN(ir0 + dr, nr);
  11326. for (int ir = ir0; ir < ir1; ++ir) {
  11327. // a indices
  11328. const int ia3 = ir/(nea2*nea1);
  11329. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11330. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11331. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11332. for (int64_t ic = 0; ic < neb01; ++ic) {
  11333. // b0 indices
  11334. const int ib03 = ia3;
  11335. const int ib02 = ia2;
  11336. const int ib01 = ic;
  11337. // S indices
  11338. const int i1 = ib01;
  11339. ggml_vec_dot_f16(nea0,
  11340. S + i1, 0,
  11341. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11342. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11343. }
  11344. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11345. //ggml_vec_gelu_f32(neb01, S, S);
  11346. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11347. for (int64_t i = 0; i < M; i++) {
  11348. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11349. }
  11350. ggml_vec_gelu_f16(neb01, S16, S16);
  11351. {
  11352. // dst indices
  11353. const int i1 = ia1;
  11354. const int i2 = ia2;
  11355. const int i3 = ia3;
  11356. for (int64_t ic = 0; ic < nec01; ++ic) {
  11357. ggml_vec_dot_f16(neb01,
  11358. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11359. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11360. S16, 0, 1);
  11361. }
  11362. ggml_vec_add_f32(nec01,
  11363. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11364. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11365. (float *) c1->data);
  11366. }
  11367. }
  11368. }
  11369. static void ggml_compute_forward_flash_ff(
  11370. const struct ggml_compute_params * params,
  11371. const struct ggml_tensor * a,
  11372. const struct ggml_tensor * b0,
  11373. const struct ggml_tensor * b1,
  11374. const struct ggml_tensor * c0,
  11375. const struct ggml_tensor * c1,
  11376. struct ggml_tensor * dst) {
  11377. switch (b0->type) {
  11378. case GGML_TYPE_F16:
  11379. {
  11380. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11381. } break;
  11382. case GGML_TYPE_F32:
  11383. {
  11384. GGML_ASSERT(false); // TODO
  11385. } break;
  11386. default:
  11387. {
  11388. GGML_ASSERT(false);
  11389. } break;
  11390. }
  11391. }
  11392. // ggml_compute_forward_flash_attn_back
  11393. static void ggml_compute_forward_flash_attn_back_f32(
  11394. const struct ggml_compute_params * params,
  11395. const struct ggml_tensor * q,
  11396. const struct ggml_tensor * k,
  11397. const struct ggml_tensor * v,
  11398. const struct ggml_tensor * d,
  11399. const bool masked,
  11400. struct ggml_tensor * dst) {
  11401. int64_t t0 = ggml_perf_time_us();
  11402. UNUSED(t0);
  11403. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11404. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11405. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11406. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11407. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11408. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11409. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11410. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11411. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11412. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11413. const int ith = params->ith;
  11414. const int nth = params->nth;
  11415. const int64_t D = neq0;
  11416. const int64_t N = neq1;
  11417. const int64_t P = nek1 - N;
  11418. const int64_t M = P + N;
  11419. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11420. const int mxDM = MAX(D, Mup);
  11421. // GGML_ASSERT(ne0 == D);
  11422. // GGML_ASSERT(ne1 == N);
  11423. GGML_ASSERT(P >= 0);
  11424. GGML_ASSERT(nbq0 == sizeof(float));
  11425. GGML_ASSERT(nbk0 == sizeof(float));
  11426. GGML_ASSERT(nbv0 == sizeof(float));
  11427. GGML_ASSERT(neq0 == D);
  11428. GGML_ASSERT(nek0 == D);
  11429. GGML_ASSERT(nev1 == D);
  11430. GGML_ASSERT(ned0 == D);
  11431. GGML_ASSERT(neq1 == N);
  11432. GGML_ASSERT(nek1 == N + P);
  11433. GGML_ASSERT(nev1 == D);
  11434. GGML_ASSERT(ned1 == N);
  11435. // dst cannot be transposed or permuted
  11436. GGML_ASSERT(nb0 == sizeof(float));
  11437. GGML_ASSERT(nb0 <= nb1);
  11438. GGML_ASSERT(nb1 <= nb2);
  11439. GGML_ASSERT(nb2 <= nb3);
  11440. if (params->type == GGML_TASK_INIT) {
  11441. if (ith == 0) {
  11442. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11443. }
  11444. return;
  11445. }
  11446. if (params->type == GGML_TASK_FINALIZE) {
  11447. return;
  11448. }
  11449. const int64_t elem_q = ggml_nelements(q);
  11450. const int64_t elem_k = ggml_nelements(k);
  11451. enum ggml_type result_type = dst->type;
  11452. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11453. const size_t tsize = ggml_type_size(result_type);
  11454. const size_t offs_q = 0;
  11455. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11456. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11457. void * grad_q = (char *) dst->data;
  11458. void * grad_k = (char *) dst->data + offs_k;
  11459. void * grad_v = (char *) dst->data + offs_v;
  11460. const size_t nbgq1 = nb0*neq0;
  11461. const size_t nbgq2 = nb0*neq0*neq1;
  11462. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11463. const size_t nbgk1 = nb0*nek0;
  11464. const size_t nbgk2 = nb0*nek0*nek1;
  11465. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11466. const size_t nbgv1 = nb0*nev0;
  11467. const size_t nbgv2 = nb0*nev0*nev1;
  11468. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11469. // parallelize by k rows using ggml_vec_dot_f32
  11470. // total rows in k
  11471. const int nr = nek2*nek3;
  11472. // rows per thread
  11473. const int dr = (nr + nth - 1)/nth;
  11474. // row range for this thread
  11475. const int ir0 = dr*ith;
  11476. const int ir1 = MIN(ir0 + dr, nr);
  11477. const float scale = 1.0f/sqrtf(D);
  11478. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11479. // how often k2 (and v2) is repeated in q2
  11480. int nrep = neq2/nek2;
  11481. for (int ir = ir0; ir < ir1; ++ir) {
  11482. // q indices
  11483. const int ik3 = ir/(nek2);
  11484. const int ik2 = ir - ik3*nek2;
  11485. const int iq3 = ik3;
  11486. const int id3 = ik3;
  11487. const int iv3 = ik3;
  11488. const int iv2 = ik2;
  11489. for (int irep = 0; irep < nrep; ++irep) {
  11490. const int iq2 = ik2 + irep*nek2;
  11491. const int id2 = iq2;
  11492. // (ik2 + irep*nek2) % nek2 == ik2
  11493. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11494. const int id1 = iq1;
  11495. // not sure about CACHE_LINE_SIZE_F32..
  11496. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11497. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11498. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11499. for (int i = M; i < Mup; ++i) {
  11500. S[i] = -INFINITY;
  11501. }
  11502. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11503. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11504. // k indices
  11505. const int ik1 = ic;
  11506. // S indices
  11507. const int i1 = ik1;
  11508. ggml_vec_dot_f32(neq0,
  11509. S + i1, 0,
  11510. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11511. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11512. }
  11513. // scale
  11514. ggml_vec_scale_f32(masked_begin, S, scale);
  11515. for (int64_t i = masked_begin; i < M; i++) {
  11516. S[i] = -INFINITY;
  11517. }
  11518. // softmax
  11519. // exclude known -INF S[..] values from max and loop
  11520. // dont forget to set their SM values to zero
  11521. {
  11522. float max = -INFINITY;
  11523. ggml_vec_max_f32(masked_begin, &max, S);
  11524. ggml_float sum = 0.0;
  11525. {
  11526. #ifdef GGML_SOFT_MAX_ACCELERATE
  11527. max = -max;
  11528. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11529. vvexpf(SM, SM, &Mup);
  11530. ggml_vec_sum_f32(Mup, &sum, SM);
  11531. #else
  11532. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11533. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11534. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11535. if (i >= masked_begin) {
  11536. break;
  11537. }
  11538. float * SR = S + i;
  11539. float * SW = SM + i;
  11540. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11541. if (i + j >= masked_begin) {
  11542. break;
  11543. } else if (SR[j] == -INFINITY) {
  11544. SW[j] = 0.0f;
  11545. } else {
  11546. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11547. const float val = expf(SR[j] - max);
  11548. #else
  11549. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11550. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11551. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11552. #endif
  11553. sump[j] += (ggml_float)val;
  11554. SW[j] = val;
  11555. }
  11556. }
  11557. }
  11558. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11559. sum += sump[i];
  11560. }
  11561. #endif
  11562. }
  11563. assert(sum > 0.0);
  11564. sum = 1.0/sum;
  11565. ggml_vec_scale_f32(masked_begin, SM, sum);
  11566. }
  11567. // step-by-step explanation
  11568. {
  11569. // forward-process shape grads from backward process
  11570. // parallel_for ik2,ik3:
  11571. // for irep:
  11572. // iq2 = ik2 + irep*nek2
  11573. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11574. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11575. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11576. // for iq1:
  11577. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11578. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11579. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11580. // S0 = -Inf [D,1,1,1]
  11581. // ~S1[i] = dot(kcur[:D,i], qcur)
  11582. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11583. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11584. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11585. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11586. // ~S5[i] = dot(vcur[:,i], S4)
  11587. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11588. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11589. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11590. // dst backward-/ grad[dst] = d
  11591. //
  11592. // output gradients with their dependencies:
  11593. //
  11594. // grad[kcur] = grad[S1].T @ qcur
  11595. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11596. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11597. // grad[S4] = grad[S5] @ vcur
  11598. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11599. // grad[qcur] = grad[S1] @ kcur
  11600. // grad[vcur] = grad[S5].T @ S4
  11601. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11602. //
  11603. // in post-order:
  11604. //
  11605. // S1 = qcur @ kcur.T
  11606. // S2 = S1 * scale
  11607. // S3 = diag_mask_inf(S2, P)
  11608. // S4 = softmax(S3)
  11609. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11610. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11611. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11612. // grad[qcur] = grad[S1] @ kcur
  11613. // grad[kcur] = grad[S1].T @ qcur
  11614. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11615. //
  11616. // using less variables (SM=S4):
  11617. //
  11618. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11619. // SM = softmax(S)
  11620. // S = d[:D,iq1,iq2,iq3] @ vcur
  11621. // dot_SM_gradSM = dot(SM, S)
  11622. // S = SM * (S - dot(SM, S))
  11623. // S = diag_mask_zero(S, P) * scale
  11624. //
  11625. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11626. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11627. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11628. }
  11629. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11630. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11631. // for ic:
  11632. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11633. // exclude known future zero S[..] values from operation
  11634. ggml_vec_set_f32(masked_begin, S, 0);
  11635. for (int64_t ic = 0; ic < D; ++ic) {
  11636. ggml_vec_mad_f32(masked_begin,
  11637. S,
  11638. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11639. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11640. }
  11641. // S = SM * (S - dot(SM, S))
  11642. float dot_SM_gradSM = 0;
  11643. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11644. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11645. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11646. // S = diag_mask_zero(S, P) * scale
  11647. // already done by above ggml_vec_set_f32
  11648. // exclude known zero S[..] values from operation
  11649. ggml_vec_scale_f32(masked_begin, S, scale);
  11650. // S shape [M,1]
  11651. // SM shape [M,1]
  11652. // kcur shape [D,M]
  11653. // qcur shape [D,1]
  11654. // vcur shape [M,D]
  11655. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11656. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11657. // for ic:
  11658. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11659. // exclude known zero S[..] values from loop
  11660. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11661. ggml_vec_mad_f32(D,
  11662. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11663. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11664. S[ic]);
  11665. }
  11666. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11667. // for ic:
  11668. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11669. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11670. // exclude known zero S[..] values from loop
  11671. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11672. ggml_vec_mad_f32(D,
  11673. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11674. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11675. S[ic]);
  11676. }
  11677. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11678. // for ic:
  11679. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11680. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11681. // exclude known zero SM[..] values from mad
  11682. for (int64_t ic = 0; ic < D; ++ic) {
  11683. ggml_vec_mad_f32(masked_begin,
  11684. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11685. SM,
  11686. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11687. }
  11688. }
  11689. }
  11690. }
  11691. }
  11692. static void ggml_compute_forward_flash_attn_back(
  11693. const struct ggml_compute_params * params,
  11694. const struct ggml_tensor * q,
  11695. const struct ggml_tensor * k,
  11696. const struct ggml_tensor * v,
  11697. const struct ggml_tensor * d,
  11698. const bool masked,
  11699. struct ggml_tensor * dst) {
  11700. switch (q->type) {
  11701. case GGML_TYPE_F32:
  11702. {
  11703. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11704. } break;
  11705. default:
  11706. {
  11707. GGML_ASSERT(false);
  11708. } break;
  11709. }
  11710. }
  11711. // ggml_compute_forward_win_part
  11712. static void ggml_compute_forward_win_part_f32(
  11713. const struct ggml_compute_params * params,
  11714. const struct ggml_tensor * src0,
  11715. struct ggml_tensor * dst) {
  11716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11717. return;
  11718. }
  11719. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11720. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11721. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11722. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11723. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11724. assert(ne00 == ne0);
  11725. assert(ne3 == nep0*nep1);
  11726. // TODO: optimize / multi-thread
  11727. for (int py = 0; py < nep1; ++py) {
  11728. for (int px = 0; px < nep0; ++px) {
  11729. const int64_t i3 = py*nep0 + px;
  11730. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11731. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11732. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11733. const int64_t i02 = py*w + i2;
  11734. const int64_t i01 = px*w + i1;
  11735. const int64_t i00 = i0;
  11736. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11737. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11738. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11739. ((float *) dst->data)[i] = 0.0f;
  11740. } else {
  11741. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11742. }
  11743. }
  11744. }
  11745. }
  11746. }
  11747. }
  11748. }
  11749. static void ggml_compute_forward_win_part(
  11750. const struct ggml_compute_params * params,
  11751. const struct ggml_tensor * src0,
  11752. struct ggml_tensor * dst) {
  11753. switch (src0->type) {
  11754. case GGML_TYPE_F32:
  11755. {
  11756. ggml_compute_forward_win_part_f32(params, src0, dst);
  11757. } break;
  11758. default:
  11759. {
  11760. GGML_ASSERT(false);
  11761. } break;
  11762. }
  11763. }
  11764. // ggml_compute_forward_win_unpart
  11765. static void ggml_compute_forward_win_unpart_f32(
  11766. const struct ggml_compute_params * params,
  11767. const struct ggml_tensor * src0,
  11768. struct ggml_tensor * dst) {
  11769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11770. return;
  11771. }
  11772. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11773. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11774. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11775. // padding
  11776. const int px = (w - ne1%w)%w;
  11777. //const int py = (w - ne2%w)%w;
  11778. const int npx = (px + ne1)/w;
  11779. //const int npy = (py + ne2)/w;
  11780. assert(ne0 == ne00);
  11781. // TODO: optimize / multi-thread
  11782. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11783. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11784. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11785. const int ip2 = i2/w;
  11786. const int ip1 = i1/w;
  11787. const int64_t i02 = i2%w;
  11788. const int64_t i01 = i1%w;
  11789. const int64_t i00 = i0;
  11790. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11791. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11792. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11793. }
  11794. }
  11795. }
  11796. }
  11797. static void ggml_compute_forward_win_unpart(
  11798. const struct ggml_compute_params * params,
  11799. const struct ggml_tensor * src0,
  11800. struct ggml_tensor * dst) {
  11801. switch (src0->type) {
  11802. case GGML_TYPE_F32:
  11803. {
  11804. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11805. } break;
  11806. default:
  11807. {
  11808. GGML_ASSERT(false);
  11809. } break;
  11810. }
  11811. }
  11812. //gmml_compute_forward_unary
  11813. static void ggml_compute_forward_unary(
  11814. const struct ggml_compute_params * params,
  11815. const struct ggml_tensor * src0,
  11816. struct ggml_tensor * dst) {
  11817. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11818. switch (op) {
  11819. case GGML_UNARY_OP_ABS:
  11820. {
  11821. ggml_compute_forward_abs(params, src0, dst);
  11822. } break;
  11823. case GGML_UNARY_OP_SGN:
  11824. {
  11825. ggml_compute_forward_sgn(params, src0, dst);
  11826. } break;
  11827. case GGML_UNARY_OP_NEG:
  11828. {
  11829. ggml_compute_forward_neg(params, src0, dst);
  11830. } break;
  11831. case GGML_UNARY_OP_STEP:
  11832. {
  11833. ggml_compute_forward_step(params, src0, dst);
  11834. } break;
  11835. case GGML_UNARY_OP_TANH:
  11836. {
  11837. ggml_compute_forward_tanh(params, src0, dst);
  11838. } break;
  11839. case GGML_UNARY_OP_ELU:
  11840. {
  11841. ggml_compute_forward_elu(params, src0, dst);
  11842. } break;
  11843. case GGML_UNARY_OP_RELU:
  11844. {
  11845. ggml_compute_forward_relu(params, src0, dst);
  11846. } break;
  11847. case GGML_UNARY_OP_GELU:
  11848. {
  11849. ggml_compute_forward_gelu(params, src0, dst);
  11850. } break;
  11851. case GGML_UNARY_OP_GELU_QUICK:
  11852. {
  11853. ggml_compute_forward_gelu_quick(params, src0, dst);
  11854. } break;
  11855. case GGML_UNARY_OP_SILU:
  11856. {
  11857. ggml_compute_forward_silu(params, src0, dst);
  11858. } break;
  11859. case GGML_UNARY_OP_HARDSWISH:
  11860. {
  11861. ggml_compute_forward_hardswish(params, src0, dst);
  11862. } break;
  11863. case GGML_UNARY_OP_HARDSIGMOID:
  11864. {
  11865. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11866. } break;
  11867. default:
  11868. {
  11869. GGML_ASSERT(false);
  11870. } break;
  11871. }
  11872. }
  11873. // ggml_compute_forward_get_rel_pos
  11874. static void ggml_compute_forward_get_rel_pos_f16(
  11875. const struct ggml_compute_params * params,
  11876. const struct ggml_tensor * src0,
  11877. struct ggml_tensor * dst) {
  11878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11879. return;
  11880. }
  11881. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11882. GGML_TENSOR_UNARY_OP_LOCALS
  11883. const int64_t w = ne1;
  11884. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11885. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11886. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11887. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11888. const int64_t pos = (w - i1 - 1) + i2;
  11889. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11890. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11891. }
  11892. }
  11893. }
  11894. }
  11895. static void ggml_compute_forward_get_rel_pos(
  11896. const struct ggml_compute_params * params,
  11897. const struct ggml_tensor * src0,
  11898. struct ggml_tensor * dst) {
  11899. switch (src0->type) {
  11900. case GGML_TYPE_F16:
  11901. {
  11902. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11903. } break;
  11904. default:
  11905. {
  11906. GGML_ASSERT(false);
  11907. } break;
  11908. }
  11909. }
  11910. // ggml_compute_forward_add_rel_pos
  11911. static void ggml_compute_forward_add_rel_pos_f32(
  11912. const struct ggml_compute_params * params,
  11913. const struct ggml_tensor * src0,
  11914. const struct ggml_tensor * src1,
  11915. const struct ggml_tensor * src2,
  11916. struct ggml_tensor * dst) {
  11917. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11918. if (!inplace && params->type == GGML_TASK_INIT) {
  11919. if (params->ith != 0) {
  11920. return;
  11921. }
  11922. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11923. return;
  11924. }
  11925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11926. return;
  11927. }
  11928. int64_t t0 = ggml_perf_time_us();
  11929. UNUSED(t0);
  11930. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11931. float * src1_data = (float *) src1->data;
  11932. float * src2_data = (float *) src2->data;
  11933. float * dst_data = (float *) dst->data;
  11934. const int64_t ne10 = src1->ne[0];
  11935. const int64_t ne11 = src1->ne[1];
  11936. const int64_t ne12 = src1->ne[2];
  11937. const int64_t ne13 = src1->ne[3];
  11938. const int ith = params->ith;
  11939. const int nth = params->nth;
  11940. // total patches in dst
  11941. const int np = ne13;
  11942. // patches per thread
  11943. const int dp = (np + nth - 1)/nth;
  11944. // patch range for this thread
  11945. const int ip0 = dp*ith;
  11946. const int ip1 = MIN(ip0 + dp, np);
  11947. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11948. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11949. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11950. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11951. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11952. const int64_t jp0 = jp1 + i10;
  11953. const float src1_e = src1_data[jp0];
  11954. const float src2_e = src2_data[jp0];
  11955. const int64_t jdh = jp0 * ne10;
  11956. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11957. for (int64_t j = 0; j < ne10; ++j) {
  11958. dst_data[jdh + j ] += src2_e;
  11959. dst_data[jdw + j*ne10] += src1_e;
  11960. }
  11961. }
  11962. }
  11963. }
  11964. }
  11965. }
  11966. static void ggml_compute_forward_add_rel_pos(
  11967. const struct ggml_compute_params * params,
  11968. const struct ggml_tensor * src0,
  11969. const struct ggml_tensor * src1,
  11970. const struct ggml_tensor * src2,
  11971. struct ggml_tensor * dst) {
  11972. switch (src0->type) {
  11973. case GGML_TYPE_F32:
  11974. {
  11975. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11976. } break;
  11977. default:
  11978. {
  11979. GGML_ASSERT(false);
  11980. } break;
  11981. }
  11982. }
  11983. // ggml_compute_forward_map_unary
  11984. static void ggml_compute_forward_map_unary_f32(
  11985. const struct ggml_compute_params * params,
  11986. const struct ggml_tensor * src0,
  11987. struct ggml_tensor * dst,
  11988. const ggml_unary_op_f32_t fun) {
  11989. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11990. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11991. return;
  11992. }
  11993. const int n = ggml_nrows(src0);
  11994. const int nc = src0->ne[0];
  11995. assert( dst->nb[0] == sizeof(float));
  11996. assert(src0->nb[0] == sizeof(float));
  11997. for (int i = 0; i < n; i++) {
  11998. fun(nc,
  11999. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12000. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12001. }
  12002. }
  12003. static void ggml_compute_forward_map_unary(
  12004. const struct ggml_compute_params * params,
  12005. const struct ggml_tensor * src0,
  12006. struct ggml_tensor * dst,
  12007. const ggml_unary_op_f32_t fun) {
  12008. switch (src0->type) {
  12009. case GGML_TYPE_F32:
  12010. {
  12011. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12012. } break;
  12013. default:
  12014. {
  12015. GGML_ASSERT(false);
  12016. } break;
  12017. }
  12018. }
  12019. // ggml_compute_forward_map_binary
  12020. static void ggml_compute_forward_map_binary_f32(
  12021. const struct ggml_compute_params * params,
  12022. const struct ggml_tensor * src0,
  12023. const struct ggml_tensor * src1,
  12024. struct ggml_tensor * dst,
  12025. const ggml_binary_op_f32_t fun) {
  12026. assert(params->ith == 0);
  12027. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12029. return;
  12030. }
  12031. const int n = ggml_nrows(src0);
  12032. const int nc = src0->ne[0];
  12033. assert( dst->nb[0] == sizeof(float));
  12034. assert(src0->nb[0] == sizeof(float));
  12035. assert(src1->nb[0] == sizeof(float));
  12036. for (int i = 0; i < n; i++) {
  12037. fun(nc,
  12038. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12039. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12040. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12041. }
  12042. }
  12043. static void ggml_compute_forward_map_binary(
  12044. const struct ggml_compute_params * params,
  12045. const struct ggml_tensor * src0,
  12046. const struct ggml_tensor * src1,
  12047. struct ggml_tensor * dst,
  12048. const ggml_binary_op_f32_t fun) {
  12049. switch (src0->type) {
  12050. case GGML_TYPE_F32:
  12051. {
  12052. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12053. } break;
  12054. default:
  12055. {
  12056. GGML_ASSERT(false);
  12057. } break;
  12058. }
  12059. }
  12060. // ggml_compute_forward_map_custom1
  12061. static void ggml_compute_forward_map_custom1_f32(
  12062. const struct ggml_compute_params * params,
  12063. const struct ggml_tensor * a,
  12064. struct ggml_tensor * dst,
  12065. const ggml_custom1_op_f32_t fun) {
  12066. assert(params->ith == 0);
  12067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12068. return;
  12069. }
  12070. fun(dst, a);
  12071. }
  12072. // ggml_compute_forward_map_custom2
  12073. static void ggml_compute_forward_map_custom2_f32(
  12074. const struct ggml_compute_params * params,
  12075. const struct ggml_tensor * a,
  12076. const struct ggml_tensor * b,
  12077. struct ggml_tensor * dst,
  12078. const ggml_custom2_op_f32_t fun) {
  12079. assert(params->ith == 0);
  12080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12081. return;
  12082. }
  12083. fun(dst, a, b);
  12084. }
  12085. // ggml_compute_forward_map_custom3
  12086. static void ggml_compute_forward_map_custom3_f32(
  12087. const struct ggml_compute_params * params,
  12088. const struct ggml_tensor * a,
  12089. const struct ggml_tensor * b,
  12090. const struct ggml_tensor * c,
  12091. struct ggml_tensor * dst,
  12092. const ggml_custom3_op_f32_t fun) {
  12093. assert(params->ith == 0);
  12094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12095. return;
  12096. }
  12097. fun(dst, a, b, c);
  12098. }
  12099. // ggml_compute_forward_map_custom1
  12100. static void ggml_compute_forward_map_custom1(
  12101. const struct ggml_compute_params * params,
  12102. const struct ggml_tensor * a,
  12103. struct ggml_tensor * dst) {
  12104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12105. return;
  12106. }
  12107. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12108. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12109. }
  12110. // ggml_compute_forward_map_custom2
  12111. static void ggml_compute_forward_map_custom2(
  12112. const struct ggml_compute_params * params,
  12113. const struct ggml_tensor * a,
  12114. const struct ggml_tensor * b,
  12115. struct ggml_tensor * dst) {
  12116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12117. return;
  12118. }
  12119. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12120. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12121. }
  12122. // ggml_compute_forward_map_custom3
  12123. static void ggml_compute_forward_map_custom3(
  12124. const struct ggml_compute_params * params,
  12125. const struct ggml_tensor * a,
  12126. const struct ggml_tensor * b,
  12127. const struct ggml_tensor * c,
  12128. struct ggml_tensor * dst) {
  12129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12130. return;
  12131. }
  12132. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12133. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12134. }
  12135. // ggml_compute_forward_cross_entropy_loss
  12136. static void ggml_compute_forward_cross_entropy_loss_f32(
  12137. const struct ggml_compute_params * params,
  12138. const struct ggml_tensor * src0,
  12139. const struct ggml_tensor * src1,
  12140. struct ggml_tensor * dst) {
  12141. GGML_ASSERT(ggml_is_contiguous(src0));
  12142. GGML_ASSERT(ggml_is_contiguous(src1));
  12143. GGML_ASSERT(ggml_is_scalar(dst));
  12144. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12145. const int ith = params->ith;
  12146. const int nth = params->nth;
  12147. float * sums = (float *) params->wdata;
  12148. // TODO: handle transposed/permuted matrices
  12149. const int nc = src0->ne[0];
  12150. const int nr = ggml_nrows(src0);
  12151. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12152. if (params->type == GGML_TASK_INIT) {
  12153. if (ith == 0) {
  12154. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12155. }
  12156. return;
  12157. }
  12158. if (params->type == GGML_TASK_FINALIZE) {
  12159. if (ith == 0) {
  12160. float * dp = (float *) dst->data;
  12161. ggml_vec_sum_f32(nth, dp, sums);
  12162. dp[0] *= -1.0f / (float) nr;
  12163. }
  12164. return;
  12165. }
  12166. const double eps = 1e-9;
  12167. // rows per thread
  12168. const int dr = (nr + nth - 1)/nth;
  12169. // row range for this thread
  12170. const int ir0 = dr*ith;
  12171. const int ir1 = MIN(ir0 + dr, nr);
  12172. for (int i1 = ir0; i1 < ir1; i1++) {
  12173. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12174. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12175. float * st = ((float *) params->wdata) + nth + ith*nc;
  12176. #ifndef NDEBUG
  12177. for (int i = 0; i < nc; ++i) {
  12178. //printf("p[%d] = %f\n", i, p[i]);
  12179. assert(!isnan(s0[i]));
  12180. assert(!isnan(s1[i]));
  12181. }
  12182. #endif
  12183. // soft_max
  12184. ggml_float sum = 0.0;
  12185. {
  12186. float max = -INFINITY;
  12187. ggml_vec_max_f32(nc, &max, s0);
  12188. uint16_t scvt; UNUSED(scvt);
  12189. for (int i = 0; i < nc; i++) {
  12190. if (s0[i] == -INFINITY) {
  12191. st[i] = 0.0f;
  12192. } else {
  12193. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12194. const float s = s0[i] - max;
  12195. const float val = expf(s);
  12196. #else
  12197. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12198. memcpy(&scvt, &s, sizeof(scvt));
  12199. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12200. #endif
  12201. sum += (ggml_float)val;
  12202. st[i] = val;
  12203. }
  12204. }
  12205. assert(sum > 0.0);
  12206. // sum = 1.0/sum;
  12207. }
  12208. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12209. sum = (1.0 - eps) / sum;
  12210. ggml_vec_scale_f32(nc, st, sum);
  12211. ggml_vec_add1_f32(nc, st, st, eps);
  12212. ggml_vec_log_f32(nc, st, st);
  12213. ggml_vec_mul_f32(nc, st, st, s1);
  12214. float st_sum = 0;
  12215. ggml_vec_sum_f32(nc, &st_sum, st);
  12216. sums[ith] += st_sum;
  12217. #ifndef NDEBUG
  12218. for (int i = 0; i < nc; ++i) {
  12219. assert(!isnan(st[i]));
  12220. assert(!isinf(st[i]));
  12221. }
  12222. #endif
  12223. }
  12224. }
  12225. static void ggml_compute_forward_cross_entropy_loss(
  12226. const struct ggml_compute_params * params,
  12227. const struct ggml_tensor * src0,
  12228. const struct ggml_tensor * src1,
  12229. struct ggml_tensor * dst) {
  12230. switch (src0->type) {
  12231. case GGML_TYPE_F32:
  12232. {
  12233. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12234. } break;
  12235. default:
  12236. {
  12237. GGML_ASSERT(false);
  12238. } break;
  12239. }
  12240. }
  12241. // ggml_compute_forward_cross_entropy_loss_back
  12242. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12243. const struct ggml_compute_params * params,
  12244. const struct ggml_tensor * src0,
  12245. const struct ggml_tensor * src1,
  12246. const struct ggml_tensor * opt0,
  12247. struct ggml_tensor * dst) {
  12248. GGML_ASSERT(ggml_is_contiguous(dst));
  12249. GGML_ASSERT(ggml_is_contiguous(src0));
  12250. GGML_ASSERT(ggml_is_contiguous(src1));
  12251. GGML_ASSERT(ggml_is_contiguous(opt0));
  12252. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12253. const int64_t ith = params->ith;
  12254. const int64_t nth = params->nth;
  12255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12256. return;
  12257. }
  12258. const double eps = 1e-9;
  12259. // TODO: handle transposed/permuted matrices
  12260. const int64_t nc = src0->ne[0];
  12261. const int64_t nr = ggml_nrows(src0);
  12262. // rows per thread
  12263. const int64_t dr = (nr + nth - 1)/nth;
  12264. // row range for this thread
  12265. const int64_t ir0 = dr*ith;
  12266. const int64_t ir1 = MIN(ir0 + dr, nr);
  12267. float * d = (float *) opt0->data;
  12268. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12269. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12270. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12271. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12272. #ifndef NDEBUG
  12273. for (int i = 0; i < nc; ++i) {
  12274. //printf("p[%d] = %f\n", i, p[i]);
  12275. assert(!isnan(s0[i]));
  12276. assert(!isnan(s1[i]));
  12277. }
  12278. #endif
  12279. // soft_max
  12280. ggml_float sum = 0.0;
  12281. {
  12282. float max = -INFINITY;
  12283. ggml_vec_max_f32(nc, &max, s0);
  12284. uint16_t scvt; UNUSED(scvt);
  12285. for (int i = 0; i < nc; i++) {
  12286. if (s0[i] == -INFINITY) {
  12287. ds0[i] = 0.0f;
  12288. } else {
  12289. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12290. const float s = s0[i] - max;
  12291. const float val = expf(s);
  12292. #else
  12293. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12294. memcpy(&scvt, &s, sizeof(scvt));
  12295. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12296. #endif
  12297. sum += (ggml_float)val;
  12298. ds0[i] = val;
  12299. }
  12300. }
  12301. assert(sum > 0.0);
  12302. sum = (1.0 - eps)/sum;
  12303. }
  12304. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12305. ggml_vec_scale_f32(nc, ds0, sum);
  12306. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12307. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12308. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12309. #ifndef NDEBUG
  12310. for (int i = 0; i < nc; ++i) {
  12311. assert(!isnan(ds0[i]));
  12312. assert(!isinf(ds0[i]));
  12313. }
  12314. #endif
  12315. }
  12316. }
  12317. static void ggml_compute_forward_cross_entropy_loss_back(
  12318. const struct ggml_compute_params * params,
  12319. const struct ggml_tensor * src0,
  12320. const struct ggml_tensor * src1,
  12321. const struct ggml_tensor * opt0,
  12322. struct ggml_tensor * dst) {
  12323. switch (src0->type) {
  12324. case GGML_TYPE_F32:
  12325. {
  12326. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12327. } break;
  12328. default:
  12329. {
  12330. GGML_ASSERT(false);
  12331. } break;
  12332. }
  12333. }
  12334. /////////////////////////////////
  12335. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12336. GGML_ASSERT(params);
  12337. if (tensor->op == GGML_OP_NONE) {
  12338. return;
  12339. }
  12340. #ifdef GGML_USE_CUBLAS
  12341. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12342. if (skip_cpu) {
  12343. return;
  12344. }
  12345. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12346. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12347. #elif defined(GGML_USE_VULKAN)
  12348. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12349. #ifdef GGML_VULKAN_CHECK_RESULTS
  12350. if (skip_cpu) {
  12351. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12352. }
  12353. #endif
  12354. if (skip_cpu) {
  12355. return;
  12356. }
  12357. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12358. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12359. #endif // GGML_USE_CUBLAS
  12360. #ifdef GGML_USE_SYCL
  12361. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12362. if (skip_cpu) {
  12363. return;
  12364. }
  12365. #endif // GGML_USE_SYCL
  12366. switch (tensor->op) {
  12367. case GGML_OP_DUP:
  12368. {
  12369. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12370. } break;
  12371. case GGML_OP_ADD:
  12372. {
  12373. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12374. } break;
  12375. case GGML_OP_ADD1:
  12376. {
  12377. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12378. } break;
  12379. case GGML_OP_ACC:
  12380. {
  12381. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12382. } break;
  12383. case GGML_OP_SUB:
  12384. {
  12385. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12386. } break;
  12387. case GGML_OP_MUL:
  12388. {
  12389. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12390. } break;
  12391. case GGML_OP_DIV:
  12392. {
  12393. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12394. } break;
  12395. case GGML_OP_SQR:
  12396. {
  12397. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12398. } break;
  12399. case GGML_OP_SQRT:
  12400. {
  12401. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12402. } break;
  12403. case GGML_OP_LOG:
  12404. {
  12405. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12406. } break;
  12407. case GGML_OP_SUM:
  12408. {
  12409. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12410. } break;
  12411. case GGML_OP_SUM_ROWS:
  12412. {
  12413. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12414. } break;
  12415. case GGML_OP_MEAN:
  12416. {
  12417. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12418. } break;
  12419. case GGML_OP_ARGMAX:
  12420. {
  12421. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12422. } break;
  12423. case GGML_OP_REPEAT:
  12424. {
  12425. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12426. } break;
  12427. case GGML_OP_REPEAT_BACK:
  12428. {
  12429. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12430. } break;
  12431. case GGML_OP_CONCAT:
  12432. {
  12433. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12434. } break;
  12435. case GGML_OP_SILU_BACK:
  12436. {
  12437. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12438. } break;
  12439. case GGML_OP_NORM:
  12440. {
  12441. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12442. } break;
  12443. case GGML_OP_RMS_NORM:
  12444. {
  12445. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12446. } break;
  12447. case GGML_OP_RMS_NORM_BACK:
  12448. {
  12449. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12450. } break;
  12451. case GGML_OP_GROUP_NORM:
  12452. {
  12453. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12454. } break;
  12455. case GGML_OP_MUL_MAT:
  12456. {
  12457. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12458. } break;
  12459. case GGML_OP_MUL_MAT_ID:
  12460. {
  12461. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12462. } break;
  12463. case GGML_OP_OUT_PROD:
  12464. {
  12465. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12466. } break;
  12467. case GGML_OP_SCALE:
  12468. {
  12469. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12470. } break;
  12471. case GGML_OP_SET:
  12472. {
  12473. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12474. } break;
  12475. case GGML_OP_CPY:
  12476. {
  12477. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12478. } break;
  12479. case GGML_OP_CONT:
  12480. {
  12481. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12482. } break;
  12483. case GGML_OP_RESHAPE:
  12484. {
  12485. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12486. } break;
  12487. case GGML_OP_VIEW:
  12488. {
  12489. ggml_compute_forward_view(params, tensor->src[0]);
  12490. } break;
  12491. case GGML_OP_PERMUTE:
  12492. {
  12493. ggml_compute_forward_permute(params, tensor->src[0]);
  12494. } break;
  12495. case GGML_OP_TRANSPOSE:
  12496. {
  12497. ggml_compute_forward_transpose(params, tensor->src[0]);
  12498. } break;
  12499. case GGML_OP_GET_ROWS:
  12500. {
  12501. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12502. } break;
  12503. case GGML_OP_GET_ROWS_BACK:
  12504. {
  12505. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12506. } break;
  12507. case GGML_OP_DIAG:
  12508. {
  12509. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12510. } break;
  12511. case GGML_OP_DIAG_MASK_INF:
  12512. {
  12513. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12514. } break;
  12515. case GGML_OP_DIAG_MASK_ZERO:
  12516. {
  12517. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12518. } break;
  12519. case GGML_OP_SOFT_MAX:
  12520. {
  12521. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12522. } break;
  12523. case GGML_OP_SOFT_MAX_BACK:
  12524. {
  12525. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12526. } break;
  12527. case GGML_OP_ROPE:
  12528. {
  12529. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12530. } break;
  12531. case GGML_OP_ROPE_BACK:
  12532. {
  12533. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12534. } break;
  12535. case GGML_OP_ALIBI:
  12536. {
  12537. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12538. } break;
  12539. case GGML_OP_CLAMP:
  12540. {
  12541. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12542. } break;
  12543. case GGML_OP_CONV_TRANSPOSE_1D:
  12544. {
  12545. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12546. } break;
  12547. case GGML_OP_IM2COL:
  12548. {
  12549. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12550. } break;
  12551. case GGML_OP_CONV_TRANSPOSE_2D:
  12552. {
  12553. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12554. } break;
  12555. case GGML_OP_POOL_1D:
  12556. {
  12557. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12558. } break;
  12559. case GGML_OP_POOL_2D:
  12560. {
  12561. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12562. } break;
  12563. case GGML_OP_UPSCALE:
  12564. {
  12565. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12566. } break;
  12567. case GGML_OP_PAD:
  12568. {
  12569. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12570. } break;
  12571. case GGML_OP_ARGSORT:
  12572. {
  12573. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12574. } break;
  12575. case GGML_OP_LEAKY_RELU:
  12576. {
  12577. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12578. } break;
  12579. case GGML_OP_FLASH_ATTN:
  12580. {
  12581. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12582. GGML_ASSERT(t == 0 || t == 1);
  12583. const bool masked = t != 0;
  12584. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12585. } break;
  12586. case GGML_OP_FLASH_FF:
  12587. {
  12588. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12589. } break;
  12590. case GGML_OP_FLASH_ATTN_BACK:
  12591. {
  12592. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12593. GGML_ASSERT(t == 0 || t == 1);
  12594. bool masked = t != 0;
  12595. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12596. } break;
  12597. case GGML_OP_WIN_PART:
  12598. {
  12599. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12600. } break;
  12601. case GGML_OP_WIN_UNPART:
  12602. {
  12603. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12604. } break;
  12605. case GGML_OP_UNARY:
  12606. {
  12607. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12608. } break;
  12609. case GGML_OP_GET_REL_POS:
  12610. {
  12611. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12612. } break;
  12613. case GGML_OP_ADD_REL_POS:
  12614. {
  12615. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12616. } break;
  12617. case GGML_OP_MAP_UNARY:
  12618. {
  12619. ggml_unary_op_f32_t fun;
  12620. memcpy(&fun, tensor->op_params, sizeof(fun));
  12621. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12622. }
  12623. break;
  12624. case GGML_OP_MAP_BINARY:
  12625. {
  12626. ggml_binary_op_f32_t fun;
  12627. memcpy(&fun, tensor->op_params, sizeof(fun));
  12628. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12629. }
  12630. break;
  12631. case GGML_OP_MAP_CUSTOM1_F32:
  12632. {
  12633. ggml_custom1_op_f32_t fun;
  12634. memcpy(&fun, tensor->op_params, sizeof(fun));
  12635. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12636. }
  12637. break;
  12638. case GGML_OP_MAP_CUSTOM2_F32:
  12639. {
  12640. ggml_custom2_op_f32_t fun;
  12641. memcpy(&fun, tensor->op_params, sizeof(fun));
  12642. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12643. }
  12644. break;
  12645. case GGML_OP_MAP_CUSTOM3_F32:
  12646. {
  12647. ggml_custom3_op_f32_t fun;
  12648. memcpy(&fun, tensor->op_params, sizeof(fun));
  12649. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12650. }
  12651. break;
  12652. case GGML_OP_MAP_CUSTOM1:
  12653. {
  12654. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12655. }
  12656. break;
  12657. case GGML_OP_MAP_CUSTOM2:
  12658. {
  12659. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12660. }
  12661. break;
  12662. case GGML_OP_MAP_CUSTOM3:
  12663. {
  12664. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12665. }
  12666. break;
  12667. case GGML_OP_CROSS_ENTROPY_LOSS:
  12668. {
  12669. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12670. }
  12671. break;
  12672. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12673. {
  12674. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12675. }
  12676. break;
  12677. case GGML_OP_NONE:
  12678. {
  12679. // nop
  12680. } break;
  12681. case GGML_OP_COUNT:
  12682. {
  12683. GGML_ASSERT(false);
  12684. } break;
  12685. }
  12686. }
  12687. ////////////////////////////////////////////////////////////////////////////////
  12688. static size_t ggml_hash_size(size_t min_sz) {
  12689. // next primes after powers of two
  12690. static const size_t primes[] = {
  12691. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12692. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12693. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12694. 16777259, 33554467, 67108879, 134217757, 268435459,
  12695. 536870923, 1073741827, 2147483659
  12696. };
  12697. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12698. // find the smallest prime that is larger or equal to min_sz
  12699. size_t l = 0;
  12700. size_t r = n_primes;
  12701. while (l < r) {
  12702. size_t m = (l + r)/2;
  12703. if (primes[m] < min_sz) {
  12704. l = m + 1;
  12705. } else {
  12706. r = m;
  12707. }
  12708. }
  12709. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12710. return sz;
  12711. }
  12712. static size_t ggml_hash(const void * p) {
  12713. return (size_t)p;
  12714. }
  12715. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12716. size_t h = ggml_hash(key) % hash_set.size;
  12717. // linear probing
  12718. size_t i = h;
  12719. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12720. i = (i + 1) % hash_set.size;
  12721. if (i == h) {
  12722. // visited all hash table entries -> not found
  12723. return GGML_HASHTABLE_FULL;
  12724. }
  12725. }
  12726. return i;
  12727. }
  12728. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12729. size_t i = ggml_hash_find(hash_set, key);
  12730. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12731. }
  12732. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12733. size_t i = ggml_hash_find(hash_set, key);
  12734. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12735. if (hash_set.keys[i] == key) {
  12736. return GGML_HASHTABLE_ALREADY_EXISTS;
  12737. }
  12738. // insert
  12739. GGML_ASSERT(hash_set.keys[i] == NULL);
  12740. hash_set.keys[i] = key;
  12741. return i;
  12742. }
  12743. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12744. size_t i = ggml_hash_find(hash_set, key);
  12745. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12746. hash_set.keys[i] = key;
  12747. return i;
  12748. }
  12749. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12750. size = ggml_hash_size(size);
  12751. struct ggml_hash_set result;
  12752. result.size = size;
  12753. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12754. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12755. return result;
  12756. }
  12757. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12758. GGML_FREE(hash_set.keys);
  12759. }
  12760. struct hash_map {
  12761. struct ggml_hash_set set;
  12762. struct ggml_tensor ** vals;
  12763. };
  12764. static struct hash_map * ggml_new_hash_map(size_t size) {
  12765. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12766. result->set = ggml_hash_set_new(size);
  12767. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12768. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12769. return result;
  12770. }
  12771. static void ggml_hash_map_free(struct hash_map * map) {
  12772. ggml_hash_set_free(map->set);
  12773. GGML_FREE(map->vals);
  12774. GGML_FREE(map);
  12775. }
  12776. // gradient checkpointing
  12777. static struct ggml_tensor * ggml_recompute_graph_node(
  12778. struct ggml_context * ctx,
  12779. struct ggml_cgraph * graph,
  12780. struct hash_map * replacements,
  12781. struct ggml_tensor * node) {
  12782. if (node == NULL) {
  12783. return NULL;
  12784. }
  12785. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12786. return node;
  12787. }
  12788. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12789. return node;
  12790. }
  12791. int count_children = 0;
  12792. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12793. if (node->src[k]) {
  12794. ++count_children;
  12795. }
  12796. }
  12797. if (count_children == 0) {
  12798. return node;
  12799. }
  12800. size_t i = ggml_hash_find(replacements->set, node);
  12801. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12802. if (replacements->set.keys[i] == node) {
  12803. return replacements->vals[i];
  12804. }
  12805. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12806. // insert clone into replacements
  12807. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12808. replacements->set.keys[i] = node;
  12809. replacements->vals[i] = clone;
  12810. clone->op = node->op;
  12811. clone->grad = node->grad;
  12812. clone->flags = node->flags;
  12813. clone->extra = node->extra;
  12814. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12815. clone->nb[k] = node->nb[k];
  12816. }
  12817. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12818. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12819. }
  12820. if (node->view_src != NULL) {
  12821. clone->data = (node->view_src->data == NULL)
  12822. ? NULL // view_src not yet allocated
  12823. : (char *) node->view_src->data // view_src already allocated
  12824. + node->view_offs;
  12825. clone->view_src = node->view_src;
  12826. clone->view_offs = node->view_offs;
  12827. }
  12828. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12829. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12830. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12831. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12832. return clone;
  12833. }
  12834. void ggml_build_backward_gradient_checkpointing(
  12835. struct ggml_context * ctx,
  12836. struct ggml_cgraph * gf,
  12837. struct ggml_cgraph * gb,
  12838. struct ggml_cgraph * gb_tmp,
  12839. struct ggml_tensor * * checkpoints,
  12840. int n_checkpoints) {
  12841. ggml_graph_cpy(gf, gb_tmp);
  12842. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12843. if (n_checkpoints <= 0) {
  12844. ggml_graph_cpy(gb_tmp, gb);
  12845. return;
  12846. }
  12847. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12848. // insert checkpoints in replacements
  12849. for (int i = 0; i < n_checkpoints; ++i) {
  12850. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12851. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12852. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12853. replacements->set.keys[k] = checkpoints[i];
  12854. replacements->vals[k] = checkpoints[i];
  12855. }
  12856. ggml_graph_cpy(gf, gb);
  12857. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12858. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12859. // by recomputing them from checkpoints
  12860. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12861. struct ggml_tensor * node = gb_tmp->nodes[i];
  12862. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12863. // insert new tensors recomputing src, reusing already made replacements,
  12864. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12865. // recurse for input tensors,
  12866. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12867. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12868. }
  12869. // insert rewritten backward node with replacements made into resulting backward graph gb
  12870. ggml_build_forward_expand(gb, node);
  12871. }
  12872. ggml_hash_map_free(replacements);
  12873. }
  12874. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12875. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12876. if (ggml_hash_contains(zero_table, a)) {
  12877. return b;
  12878. } else {
  12879. return ggml_add_impl(ctx, a, b, false);
  12880. }
  12881. }
  12882. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12883. if (ggml_hash_contains(zero_table, a)) {
  12884. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12885. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12886. } else {
  12887. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12888. }
  12889. }
  12890. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12891. if (ggml_hash_contains(zero_table, a)) {
  12892. return ggml_repeat(ctx, b, a);
  12893. } else {
  12894. return ggml_add1_impl(ctx, a, b, false);
  12895. }
  12896. }
  12897. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12898. if (ggml_hash_contains(zero_table, a)) {
  12899. return ggml_neg(ctx, b);
  12900. } else {
  12901. return ggml_sub_impl(ctx, a, b, false);
  12902. }
  12903. }
  12904. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12905. struct ggml_tensor * src0 = tensor->src[0];
  12906. struct ggml_tensor * src1 = tensor->src[1];
  12907. switch (tensor->op) {
  12908. case GGML_OP_DUP:
  12909. {
  12910. if (src0->grad) {
  12911. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12912. }
  12913. } break;
  12914. case GGML_OP_ADD:
  12915. {
  12916. if (src0->grad) {
  12917. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12918. }
  12919. if (src1->grad) {
  12920. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12921. }
  12922. } break;
  12923. case GGML_OP_ADD1:
  12924. {
  12925. if (src0->grad) {
  12926. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12927. }
  12928. if (src1->grad) {
  12929. src1->grad = ggml_add_or_set(ctx,
  12930. src1->grad,
  12931. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12932. zero_table);
  12933. }
  12934. } break;
  12935. case GGML_OP_ACC:
  12936. {
  12937. if (src0->grad) {
  12938. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12939. }
  12940. if (src1->grad) {
  12941. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12942. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12943. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12944. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12945. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12946. tensor->grad,
  12947. src1->grad->ne[0],
  12948. src1->grad->ne[1],
  12949. src1->grad->ne[2],
  12950. src1->grad->ne[3],
  12951. nb1, nb2, nb3, offset);
  12952. src1->grad =
  12953. ggml_add_or_set(ctx,
  12954. src1->grad,
  12955. ggml_reshape(ctx,
  12956. ggml_cont(ctx, tensor_grad_view),
  12957. src1->grad),
  12958. zero_table);
  12959. }
  12960. } break;
  12961. case GGML_OP_SUB:
  12962. {
  12963. if (src0->grad) {
  12964. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12965. }
  12966. if (src1->grad) {
  12967. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12968. }
  12969. } break;
  12970. case GGML_OP_MUL:
  12971. {
  12972. if (src0->grad) {
  12973. src0->grad =
  12974. ggml_add_or_set(ctx,
  12975. src0->grad,
  12976. ggml_mul(ctx, src1, tensor->grad),
  12977. zero_table);
  12978. }
  12979. if (src1->grad) {
  12980. src1->grad =
  12981. ggml_add_or_set(ctx,
  12982. src1->grad,
  12983. ggml_mul(ctx, src0, tensor->grad),
  12984. zero_table);
  12985. }
  12986. } break;
  12987. case GGML_OP_DIV:
  12988. {
  12989. if (src0->grad) {
  12990. src0->grad =
  12991. ggml_add_or_set(ctx,
  12992. src0->grad,
  12993. ggml_div(ctx, tensor->grad, src1),
  12994. zero_table);
  12995. }
  12996. if (src1->grad) {
  12997. src1->grad =
  12998. ggml_sub_or_set(ctx,
  12999. src1->grad,
  13000. ggml_mul(ctx,
  13001. tensor->grad,
  13002. ggml_div(ctx, tensor, src1)),
  13003. zero_table);
  13004. }
  13005. } break;
  13006. case GGML_OP_SQR:
  13007. {
  13008. if (src0->grad) {
  13009. src0->grad =
  13010. ggml_add_or_set(ctx,
  13011. src0->grad,
  13012. ggml_scale(ctx,
  13013. ggml_mul(ctx, src0, tensor->grad),
  13014. 2.0f),
  13015. zero_table);
  13016. }
  13017. } break;
  13018. case GGML_OP_SQRT:
  13019. {
  13020. if (src0->grad) {
  13021. src0->grad =
  13022. ggml_add_or_set(ctx,
  13023. src0->grad,
  13024. ggml_scale(ctx,
  13025. ggml_div(ctx,
  13026. tensor->grad,
  13027. tensor),
  13028. 0.5f),
  13029. zero_table);
  13030. }
  13031. } break;
  13032. case GGML_OP_LOG:
  13033. {
  13034. if (src0->grad) {
  13035. src0->grad =
  13036. ggml_add_or_set(ctx,
  13037. src0->grad,
  13038. ggml_div(ctx,
  13039. tensor->grad,
  13040. src0),
  13041. zero_table);
  13042. }
  13043. } break;
  13044. case GGML_OP_SUM:
  13045. {
  13046. if (src0->grad) {
  13047. src0->grad =
  13048. ggml_add1_or_set(ctx,
  13049. src0->grad,
  13050. tensor->grad,
  13051. zero_table);
  13052. }
  13053. } break;
  13054. case GGML_OP_SUM_ROWS:
  13055. {
  13056. if (src0->grad) {
  13057. src0->grad =
  13058. ggml_add_or_set(ctx,
  13059. src0->grad,
  13060. ggml_repeat(ctx,
  13061. tensor->grad,
  13062. src0->grad),
  13063. zero_table);
  13064. }
  13065. } break;
  13066. case GGML_OP_MEAN:
  13067. case GGML_OP_ARGMAX:
  13068. {
  13069. GGML_ASSERT(false); // TODO: implement
  13070. } break;
  13071. case GGML_OP_REPEAT:
  13072. {
  13073. // necessary for llama
  13074. if (src0->grad) {
  13075. src0->grad = ggml_add_or_set(ctx,
  13076. src0->grad,
  13077. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13078. zero_table);
  13079. }
  13080. } break;
  13081. case GGML_OP_REPEAT_BACK:
  13082. {
  13083. if (src0->grad) {
  13084. // TODO: test this
  13085. src0->grad = ggml_add_or_set(ctx,
  13086. src0->grad,
  13087. ggml_repeat(ctx, tensor->grad, src0->grad),
  13088. zero_table);
  13089. }
  13090. } break;
  13091. case GGML_OP_CONCAT:
  13092. {
  13093. GGML_ASSERT(false); // TODO: implement
  13094. } break;
  13095. case GGML_OP_SILU_BACK:
  13096. {
  13097. GGML_ASSERT(false); // TODO: not implemented
  13098. } break;
  13099. case GGML_OP_NORM:
  13100. {
  13101. GGML_ASSERT(false); // TODO: not implemented
  13102. } break;
  13103. case GGML_OP_RMS_NORM:
  13104. {
  13105. // necessary for llama
  13106. if (src0->grad) {
  13107. float eps;
  13108. memcpy(&eps, tensor->op_params, sizeof(float));
  13109. src0->grad = ggml_add_or_set(ctx,
  13110. src0->grad,
  13111. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13112. zero_table);
  13113. }
  13114. } break;
  13115. case GGML_OP_RMS_NORM_BACK:
  13116. {
  13117. GGML_ASSERT(false); // TODO: not implemented
  13118. } break;
  13119. case GGML_OP_GROUP_NORM:
  13120. {
  13121. GGML_ASSERT(false); // TODO: not implemented
  13122. } break;
  13123. case GGML_OP_MUL_MAT:
  13124. {
  13125. // https://cs231n.github.io/optimization-2/#staged
  13126. // # forward pass
  13127. // s0 = np.random.randn(5, 10)
  13128. // s1 = np.random.randn(10, 3)
  13129. // t = s0.dot(s1)
  13130. // # now suppose we had the gradient on t from above in the circuit
  13131. // dt = np.random.randn(*t.shape) # same shape as t
  13132. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13133. // ds1 = t.T.dot(dt)
  13134. // tensor.shape [m,p,qq,rr]
  13135. // src0.shape [n,m,q1,r1]
  13136. // src1.shape [n,p,qq,rr]
  13137. // necessary for llama
  13138. if (src0->grad) {
  13139. struct ggml_tensor * s1_tg =
  13140. ggml_out_prod(ctx, // [n,m,qq,rr]
  13141. src1, // [n,p,qq,rr]
  13142. tensor->grad); // [m,p,qq,rr]
  13143. const int64_t qq = s1_tg->ne[2];
  13144. const int64_t rr = s1_tg->ne[3];
  13145. const int64_t q1 = src0->ne[2];
  13146. const int64_t r1 = src0->ne[3];
  13147. const bool ne2_broadcasted = qq > q1;
  13148. const bool ne3_broadcasted = rr > r1;
  13149. if (ne2_broadcasted || ne3_broadcasted) {
  13150. // sum broadcast repetitions of s1_tg into shape of src0
  13151. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13152. }
  13153. src0->grad =
  13154. ggml_add_or_set(ctx,
  13155. src0->grad, // [n,m,q1,r1]
  13156. s1_tg, // [n,m,q1,r1]
  13157. zero_table);
  13158. }
  13159. if (src1->grad) {
  13160. src1->grad =
  13161. ggml_add_or_set(ctx,
  13162. src1->grad, // [n,p,qq,rr]
  13163. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13164. // ggml_cont(ctx, // [m,n,q1,r1]
  13165. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13166. // tensor->grad), // [m,p,qq,rr]
  13167. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13168. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13169. // // and then use ggml_out_prod
  13170. ggml_out_prod(ctx, // [n,p,qq,rr]
  13171. src0, // [n,m,q1,r1]
  13172. ggml_transpose(ctx, // [p,m,qq,rr]
  13173. tensor->grad)), // [m,p,qq,rr]
  13174. zero_table);
  13175. }
  13176. } break;
  13177. case GGML_OP_MUL_MAT_ID:
  13178. {
  13179. GGML_ASSERT(false); // TODO: not implemented
  13180. } break;
  13181. case GGML_OP_OUT_PROD:
  13182. {
  13183. GGML_ASSERT(false); // TODO: not implemented
  13184. } break;
  13185. case GGML_OP_SCALE:
  13186. {
  13187. // necessary for llama
  13188. if (src0->grad) {
  13189. float s;
  13190. memcpy(&s, tensor->op_params, sizeof(float));
  13191. src0->grad =
  13192. ggml_add_or_set(ctx,
  13193. src0->grad,
  13194. ggml_scale_impl(ctx, tensor->grad, s, false),
  13195. zero_table);
  13196. }
  13197. } break;
  13198. case GGML_OP_SET:
  13199. {
  13200. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13201. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13202. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13203. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13204. struct ggml_tensor * tensor_grad_view = NULL;
  13205. if (src0->grad || src1->grad) {
  13206. GGML_ASSERT(src0->type == tensor->type);
  13207. GGML_ASSERT(tensor->grad->type == tensor->type);
  13208. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13209. tensor_grad_view = ggml_view_4d(ctx,
  13210. tensor->grad,
  13211. src1->grad->ne[0],
  13212. src1->grad->ne[1],
  13213. src1->grad->ne[2],
  13214. src1->grad->ne[3],
  13215. nb1, nb2, nb3, offset);
  13216. }
  13217. if (src0->grad) {
  13218. src0->grad = ggml_add_or_set(ctx,
  13219. src0->grad,
  13220. ggml_acc_impl(ctx,
  13221. tensor->grad,
  13222. ggml_neg(ctx, tensor_grad_view),
  13223. nb1, nb2, nb3, offset, false),
  13224. zero_table);
  13225. }
  13226. if (src1->grad) {
  13227. src1->grad =
  13228. ggml_add_or_set(ctx,
  13229. src1->grad,
  13230. ggml_reshape(ctx,
  13231. ggml_cont(ctx, tensor_grad_view),
  13232. src1->grad),
  13233. zero_table);
  13234. }
  13235. } break;
  13236. case GGML_OP_CPY:
  13237. {
  13238. // necessary for llama
  13239. // cpy overwrites value of src1 by src0 and returns view(src1)
  13240. // the overwriting is mathematically equivalent to:
  13241. // tensor = src0 * 1 + src1 * 0
  13242. if (src0->grad) {
  13243. // dsrc0 = dtensor * 1
  13244. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13245. }
  13246. if (src1->grad) {
  13247. // dsrc1 = dtensor * 0 -> noop
  13248. }
  13249. } break;
  13250. case GGML_OP_CONT:
  13251. {
  13252. // same as cpy
  13253. if (src0->grad) {
  13254. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13255. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13256. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13257. }
  13258. } break;
  13259. case GGML_OP_RESHAPE:
  13260. {
  13261. // necessary for llama
  13262. if (src0->grad) {
  13263. src0->grad =
  13264. ggml_add_or_set(ctx, src0->grad,
  13265. ggml_reshape(ctx,
  13266. ggml_is_contiguous(tensor->grad)
  13267. ? tensor->grad
  13268. : ggml_cont(ctx, tensor->grad),
  13269. src0->grad),
  13270. zero_table);
  13271. }
  13272. } break;
  13273. case GGML_OP_VIEW:
  13274. {
  13275. // necessary for llama
  13276. if (src0->grad) {
  13277. size_t offset;
  13278. memcpy(&offset, tensor->op_params, sizeof(offset));
  13279. size_t nb1 = tensor->nb[1];
  13280. size_t nb2 = tensor->nb[2];
  13281. size_t nb3 = tensor->nb[3];
  13282. if (src0->type != src0->grad->type) {
  13283. // gradient is typically F32, but src0 could be other type
  13284. size_t ng = ggml_element_size(src0->grad);
  13285. size_t n0 = ggml_element_size(src0);
  13286. GGML_ASSERT(offset % n0 == 0);
  13287. GGML_ASSERT(nb1 % n0 == 0);
  13288. GGML_ASSERT(nb2 % n0 == 0);
  13289. GGML_ASSERT(nb3 % n0 == 0);
  13290. offset = (offset / n0) * ng;
  13291. nb1 = (nb1 / n0) * ng;
  13292. nb2 = (nb2 / n0) * ng;
  13293. nb3 = (nb3 / n0) * ng;
  13294. }
  13295. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13296. }
  13297. } break;
  13298. case GGML_OP_PERMUTE:
  13299. {
  13300. // necessary for llama
  13301. if (src0->grad) {
  13302. int32_t * axes = (int32_t *) tensor->op_params;
  13303. int axis0 = axes[0] & 0x3;
  13304. int axis1 = axes[1] & 0x3;
  13305. int axis2 = axes[2] & 0x3;
  13306. int axis3 = axes[3] & 0x3;
  13307. int axes_backward[4] = {0,0,0,0};
  13308. axes_backward[axis0] = 0;
  13309. axes_backward[axis1] = 1;
  13310. axes_backward[axis2] = 2;
  13311. axes_backward[axis3] = 3;
  13312. src0->grad =
  13313. ggml_add_or_set(ctx, src0->grad,
  13314. ggml_permute(ctx,
  13315. tensor->grad,
  13316. axes_backward[0],
  13317. axes_backward[1],
  13318. axes_backward[2],
  13319. axes_backward[3]),
  13320. zero_table);
  13321. }
  13322. } break;
  13323. case GGML_OP_TRANSPOSE:
  13324. {
  13325. // necessary for llama
  13326. if (src0->grad) {
  13327. src0->grad =
  13328. ggml_add_or_set(ctx, src0->grad,
  13329. ggml_transpose(ctx, tensor->grad),
  13330. zero_table);
  13331. }
  13332. } break;
  13333. case GGML_OP_GET_ROWS:
  13334. {
  13335. // necessary for llama (only for tokenizer)
  13336. if (src0->grad) {
  13337. src0->grad =
  13338. ggml_add_or_set(ctx, src0->grad,
  13339. // last ggml_get_rows_back argument src0->grad is only
  13340. // necessary to setup correct output shape
  13341. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13342. zero_table);
  13343. }
  13344. if (src1->grad) {
  13345. // noop
  13346. }
  13347. } break;
  13348. case GGML_OP_GET_ROWS_BACK:
  13349. {
  13350. GGML_ASSERT(false); // TODO: not implemented
  13351. } break;
  13352. case GGML_OP_DIAG:
  13353. {
  13354. GGML_ASSERT(false); // TODO: not implemented
  13355. } break;
  13356. case GGML_OP_DIAG_MASK_INF:
  13357. {
  13358. // necessary for llama
  13359. if (src0->grad) {
  13360. const int n_past = ((int32_t *) tensor->op_params)[0];
  13361. src0->grad =
  13362. ggml_add_or_set(ctx, src0->grad,
  13363. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13364. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13365. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13366. zero_table);
  13367. }
  13368. } break;
  13369. case GGML_OP_DIAG_MASK_ZERO:
  13370. {
  13371. // necessary for llama
  13372. if (src0->grad) {
  13373. const int n_past = ((int32_t *) tensor->op_params)[0];
  13374. src0->grad =
  13375. ggml_add_or_set(ctx, src0->grad,
  13376. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13377. zero_table);
  13378. }
  13379. } break;
  13380. case GGML_OP_SOFT_MAX:
  13381. {
  13382. // necessary for llama
  13383. if (src0->grad) {
  13384. src0->grad =
  13385. ggml_add_or_set(ctx, src0->grad,
  13386. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13387. zero_table);
  13388. }
  13389. } break;
  13390. case GGML_OP_SOFT_MAX_BACK:
  13391. {
  13392. GGML_ASSERT(false); // TODO: not implemented
  13393. } break;
  13394. case GGML_OP_ROPE:
  13395. {
  13396. // necessary for llama
  13397. if (src0->grad) {
  13398. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13399. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13400. const int mode = ((int32_t *) tensor->op_params)[2];
  13401. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13402. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13403. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13404. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13405. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13406. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13407. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13408. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13409. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13410. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13411. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13412. src0->grad = ggml_add_or_set(ctx,
  13413. src0->grad,
  13414. ggml_rope_back(ctx,
  13415. tensor->grad,
  13416. src1,
  13417. n_dims,
  13418. mode,
  13419. n_ctx,
  13420. n_orig_ctx,
  13421. freq_base,
  13422. freq_scale,
  13423. ext_factor,
  13424. attn_factor,
  13425. beta_fast,
  13426. beta_slow,
  13427. xpos_base,
  13428. xpos_down),
  13429. zero_table);
  13430. }
  13431. } break;
  13432. case GGML_OP_ROPE_BACK:
  13433. {
  13434. if (src0->grad) {
  13435. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13436. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13437. const int mode = ((int32_t *) tensor->op_params)[2];
  13438. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13439. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13440. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13441. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13442. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13443. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13444. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13445. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13446. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13447. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13448. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13449. src0->grad = ggml_add_or_set(ctx,
  13450. src0->grad,
  13451. ggml_rope_impl(ctx,
  13452. tensor->grad,
  13453. src1,
  13454. n_dims,
  13455. mode,
  13456. n_ctx,
  13457. n_orig_ctx,
  13458. freq_base,
  13459. freq_scale,
  13460. ext_factor,
  13461. attn_factor,
  13462. beta_fast,
  13463. beta_slow,
  13464. xpos_base,
  13465. xpos_down,
  13466. false),
  13467. zero_table);
  13468. }
  13469. } break;
  13470. case GGML_OP_ALIBI:
  13471. {
  13472. GGML_ASSERT(false); // TODO: not implemented
  13473. } break;
  13474. case GGML_OP_CLAMP:
  13475. {
  13476. GGML_ASSERT(false); // TODO: not implemented
  13477. } break;
  13478. case GGML_OP_CONV_TRANSPOSE_1D:
  13479. {
  13480. GGML_ASSERT(false); // TODO: not implemented
  13481. } break;
  13482. case GGML_OP_IM2COL:
  13483. {
  13484. GGML_ASSERT(false); // TODO: not implemented
  13485. } break;
  13486. case GGML_OP_CONV_TRANSPOSE_2D:
  13487. {
  13488. GGML_ASSERT(false); // TODO: not implemented
  13489. } break;
  13490. case GGML_OP_POOL_1D:
  13491. {
  13492. GGML_ASSERT(false); // TODO: not implemented
  13493. } break;
  13494. case GGML_OP_POOL_2D:
  13495. {
  13496. GGML_ASSERT(false); // TODO: not implemented
  13497. } break;
  13498. case GGML_OP_UPSCALE:
  13499. {
  13500. GGML_ASSERT(false); // TODO: not implemented
  13501. } break;
  13502. case GGML_OP_PAD:
  13503. {
  13504. GGML_ASSERT(false); // TODO: not implemented
  13505. } break;
  13506. case GGML_OP_ARGSORT:
  13507. {
  13508. GGML_ASSERT(false); // TODO: not implemented
  13509. } break;
  13510. case GGML_OP_LEAKY_RELU:
  13511. {
  13512. GGML_ASSERT(false); // TODO: not implemented
  13513. } break;
  13514. case GGML_OP_FLASH_ATTN:
  13515. {
  13516. struct ggml_tensor * flash_grad = NULL;
  13517. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13518. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13519. GGML_ASSERT(t == 0 || t == 1);
  13520. bool masked = t != 0;
  13521. flash_grad =
  13522. ggml_flash_attn_back(ctx,
  13523. src0,
  13524. src1,
  13525. tensor->src[2],
  13526. tensor->grad,
  13527. masked);
  13528. }
  13529. struct ggml_tensor * src2 = tensor->src[2];
  13530. const int64_t elem_q = ggml_nelements(src0);
  13531. const int64_t elem_k = ggml_nelements(src1);
  13532. const int64_t elem_v = ggml_nelements(src2);
  13533. enum ggml_type result_type = flash_grad->type;
  13534. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13535. const size_t tsize = ggml_type_size(result_type);
  13536. const size_t offs_q = 0;
  13537. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13538. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13539. if (src0->grad) {
  13540. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13541. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13542. src0->grad = ggml_add_or_set(ctx,
  13543. src0->grad,
  13544. grad_q,
  13545. zero_table);
  13546. }
  13547. if (src1->grad) {
  13548. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13549. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13550. src1->grad = ggml_add_or_set(ctx,
  13551. src1->grad,
  13552. grad_k,
  13553. zero_table);
  13554. }
  13555. if (src2->grad) {
  13556. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13557. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13558. src2->grad = ggml_add_or_set(ctx,
  13559. src2->grad,
  13560. grad_v,
  13561. zero_table);
  13562. }
  13563. } break;
  13564. case GGML_OP_FLASH_FF:
  13565. {
  13566. GGML_ASSERT(false); // not supported
  13567. } break;
  13568. case GGML_OP_FLASH_ATTN_BACK:
  13569. {
  13570. GGML_ASSERT(false); // not supported
  13571. } break;
  13572. case GGML_OP_WIN_PART:
  13573. case GGML_OP_WIN_UNPART:
  13574. case GGML_OP_UNARY:
  13575. {
  13576. switch (ggml_get_unary_op(tensor)) {
  13577. case GGML_UNARY_OP_ABS:
  13578. {
  13579. if (src0->grad) {
  13580. src0->grad =
  13581. ggml_add_or_set(ctx,
  13582. src0->grad,
  13583. ggml_mul(ctx,
  13584. ggml_sgn(ctx, src0),
  13585. tensor->grad),
  13586. zero_table);
  13587. }
  13588. } break;
  13589. case GGML_UNARY_OP_SGN:
  13590. {
  13591. if (src0->grad) {
  13592. // noop
  13593. }
  13594. } break;
  13595. case GGML_UNARY_OP_NEG:
  13596. {
  13597. if (src0->grad) {
  13598. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13599. }
  13600. } break;
  13601. case GGML_UNARY_OP_STEP:
  13602. {
  13603. if (src0->grad) {
  13604. // noop
  13605. }
  13606. } break;
  13607. case GGML_UNARY_OP_TANH:
  13608. {
  13609. GGML_ASSERT(false); // TODO: not implemented
  13610. } break;
  13611. case GGML_UNARY_OP_ELU:
  13612. {
  13613. GGML_ASSERT(false); // TODO: not implemented
  13614. } break;
  13615. case GGML_UNARY_OP_RELU:
  13616. {
  13617. if (src0->grad) {
  13618. src0->grad = ggml_add_or_set(ctx,
  13619. src0->grad,
  13620. ggml_mul(ctx,
  13621. ggml_step(ctx, src0),
  13622. tensor->grad),
  13623. zero_table);
  13624. }
  13625. } break;
  13626. case GGML_UNARY_OP_GELU:
  13627. {
  13628. GGML_ASSERT(false); // TODO: not implemented
  13629. } break;
  13630. case GGML_UNARY_OP_GELU_QUICK:
  13631. {
  13632. GGML_ASSERT(false); // TODO: not implemented
  13633. } break;
  13634. case GGML_UNARY_OP_SILU:
  13635. {
  13636. // necessary for llama
  13637. if (src0->grad) {
  13638. src0->grad = ggml_add_or_set(ctx,
  13639. src0->grad,
  13640. ggml_silu_back(ctx, src0, tensor->grad),
  13641. zero_table);
  13642. }
  13643. } break;
  13644. default:
  13645. GGML_ASSERT(false);
  13646. }
  13647. } break;
  13648. case GGML_OP_GET_REL_POS:
  13649. case GGML_OP_ADD_REL_POS:
  13650. case GGML_OP_MAP_UNARY:
  13651. case GGML_OP_MAP_BINARY:
  13652. case GGML_OP_MAP_CUSTOM1_F32:
  13653. case GGML_OP_MAP_CUSTOM2_F32:
  13654. case GGML_OP_MAP_CUSTOM3_F32:
  13655. case GGML_OP_MAP_CUSTOM1:
  13656. case GGML_OP_MAP_CUSTOM2:
  13657. case GGML_OP_MAP_CUSTOM3:
  13658. {
  13659. GGML_ASSERT(false); // not supported
  13660. } break;
  13661. case GGML_OP_CROSS_ENTROPY_LOSS:
  13662. {
  13663. if (src0->grad) {
  13664. src0->grad = ggml_add_or_set(ctx,
  13665. src0->grad,
  13666. ggml_cross_entropy_loss_back(ctx,
  13667. src0,
  13668. src1,
  13669. tensor->grad),
  13670. zero_table);
  13671. }
  13672. } break;
  13673. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13674. {
  13675. GGML_ASSERT(false); // not supported
  13676. } break;
  13677. case GGML_OP_NONE:
  13678. {
  13679. // nop
  13680. } break;
  13681. case GGML_OP_COUNT:
  13682. {
  13683. GGML_ASSERT(false);
  13684. } break;
  13685. }
  13686. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13687. if (tensor->src[i] && tensor->src[i]->grad) {
  13688. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13689. }
  13690. }
  13691. }
  13692. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13693. if (node->grad == NULL) {
  13694. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13695. // it can also happen during forward pass, if the user performs computations with constants
  13696. if (node->op != GGML_OP_NONE) {
  13697. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13698. }
  13699. }
  13700. // check if already visited
  13701. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13702. return;
  13703. }
  13704. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13705. const int k =
  13706. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13707. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13708. /* unknown order, just fall back to using i*/ i;
  13709. if (node->src[k]) {
  13710. ggml_visit_parents(cgraph, node->src[k]);
  13711. }
  13712. }
  13713. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13714. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13715. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13716. if (strlen(node->name) == 0) {
  13717. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13718. }
  13719. cgraph->leafs[cgraph->n_leafs] = node;
  13720. cgraph->n_leafs++;
  13721. } else {
  13722. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13723. if (strlen(node->name) == 0) {
  13724. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13725. }
  13726. cgraph->nodes[cgraph->n_nodes] = node;
  13727. if (cgraph->grads) {
  13728. cgraph->grads[cgraph->n_nodes] = node->grad;
  13729. }
  13730. cgraph->n_nodes++;
  13731. }
  13732. }
  13733. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13734. if (!expand) {
  13735. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13736. ggml_graph_clear(cgraph);
  13737. }
  13738. const int n0 = cgraph->n_nodes;
  13739. UNUSED(n0);
  13740. ggml_visit_parents(cgraph, tensor);
  13741. const int n_new = cgraph->n_nodes - n0;
  13742. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13743. if (n_new > 0) {
  13744. // the last added node should always be starting point
  13745. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13746. }
  13747. }
  13748. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13749. ggml_build_forward_impl(cgraph, tensor, true);
  13750. }
  13751. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13752. GGML_ASSERT(gf->n_nodes > 0);
  13753. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13754. if (keep) {
  13755. for (int i = 0; i < gf->n_nodes; i++) {
  13756. struct ggml_tensor * node = gf->nodes[i];
  13757. if (node->grad) {
  13758. node->grad = ggml_dup_tensor(ctx, node);
  13759. gf->grads[i] = node->grad;
  13760. }
  13761. }
  13762. }
  13763. // remember original gradients which start with zero values
  13764. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13765. for (int i = 0; i < gf->n_nodes; i++) {
  13766. if (gf->grads[i]) {
  13767. ggml_hash_insert(zero_table, gf->grads[i]);
  13768. }
  13769. }
  13770. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13771. struct ggml_tensor * node = gf->nodes[i];
  13772. // inplace operations to add gradients are not created by ggml_compute_backward
  13773. // use allocator to automatically make inplace operations
  13774. if (node->grad) {
  13775. ggml_compute_backward(ctx, node, zero_table);
  13776. }
  13777. }
  13778. for (int i = 0; i < gf->n_nodes; i++) {
  13779. struct ggml_tensor * node = gf->nodes[i];
  13780. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13781. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13782. ggml_build_forward_expand(gb, node->grad);
  13783. }
  13784. }
  13785. ggml_hash_set_free(zero_table);
  13786. }
  13787. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13788. size_t nbytes = sizeof(struct ggml_cgraph);
  13789. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13790. if (grads) {
  13791. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13792. }
  13793. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13794. return nbytes;
  13795. }
  13796. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13797. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13798. }
  13799. size_t ggml_graph_overhead(void) {
  13800. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13801. }
  13802. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13803. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13804. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13805. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13806. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13807. size_t hash_size = ggml_hash_size(size * 2);
  13808. struct ggml_tensor ** nodes_ptr = data_start;
  13809. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13810. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13811. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13812. // check that we allocated the correct amount of memory
  13813. assert(obj_size == (size_t) (
  13814. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13815. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13816. *cgraph = (struct ggml_cgraph) {
  13817. /*.size =*/ size,
  13818. /*.n_nodes =*/ 0,
  13819. /*.n_leafs =*/ 0,
  13820. /*.nodes =*/ nodes_ptr,
  13821. /*.grads =*/ grads_ptr,
  13822. /*.leafs =*/ leafs_ptr,
  13823. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13824. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13825. /*.perf_runs =*/ 0,
  13826. /*.perf_cycles =*/ 0,
  13827. /*.perf_time_us =*/ 0,
  13828. };
  13829. return cgraph;
  13830. }
  13831. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13832. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13833. }
  13834. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13835. struct ggml_cgraph cgraph = {
  13836. /*.size =*/ 0,
  13837. /*.n_nodes =*/ i1 - i0,
  13838. /*.n_leafs =*/ 0,
  13839. /*.nodes =*/ cgraph0->nodes + i0,
  13840. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13841. /*.leafs =*/ NULL,
  13842. /*.hash_table =*/ { 0, NULL },
  13843. /*.order =*/ cgraph0->order,
  13844. /*.perf_runs =*/ 0,
  13845. /*.perf_cycles =*/ 0,
  13846. /*.perf_time_us =*/ 0,
  13847. };
  13848. return cgraph;
  13849. }
  13850. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13851. GGML_ASSERT(dst->size >= src->n_leafs);
  13852. GGML_ASSERT(dst->size >= src->n_nodes);
  13853. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13854. dst->n_leafs = src->n_leafs;
  13855. dst->n_nodes = src->n_nodes;
  13856. dst->order = src->order;
  13857. for (int i = 0; i < src->n_leafs; ++i) {
  13858. dst->leafs[i] = src->leafs[i];
  13859. }
  13860. for (int i = 0; i < src->n_nodes; ++i) {
  13861. dst->nodes[i] = src->nodes[i];
  13862. }
  13863. if (src->grads) {
  13864. GGML_ASSERT(dst->grads != NULL);
  13865. for (int i = 0; i < src->n_nodes; ++i) {
  13866. dst->grads[i] = src->grads[i];
  13867. }
  13868. }
  13869. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13870. if (src->visited_hash_table.keys[i]) {
  13871. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13872. }
  13873. }
  13874. }
  13875. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13876. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13877. ggml_graph_cpy(cgraph, result);
  13878. return result;
  13879. }
  13880. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13881. GGML_ASSERT(cgraph->grads != NULL);
  13882. for (int i = 0; i < cgraph->n_nodes; i++) {
  13883. struct ggml_tensor * grad = cgraph->grads[i];
  13884. if (grad) {
  13885. ggml_set_zero(grad);
  13886. }
  13887. }
  13888. }
  13889. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13890. cgraph->n_leafs = 0;
  13891. cgraph->n_nodes = 0;
  13892. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13893. }
  13894. //
  13895. // thread data
  13896. //
  13897. // synchronization is done via busy loops
  13898. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13899. //
  13900. #ifdef __APPLE__
  13901. //#include <os/lock.h>
  13902. //
  13903. //typedef os_unfair_lock ggml_lock_t;
  13904. //
  13905. //#define ggml_lock_init(x) UNUSED(x)
  13906. //#define ggml_lock_destroy(x) UNUSED(x)
  13907. //#define ggml_lock_lock os_unfair_lock_lock
  13908. //#define ggml_lock_unlock os_unfair_lock_unlock
  13909. //
  13910. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13911. typedef int ggml_lock_t;
  13912. #define ggml_lock_init(x) UNUSED(x)
  13913. #define ggml_lock_destroy(x) UNUSED(x)
  13914. #define ggml_lock_lock(x) UNUSED(x)
  13915. #define ggml_lock_unlock(x) UNUSED(x)
  13916. #define GGML_LOCK_INITIALIZER 0
  13917. typedef pthread_t ggml_thread_t;
  13918. #define ggml_thread_create pthread_create
  13919. #define ggml_thread_join pthread_join
  13920. #else
  13921. //typedef pthread_spinlock_t ggml_lock_t;
  13922. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13923. //#define ggml_lock_destroy pthread_spin_destroy
  13924. //#define ggml_lock_lock pthread_spin_lock
  13925. //#define ggml_lock_unlock pthread_spin_unlock
  13926. typedef int ggml_lock_t;
  13927. #define ggml_lock_init(x) UNUSED(x)
  13928. #define ggml_lock_destroy(x) UNUSED(x)
  13929. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13930. #define ggml_lock_lock(x) _mm_pause()
  13931. #else
  13932. #define ggml_lock_lock(x) UNUSED(x)
  13933. #endif
  13934. #define ggml_lock_unlock(x) UNUSED(x)
  13935. #define GGML_LOCK_INITIALIZER 0
  13936. typedef pthread_t ggml_thread_t;
  13937. #define ggml_thread_create pthread_create
  13938. #define ggml_thread_join pthread_join
  13939. #endif
  13940. // Android's libc implementation "bionic" does not support setting affinity
  13941. #if defined(__gnu_linux__)
  13942. static void set_numa_thread_affinity(int thread_n) {
  13943. if (!ggml_is_numa()) {
  13944. return;
  13945. }
  13946. int node_num;
  13947. int rv;
  13948. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13949. switch(g_state.numa.numa_strategy) {
  13950. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13951. // run thread on node_num thread_n / (threads per node)
  13952. node_num = thread_n % g_state.numa.n_nodes;
  13953. break;
  13954. case GGML_NUMA_STRATEGY_ISOLATE:
  13955. // run thread on current_node
  13956. node_num = g_state.numa.current_node;
  13957. break;
  13958. case GGML_NUMA_STRATEGY_NUMACTL:
  13959. // use the cpuset that numactl gave us
  13960. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  13961. if (rv) {
  13962. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  13963. }
  13964. return;
  13965. default:
  13966. return;
  13967. }
  13968. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13969. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13970. CPU_ZERO_S(setsize, cpus);
  13971. for (size_t i = 0; i < node->n_cpus; ++i) {
  13972. CPU_SET_S(node->cpus[i], setsize, cpus);
  13973. }
  13974. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13975. if (rv) {
  13976. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13977. }
  13978. CPU_FREE(cpus);
  13979. }
  13980. static void clear_numa_thread_affinity(void) {
  13981. if (!ggml_is_numa()) {
  13982. return;
  13983. }
  13984. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13985. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13986. CPU_ZERO_S(setsize, cpus);
  13987. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13988. CPU_SET_S(i, setsize, cpus);
  13989. }
  13990. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13991. if (rv) {
  13992. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13993. }
  13994. CPU_FREE(cpus);
  13995. }
  13996. #else
  13997. // TODO: Windows etc.
  13998. // (the linux implementation may also work on BSD, someone should test)
  13999. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14000. static void clear_numa_thread_affinity(void) {}
  14001. #endif
  14002. struct ggml_compute_state_shared {
  14003. const struct ggml_cgraph * cgraph;
  14004. const struct ggml_cplan * cplan;
  14005. int64_t perf_node_start_cycles;
  14006. int64_t perf_node_start_time_us;
  14007. const int n_threads;
  14008. // synchronization primitives
  14009. atomic_int n_active; // num active threads
  14010. atomic_int node_n; // active graph node
  14011. atomic_int node_task; // active graph node task phase
  14012. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14013. void * abort_callback_data;
  14014. };
  14015. struct ggml_compute_state {
  14016. ggml_thread_t thrd;
  14017. int ith;
  14018. struct ggml_compute_state_shared * shared;
  14019. };
  14020. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14021. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14022. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14023. node->perf_runs++;
  14024. node->perf_cycles += cycles_cur;
  14025. node->perf_time_us += time_us_cur;
  14026. }
  14027. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14028. int n_tasks = 0;
  14029. switch (node->op) {
  14030. case GGML_OP_CPY:
  14031. case GGML_OP_DUP:
  14032. case GGML_OP_ADD:
  14033. case GGML_OP_ADD1:
  14034. case GGML_OP_ACC:
  14035. {
  14036. n_tasks = n_threads;
  14037. } break;
  14038. case GGML_OP_SUB:
  14039. case GGML_OP_SQR:
  14040. case GGML_OP_SQRT:
  14041. case GGML_OP_LOG:
  14042. case GGML_OP_SUM:
  14043. case GGML_OP_SUM_ROWS:
  14044. case GGML_OP_MEAN:
  14045. case GGML_OP_ARGMAX:
  14046. case GGML_OP_REPEAT:
  14047. case GGML_OP_REPEAT_BACK:
  14048. case GGML_OP_LEAKY_RELU:
  14049. {
  14050. n_tasks = 1;
  14051. } break;
  14052. case GGML_OP_UNARY:
  14053. switch (ggml_get_unary_op(node)) {
  14054. case GGML_UNARY_OP_ABS:
  14055. case GGML_UNARY_OP_SGN:
  14056. case GGML_UNARY_OP_NEG:
  14057. case GGML_UNARY_OP_STEP:
  14058. case GGML_UNARY_OP_TANH:
  14059. case GGML_UNARY_OP_ELU:
  14060. case GGML_UNARY_OP_RELU:
  14061. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14062. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14063. {
  14064. n_tasks = 1;
  14065. } break;
  14066. case GGML_UNARY_OP_GELU:
  14067. case GGML_UNARY_OP_GELU_QUICK:
  14068. case GGML_UNARY_OP_SILU:
  14069. {
  14070. n_tasks = n_threads;
  14071. } break;
  14072. default:
  14073. GGML_ASSERT(false);
  14074. }
  14075. break;
  14076. case GGML_OP_SILU_BACK:
  14077. case GGML_OP_MUL:
  14078. case GGML_OP_DIV:
  14079. case GGML_OP_NORM:
  14080. case GGML_OP_RMS_NORM:
  14081. case GGML_OP_RMS_NORM_BACK:
  14082. case GGML_OP_GROUP_NORM:
  14083. case GGML_OP_CONCAT:
  14084. {
  14085. n_tasks = n_threads;
  14086. } break;
  14087. case GGML_OP_MUL_MAT:
  14088. {
  14089. n_tasks = n_threads;
  14090. // TODO: use different scheduling for different matrix sizes
  14091. //const int nr0 = ggml_nrows(node->src[0]);
  14092. //const int nr1 = ggml_nrows(node->src[1]);
  14093. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14094. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14095. } break;
  14096. case GGML_OP_MUL_MAT_ID:
  14097. {
  14098. n_tasks = n_threads;
  14099. } break;
  14100. case GGML_OP_OUT_PROD:
  14101. {
  14102. n_tasks = n_threads;
  14103. } break;
  14104. case GGML_OP_SCALE:
  14105. case GGML_OP_SET:
  14106. case GGML_OP_CONT:
  14107. case GGML_OP_RESHAPE:
  14108. case GGML_OP_VIEW:
  14109. case GGML_OP_PERMUTE:
  14110. case GGML_OP_TRANSPOSE:
  14111. case GGML_OP_GET_ROWS:
  14112. case GGML_OP_GET_ROWS_BACK:
  14113. case GGML_OP_DIAG:
  14114. {
  14115. n_tasks = 1;
  14116. } break;
  14117. case GGML_OP_DIAG_MASK_ZERO:
  14118. case GGML_OP_DIAG_MASK_INF:
  14119. case GGML_OP_SOFT_MAX_BACK:
  14120. case GGML_OP_ROPE:
  14121. case GGML_OP_ROPE_BACK:
  14122. case GGML_OP_ADD_REL_POS:
  14123. {
  14124. n_tasks = n_threads;
  14125. } break;
  14126. case GGML_OP_ALIBI:
  14127. {
  14128. n_tasks = 1; //TODO
  14129. } break;
  14130. case GGML_OP_CLAMP:
  14131. {
  14132. n_tasks = 1; //TODO
  14133. } break;
  14134. case GGML_OP_SOFT_MAX:
  14135. {
  14136. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14137. } break;
  14138. case GGML_OP_CONV_TRANSPOSE_1D:
  14139. {
  14140. n_tasks = n_threads;
  14141. } break;
  14142. case GGML_OP_IM2COL:
  14143. {
  14144. n_tasks = n_threads;
  14145. } break;
  14146. case GGML_OP_CONV_TRANSPOSE_2D:
  14147. {
  14148. n_tasks = n_threads;
  14149. } break;
  14150. case GGML_OP_POOL_1D:
  14151. case GGML_OP_POOL_2D:
  14152. {
  14153. n_tasks = 1;
  14154. } break;
  14155. case GGML_OP_UPSCALE:
  14156. {
  14157. n_tasks = n_threads;
  14158. } break;
  14159. case GGML_OP_PAD:
  14160. {
  14161. n_tasks = n_threads;
  14162. } break;
  14163. case GGML_OP_ARGSORT:
  14164. {
  14165. n_tasks = n_threads;
  14166. } break;
  14167. case GGML_OP_FLASH_ATTN:
  14168. {
  14169. n_tasks = n_threads;
  14170. } break;
  14171. case GGML_OP_FLASH_FF:
  14172. {
  14173. n_tasks = n_threads;
  14174. } break;
  14175. case GGML_OP_FLASH_ATTN_BACK:
  14176. {
  14177. n_tasks = n_threads;
  14178. } break;
  14179. case GGML_OP_WIN_PART:
  14180. case GGML_OP_WIN_UNPART:
  14181. case GGML_OP_GET_REL_POS:
  14182. case GGML_OP_MAP_UNARY:
  14183. case GGML_OP_MAP_BINARY:
  14184. case GGML_OP_MAP_CUSTOM1_F32:
  14185. case GGML_OP_MAP_CUSTOM2_F32:
  14186. case GGML_OP_MAP_CUSTOM3_F32:
  14187. {
  14188. n_tasks = 1;
  14189. } break;
  14190. case GGML_OP_MAP_CUSTOM1:
  14191. {
  14192. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14193. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14194. n_tasks = n_threads;
  14195. } else {
  14196. n_tasks = MIN(p->n_tasks, n_threads);
  14197. }
  14198. } break;
  14199. case GGML_OP_MAP_CUSTOM2:
  14200. {
  14201. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14202. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14203. n_tasks = n_threads;
  14204. } else {
  14205. n_tasks = MIN(p->n_tasks, n_threads);
  14206. }
  14207. } break;
  14208. case GGML_OP_MAP_CUSTOM3:
  14209. {
  14210. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14211. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14212. n_tasks = n_threads;
  14213. } else {
  14214. n_tasks = MIN(p->n_tasks, n_threads);
  14215. }
  14216. } break;
  14217. case GGML_OP_CROSS_ENTROPY_LOSS:
  14218. {
  14219. n_tasks = n_threads;
  14220. } break;
  14221. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14222. {
  14223. n_tasks = n_threads;
  14224. } break;
  14225. case GGML_OP_NONE:
  14226. {
  14227. n_tasks = 1;
  14228. } break;
  14229. case GGML_OP_COUNT:
  14230. {
  14231. GGML_ASSERT(false);
  14232. } break;
  14233. default:
  14234. {
  14235. fprintf(stderr, "%s: op not implemented: ", __func__);
  14236. if (node->op < GGML_OP_COUNT) {
  14237. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14238. } else {
  14239. fprintf(stderr, "%d\n", node->op);
  14240. }
  14241. GGML_ASSERT(false);
  14242. } break;
  14243. }
  14244. assert(n_tasks > 0);
  14245. return n_tasks;
  14246. }
  14247. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14248. // wait for other threads to finish
  14249. const int last_node_n = * node_n;
  14250. while (true) {
  14251. if (do_yield) {
  14252. sched_yield();
  14253. }
  14254. * node_n = atomic_load(&state->shared->node_n);
  14255. if (* node_n != last_node_n) break;
  14256. }
  14257. }
  14258. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14259. // wait for other threads to finish
  14260. const int last_task_phase = * task_phase;
  14261. while (true) {
  14262. if (do_yield) {
  14263. sched_yield();
  14264. }
  14265. * task_phase = atomic_load(&state->shared->node_task);
  14266. if (* task_phase != last_task_phase) break;
  14267. }
  14268. }
  14269. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14270. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14271. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14272. const struct ggml_cplan * cplan = state->shared->cplan;
  14273. const int n_threads = state->shared->n_threads;
  14274. set_numa_thread_affinity(state->ith);
  14275. int node_n = -1;
  14276. int task_phase = GGML_TASK_FINALIZE;
  14277. while (true) {
  14278. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14279. state->shared->node_n += 1;
  14280. return (thread_ret_t) GGML_EXIT_ABORTED;
  14281. }
  14282. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14283. // all other threads are finished and spinning
  14284. // do finalize and init here so we don't have synchronize again
  14285. struct ggml_compute_params params = {
  14286. /*.type =*/ GGML_TASK_FINALIZE,
  14287. /*.ith =*/ 0,
  14288. /*.nth =*/ 0,
  14289. /*.wsize =*/ cplan->work_size,
  14290. /*.wdata =*/ cplan->work_data,
  14291. };
  14292. if (node_n != -1) {
  14293. /* FINALIZE */
  14294. struct ggml_tensor * node = cgraph->nodes[node_n];
  14295. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14296. params.nth = ggml_get_n_tasks(node, n_threads);
  14297. ggml_compute_forward(&params, node);
  14298. }
  14299. ggml_graph_compute_perf_stats_node(node, state->shared);
  14300. }
  14301. // distribute new work or execute it direct if 1T
  14302. while (++node_n < cgraph->n_nodes) {
  14303. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14304. struct ggml_tensor * node = cgraph->nodes[node_n];
  14305. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14306. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14307. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14308. params.nth = n_tasks;
  14309. if (n_tasks == 1) {
  14310. /* INIT */
  14311. if (GGML_OP_HAS_INIT[node->op]) {
  14312. params.type = GGML_TASK_INIT;
  14313. ggml_compute_forward(&params, node);
  14314. }
  14315. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14316. // they do something more efficient than spinning (?)
  14317. params.type = GGML_TASK_COMPUTE;
  14318. ggml_compute_forward(&params, node);
  14319. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14320. params.type = GGML_TASK_FINALIZE;
  14321. ggml_compute_forward(&params, node);
  14322. }
  14323. ggml_graph_compute_perf_stats_node(node, state->shared);
  14324. } else {
  14325. break;
  14326. }
  14327. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14328. break;
  14329. }
  14330. }
  14331. task_phase = GGML_TASK_INIT;
  14332. atomic_store(&state->shared->n_active, n_threads);
  14333. atomic_store(&state->shared->node_n, node_n);
  14334. atomic_store(&state->shared->node_task, task_phase);
  14335. } else {
  14336. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14337. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14338. }
  14339. // check if we should stop
  14340. if (node_n >= cgraph->n_nodes) break;
  14341. /* INIT & COMPUTE */
  14342. struct ggml_tensor * node = cgraph->nodes[node_n];
  14343. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14344. struct ggml_compute_params params = {
  14345. /*.type =*/ GGML_TASK_INIT,
  14346. /*.ith =*/ state->ith,
  14347. /*.nth =*/ n_tasks,
  14348. /*.wsize =*/ cplan->work_size,
  14349. /*.wdata =*/ cplan->work_data,
  14350. };
  14351. if (state->ith < n_tasks) {
  14352. if (GGML_OP_HAS_INIT[node->op]) {
  14353. ggml_compute_forward(&params, node);
  14354. }
  14355. }
  14356. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14357. task_phase = GGML_TASK_COMPUTE;
  14358. atomic_store(&state->shared->n_active, n_threads);
  14359. atomic_store(&state->shared->node_task, task_phase);
  14360. }
  14361. else {
  14362. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14363. // depending on the workload and the operating system.
  14364. // since it is not clear what is the best approach, it should potentially become user-configurable
  14365. // ref: https://github.com/ggerganov/ggml/issues/291
  14366. // UPD: adding the do_yield flag seems to resolve the issue universally
  14367. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14368. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14369. }
  14370. if (state->ith < n_tasks) {
  14371. params.type = GGML_TASK_COMPUTE;
  14372. ggml_compute_forward(&params, node);
  14373. }
  14374. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14375. task_phase = GGML_TASK_FINALIZE;
  14376. atomic_store(&state->shared->n_active, n_threads);
  14377. atomic_store(&state->shared->node_task, task_phase);
  14378. }
  14379. else {
  14380. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14381. }
  14382. }
  14383. return GGML_EXIT_SUCCESS;
  14384. }
  14385. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14386. if (n_threads <= 0) {
  14387. n_threads = GGML_DEFAULT_N_THREADS;
  14388. }
  14389. size_t work_size = 0;
  14390. struct ggml_cplan cplan;
  14391. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14392. int max_tasks = 1;
  14393. // thread scheduling for the different operations + work buffer size estimation
  14394. for (int i = 0; i < cgraph->n_nodes; i++) {
  14395. struct ggml_tensor * node = cgraph->nodes[i];
  14396. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14397. max_tasks = MAX(max_tasks, n_tasks);
  14398. size_t cur = 0;
  14399. switch (node->op) {
  14400. case GGML_OP_CPY:
  14401. case GGML_OP_DUP:
  14402. {
  14403. if (ggml_is_quantized(node->type)) {
  14404. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14405. }
  14406. } break;
  14407. case GGML_OP_ADD:
  14408. case GGML_OP_ADD1:
  14409. {
  14410. if (ggml_is_quantized(node->src[0]->type)) {
  14411. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14412. }
  14413. } break;
  14414. case GGML_OP_ACC:
  14415. {
  14416. if (ggml_is_quantized(node->src[0]->type)) {
  14417. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14418. }
  14419. } break;
  14420. case GGML_OP_MUL_MAT:
  14421. {
  14422. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14423. #if defined(GGML_USE_CLBLAST)
  14424. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14425. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14426. } else
  14427. #endif
  14428. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14429. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14430. if (node->src[0]->type != GGML_TYPE_F32) {
  14431. // here we need memory for fully dequantized matrix from src0
  14432. // take into account that src0 can be broadcasted into src1[2,3]
  14433. cur = ggml_type_size(GGML_TYPE_F32)
  14434. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14435. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14436. }
  14437. } else
  14438. #endif
  14439. if (node->src[1]->type != vec_dot_type) {
  14440. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14441. }
  14442. } break;
  14443. case GGML_OP_MUL_MAT_ID:
  14444. {
  14445. cur = 0;
  14446. const struct ggml_tensor * src0 = node->src[2];
  14447. const struct ggml_tensor * src1 = node->src[1];
  14448. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14449. if (src1->type != vec_dot_type) {
  14450. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14451. }
  14452. const int n_as = ggml_get_op_params_i32(node, 1);
  14453. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14454. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14455. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14456. } break;
  14457. case GGML_OP_OUT_PROD:
  14458. {
  14459. if (ggml_is_quantized(node->src[0]->type)) {
  14460. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14461. }
  14462. } break;
  14463. case GGML_OP_SOFT_MAX:
  14464. case GGML_OP_ROPE:
  14465. {
  14466. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14467. } break;
  14468. case GGML_OP_CONV_TRANSPOSE_1D:
  14469. {
  14470. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14471. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14472. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14473. const int64_t ne00 = node->src[0]->ne[0]; // K
  14474. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14475. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14476. const int64_t ne10 = node->src[1]->ne[0]; // L
  14477. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14478. if (node->src[0]->type == GGML_TYPE_F16 &&
  14479. node->src[1]->type == GGML_TYPE_F32) {
  14480. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14481. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14482. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14483. node->src[1]->type == GGML_TYPE_F32) {
  14484. cur += sizeof(float)*ne00*ne01*ne02;
  14485. cur += sizeof(float)*ne10*ne11;
  14486. } else {
  14487. GGML_ASSERT(false);
  14488. }
  14489. } break;
  14490. case GGML_OP_CONV_TRANSPOSE_2D:
  14491. {
  14492. const int64_t ne00 = node->src[0]->ne[0]; // W
  14493. const int64_t ne01 = node->src[0]->ne[1]; // H
  14494. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14495. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14496. const int64_t ne10 = node->src[1]->ne[0]; // W
  14497. const int64_t ne11 = node->src[1]->ne[1]; // H
  14498. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14499. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14500. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14501. } break;
  14502. case GGML_OP_FLASH_ATTN:
  14503. {
  14504. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14505. if (node->src[1]->type == GGML_TYPE_F32) {
  14506. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14507. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14508. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14509. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14510. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14511. }
  14512. } break;
  14513. case GGML_OP_FLASH_FF:
  14514. {
  14515. if (node->src[1]->type == GGML_TYPE_F32) {
  14516. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14517. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14518. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14519. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14520. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14521. }
  14522. } break;
  14523. case GGML_OP_FLASH_ATTN_BACK:
  14524. {
  14525. const int64_t D = node->src[0]->ne[0];
  14526. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14527. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14528. if (node->src[1]->type == GGML_TYPE_F32) {
  14529. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14530. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14531. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14532. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14533. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14534. }
  14535. } break;
  14536. case GGML_OP_CROSS_ENTROPY_LOSS:
  14537. {
  14538. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14539. } break;
  14540. case GGML_OP_COUNT:
  14541. {
  14542. GGML_ASSERT(false);
  14543. } break;
  14544. default:
  14545. break;
  14546. }
  14547. work_size = MAX(work_size, cur);
  14548. }
  14549. if (work_size > 0) {
  14550. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14551. }
  14552. cplan.n_threads = MIN(max_tasks, n_threads);
  14553. cplan.work_size = work_size;
  14554. cplan.work_data = NULL;
  14555. return cplan;
  14556. }
  14557. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14558. {
  14559. GGML_ASSERT(cplan);
  14560. GGML_ASSERT(cplan->n_threads > 0);
  14561. if (cplan->work_size > 0) {
  14562. GGML_ASSERT(cplan->work_data);
  14563. }
  14564. }
  14565. #ifdef GGML_USE_VULKAN
  14566. for (int i = 0; i < cgraph->n_nodes; i++) {
  14567. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14568. }
  14569. ggml_vk_preallocate_buffers_cpu_assist();
  14570. for (int i = 0; i < cgraph->n_nodes; i++) {
  14571. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14572. }
  14573. #endif
  14574. const int n_threads = cplan->n_threads;
  14575. struct ggml_compute_state_shared state_shared = {
  14576. /*.cgraph =*/ cgraph,
  14577. /*.cgraph_plan =*/ cplan,
  14578. /*.perf_node_start_cycles =*/ 0,
  14579. /*.perf_node_start_time_us =*/ 0,
  14580. /*.n_threads =*/ n_threads,
  14581. /*.n_active =*/ n_threads,
  14582. /*.node_n =*/ -1,
  14583. /*.node_task =*/ GGML_TASK_FINALIZE,
  14584. /*.abort_callback =*/ NULL,
  14585. /*.abort_callback_data =*/ NULL,
  14586. };
  14587. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14588. // create thread pool
  14589. if (n_threads > 1) {
  14590. for (int j = 1; j < n_threads; ++j) {
  14591. workers[j] = (struct ggml_compute_state) {
  14592. .thrd = 0,
  14593. .ith = j,
  14594. .shared = &state_shared,
  14595. };
  14596. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14597. GGML_ASSERT(rc == 0);
  14598. UNUSED(rc);
  14599. }
  14600. }
  14601. workers[0].ith = 0;
  14602. workers[0].shared = &state_shared;
  14603. const int64_t perf_start_cycles = ggml_perf_cycles();
  14604. const int64_t perf_start_time_us = ggml_perf_time_us();
  14605. // this is a work thread too
  14606. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14607. // don't leave affinity set on the main thread
  14608. clear_numa_thread_affinity();
  14609. // join or kill thread pool
  14610. if (n_threads > 1) {
  14611. for (int j = 1; j < n_threads; j++) {
  14612. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14613. GGML_ASSERT(rc == 0);
  14614. }
  14615. }
  14616. #ifdef GGML_USE_VULKAN
  14617. ggml_vk_graph_cleanup_cpu_assist();
  14618. #endif
  14619. // performance stats (graph)
  14620. {
  14621. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14622. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14623. cgraph->perf_runs++;
  14624. cgraph->perf_cycles += perf_cycles_cur;
  14625. cgraph->perf_time_us += perf_time_us_cur;
  14626. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14627. __func__, cgraph->perf_runs,
  14628. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14629. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14630. (double) perf_time_us_cur / 1000.0,
  14631. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14632. }
  14633. return compute_status;
  14634. }
  14635. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14636. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14637. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14638. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14639. ggml_graph_compute(cgraph, &cplan);
  14640. }
  14641. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14642. for (int i = 0; i < cgraph->n_leafs; i++) {
  14643. struct ggml_tensor * leaf = cgraph->leafs[i];
  14644. if (strcmp(leaf->name, name) == 0) {
  14645. return leaf;
  14646. }
  14647. }
  14648. for (int i = 0; i < cgraph->n_nodes; i++) {
  14649. struct ggml_tensor * node = cgraph->nodes[i];
  14650. if (strcmp(node->name, name) == 0) {
  14651. return node;
  14652. }
  14653. }
  14654. return NULL;
  14655. }
  14656. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14657. const int64_t * ne = tensor->ne;
  14658. const size_t * nb = tensor->nb;
  14659. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14660. ggml_type_name(tensor->type),
  14661. ggml_op_name (tensor->op),
  14662. ggml_n_dims(tensor),
  14663. ne[0], ne[1], ne[2], ne[3],
  14664. nb[0], nb[1], nb[2], nb[3],
  14665. tensor->data,
  14666. tensor->name);
  14667. }
  14668. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14669. const int64_t * ne = tensor->ne;
  14670. const size_t * nb = tensor->nb;
  14671. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14672. arg,
  14673. ggml_type_name(tensor->type),
  14674. ggml_op_name (tensor->op),
  14675. ggml_n_dims(tensor),
  14676. ne[0], ne[1], ne[2], ne[3],
  14677. nb[0], nb[1], nb[2], nb[3],
  14678. tensor->data,
  14679. tensor->name);
  14680. }
  14681. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14682. uint64_t size_eval = 0;
  14683. // compute size of intermediate results
  14684. // TODO: does not take into account scratch buffers !!!!
  14685. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14686. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14687. }
  14688. // print
  14689. {
  14690. FILE * fout = stdout;
  14691. fprintf(fout, "\n");
  14692. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14693. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14694. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14695. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14696. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14697. // header
  14698. fprintf(fout, "\n");
  14699. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14700. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14701. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14702. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14703. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14704. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14705. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14706. }
  14707. // header
  14708. fprintf(fout, "\n");
  14709. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14710. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14711. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14712. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14713. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14714. if (cgraph->nodes[i]->src[j]) {
  14715. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14716. }
  14717. }
  14718. fprintf(fout, "\n");
  14719. }
  14720. fprintf(fout, "\n");
  14721. }
  14722. // write binary data
  14723. {
  14724. FILE * fout = fopen(fname, "wb");
  14725. if (!fout) {
  14726. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14727. return;
  14728. }
  14729. // header
  14730. {
  14731. const uint32_t magic = GGML_FILE_MAGIC;
  14732. const uint32_t version = GGML_FILE_VERSION;
  14733. const uint32_t n_leafs = cgraph->n_leafs;
  14734. const uint32_t n_nodes = cgraph->n_nodes;
  14735. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14736. fwrite(&version, sizeof(uint32_t), 1, fout);
  14737. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14738. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14739. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14740. }
  14741. // leafs
  14742. {
  14743. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14744. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14745. const uint32_t type = tensor->type;
  14746. const uint32_t op = tensor->op;
  14747. fwrite(&type, sizeof(uint32_t), 1, fout);
  14748. fwrite(&op, sizeof(uint32_t), 1, fout);
  14749. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14750. const uint64_t ne = tensor->ne[j];
  14751. const uint64_t nb = tensor->nb[j];
  14752. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14753. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14754. }
  14755. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14756. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14757. // dump the data
  14758. // TODO: pad this to 32 byte boundary
  14759. {
  14760. const size_t size = ggml_nbytes(tensor);
  14761. fwrite(tensor->data, sizeof(char), size, fout);
  14762. }
  14763. }
  14764. }
  14765. // nodes
  14766. {
  14767. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14768. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14769. const uint32_t type = tensor->type;
  14770. const uint32_t op = tensor->op;
  14771. fwrite(&type, sizeof(uint32_t), 1, fout);
  14772. fwrite(&op, sizeof(uint32_t), 1, fout);
  14773. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14774. const uint64_t ne = tensor->ne[j];
  14775. const uint64_t nb = tensor->nb[j];
  14776. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14777. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14778. }
  14779. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14780. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14781. // output the op arguments
  14782. {
  14783. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14784. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14785. args[j] = tensor->src[j];
  14786. }
  14787. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14788. if (args[j]) {
  14789. int32_t idx = -1;
  14790. // check if leaf
  14791. {
  14792. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14793. if (args[j] == cgraph->leafs[k]) {
  14794. idx = k;
  14795. break;
  14796. }
  14797. }
  14798. }
  14799. // check if node
  14800. if (idx == -1) {
  14801. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14802. if (args[j] == cgraph->nodes[k]) {
  14803. idx = cgraph->n_leafs + k;
  14804. break;
  14805. }
  14806. }
  14807. }
  14808. if (idx == -1) {
  14809. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14810. fclose(fout);
  14811. return;
  14812. }
  14813. fwrite(&idx, sizeof(int32_t), 1, fout);
  14814. } else {
  14815. const int32_t nul = -1;
  14816. fwrite(&nul, sizeof(int32_t), 1, fout);
  14817. }
  14818. }
  14819. }
  14820. }
  14821. }
  14822. fclose(fout);
  14823. }
  14824. }
  14825. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14826. assert(*ctx_data == NULL);
  14827. assert(*ctx_eval == NULL);
  14828. struct ggml_cgraph * result = NULL;
  14829. struct ggml_tensor * data = NULL;
  14830. // read file into data
  14831. {
  14832. FILE * fin = fopen(fname, "rb");
  14833. if (!fin) {
  14834. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14835. return result;
  14836. }
  14837. size_t fsize = 0;
  14838. fseek(fin, 0, SEEK_END);
  14839. fsize = ftell(fin);
  14840. fseek(fin, 0, SEEK_SET);
  14841. // create the data context
  14842. {
  14843. const size_t overhead = 1*ggml_tensor_overhead();
  14844. struct ggml_init_params params = {
  14845. .mem_size = fsize + overhead,
  14846. .mem_buffer = NULL,
  14847. .no_alloc = false,
  14848. };
  14849. *ctx_data = ggml_init(params);
  14850. if (!*ctx_data) {
  14851. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14852. fclose(fin);
  14853. return result;
  14854. }
  14855. }
  14856. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14857. {
  14858. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14859. if (ret != fsize) {
  14860. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14861. fclose(fin);
  14862. return result;
  14863. }
  14864. }
  14865. fclose(fin);
  14866. }
  14867. // populate result
  14868. {
  14869. char * ptr = (char *) data->data;
  14870. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14871. if (magic != GGML_FILE_MAGIC) {
  14872. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14873. return result;
  14874. }
  14875. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14876. if (version != GGML_FILE_VERSION) {
  14877. fprintf(stderr, "%s: invalid version number\n", __func__);
  14878. return result;
  14879. }
  14880. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14881. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14882. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14883. const int graph_size = MAX(n_leafs, n_nodes);
  14884. // create the data context
  14885. {
  14886. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14887. struct ggml_init_params params = {
  14888. .mem_size = size_eval + overhead,
  14889. .mem_buffer = NULL,
  14890. .no_alloc = true,
  14891. };
  14892. *ctx_eval = ggml_init(params);
  14893. if (!*ctx_eval) {
  14894. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14895. return result;
  14896. }
  14897. }
  14898. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14899. result->n_leafs = n_leafs;
  14900. result->n_nodes = n_nodes;
  14901. // leafs
  14902. {
  14903. uint32_t type;
  14904. uint32_t op;
  14905. for (uint32_t i = 0; i < n_leafs; ++i) {
  14906. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14907. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14908. int64_t ne[GGML_MAX_DIMS];
  14909. size_t nb[GGML_MAX_DIMS];
  14910. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14911. uint64_t ne_cur;
  14912. uint64_t nb_cur;
  14913. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14914. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14915. ne[j] = ne_cur;
  14916. nb[j] = nb_cur;
  14917. }
  14918. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14919. tensor->op = (enum ggml_op) op;
  14920. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14921. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14922. tensor->data = (void *) ptr;
  14923. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14924. tensor->nb[j] = nb[j];
  14925. }
  14926. result->leafs[i] = tensor;
  14927. ptr += ggml_nbytes(tensor);
  14928. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14929. }
  14930. }
  14931. ggml_set_no_alloc(*ctx_eval, false);
  14932. // nodes
  14933. {
  14934. uint32_t type;
  14935. uint32_t op;
  14936. for (uint32_t i = 0; i < n_nodes; ++i) {
  14937. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14938. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14939. enum ggml_op eop = (enum ggml_op) op;
  14940. int64_t ne[GGML_MAX_DIMS];
  14941. size_t nb[GGML_MAX_DIMS];
  14942. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14943. uint64_t ne_cur;
  14944. uint64_t nb_cur;
  14945. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14946. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14947. ne[j] = ne_cur;
  14948. nb[j] = nb_cur;
  14949. }
  14950. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14951. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14952. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14953. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14954. // parse args
  14955. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14956. const int32_t arg_idx = ptr_arg_idx[j];
  14957. if (arg_idx == -1) {
  14958. continue;
  14959. }
  14960. if (arg_idx < result->n_leafs) {
  14961. args[j] = result->leafs[arg_idx];
  14962. } else {
  14963. args[j] = result->nodes[arg_idx - result->n_leafs];
  14964. }
  14965. }
  14966. // create the tensor
  14967. // "view" operations are handled differently
  14968. // TODO: handle inplace ops - currently a copy is always made
  14969. struct ggml_tensor * tensor = NULL;
  14970. switch (eop) {
  14971. // TODO: implement other view ops
  14972. case GGML_OP_RESHAPE:
  14973. {
  14974. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14975. } break;
  14976. case GGML_OP_VIEW:
  14977. {
  14978. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14979. size_t offs;
  14980. memcpy(&offs, ptr_op_params, sizeof(offs));
  14981. tensor->data = ((char *) tensor->data) + offs;
  14982. } break;
  14983. case GGML_OP_TRANSPOSE:
  14984. {
  14985. tensor = ggml_transpose(*ctx_eval, args[0]);
  14986. } break;
  14987. case GGML_OP_PERMUTE:
  14988. {
  14989. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14990. } break;
  14991. default:
  14992. {
  14993. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14994. tensor->op = eop;
  14995. } break;
  14996. }
  14997. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14998. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14999. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15000. tensor->nb[j] = nb[j];
  15001. }
  15002. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15003. tensor->src[j] = args[j];
  15004. }
  15005. result->nodes[i] = tensor;
  15006. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15007. }
  15008. }
  15009. }
  15010. return result;
  15011. }
  15012. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15013. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15014. GGML_PRINT("=== GRAPH ===\n");
  15015. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15016. for (int i = 0; i < cgraph->n_nodes; i++) {
  15017. struct ggml_tensor * node = cgraph->nodes[i];
  15018. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15019. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15020. i,
  15021. node->ne[0], node->ne[1], node->ne[2],
  15022. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15023. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15024. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15025. (double) node->perf_time_us / 1000.0,
  15026. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15027. }
  15028. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15029. for (int i = 0; i < cgraph->n_leafs; i++) {
  15030. struct ggml_tensor * node = cgraph->leafs[i];
  15031. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15032. i,
  15033. node->ne[0], node->ne[1],
  15034. ggml_op_name(node->op),
  15035. ggml_get_name(node));
  15036. }
  15037. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15038. if (perf_total_per_op_us[i] == 0) {
  15039. continue;
  15040. }
  15041. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15042. }
  15043. GGML_PRINT("========================================\n");
  15044. }
  15045. // check if node is part of the graph
  15046. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15047. if (cgraph == NULL) {
  15048. return true;
  15049. }
  15050. for (int i = 0; i < cgraph->n_nodes; i++) {
  15051. if (cgraph->nodes[i] == node) {
  15052. return true;
  15053. }
  15054. }
  15055. return false;
  15056. }
  15057. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15058. for (int i = 0; i < cgraph->n_nodes; i++) {
  15059. struct ggml_tensor * parent = cgraph->nodes[i];
  15060. if (parent->grad == node) {
  15061. return parent;
  15062. }
  15063. }
  15064. return NULL;
  15065. }
  15066. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15067. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15068. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15069. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15070. gparent0 ? (void *) gparent0 : (void *) parent,
  15071. gparent0 ? "g" : "x",
  15072. gparent ? (void *) gparent : (void *) node,
  15073. gparent ? "g" : "x",
  15074. gparent ? "empty" : "vee",
  15075. gparent ? "dashed" : "solid",
  15076. label);
  15077. }
  15078. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15079. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15080. (void *) parent, "x",
  15081. (void *) node, "x",
  15082. label);
  15083. }
  15084. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15085. char color[16];
  15086. FILE * fp = fopen(filename, "w");
  15087. GGML_ASSERT(fp);
  15088. fprintf(fp, "digraph G {\n");
  15089. fprintf(fp, " newrank = true;\n");
  15090. fprintf(fp, " rankdir = LR;\n");
  15091. for (int i = 0; i < gb->n_nodes; i++) {
  15092. struct ggml_tensor * node = gb->nodes[i];
  15093. if (ggml_graph_get_parent(gb, node) != NULL) {
  15094. continue;
  15095. }
  15096. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15097. snprintf(color, sizeof(color), "yellow");
  15098. } else if (node->grad) {
  15099. if (ggml_graph_find(gf, node)) {
  15100. snprintf(color, sizeof(color), "green");
  15101. } else {
  15102. snprintf(color, sizeof(color), "lightblue");
  15103. }
  15104. } else {
  15105. snprintf(color, sizeof(color), "white");
  15106. }
  15107. fprintf(fp, " \"%p\" [ "
  15108. "style = filled; fillcolor = %s; shape = record; "
  15109. "label=\"",
  15110. (void *) node, color);
  15111. if (strlen(node->name) > 0) {
  15112. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15113. } else {
  15114. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15115. }
  15116. if (ggml_is_matrix(node)) {
  15117. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15118. } else {
  15119. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15120. }
  15121. if (node->grad) {
  15122. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15123. } else {
  15124. fprintf(fp, "\"; ]\n");
  15125. }
  15126. }
  15127. for (int i = 0; i < gb->n_leafs; i++) {
  15128. struct ggml_tensor * node = gb->leafs[i];
  15129. snprintf(color, sizeof(color), "pink");
  15130. fprintf(fp, " \"%p\" [ "
  15131. "style = filled; fillcolor = %s; shape = record; "
  15132. "label=\"<x>",
  15133. (void *) node, color);
  15134. if (strlen(node->name) > 0) {
  15135. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15136. } else {
  15137. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15138. }
  15139. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15140. if (ggml_nelements(node) < 5) {
  15141. fprintf(fp, " | (");
  15142. for (int j = 0; j < ggml_nelements(node); j++) {
  15143. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15144. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15145. }
  15146. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15147. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15148. }
  15149. else {
  15150. fprintf(fp, "#");
  15151. }
  15152. if (j < ggml_nelements(node) - 1) {
  15153. fprintf(fp, ", ");
  15154. }
  15155. }
  15156. fprintf(fp, ")");
  15157. }
  15158. fprintf(fp, "\"; ]\n");
  15159. }
  15160. for (int i = 0; i < gb->n_nodes; i++) {
  15161. struct ggml_tensor * node = gb->nodes[i];
  15162. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15163. if (node->src[j]) {
  15164. char label[16];
  15165. snprintf(label, sizeof(label), "src %d", j);
  15166. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15167. }
  15168. }
  15169. }
  15170. for (int i = 0; i < gb->n_leafs; i++) {
  15171. struct ggml_tensor * node = gb->leafs[i];
  15172. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15173. if (node->src[j]) {
  15174. char label[16];
  15175. snprintf(label, sizeof(label), "src %d", j);
  15176. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15177. }
  15178. }
  15179. }
  15180. fprintf(fp, "}\n");
  15181. fclose(fp);
  15182. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15183. }
  15184. ////////////////////////////////////////////////////////////////////////////////
  15185. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15186. int i = 0;
  15187. for (int p = 0; p < np; ++p) {
  15188. const int64_t ne = ggml_nelements(ps[p]) ;
  15189. // TODO: add function to set tensor from array
  15190. for (int64_t j = 0; j < ne; ++j) {
  15191. ggml_set_f32_1d(ps[p], j, x[i++]);
  15192. }
  15193. }
  15194. }
  15195. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15196. int i = 0;
  15197. for (int p = 0; p < np; ++p) {
  15198. const int64_t ne = ggml_nelements(ps[p]) ;
  15199. // TODO: add function to get all elements at once
  15200. for (int64_t j = 0; j < ne; ++j) {
  15201. x[i++] = ggml_get_f32_1d(ps[p], j);
  15202. }
  15203. }
  15204. }
  15205. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15206. int64_t i = 0;
  15207. for (int p = 0; p < np; ++p) {
  15208. const int64_t ne = ggml_nelements(ps[p]) ;
  15209. // TODO: add function to get all elements at once
  15210. for (int64_t j = 0; j < ne; ++j) {
  15211. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15212. }
  15213. }
  15214. }
  15215. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15216. int64_t i = 0;
  15217. for (int p = 0; p < np; ++p) {
  15218. const int64_t ne = ggml_nelements(ps[p]) ;
  15219. // TODO: add function to get all elements at once
  15220. for (int64_t j = 0; j < ne; ++j) {
  15221. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15222. }
  15223. }
  15224. }
  15225. //
  15226. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15227. //
  15228. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15229. //
  15230. static enum ggml_opt_result ggml_opt_adam(
  15231. struct ggml_context * ctx,
  15232. struct ggml_opt_context * opt,
  15233. struct ggml_opt_params params,
  15234. struct ggml_tensor * f,
  15235. struct ggml_cgraph * gf,
  15236. struct ggml_cgraph * gb,
  15237. ggml_opt_callback callback,
  15238. void * callback_data) {
  15239. GGML_ASSERT(ggml_is_scalar(f));
  15240. // these will store the parameters we want to optimize
  15241. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15242. int np = 0;
  15243. int64_t nx = 0;
  15244. for (int i = 0; i < gf->n_nodes; ++i) {
  15245. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15246. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15247. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15248. ps[np++] = gf->nodes[i];
  15249. nx += ggml_nelements(gf->nodes[i]);
  15250. }
  15251. }
  15252. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15253. int iter = opt->iter;
  15254. ggml_opt_init(opt->ctx, opt, params, nx);
  15255. opt->iter = iter;
  15256. }
  15257. // constants
  15258. float sched = params.adam.sched;
  15259. const float alpha = params.adam.alpha;
  15260. const float decay = params.adam.decay * alpha;
  15261. const float beta1 = params.adam.beta1;
  15262. const float beta2 = params.adam.beta2;
  15263. const float eps = params.adam.eps;
  15264. const float gclip = params.adam.gclip;
  15265. const int decay_min_ndim = params.adam.decay_min_ndim;
  15266. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15267. const float accum_norm = 1.0f / (float) n_accum;
  15268. float * g = opt->adam.g->data; // gradients
  15269. float * m = opt->adam.m->data; // first moment
  15270. float * v = opt->adam.v->data; // second moment
  15271. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15272. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15273. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15274. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15275. bool cancel = false;
  15276. // compute the function value
  15277. float fx = 0;
  15278. ggml_set_zero(opt->adam.g);
  15279. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15280. if (callback) {
  15281. callback(callback_data, accum_step, &sched, &cancel);
  15282. if (cancel) {
  15283. return GGML_OPT_CANCEL;
  15284. }
  15285. }
  15286. // ggml_graph_reset (gf);
  15287. ggml_set_f32 (f->grad, 1.0f);
  15288. ggml_graph_compute(gb, &cplan);
  15289. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15290. fx += ggml_get_f32_1d(f, 0);
  15291. }
  15292. fx *= accum_norm;
  15293. opt->adam.fx_prev = fx;
  15294. opt->adam.fx_best = opt->adam.fx_prev;
  15295. if (pf) {
  15296. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15297. }
  15298. opt->loss_before = opt->adam.fx_prev;
  15299. opt->loss_after = opt->adam.fx_prev;
  15300. // initialize
  15301. if (opt->just_initialized) {
  15302. opt->adam.n_no_improvement = 0;
  15303. opt->just_initialized = false;
  15304. }
  15305. float * fx_best = &opt->adam.fx_best;
  15306. float * fx_prev = &opt->adam.fx_prev;
  15307. int * n_no_improvement = &opt->adam.n_no_improvement;
  15308. int iter0 = opt->iter;
  15309. // run the optimizer
  15310. for (int t = 0; t < params.adam.n_iter; ++t) {
  15311. opt->iter = iter0 + t + 1;
  15312. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15313. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15314. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15315. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15316. for (int i = 0; i < np; ++i) {
  15317. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15318. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15319. }
  15320. const int64_t t_start_wall = ggml_time_us();
  15321. const int64_t t_start_cpu = ggml_cycles();
  15322. UNUSED(t_start_wall);
  15323. UNUSED(t_start_cpu);
  15324. {
  15325. float gnorm = 1.0f;
  15326. if (gclip > 0.0f) {
  15327. // gradient clipping
  15328. ggml_float sum = 0.0;
  15329. for (int64_t i = 0; i < nx; ++i) {
  15330. sum += (ggml_float)(g[i]*g[i]);
  15331. }
  15332. ggml_float norm = sqrt(sum);
  15333. if (norm > (ggml_float) gclip) {
  15334. gnorm = (float) ((ggml_float) gclip / norm);
  15335. }
  15336. }
  15337. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15338. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15339. int64_t i = 0;
  15340. for (int p = 0; p < np; ++p) {
  15341. const int64_t ne = ggml_nelements(ps[p]);
  15342. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15343. for (int64_t j = 0; j < ne; ++j) {
  15344. float x = ggml_get_f32_1d(ps[p], j);
  15345. float g_ = g[i]*gnorm;
  15346. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15347. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15348. float mh = m[i]*beta1h;
  15349. float vh = v[i]*beta2h;
  15350. vh = sqrtf(vh) + eps;
  15351. x = x*(1.0f - p_decay) - mh/vh;
  15352. ggml_set_f32_1d(ps[p], j, x);
  15353. ++i;
  15354. }
  15355. }
  15356. }
  15357. fx = 0;
  15358. ggml_set_zero(opt->adam.g);
  15359. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15360. if (callback) {
  15361. callback(callback_data, accum_step, &sched, &cancel);
  15362. if (cancel) {
  15363. return GGML_OPT_CANCEL;;
  15364. }
  15365. }
  15366. // ggml_graph_reset (gf);
  15367. ggml_set_f32 (f->grad, 1.0f);
  15368. ggml_graph_compute(gb, &cplan);
  15369. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15370. fx += ggml_get_f32_1d(f, 0);
  15371. }
  15372. fx *= accum_norm;
  15373. opt->loss_after = fx;
  15374. // check convergence
  15375. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15376. GGML_PRINT_DEBUG("converged\n");
  15377. return GGML_OPT_OK;
  15378. }
  15379. // delta-based convergence test
  15380. if (pf != NULL) {
  15381. // need at least params.past iterations to start checking for convergence
  15382. if (params.past <= iter0 + t) {
  15383. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15384. if (fabsf(rate) < params.delta) {
  15385. return GGML_OPT_OK;
  15386. }
  15387. }
  15388. pf[(iter0 + t)%params.past] = fx;
  15389. }
  15390. // check for improvement
  15391. if (params.max_no_improvement > 0) {
  15392. if (fx_best[0] > fx) {
  15393. fx_best[0] = fx;
  15394. n_no_improvement[0] = 0;
  15395. } else {
  15396. ++n_no_improvement[0];
  15397. if (n_no_improvement[0] >= params.max_no_improvement) {
  15398. return GGML_OPT_OK;
  15399. }
  15400. }
  15401. }
  15402. fx_prev[0] = fx;
  15403. {
  15404. const int64_t t_end_cpu = ggml_cycles();
  15405. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15406. UNUSED(t_end_cpu);
  15407. const int64_t t_end_wall = ggml_time_us();
  15408. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15409. UNUSED(t_end_wall);
  15410. }
  15411. }
  15412. return GGML_OPT_DID_NOT_CONVERGE;
  15413. }
  15414. //
  15415. // L-BFGS
  15416. //
  15417. // the L-BFGS implementation below is based on the following implementation:
  15418. //
  15419. // https://github.com/chokkan/liblbfgs
  15420. //
  15421. struct ggml_lbfgs_iteration_data {
  15422. float alpha;
  15423. float ys;
  15424. float * s;
  15425. float * y;
  15426. };
  15427. static enum ggml_opt_result linesearch_backtracking(
  15428. const struct ggml_opt_params * params,
  15429. int nx,
  15430. float * x,
  15431. float * fx,
  15432. float * g,
  15433. float * d,
  15434. float * step,
  15435. const float * xp,
  15436. struct ggml_tensor * f,
  15437. struct ggml_cgraph * gb,
  15438. struct ggml_cplan * cplan,
  15439. const int np,
  15440. struct ggml_tensor * ps[],
  15441. bool * cancel,
  15442. ggml_opt_callback callback,
  15443. void * callback_data) {
  15444. int count = 0;
  15445. float width = 0.0f;
  15446. float dg = 0.0f;
  15447. float finit = 0.0f;
  15448. float dginit = 0.0f;
  15449. float dgtest = 0.0f;
  15450. const float dec = 0.5f;
  15451. const float inc = 2.1f;
  15452. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15453. const float accum_norm = 1.0f / (float) n_accum;
  15454. if (*step <= 0.f) {
  15455. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15456. }
  15457. // compute the initial gradient in the search direction
  15458. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15459. // make sure that d points to a descent direction
  15460. if (0 < dginit) {
  15461. return GGML_LINESEARCH_FAIL;
  15462. }
  15463. // initialize local variables
  15464. finit = *fx;
  15465. dgtest = params->lbfgs.ftol*dginit;
  15466. while (true) {
  15467. ggml_vec_cpy_f32(nx, x, xp);
  15468. ggml_vec_mad_f32(nx, x, d, *step);
  15469. // evaluate the function and gradient values
  15470. {
  15471. ggml_opt_set_params(np, ps, x);
  15472. *fx = 0;
  15473. memset(g, 0, sizeof(float)*nx);
  15474. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15475. if (callback) {
  15476. // LBFG-S does not support learning rate -> ignore learning schedule
  15477. float sched = 0;
  15478. callback(callback_data, accum_step, &sched, cancel);
  15479. if (*cancel) {
  15480. return GGML_OPT_CANCEL;
  15481. }
  15482. }
  15483. // ggml_graph_reset (gf);
  15484. ggml_set_f32 (f->grad, 1.0f);
  15485. ggml_graph_compute(gb, cplan);
  15486. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15487. *fx += ggml_get_f32_1d(f, 0);
  15488. }
  15489. *fx *= accum_norm;
  15490. }
  15491. ++count;
  15492. if (*fx > finit + (*step)*dgtest) {
  15493. width = dec;
  15494. } else {
  15495. // Armijo condition is satisfied
  15496. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15497. return count;
  15498. }
  15499. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15500. // check the Wolfe condition
  15501. if (dg < params->lbfgs.wolfe * dginit) {
  15502. width = inc;
  15503. } else {
  15504. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15505. // regular Wolfe conditions
  15506. return count;
  15507. }
  15508. if(dg > -params->lbfgs.wolfe*dginit) {
  15509. width = dec;
  15510. } else {
  15511. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15512. return count;
  15513. }
  15514. }
  15515. }
  15516. if (*step < params->lbfgs.min_step) {
  15517. return GGML_LINESEARCH_MINIMUM_STEP;
  15518. }
  15519. if (*step > params->lbfgs.max_step) {
  15520. return GGML_LINESEARCH_MAXIMUM_STEP;
  15521. }
  15522. if (params->lbfgs.max_linesearch <= count) {
  15523. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15524. }
  15525. (*step) *= width;
  15526. }
  15527. GGML_ASSERT(false && "line search failed");
  15528. return GGML_LINESEARCH_FAIL;
  15529. }
  15530. static enum ggml_opt_result ggml_opt_lbfgs(
  15531. struct ggml_context * ctx,
  15532. struct ggml_opt_context * opt,
  15533. struct ggml_opt_params params,
  15534. struct ggml_tensor * f,
  15535. struct ggml_cgraph * gf,
  15536. struct ggml_cgraph * gb,
  15537. ggml_opt_callback callback,
  15538. void * callback_data) {
  15539. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15540. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15541. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15542. return GGML_OPT_INVALID_WOLFE;
  15543. }
  15544. }
  15545. const int m = params.lbfgs.m;
  15546. // these will store the parameters we want to optimize
  15547. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15548. int np = 0;
  15549. int nx = 0;
  15550. for (int i = 0; i < gf->n_nodes; ++i) {
  15551. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15552. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15553. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15554. ps[np++] = gf->nodes[i];
  15555. nx += ggml_nelements(gf->nodes[i]);
  15556. }
  15557. }
  15558. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15559. int iter = opt->iter;
  15560. ggml_opt_init(ctx, opt, params, nx);
  15561. opt->iter = iter;
  15562. }
  15563. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15564. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15565. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15566. float * x = opt->lbfgs.x->data; // current parameters
  15567. float * xp = opt->lbfgs.xp->data; // previous parameters
  15568. float * g = opt->lbfgs.g->data; // current gradient
  15569. float * gp = opt->lbfgs.gp->data; // previous gradient
  15570. float * d = opt->lbfgs.d->data; // search direction
  15571. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15572. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15573. const float accum_norm = 1.0f / (float) n_accum;
  15574. float fx = 0.0f; // cost function value
  15575. float xnorm = 0.0f; // ||x||
  15576. float gnorm = 0.0f; // ||g||
  15577. // initialize x from the graph nodes
  15578. ggml_opt_get_params(np, ps, x);
  15579. // the L-BFGS memory
  15580. float * lm_alpha = opt->lbfgs.lmal->data;
  15581. float * lm_ys = opt->lbfgs.lmys->data;
  15582. float * lm_s = opt->lbfgs.lms->data;
  15583. float * lm_y = opt->lbfgs.lmy->data;
  15584. bool cancel = false;
  15585. // evaluate the function value and its gradient
  15586. {
  15587. ggml_opt_set_params(np, ps, x);
  15588. fx = 0;
  15589. memset(g, 0, sizeof(float)*nx);
  15590. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15591. if (callback) {
  15592. // LBFG-S does not support learning rate -> ignore learning schedule
  15593. float sched = 0;
  15594. callback(callback_data, accum_step, &sched, &cancel);
  15595. if (cancel) {
  15596. return GGML_OPT_CANCEL;
  15597. }
  15598. }
  15599. // ggml_graph_reset (gf);
  15600. ggml_set_f32 (f->grad, 1.0f);
  15601. ggml_graph_compute(gb, &cplan);
  15602. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15603. fx += ggml_get_f32_1d(f, 0);
  15604. }
  15605. fx *= accum_norm;
  15606. opt->loss_before = fx;
  15607. opt->loss_after = fx;
  15608. }
  15609. // search direction = -gradient
  15610. ggml_vec_neg_f32(nx, d, g);
  15611. // ||x||, ||g||
  15612. ggml_vec_norm_f32(nx, &xnorm, x);
  15613. ggml_vec_norm_f32(nx, &gnorm, g);
  15614. if (xnorm < 1.0f) {
  15615. xnorm = 1.0f;
  15616. }
  15617. // already optimized
  15618. if (gnorm/xnorm <= params.lbfgs.eps) {
  15619. return GGML_OPT_OK;
  15620. }
  15621. if (opt->just_initialized) {
  15622. if (pf) {
  15623. pf[0] = fx;
  15624. }
  15625. opt->lbfgs.fx_best = fx;
  15626. // initial step
  15627. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15628. opt->lbfgs.j = 0;
  15629. opt->lbfgs.k = 1;
  15630. opt->lbfgs.end = 0;
  15631. opt->lbfgs.n_no_improvement = 0;
  15632. opt->just_initialized = false;
  15633. }
  15634. float * fx_best = &opt->lbfgs.fx_best;
  15635. float * step = &opt->lbfgs.step;
  15636. int * j = &opt->lbfgs.j;
  15637. int * k = &opt->lbfgs.k;
  15638. int * end = &opt->lbfgs.end;
  15639. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15640. int ls = 0;
  15641. int bound = 0;
  15642. float ys = 0.0f;
  15643. float yy = 0.0f;
  15644. float beta = 0.0f;
  15645. int it = 0;
  15646. while (true) {
  15647. // store the current position and gradient vectors
  15648. ggml_vec_cpy_f32(nx, xp, x);
  15649. ggml_vec_cpy_f32(nx, gp, g);
  15650. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15651. // to determine if the optimization should be cancelled
  15652. // this is a simple change, but not doing this atm, since I don't have a nice
  15653. // way to test and don't want to break something with so many changes lined up
  15654. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15655. if (cancel) {
  15656. return GGML_OPT_CANCEL;
  15657. }
  15658. if (ls < 0) {
  15659. // linesearch failed - go back to the previous point and return
  15660. ggml_vec_cpy_f32(nx, x, xp);
  15661. ggml_vec_cpy_f32(nx, g, gp);
  15662. return ls;
  15663. }
  15664. opt->loss_after = fx;
  15665. ggml_vec_norm_f32(nx, &xnorm, x);
  15666. ggml_vec_norm_f32(nx, &gnorm, g);
  15667. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15668. if (xnorm < 1.0f) {
  15669. xnorm = 1.0f;
  15670. }
  15671. if (gnorm/xnorm <= params.lbfgs.eps) {
  15672. // converged
  15673. return GGML_OPT_OK;
  15674. }
  15675. // delta-based convergence test
  15676. if (pf != NULL) {
  15677. // need at least params.past iterations to start checking for convergence
  15678. if (params.past <= k[0]) {
  15679. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15680. if (fabsf(rate) < params.delta) {
  15681. return GGML_OPT_OK;
  15682. }
  15683. }
  15684. pf[k[0]%params.past] = fx;
  15685. }
  15686. // check for improvement
  15687. if (params.max_no_improvement > 0) {
  15688. if (fx < fx_best[0]) {
  15689. fx_best[0] = fx;
  15690. n_no_improvement[0] = 0;
  15691. } else {
  15692. n_no_improvement[0]++;
  15693. if (n_no_improvement[0] >= params.max_no_improvement) {
  15694. return GGML_OPT_OK;
  15695. }
  15696. }
  15697. }
  15698. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15699. // reached the maximum number of iterations
  15700. return GGML_OPT_DID_NOT_CONVERGE;
  15701. }
  15702. // update vectors s and y:
  15703. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15704. // y_{k+1} = g_{k+1} - g_{k}.
  15705. //
  15706. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15707. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15708. // compute scalars ys and yy:
  15709. // ys = y^t \cdot s -> 1 / \rho.
  15710. // yy = y^t \cdot y.
  15711. //
  15712. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15713. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15714. lm_ys[end[0]] = ys;
  15715. // find new search direction
  15716. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15717. bound = (m <= k[0]) ? m : k[0];
  15718. k[0]++;
  15719. it++;
  15720. end[0] = (end[0] + 1)%m;
  15721. // initialize search direction with -g
  15722. ggml_vec_neg_f32(nx, d, g);
  15723. j[0] = end[0];
  15724. for (int i = 0; i < bound; ++i) {
  15725. j[0] = (j[0] + m - 1) % m;
  15726. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15727. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15728. lm_alpha[j[0]] /= lm_ys[j[0]];
  15729. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15730. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15731. }
  15732. ggml_vec_scale_f32(nx, d, ys/yy);
  15733. for (int i = 0; i < bound; ++i) {
  15734. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15735. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15736. beta /= lm_ys[j[0]];
  15737. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15738. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15739. j[0] = (j[0] + 1)%m;
  15740. }
  15741. step[0] = 1.0;
  15742. }
  15743. GGML_ASSERT(false && "lbfgs failed");
  15744. return GGML_OPT_DID_NOT_CONVERGE;
  15745. }
  15746. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15747. struct ggml_opt_params result;
  15748. switch (type) {
  15749. case GGML_OPT_ADAM:
  15750. {
  15751. result = (struct ggml_opt_params) {
  15752. .type = GGML_OPT_ADAM,
  15753. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15754. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15755. .past = 0,
  15756. .delta = 1e-5f,
  15757. .max_no_improvement = 100,
  15758. .print_forward_graph = true,
  15759. .print_backward_graph = true,
  15760. .n_gradient_accumulation = 1,
  15761. .adam = {
  15762. .n_iter = 10000,
  15763. .sched = 1.000f,
  15764. .decay = 0.0f,
  15765. .decay_min_ndim = 2,
  15766. .alpha = 0.001f,
  15767. .beta1 = 0.9f,
  15768. .beta2 = 0.999f,
  15769. .eps = 1e-8f,
  15770. .eps_f = 1e-5f,
  15771. .eps_g = 1e-3f,
  15772. .gclip = 0.0f,
  15773. },
  15774. };
  15775. } break;
  15776. case GGML_OPT_LBFGS:
  15777. {
  15778. result = (struct ggml_opt_params) {
  15779. .type = GGML_OPT_LBFGS,
  15780. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15781. .n_threads = 1,
  15782. .past = 0,
  15783. .delta = 1e-5f,
  15784. .max_no_improvement = 0,
  15785. .print_forward_graph = true,
  15786. .print_backward_graph = true,
  15787. .n_gradient_accumulation = 1,
  15788. .lbfgs = {
  15789. .m = 6,
  15790. .n_iter = 100,
  15791. .max_linesearch = 20,
  15792. .eps = 1e-5f,
  15793. .ftol = 1e-4f,
  15794. .wolfe = 0.9f,
  15795. .min_step = 1e-20f,
  15796. .max_step = 1e+20f,
  15797. .linesearch = GGML_LINESEARCH_DEFAULT,
  15798. },
  15799. };
  15800. } break;
  15801. }
  15802. return result;
  15803. }
  15804. GGML_API void ggml_opt_init(
  15805. struct ggml_context * ctx,
  15806. struct ggml_opt_context * opt,
  15807. struct ggml_opt_params params,
  15808. int64_t nx) {
  15809. opt->ctx = ctx;
  15810. opt->params = params;
  15811. opt->iter = 0;
  15812. opt->nx = nx;
  15813. opt->just_initialized = true;
  15814. if (opt->ctx == NULL) {
  15815. struct ggml_init_params ctx_opt_params;
  15816. if (opt->params.type == GGML_OPT_ADAM) {
  15817. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15818. if (opt->params.past > 0) {
  15819. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15820. }
  15821. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15822. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15823. if (opt->params.past > 0) {
  15824. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15825. }
  15826. }
  15827. ctx_opt_params.mem_buffer = NULL;
  15828. ctx_opt_params.no_alloc = false;
  15829. opt->ctx = ggml_init(ctx_opt_params);
  15830. }
  15831. switch (opt->params.type) {
  15832. case GGML_OPT_ADAM:
  15833. {
  15834. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15835. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15836. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15837. opt->adam.pf = params.past > 0
  15838. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15839. : NULL;
  15840. ggml_set_zero(opt->adam.m);
  15841. ggml_set_zero(opt->adam.v);
  15842. if (opt->adam.pf) {
  15843. ggml_set_zero(opt->adam.pf);
  15844. }
  15845. } break;
  15846. case GGML_OPT_LBFGS:
  15847. {
  15848. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15849. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15850. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15851. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15852. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15853. opt->lbfgs.pf = params.past > 0
  15854. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15855. : NULL;
  15856. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15857. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15858. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15859. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15860. ggml_set_zero(opt->lbfgs.x);
  15861. ggml_set_zero(opt->lbfgs.xp);
  15862. ggml_set_zero(opt->lbfgs.g);
  15863. ggml_set_zero(opt->lbfgs.gp);
  15864. ggml_set_zero(opt->lbfgs.d);
  15865. if (opt->lbfgs.pf) {
  15866. ggml_set_zero(opt->lbfgs.pf);
  15867. }
  15868. ggml_set_zero(opt->lbfgs.lmal);
  15869. ggml_set_zero(opt->lbfgs.lmys);
  15870. ggml_set_zero(opt->lbfgs.lms);
  15871. ggml_set_zero(opt->lbfgs.lmy);
  15872. } break;
  15873. }
  15874. }
  15875. enum ggml_opt_result ggml_opt(
  15876. struct ggml_context * ctx,
  15877. struct ggml_opt_params params,
  15878. struct ggml_tensor * f) {
  15879. bool free_ctx = false;
  15880. if (ctx == NULL) {
  15881. struct ggml_init_params params_ctx = {
  15882. .mem_size = 16*1024*1024,
  15883. .mem_buffer = NULL,
  15884. .no_alloc = false,
  15885. };
  15886. ctx = ggml_init(params_ctx);
  15887. if (ctx == NULL) {
  15888. return GGML_OPT_NO_CONTEXT;
  15889. }
  15890. free_ctx = true;
  15891. }
  15892. enum ggml_opt_result result = GGML_OPT_OK;
  15893. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15894. ggml_opt_init(ctx, opt, params, 0);
  15895. result = ggml_opt_resume(ctx, opt, f);
  15896. if (free_ctx) {
  15897. ggml_free(ctx);
  15898. }
  15899. return result;
  15900. }
  15901. enum ggml_opt_result ggml_opt_resume(
  15902. struct ggml_context * ctx,
  15903. struct ggml_opt_context * opt,
  15904. struct ggml_tensor * f) {
  15905. // build forward + backward compute graphs
  15906. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15907. ggml_build_forward_expand(gf, f);
  15908. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15909. ggml_build_backward_expand(ctx, gf, gb, true);
  15910. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15911. }
  15912. enum ggml_opt_result ggml_opt_resume_g(
  15913. struct ggml_context * ctx,
  15914. struct ggml_opt_context * opt,
  15915. struct ggml_tensor * f,
  15916. struct ggml_cgraph * gf,
  15917. struct ggml_cgraph * gb,
  15918. ggml_opt_callback callback,
  15919. void * callback_data) {
  15920. // build forward + backward compute graphs
  15921. enum ggml_opt_result result = GGML_OPT_OK;
  15922. switch (opt->params.type) {
  15923. case GGML_OPT_ADAM:
  15924. {
  15925. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15926. } break;
  15927. case GGML_OPT_LBFGS:
  15928. {
  15929. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15930. } break;
  15931. }
  15932. if (opt->params.print_forward_graph) {
  15933. ggml_graph_print (gf);
  15934. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15935. }
  15936. if (opt->params.print_backward_graph) {
  15937. ggml_graph_print (gb);
  15938. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15939. }
  15940. return result;
  15941. }
  15942. ////////////////////////////////////////////////////////////////////////////////
  15943. void ggml_set_input(struct ggml_tensor * tensor) {
  15944. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15945. }
  15946. void ggml_set_output(struct ggml_tensor * tensor) {
  15947. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15948. }
  15949. ////////////////////////////////////////////////////////////////////////////////
  15950. void ggml_quantize_init(enum ggml_type type) {
  15951. ggml_critical_section_start();
  15952. switch (type) {
  15953. case GGML_TYPE_IQ2_XXS:
  15954. case GGML_TYPE_IQ2_XS:
  15955. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  15956. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15957. default: // nothing
  15958. break;
  15959. }
  15960. ggml_critical_section_end();
  15961. }
  15962. void ggml_quantize_free(void) {
  15963. ggml_critical_section_start();
  15964. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  15965. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  15966. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  15967. iq3xs_free_impl(256);
  15968. ggml_critical_section_end();
  15969. }
  15970. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15971. assert(k % QK4_0 == 0);
  15972. const int nb = k / QK4_0;
  15973. for (int b = 0; b < n; b += k) {
  15974. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15975. quantize_row_q4_0_reference(src + b, y, k);
  15976. for (int i = 0; i < nb; i++) {
  15977. for (int j = 0; j < QK4_0; j += 2) {
  15978. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15979. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15980. hist[vi0]++;
  15981. hist[vi1]++;
  15982. }
  15983. }
  15984. }
  15985. return (n/QK4_0*sizeof(block_q4_0));
  15986. }
  15987. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15988. assert(k % QK4_1 == 0);
  15989. const int nb = k / QK4_1;
  15990. for (int b = 0; b < n; b += k) {
  15991. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15992. quantize_row_q4_1_reference(src + b, y, k);
  15993. for (int i = 0; i < nb; i++) {
  15994. for (int j = 0; j < QK4_1; j += 2) {
  15995. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15996. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15997. hist[vi0]++;
  15998. hist[vi1]++;
  15999. }
  16000. }
  16001. }
  16002. return (n/QK4_1*sizeof(block_q4_1));
  16003. }
  16004. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16005. assert(k % QK5_0 == 0);
  16006. const int nb = k / QK5_0;
  16007. for (int b = 0; b < n; b += k) {
  16008. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16009. quantize_row_q5_0_reference(src + b, y, k);
  16010. for (int i = 0; i < nb; i++) {
  16011. uint32_t qh;
  16012. memcpy(&qh, &y[i].qh, sizeof(qh));
  16013. for (int j = 0; j < QK5_0; j += 2) {
  16014. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16015. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16016. // cast to 16 bins
  16017. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16018. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16019. hist[vi0]++;
  16020. hist[vi1]++;
  16021. }
  16022. }
  16023. }
  16024. return (n/QK5_0*sizeof(block_q5_0));
  16025. }
  16026. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16027. assert(k % QK5_1 == 0);
  16028. const int nb = k / QK5_1;
  16029. for (int b = 0; b < n; b += k) {
  16030. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16031. quantize_row_q5_1_reference(src + b, y, k);
  16032. for (int i = 0; i < nb; i++) {
  16033. uint32_t qh;
  16034. memcpy(&qh, &y[i].qh, sizeof(qh));
  16035. for (int j = 0; j < QK5_1; j += 2) {
  16036. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16037. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16038. // cast to 16 bins
  16039. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16040. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16041. hist[vi0]++;
  16042. hist[vi1]++;
  16043. }
  16044. }
  16045. }
  16046. return (n/QK5_1*sizeof(block_q5_1));
  16047. }
  16048. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16049. assert(k % QK8_0 == 0);
  16050. const int nb = k / QK8_0;
  16051. for (int b = 0; b < n; b += k) {
  16052. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16053. quantize_row_q8_0_reference(src + b, y, k);
  16054. for (int i = 0; i < nb; i++) {
  16055. for (int j = 0; j < QK8_0; ++j) {
  16056. const int8_t vi = y[i].qs[j];
  16057. hist[vi/16 + 8]++;
  16058. }
  16059. }
  16060. }
  16061. return (n/QK8_0*sizeof(block_q8_0));
  16062. }
  16063. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16064. return
  16065. type == GGML_TYPE_IQ2_XXS ||
  16066. type == GGML_TYPE_IQ2_XS ||
  16067. type == GGML_TYPE_IQ1_S;
  16068. }
  16069. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16070. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16071. ggml_quantize_init(type); // this is noop if already initialized
  16072. size_t result = 0;
  16073. int n = nrows * n_per_row;
  16074. switch (type) {
  16075. case GGML_TYPE_Q4_0:
  16076. {
  16077. GGML_ASSERT(start % QK4_0 == 0);
  16078. GGML_ASSERT(start % n_per_row == 0);
  16079. size_t start_row = start / n_per_row;
  16080. size_t row_size = ggml_row_size(type, n_per_row);
  16081. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16082. GGML_ASSERT(result == row_size * nrows);
  16083. } break;
  16084. case GGML_TYPE_Q4_1:
  16085. {
  16086. GGML_ASSERT(start % QK4_1 == 0);
  16087. GGML_ASSERT(start % n_per_row == 0);
  16088. size_t start_row = start / n_per_row;
  16089. size_t row_size = ggml_row_size(type, n_per_row);
  16090. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16091. GGML_ASSERT(result == row_size * nrows);
  16092. } break;
  16093. case GGML_TYPE_Q5_0:
  16094. {
  16095. GGML_ASSERT(start % QK5_0 == 0);
  16096. GGML_ASSERT(start % n_per_row == 0);
  16097. size_t start_row = start / n_per_row;
  16098. size_t row_size = ggml_row_size(type, n_per_row);
  16099. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16100. GGML_ASSERT(result == row_size * nrows);
  16101. } break;
  16102. case GGML_TYPE_Q5_1:
  16103. {
  16104. GGML_ASSERT(start % QK5_1 == 0);
  16105. GGML_ASSERT(start % n_per_row == 0);
  16106. size_t start_row = start / n_per_row;
  16107. size_t row_size = ggml_row_size(type, n_per_row);
  16108. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16109. GGML_ASSERT(result == row_size * nrows);
  16110. } break;
  16111. case GGML_TYPE_Q8_0:
  16112. {
  16113. GGML_ASSERT(start % QK8_0 == 0);
  16114. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16115. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16116. } break;
  16117. case GGML_TYPE_Q2_K:
  16118. {
  16119. GGML_ASSERT(start % QK_K == 0);
  16120. GGML_ASSERT(start % n_per_row == 0);
  16121. size_t start_row = start / n_per_row;
  16122. size_t row_size = ggml_row_size(type, n_per_row);
  16123. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16124. GGML_ASSERT(result == row_size * nrows);
  16125. } break;
  16126. case GGML_TYPE_Q3_K:
  16127. {
  16128. GGML_ASSERT(start % QK_K == 0);
  16129. GGML_ASSERT(start % n_per_row == 0);
  16130. size_t start_row = start / n_per_row;
  16131. size_t row_size = ggml_row_size(type, n_per_row);
  16132. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16133. GGML_ASSERT(result == row_size * nrows);
  16134. } break;
  16135. case GGML_TYPE_Q4_K:
  16136. {
  16137. GGML_ASSERT(start % QK_K == 0);
  16138. GGML_ASSERT(start % n_per_row == 0);
  16139. size_t start_row = start / n_per_row;
  16140. size_t row_size = ggml_row_size(type, n_per_row);
  16141. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16142. GGML_ASSERT(result == row_size * nrows);
  16143. } break;
  16144. case GGML_TYPE_Q5_K:
  16145. {
  16146. GGML_ASSERT(start % QK_K == 0);
  16147. GGML_ASSERT(start % n_per_row == 0);
  16148. size_t start_row = start / n_per_row;
  16149. size_t row_size = ggml_row_size(type, n_per_row);
  16150. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16151. GGML_ASSERT(result == row_size * nrows);
  16152. } break;
  16153. case GGML_TYPE_Q6_K:
  16154. {
  16155. GGML_ASSERT(start % QK_K == 0);
  16156. GGML_ASSERT(start % n_per_row == 0);
  16157. size_t start_row = start / n_per_row;
  16158. size_t row_size = ggml_row_size(type, n_per_row);
  16159. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16160. GGML_ASSERT(result == row_size * nrows);
  16161. } break;
  16162. case GGML_TYPE_IQ2_XXS:
  16163. {
  16164. GGML_ASSERT(start % QK_K == 0);
  16165. GGML_ASSERT(start % n_per_row == 0);
  16166. GGML_ASSERT(imatrix);
  16167. size_t start_row = start / n_per_row;
  16168. size_t row_size = ggml_row_size(type, n_per_row);
  16169. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16170. GGML_ASSERT(result == row_size * nrows);
  16171. } break;
  16172. case GGML_TYPE_IQ2_XS:
  16173. {
  16174. GGML_ASSERT(start % QK_K == 0);
  16175. GGML_ASSERT(start % n_per_row == 0);
  16176. GGML_ASSERT(imatrix);
  16177. size_t start_row = start / n_per_row;
  16178. size_t row_size = ggml_row_size(type, n_per_row);
  16179. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16180. GGML_ASSERT(result == row_size * nrows);
  16181. } break;
  16182. case GGML_TYPE_IQ3_XXS:
  16183. {
  16184. GGML_ASSERT(start % QK_K == 0);
  16185. GGML_ASSERT(start % n_per_row == 0);
  16186. size_t start_row = start / n_per_row;
  16187. size_t row_size = ggml_row_size(type, n_per_row);
  16188. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16189. GGML_ASSERT(result == row_size * nrows);
  16190. } break;
  16191. case GGML_TYPE_IQ1_S:
  16192. {
  16193. GGML_ASSERT(start % QK_K == 0);
  16194. GGML_ASSERT(start % n_per_row == 0);
  16195. size_t start_row = start / n_per_row;
  16196. size_t row_size = ggml_row_size(type, n_per_row);
  16197. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16198. GGML_ASSERT(result == row_size * nrows);
  16199. } break;
  16200. case GGML_TYPE_F16:
  16201. {
  16202. size_t elemsize = sizeof(ggml_fp16_t);
  16203. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16204. result = n * elemsize;
  16205. } break;
  16206. case GGML_TYPE_F32:
  16207. {
  16208. size_t elemsize = sizeof(float);
  16209. result = n * elemsize;
  16210. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16211. } break;
  16212. default:
  16213. assert(false);
  16214. }
  16215. return result;
  16216. }
  16217. ////////////////////////////////////////////////////////////////////////////////
  16218. struct gguf_str {
  16219. uint64_t n; // GGUFv2
  16220. char * data;
  16221. };
  16222. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16223. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16224. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16225. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16226. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16227. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16228. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16229. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16230. [GGUF_TYPE_BOOL] = sizeof(bool),
  16231. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16232. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16233. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16234. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16235. [GGUF_TYPE_ARRAY] = 0, // undefined
  16236. };
  16237. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16238. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16239. [GGUF_TYPE_UINT8] = "u8",
  16240. [GGUF_TYPE_INT8] = "i8",
  16241. [GGUF_TYPE_UINT16] = "u16",
  16242. [GGUF_TYPE_INT16] = "i16",
  16243. [GGUF_TYPE_UINT32] = "u32",
  16244. [GGUF_TYPE_INT32] = "i32",
  16245. [GGUF_TYPE_FLOAT32] = "f32",
  16246. [GGUF_TYPE_BOOL] = "bool",
  16247. [GGUF_TYPE_STRING] = "str",
  16248. [GGUF_TYPE_ARRAY] = "arr",
  16249. [GGUF_TYPE_UINT64] = "u64",
  16250. [GGUF_TYPE_INT64] = "i64",
  16251. [GGUF_TYPE_FLOAT64] = "f64",
  16252. };
  16253. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16254. union gguf_value {
  16255. uint8_t uint8;
  16256. int8_t int8;
  16257. uint16_t uint16;
  16258. int16_t int16;
  16259. uint32_t uint32;
  16260. int32_t int32;
  16261. float float32;
  16262. uint64_t uint64;
  16263. int64_t int64;
  16264. double float64;
  16265. bool bool_;
  16266. struct gguf_str str;
  16267. struct {
  16268. enum gguf_type type;
  16269. uint64_t n; // GGUFv2
  16270. void * data;
  16271. } arr;
  16272. };
  16273. struct gguf_kv {
  16274. struct gguf_str key;
  16275. enum gguf_type type;
  16276. union gguf_value value;
  16277. };
  16278. struct gguf_header {
  16279. char magic[4];
  16280. uint32_t version;
  16281. uint64_t n_tensors; // GGUFv2
  16282. uint64_t n_kv; // GGUFv2
  16283. };
  16284. struct gguf_tensor_info {
  16285. struct gguf_str name;
  16286. uint32_t n_dims;
  16287. uint64_t ne[GGML_MAX_DIMS];
  16288. enum ggml_type type;
  16289. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16290. // for writing API
  16291. const void * data;
  16292. size_t size;
  16293. };
  16294. struct gguf_context {
  16295. struct gguf_header header;
  16296. struct gguf_kv * kv;
  16297. struct gguf_tensor_info * infos;
  16298. size_t alignment;
  16299. size_t offset; // offset of `data` from beginning of file
  16300. size_t size; // size of `data` in bytes
  16301. //uint8_t * padding;
  16302. void * data;
  16303. };
  16304. static size_t gguf_type_size(enum gguf_type type) {
  16305. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16306. return GGUF_TYPE_SIZE[type];
  16307. }
  16308. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16309. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16310. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16311. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16312. GGML_ASSERT(info->ne[i] > 0);
  16313. }
  16314. // prevent overflow for total number of elements
  16315. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16316. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16317. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16318. }
  16319. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16320. const size_t n = fread(dst, 1, size, file);
  16321. *offset += n;
  16322. return n == size;
  16323. }
  16324. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16325. p->n = 0;
  16326. p->data = NULL;
  16327. bool ok = true;
  16328. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16329. // early exit if string length is invalid, prevents from integer overflow
  16330. if (p->n == SIZE_MAX) {
  16331. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16332. return false;
  16333. }
  16334. p->data = GGML_CALLOC(p->n + 1, 1);
  16335. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16336. return ok;
  16337. }
  16338. struct gguf_context * gguf_init_empty(void) {
  16339. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16340. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16341. ctx->header.version = GGUF_VERSION;
  16342. ctx->header.n_tensors = 0;
  16343. ctx->header.n_kv = 0;
  16344. ctx->kv = NULL;
  16345. ctx->infos = NULL;
  16346. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16347. ctx->offset = 0;
  16348. ctx->size = 0;
  16349. ctx->data = NULL;
  16350. return ctx;
  16351. }
  16352. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16353. FILE * file = fopen(fname, "rb");
  16354. if (!file) {
  16355. return NULL;
  16356. }
  16357. // offset from start of file
  16358. size_t offset = 0;
  16359. char magic[4];
  16360. // check the magic before making allocations
  16361. {
  16362. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16363. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16364. if (magic[i] != GGUF_MAGIC[i]) {
  16365. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16366. fclose(file);
  16367. return NULL;
  16368. }
  16369. }
  16370. }
  16371. bool ok = true;
  16372. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16373. // read the header
  16374. {
  16375. strncpy(ctx->header.magic, magic, 4);
  16376. ctx->kv = NULL;
  16377. ctx->infos = NULL;
  16378. ctx->data = NULL;
  16379. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16380. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16381. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16382. if (ctx->header.version == 1) {
  16383. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16384. fclose(file);
  16385. gguf_free(ctx);
  16386. return NULL;
  16387. }
  16388. // sanity-checks to prevent from integer/buffer overflows
  16389. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16390. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16391. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16392. if (!ok) {
  16393. fprintf(stderr, "%s: failed to read header\n", __func__);
  16394. fclose(file);
  16395. gguf_free(ctx);
  16396. return NULL;
  16397. }
  16398. }
  16399. // read the kv pairs
  16400. {
  16401. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16402. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16403. struct gguf_kv * kv = &ctx->kv[i];
  16404. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16405. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16406. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16407. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16408. switch (kv->type) {
  16409. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16410. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16411. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16412. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16413. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16414. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16415. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16416. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16417. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16418. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16419. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16420. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16421. case GGUF_TYPE_ARRAY:
  16422. {
  16423. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16424. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16425. switch (kv->value.arr.type) {
  16426. case GGUF_TYPE_UINT8:
  16427. case GGUF_TYPE_INT8:
  16428. case GGUF_TYPE_UINT16:
  16429. case GGUF_TYPE_INT16:
  16430. case GGUF_TYPE_UINT32:
  16431. case GGUF_TYPE_INT32:
  16432. case GGUF_TYPE_FLOAT32:
  16433. case GGUF_TYPE_UINT64:
  16434. case GGUF_TYPE_INT64:
  16435. case GGUF_TYPE_FLOAT64:
  16436. case GGUF_TYPE_BOOL:
  16437. {
  16438. // prevent from integer overflow in the malloc below
  16439. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16440. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16441. fclose(file);
  16442. gguf_free(ctx);
  16443. return NULL;
  16444. }
  16445. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16446. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16447. } break;
  16448. case GGUF_TYPE_STRING:
  16449. {
  16450. // prevent from integer overflow in the malloc below
  16451. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16452. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16453. fclose(file);
  16454. gguf_free(ctx);
  16455. return NULL;
  16456. }
  16457. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16458. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16459. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16460. }
  16461. } break;
  16462. case GGUF_TYPE_ARRAY:
  16463. default: GGML_ASSERT(false && "invalid type"); break;
  16464. }
  16465. } break;
  16466. default: GGML_ASSERT(false && "invalid type");
  16467. }
  16468. if (!ok) {
  16469. break;
  16470. }
  16471. }
  16472. if (!ok) {
  16473. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16474. fclose(file);
  16475. gguf_free(ctx);
  16476. return NULL;
  16477. }
  16478. }
  16479. // read the tensor infos
  16480. {
  16481. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16482. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16483. struct gguf_tensor_info * info = &ctx->infos[i];
  16484. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16485. info->ne[j] = 1;
  16486. }
  16487. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16488. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16489. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16490. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16491. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16492. }
  16493. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16494. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16495. gguf_tensor_info_sanitize(info);
  16496. if (!ok) {
  16497. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16498. fclose(file);
  16499. gguf_free(ctx);
  16500. return NULL;
  16501. }
  16502. }
  16503. }
  16504. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16505. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16506. if (alignment_idx != -1) {
  16507. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16508. }
  16509. // we require the data section to be aligned, so take into account any padding
  16510. {
  16511. const size_t offset_pad = offset % ctx->alignment;
  16512. if (offset_pad != 0) {
  16513. offset += ctx->alignment - offset_pad;
  16514. fseek(file, offset, SEEK_SET);
  16515. }
  16516. }
  16517. // store the current file offset - this is where the data section starts
  16518. ctx->offset = offset;
  16519. // compute the total size of the data section, taking into account the alignment
  16520. {
  16521. ctx->size = 0;
  16522. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16523. struct gguf_tensor_info * info = &ctx->infos[i];
  16524. const int64_t ne =
  16525. (int64_t) info->ne[0] *
  16526. (int64_t) info->ne[1] *
  16527. (int64_t) info->ne[2] *
  16528. (int64_t) info->ne[3];
  16529. if (ne % ggml_blck_size(info->type) != 0) {
  16530. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16531. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16532. fclose(file);
  16533. gguf_free(ctx);
  16534. return NULL;
  16535. }
  16536. const size_t size_cur = ggml_row_size(info->type, ne);
  16537. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16538. }
  16539. }
  16540. // load the tensor data only if requested
  16541. if (params.ctx != NULL) {
  16542. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16543. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16544. // the ggml_tensor structs to the appropriate locations in the binary blob
  16545. // compute the exact size needed for the new ggml_context
  16546. const size_t mem_size =
  16547. params.no_alloc ?
  16548. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16549. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16550. struct ggml_init_params pdata = {
  16551. .mem_size = mem_size,
  16552. .mem_buffer = NULL,
  16553. .no_alloc = params.no_alloc,
  16554. };
  16555. *params.ctx = ggml_init(pdata);
  16556. struct ggml_context * ctx_data = *params.ctx;
  16557. struct ggml_tensor * data = NULL;
  16558. if (!params.no_alloc) {
  16559. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16560. ok = ok && data != NULL;
  16561. // read the binary blob with the tensor data
  16562. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16563. if (!ok) {
  16564. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16565. fclose(file);
  16566. ggml_free(ctx_data);
  16567. gguf_free(ctx);
  16568. return NULL;
  16569. }
  16570. ctx->data = data->data;
  16571. }
  16572. ggml_set_no_alloc(ctx_data, true);
  16573. // create the tensors
  16574. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16575. const int64_t ne[GGML_MAX_DIMS] = {
  16576. ctx->infos[i].ne[0],
  16577. ctx->infos[i].ne[1],
  16578. ctx->infos[i].ne[2],
  16579. ctx->infos[i].ne[3],
  16580. };
  16581. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16582. ok = ok && cur != NULL;
  16583. ggml_set_name(cur, ctx->infos[i].name.data);
  16584. if (!ok) {
  16585. break;
  16586. }
  16587. // point the data member to the appropriate location in the binary blob using the tensor infos
  16588. if (!params.no_alloc) {
  16589. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16590. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16591. }
  16592. }
  16593. if (!ok) {
  16594. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16595. fclose(file);
  16596. ggml_free(ctx_data);
  16597. gguf_free(ctx);
  16598. return NULL;
  16599. }
  16600. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16601. }
  16602. fclose(file);
  16603. return ctx;
  16604. }
  16605. void gguf_free(struct gguf_context * ctx) {
  16606. if (ctx == NULL) {
  16607. return;
  16608. }
  16609. if (ctx->kv) {
  16610. // free string memory - not great..
  16611. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16612. struct gguf_kv * kv = &ctx->kv[i];
  16613. if (kv->key.data) {
  16614. GGML_FREE(kv->key.data);
  16615. }
  16616. if (kv->type == GGUF_TYPE_STRING) {
  16617. if (kv->value.str.data) {
  16618. GGML_FREE(kv->value.str.data);
  16619. }
  16620. }
  16621. if (kv->type == GGUF_TYPE_ARRAY) {
  16622. if (kv->value.arr.data) {
  16623. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16624. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16625. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16626. if (str->data) {
  16627. GGML_FREE(str->data);
  16628. }
  16629. }
  16630. }
  16631. GGML_FREE(kv->value.arr.data);
  16632. }
  16633. }
  16634. }
  16635. GGML_FREE(ctx->kv);
  16636. }
  16637. if (ctx->infos) {
  16638. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16639. struct gguf_tensor_info * info = &ctx->infos[i];
  16640. if (info->name.data) {
  16641. GGML_FREE(info->name.data);
  16642. }
  16643. }
  16644. GGML_FREE(ctx->infos);
  16645. }
  16646. GGML_ALIGNED_FREE(ctx);
  16647. }
  16648. const char * gguf_type_name(enum gguf_type type) {
  16649. return GGUF_TYPE_NAME[type];
  16650. }
  16651. int gguf_get_version(const struct gguf_context * ctx) {
  16652. return ctx->header.version;
  16653. }
  16654. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16655. return ctx->alignment;
  16656. }
  16657. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16658. return ctx->offset;
  16659. }
  16660. void * gguf_get_data(const struct gguf_context * ctx) {
  16661. return ctx->data;
  16662. }
  16663. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16664. return ctx->header.n_kv;
  16665. }
  16666. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16667. // return -1 if key not found
  16668. int keyfound = -1;
  16669. const int n_kv = gguf_get_n_kv(ctx);
  16670. for (int i = 0; i < n_kv; ++i) {
  16671. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16672. keyfound = i;
  16673. break;
  16674. }
  16675. }
  16676. return keyfound;
  16677. }
  16678. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16679. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16680. return ctx->kv[key_id].key.data;
  16681. }
  16682. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16683. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16684. return ctx->kv[key_id].type;
  16685. }
  16686. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16687. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16688. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16689. return ctx->kv[key_id].value.arr.type;
  16690. }
  16691. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16692. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16693. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16694. return ctx->kv[key_id].value.arr.data;
  16695. }
  16696. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16697. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16698. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16699. struct gguf_kv * kv = &ctx->kv[key_id];
  16700. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16701. return str->data;
  16702. }
  16703. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16704. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16705. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16706. return ctx->kv[key_id].value.arr.n;
  16707. }
  16708. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16709. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16710. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16711. return ctx->kv[key_id].value.uint8;
  16712. }
  16713. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16714. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16715. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16716. return ctx->kv[key_id].value.int8;
  16717. }
  16718. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16719. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16720. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16721. return ctx->kv[key_id].value.uint16;
  16722. }
  16723. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16724. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16725. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16726. return ctx->kv[key_id].value.int16;
  16727. }
  16728. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16729. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16730. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16731. return ctx->kv[key_id].value.uint32;
  16732. }
  16733. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16734. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16735. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16736. return ctx->kv[key_id].value.int32;
  16737. }
  16738. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16739. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16740. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16741. return ctx->kv[key_id].value.float32;
  16742. }
  16743. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16744. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16745. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16746. return ctx->kv[key_id].value.uint64;
  16747. }
  16748. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16749. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16750. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16751. return ctx->kv[key_id].value.int64;
  16752. }
  16753. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16754. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16755. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16756. return ctx->kv[key_id].value.float64;
  16757. }
  16758. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16759. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16760. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16761. return ctx->kv[key_id].value.bool_;
  16762. }
  16763. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16764. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16765. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16766. return ctx->kv[key_id].value.str.data;
  16767. }
  16768. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16769. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16770. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16771. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16772. return &ctx->kv[key_id].value;
  16773. }
  16774. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16775. return ctx->header.n_tensors;
  16776. }
  16777. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16778. // return -1 if tensor not found
  16779. int tensorfound = -1;
  16780. const int n_tensors = gguf_get_n_tensors(ctx);
  16781. for (int i = 0; i < n_tensors; ++i) {
  16782. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16783. tensorfound = i;
  16784. break;
  16785. }
  16786. }
  16787. return tensorfound;
  16788. }
  16789. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16790. return ctx->infos[i].offset;
  16791. }
  16792. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16793. return ctx->infos[i].name.data;
  16794. }
  16795. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16796. return ctx->infos[i].type;
  16797. }
  16798. // returns the index
  16799. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16800. const int idx = gguf_find_key(ctx, key);
  16801. if (idx >= 0) {
  16802. return idx;
  16803. }
  16804. const int n_kv = gguf_get_n_kv(ctx);
  16805. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16806. ctx->kv[n_kv].key.n = strlen(key);
  16807. ctx->kv[n_kv].key.data = strdup(key);
  16808. ctx->header.n_kv++;
  16809. return n_kv;
  16810. }
  16811. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16812. const int idx = gguf_get_or_add_key(ctx, key);
  16813. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16814. ctx->kv[idx].value.uint8 = val;
  16815. }
  16816. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16817. const int idx = gguf_get_or_add_key(ctx, key);
  16818. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16819. ctx->kv[idx].value.int8 = val;
  16820. }
  16821. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16822. const int idx = gguf_get_or_add_key(ctx, key);
  16823. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16824. ctx->kv[idx].value.uint16 = val;
  16825. }
  16826. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16827. const int idx = gguf_get_or_add_key(ctx, key);
  16828. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16829. ctx->kv[idx].value.int16 = val;
  16830. }
  16831. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16832. const int idx = gguf_get_or_add_key(ctx, key);
  16833. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16834. ctx->kv[idx].value.uint32 = val;
  16835. }
  16836. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16837. const int idx = gguf_get_or_add_key(ctx, key);
  16838. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16839. ctx->kv[idx].value.int32 = val;
  16840. }
  16841. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16842. const int idx = gguf_get_or_add_key(ctx, key);
  16843. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16844. ctx->kv[idx].value.float32 = val;
  16845. }
  16846. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16847. const int idx = gguf_get_or_add_key(ctx, key);
  16848. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16849. ctx->kv[idx].value.uint64 = val;
  16850. }
  16851. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16852. const int idx = gguf_get_or_add_key(ctx, key);
  16853. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16854. ctx->kv[idx].value.int64 = val;
  16855. }
  16856. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16857. const int idx = gguf_get_or_add_key(ctx, key);
  16858. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16859. ctx->kv[idx].value.float64 = val;
  16860. }
  16861. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16862. const int idx = gguf_get_or_add_key(ctx, key);
  16863. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16864. ctx->kv[idx].value.bool_ = val;
  16865. }
  16866. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16867. const int idx = gguf_get_or_add_key(ctx, key);
  16868. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16869. ctx->kv[idx].value.str.n = strlen(val);
  16870. ctx->kv[idx].value.str.data = strdup(val);
  16871. }
  16872. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16873. const int idx = gguf_get_or_add_key(ctx, key);
  16874. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16875. ctx->kv[idx].value.arr.type = type;
  16876. ctx->kv[idx].value.arr.n = n;
  16877. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16878. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16879. }
  16880. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16881. const int idx = gguf_get_or_add_key(ctx, key);
  16882. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16883. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16884. ctx->kv[idx].value.arr.n = n;
  16885. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16886. for (int i = 0; i < n; i++) {
  16887. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16888. str->n = strlen(data[i]);
  16889. str->data = strdup(data[i]);
  16890. }
  16891. }
  16892. // set or add KV pairs from another context
  16893. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16894. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16895. switch (src->kv[i].type) {
  16896. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16897. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16898. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16899. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16900. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16901. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16902. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16903. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16904. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16905. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16906. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16907. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16908. case GGUF_TYPE_ARRAY:
  16909. {
  16910. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16911. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16912. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16913. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16914. }
  16915. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16916. GGML_FREE((void *)data);
  16917. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16918. GGML_ASSERT(false && "nested arrays not supported");
  16919. } else {
  16920. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16921. }
  16922. } break;
  16923. default: GGML_ASSERT(false && "invalid type"); break;
  16924. }
  16925. }
  16926. }
  16927. void gguf_add_tensor(
  16928. struct gguf_context * ctx,
  16929. const struct ggml_tensor * tensor) {
  16930. const int idx = ctx->header.n_tensors;
  16931. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16932. ctx->infos[idx].name.n = strlen(tensor->name);
  16933. ctx->infos[idx].name.data = strdup(tensor->name);
  16934. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16935. ctx->infos[idx].ne[i] = 1;
  16936. }
  16937. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16938. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16939. ctx->infos[idx].ne[i] = tensor->ne[i];
  16940. }
  16941. ctx->infos[idx].type = tensor->type;
  16942. ctx->infos[idx].offset = 0;
  16943. ctx->infos[idx].data = tensor->data;
  16944. ctx->infos[idx].size = ggml_nbytes(tensor);
  16945. if (ctx->header.n_tensors > 0) {
  16946. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16947. }
  16948. ctx->header.n_tensors++;
  16949. }
  16950. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16951. const int idx = gguf_find_tensor(ctx, name);
  16952. if (idx < 0) {
  16953. GGML_ASSERT(false && "tensor not found");
  16954. }
  16955. ctx->infos[idx].type = type;
  16956. }
  16957. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16958. const int idx = gguf_find_tensor(ctx, name);
  16959. if (idx < 0) {
  16960. GGML_ASSERT(false && "tensor not found");
  16961. }
  16962. ctx->infos[idx].data = data;
  16963. ctx->infos[idx].size = size;
  16964. // update offsets
  16965. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16966. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16967. }
  16968. }
  16969. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16970. // fwrite(&val->n, sizeof(val->n), 1, file);
  16971. // fwrite(val->data, sizeof(char), val->n, file);
  16972. //}
  16973. //
  16974. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16975. // fwrite(val, sizeof(char), size, file);
  16976. //}
  16977. struct gguf_buf {
  16978. void * data;
  16979. size_t size;
  16980. size_t offset;
  16981. };
  16982. static struct gguf_buf gguf_buf_init(size_t size) {
  16983. struct gguf_buf buf = {
  16984. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16985. /*buf.size =*/ size,
  16986. /*buf.offset =*/ 0,
  16987. };
  16988. return buf;
  16989. }
  16990. static void gguf_buf_free(struct gguf_buf buf) {
  16991. if (buf.data) {
  16992. GGML_FREE(buf.data);
  16993. }
  16994. }
  16995. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16996. if (buf->offset + size > buf->size) {
  16997. buf->size = 1.5*(buf->offset + size);
  16998. if (buf->data) {
  16999. buf->data = realloc(buf->data, buf->size);
  17000. }
  17001. }
  17002. }
  17003. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17004. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17005. if (buf->data) {
  17006. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17007. }
  17008. buf->offset += sizeof(val->n);
  17009. if (buf->data) {
  17010. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17011. }
  17012. buf->offset += val->n;
  17013. }
  17014. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17015. gguf_buf_grow(buf, el_size);
  17016. if (buf->data) {
  17017. memcpy((char *) buf->data + buf->offset, val, el_size);
  17018. }
  17019. buf->offset += el_size;
  17020. }
  17021. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17022. // write header
  17023. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17024. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17025. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17026. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17027. // write key-value pairs
  17028. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17029. struct gguf_kv * kv = &ctx->kv[i];
  17030. gguf_bwrite_str(buf, &kv->key);
  17031. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17032. switch (kv->type) {
  17033. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17034. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17035. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17036. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17037. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17038. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17039. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17040. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17041. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17042. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17043. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17044. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17045. case GGUF_TYPE_ARRAY:
  17046. {
  17047. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17048. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17049. switch (kv->value.arr.type) {
  17050. case GGUF_TYPE_UINT8:
  17051. case GGUF_TYPE_INT8:
  17052. case GGUF_TYPE_UINT16:
  17053. case GGUF_TYPE_INT16:
  17054. case GGUF_TYPE_UINT32:
  17055. case GGUF_TYPE_INT32:
  17056. case GGUF_TYPE_FLOAT32:
  17057. case GGUF_TYPE_UINT64:
  17058. case GGUF_TYPE_INT64:
  17059. case GGUF_TYPE_FLOAT64:
  17060. case GGUF_TYPE_BOOL:
  17061. {
  17062. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17063. } break;
  17064. case GGUF_TYPE_STRING:
  17065. {
  17066. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17067. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17068. }
  17069. } break;
  17070. case GGUF_TYPE_ARRAY:
  17071. default: GGML_ASSERT(false && "invalid type"); break;
  17072. }
  17073. } break;
  17074. default: GGML_ASSERT(false && "invalid type");
  17075. }
  17076. }
  17077. // write tensor infos
  17078. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17079. struct gguf_tensor_info * info = &ctx->infos[i];
  17080. gguf_bwrite_str(buf, &info->name);
  17081. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17082. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17083. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17084. }
  17085. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17086. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17087. }
  17088. // we require the data section to be aligned, so take into account any padding
  17089. {
  17090. const size_t offset = buf->offset;
  17091. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17092. if (offset_pad != offset) {
  17093. uint8_t pad = 0;
  17094. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17095. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17096. }
  17097. }
  17098. }
  17099. if (only_meta) {
  17100. return;
  17101. }
  17102. size_t offset = 0;
  17103. // write tensor data
  17104. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17105. struct gguf_tensor_info * info = &ctx->infos[i];
  17106. const size_t size = info->size;
  17107. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17108. gguf_bwrite_el(buf, info->data, size);
  17109. if (size_pad != size) {
  17110. uint8_t pad = 0;
  17111. for (size_t j = 0; j < size_pad - size; ++j) {
  17112. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17113. }
  17114. }
  17115. GGML_ASSERT(offset == info->offset);
  17116. offset += size_pad;
  17117. }
  17118. }
  17119. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17120. FILE * file = fopen(fname, "wb");
  17121. if (!file) {
  17122. GGML_ASSERT(false && "failed to open file for writing");
  17123. }
  17124. struct gguf_buf buf = gguf_buf_init(16*1024);
  17125. gguf_write_to_buf(ctx, &buf, only_meta);
  17126. fwrite(buf.data, 1, buf.offset, file);
  17127. gguf_buf_free(buf);
  17128. fclose(file);
  17129. }
  17130. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17131. // no allocs - only compute size
  17132. struct gguf_buf buf = gguf_buf_init(0);
  17133. gguf_write_to_buf(ctx, &buf, true);
  17134. return buf.offset;
  17135. }
  17136. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17137. struct gguf_buf buf = gguf_buf_init(16*1024);
  17138. gguf_write_to_buf(ctx, &buf, true);
  17139. memcpy(data, buf.data, buf.offset);
  17140. gguf_buf_free(buf);
  17141. }
  17142. ////////////////////////////////////////////////////////////////////////////////
  17143. int ggml_cpu_has_avx(void) {
  17144. #if defined(__AVX__)
  17145. return 1;
  17146. #else
  17147. return 0;
  17148. #endif
  17149. }
  17150. int ggml_cpu_has_avx_vnni(void) {
  17151. #if defined(__AVXVNNI__)
  17152. return 1;
  17153. #else
  17154. return 0;
  17155. #endif
  17156. }
  17157. int ggml_cpu_has_avx2(void) {
  17158. #if defined(__AVX2__)
  17159. return 1;
  17160. #else
  17161. return 0;
  17162. #endif
  17163. }
  17164. int ggml_cpu_has_avx512(void) {
  17165. #if defined(__AVX512F__)
  17166. return 1;
  17167. #else
  17168. return 0;
  17169. #endif
  17170. }
  17171. int ggml_cpu_has_avx512_vbmi(void) {
  17172. #if defined(__AVX512VBMI__)
  17173. return 1;
  17174. #else
  17175. return 0;
  17176. #endif
  17177. }
  17178. int ggml_cpu_has_avx512_vnni(void) {
  17179. #if defined(__AVX512VNNI__)
  17180. return 1;
  17181. #else
  17182. return 0;
  17183. #endif
  17184. }
  17185. int ggml_cpu_has_fma(void) {
  17186. #if defined(__FMA__)
  17187. return 1;
  17188. #else
  17189. return 0;
  17190. #endif
  17191. }
  17192. int ggml_cpu_has_neon(void) {
  17193. #if defined(__ARM_NEON)
  17194. return 1;
  17195. #else
  17196. return 0;
  17197. #endif
  17198. }
  17199. int ggml_cpu_has_arm_fma(void) {
  17200. #if defined(__ARM_FEATURE_FMA)
  17201. return 1;
  17202. #else
  17203. return 0;
  17204. #endif
  17205. }
  17206. int ggml_cpu_has_metal(void) {
  17207. #if defined(GGML_USE_METAL)
  17208. return 1;
  17209. #else
  17210. return 0;
  17211. #endif
  17212. }
  17213. int ggml_cpu_has_f16c(void) {
  17214. #if defined(__F16C__)
  17215. return 1;
  17216. #else
  17217. return 0;
  17218. #endif
  17219. }
  17220. int ggml_cpu_has_fp16_va(void) {
  17221. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17222. return 1;
  17223. #else
  17224. return 0;
  17225. #endif
  17226. }
  17227. int ggml_cpu_has_wasm_simd(void) {
  17228. #if defined(__wasm_simd128__)
  17229. return 1;
  17230. #else
  17231. return 0;
  17232. #endif
  17233. }
  17234. int ggml_cpu_has_blas(void) {
  17235. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17236. return 1;
  17237. #else
  17238. return 0;
  17239. #endif
  17240. }
  17241. int ggml_cpu_has_cublas(void) {
  17242. #if defined(GGML_USE_CUBLAS)
  17243. return 1;
  17244. #else
  17245. return 0;
  17246. #endif
  17247. }
  17248. int ggml_cpu_has_clblast(void) {
  17249. #if defined(GGML_USE_CLBLAST)
  17250. return 1;
  17251. #else
  17252. return 0;
  17253. #endif
  17254. }
  17255. int ggml_cpu_has_vulkan(void) {
  17256. #if defined(GGML_USE_VULKAN)
  17257. return 1;
  17258. #else
  17259. return 0;
  17260. #endif
  17261. }
  17262. int ggml_cpu_has_kompute(void) {
  17263. #if defined(GGML_USE_KOMPUTE)
  17264. return 1;
  17265. #else
  17266. return 0;
  17267. #endif
  17268. }
  17269. int ggml_cpu_has_sycl(void) {
  17270. #if defined(GGML_USE_SYCL)
  17271. return 1;
  17272. #else
  17273. return 0;
  17274. #endif
  17275. }
  17276. int ggml_cpu_has_gpublas(void) {
  17277. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17278. ggml_cpu_has_sycl();
  17279. }
  17280. int ggml_cpu_has_sse3(void) {
  17281. #if defined(__SSE3__)
  17282. return 1;
  17283. #else
  17284. return 0;
  17285. #endif
  17286. }
  17287. int ggml_cpu_has_ssse3(void) {
  17288. #if defined(__SSSE3__)
  17289. return 1;
  17290. #else
  17291. return 0;
  17292. #endif
  17293. }
  17294. int ggml_cpu_has_vsx(void) {
  17295. #if defined(__POWER9_VECTOR__)
  17296. return 1;
  17297. #else
  17298. return 0;
  17299. #endif
  17300. }
  17301. int ggml_cpu_has_matmul_int8(void) {
  17302. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17303. return 1;
  17304. #else
  17305. return 0;
  17306. #endif
  17307. }
  17308. ////////////////////////////////////////////////////////////////////////////////