llama-model.cpp 579 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_475M: return "475M";
  40. case LLM_TYPE_770M: return "770M";
  41. case LLM_TYPE_780M: return "780M";
  42. case LLM_TYPE_0_5B: return "0.5B";
  43. case LLM_TYPE_0_6B: return "0.6B";
  44. case LLM_TYPE_1B: return "1B";
  45. case LLM_TYPE_1_3B: return "1.3B";
  46. case LLM_TYPE_1_4B: return "1.4B";
  47. case LLM_TYPE_1_5B: return "1.5B";
  48. case LLM_TYPE_1_6B: return "1.6B";
  49. case LLM_TYPE_1_7B: return "1.7B";
  50. case LLM_TYPE_1_8B: return "1.8B";
  51. case LLM_TYPE_2B: return "2B";
  52. case LLM_TYPE_2_8B: return "2.8B";
  53. case LLM_TYPE_2_9B: return "2.9B";
  54. case LLM_TYPE_3B: return "3B";
  55. case LLM_TYPE_4B: return "4B";
  56. case LLM_TYPE_6B: return "6B";
  57. case LLM_TYPE_6_9B: return "6.9B";
  58. case LLM_TYPE_7B: return "7B";
  59. case LLM_TYPE_8B: return "8B";
  60. case LLM_TYPE_9B: return "9B";
  61. case LLM_TYPE_11B: return "11B";
  62. case LLM_TYPE_12B: return "12B";
  63. case LLM_TYPE_13B: return "13B";
  64. case LLM_TYPE_14B: return "14B";
  65. case LLM_TYPE_15B: return "15B";
  66. case LLM_TYPE_16B: return "16B";
  67. case LLM_TYPE_20B: return "20B";
  68. case LLM_TYPE_27B: return "27B";
  69. case LLM_TYPE_30B: return "30B";
  70. case LLM_TYPE_32B: return "32B";
  71. case LLM_TYPE_34B: return "34B";
  72. case LLM_TYPE_35B: return "35B";
  73. case LLM_TYPE_40B: return "40B";
  74. case LLM_TYPE_65B: return "65B";
  75. case LLM_TYPE_70B: return "70B";
  76. case LLM_TYPE_236B: return "236B";
  77. case LLM_TYPE_290B: return "290B";
  78. case LLM_TYPE_314B: return "314B";
  79. case LLM_TYPE_405B: return "405B";
  80. case LLM_TYPE_671B: return "671B";
  81. case LLM_TYPE_SMALL: return "0.1B";
  82. case LLM_TYPE_MEDIUM: return "0.4B";
  83. case LLM_TYPE_LARGE: return "0.8B";
  84. case LLM_TYPE_XL: return "1.5B";
  85. case LLM_TYPE_A1_7B: return "A1.7B";
  86. case LLM_TYPE_A2_7B: return "A2.7B";
  87. case LLM_TYPE_8x7B: return "8x7B";
  88. case LLM_TYPE_8x22B: return "8x22B";
  89. case LLM_TYPE_16x12B: return "16x12B";
  90. case LLM_TYPE_16x3_8B: return "16x3.8B";
  91. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  92. case LLM_TYPE_57B_A14B: return "57B.A14B";
  93. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  94. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  95. case LLM_TYPE_30B_A3B: return "30B.A3B";
  96. case LLM_TYPE_235B_A22B: return "235B.A22B";
  97. default: return "?B";
  98. }
  99. }
  100. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  101. switch (type) {
  102. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  103. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  104. default: return "unknown";
  105. }
  106. }
  107. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  108. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  109. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  110. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  111. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  112. };
  113. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  114. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  115. if (kv.second == name) {
  116. return (llama_rope_scaling_type) kv.first;
  117. }
  118. }
  119. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  120. }
  121. // checks if the weight tensor can be used with the specified buffer type and device
  122. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  123. GGML_ASSERT(w != nullptr);
  124. if (op == GGML_OP_NONE) {
  125. return true;
  126. }
  127. ggml_init_params params = {
  128. /*.mem_size =*/ ggml_tensor_overhead()*8,
  129. /*.mem_buffer =*/ NULL,
  130. /*.no_alloc =*/ true,
  131. };
  132. ggml_context_ptr ctx_ptr { ggml_init(params) };
  133. if (!ctx_ptr) {
  134. throw std::runtime_error(format("failed to create ggml context"));
  135. }
  136. ggml_context * ctx = ctx_ptr.get();
  137. ggml_tensor * op_tensor = nullptr;
  138. switch (op) {
  139. case GGML_OP_GET_ROWS:
  140. {
  141. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  142. op_tensor = ggml_get_rows(ctx, w, b);
  143. } break;
  144. case GGML_OP_MUL_MAT:
  145. {
  146. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  147. op_tensor = ggml_mul_mat(ctx, w, b);
  148. } break;
  149. case GGML_OP_MUL_MAT_ID:
  150. {
  151. int n_expert_used = hparams.n_expert_used;
  152. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  153. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  154. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  155. } break;
  156. case GGML_OP_ADD:
  157. {
  158. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  159. op_tensor = ggml_add(ctx, a, w);
  160. } break;
  161. case GGML_OP_MUL:
  162. {
  163. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  164. op_tensor = ggml_mul(ctx, a, w);
  165. } break;
  166. case GGML_OP_DIV:
  167. {
  168. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  169. op_tensor = ggml_div(ctx, a, w);
  170. } break;
  171. case GGML_OP_ROPE:
  172. {
  173. int n_embd_head = hparams.n_embd_head_v;
  174. int n_head = hparams.n_head();
  175. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  176. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  177. op_tensor = ggml_rope_ext(
  178. ctx, a, b, w,
  179. 0, 0, 0, 0, 0,
  180. 0, 0, 0, 0
  181. );
  182. } break;
  183. case GGML_OP_SSM_CONV:
  184. {
  185. // FIXME
  186. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  187. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  188. } break;
  189. case GGML_OP_SSM_SCAN:
  190. {
  191. // FIXME
  192. const int64_t d_state = w->ne[0];
  193. const int64_t d_inner = w->ne[1];
  194. const int64_t n_seq_tokens = 512;
  195. const int64_t n_seqs = 1;
  196. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  197. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  198. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  199. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  200. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  201. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  202. } break;
  203. case GGML_OP_RWKV_WKV6:
  204. {
  205. // FIXME
  206. const int64_t S = 123;
  207. const int64_t H = 123;
  208. const int64_t n_tokens = 123;
  209. const int64_t n_seqs = 123;
  210. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  211. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  212. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  213. ggml_tensor * tf = w;
  214. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  215. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  216. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  217. } break;
  218. case GGML_OP_IM2COL:
  219. {
  220. const int n_embd = hparams.n_embd;
  221. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  222. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  223. } break;
  224. default:
  225. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  226. }
  227. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  228. GGML_ASSERT(w->buffer == nullptr);
  229. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  230. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  231. ggml_backend_buffer_free(w->buffer);
  232. w->buffer = nullptr;
  233. return op_supported;
  234. }
  235. // lists of buffer types used for each layer
  236. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  237. // find the first buffer type in the list that can use the tensor
  238. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  239. GGML_ASSERT(!buft_list.empty());
  240. for (const auto & cur : buft_list) {
  241. ggml_backend_dev_t cur_dev = cur.first;
  242. ggml_backend_buffer_type_t cur_buft = cur.second;
  243. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  244. return cur_buft;
  245. }
  246. }
  247. return nullptr;
  248. }
  249. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  250. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  251. buft_list_t buft_list;
  252. // add ACCEL buffer types
  253. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  254. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  255. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  256. auto * buft = ggml_backend_dev_buffer_type(dev);
  257. // skip
  258. if (buft != ggml_backend_cpu_buffer_type()) {
  259. buft_list.emplace_back(dev, buft);
  260. }
  261. }
  262. }
  263. // add a host buffer type
  264. // storing the tensors in a host buffer is useful when the processing of large batches
  265. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  266. // generally, this will be done using the first device in the list
  267. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  268. // function of the device to determine if it would benefit from being stored in a host buffer
  269. for (auto * dev : devices) {
  270. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  271. if (buft) {
  272. buft_list.emplace_back(dev, buft);
  273. break;
  274. }
  275. }
  276. // add extra buffer types, only if no GPU device is present
  277. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  278. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  279. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  280. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  281. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  282. if (ggml_backend_dev_get_extra_bufts_fn) {
  283. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  284. while (extra_bufts && *extra_bufts) {
  285. buft_list.emplace_back(cpu_dev, *extra_bufts);
  286. ++extra_bufts;
  287. }
  288. }
  289. // add the CPU buffer type
  290. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  291. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  292. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  293. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  294. }
  295. }
  296. return buft_list;
  297. }
  298. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  299. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  300. buft_list_t buft_list;
  301. // add the device split buffer type if requested and available
  302. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  303. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  304. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  305. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  306. if (ggml_backend_split_buffer_type_fn) {
  307. size_t dev_index = [&]() {
  308. auto * reg = ggml_backend_dev_backend_reg(dev);
  309. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  310. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  311. return i;
  312. }
  313. }
  314. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  315. }();
  316. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  317. if (buft != nullptr) {
  318. buft_list.emplace_back(dev, buft);
  319. }
  320. }
  321. }
  322. // add the device default buffer type
  323. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  324. return buft_list;
  325. }
  326. struct llama_model::impl {
  327. impl() {}
  328. ~impl() {}
  329. uint64_t n_elements = 0;
  330. size_t n_bytes = 0;
  331. std::string desc_str;
  332. // model memory mapped files
  333. llama_mmaps mappings;
  334. // objects representing data potentially being locked in memory
  335. llama_mlocks mlock_bufs;
  336. llama_mlocks mlock_mmaps;
  337. // contexts where the model tensors metadata is stored
  338. std::vector<ggml_context_ptr> ctxs;
  339. // the model memory buffers for the tensor data
  340. std::vector<ggml_backend_buffer_ptr> bufs;
  341. buft_list_t cpu_buft_list;
  342. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  343. struct layer_dev {
  344. ggml_backend_dev_t dev;
  345. buft_list_t * buft_list;
  346. };
  347. layer_dev dev_input = {};
  348. layer_dev dev_output = {};
  349. std::vector<layer_dev> dev_layer;
  350. bool has_tensor_overrides;
  351. };
  352. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  353. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  354. }
  355. llama_model::~llama_model() {}
  356. void llama_model::load_stats(llama_model_loader & ml) {
  357. pimpl->n_elements = ml.n_elements;
  358. pimpl->n_bytes = ml.n_bytes;
  359. }
  360. void llama_model::load_arch(llama_model_loader & ml) {
  361. arch = ml.get_arch();
  362. if (arch == LLM_ARCH_UNKNOWN) {
  363. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  364. }
  365. }
  366. void llama_model::load_hparams(llama_model_loader & ml) {
  367. const gguf_context * ctx = ml.meta.get();
  368. // get metadata as string
  369. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  370. gguf_type type = gguf_get_kv_type(ctx, i);
  371. if (type == GGUF_TYPE_ARRAY) {
  372. continue;
  373. }
  374. const char * name = gguf_get_key(ctx, i);
  375. const std::string value = gguf_kv_to_str(ctx, i);
  376. gguf_kv.emplace(name, value);
  377. }
  378. // get general kv
  379. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  380. // everything past this point is not vocab-related
  381. if (hparams.vocab_only) {
  382. return;
  383. }
  384. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  385. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  386. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  387. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  388. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  389. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  390. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  391. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  392. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  393. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  394. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  395. }
  396. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  397. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  398. if (hparams.n_expert > 0) {
  399. GGML_ASSERT(hparams.n_expert_used > 0);
  400. } else {
  401. GGML_ASSERT(hparams.n_expert_used == 0);
  402. }
  403. // zero-out the array hparams
  404. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  405. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  406. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  407. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  408. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  409. // n_head_kv is optional, default to n_head
  410. hparams.n_head_kv_arr = hparams.n_head_arr;
  411. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  412. bool rope_finetuned = false;
  413. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  414. hparams.rope_finetuned = rope_finetuned;
  415. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  416. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  417. // rope_freq_base (optional)
  418. hparams.rope_freq_base_train = 10000.0f;
  419. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  420. std::string rope_scaling("linear");
  421. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  422. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  423. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  424. // rope_freq_scale (inverse of the kv) is optional
  425. float ropescale = 0.0f;
  426. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  427. // try the old key name
  428. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  429. }
  430. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  431. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  432. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  433. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  434. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  435. // non-transformer models do not have attention heads
  436. if (hparams.n_head() > 0) {
  437. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  438. // gpt-j n_rot = rotary_dim
  439. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  440. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  441. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  442. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  443. // sanity check for n_rot (optional)
  444. hparams.n_rot = hparams.n_embd_head_k;
  445. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  446. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  447. if (hparams.n_rot != hparams.n_embd_head_k) {
  448. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  449. }
  450. }
  451. } else {
  452. hparams.n_rot = 0;
  453. hparams.n_embd_head_k = 0;
  454. hparams.n_embd_head_v = 0;
  455. }
  456. // for differentiating model types
  457. uint32_t n_vocab = 0;
  458. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  459. // arch-specific KVs
  460. switch (arch) {
  461. case LLM_ARCH_LLAMA:
  462. {
  463. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  464. if (hparams.n_expert == 8) {
  465. switch (hparams.n_layer) {
  466. case 32: type = LLM_TYPE_8x7B; break;
  467. case 56: type = LLM_TYPE_8x22B; break;
  468. default: type = LLM_TYPE_UNKNOWN;
  469. }
  470. } else {
  471. switch (hparams.n_layer) {
  472. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  473. case 22: type = LLM_TYPE_1B; break;
  474. case 26: type = LLM_TYPE_3B; break;
  475. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  476. // granite uses a vocab with len 49152
  477. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  478. case 36: type = LLM_TYPE_8B; break; // granite
  479. case 40: type = LLM_TYPE_13B; break;
  480. case 48: type = LLM_TYPE_34B; break;
  481. case 60: type = LLM_TYPE_30B; break;
  482. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  483. default: type = LLM_TYPE_UNKNOWN;
  484. }
  485. }
  486. } break;
  487. case LLM_ARCH_LLAMA4:
  488. {
  489. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  490. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  491. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  492. hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
  493. hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  494. hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
  495. switch (hparams.n_expert) {
  496. case 16: type = LLM_TYPE_17B_16E; break;
  497. case 128: type = LLM_TYPE_17B_128E; break;
  498. default: type = LLM_TYPE_UNKNOWN;
  499. }
  500. if (type == LLM_TYPE_17B_128E) {
  501. hparams.use_kq_norm = false;
  502. }
  503. } break;
  504. case LLM_ARCH_DECI:
  505. {
  506. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  507. switch (hparams.n_layer) {
  508. case 32: type = LLM_TYPE_7B; break;
  509. case 80: type = LLM_TYPE_70B; break;
  510. case 162: type = LLM_TYPE_405B; break;
  511. default: type = LLM_TYPE_UNKNOWN;
  512. }
  513. } break;
  514. case LLM_ARCH_MINICPM:
  515. {
  516. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  517. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  518. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  519. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  520. switch (hparams.n_layer) {
  521. case 52: type = LLM_TYPE_1B; break;
  522. case 40: type = LLM_TYPE_2B; break;
  523. default: type = LLM_TYPE_UNKNOWN;
  524. }
  525. } break;
  526. case LLM_ARCH_MINICPM3:
  527. {
  528. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  529. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  530. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  531. switch (hparams.n_layer) {
  532. case 62: type = LLM_TYPE_4B; break;
  533. default: type = LLM_TYPE_UNKNOWN;
  534. }
  535. } break;
  536. case LLM_ARCH_GROK:
  537. {
  538. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  539. switch (hparams.n_layer) {
  540. case 64: type = LLM_TYPE_314B; break;
  541. default: type = LLM_TYPE_UNKNOWN;
  542. }
  543. } break;
  544. case LLM_ARCH_FALCON:
  545. {
  546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  547. switch (hparams.n_layer) {
  548. case 32: type = LLM_TYPE_7B; break;
  549. case 60: type = LLM_TYPE_40B; break;
  550. default: type = LLM_TYPE_UNKNOWN;
  551. }
  552. } break;
  553. case LLM_ARCH_BAICHUAN:
  554. {
  555. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  556. switch (hparams.n_layer) {
  557. case 32: type = LLM_TYPE_7B; break;
  558. case 40: type = LLM_TYPE_13B; break;
  559. default: type = LLM_TYPE_UNKNOWN;
  560. }
  561. if (type == LLM_TYPE_13B) {
  562. // TODO: become GGUF KV parameter
  563. hparams.f_max_alibi_bias = 8.0f;
  564. }
  565. } break;
  566. case LLM_ARCH_STARCODER:
  567. {
  568. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  569. switch (hparams.n_layer) {
  570. case 24: type = LLM_TYPE_1B; break;
  571. case 36: type = LLM_TYPE_3B; break;
  572. case 42: type = LLM_TYPE_7B; break;
  573. case 40: type = LLM_TYPE_15B; break;
  574. default: type = LLM_TYPE_UNKNOWN;
  575. }
  576. } break;
  577. case LLM_ARCH_REFACT:
  578. {
  579. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  580. switch (hparams.n_layer) {
  581. case 32: type = LLM_TYPE_1B; break;
  582. default: type = LLM_TYPE_UNKNOWN;
  583. }
  584. // TODO: become GGUF KV parameter
  585. hparams.f_max_alibi_bias = 8.0f;
  586. } break;
  587. case LLM_ARCH_BERT:
  588. {
  589. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  590. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  591. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  592. switch (hparams.n_layer) {
  593. case 3:
  594. type = LLM_TYPE_17M; break; // bge-micro
  595. case 6:
  596. type = LLM_TYPE_22M; break; // MiniLM-L6
  597. case 12:
  598. switch (hparams.n_embd) {
  599. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  600. case 768: type = LLM_TYPE_109M; break; // bge-base
  601. default: type = LLM_TYPE_UNKNOWN;
  602. } break;
  603. case 24:
  604. type = LLM_TYPE_335M; break; // bge-large
  605. default: type = LLM_TYPE_UNKNOWN;
  606. }
  607. } break;
  608. case LLM_ARCH_JINA_BERT_V2:
  609. {
  610. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  611. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  612. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  613. hparams.f_max_alibi_bias = 8.0f;
  614. switch (hparams.n_layer) {
  615. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  616. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  617. default: type = LLM_TYPE_UNKNOWN;
  618. }
  619. } break;
  620. case LLM_ARCH_NOMIC_BERT:
  621. case LLM_ARCH_NOMIC_BERT_MOE:
  622. {
  623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  624. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  625. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  626. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  627. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  628. if (arch == LLM_ARCH_NOMIC_BERT) {
  629. type = LLM_TYPE_137M;
  630. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  631. type = LLM_TYPE_475M;
  632. }
  633. }
  634. } break;
  635. case LLM_ARCH_BLOOM:
  636. {
  637. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  638. switch (hparams.n_layer) {
  639. case 24: type = LLM_TYPE_1B; break;
  640. case 30:
  641. switch (hparams.n_embd) {
  642. case 2560: type = LLM_TYPE_3B; break;
  643. case 4096: type = LLM_TYPE_7B; break;
  644. default: type = LLM_TYPE_UNKNOWN;
  645. } break;
  646. default: type = LLM_TYPE_UNKNOWN;
  647. }
  648. // TODO: become GGUF KV parameter
  649. hparams.f_max_alibi_bias = 8.0f;
  650. } break;
  651. case LLM_ARCH_MPT:
  652. {
  653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  654. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  655. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  656. switch (hparams.n_layer) {
  657. case 32: type = LLM_TYPE_7B; break;
  658. case 48: type = LLM_TYPE_30B; break;
  659. default: type = LLM_TYPE_UNKNOWN;
  660. }
  661. } break;
  662. case LLM_ARCH_STABLELM:
  663. {
  664. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  665. switch (hparams.n_layer) {
  666. case 24: type = LLM_TYPE_1B; break;
  667. case 32: type = LLM_TYPE_3B; break;
  668. case 40: type = LLM_TYPE_12B; break;
  669. default: type = LLM_TYPE_UNKNOWN;
  670. }
  671. } break;
  672. case LLM_ARCH_QWEN:
  673. {
  674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  675. switch (hparams.n_layer) {
  676. case 32: type = LLM_TYPE_7B; break;
  677. case 40: type = LLM_TYPE_13B; break;
  678. default: type = LLM_TYPE_UNKNOWN;
  679. }
  680. } break;
  681. case LLM_ARCH_QWEN2VL:
  682. {
  683. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  684. }
  685. // fall through
  686. case LLM_ARCH_QWEN2:
  687. {
  688. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  690. switch (hparams.n_layer) {
  691. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  692. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  693. case 32: type = LLM_TYPE_7B; break;
  694. case 36: type = LLM_TYPE_3B; break;
  695. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  696. case 48: type = LLM_TYPE_14B; break;
  697. case 64: type = LLM_TYPE_32B; break;
  698. case 80: type = LLM_TYPE_70B; break;
  699. default: type = LLM_TYPE_UNKNOWN;
  700. }
  701. } break;
  702. case LLM_ARCH_QWEN2MOE:
  703. {
  704. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  705. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  706. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  707. switch (hparams.n_layer) {
  708. case 24: type = LLM_TYPE_A2_7B; break;
  709. case 28: type = LLM_TYPE_57B_A14B; break;
  710. default: type = LLM_TYPE_UNKNOWN;
  711. }
  712. } break;
  713. case LLM_ARCH_QWEN3:
  714. {
  715. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  716. switch (hparams.n_layer) {
  717. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  718. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  719. case 40: type = LLM_TYPE_14B; break;
  720. case 64: type = LLM_TYPE_32B; break;
  721. default: type = LLM_TYPE_UNKNOWN;
  722. }
  723. } break;
  724. case LLM_ARCH_QWEN3MOE:
  725. {
  726. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  727. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  728. switch (hparams.n_layer) {
  729. case 48: type = LLM_TYPE_30B_A3B; break;
  730. case 94: type = LLM_TYPE_235B_A22B; break;
  731. default: type = LLM_TYPE_UNKNOWN;
  732. }
  733. } break;
  734. case LLM_ARCH_PHI2:
  735. {
  736. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  737. switch (hparams.n_layer) {
  738. case 24: type = LLM_TYPE_1B; break;
  739. case 32: type = LLM_TYPE_3B; break;
  740. default: type = LLM_TYPE_UNKNOWN;
  741. }
  742. } break;
  743. case LLM_ARCH_PHI3:
  744. {
  745. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  746. switch (hparams.n_layer) {
  747. case 24: type = LLM_TYPE_1B; break;
  748. case 32: type = LLM_TYPE_3B; break;
  749. case 40: type = LLM_TYPE_14B; break;
  750. default: type = LLM_TYPE_UNKNOWN;
  751. }
  752. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  753. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  754. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  755. hparams.n_swa = 2047;
  756. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  757. // default value for Phi-3-mini-128k-instruct
  758. // note: this seems incorrect because the window is bigger than the train context?
  759. hparams.n_swa = 262144;
  760. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  761. // default value for Phi-3-medium-128k-instruct
  762. // note: this seems incorrect because the window is equal to the train context?
  763. hparams.n_swa = 131072;
  764. }
  765. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  766. if (!found_swa && hparams.n_swa == 0) {
  767. throw std::runtime_error("invalid value for sliding_window");
  768. }
  769. } break;
  770. case LLM_ARCH_PHIMOE:
  771. {
  772. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  773. switch (hparams.n_layer) {
  774. case 32: type = LLM_TYPE_16x3_8B; break;
  775. default: type = LLM_TYPE_UNKNOWN;
  776. }
  777. } break;
  778. case LLM_ARCH_PLAMO:
  779. {
  780. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  781. switch (hparams.n_layer) {
  782. case 40: type = LLM_TYPE_13B; break;
  783. default: type = LLM_TYPE_UNKNOWN;
  784. }
  785. } break;
  786. case LLM_ARCH_GPT2:
  787. {
  788. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  789. switch (hparams.n_layer) {
  790. case 12: type = LLM_TYPE_SMALL; break;
  791. case 24: type = LLM_TYPE_MEDIUM; break;
  792. case 36: type = LLM_TYPE_LARGE; break;
  793. case 48: type = LLM_TYPE_XL; break;
  794. default: type = LLM_TYPE_UNKNOWN;
  795. }
  796. } break;
  797. case LLM_ARCH_CODESHELL:
  798. {
  799. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  800. switch (hparams.n_layer) {
  801. case 42: type = LLM_TYPE_7B; break;
  802. default: type = LLM_TYPE_UNKNOWN;
  803. }
  804. } break;
  805. case LLM_ARCH_ORION:
  806. {
  807. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  808. switch (hparams.n_layer) {
  809. case 40: type = LLM_TYPE_14B; break;
  810. default: type = LLM_TYPE_UNKNOWN;
  811. }
  812. } break;
  813. case LLM_ARCH_INTERNLM2:
  814. {
  815. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  816. switch (hparams.n_layer) {
  817. case 32: type = LLM_TYPE_7B; break;
  818. case 48: type = LLM_TYPE_20B; break;
  819. default: type = LLM_TYPE_UNKNOWN;
  820. }
  821. } break;
  822. case LLM_ARCH_GEMMA:
  823. {
  824. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  825. switch (hparams.n_layer) {
  826. case 18: type = LLM_TYPE_2B; break;
  827. case 28: type = LLM_TYPE_7B; break;
  828. default: type = LLM_TYPE_UNKNOWN;
  829. }
  830. } break;
  831. case LLM_ARCH_GEMMA2:
  832. {
  833. hparams.n_swa = 4096; // default value of gemma 2
  834. hparams.n_swa_pattern = 2;
  835. hparams.attn_soft_cap = true;
  836. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  837. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  838. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  839. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  840. switch (hparams.n_layer) {
  841. case 26: type = LLM_TYPE_2B; break;
  842. case 42: type = LLM_TYPE_9B; break;
  843. case 46: type = LLM_TYPE_27B; break;
  844. default: type = LLM_TYPE_UNKNOWN;
  845. }
  846. } break;
  847. case LLM_ARCH_GEMMA3:
  848. {
  849. hparams.n_swa_pattern = 6;
  850. hparams.rope_freq_base_train_swa = 10000.0f;
  851. hparams.rope_freq_scale_train_swa = 1.0f;
  852. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  853. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  854. switch (hparams.n_layer) {
  855. case 26: type = LLM_TYPE_1B; break;
  856. case 34: type = LLM_TYPE_4B; break;
  857. case 48: type = LLM_TYPE_12B; break;
  858. case 62: type = LLM_TYPE_27B; break;
  859. default: type = LLM_TYPE_UNKNOWN;
  860. }
  861. hparams.f_attention_scale = type == LLM_TYPE_27B
  862. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  863. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  864. } break;
  865. case LLM_ARCH_STARCODER2:
  866. {
  867. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  868. switch (hparams.n_layer) {
  869. case 30: type = LLM_TYPE_3B; break;
  870. case 32: type = LLM_TYPE_7B; break;
  871. case 40: type = LLM_TYPE_15B; break;
  872. case 52: type = LLM_TYPE_20B; break; // granite
  873. case 88: type = LLM_TYPE_34B; break; // granite
  874. default: type = LLM_TYPE_UNKNOWN;
  875. }
  876. } break;
  877. case LLM_ARCH_MAMBA:
  878. {
  879. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  880. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  881. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  882. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  883. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  884. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  885. switch (hparams.n_layer) {
  886. case 24:
  887. switch (hparams.n_embd) {
  888. case 768: type = LLM_TYPE_SMALL; break;
  889. default: type = LLM_TYPE_UNKNOWN;
  890. } break;
  891. case 48:
  892. switch (hparams.n_embd) {
  893. case 1024: type = LLM_TYPE_MEDIUM; break;
  894. case 1536: type = LLM_TYPE_LARGE; break;
  895. case 2048: type = LLM_TYPE_XL; break;
  896. default: type = LLM_TYPE_UNKNOWN;
  897. } break;
  898. case 64:
  899. switch (hparams.n_embd) {
  900. case 2560: type = LLM_TYPE_3B; break;
  901. default: type = LLM_TYPE_UNKNOWN;
  902. } break;
  903. default: type = LLM_TYPE_UNKNOWN;
  904. }
  905. } break;
  906. case LLM_ARCH_XVERSE:
  907. {
  908. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  909. switch (hparams.n_layer) {
  910. case 32: type = LLM_TYPE_7B; break;
  911. case 40: type = LLM_TYPE_13B; break;
  912. case 80: type = LLM_TYPE_65B; break;
  913. default: type = LLM_TYPE_UNKNOWN;
  914. }
  915. } break;
  916. case LLM_ARCH_COMMAND_R:
  917. {
  918. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  919. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  920. switch (hparams.n_layer) {
  921. case 40: type = LLM_TYPE_35B; break;
  922. default: type = LLM_TYPE_UNKNOWN;
  923. }
  924. } break;
  925. case LLM_ARCH_COHERE2:
  926. {
  927. hparams.n_swa_pattern = 4;
  928. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  929. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  930. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  931. switch (hparams.n_layer) {
  932. case 32: type = LLM_TYPE_8B; break;
  933. default: type = LLM_TYPE_UNKNOWN;
  934. }
  935. } break;
  936. case LLM_ARCH_DBRX:
  937. {
  938. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  939. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  940. switch (hparams.n_layer) {
  941. case 40: type = LLM_TYPE_16x12B; break;
  942. default: type = LLM_TYPE_UNKNOWN;
  943. }
  944. } break;
  945. case LLM_ARCH_OLMO:
  946. {
  947. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  948. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  949. switch (hparams.n_layer) {
  950. case 22: type = LLM_TYPE_1B; break;
  951. case 32: type = LLM_TYPE_7B; break;
  952. case 80: type = LLM_TYPE_70B; break;
  953. default: type = LLM_TYPE_UNKNOWN;
  954. }
  955. } break;
  956. case LLM_ARCH_OLMO2:
  957. {
  958. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  959. switch (hparams.n_layer) {
  960. case 16: type = LLM_TYPE_1B; break;
  961. case 32: type = LLM_TYPE_7B; break;
  962. case 40: type = LLM_TYPE_13B; break;
  963. case 64: type = LLM_TYPE_32B; break;
  964. default: type = LLM_TYPE_UNKNOWN;
  965. }
  966. } break;
  967. case LLM_ARCH_OLMOE:
  968. {
  969. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  970. switch (hparams.n_layer) {
  971. case 16: type = LLM_TYPE_A1_7B; break;
  972. default: type = LLM_TYPE_UNKNOWN;
  973. }
  974. } break;
  975. case LLM_ARCH_OPENELM:
  976. {
  977. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  978. switch (hparams.n_layer) {
  979. case 16: type = LLM_TYPE_270M; break;
  980. case 20: type = LLM_TYPE_450M; break;
  981. case 28: type = LLM_TYPE_1B; break;
  982. case 36: type = LLM_TYPE_3B; break;
  983. default: type = LLM_TYPE_UNKNOWN;
  984. }
  985. } break;
  986. case LLM_ARCH_GPTNEOX:
  987. {
  988. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  989. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  990. switch (hparams.n_layer) {
  991. case 6:
  992. switch (hparams.n_ff()) {
  993. case 512: type = LLM_TYPE_14M; break;
  994. case 2048: type = LLM_TYPE_70M; break;
  995. default: type = LLM_TYPE_UNKNOWN;
  996. } break;
  997. case 12:
  998. switch (hparams.n_ff()) {
  999. case 3072: type = LLM_TYPE_160M; break;
  1000. default: type = LLM_TYPE_UNKNOWN;
  1001. } break;
  1002. case 16:
  1003. switch (hparams.n_ff()) {
  1004. case 8192: type = LLM_TYPE_1B; break;
  1005. default: type = LLM_TYPE_UNKNOWN;
  1006. } break;
  1007. case 24:
  1008. switch (hparams.n_ff()) {
  1009. case 4096: type = LLM_TYPE_410M; break;
  1010. case 8192: type = LLM_TYPE_1_4B; break;
  1011. default: type = LLM_TYPE_UNKNOWN;
  1012. } break;
  1013. case 32:
  1014. switch (hparams.n_ff()) {
  1015. case 10240: type = LLM_TYPE_2_8B; break;
  1016. case 16384: type = LLM_TYPE_6_9B; break;
  1017. default: type = LLM_TYPE_UNKNOWN;
  1018. } break;
  1019. case 36:
  1020. switch (hparams.n_ff()) {
  1021. case 20480: type = LLM_TYPE_12B; break;
  1022. default: type = LLM_TYPE_UNKNOWN;
  1023. } break;
  1024. case 44:
  1025. switch (hparams.n_ff()) {
  1026. case 24576: type = LLM_TYPE_20B; break;
  1027. default: type = LLM_TYPE_UNKNOWN;
  1028. } break;
  1029. default: type = LLM_TYPE_UNKNOWN;
  1030. }
  1031. } break;
  1032. case LLM_ARCH_ARCTIC:
  1033. {
  1034. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1035. if (hparams.n_expert == 128) {
  1036. switch (hparams.n_layer) {
  1037. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1038. default: type = LLM_TYPE_UNKNOWN;
  1039. }
  1040. } else {
  1041. type = LLM_TYPE_UNKNOWN;
  1042. }
  1043. } break;
  1044. case LLM_ARCH_DEEPSEEK:
  1045. {
  1046. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1047. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1048. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1049. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1050. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1051. switch (hparams.n_layer) {
  1052. case 28: type = LLM_TYPE_20B; break;
  1053. default: type = LLM_TYPE_UNKNOWN;
  1054. }
  1055. } break;
  1056. case LLM_ARCH_DEEPSEEK2:
  1057. {
  1058. bool is_lite = (hparams.n_layer == 27);
  1059. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1060. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1061. if (!is_lite) {
  1062. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1063. }
  1064. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1065. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1066. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1067. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1068. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1069. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1070. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1071. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1072. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1073. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1074. // that have no expert_gating_func model parameter set
  1075. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1076. }
  1077. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1078. switch (hparams.n_layer) {
  1079. case 27: type = LLM_TYPE_16B; break;
  1080. case 60: type = LLM_TYPE_236B; break;
  1081. case 61: type = LLM_TYPE_671B; break;
  1082. default: type = LLM_TYPE_UNKNOWN;
  1083. }
  1084. } break;
  1085. case LLM_ARCH_PLM:
  1086. {
  1087. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1088. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1089. switch (hparams.n_layer) {
  1090. case 32: type = LLM_TYPE_1_8B; break;
  1091. default: type = LLM_TYPE_UNKNOWN;
  1092. }
  1093. } break;
  1094. case LLM_ARCH_CHATGLM:
  1095. {
  1096. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1097. switch (hparams.n_layer) {
  1098. case 28: {
  1099. if (hparams.n_head(0) == 16) {
  1100. type = LLM_TYPE_1_5B;
  1101. } else {
  1102. type = LLM_TYPE_6B;
  1103. }
  1104. } break;
  1105. case 40: {
  1106. if (hparams.n_head(0) == 24) {
  1107. type = LLM_TYPE_4B;
  1108. } else {
  1109. type = LLM_TYPE_9B;
  1110. }
  1111. } break;
  1112. default: type = LLM_TYPE_UNKNOWN;
  1113. }
  1114. } break;
  1115. case LLM_ARCH_GLM4:
  1116. {
  1117. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1118. switch (hparams.n_layer) {
  1119. case 40: type = LLM_TYPE_9B; break;
  1120. case 61: type = LLM_TYPE_32B; break;
  1121. default: type = LLM_TYPE_UNKNOWN;
  1122. }
  1123. } break;
  1124. case LLM_ARCH_BITNET:
  1125. {
  1126. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1127. switch (hparams.n_layer) {
  1128. case 26: type = LLM_TYPE_3B; break;
  1129. default: type = LLM_TYPE_UNKNOWN;
  1130. }
  1131. } break;
  1132. case LLM_ARCH_T5:
  1133. {
  1134. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1135. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1136. uint32_t dec_start_token_id;
  1137. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1138. hparams.dec_start_token_id = dec_start_token_id;
  1139. }
  1140. switch (hparams.n_layer) {
  1141. case 6: type = LLM_TYPE_60M; break; // t5-small
  1142. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1143. case 12:
  1144. switch (hparams.n_ff()) {
  1145. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1146. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1147. default: type = LLM_TYPE_UNKNOWN;
  1148. } break;
  1149. case 24:
  1150. switch (hparams.n_ff()) {
  1151. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1152. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1153. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1154. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1155. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1156. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1157. default: type = LLM_TYPE_UNKNOWN;
  1158. } break;
  1159. default: type = LLM_TYPE_UNKNOWN;
  1160. }
  1161. } break;
  1162. case LLM_ARCH_T5ENCODER:
  1163. {
  1164. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1165. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1166. type = LLM_TYPE_UNKNOWN;
  1167. } break;
  1168. case LLM_ARCH_JAIS:
  1169. {
  1170. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1171. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1172. switch (hparams.n_layer) {
  1173. case 24: type = LLM_TYPE_1_3B; break;
  1174. case 40: type = LLM_TYPE_13B; break;
  1175. /* TODO: add variants */
  1176. default: type = LLM_TYPE_UNKNOWN;
  1177. }
  1178. } break;
  1179. case LLM_ARCH_NEMOTRON:
  1180. {
  1181. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1182. switch (hparams.n_layer) {
  1183. case 32: type = LLM_TYPE_4B; break;
  1184. default: type = LLM_TYPE_UNKNOWN;
  1185. }
  1186. } break;
  1187. case LLM_ARCH_EXAONE:
  1188. {
  1189. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1190. switch (hparams.n_layer) {
  1191. case 32: type = LLM_TYPE_8B; break;
  1192. default: type = LLM_TYPE_UNKNOWN;
  1193. }
  1194. } break;
  1195. case LLM_ARCH_RWKV6:
  1196. case LLM_ARCH_RWKV6QWEN2:
  1197. {
  1198. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1199. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1200. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1201. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1202. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1203. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1204. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1205. switch (hparams.n_layer) {
  1206. case 24: type = LLM_TYPE_1_6B; break;
  1207. case 32:
  1208. switch (hparams.n_embd) {
  1209. case 2560: type = LLM_TYPE_3B; break;
  1210. case 4096: type = LLM_TYPE_7B; break;
  1211. default: type = LLM_TYPE_UNKNOWN;
  1212. } break;
  1213. case 61: type = LLM_TYPE_14B; break;
  1214. case 64: type = LLM_TYPE_32B; break;
  1215. default: type = LLM_TYPE_UNKNOWN;
  1216. }
  1217. } break;
  1218. case LLM_ARCH_RWKV7:
  1219. case LLM_ARCH_ARWKV7:
  1220. {
  1221. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1222. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1223. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1224. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1225. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1226. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1227. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1228. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1229. switch (hparams.n_layer) {
  1230. case 12: type = LLM_TYPE_190M; break;
  1231. case 24:
  1232. switch (hparams.n_embd) {
  1233. case 1024: type = LLM_TYPE_450M; break;
  1234. case 2048: type = LLM_TYPE_1_5B; break;
  1235. default: type = LLM_TYPE_UNKNOWN;
  1236. } break;
  1237. case 28:
  1238. switch (hparams.n_embd) {
  1239. case 1536: type = LLM_TYPE_1_5B; break;
  1240. case 3584: type = LLM_TYPE_7B; break;
  1241. default: type = LLM_TYPE_UNKNOWN;
  1242. } break;
  1243. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1244. default: type = LLM_TYPE_UNKNOWN;
  1245. }
  1246. } break;
  1247. case LLM_ARCH_GRANITE:
  1248. case LLM_ARCH_GRANITE_MOE:
  1249. {
  1250. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1251. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1252. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1253. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1254. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1255. switch (hparams.n_layer) {
  1256. case 32: type = LLM_TYPE_3B; break;
  1257. case 40: type = LLM_TYPE_3B; break;
  1258. // Add additional layer/vocab/etc checks here for other model sizes
  1259. default: type = LLM_TYPE_UNKNOWN;
  1260. }
  1261. } break;
  1262. case LLM_ARCH_CHAMELEON:
  1263. {
  1264. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1265. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1266. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1267. switch (hparams.n_layer) {
  1268. case 32: type = LLM_TYPE_7B; break;
  1269. case 48: type = LLM_TYPE_34B; break;
  1270. default: type = LLM_TYPE_UNKNOWN;
  1271. }
  1272. } break;
  1273. case LLM_ARCH_WAVTOKENIZER_DEC:
  1274. {
  1275. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1276. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1277. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1278. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1279. } break;
  1280. case LLM_ARCH_BAILINGMOE:
  1281. {
  1282. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1283. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1284. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1285. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1286. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1287. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1288. switch (hparams.n_layer) {
  1289. case 28: type = LLM_TYPE_16B; break;
  1290. case 88: type = LLM_TYPE_290B; break;
  1291. default: type = LLM_TYPE_UNKNOWN;
  1292. }
  1293. } break;
  1294. default: throw std::runtime_error("unsupported model architecture");
  1295. }
  1296. pimpl->n_bytes = ml.n_bytes;
  1297. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1298. if (hparams.f_max_alibi_bias > 0.0f) {
  1299. hparams.use_alibi = true;
  1300. }
  1301. hparams.rope_type = llama_model_rope_type(this);
  1302. }
  1303. void llama_model::load_vocab(llama_model_loader & ml) {
  1304. const auto kv = LLM_KV(arch);
  1305. vocab.load(ml, kv);
  1306. }
  1307. bool llama_model::load_tensors(llama_model_loader & ml) {
  1308. const auto & split_mode = params.split_mode;
  1309. const auto & n_gpu_layers = params.n_gpu_layers;
  1310. const auto & use_mlock = params.use_mlock;
  1311. const auto & tensor_split = params.tensor_split;
  1312. const int n_layer = hparams.n_layer;
  1313. const bool use_mmap_buffer = true;
  1314. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1315. // build a list of buffer types for the CPU and GPU devices
  1316. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1317. for (auto * dev : devices) {
  1318. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1319. // add CPU buffer types as a fallback
  1320. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1321. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1322. }
  1323. // calculate the split points
  1324. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1325. std::vector<float> splits(n_devices());
  1326. if (all_zero) {
  1327. // default split, by free memory
  1328. for (size_t i = 0; i < n_devices(); ++i) {
  1329. ggml_backend_dev_t dev = devices[i];
  1330. size_t total;
  1331. size_t free;
  1332. ggml_backend_dev_memory(dev, &free, &total);
  1333. splits[i] = free;
  1334. }
  1335. } else {
  1336. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1337. }
  1338. // sum and normalize the splits to get the split points
  1339. float split_sum = 0.0f;
  1340. for (size_t i = 0; i < n_devices(); ++i) {
  1341. split_sum += splits[i];
  1342. splits[i] = split_sum;
  1343. }
  1344. for (size_t i = 0; i < n_devices(); ++i) {
  1345. splits[i] /= split_sum;
  1346. }
  1347. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1348. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1349. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1350. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1351. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1352. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1353. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1354. return {cpu_dev, &pimpl->cpu_buft_list};
  1355. }
  1356. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1357. auto * dev = devices.at(layer_gpu);
  1358. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1359. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1360. };
  1361. // assign the input layer
  1362. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1363. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1364. // assign the repeating layers to the devices according to the splits
  1365. pimpl->dev_layer.resize(n_layer);
  1366. for (int il = 0; il < n_layer; ++il) {
  1367. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1368. }
  1369. // assign the output layer
  1370. pimpl->dev_output = get_layer_buft_list(n_layer);
  1371. // one ggml context per buffer type
  1372. int max_n_tensors = ml.n_tensors;
  1373. max_n_tensors += 1; // duplicated output tensor
  1374. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1375. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1376. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1377. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1378. auto it = ctx_map.find(buft);
  1379. if (it == ctx_map.end()) {
  1380. ggml_init_params params = {
  1381. /*.mem_size =*/ ctx_size,
  1382. /*.mem_buffer =*/ NULL,
  1383. /*.no_alloc =*/ true,
  1384. };
  1385. ggml_context * ctx = ggml_init(params);
  1386. if (!ctx) {
  1387. throw std::runtime_error(format("failed to create ggml context"));
  1388. }
  1389. ctx_map[buft] = ctx;
  1390. pimpl->ctxs.emplace_back(ctx);
  1391. return ctx;
  1392. }
  1393. return it->second;
  1394. };
  1395. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1396. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1397. // create tensors for the weights
  1398. {
  1399. // note: cast to int64_t since we will use these for the tensor dimensions
  1400. const int64_t n_head = hparams.n_head();
  1401. const int64_t n_head_kv = hparams.n_head_kv();
  1402. const int64_t n_embd = hparams.n_embd;
  1403. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1404. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1405. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1406. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1407. const int64_t n_ff = hparams.n_ff();
  1408. const int64_t n_embd_gqa = n_embd_v_gqa;
  1409. const int64_t n_vocab = vocab.n_tokens();
  1410. const int64_t n_token_types = vocab.n_token_types();
  1411. const int64_t n_rot = hparams.n_rot;
  1412. const int64_t n_expert = hparams.n_expert;
  1413. const int64_t n_expert_used = hparams.n_expert_used;
  1414. const int64_t n_ctx_train = hparams.n_ctx_train;
  1415. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1416. throw std::runtime_error("model has expert layers but no expert layers are used");
  1417. }
  1418. int n_moved_tensors = 0;
  1419. ggml_tensor * first_moved_tensor = nullptr;
  1420. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1421. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1422. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1423. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1424. if (!t_meta) {
  1425. if (flags & TENSOR_NOT_REQUIRED) {
  1426. return nullptr;
  1427. }
  1428. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1429. }
  1430. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1431. // the tensor is duplicated
  1432. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1433. llm_tensor tn_tensor = tn.tensor;
  1434. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1435. tn_tensor = LLM_TENSOR_OUTPUT;
  1436. }
  1437. llm_tensor_info info;
  1438. try {
  1439. info = llm_tensor_info_for(tn_tensor);
  1440. } catch (const std::out_of_range & e) {
  1441. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1442. }
  1443. // skip unused tensors
  1444. if (info.op == GGML_OP_NONE) {
  1445. const size_t nbytes = ggml_nbytes(t_meta);
  1446. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1447. ml.size_data -= nbytes;
  1448. ml.n_created++;
  1449. return nullptr;
  1450. }
  1451. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1452. ggml_op op;
  1453. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1454. if (bias) {
  1455. op = GGML_OP_ADD;
  1456. } else {
  1457. op = info.op;
  1458. }
  1459. // sanity checks
  1460. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1461. if (tn.bid != -1) {
  1462. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1463. }
  1464. } else {
  1465. if (tn.bid == -1) {
  1466. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1467. }
  1468. }
  1469. // select the buffer type for this tensor
  1470. buft_list_t * buft_list;
  1471. switch (info.layer) {
  1472. case LLM_TENSOR_LAYER_INPUT:
  1473. buft_list = pimpl->dev_input.buft_list;
  1474. break;
  1475. case LLM_TENSOR_LAYER_OUTPUT:
  1476. buft_list = pimpl->dev_output.buft_list;
  1477. break;
  1478. case LLM_TENSOR_LAYER_REPEATING:
  1479. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1480. break;
  1481. default:
  1482. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1483. }
  1484. ggml_backend_buffer_type_t buft = nullptr;
  1485. // check overrides
  1486. if (ml.tensor_buft_overrides) {
  1487. std::string tensor_name = tn.str();
  1488. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1489. std::regex pattern(overrides->pattern);
  1490. if (std::regex_search(tensor_name, pattern)) {
  1491. LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
  1492. buft = overrides->buft;
  1493. break;
  1494. }
  1495. }
  1496. }
  1497. if (!buft) {
  1498. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1499. if (!buft) {
  1500. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1501. }
  1502. }
  1503. // avoid using a host buffer when using mmap
  1504. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1505. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1506. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1507. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1508. }
  1509. if (buft != buft_list->front().second) {
  1510. n_moved_tensors++;
  1511. if (!first_moved_tensor) {
  1512. first_moved_tensor = t_meta;
  1513. first_moved_from_buft = buft_list->front().second;
  1514. first_moved_to_buft = buft;
  1515. }
  1516. }
  1517. ggml_context * ctx = ctx_for_buft(buft);
  1518. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1519. if (flags & TENSOR_DUPLICATED) {
  1520. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1521. if (t) {
  1522. return t;
  1523. }
  1524. }
  1525. return ml.create_tensor(ctx, tn, ne, flags);
  1526. };
  1527. layers.resize(n_layer);
  1528. // TODO: move to a separate function
  1529. const auto tn = LLM_TN(arch);
  1530. switch (arch) {
  1531. case LLM_ARCH_LLAMA:
  1532. case LLM_ARCH_REFACT:
  1533. case LLM_ARCH_MINICPM:
  1534. case LLM_ARCH_GRANITE:
  1535. case LLM_ARCH_GRANITE_MOE:
  1536. {
  1537. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1538. // output
  1539. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1540. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1541. // if output is NULL, init from the input tok embed
  1542. if (output == NULL) {
  1543. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1544. }
  1545. for (int i = 0; i < n_layer; ++i) {
  1546. auto & layer = layers[i];
  1547. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1548. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1549. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1550. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1551. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1552. // optional bias tensors
  1553. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1554. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1555. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1556. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1557. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1558. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1559. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1560. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1561. }
  1562. else {
  1563. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1564. }
  1565. if (n_expert == 0) {
  1566. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1567. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1568. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1569. // optional MLP bias
  1570. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1571. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1572. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1573. } else {
  1574. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1575. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1576. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1577. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1578. }
  1579. }
  1580. } break;
  1581. case LLM_ARCH_LLAMA4:
  1582. {
  1583. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1584. // output
  1585. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1586. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1587. // if output is NULL, init from the input tok embed
  1588. if (output == NULL) {
  1589. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1590. }
  1591. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1592. for (int i = 0; i < n_layer; ++i) {
  1593. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1594. auto & layer = layers[i];
  1595. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1596. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1597. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1598. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1599. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1600. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1601. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1602. if (is_moe_layer) {
  1603. int n_ff_exp = hparams.n_ff_exp;
  1604. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1605. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1606. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1607. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1608. // Shared expert
  1609. const int64_t n_ff_shexp = n_ff_exp;
  1610. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1611. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1612. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1613. } else {
  1614. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1615. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1616. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1617. }
  1618. }
  1619. } break;
  1620. case LLM_ARCH_DECI:
  1621. {
  1622. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1623. // output
  1624. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1625. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1626. // if output is NULL, init from the input tok embed
  1627. if (output == NULL) {
  1628. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1629. }
  1630. for (int i = 0; i < n_layer; ++i) {
  1631. auto & layer = layers[i];
  1632. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1633. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1634. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1635. const int64_t n_ff = hparams.n_ff(i);
  1636. const int64_t n_head = hparams.n_head(i);
  1637. const int64_t n_head_kv = hparams.n_head_kv(i);
  1638. if (n_head_kv == 0 && n_head > 0) {
  1639. // linear attention for DeciLMCausalModel
  1640. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1641. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1642. }
  1643. else if (n_head_kv > 0) {
  1644. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1645. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1646. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1647. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1648. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1649. }
  1650. // optional bias tensors
  1651. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1652. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1653. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1654. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1655. if (n_ff > 0) {
  1656. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1657. }
  1658. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1659. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1660. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1661. }
  1662. else {
  1663. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1664. }
  1665. if (n_ff > 0) {
  1666. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1667. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1668. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1669. }
  1670. // optional MLP bias
  1671. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1672. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1673. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1674. }
  1675. } break;
  1676. case LLM_ARCH_MINICPM3:
  1677. {
  1678. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1679. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1680. const int64_t q_lora_rank = hparams.n_lora_q;
  1681. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1682. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1683. // output
  1684. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1685. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1686. // if output is NULL, init from the input tok embed
  1687. if (output == NULL) {
  1688. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1689. }
  1690. for (int i = 0; i < n_layer; ++i) {
  1691. auto & layer = layers[i];
  1692. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1693. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1694. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1695. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1696. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1697. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1698. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1699. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1700. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1701. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1702. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1703. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1704. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1705. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1706. }
  1707. } break;
  1708. case LLM_ARCH_GROK:
  1709. {
  1710. if (n_expert == 0) {
  1711. throw std::runtime_error("Grok model cannot have zero experts");
  1712. }
  1713. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1714. // output
  1715. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1716. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1717. // if output is NULL, init from the input tok embed
  1718. if (output == NULL) {
  1719. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1720. }
  1721. for (int i = 0; i < n_layer; ++i) {
  1722. auto & layer = layers[i];
  1723. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1724. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1725. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1726. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1727. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1728. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1729. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1730. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1731. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1732. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1733. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1734. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1735. }
  1736. } break;
  1737. case LLM_ARCH_DBRX:
  1738. {
  1739. if (n_expert == 0) {
  1740. throw std::runtime_error("DBRX model cannot have zero experts");
  1741. }
  1742. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1743. // output
  1744. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1745. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1746. for (int i = 0; i < n_layer; ++i) {
  1747. auto & layer = layers[i];
  1748. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1749. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1750. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1751. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1752. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1753. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1754. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1755. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1756. }
  1757. } break;
  1758. case LLM_ARCH_BAICHUAN:
  1759. {
  1760. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1761. {
  1762. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1763. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1764. }
  1765. for (int i = 0; i < n_layer; ++i) {
  1766. auto & layer = layers[i];
  1767. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1768. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1769. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1770. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1771. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1772. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1773. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1774. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1775. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1776. }
  1777. } break;
  1778. case LLM_ARCH_FALCON:
  1779. {
  1780. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1781. // output
  1782. {
  1783. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1784. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1785. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1786. if (!output) {
  1787. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1788. }
  1789. }
  1790. for (int i = 0; i < n_layer; ++i) {
  1791. auto & layer = layers[i];
  1792. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1793. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1794. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1795. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1796. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1797. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1798. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1799. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1800. }
  1801. } break;
  1802. case LLM_ARCH_STARCODER:
  1803. {
  1804. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1805. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1806. // output
  1807. {
  1808. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1809. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1810. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1811. if (!output) {
  1812. // needs to be on GPU
  1813. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1814. }
  1815. }
  1816. for (int i = 0; i < n_layer; ++i) {
  1817. auto & layer = layers[i];
  1818. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1819. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1820. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1821. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1822. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1823. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1824. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1825. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1826. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1827. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1828. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1829. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1830. }
  1831. } break;
  1832. case LLM_ARCH_BERT:
  1833. case LLM_ARCH_NOMIC_BERT:
  1834. case LLM_ARCH_NOMIC_BERT_MOE:
  1835. {
  1836. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1837. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1838. if (arch == LLM_ARCH_BERT) {
  1839. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1840. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1841. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1842. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1843. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1844. }
  1845. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1846. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1847. for (int i = 0; i < n_layer; ++i) {
  1848. auto & layer = layers[i];
  1849. if (arch == LLM_ARCH_BERT) {
  1850. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1851. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1852. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1853. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1854. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1855. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1856. } else {
  1857. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1858. }
  1859. if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1860. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1861. }
  1862. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1863. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1864. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1865. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1866. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1867. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1868. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1869. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1870. } else {
  1871. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1872. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1873. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1874. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1875. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1876. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1877. } else {
  1878. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1879. }
  1880. }
  1881. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1882. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1883. }
  1884. } break;
  1885. case LLM_ARCH_JINA_BERT_V2:
  1886. {
  1887. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1888. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1889. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1890. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1891. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1892. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1893. for (int i = 0; i < n_layer; ++i) {
  1894. auto & layer = layers[i]; // JinaBertLayer
  1895. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1896. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1897. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1898. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1899. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1900. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1901. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1902. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1903. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1904. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1905. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1906. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1907. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1908. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1909. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1910. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1911. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1912. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1913. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1914. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1915. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1916. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1917. }
  1918. } break;
  1919. case LLM_ARCH_BLOOM:
  1920. {
  1921. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1922. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1923. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1924. // output
  1925. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1926. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1927. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1928. // if output is NULL, init from the input tok embed
  1929. if (output == NULL) {
  1930. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1931. }
  1932. for (int i = 0; i < n_layer; ++i) {
  1933. auto & layer = layers[i];
  1934. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1935. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1936. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1937. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1938. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1939. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1940. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1941. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1942. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1943. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1944. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1945. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1946. }
  1947. } break;
  1948. case LLM_ARCH_MPT:
  1949. {
  1950. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1951. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1952. // output
  1953. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1954. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1955. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1956. if (!output) {
  1957. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1958. }
  1959. for (int i = 0; i < n_layer; ++i) {
  1960. auto & layer = layers[i];
  1961. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1962. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1963. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1964. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1965. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1966. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1967. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1968. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1969. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1970. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1971. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1972. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1973. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1974. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1975. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1976. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1977. // AWQ ScaleActivation layer
  1978. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1979. }
  1980. } break;
  1981. case LLM_ARCH_STABLELM:
  1982. {
  1983. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1984. // output
  1985. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1986. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1987. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1988. for (int i = 0; i < n_layer; ++i) {
  1989. auto & layer = layers[i];
  1990. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1991. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1992. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1993. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1994. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1995. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1996. // optional bias tensors, present in Stable LM 2 1.6B
  1997. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1998. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1999. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2000. // optional q and k layernorms, present in StableLM 2 12B
  2001. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2002. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2003. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2004. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2005. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2006. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2007. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2008. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2009. }
  2010. } break;
  2011. case LLM_ARCH_QWEN:
  2012. {
  2013. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2014. // output
  2015. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2016. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2017. for (int i = 0; i < n_layer; ++i) {
  2018. auto & layer = layers[i];
  2019. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2020. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2021. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2022. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2023. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2024. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2025. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2026. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2027. }
  2028. } break;
  2029. case LLM_ARCH_QWEN2:
  2030. case LLM_ARCH_QWEN2VL:
  2031. {
  2032. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2033. // output
  2034. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2035. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2036. // if output is NULL, init from the input tok embed
  2037. if (output == NULL) {
  2038. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2039. }
  2040. for (int i = 0; i < n_layer; ++i) {
  2041. auto & layer = layers[i];
  2042. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2043. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2044. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2045. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2046. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2047. // optional bias tensors
  2048. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2049. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2050. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2051. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2052. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2053. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2054. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2055. }
  2056. } break;
  2057. case LLM_ARCH_QWEN2MOE:
  2058. {
  2059. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2060. // output
  2061. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2062. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2063. for (int i = 0; i < n_layer; ++i) {
  2064. auto & layer = layers[i];
  2065. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2066. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2067. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2068. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2069. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2070. // optional bias tensors
  2071. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2072. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2073. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2074. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2075. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2076. if (n_expert == 0) {
  2077. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2078. }
  2079. if (n_expert_used == 0) {
  2080. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2081. }
  2082. // MoE branch
  2083. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2084. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2085. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2086. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2087. // Shared expert branch
  2088. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2089. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2090. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2091. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2092. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2093. }
  2094. } break;
  2095. case LLM_ARCH_QWEN3:
  2096. {
  2097. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2098. // output
  2099. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2100. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2101. // if output is NULL, init from the input tok embed
  2102. if (output == NULL) {
  2103. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2104. }
  2105. for (int i = 0; i < n_layer; ++i) {
  2106. auto & layer = layers[i];
  2107. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2108. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2109. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2110. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2111. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2112. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2113. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2114. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2115. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2116. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2117. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2118. }
  2119. } break;
  2120. case LLM_ARCH_QWEN3MOE:
  2121. {
  2122. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2123. // output
  2124. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2125. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2126. for (int i = 0; i < n_layer; ++i) {
  2127. auto & layer = layers[i];
  2128. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2129. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2130. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2131. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2132. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2133. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2134. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2135. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2136. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2137. if (n_expert == 0) {
  2138. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2139. }
  2140. if (n_expert_used == 0) {
  2141. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2142. }
  2143. // MoE branch
  2144. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2145. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2146. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2147. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2148. }
  2149. } break;
  2150. case LLM_ARCH_PHI2:
  2151. {
  2152. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2153. // output
  2154. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2155. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2156. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2157. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2158. for (int i = 0; i < n_layer; ++i) {
  2159. auto & layer = layers[i];
  2160. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2161. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2162. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2163. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2164. if (layer.wqkv == nullptr) {
  2165. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2166. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2167. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2168. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2169. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2170. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2171. }
  2172. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2173. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2174. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2175. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2176. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2177. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2178. }
  2179. } break;
  2180. case LLM_ARCH_PHI3:
  2181. {
  2182. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2183. // output
  2184. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2185. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2186. // if output is NULL, init from the input tok embed
  2187. if (output == NULL) {
  2188. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2189. }
  2190. for (int i = 0; i < n_layer; ++i) {
  2191. auto & layer = layers[i];
  2192. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2193. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2194. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2195. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2196. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2197. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2198. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2199. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2200. }
  2201. } break;
  2202. case LLM_ARCH_PHIMOE:
  2203. {
  2204. const int64_t n_embd_head = n_embd / n_head;
  2205. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2206. // output
  2207. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2208. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2209. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2210. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2211. for (int i = 0; i < n_layer; ++i) {
  2212. auto & layer = layers[i];
  2213. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2214. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2215. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2216. if (layer.wqkv == nullptr) {
  2217. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2218. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2219. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2220. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2221. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2222. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2223. }
  2224. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2225. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2226. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2227. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2228. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2229. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2230. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2231. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2232. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2233. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2234. }
  2235. } break;
  2236. case LLM_ARCH_PLAMO:
  2237. {
  2238. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2239. // output
  2240. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2241. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2242. for (int i = 0; i < n_layer; ++i) {
  2243. auto & layer = layers[i];
  2244. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2245. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2246. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2247. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2248. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2249. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2250. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2251. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2252. }
  2253. } break;
  2254. case LLM_ARCH_GPT2:
  2255. {
  2256. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2257. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2258. // output
  2259. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2260. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2261. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2262. // if output is NULL, init from the input tok embed
  2263. if (output == NULL) {
  2264. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2265. }
  2266. for (int i = 0; i < n_layer; ++i) {
  2267. auto & layer = layers[i];
  2268. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2269. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2270. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2271. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2272. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2273. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2274. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2275. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2276. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2277. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2278. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2279. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2280. }
  2281. } break;
  2282. case LLM_ARCH_CODESHELL:
  2283. {
  2284. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2285. // if tok embd is NULL, init from output
  2286. if (tok_embd == NULL) {
  2287. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2288. }
  2289. // output
  2290. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2291. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2292. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2293. for (int i = 0; i < n_layer; ++i) {
  2294. auto & layer = layers[i];
  2295. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2296. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2297. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2298. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2299. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2300. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2301. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2302. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2303. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2304. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2305. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2306. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2307. }
  2308. } break;
  2309. case LLM_ARCH_ORION:
  2310. {
  2311. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2312. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2313. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2314. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2315. for (int i = 0; i < n_layer; ++i) {
  2316. auto & layer = layers[i];
  2317. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2318. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2319. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2320. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2321. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2322. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2323. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2324. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2325. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2326. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2327. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2328. }
  2329. } break;
  2330. case LLM_ARCH_INTERNLM2:
  2331. {
  2332. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2333. // output
  2334. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2335. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2336. for (int i = 0; i < n_layer; ++i) {
  2337. auto & layer = layers[i];
  2338. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2339. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2340. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2341. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2342. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2343. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2344. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2345. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2346. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2347. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2348. }
  2349. } break;
  2350. case LLM_ARCH_GEMMA:
  2351. {
  2352. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2353. // output
  2354. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2355. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2356. for (int i = 0; i < n_layer; ++i) {
  2357. auto & layer = layers[i];
  2358. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2359. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2360. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2361. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2362. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2363. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2364. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2365. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2366. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2367. }
  2368. } break;
  2369. case LLM_ARCH_GEMMA2:
  2370. {
  2371. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2372. // output
  2373. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2374. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2375. for (int i = 0; i < n_layer; ++i) {
  2376. auto & layer = layers[i];
  2377. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2378. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2379. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2380. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2381. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2382. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2383. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2384. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2385. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2386. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2387. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2388. }
  2389. } break;
  2390. case LLM_ARCH_GEMMA3:
  2391. {
  2392. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2393. // output
  2394. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2395. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2396. // if output is NULL, init from the input tok embed
  2397. if (output == NULL) {
  2398. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2399. }
  2400. for (int i = 0; i < n_layer; ++i) {
  2401. auto & layer = layers[i];
  2402. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2403. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2404. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2405. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2406. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2407. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2408. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2409. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2410. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2411. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2412. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2413. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2414. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2415. }
  2416. } break;
  2417. case LLM_ARCH_STARCODER2:
  2418. {
  2419. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2420. // output
  2421. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2422. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2423. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2424. // if output is NULL, init from the input tok embed
  2425. if (output == NULL) {
  2426. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2427. }
  2428. for (int i = 0; i < n_layer; ++i) {
  2429. auto & layer = layers[i];
  2430. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2431. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2432. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2433. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2434. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2435. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2436. // optional bias tensors
  2437. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2438. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2439. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2440. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2441. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2442. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2443. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2444. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2445. // optional bias tensors
  2446. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2447. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2448. }
  2449. } break;
  2450. case LLM_ARCH_MAMBA:
  2451. {
  2452. const int64_t d_conv = hparams.ssm_d_conv;
  2453. const int64_t d_inner = hparams.ssm_d_inner;
  2454. const int64_t d_state = hparams.ssm_d_state;
  2455. const int64_t dt_rank = hparams.ssm_dt_rank;
  2456. // only an expansion factor of 2 is supported for now
  2457. if (2 * n_embd != d_inner) {
  2458. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2459. }
  2460. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2461. // output
  2462. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2463. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2464. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2465. if (output == NULL) {
  2466. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2467. }
  2468. for (int i = 0; i < n_layer; ++i) {
  2469. auto & layer = layers[i];
  2470. // norm
  2471. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2472. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2473. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2474. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2475. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2476. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2477. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2478. // no "weight" suffix for these
  2479. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2480. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2481. // out_proj
  2482. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2483. }
  2484. } break;
  2485. case LLM_ARCH_XVERSE:
  2486. {
  2487. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2488. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2489. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2490. for (int i = 0; i < n_layer; ++i) {
  2491. auto & layer = layers[i];
  2492. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2493. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2494. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2495. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2496. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2497. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2498. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2499. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2500. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2501. }
  2502. } break;
  2503. case LLM_ARCH_COMMAND_R:
  2504. {
  2505. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2506. // output
  2507. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2508. // init output from the input tok embed
  2509. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2510. for (int i = 0; i < n_layer; ++i) {
  2511. auto & layer = layers[i];
  2512. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2513. if (n_layer >= 64){
  2514. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2515. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2516. }
  2517. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2518. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2519. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2520. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2521. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2522. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2523. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2524. }
  2525. } break;
  2526. case LLM_ARCH_COHERE2:
  2527. {
  2528. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2529. // output
  2530. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2531. // init output from the input tok embed
  2532. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2533. TENSOR_DUPLICATED);
  2534. for (int i = 0; i < n_layer; ++i) {
  2535. auto & layer = layers[i];
  2536. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2537. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2538. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2539. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2540. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2541. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2542. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2543. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2544. }
  2545. }
  2546. break;
  2547. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2548. {
  2549. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2550. // output
  2551. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2552. // if output is NULL, init from the input tok embed
  2553. if (output == NULL) {
  2554. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2555. }
  2556. for (int i = 0; i < n_layer; ++i) {
  2557. auto & layer = layers[i];
  2558. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2559. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2560. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2561. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2562. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2563. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2564. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2565. }
  2566. } break;
  2567. case LLM_ARCH_OLMO2:
  2568. {
  2569. const int64_t n_embd_head = n_embd / n_head;
  2570. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2571. // output
  2572. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2573. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2574. for (int i = 0; i < n_layer; ++i) {
  2575. auto & layer = layers[i];
  2576. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2577. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2578. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2579. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2580. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2581. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2582. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2583. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2584. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2585. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2586. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2587. }
  2588. } break;
  2589. case LLM_ARCH_OLMOE:
  2590. {
  2591. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2592. // output
  2593. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2594. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2595. for (int i = 0; i < n_layer; ++i) {
  2596. auto & layer = layers[i];
  2597. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2598. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2599. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2600. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2601. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2602. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2603. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2604. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2605. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2606. if (n_expert == 0) {
  2607. throw std::runtime_error("n_expert must be > 0");
  2608. }
  2609. if (n_expert_used == 0) {
  2610. throw std::runtime_error("n_expert_used must be > 0");
  2611. }
  2612. // MoE branch
  2613. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2614. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2615. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2616. }
  2617. } break;
  2618. case LLM_ARCH_OPENELM:
  2619. {
  2620. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2621. // output
  2622. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2623. // init output from the input tok embed
  2624. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2625. for (int i = 0; i < n_layer; ++i) {
  2626. const int64_t n_head = hparams.n_head(i);
  2627. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2628. const int64_t n_ff = hparams.n_ff(i);
  2629. auto & layer = layers[i];
  2630. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2631. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2632. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2633. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2634. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2635. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2636. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2637. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2638. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2639. }
  2640. } break;
  2641. case LLM_ARCH_GPTNEOX:
  2642. {
  2643. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2644. // output
  2645. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2646. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2647. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2648. for (int i = 0; i < n_layer; ++i) {
  2649. auto & layer = layers[i];
  2650. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2651. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2652. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2653. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2654. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2655. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2656. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2657. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2658. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2659. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2660. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2661. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2662. }
  2663. } break;
  2664. case LLM_ARCH_ARCTIC:
  2665. {
  2666. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2667. // output
  2668. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2669. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2670. // if output is NULL, init from the input tok embed
  2671. if (output == NULL) {
  2672. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2673. }
  2674. for (int i = 0; i < n_layer; ++i) {
  2675. auto & layer = layers[i];
  2676. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2677. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2678. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2679. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2680. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2681. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2682. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2683. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2684. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2685. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2686. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2687. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2688. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2689. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2690. }
  2691. } break;
  2692. case LLM_ARCH_DEEPSEEK:
  2693. {
  2694. const int64_t n_ff_exp = hparams.n_ff_exp;
  2695. const int64_t n_expert_shared = hparams.n_expert_shared;
  2696. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2697. // output
  2698. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2699. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2700. for (int i = 0; i < n_layer; ++i) {
  2701. auto & layer = layers[i];
  2702. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2703. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2704. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2705. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2706. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2707. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2708. if (i < (int) hparams.n_layer_dense_lead) {
  2709. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2710. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2711. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2712. } else {
  2713. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2714. if (n_expert == 0) {
  2715. throw std::runtime_error("n_expert must be > 0");
  2716. }
  2717. if (n_expert_used == 0) {
  2718. throw std::runtime_error("n_expert_used must be > 0");
  2719. }
  2720. // MoE branch
  2721. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2722. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2723. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2724. // Shared expert branch
  2725. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2726. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2727. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2728. }
  2729. }
  2730. } break;
  2731. case LLM_ARCH_DEEPSEEK2:
  2732. {
  2733. const bool is_lite = (hparams.n_layer == 27);
  2734. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2735. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2736. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2737. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2738. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2739. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2740. const int64_t q_lora_rank = hparams.n_lora_q;
  2741. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2742. const int64_t n_ff_exp = hparams.n_ff_exp;
  2743. const int64_t n_expert_shared = hparams.n_expert_shared;
  2744. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2745. // output
  2746. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2747. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2748. for (int i = 0; i < n_layer; ++i) {
  2749. auto & layer = layers[i];
  2750. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2751. if (!is_lite) {
  2752. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2753. }
  2754. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2755. if (!is_lite) {
  2756. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2757. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2758. } else {
  2759. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2760. }
  2761. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2762. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2763. if (is_mla) {
  2764. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2765. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2766. } else {
  2767. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2768. }
  2769. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2770. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2771. if (i < (int) hparams.n_layer_dense_lead) {
  2772. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2773. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2774. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2775. } else {
  2776. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2777. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2778. if (n_expert == 0) {
  2779. throw std::runtime_error("n_expert must be > 0");
  2780. }
  2781. if (n_expert_used == 0) {
  2782. throw std::runtime_error("n_expert_used must be > 0");
  2783. }
  2784. // MoE branch
  2785. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2786. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2787. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2788. // Shared expert branch
  2789. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2790. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2791. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2792. }
  2793. }
  2794. } break;
  2795. case LLM_ARCH_PLM:
  2796. {
  2797. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2798. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2799. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2800. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2801. // output
  2802. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2803. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2804. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2805. for (int i = 0; i < n_layer; ++i) {
  2806. auto & layer = layers[i];
  2807. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2808. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2809. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2810. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2811. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2812. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2813. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2814. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2815. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2816. }
  2817. } break;
  2818. case LLM_ARCH_BITNET:
  2819. {
  2820. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2821. // output
  2822. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2823. for (int i = 0; i < n_layer; ++i) {
  2824. auto & layer = layers[i];
  2825. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2826. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2827. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2828. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2829. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2830. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2831. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2832. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2833. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2834. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2835. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2836. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2837. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2838. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2839. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2840. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2841. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2842. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2843. }
  2844. } break;
  2845. case LLM_ARCH_T5:
  2846. {
  2847. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2848. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2849. // output
  2850. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2851. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2852. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2853. // if output is NULL, init from the input tok embed
  2854. if (output == NULL) {
  2855. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2856. }
  2857. for (int i = 0; i < n_layer; ++i) {
  2858. auto & layer = layers[i];
  2859. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2860. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2861. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2862. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2863. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2864. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2865. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2866. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2867. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2868. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2869. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2870. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2871. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2872. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2873. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2874. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2875. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2876. // this tensor seems to be unused in HF transformers implementation
  2877. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2878. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2879. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2880. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2881. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2882. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2883. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2884. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2885. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2886. }
  2887. } break;
  2888. case LLM_ARCH_T5ENCODER:
  2889. {
  2890. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2891. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2892. // output
  2893. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2894. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2895. // if output is NULL, init from the input tok embed
  2896. if (output == NULL) {
  2897. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2898. }
  2899. for (int i = 0; i < n_layer; ++i) {
  2900. auto & layer = layers[i];
  2901. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2902. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2903. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2904. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2905. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2906. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2907. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2908. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2909. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2910. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2911. }
  2912. } break;
  2913. case LLM_ARCH_JAIS:
  2914. {
  2915. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2916. // output
  2917. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2918. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2919. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2920. for (int i = 0; i < n_layer; ++i) {
  2921. auto & layer = layers[i];
  2922. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2923. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2924. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2925. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2926. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2927. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2928. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2929. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2930. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2931. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2932. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2933. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2934. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2935. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2936. }
  2937. } break;
  2938. case LLM_ARCH_CHATGLM:
  2939. {
  2940. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2941. // output
  2942. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2943. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2944. // if output is NULL, init from the input tok embed
  2945. if (output == NULL) {
  2946. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2947. }
  2948. for (int i = 0; i < n_layer; ++i) {
  2949. auto & layer = layers[i];
  2950. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2951. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2952. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2953. if (layer.wqkv == nullptr) {
  2954. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2955. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2956. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2957. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2958. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2959. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2960. }
  2961. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2962. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2963. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2964. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2965. }
  2966. } break;
  2967. case LLM_ARCH_GLM4:
  2968. {
  2969. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2970. // output
  2971. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2972. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2973. // if output is NULL, init from the input tok embed
  2974. if (output == NULL) {
  2975. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2976. }
  2977. for (int i = 0; i < n_layer; ++i) {
  2978. auto & layer = layers[i];
  2979. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2980. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2981. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2982. if (layer.wqkv == nullptr) {
  2983. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2984. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2985. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2986. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2987. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2988. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2989. }
  2990. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2991. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2992. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2993. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2994. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2995. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2996. }
  2997. } break;
  2998. case LLM_ARCH_NEMOTRON:
  2999. {
  3000. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3001. // output
  3002. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3003. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3004. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3005. for (int i = 0; i < n_layer; ++i) {
  3006. auto & layer = layers[i];
  3007. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3008. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3009. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3010. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3011. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3012. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3013. // optional bias tensors
  3014. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3015. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3016. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3017. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3018. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3019. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3020. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3021. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3022. // optional MLP bias
  3023. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3024. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3025. }
  3026. } break;
  3027. case LLM_ARCH_EXAONE:
  3028. {
  3029. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3030. // output
  3031. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3032. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3033. // if output is NULL, init from the input tok embed
  3034. if (output == NULL) {
  3035. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3036. }
  3037. for (int i = 0; i < n_layer; ++i) {
  3038. auto & layer = layers[i];
  3039. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3040. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3041. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3042. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3043. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3044. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3045. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3046. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3047. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3048. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3049. }
  3050. } break;
  3051. case LLM_ARCH_RWKV6:
  3052. {
  3053. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3054. // Block 0, LN0
  3055. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3056. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3057. // output
  3058. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3059. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3060. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3061. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3062. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3063. const int head_size = hparams.wkv_head_size;
  3064. const int attn_hidden_size = n_embd;
  3065. const int ffn_size = hparams.n_ff_arr[0];
  3066. for (int i = 0; i < n_layer; ++i) {
  3067. auto & layer = layers[i];
  3068. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3069. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3070. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3071. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3072. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3073. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3074. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3075. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3076. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3077. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3078. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3079. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3080. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3081. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3082. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3083. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3084. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3085. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3086. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3087. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3088. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3089. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3090. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3091. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3092. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3093. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3094. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3095. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3096. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3097. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3098. }
  3099. } break;
  3100. case LLM_ARCH_RWKV6QWEN2:
  3101. {
  3102. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3103. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3104. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3105. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3106. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3107. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3108. const int head_size = hparams.wkv_head_size;
  3109. const int attn_hidden_size = n_embd;
  3110. const int n_head_kv = hparams.n_head_kv();
  3111. int attn_key_value_size;
  3112. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3113. attn_key_value_size = attn_hidden_size;
  3114. } else {
  3115. attn_key_value_size = n_head_kv * head_size;
  3116. }
  3117. for (int i = 0; i < n_layer; ++i) {
  3118. auto & layer = layers[i];
  3119. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3120. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3121. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3122. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3123. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3124. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3125. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3126. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3127. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3128. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3129. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3130. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3131. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3132. // optional bias tensors
  3133. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3134. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3135. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3136. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3137. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3138. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3139. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3140. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3141. }
  3142. } break;
  3143. case LLM_ARCH_RWKV7:
  3144. {
  3145. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3146. // Block 0, LN0
  3147. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3148. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3149. // output
  3150. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3151. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3152. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3153. const int n_lora_decay = hparams.n_lora_decay;
  3154. const int n_lora_iclr = hparams.n_lora_iclr;
  3155. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3156. const int n_lora_gate = hparams.n_lora_gate;
  3157. const int attn_hidden_size = n_embd;
  3158. const int ffn_size = hparams.n_ff_arr[0];
  3159. for (int i = 0; i < n_layer; ++i) {
  3160. auto & layer = layers[i];
  3161. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3162. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3163. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3164. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3165. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3166. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3167. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3168. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3169. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3170. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3171. if (i == 0) {
  3172. // actually not used
  3173. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3174. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3175. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3176. } else {
  3177. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3178. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3179. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3180. }
  3181. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3182. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3183. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3184. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3185. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3186. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3187. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3188. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3189. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3190. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3191. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3192. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3193. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3194. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3195. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3196. }
  3197. } break;
  3198. case LLM_ARCH_ARWKV7:
  3199. {
  3200. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3201. // output
  3202. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3203. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3204. const int n_lora_decay = hparams.n_lora_decay;
  3205. const int n_lora_iclr = hparams.n_lora_iclr;
  3206. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3207. const int n_lora_gate = hparams.n_lora_gate;
  3208. const int attn_hidden_size = n_embd;
  3209. for (int i = 0; i < n_layer; ++i) {
  3210. auto & layer = layers[i];
  3211. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3212. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3213. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3214. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3215. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3216. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3217. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3218. if (i == 0) {
  3219. // actually not used
  3220. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3221. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3222. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3223. } else {
  3224. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3225. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3226. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3227. }
  3228. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3229. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3230. try {
  3231. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3232. } catch(std::runtime_error & e) {
  3233. // ARWKV models may not have gate tensors
  3234. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3235. }
  3236. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3237. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3238. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3239. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3240. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3241. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3242. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3243. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3244. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3245. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3246. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3247. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3248. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3249. }
  3250. } break;
  3251. case LLM_ARCH_CHAMELEON:
  3252. {
  3253. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3254. // output
  3255. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3256. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3257. // if output is NULL, init from the input tok embed
  3258. if (output == NULL) {
  3259. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3260. }
  3261. for (int i = 0; i < n_layer; ++i) {
  3262. auto & layer = layers[i];
  3263. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3264. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3265. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3266. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3267. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3268. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3269. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3270. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3271. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3272. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3273. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3274. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3275. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3276. }
  3277. } break;
  3278. case LLM_ARCH_WAVTOKENIZER_DEC:
  3279. {
  3280. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3281. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3282. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3283. // posnet
  3284. {
  3285. const int64_t n_embd = hparams.posnet.n_embd;
  3286. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3287. auto & layer = layers[i].posnet;
  3288. // posnet:
  3289. //
  3290. // - resnet
  3291. // - resnet
  3292. // - attn
  3293. // - resnet
  3294. // - resnet
  3295. // - norm
  3296. //
  3297. switch (i) {
  3298. case 0:
  3299. case 1:
  3300. case 3:
  3301. case 4:
  3302. {
  3303. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3304. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3305. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3306. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3307. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3308. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3309. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3310. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3311. } break;
  3312. case 2:
  3313. {
  3314. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3315. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3316. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3317. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3318. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3319. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3320. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3321. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3322. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3323. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3324. } break;
  3325. case 5:
  3326. {
  3327. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3328. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3329. } break;
  3330. default: GGML_ABORT("unknown posnet layer");
  3331. };
  3332. }
  3333. }
  3334. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3335. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3336. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3337. // convnext
  3338. {
  3339. const int64_t n_embd = hparams.convnext.n_embd;
  3340. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3341. auto & layer = layers[i].convnext;
  3342. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3343. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3344. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3345. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3346. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3347. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3348. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3349. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3350. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3351. }
  3352. // output
  3353. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3354. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3355. }
  3356. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3357. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3358. } break;
  3359. case LLM_ARCH_BAILINGMOE:
  3360. {
  3361. const int64_t n_ff_exp = hparams.n_ff_exp;
  3362. const int64_t n_expert_shared = hparams.n_expert_shared;
  3363. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3364. // output
  3365. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3366. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3367. for (int i = 0; i < n_layer; ++i) {
  3368. auto & layer = layers[i];
  3369. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3370. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3371. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3372. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3373. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3374. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3375. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3376. if (n_expert == 0) {
  3377. throw std::runtime_error("n_expert must be > 0");
  3378. }
  3379. if (n_expert_used == 0) {
  3380. throw std::runtime_error("n_expert_used must be > 0");
  3381. }
  3382. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3383. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3384. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3385. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3386. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3387. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3388. }
  3389. } break;
  3390. default:
  3391. throw std::runtime_error("unknown architecture");
  3392. }
  3393. if (n_moved_tensors > 0) {
  3394. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3395. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3396. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3397. }
  3398. }
  3399. ml.done_getting_tensors();
  3400. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3401. pimpl->mappings.reserve(ml.mappings.size());
  3402. // create the backend buffers
  3403. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3404. ctx_bufs.reserve(ctx_map.size());
  3405. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3406. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3407. pimpl->bufs.reserve(n_max_backend_buffer);
  3408. for (auto & it : ctx_map) {
  3409. ggml_backend_buffer_type_t buft = it.first;
  3410. ggml_context * ctx = it.second;
  3411. // skip contexts without tensors
  3412. if (ggml_get_first_tensor(ctx) == nullptr) {
  3413. continue;
  3414. }
  3415. llama_buf_map buf_map;
  3416. buf_map.reserve(n_max_backend_buffer);
  3417. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3418. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3419. if (!dev) {
  3420. // FIXME: workaround for CPU backend buft having a NULL device
  3421. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3422. }
  3423. ggml_backend_dev_props props;
  3424. ggml_backend_dev_get_props(dev, &props);
  3425. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3426. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3427. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3428. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3429. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3430. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3431. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3432. void * addr = nullptr;
  3433. size_t first, last; // NOLINT
  3434. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3435. if (first >= last) {
  3436. continue;
  3437. }
  3438. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3439. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3440. if (buf == nullptr) {
  3441. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3442. }
  3443. pimpl->bufs.emplace_back(buf);
  3444. buf_map.emplace(idx, buf);
  3445. }
  3446. }
  3447. else {
  3448. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3449. if (buf == nullptr) {
  3450. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3451. }
  3452. pimpl->bufs.emplace_back(buf);
  3453. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3454. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3455. auto & mlock_buf = pimpl->mlock_bufs.back();
  3456. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3457. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3458. }
  3459. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3460. buf_map.emplace(idx, buf);
  3461. }
  3462. }
  3463. if (pimpl->bufs.empty()) {
  3464. throw std::runtime_error("failed to allocate buffer");
  3465. }
  3466. for (auto & buf : buf_map) {
  3467. // indicate that this buffer contains weights
  3468. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3469. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3470. }
  3471. ctx_bufs.emplace_back(ctx, buf_map);
  3472. }
  3473. if (llama_supports_gpu_offload()) {
  3474. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3475. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3476. if (n_gpu_layers > (int) hparams.n_layer) {
  3477. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3478. }
  3479. const int max_backend_supported_layers = hparams.n_layer + 1;
  3480. const int max_offloadable_layers = hparams.n_layer + 1;
  3481. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3482. }
  3483. // print memory requirements per buffer type
  3484. for (auto & buf : pimpl->bufs) {
  3485. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3486. }
  3487. // populate tensors_by_name
  3488. for (auto & ctx : pimpl->ctxs) {
  3489. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3490. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3491. }
  3492. }
  3493. // load tensor data
  3494. for (auto & it : ctx_bufs) {
  3495. ggml_context * ctx = it.first;
  3496. auto & bufs = it.second;
  3497. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3498. return false;
  3499. }
  3500. }
  3501. if (use_mmap_buffer) {
  3502. for (auto & mapping : ml.mappings) {
  3503. pimpl->mappings.emplace_back(std::move(mapping));
  3504. }
  3505. }
  3506. return true;
  3507. }
  3508. std::string llama_model::arch_name() const {
  3509. return llm_arch_name(arch);
  3510. }
  3511. std::string llama_model::type_name() const {
  3512. return llm_type_name(type);
  3513. }
  3514. std::string llama_model::desc() const {
  3515. return pimpl->desc_str;
  3516. }
  3517. size_t llama_model::size() const {
  3518. return pimpl->n_bytes;
  3519. }
  3520. size_t llama_model::n_tensors() const {
  3521. return tensors_by_name.size();
  3522. }
  3523. size_t llama_model::n_devices() const {
  3524. return devices.size();
  3525. }
  3526. uint64_t llama_model::n_elements() const {
  3527. return pimpl->n_elements;
  3528. }
  3529. void llama_model::print_info() const {
  3530. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3531. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3532. bool is_var = false;
  3533. std::vector<uint32_t> v;
  3534. for (uint32_t i = 0; i < n; ++i) {
  3535. v.push_back(f(i));
  3536. if (v[i] != v[0]) {
  3537. is_var = true;
  3538. }
  3539. }
  3540. std::stringstream ss;
  3541. if (is_var) {
  3542. ss << "[";
  3543. for (uint32_t i = 0; i < n; ++i) {
  3544. ss << v[i];
  3545. if (i < n - 1) {
  3546. ss << ", ";
  3547. }
  3548. }
  3549. ss << "]";
  3550. } else {
  3551. ss << v[0];
  3552. }
  3553. return ss.str();
  3554. };
  3555. // hparams
  3556. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3557. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3558. if (!hparams.vocab_only) {
  3559. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3560. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3561. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3562. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3563. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3564. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3565. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3566. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3567. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3568. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3569. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3570. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3571. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3572. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3573. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3574. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3575. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3576. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3577. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3578. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3579. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3580. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3581. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3582. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3583. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3584. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3585. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3586. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3587. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3588. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3589. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3590. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3591. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3592. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3593. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3594. }
  3595. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3596. if (pimpl->n_elements >= 1e12) {
  3597. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3598. } else if (pimpl->n_elements >= 1e9) {
  3599. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3600. } else if (pimpl->n_elements >= 1e6) {
  3601. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3602. } else {
  3603. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3604. }
  3605. // general kv
  3606. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3607. if (arch == LLM_ARCH_DEEPSEEK) {
  3608. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3609. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3610. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3611. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3612. }
  3613. if (arch == LLM_ARCH_DEEPSEEK2) {
  3614. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3615. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3616. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3617. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3618. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3619. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3620. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3621. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3622. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3623. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3624. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3625. }
  3626. if (arch == LLM_ARCH_QWEN2MOE) {
  3627. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3628. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3629. }
  3630. if (arch == LLM_ARCH_QWEN3MOE) {
  3631. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3632. }
  3633. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3634. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3635. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3636. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3637. }
  3638. if (arch == LLM_ARCH_BAILINGMOE) {
  3639. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3640. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3641. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3642. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3643. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3644. }
  3645. vocab.print_info();
  3646. }
  3647. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3648. return pimpl->dev_layer.at(il).dev;
  3649. }
  3650. ggml_backend_dev_t llama_model::dev_output() const {
  3651. return pimpl->dev_output.dev;
  3652. }
  3653. template<typename F>
  3654. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3655. ggml_init_params params = {
  3656. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3657. /*.mem_buffer =*/ NULL,
  3658. /*.no_alloc =*/ true,
  3659. };
  3660. ggml_context_ptr ctx { ggml_init(params) };
  3661. if (!ctx) {
  3662. throw std::runtime_error(format("failed to create ggml context"));
  3663. }
  3664. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3665. ggml_tensor * op_tensor = fn(ctx.get());
  3666. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3667. if (op_tensor->src[i] != nullptr) {
  3668. assert(op_tensor->src[i]->buffer == nullptr);
  3669. op_tensor->src[i]->buffer = buf.get();
  3670. }
  3671. }
  3672. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3673. return op_supported;
  3674. }
  3675. template<typename F>
  3676. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3677. for (const auto & cur : buft_list) {
  3678. ggml_backend_dev_t cur_dev = cur.first;
  3679. ggml_backend_buffer_type_t cur_buft = cur.second;
  3680. if (buft_supported(cur_buft, cur_dev, fn)) {
  3681. return cur_buft;
  3682. }
  3683. }
  3684. throw std::runtime_error(format("no suitable buffer type found"));
  3685. }
  3686. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3687. return ::select_buft(
  3688. *pimpl->dev_layer.at(il).buft_list,
  3689. [&](ggml_context * ctx) {
  3690. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3691. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3692. return ggml_add(ctx, cur, layer_dir);
  3693. });
  3694. }
  3695. bool llama_model::has_tensor_overrides() const {
  3696. return pimpl->has_tensor_overrides;
  3697. }
  3698. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3699. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3700. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3701. return it.first == name;
  3702. });
  3703. if (it == tensors_by_name.end()) {
  3704. return nullptr;
  3705. }
  3706. return it->second;
  3707. }
  3708. ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
  3709. // choose long/short freq factors based on the context size
  3710. if (layers[il].rope_freqs != nullptr) {
  3711. return layers[il].rope_freqs;
  3712. }
  3713. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  3714. return layers[il].rope_long;
  3715. }
  3716. return layers[il].rope_short;
  3717. }
  3718. struct llm_build_llama : public llm_graph_context {
  3719. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3720. const int64_t n_embd_head = hparams.n_embd_head_v;
  3721. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3722. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3723. ggml_tensor * cur;
  3724. ggml_tensor * inpL;
  3725. inpL = build_inp_embd(model.tok_embd);
  3726. // inp_pos - contains the positions
  3727. ggml_tensor * inp_pos = build_inp_pos();
  3728. // temperature tuning
  3729. ggml_tensor * inp_attn_scale = nullptr;
  3730. if (arch == LLM_ARCH_LLAMA4) {
  3731. inp_attn_scale = build_inp_attn_scale();
  3732. }
  3733. auto * inp_attn = build_attn_inp_kv_unified();
  3734. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3735. for (int il = 0; il < n_layer; ++il) {
  3736. ggml_tensor * inpSA = inpL;
  3737. bool use_rope = arch == LLM_ARCH_LLAMA4
  3738. ? (il + 1) % hparams.n_no_rope_layer_step != 0
  3739. : true;
  3740. // norm
  3741. cur = build_norm(inpL,
  3742. model.layers[il].attn_norm, NULL,
  3743. LLM_NORM_RMS, il);
  3744. cb(cur, "attn_norm", il);
  3745. // self-attention
  3746. {
  3747. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3748. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3749. // compute Q and K and RoPE them
  3750. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3751. cb(Qcur, "Qcur", il);
  3752. if (model.layers[il].bq) {
  3753. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3754. cb(Qcur, "Qcur", il);
  3755. }
  3756. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3757. cb(Kcur, "Kcur", il);
  3758. if (model.layers[il].bk) {
  3759. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3760. cb(Kcur, "Kcur", il);
  3761. }
  3762. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3763. cb(Vcur, "Vcur", il);
  3764. if (model.layers[il].bv) {
  3765. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3766. cb(Vcur, "Vcur", il);
  3767. }
  3768. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3769. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3770. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3771. if (use_rope) {
  3772. Qcur = ggml_rope_ext(
  3773. ctx0, Qcur, inp_pos, rope_factors,
  3774. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3775. ext_factor, attn_factor, beta_fast, beta_slow
  3776. );
  3777. Kcur = ggml_rope_ext(
  3778. ctx0, Kcur, inp_pos, rope_factors,
  3779. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3780. ext_factor, attn_factor, beta_fast, beta_slow
  3781. );
  3782. } else if (inp_attn_scale) {
  3783. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3784. }
  3785. cb(Qcur, "Qcur", il);
  3786. cb(Kcur, "Kcur", il);
  3787. cb(Vcur, "Vcur", il);
  3788. if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
  3789. // Llama4TextL2Norm
  3790. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3791. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3792. cb(Qcur, "Qcur_normed", il);
  3793. cb(Kcur, "Kcur_normed", il);
  3794. }
  3795. cur = build_attn(inp_attn, gf,
  3796. model.layers[il].wo, model.layers[il].bo,
  3797. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3798. cb(cur, "attn_out", il);
  3799. }
  3800. if (il == n_layer - 1) {
  3801. // skip computing output for unused tokens
  3802. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3803. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3804. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3805. }
  3806. // For Granite architecture
  3807. if (hparams.f_residual_scale) {
  3808. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3809. }
  3810. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3811. cb(ffn_inp, "ffn_inp", il);
  3812. // feed-forward network (non-MoE)
  3813. if (model.layers[il].ffn_gate_inp == nullptr) {
  3814. cur = build_norm(ffn_inp,
  3815. model.layers[il].ffn_norm, NULL,
  3816. LLM_NORM_RMS, il);
  3817. cb(cur, "ffn_norm", il);
  3818. cur = build_ffn(cur,
  3819. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3820. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3821. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3822. NULL,
  3823. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3824. cb(cur, "ffn_out", il);
  3825. } else if (arch == LLM_ARCH_LLAMA4) {
  3826. // llama4 MoE
  3827. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3828. model.layers[il].ffn_norm, NULL,
  3829. LLM_NORM_RMS, il);
  3830. cb(cur, "ffn_norm", il);
  3831. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3832. model.layers[il].ffn_gate_inp,
  3833. model.layers[il].ffn_up_exps,
  3834. model.layers[il].ffn_gate_exps,
  3835. model.layers[il].ffn_down_exps,
  3836. nullptr,
  3837. n_expert, n_expert_used,
  3838. LLM_FFN_SILU, false,
  3839. false, 0.0,
  3840. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  3841. il);
  3842. // Shared experts
  3843. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  3844. model.layers[il].ffn_up_shexp, NULL, NULL,
  3845. model.layers[il].ffn_gate_shexp, NULL, NULL,
  3846. model.layers[il].ffn_down_shexp, NULL, NULL,
  3847. NULL,
  3848. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3849. cb(shexp_out, "ffn_moe_shexp", il);
  3850. cur = ggml_add(ctx0, moe_out, shexp_out);
  3851. cb(cur, "ffn_moe_out_merged", il);
  3852. } else {
  3853. // MoE branch
  3854. cur = build_norm(ffn_inp,
  3855. model.layers[il].ffn_norm, NULL,
  3856. LLM_NORM_RMS, il);
  3857. cb(cur, "ffn_norm", il);
  3858. cur = build_moe_ffn(cur,
  3859. model.layers[il].ffn_gate_inp,
  3860. model.layers[il].ffn_up_exps,
  3861. model.layers[il].ffn_gate_exps,
  3862. model.layers[il].ffn_down_exps,
  3863. nullptr,
  3864. n_expert, n_expert_used,
  3865. LLM_FFN_SILU, true,
  3866. false, 0.0,
  3867. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3868. il);
  3869. cb(cur, "ffn_moe_out", il);
  3870. }
  3871. // For Granite architecture
  3872. if (hparams.f_residual_scale) {
  3873. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3874. }
  3875. cur = ggml_add(ctx0, cur, ffn_inp);
  3876. cb(cur, "ffn_out", il);
  3877. cur = build_cvec(cur, il);
  3878. cb(cur, "l_out", il);
  3879. // input for next layer
  3880. inpL = cur;
  3881. }
  3882. cur = inpL;
  3883. cur = build_norm(cur,
  3884. model.output_norm, NULL,
  3885. LLM_NORM_RMS, -1);
  3886. cb(cur, "result_norm", -1);
  3887. res->t_embd = cur;
  3888. // lm_head
  3889. cur = build_lora_mm(model.output, cur);
  3890. // For Granite architecture
  3891. if (hparams.f_logit_scale) {
  3892. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3893. }
  3894. cb(cur, "result_output", -1);
  3895. res->t_logits = cur;
  3896. ggml_build_forward_expand(gf, cur);
  3897. }
  3898. };
  3899. struct llm_build_deci : public llm_graph_context {
  3900. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3901. const int64_t n_embd_head = hparams.n_embd_head_v;
  3902. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3903. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3904. ggml_tensor * cur;
  3905. ggml_tensor * inpL;
  3906. inpL = build_inp_embd(model.tok_embd);
  3907. // inp_pos - contains the positions
  3908. ggml_tensor * inp_pos = build_inp_pos();
  3909. auto * inp_attn = build_attn_inp_kv_unified();
  3910. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3911. for (int il = 0; il < n_layer; ++il) {
  3912. ggml_tensor * inpSA = inpL;
  3913. const int64_t n_head_kv = hparams.n_head_kv(il);
  3914. const int64_t n_head = hparams.n_head(il);
  3915. const int64_t n_ff = hparams.n_ff(il);
  3916. if (n_head == 0) {
  3917. // attention-free layer of Llama-3_1-Nemotron-51B
  3918. cur = inpL;
  3919. } else {
  3920. // norm
  3921. cur = build_norm(inpL,
  3922. model.layers[il].attn_norm, NULL,
  3923. LLM_NORM_RMS, il);
  3924. cb(cur, "attn_norm", il);
  3925. }
  3926. if (n_head > 0 && n_head_kv == 0) {
  3927. // "linear attention" of Llama-3_1-Nemotron-51B
  3928. cur = build_lora_mm(model.layers[il].wo, cur);
  3929. cb(cur, "wo", il);
  3930. } else if (n_head > 0) {
  3931. // self-attention
  3932. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3933. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3934. // compute Q and K and RoPE them
  3935. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3936. cb(Qcur, "Qcur", il);
  3937. if (model.layers[il].bq) {
  3938. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3939. cb(Qcur, "Qcur", il);
  3940. }
  3941. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3942. cb(Kcur, "Kcur", il);
  3943. if (model.layers[il].bk) {
  3944. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3945. cb(Kcur, "Kcur", il);
  3946. }
  3947. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3948. cb(Vcur, "Vcur", il);
  3949. if (model.layers[il].bv) {
  3950. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3951. cb(Vcur, "Vcur", il);
  3952. }
  3953. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3954. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3955. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3956. Qcur = ggml_rope_ext(
  3957. ctx0, Qcur, inp_pos, rope_factors,
  3958. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3959. ext_factor, attn_factor, beta_fast, beta_slow
  3960. );
  3961. Kcur = ggml_rope_ext(
  3962. ctx0, Kcur, inp_pos, rope_factors,
  3963. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3964. ext_factor, attn_factor, beta_fast, beta_slow
  3965. );
  3966. cb(Qcur, "Qcur", il);
  3967. cb(Kcur, "Kcur", il);
  3968. cb(Vcur, "Vcur", il);
  3969. cur = build_attn(inp_attn, gf,
  3970. model.layers[il].wo, model.layers[il].bo,
  3971. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3972. }
  3973. if (il == n_layer - 1) {
  3974. // skip computing output for unused tokens
  3975. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3976. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3977. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3978. }
  3979. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  3980. if (n_ff == 0) {
  3981. continue;
  3982. }
  3983. // For Granite architecture
  3984. if (hparams.f_residual_scale) {
  3985. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3986. }
  3987. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3988. ggml_tensor * ffn_inp = cur;
  3989. if (n_head > 0) {
  3990. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3991. cb(ffn_inp, "ffn_inp", il);
  3992. }
  3993. // feed-forward network
  3994. if (model.layers[il].ffn_gate_inp == nullptr) {
  3995. cur = build_norm(ffn_inp,
  3996. model.layers[il].ffn_norm, NULL,
  3997. LLM_NORM_RMS, il);
  3998. cb(cur, "ffn_norm", il);
  3999. cur = build_ffn(cur,
  4000. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4001. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  4002. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4003. NULL,
  4004. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4005. cb(cur, "ffn_out", il);
  4006. }
  4007. // For Granite architecture
  4008. if (hparams.f_residual_scale) {
  4009. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  4010. }
  4011. cur = ggml_add(ctx0, cur, ffn_inp);
  4012. cb(cur, "ffn_out", il);
  4013. cur = build_cvec(cur, il);
  4014. cb(cur, "l_out", il);
  4015. // input for next layer
  4016. inpL = cur;
  4017. }
  4018. cur = inpL;
  4019. cur = build_norm(cur,
  4020. model.output_norm, NULL,
  4021. LLM_NORM_RMS, -1);
  4022. cb(cur, "result_norm", -1);
  4023. res->t_embd = cur;
  4024. // lm_head
  4025. cur = build_lora_mm(model.output, cur);
  4026. // For Granite architecture
  4027. if (hparams.f_logit_scale) {
  4028. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  4029. }
  4030. cb(cur, "result_output", -1);
  4031. res->t_logits = cur;
  4032. ggml_build_forward_expand(gf, cur);
  4033. }
  4034. };
  4035. struct llm_build_baichuan : public llm_graph_context {
  4036. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4037. const int64_t n_embd_head = hparams.n_embd_head_v;
  4038. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4039. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4040. ggml_tensor * cur;
  4041. ggml_tensor * inpL;
  4042. inpL = build_inp_embd(model.tok_embd);
  4043. // inp_pos - contains the positions
  4044. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4045. auto * inp_attn = build_attn_inp_kv_unified();
  4046. for (int il = 0; il < n_layer; ++il) {
  4047. ggml_tensor * inpSA = inpL;
  4048. cur = build_norm(inpL,
  4049. model.layers[il].attn_norm, NULL,
  4050. LLM_NORM_RMS, il);
  4051. cb(cur, "attn_norm", il);
  4052. // self-attention
  4053. {
  4054. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4055. cb(Qcur, "Qcur", il);
  4056. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4057. cb(Kcur, "Kcur", il);
  4058. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4059. cb(Vcur, "Vcur", il);
  4060. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4061. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4062. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4063. switch (model.type) {
  4064. case LLM_TYPE_7B:
  4065. Qcur = ggml_rope_ext(
  4066. ctx0, Qcur, inp_pos, nullptr,
  4067. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4068. ext_factor, attn_factor, beta_fast, beta_slow
  4069. );
  4070. Kcur = ggml_rope_ext(
  4071. ctx0, Kcur, inp_pos, nullptr,
  4072. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4073. ext_factor, attn_factor, beta_fast, beta_slow
  4074. );
  4075. break;
  4076. case LLM_TYPE_13B:
  4077. break;
  4078. default:
  4079. GGML_ABORT("fatal error");
  4080. }
  4081. cb(Qcur, "Qcur", il);
  4082. cb(Kcur, "Kcur", il);
  4083. cb(Vcur, "Vcur", il);
  4084. cur = build_attn(inp_attn, gf,
  4085. model.layers[il].wo, NULL,
  4086. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4087. }
  4088. if (il == n_layer - 1) {
  4089. // skip computing output for unused tokens
  4090. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4091. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4092. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4093. }
  4094. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4095. cb(ffn_inp, "ffn_inp", il);
  4096. // feed-forward network
  4097. {
  4098. cur = build_norm(ffn_inp,
  4099. model.layers[il].ffn_norm, NULL,
  4100. LLM_NORM_RMS, il);
  4101. cb(cur, "ffn_norm", il);
  4102. cur = build_ffn(cur,
  4103. model.layers[il].ffn_up, NULL, NULL,
  4104. model.layers[il].ffn_gate, NULL, NULL,
  4105. model.layers[il].ffn_down, NULL, NULL,
  4106. NULL,
  4107. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4108. cb(cur, "ffn_out", il);
  4109. }
  4110. cur = ggml_add(ctx0, cur, ffn_inp);
  4111. cur = build_cvec(cur, il);
  4112. cb(cur, "l_out", il);
  4113. // input for next layer
  4114. inpL = cur;
  4115. }
  4116. cur = inpL;
  4117. cur = build_norm(cur,
  4118. model.output_norm, NULL,
  4119. LLM_NORM_RMS, -1);
  4120. cb(cur, "result_norm", -1);
  4121. res->t_embd = cur;
  4122. // lm_head
  4123. cur = build_lora_mm(model.output, cur);
  4124. cb(cur, "result_output", -1);
  4125. res->t_logits = cur;
  4126. ggml_build_forward_expand(gf, cur);
  4127. }
  4128. };
  4129. struct llm_build_xverse : public llm_graph_context {
  4130. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4131. const int64_t n_embd_head = hparams.n_embd_head_v;
  4132. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4133. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4134. ggml_tensor * cur;
  4135. ggml_tensor * inpL;
  4136. inpL = build_inp_embd(model.tok_embd);
  4137. // inp_pos - contains the positions
  4138. ggml_tensor * inp_pos = build_inp_pos();
  4139. auto * inp_attn = build_attn_inp_kv_unified();
  4140. for (int il = 0; il < n_layer; ++il) {
  4141. ggml_tensor * inpSA = inpL;
  4142. cur = build_norm(inpL,
  4143. model.layers[il].attn_norm, NULL,
  4144. LLM_NORM_RMS, il);
  4145. cb(cur, "attn_norm", il);
  4146. // self-attention
  4147. {
  4148. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4149. cb(Qcur, "Qcur", il);
  4150. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4151. cb(Kcur, "Kcur", il);
  4152. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4153. cb(Vcur, "Vcur", il);
  4154. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4155. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4156. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4157. Qcur = ggml_rope_ext(
  4158. ctx0, Qcur, inp_pos, nullptr,
  4159. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4160. ext_factor, attn_factor, beta_fast, beta_slow
  4161. );
  4162. Kcur = ggml_rope_ext(
  4163. ctx0, Kcur, inp_pos, nullptr,
  4164. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4165. ext_factor, attn_factor, beta_fast, beta_slow
  4166. );
  4167. cb(Qcur, "Qcur", il);
  4168. cb(Kcur, "Kcur", il);
  4169. cb(Vcur, "Vcur", il);
  4170. cur = build_attn(inp_attn, gf,
  4171. model.layers[il].wo, NULL,
  4172. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4173. }
  4174. if (il == n_layer - 1) {
  4175. // skip computing output for unused tokens
  4176. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4177. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4178. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4179. }
  4180. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4181. cb(ffn_inp, "ffn_inp", il);
  4182. // feed-forward network
  4183. {
  4184. cur = build_norm(ffn_inp,
  4185. model.layers[il].ffn_norm, NULL,
  4186. LLM_NORM_RMS, il);
  4187. cb(cur, "ffn_norm", il);
  4188. cur = build_ffn(cur,
  4189. model.layers[il].ffn_up, NULL, NULL,
  4190. model.layers[il].ffn_gate, NULL, NULL,
  4191. model.layers[il].ffn_down, NULL, NULL,
  4192. NULL,
  4193. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4194. cb(cur, "ffn_out", il);
  4195. }
  4196. cur = ggml_add(ctx0, cur, ffn_inp);
  4197. cur = build_cvec(cur, il);
  4198. cb(cur, "l_out", il);
  4199. // input for next layer
  4200. inpL = cur;
  4201. }
  4202. cur = inpL;
  4203. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4204. cb(cur, "result_norm", -1);
  4205. res->t_embd = cur;
  4206. // lm_head
  4207. cur = build_lora_mm(model.output, cur);
  4208. cb(cur, "result_output", -1);
  4209. res->t_logits = cur;
  4210. ggml_build_forward_expand(gf, cur);
  4211. }
  4212. };
  4213. struct llm_build_falcon : public llm_graph_context {
  4214. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4215. const int64_t n_embd_head = hparams.n_embd_head_v;
  4216. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4217. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4218. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4219. ggml_tensor * cur;
  4220. ggml_tensor * inpL;
  4221. inpL = build_inp_embd(model.tok_embd);
  4222. // inp_pos - contains the positions
  4223. ggml_tensor * inp_pos = build_inp_pos();
  4224. auto * inp_attn = build_attn_inp_kv_unified();
  4225. for (int il = 0; il < n_layer; ++il) {
  4226. ggml_tensor * attn_norm;
  4227. attn_norm = build_norm(inpL,
  4228. model.layers[il].attn_norm,
  4229. model.layers[il].attn_norm_b,
  4230. LLM_NORM, il);
  4231. cb(attn_norm, "attn_norm", il);
  4232. // self-attention
  4233. {
  4234. if (model.layers[il].attn_norm_2) {
  4235. // Falcon-40B
  4236. cur = build_norm(inpL,
  4237. model.layers[il].attn_norm_2,
  4238. model.layers[il].attn_norm_2_b,
  4239. LLM_NORM, il);
  4240. cb(cur, "attn_norm_2", il);
  4241. } else {
  4242. cur = attn_norm;
  4243. }
  4244. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4245. cb(cur, "wqkv", il);
  4246. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4247. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4248. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4249. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4250. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4251. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4252. // using mode = 2 for neox mode
  4253. Qcur = ggml_rope_ext(
  4254. ctx0, Qcur, inp_pos, nullptr,
  4255. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4256. ext_factor, attn_factor, beta_fast, beta_slow
  4257. );
  4258. Kcur = ggml_rope_ext(
  4259. ctx0, Kcur, inp_pos, nullptr,
  4260. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4261. ext_factor, attn_factor, beta_fast, beta_slow
  4262. );
  4263. cb(Qcur, "Qcur", il);
  4264. cb(Kcur, "Kcur", il);
  4265. cb(Vcur, "Vcur", il);
  4266. cur = build_attn(inp_attn, gf,
  4267. model.layers[il].wo, NULL,
  4268. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4269. }
  4270. if (il == n_layer - 1) {
  4271. // skip computing output for unused tokens
  4272. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4273. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4274. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4275. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4276. }
  4277. ggml_tensor * ffn_inp = cur;
  4278. // feed forward
  4279. {
  4280. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4281. model.layers[il].ffn_up, NULL, NULL,
  4282. NULL, NULL, NULL,
  4283. model.layers[il].ffn_down, NULL, NULL,
  4284. NULL,
  4285. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4286. cb(cur, "ffn_out", il);
  4287. }
  4288. cur = ggml_add(ctx0, cur, ffn_inp);
  4289. cur = ggml_add(ctx0, cur, inpL);
  4290. cur = build_cvec(cur, il);
  4291. cb(cur, "l_out", il);
  4292. // input for next layer
  4293. inpL = cur;
  4294. }
  4295. cur = inpL;
  4296. // norm
  4297. cur = build_norm(cur,
  4298. model.output_norm,
  4299. model.output_norm_b,
  4300. LLM_NORM, -1);
  4301. cb(cur, "result_norm", -1);
  4302. res->t_embd = cur;
  4303. cur = build_lora_mm(model.output, cur);
  4304. cb(cur, "result_output", -1);
  4305. res->t_logits = cur;
  4306. ggml_build_forward_expand(gf, cur);
  4307. }
  4308. };
  4309. struct llm_build_grok : public llm_graph_context {
  4310. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4311. const int64_t n_embd_head = hparams.n_embd_head_v;
  4312. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4313. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4314. ggml_tensor * cur;
  4315. ggml_tensor * inpL;
  4316. inpL = build_inp_embd(model.tok_embd);
  4317. // multiply by embedding_multiplier_scale of 78.38367176906169
  4318. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4319. // inp_pos - contains the positions
  4320. ggml_tensor * inp_pos = build_inp_pos();
  4321. auto * inp_attn = build_attn_inp_kv_unified();
  4322. for (int il = 0; il < n_layer; ++il) {
  4323. ggml_tensor * inpSA = inpL;
  4324. // norm
  4325. cur = build_norm(inpL,
  4326. model.layers[il].attn_norm, NULL,
  4327. LLM_NORM_RMS, il);
  4328. cb(cur, "attn_norm", il);
  4329. // self-attention
  4330. {
  4331. // compute Q and K and RoPE them
  4332. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4333. cb(Qcur, "Qcur", il);
  4334. if (model.layers[il].bq) {
  4335. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4336. cb(Qcur, "Qcur", il);
  4337. }
  4338. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4339. cb(Kcur, "Kcur", il);
  4340. if (model.layers[il].bk) {
  4341. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4342. cb(Kcur, "Kcur", il);
  4343. }
  4344. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4345. cb(Vcur, "Vcur", il);
  4346. if (model.layers[il].bv) {
  4347. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4348. cb(Vcur, "Vcur", il);
  4349. }
  4350. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4351. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4352. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4353. Qcur = ggml_rope_ext(
  4354. ctx0, Qcur, inp_pos, nullptr,
  4355. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4356. ext_factor, attn_factor, beta_fast, beta_slow
  4357. );
  4358. Kcur = ggml_rope_ext(
  4359. ctx0, Kcur, inp_pos, nullptr,
  4360. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4361. ext_factor, attn_factor, beta_fast, beta_slow
  4362. );
  4363. cb(Qcur, "Qcur", il);
  4364. cb(Kcur, "Kcur", il);
  4365. cb(Vcur, "Vcur", il);
  4366. cur = build_attn(inp_attn, gf,
  4367. model.layers[il].wo, model.layers[il].bo,
  4368. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4369. }
  4370. if (il == n_layer - 1) {
  4371. // skip computing output for unused tokens
  4372. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4373. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4374. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4375. }
  4376. // Grok
  4377. // if attn_out_norm is present then apply it before adding the input
  4378. if (model.layers[il].attn_out_norm) {
  4379. cur = build_norm(cur,
  4380. model.layers[il].attn_out_norm, NULL,
  4381. LLM_NORM_RMS, il);
  4382. cb(cur, "attn_out_norm", il);
  4383. }
  4384. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4385. cb(ffn_inp, "ffn_inp", il);
  4386. // feed-forward network
  4387. // MoE branch
  4388. cur = build_norm(ffn_inp,
  4389. model.layers[il].ffn_norm, NULL,
  4390. LLM_NORM_RMS, il);
  4391. cb(cur, "ffn_norm", il);
  4392. cur = build_moe_ffn(cur,
  4393. model.layers[il].ffn_gate_inp,
  4394. model.layers[il].ffn_up_exps,
  4395. model.layers[il].ffn_gate_exps,
  4396. model.layers[il].ffn_down_exps,
  4397. nullptr,
  4398. n_expert, n_expert_used,
  4399. LLM_FFN_GELU, true,
  4400. false, 0.0,
  4401. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4402. il);
  4403. cb(cur, "ffn_moe_out", il);
  4404. // Grok
  4405. // if layer_out_norm is present then apply it before adding the input
  4406. // Idea: maybe ffn_out_norm is a better name
  4407. if (model.layers[il].layer_out_norm) {
  4408. cur = build_norm(cur,
  4409. model.layers[il].layer_out_norm, NULL,
  4410. LLM_NORM_RMS, il);
  4411. cb(cur, "layer_out_norm", il);
  4412. }
  4413. cur = ggml_add(ctx0, cur, ffn_inp);
  4414. cb(cur, "ffn_out", il);
  4415. cur = build_cvec(cur, il);
  4416. cb(cur, "l_out", il);
  4417. // input for next layer
  4418. inpL = cur;
  4419. }
  4420. cur = inpL;
  4421. cur = build_norm(cur,
  4422. model.output_norm, NULL,
  4423. LLM_NORM_RMS, -1);
  4424. cb(cur, "result_norm", -1);
  4425. res->t_embd = cur;
  4426. // lm_head
  4427. cur = build_lora_mm(model.output, cur);
  4428. // Grok
  4429. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4430. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4431. cb(cur, "result_output", -1);
  4432. res->t_logits = cur;
  4433. ggml_build_forward_expand(gf, cur);
  4434. }
  4435. };
  4436. struct llm_build_dbrx : public llm_graph_context {
  4437. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4438. const int64_t n_embd_head = hparams.n_embd_head_v;
  4439. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4440. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4441. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4442. ggml_tensor * cur;
  4443. ggml_tensor * inpL;
  4444. inpL = build_inp_embd(model.tok_embd);
  4445. // inp_pos - contains the positions
  4446. ggml_tensor * inp_pos = build_inp_pos();
  4447. auto * inp_attn = build_attn_inp_kv_unified();
  4448. for (int il = 0; il < n_layer; ++il) {
  4449. ggml_tensor * inpSA = inpL;
  4450. // norm
  4451. cur = build_norm(inpL,
  4452. model.layers[il].attn_norm, NULL,
  4453. LLM_NORM, il);
  4454. cb(cur, "attn_norm", il);
  4455. // self-attention
  4456. {
  4457. ggml_tensor * Qcur = nullptr;
  4458. ggml_tensor * Kcur = nullptr;
  4459. ggml_tensor * Vcur = nullptr;
  4460. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4461. cb(cur, "wqkv", il);
  4462. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4463. cb(cur, "wqkv_clamped", il);
  4464. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4465. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4466. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4467. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4468. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4469. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4470. Qcur = ggml_rope_ext(
  4471. ctx0, Qcur, inp_pos, nullptr,
  4472. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4473. ext_factor, attn_factor, beta_fast, beta_slow
  4474. );
  4475. Kcur = ggml_rope_ext(
  4476. ctx0, Kcur, inp_pos, nullptr,
  4477. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4478. ext_factor, attn_factor, beta_fast, beta_slow
  4479. );
  4480. cb(Qcur, "Qcur", il);
  4481. cb(Kcur, "Kcur", il);
  4482. cb(Vcur, "Vcur", il);
  4483. cur = build_attn(inp_attn, gf,
  4484. model.layers[il].wo, NULL,
  4485. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4486. }
  4487. if (il == n_layer - 1) {
  4488. // skip computing output for unused tokens
  4489. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4490. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4491. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4492. }
  4493. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4494. cb(ffn_inp, "ffn_inp", il);
  4495. // feed-forward network
  4496. // MoE branch
  4497. cur = build_norm(ffn_inp,
  4498. model.layers[il].attn_out_norm, NULL,
  4499. LLM_NORM, il);
  4500. cb(cur, "attn_out_norm", il);
  4501. cur = build_moe_ffn(cur,
  4502. model.layers[il].ffn_gate_inp,
  4503. model.layers[il].ffn_up_exps,
  4504. model.layers[il].ffn_gate_exps,
  4505. model.layers[il].ffn_down_exps,
  4506. nullptr,
  4507. n_expert, n_expert_used,
  4508. LLM_FFN_SILU, true,
  4509. false, 0.0,
  4510. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4511. il);
  4512. cb(cur, "ffn_moe_out", il);
  4513. cur = ggml_add(ctx0, cur, ffn_inp);
  4514. cb(cur, "ffn_out", il);
  4515. cur = build_cvec(cur, il);
  4516. cb(cur, "l_out", il);
  4517. // input for next layer
  4518. inpL = cur;
  4519. }
  4520. cur = inpL;
  4521. cur = build_norm(cur,
  4522. model.output_norm, NULL,
  4523. LLM_NORM, -1);
  4524. cb(cur, "result_norm", -1);
  4525. res->t_embd = cur;
  4526. // lm_head
  4527. cur = build_lora_mm(model.output, cur);
  4528. cb(cur, "result_output", -1);
  4529. res->t_logits = cur;
  4530. ggml_build_forward_expand(gf, cur);
  4531. }
  4532. };
  4533. struct llm_build_starcoder : public llm_graph_context {
  4534. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4535. const int64_t n_embd_head = hparams.n_embd_head_v;
  4536. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4537. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4538. ggml_tensor * cur;
  4539. ggml_tensor * inpL;
  4540. inpL = build_inp_embd(model.tok_embd);
  4541. // inp_pos - contains the positions
  4542. ggml_tensor * inp_pos = build_inp_pos();
  4543. auto * inp_attn = build_attn_inp_kv_unified();
  4544. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4545. cb(pos, "pos_embd", -1);
  4546. inpL = ggml_add(ctx0, inpL, pos);
  4547. cb(inpL, "inpL", -1);
  4548. for (int il = 0; il < n_layer; ++il) {
  4549. cur = build_norm(inpL,
  4550. model.layers[il].attn_norm,
  4551. model.layers[il].attn_norm_b,
  4552. LLM_NORM, il);
  4553. cb(cur, "attn_norm", il);
  4554. // self-attention
  4555. {
  4556. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4557. cb(cur, "wqkv", il);
  4558. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4559. cb(cur, "bqkv", il);
  4560. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4561. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4562. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4563. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4564. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4565. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4566. cb(Qcur, "Qcur", il);
  4567. cb(Kcur, "Kcur", il);
  4568. cb(Vcur, "Vcur", il);
  4569. cur = build_attn(inp_attn, gf,
  4570. model.layers[il].wo, model.layers[il].bo,
  4571. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4572. }
  4573. if (il == n_layer - 1) {
  4574. // skip computing output for unused tokens
  4575. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4576. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4577. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4578. }
  4579. // add the input
  4580. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4581. cb(ffn_inp, "ffn_inp", il);
  4582. // FF
  4583. {
  4584. cur = build_norm(ffn_inp,
  4585. model.layers[il].ffn_norm,
  4586. model.layers[il].ffn_norm_b,
  4587. LLM_NORM, il);
  4588. cb(cur, "ffn_norm", il);
  4589. cur = build_ffn(cur,
  4590. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4591. NULL, NULL, NULL,
  4592. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4593. NULL,
  4594. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4595. cb(cur, "ffn_out", il);
  4596. }
  4597. cur = ggml_add(ctx0, cur, ffn_inp);
  4598. cur = build_cvec(cur, il);
  4599. cb(cur, "l_out", il);
  4600. // input for next layer
  4601. inpL = cur;
  4602. }
  4603. cur = build_norm(inpL,
  4604. model.output_norm,
  4605. model.output_norm_b,
  4606. LLM_NORM, -1);
  4607. cb(cur, "result_norm", -1);
  4608. res->t_embd = cur;
  4609. cur = build_lora_mm(model.output, cur);
  4610. cb(cur, "result_output", -1);
  4611. res->t_logits = cur;
  4612. ggml_build_forward_expand(gf, cur);
  4613. }
  4614. };
  4615. struct llm_build_refact : public llm_graph_context {
  4616. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4617. const int64_t n_embd_head = hparams.n_embd_head_v;
  4618. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4619. ggml_tensor * cur;
  4620. ggml_tensor * inpL;
  4621. inpL = build_inp_embd(model.tok_embd);
  4622. auto * inp_attn = build_attn_inp_kv_unified();
  4623. for (int il = 0; il < n_layer; ++il) {
  4624. ggml_tensor * inpSA = inpL;
  4625. cur = build_norm(inpL,
  4626. model.layers[il].attn_norm, NULL,
  4627. LLM_NORM_RMS, il);
  4628. cb(cur, "attn_norm", il);
  4629. // self-attention
  4630. {
  4631. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4632. cb(Qcur, "Qcur", il);
  4633. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4634. cb(Kcur, "Kcur", il);
  4635. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4636. cb(Vcur, "Vcur", il);
  4637. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4638. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4639. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4640. cb(Qcur, "Qcur", il);
  4641. cb(Kcur, "Kcur", il);
  4642. cb(Vcur, "Vcur", il);
  4643. cur = build_attn(inp_attn, gf,
  4644. model.layers[il].wo, NULL,
  4645. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4646. }
  4647. if (il == n_layer - 1) {
  4648. // skip computing output for unused tokens
  4649. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4650. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4651. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4652. }
  4653. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4654. cb(ffn_inp, "ffn_inp", il);
  4655. // feed-forward network
  4656. {
  4657. cur = build_norm(ffn_inp,
  4658. model.layers[il].ffn_norm, NULL,
  4659. LLM_NORM_RMS, il);
  4660. cb(cur, "ffn_norm", il);
  4661. cur = build_ffn(cur,
  4662. model.layers[il].ffn_up, NULL, NULL,
  4663. model.layers[il].ffn_gate, NULL, NULL,
  4664. model.layers[il].ffn_down, NULL, NULL,
  4665. NULL,
  4666. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4667. cb(cur, "ffn_out", il);
  4668. }
  4669. cur = ggml_add(ctx0, cur, ffn_inp);
  4670. cur = build_cvec(cur, il);
  4671. cb(cur, "l_out", il);
  4672. // input for next layer
  4673. inpL = cur;
  4674. }
  4675. cur = inpL;
  4676. cur = build_norm(cur,
  4677. model.output_norm, NULL,
  4678. LLM_NORM_RMS, -1);
  4679. cb(cur, "result_norm", -1);
  4680. res->t_embd = cur;
  4681. // lm_head
  4682. cur = build_lora_mm(model.output, cur);
  4683. cb(cur, "result_output", -1);
  4684. res->t_logits = cur;
  4685. ggml_build_forward_expand(gf, cur);
  4686. }
  4687. };
  4688. struct llm_build_bert : public llm_graph_context {
  4689. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4690. const int64_t n_embd_head = hparams.n_embd_head_v;
  4691. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4692. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4693. ggml_tensor * cur;
  4694. ggml_tensor * inpL;
  4695. ggml_tensor * inp_pos = nullptr;
  4696. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4697. inp_pos = build_inp_pos();
  4698. }
  4699. // construct input embeddings (token, type, position)
  4700. inpL = build_inp_embd(model.tok_embd);
  4701. // token types are hardcoded to zero ("Sentence A")
  4702. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4703. inpL = ggml_add(ctx0, inpL, type_row0);
  4704. if (model.arch == LLM_ARCH_BERT) {
  4705. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4706. }
  4707. cb(inpL, "inp_embd", -1);
  4708. // embed layer norm
  4709. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4710. cb(inpL, "inp_norm", -1);
  4711. auto * inp_attn = build_attn_inp_no_cache();
  4712. // iterate layers
  4713. for (int il = 0; il < n_layer; ++il) {
  4714. ggml_tensor * cur = inpL;
  4715. ggml_tensor * Qcur;
  4716. ggml_tensor * Kcur;
  4717. ggml_tensor * Vcur;
  4718. // self-attention
  4719. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4720. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4721. if (model.layers[il].attn_q_norm) {
  4722. Qcur = build_norm(Qcur,
  4723. model.layers[il].attn_q_norm,
  4724. model.layers[il].attn_q_norm_b,
  4725. LLM_NORM, il);
  4726. }
  4727. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4728. if (model.layers[il].attn_k_norm) {
  4729. Kcur = build_norm(Kcur,
  4730. model.layers[il].attn_k_norm,
  4731. model.layers[il].attn_k_norm_b,
  4732. LLM_NORM, il);
  4733. }
  4734. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4735. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4736. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4737. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4738. } else {
  4739. // compute Q and K and RoPE them
  4740. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4741. cb(cur, "wqkv", il);
  4742. if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4743. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4744. cb(cur, "bqkv", il);
  4745. }
  4746. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4747. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4748. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4749. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4750. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4751. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4752. Qcur = ggml_rope_ext(
  4753. ctx0, Qcur, inp_pos, nullptr,
  4754. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4755. ext_factor, attn_factor, beta_fast, beta_slow
  4756. );
  4757. Kcur = ggml_rope_ext(
  4758. ctx0, Kcur, inp_pos, nullptr,
  4759. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4760. ext_factor, attn_factor, beta_fast, beta_slow
  4761. );
  4762. }
  4763. cb(Qcur, "Qcur", il);
  4764. cb(Kcur, "Kcur", il);
  4765. cb(Vcur, "Vcur", il);
  4766. cur = build_attn(inp_attn, gf,
  4767. model.layers[il].wo, model.layers[il].bo,
  4768. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4769. cb(cur, "kqv_out", il);
  4770. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4771. // skip computing output for unused tokens
  4772. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4773. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4774. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4775. }
  4776. // re-add the layer input
  4777. cur = ggml_add(ctx0, cur, inpL);
  4778. // attention layer norm
  4779. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4780. if (model.layers[il].attn_norm_2 != nullptr) {
  4781. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4782. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4783. }
  4784. ggml_tensor * ffn_inp = cur;
  4785. cb(ffn_inp, "ffn_inp", il);
  4786. // feed-forward network
  4787. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4788. // MoE branch
  4789. cur = build_moe_ffn(cur,
  4790. model.layers[il].ffn_gate_inp,
  4791. model.layers[il].ffn_up_exps,
  4792. nullptr,
  4793. model.layers[il].ffn_down_exps,
  4794. nullptr,
  4795. hparams.n_expert,
  4796. hparams.n_expert_used,
  4797. LLM_FFN_GELU,
  4798. false, false,
  4799. 0.0f,
  4800. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4801. cb(cur, "ffn_moe_out", il);
  4802. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4803. cur = build_ffn(cur,
  4804. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4805. NULL, NULL, NULL,
  4806. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4807. NULL,
  4808. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4809. cb(cur, "ffn_out", il);
  4810. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4811. cur = build_ffn(cur,
  4812. model.layers[il].ffn_up, NULL, NULL,
  4813. model.layers[il].ffn_gate, NULL, NULL,
  4814. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4815. NULL,
  4816. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4817. cb(cur, "ffn_out", il);
  4818. } else {
  4819. cur = build_ffn(cur,
  4820. model.layers[il].ffn_up, NULL, NULL,
  4821. model.layers[il].ffn_gate, NULL, NULL,
  4822. model.layers[il].ffn_down, NULL, NULL,
  4823. NULL,
  4824. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4825. cb(cur, "ffn_out", il);
  4826. }
  4827. // attentions bypass the intermediate layer
  4828. cur = ggml_add(ctx0, cur, ffn_inp);
  4829. // output layer norm
  4830. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4831. // input for next layer
  4832. inpL = cur;
  4833. }
  4834. cur = inpL;
  4835. cb(cur, "result_embd", -1);
  4836. res->t_embd = cur;
  4837. ggml_build_forward_expand(gf, cur);
  4838. }
  4839. };
  4840. struct llm_build_bloom : public llm_graph_context {
  4841. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4842. const int64_t n_embd_head = hparams.n_embd_head_v;
  4843. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4844. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4845. ggml_tensor * cur;
  4846. ggml_tensor * inpL;
  4847. inpL = build_inp_embd(model.tok_embd);
  4848. auto * inp_attn = build_attn_inp_kv_unified();
  4849. inpL = build_norm(inpL,
  4850. model.tok_norm,
  4851. model.tok_norm_b,
  4852. LLM_NORM, -1);
  4853. cb(inpL, "inp_norm", -1);
  4854. for (int il = 0; il < n_layer; ++il) {
  4855. cur = build_norm(inpL,
  4856. model.layers[il].attn_norm,
  4857. model.layers[il].attn_norm_b,
  4858. LLM_NORM, il);
  4859. cb(cur, "attn_norm", il);
  4860. // self-attention
  4861. {
  4862. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4863. cb(cur, "wqkv", il);
  4864. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4865. cb(cur, "bqkv", il);
  4866. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4867. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4868. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4869. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4870. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4871. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4872. cb(Qcur, "Qcur", il);
  4873. cb(Kcur, "Kcur", il);
  4874. cb(Vcur, "Vcur", il);
  4875. cur = build_attn(inp_attn, gf,
  4876. model.layers[il].wo, model.layers[il].bo,
  4877. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4878. }
  4879. if (il == n_layer - 1) {
  4880. // skip computing output for unused tokens
  4881. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4882. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4883. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4884. }
  4885. // Add the input
  4886. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4887. cb(ffn_inp, "ffn_inp", il);
  4888. // FF
  4889. {
  4890. cur = build_norm(ffn_inp,
  4891. model.layers[il].ffn_norm,
  4892. model.layers[il].ffn_norm_b,
  4893. LLM_NORM, il);
  4894. cb(cur, "ffn_norm", il);
  4895. cur = build_ffn(cur,
  4896. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4897. NULL, NULL, NULL,
  4898. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4899. NULL,
  4900. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4901. cb(cur, "ffn_out", il);
  4902. }
  4903. cur = ggml_add(ctx0, cur, ffn_inp);
  4904. cur = build_cvec(cur, il);
  4905. cb(cur, "l_out", il);
  4906. // input for next layer
  4907. inpL = cur;
  4908. }
  4909. cur = build_norm(inpL,
  4910. model.output_norm,
  4911. model.output_norm_b,
  4912. LLM_NORM, -1);
  4913. cb(cur, "result_norm", -1);
  4914. res->t_embd = cur;
  4915. cur = build_lora_mm(model.output, cur);
  4916. cb(cur, "result_output", -1);
  4917. res->t_logits = cur;
  4918. ggml_build_forward_expand(gf, cur);
  4919. }
  4920. };
  4921. struct llm_build_mpt : public llm_graph_context {
  4922. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4923. const int64_t n_embd_head = hparams.n_embd_head_v;
  4924. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4925. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4926. ggml_tensor * cur;
  4927. ggml_tensor * pos;
  4928. ggml_tensor * inpL;
  4929. inpL = build_inp_embd(model.tok_embd);
  4930. auto * inp_attn = build_attn_inp_kv_unified();
  4931. if (model.pos_embd) {
  4932. // inp_pos - contains the positions
  4933. ggml_tensor * inp_pos = build_inp_pos();
  4934. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4935. cb(pos, "pos_embd", -1);
  4936. inpL = ggml_add(ctx0, inpL, pos);
  4937. cb(inpL, "inpL", -1);
  4938. }
  4939. for (int il = 0; il < n_layer; ++il) {
  4940. ggml_tensor * attn_norm;
  4941. attn_norm = build_norm(inpL,
  4942. model.layers[il].attn_norm,
  4943. model.layers[il].attn_norm_b,
  4944. LLM_NORM, il);
  4945. cb(attn_norm, "attn_norm", il);
  4946. // self-attention
  4947. {
  4948. cur = attn_norm;
  4949. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4950. cb(cur, "wqkv", il);
  4951. if (model.layers[il].bqkv){
  4952. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4953. cb(cur, "bqkv", il);
  4954. }
  4955. if (hparams.f_clamp_kqv > 0.0f) {
  4956. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4957. cb(cur, "wqkv_clamped", il);
  4958. }
  4959. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4960. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4961. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4962. cb(Qcur, "Qcur", il);
  4963. cb(Kcur, "Kcur", il);
  4964. cb(Vcur, "Vcur", il);
  4965. // Q/K Layernorm
  4966. if (model.layers[il].attn_q_norm) {
  4967. Qcur = build_norm(Qcur,
  4968. model.layers[il].attn_q_norm,
  4969. model.layers[il].attn_q_norm_b,
  4970. LLM_NORM, il);
  4971. cb(Qcur, "Qcur", il);
  4972. Kcur = build_norm(Kcur,
  4973. model.layers[il].attn_k_norm,
  4974. model.layers[il].attn_k_norm_b,
  4975. LLM_NORM, il);
  4976. cb(Kcur, "Kcur", il);
  4977. }
  4978. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4979. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4980. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4981. cb(Qcur, "Qcur", il);
  4982. cb(Kcur, "Kcur", il);
  4983. cb(Vcur, "Vcur", il);
  4984. cur = build_attn(inp_attn, gf,
  4985. model.layers[il].wo, model.layers[il].bo,
  4986. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4987. }
  4988. if (il == n_layer - 1) {
  4989. // skip computing output for unused tokens
  4990. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4991. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4992. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4993. }
  4994. // Add the input
  4995. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4996. cb(ffn_inp, "ffn_inp", il);
  4997. // feed forward
  4998. {
  4999. cur = build_norm(ffn_inp,
  5000. model.layers[il].ffn_norm,
  5001. model.layers[il].ffn_norm_b,
  5002. LLM_NORM, il);
  5003. cb(cur, "ffn_norm", il);
  5004. cur = build_ffn(cur,
  5005. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5006. NULL, NULL, NULL,
  5007. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5008. model.layers[il].ffn_act,
  5009. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5010. cb(cur, "ffn_out", il);
  5011. }
  5012. cur = ggml_add(ctx0, cur, ffn_inp);
  5013. cur = build_cvec(cur, il);
  5014. cb(cur, "l_out", il);
  5015. // input for next layer
  5016. inpL = cur;
  5017. }
  5018. cur = inpL;
  5019. cur = build_norm(cur,
  5020. model.output_norm,
  5021. model.output_norm_b,
  5022. LLM_NORM, -1);
  5023. cb(cur, "result_norm", -1);
  5024. res->t_embd = cur;
  5025. cur = build_lora_mm(model.output, cur);
  5026. cb(cur, "result_output", -1);
  5027. res->t_logits = cur;
  5028. ggml_build_forward_expand(gf, cur);
  5029. }
  5030. };
  5031. struct llm_build_stablelm : public llm_graph_context {
  5032. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5033. const int64_t n_embd_head = hparams.n_embd_head_v;
  5034. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5035. ggml_tensor * cur;
  5036. ggml_tensor * inpL;
  5037. inpL = build_inp_embd(model.tok_embd);
  5038. // inp_pos - contains the positions
  5039. ggml_tensor * inp_pos = build_inp_pos();
  5040. auto * inp_attn = build_attn_inp_kv_unified();
  5041. for (int il = 0; il < n_layer; ++il) {
  5042. // norm
  5043. cur = build_norm(inpL,
  5044. model.layers[il].attn_norm,
  5045. model.layers[il].attn_norm_b,
  5046. LLM_NORM, il);
  5047. cb(cur, "attn_norm", il);
  5048. ggml_tensor * inpSA = cur;
  5049. // self-attention
  5050. {
  5051. // compute Q and K and RoPE them
  5052. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5053. cb(Qcur, "Qcur", il);
  5054. if (model.layers[il].bq) {
  5055. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5056. cb(Qcur, "Qcur", il);
  5057. }
  5058. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5059. cb(Kcur, "Kcur", il);
  5060. if (model.layers[il].bk) {
  5061. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5062. cb(Kcur, "Kcur", il);
  5063. }
  5064. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5065. cb(Vcur, "Vcur", il);
  5066. if (model.layers[il].bv) {
  5067. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5068. cb(Vcur, "Vcur", il);
  5069. }
  5070. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5071. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5072. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5073. if (model.layers[il].attn_q_norm) {
  5074. Qcur = build_norm(Qcur,
  5075. model.layers[il].attn_q_norm,
  5076. NULL,
  5077. LLM_NORM, il);
  5078. cb(Qcur, "Qcur", il);
  5079. }
  5080. if (model.layers[il].attn_k_norm) {
  5081. Kcur = build_norm(Kcur,
  5082. model.layers[il].attn_k_norm,
  5083. NULL,
  5084. LLM_NORM, il);
  5085. cb(Kcur, "Kcur", il);
  5086. }
  5087. Qcur = ggml_rope_ext(
  5088. ctx0, Qcur, inp_pos, nullptr,
  5089. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5090. ext_factor, attn_factor, beta_fast, beta_slow
  5091. );
  5092. Kcur = ggml_rope_ext(
  5093. ctx0, Kcur, inp_pos, nullptr,
  5094. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5095. ext_factor, attn_factor, beta_fast, beta_slow
  5096. );
  5097. cb(Qcur, "Qcur", il);
  5098. cb(Kcur, "Kcur", il);
  5099. cb(Vcur, "Vcur", il);
  5100. cur = build_attn(inp_attn, gf,
  5101. model.layers[il].wo, NULL,
  5102. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5103. }
  5104. if (il == n_layer - 1) {
  5105. // skip computing output for unused tokens
  5106. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5107. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5108. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5109. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5110. }
  5111. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5112. cb(ffn_inp, "ffn_inp", il);
  5113. // feed-forward network
  5114. {
  5115. if (model.layers[il].ffn_norm) {
  5116. cur = build_norm(ffn_inp,
  5117. model.layers[il].ffn_norm,
  5118. model.layers[il].ffn_norm_b,
  5119. LLM_NORM, il);
  5120. cb(cur, "ffn_norm", il);
  5121. } else {
  5122. // parallel residual
  5123. cur = inpSA;
  5124. }
  5125. cur = build_ffn(cur,
  5126. model.layers[il].ffn_up, NULL, NULL,
  5127. model.layers[il].ffn_gate, NULL, NULL,
  5128. model.layers[il].ffn_down, NULL, NULL,
  5129. NULL,
  5130. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5131. cb(cur, "ffn_out", il);
  5132. }
  5133. cur = ggml_add(ctx0, cur, ffn_inp);
  5134. cur = build_cvec(cur, il);
  5135. cb(cur, "l_out", il);
  5136. // input for next layer
  5137. inpL = cur;
  5138. }
  5139. cur = inpL;
  5140. cur = build_norm(cur,
  5141. model.output_norm,
  5142. model.output_norm_b,
  5143. LLM_NORM, -1);
  5144. cb(cur, "result_norm", -1);
  5145. res->t_embd = cur;
  5146. // lm_head
  5147. cur = build_lora_mm(model.output, cur);
  5148. cb(cur, "result_output", -1);
  5149. res->t_logits = cur;
  5150. ggml_build_forward_expand(gf, cur);
  5151. }
  5152. };
  5153. struct llm_build_qwen : public llm_graph_context {
  5154. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5155. const int64_t n_embd_head = hparams.n_embd_head_v;
  5156. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5157. ggml_tensor * cur;
  5158. ggml_tensor * inpL;
  5159. inpL = build_inp_embd(model.tok_embd);
  5160. // inp_pos - contains the positions
  5161. ggml_tensor * inp_pos = build_inp_pos();
  5162. auto * inp_attn = build_attn_inp_kv_unified();
  5163. for (int il = 0; il < n_layer; ++il) {
  5164. ggml_tensor * inpSA = inpL;
  5165. cur = build_norm(inpL,
  5166. model.layers[il].attn_norm, NULL,
  5167. LLM_NORM_RMS, il);
  5168. cb(cur, "attn_norm", il);
  5169. // self-attention
  5170. {
  5171. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5172. cb(cur, "wqkv", il);
  5173. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5174. cb(cur, "bqkv", il);
  5175. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5176. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5177. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5178. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5179. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5180. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5181. // using mode = 2 for neox mode
  5182. Qcur = ggml_rope_ext(
  5183. ctx0, Qcur, inp_pos, nullptr,
  5184. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5185. ext_factor, attn_factor, beta_fast, beta_slow
  5186. );
  5187. Kcur = ggml_rope_ext(
  5188. ctx0, Kcur, inp_pos, nullptr,
  5189. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5190. ext_factor, attn_factor, beta_fast, beta_slow
  5191. );
  5192. cb(Qcur, "Qcur", il);
  5193. cb(Kcur, "Kcur", il);
  5194. cb(Vcur, "Vcur", il);
  5195. cur = build_attn(inp_attn, gf,
  5196. model.layers[il].wo, NULL,
  5197. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5198. }
  5199. if (il == n_layer - 1) {
  5200. // skip computing output for unused tokens
  5201. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5202. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5203. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5204. }
  5205. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5206. cb(ffn_inp, "ffn_inp", il);
  5207. // feed-forward forward
  5208. {
  5209. cur = build_norm(ffn_inp,
  5210. model.layers[il].ffn_norm, NULL,
  5211. LLM_NORM_RMS, il);
  5212. cb(cur, "ffn_norm", il);
  5213. cur = build_ffn(cur,
  5214. model.layers[il].ffn_up, NULL, NULL,
  5215. model.layers[il].ffn_gate, NULL, NULL,
  5216. model.layers[il].ffn_down, NULL, NULL,
  5217. NULL,
  5218. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5219. cb(cur, "ffn_out", il);
  5220. }
  5221. cur = ggml_add(ctx0, cur, ffn_inp);
  5222. cur = build_cvec(cur, il);
  5223. cb(cur, "l_out", il);
  5224. // input for next layer
  5225. inpL = cur;
  5226. }
  5227. cur = inpL;
  5228. cur = build_norm(cur,
  5229. model.output_norm, NULL,
  5230. LLM_NORM_RMS, -1);
  5231. cb(cur, "result_norm", -1);
  5232. res->t_embd = cur;
  5233. // lm_head
  5234. cur = build_lora_mm(model.output, cur);
  5235. cb(cur, "result_output", -1);
  5236. res->t_logits = cur;
  5237. ggml_build_forward_expand(gf, cur);
  5238. }
  5239. };
  5240. struct llm_build_qwen2 : public llm_graph_context {
  5241. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5242. const int64_t n_embd_head = hparams.n_embd_head_v;
  5243. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5244. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5245. ggml_tensor * cur;
  5246. ggml_tensor * inpL;
  5247. inpL = build_inp_embd(model.tok_embd);
  5248. // inp_pos - contains the positions
  5249. ggml_tensor * inp_pos = build_inp_pos();
  5250. auto * inp_attn = build_attn_inp_kv_unified();
  5251. for (int il = 0; il < n_layer; ++il) {
  5252. ggml_tensor * inpSA = inpL;
  5253. // norm
  5254. cur = build_norm(inpL,
  5255. model.layers[il].attn_norm, NULL,
  5256. LLM_NORM_RMS, il);
  5257. cb(cur, "attn_norm", il);
  5258. // self-attention
  5259. {
  5260. // compute Q and K and RoPE them
  5261. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5262. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5263. cb(Qcur, "Qcur", il);
  5264. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5265. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5266. cb(Kcur, "Kcur", il);
  5267. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5268. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5269. cb(Vcur, "Vcur", il);
  5270. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5271. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5272. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5273. Qcur = ggml_rope_ext(
  5274. ctx0, Qcur, inp_pos, nullptr,
  5275. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5276. ext_factor, attn_factor, beta_fast, beta_slow
  5277. );
  5278. Kcur = ggml_rope_ext(
  5279. ctx0, Kcur, inp_pos, nullptr,
  5280. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5281. ext_factor, attn_factor, beta_fast, beta_slow
  5282. );
  5283. cb(Qcur, "Qcur", il);
  5284. cb(Kcur, "Kcur", il);
  5285. cb(Vcur, "Vcur", il);
  5286. cur = build_attn(inp_attn, gf,
  5287. model.layers[il].wo, model.layers[il].bo,
  5288. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5289. }
  5290. if (il == n_layer - 1) {
  5291. // skip computing output for unused tokens
  5292. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5293. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5294. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5295. }
  5296. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5297. cb(ffn_inp, "ffn_inp", il);
  5298. // feed-forward network
  5299. cur = build_norm(ffn_inp,
  5300. model.layers[il].ffn_norm, NULL,
  5301. LLM_NORM_RMS, il);
  5302. cb(cur, "ffn_norm", il);
  5303. cur = build_ffn(cur,
  5304. model.layers[il].ffn_up, NULL, NULL,
  5305. model.layers[il].ffn_gate, NULL, NULL,
  5306. model.layers[il].ffn_down, NULL, NULL,
  5307. NULL,
  5308. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5309. cb(cur, "ffn_out", il);
  5310. cur = ggml_add(ctx0, cur, ffn_inp);
  5311. cur = build_cvec(cur, il);
  5312. cb(cur, "l_out", il);
  5313. // input for next layer
  5314. inpL = cur;
  5315. }
  5316. cur = inpL;
  5317. cur = build_norm(cur,
  5318. model.output_norm, NULL,
  5319. LLM_NORM_RMS, -1);
  5320. cb(cur, "result_norm", -1);
  5321. res->t_embd = cur;
  5322. // lm_head
  5323. cur = build_lora_mm(model.output, cur);
  5324. cb(cur, "result_output", -1);
  5325. res->t_logits = cur;
  5326. ggml_build_forward_expand(gf, cur);
  5327. }
  5328. };
  5329. struct llm_build_qwen2vl : public llm_graph_context {
  5330. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5331. const int64_t n_embd_head = hparams.n_embd_head_v;
  5332. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5333. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5334. ggml_tensor * cur;
  5335. ggml_tensor * inpL;
  5336. inpL = build_inp_embd(model.tok_embd);
  5337. // inp_pos - contains the positions
  5338. ggml_tensor * inp_pos = build_inp_pos();
  5339. auto * inp_attn = build_attn_inp_kv_unified();
  5340. int sections[4];
  5341. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5342. for (int il = 0; il < n_layer; ++il) {
  5343. ggml_tensor * inpSA = inpL;
  5344. // norm
  5345. cur = build_norm(inpL,
  5346. model.layers[il].attn_norm, NULL,
  5347. LLM_NORM_RMS, il);
  5348. cb(cur, "attn_norm", il);
  5349. // self-attention
  5350. {
  5351. // compute Q and K and RoPE them
  5352. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5353. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5354. cb(Qcur, "Qcur", il);
  5355. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5356. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5357. cb(Kcur, "Kcur", il);
  5358. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5359. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5360. cb(Vcur, "Vcur", il);
  5361. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5362. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5363. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5364. Qcur = ggml_rope_multi(
  5365. ctx0, Qcur, inp_pos, nullptr,
  5366. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5367. ext_factor, attn_factor, beta_fast, beta_slow
  5368. );
  5369. Kcur = ggml_rope_multi(
  5370. ctx0, Kcur, inp_pos, nullptr,
  5371. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5372. ext_factor, attn_factor, beta_fast, beta_slow
  5373. );
  5374. cb(Qcur, "Qcur", il);
  5375. cb(Kcur, "Kcur", il);
  5376. cb(Vcur, "Vcur", il);
  5377. cur = build_attn(inp_attn, gf,
  5378. model.layers[il].wo, model.layers[il].bo,
  5379. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5380. }
  5381. if (il == n_layer - 1) {
  5382. // skip computing output for unused tokens
  5383. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5384. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5385. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5386. }
  5387. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5388. cb(ffn_inp, "ffn_inp", il);
  5389. // feed-forward network
  5390. cur = build_norm(ffn_inp,
  5391. model.layers[il].ffn_norm, NULL,
  5392. LLM_NORM_RMS, il);
  5393. cb(cur, "ffn_norm", il);
  5394. cur = build_ffn(cur,
  5395. model.layers[il].ffn_up, NULL, NULL,
  5396. model.layers[il].ffn_gate, NULL, NULL,
  5397. model.layers[il].ffn_down, NULL, NULL,
  5398. NULL,
  5399. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5400. cb(cur, "ffn_out", il);
  5401. cur = ggml_add(ctx0, cur, ffn_inp);
  5402. cur = build_cvec(cur, il);
  5403. cb(cur, "l_out", il);
  5404. // input for next layer
  5405. inpL = cur;
  5406. }
  5407. cur = inpL;
  5408. cur = build_norm(cur,
  5409. model.output_norm, NULL,
  5410. LLM_NORM_RMS, -1);
  5411. cb(cur, "result_norm", -1);
  5412. res->t_embd = cur;
  5413. // lm_head
  5414. cur = build_lora_mm(model.output, cur);
  5415. cb(cur, "result_output", -1);
  5416. res->t_logits = cur;
  5417. ggml_build_forward_expand(gf, cur);
  5418. }
  5419. };
  5420. struct llm_build_qwen2moe : public llm_graph_context {
  5421. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5422. const int64_t n_embd_head = hparams.n_embd_head_v;
  5423. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5424. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5425. ggml_tensor * cur;
  5426. ggml_tensor * inpL;
  5427. inpL = build_inp_embd(model.tok_embd);
  5428. // inp_pos - contains the positions
  5429. ggml_tensor * inp_pos = build_inp_pos();
  5430. auto * inp_attn = build_attn_inp_kv_unified();
  5431. for (int il = 0; il < n_layer; ++il) {
  5432. ggml_tensor * inpSA = inpL;
  5433. // norm
  5434. cur = build_norm(inpL,
  5435. model.layers[il].attn_norm, NULL,
  5436. LLM_NORM_RMS, il);
  5437. cb(cur, "attn_norm", il);
  5438. // self_attention
  5439. {
  5440. // compute Q and K and RoPE them
  5441. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5442. cb(Qcur, "Qcur", il);
  5443. if (model.layers[il].bq) {
  5444. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5445. cb(Qcur, "Qcur", il);
  5446. }
  5447. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5448. cb(Kcur, "Kcur", il);
  5449. if (model.layers[il].bk) {
  5450. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5451. cb(Kcur, "Kcur", il);
  5452. }
  5453. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5454. cb(Vcur, "Vcur", il);
  5455. if (model.layers[il].bv) {
  5456. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5457. cb(Vcur, "Vcur", il);
  5458. }
  5459. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5460. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5461. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5462. Qcur = ggml_rope_ext(
  5463. ctx0, Qcur, inp_pos, nullptr,
  5464. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5465. ext_factor, attn_factor, beta_fast, beta_slow
  5466. );
  5467. Kcur = ggml_rope_ext(
  5468. ctx0, Kcur, inp_pos, nullptr,
  5469. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5470. ext_factor, attn_factor, beta_fast, beta_slow
  5471. );
  5472. cb(Qcur, "Qcur", il);
  5473. cb(Kcur, "Kcur", il);
  5474. cb(Vcur, "Vcur", il);
  5475. cur = build_attn(inp_attn, gf,
  5476. model.layers[il].wo, model.layers[il].bo,
  5477. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5478. }
  5479. if (il == n_layer - 1) {
  5480. // skip computing output for unused tokens
  5481. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5482. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5483. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5484. }
  5485. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5486. cb(ffn_inp, "ffn_inp", il);
  5487. // MoE branch
  5488. cur = build_norm(ffn_inp,
  5489. model.layers[il].ffn_norm, NULL,
  5490. LLM_NORM_RMS, il);
  5491. cb(cur, "ffn_norm", il);
  5492. ggml_tensor * moe_out =
  5493. build_moe_ffn(cur,
  5494. model.layers[il].ffn_gate_inp,
  5495. model.layers[il].ffn_up_exps,
  5496. model.layers[il].ffn_gate_exps,
  5497. model.layers[il].ffn_down_exps,
  5498. nullptr,
  5499. n_expert, n_expert_used,
  5500. LLM_FFN_SILU, false,
  5501. false, 0.0,
  5502. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5503. il);
  5504. cb(moe_out, "ffn_moe_out", il);
  5505. // FFN shared expert
  5506. {
  5507. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5508. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5509. // sigmoid
  5510. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5511. cb(cur_gate, "ffn_shexp_gate", il);
  5512. ggml_tensor * cur_ffn = build_ffn(cur,
  5513. model.layers[il].ffn_up_shexp, NULL, NULL,
  5514. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5515. model.layers[il].ffn_down_shexp, NULL, NULL,
  5516. NULL,
  5517. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5518. cb(cur_ffn, "ffn_shexp", il);
  5519. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5520. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5521. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5522. cb(moe_out, "ffn_out", il);
  5523. cur = moe_out;
  5524. }
  5525. cur = ggml_add(ctx0, cur, ffn_inp);
  5526. cur = build_cvec(cur, il);
  5527. cb(cur, "l_out", il);
  5528. // input for next layer
  5529. inpL = cur;
  5530. }
  5531. cur = inpL;
  5532. cur = build_norm(cur,
  5533. model.output_norm, NULL,
  5534. LLM_NORM_RMS, -1);
  5535. cb(cur, "result_norm", -1);
  5536. res->t_embd = cur;
  5537. // lm_head
  5538. cur = build_lora_mm(model.output, cur);
  5539. cb(cur, "result_output", -1);
  5540. res->t_logits = cur;
  5541. ggml_build_forward_expand(gf, cur);
  5542. }
  5543. };
  5544. struct llm_build_qwen3 : public llm_graph_context {
  5545. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5546. const int64_t n_embd_head = hparams.n_embd_head_v;
  5547. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5548. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5549. ggml_tensor * cur;
  5550. ggml_tensor * inpL;
  5551. inpL = build_inp_embd(model.tok_embd);
  5552. // inp_pos - contains the positions
  5553. ggml_tensor * inp_pos = build_inp_pos();
  5554. auto * inp_attn = build_attn_inp_kv_unified();
  5555. for (int il = 0; il < n_layer; ++il) {
  5556. ggml_tensor * inpSA = inpL;
  5557. // norm
  5558. cur = build_norm(inpL,
  5559. model.layers[il].attn_norm, NULL,
  5560. LLM_NORM_RMS, il);
  5561. cb(cur, "attn_norm", il);
  5562. // self-attention
  5563. {
  5564. // compute Q and K and RoPE them
  5565. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5566. cb(Qcur, "Qcur", il);
  5567. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5568. cb(Kcur, "Kcur", il);
  5569. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5570. cb(Vcur, "Vcur", il);
  5571. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5572. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5573. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5574. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5575. cb(Qcur, "Qcur_normed", il);
  5576. Qcur = ggml_rope_ext(
  5577. ctx0, Qcur, inp_pos, nullptr,
  5578. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5579. ext_factor, attn_factor, beta_fast, beta_slow
  5580. );
  5581. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5582. cb(Kcur, "Kcur_normed", il);
  5583. Kcur = ggml_rope_ext(
  5584. ctx0, Kcur, inp_pos, nullptr,
  5585. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5586. ext_factor, attn_factor, beta_fast, beta_slow
  5587. );
  5588. cb(Qcur, "Qcur", il);
  5589. cb(Kcur, "Kcur", il);
  5590. cb(Vcur, "Vcur", il);
  5591. cur = build_attn(inp_attn, gf,
  5592. model.layers[il].wo, model.layers[il].bo,
  5593. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5594. }
  5595. if (il == n_layer - 1) {
  5596. // skip computing output for unused tokens
  5597. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5598. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5599. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5600. }
  5601. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5602. cb(ffn_inp, "ffn_inp", il);
  5603. // feed-forward network
  5604. cur = build_norm(ffn_inp,
  5605. model.layers[il].ffn_norm, NULL,
  5606. LLM_NORM_RMS, il);
  5607. cb(cur, "ffn_norm", il);
  5608. cur = build_ffn(cur,
  5609. model.layers[il].ffn_up, NULL, NULL,
  5610. model.layers[il].ffn_gate, NULL, NULL,
  5611. model.layers[il].ffn_down, NULL, NULL,
  5612. NULL,
  5613. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5614. cb(cur, "ffn_out", il);
  5615. cur = ggml_add(ctx0, cur, ffn_inp);
  5616. cur = build_cvec(cur, il);
  5617. cb(cur, "l_out", il);
  5618. // input for next layer
  5619. inpL = cur;
  5620. }
  5621. cur = inpL;
  5622. cur = build_norm(cur,
  5623. model.output_norm, NULL,
  5624. LLM_NORM_RMS, -1);
  5625. cb(cur, "result_norm", -1);
  5626. res->t_embd = cur;
  5627. // lm_head
  5628. cur = build_lora_mm(model.output, cur);
  5629. cb(cur, "result_output", -1);
  5630. res->t_logits = cur;
  5631. ggml_build_forward_expand(gf, cur);
  5632. }
  5633. };
  5634. struct llm_build_qwen3moe : public llm_graph_context {
  5635. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5636. const int64_t n_embd_head = hparams.n_embd_head_v;
  5637. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5638. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5639. ggml_tensor * cur;
  5640. ggml_tensor * inpL;
  5641. inpL = build_inp_embd(model.tok_embd);
  5642. // inp_pos - contains the positions
  5643. ggml_tensor * inp_pos = build_inp_pos();
  5644. auto * inp_attn = build_attn_inp_kv_unified();
  5645. for (int il = 0; il < n_layer; ++il) {
  5646. ggml_tensor * inpSA = inpL;
  5647. // norm
  5648. cur = build_norm(inpL,
  5649. model.layers[il].attn_norm, NULL,
  5650. LLM_NORM_RMS, il);
  5651. cb(cur, "attn_norm", il);
  5652. // self_attention
  5653. {
  5654. // compute Q and K and RoPE them
  5655. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5656. cb(Qcur, "Qcur", il);
  5657. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5658. cb(Kcur, "Kcur", il);
  5659. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5660. cb(Vcur, "Vcur", il);
  5661. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5662. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5663. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5664. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5665. cb(Qcur, "Qcur_normed", il);
  5666. Qcur = ggml_rope_ext(
  5667. ctx0, Qcur, inp_pos, nullptr,
  5668. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5669. ext_factor, attn_factor, beta_fast, beta_slow
  5670. );
  5671. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5672. cb(Kcur, "Kcur_normed", il);
  5673. Kcur = ggml_rope_ext(
  5674. ctx0, Kcur, inp_pos, nullptr,
  5675. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5676. ext_factor, attn_factor, beta_fast, beta_slow
  5677. );
  5678. cb(Qcur, "Qcur", il);
  5679. cb(Kcur, "Kcur", il);
  5680. cb(Vcur, "Vcur", il);
  5681. cur = build_attn(inp_attn, gf,
  5682. model.layers[il].wo, model.layers[il].bo,
  5683. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5684. }
  5685. if (il == n_layer - 1) {
  5686. // skip computing output for unused tokens
  5687. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5688. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5689. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5690. }
  5691. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5692. cb(ffn_inp, "ffn_inp", il);
  5693. // MoE branch
  5694. cur = build_norm(ffn_inp,
  5695. model.layers[il].ffn_norm, NULL,
  5696. LLM_NORM_RMS, il);
  5697. cb(cur, "ffn_norm", il);
  5698. ggml_tensor * moe_out =
  5699. build_moe_ffn(cur,
  5700. model.layers[il].ffn_gate_inp,
  5701. model.layers[il].ffn_up_exps,
  5702. model.layers[il].ffn_gate_exps,
  5703. model.layers[il].ffn_down_exps,
  5704. nullptr,
  5705. n_expert, n_expert_used,
  5706. LLM_FFN_SILU, true,
  5707. false, 0.0,
  5708. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5709. il);
  5710. cb(moe_out, "ffn_moe_out", il);
  5711. cur = moe_out;
  5712. cur = ggml_add(ctx0, cur, ffn_inp);
  5713. cur = build_cvec(cur, il);
  5714. cb(cur, "l_out", il);
  5715. // input for next layer
  5716. inpL = cur;
  5717. }
  5718. cur = inpL;
  5719. cur = build_norm(cur,
  5720. model.output_norm, NULL,
  5721. LLM_NORM_RMS, -1);
  5722. cb(cur, "result_norm", -1);
  5723. res->t_embd = cur;
  5724. // lm_head
  5725. cur = build_lora_mm(model.output, cur);
  5726. cb(cur, "result_output", -1);
  5727. res->t_logits = cur;
  5728. ggml_build_forward_expand(gf, cur);
  5729. }
  5730. };
  5731. struct llm_build_phi2 : public llm_graph_context {
  5732. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5733. const int64_t n_embd_head = hparams.n_embd_head_v;
  5734. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5735. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5736. ggml_tensor * cur;
  5737. ggml_tensor * attn_norm_output;
  5738. ggml_tensor * ffn_output;
  5739. ggml_tensor * inpL;
  5740. inpL = build_inp_embd(model.tok_embd);
  5741. // inp_pos - contains the positions
  5742. ggml_tensor * inp_pos = build_inp_pos();
  5743. auto * inp_attn = build_attn_inp_kv_unified();
  5744. for (int il = 0; il < n_layer; ++il) {
  5745. attn_norm_output = build_norm(inpL,
  5746. model.layers[il].attn_norm,
  5747. model.layers[il].attn_norm_b,
  5748. LLM_NORM, il);
  5749. cb(attn_norm_output, "attn_norm", il);
  5750. // self-attention
  5751. {
  5752. ggml_tensor * Qcur = nullptr;
  5753. ggml_tensor * Kcur = nullptr;
  5754. ggml_tensor * Vcur = nullptr;
  5755. if (model.layers[il].wqkv) {
  5756. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5757. cb(cur, "wqkv", il);
  5758. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5759. cb(cur, "bqkv", il);
  5760. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5761. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5762. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5763. } else {
  5764. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5765. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5766. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5767. }
  5768. cb(Qcur, "Qcur", il);
  5769. cb(Kcur, "Kcur", il);
  5770. cb(Vcur, "Vcur", il);
  5771. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5772. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5773. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5774. Qcur = ggml_rope_ext(
  5775. ctx0, Qcur, inp_pos, nullptr,
  5776. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5777. ext_factor, attn_factor, beta_fast, beta_slow
  5778. );
  5779. Kcur = ggml_rope_ext(
  5780. ctx0, Kcur, inp_pos, nullptr,
  5781. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5782. ext_factor, attn_factor, beta_fast, beta_slow
  5783. );
  5784. cb(Qcur, "Qcur", il);
  5785. cb(Kcur, "Kcur", il);
  5786. cb(Vcur, "Vcur", il);
  5787. // with phi2, we scale the Q to avoid precision issues
  5788. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5789. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5790. cur = build_attn(inp_attn, gf,
  5791. model.layers[il].wo, model.layers[il].bo,
  5792. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5793. }
  5794. if (il == n_layer - 1) {
  5795. // skip computing output for unused tokens
  5796. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5797. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5798. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5799. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5800. }
  5801. // FF
  5802. {
  5803. ffn_output = build_ffn(attn_norm_output,
  5804. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5805. NULL, NULL, NULL,
  5806. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5807. NULL,
  5808. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5809. cb(ffn_output, "ffn_out", il);
  5810. }
  5811. cur = ggml_add(ctx0, cur, ffn_output);
  5812. cur = ggml_add(ctx0, cur, inpL);
  5813. cur = build_cvec(cur, il);
  5814. cb(cur, "l_out", il);
  5815. // input for next layer
  5816. inpL = cur;
  5817. }
  5818. cur = build_norm(inpL,
  5819. model.output_norm,
  5820. model.output_norm_b,
  5821. LLM_NORM, -1);
  5822. cb(cur, "result_norm", -1);
  5823. res->t_embd = cur;
  5824. cur = build_lora_mm(model.output, cur);
  5825. cb(cur, "result_output_no_bias", -1);
  5826. cur = ggml_add(ctx0, cur, model.output_b);
  5827. cb(cur, "result_output", -1);
  5828. res->t_logits = cur;
  5829. ggml_build_forward_expand(gf, cur);
  5830. }
  5831. };
  5832. struct llm_build_phi3 : public llm_graph_context {
  5833. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5834. const int64_t n_embd_head = hparams.n_embd_head_v;
  5835. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5836. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5837. ggml_tensor * cur;
  5838. ggml_tensor * inpL;
  5839. inpL = build_inp_embd(model.tok_embd);
  5840. // inp_pos - contains the positions
  5841. ggml_tensor * inp_pos = build_inp_pos();
  5842. auto * inp_attn = build_attn_inp_kv_unified();
  5843. for (int il = 0; il < n_layer; ++il) {
  5844. auto * residual = inpL;
  5845. // self-attention
  5846. {
  5847. // rope freq factors for 128k context
  5848. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  5849. ggml_tensor* attn_norm_output = build_norm(inpL,
  5850. model.layers[il].attn_norm,
  5851. model.layers[il].attn_norm_b,
  5852. LLM_NORM_RMS, il);
  5853. cb(attn_norm_output, "attn_norm", il);
  5854. ggml_tensor * Qcur = nullptr;
  5855. ggml_tensor * Kcur = nullptr;
  5856. ggml_tensor * Vcur = nullptr;
  5857. if (model.layers[il].wqkv) {
  5858. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5859. cb(cur, "wqkv", il);
  5860. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5861. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5862. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5863. } else {
  5864. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5865. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5866. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5867. }
  5868. cb(Qcur, "Qcur", il);
  5869. cb(Kcur, "Kcur", il);
  5870. cb(Vcur, "Vcur", il);
  5871. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5872. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5873. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5874. Qcur = ggml_rope_ext(
  5875. ctx0, Qcur, inp_pos, rope_factors,
  5876. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5877. ext_factor, attn_factor, beta_fast, beta_slow
  5878. );
  5879. Kcur = ggml_rope_ext(
  5880. ctx0, Kcur, inp_pos, rope_factors,
  5881. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5882. ext_factor, attn_factor, beta_fast, beta_slow
  5883. );
  5884. cb(Qcur, "Qcur", il);
  5885. cb(Kcur, "Kcur", il);
  5886. cb(Vcur, "Vcur", il);
  5887. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5888. cb(Qcur, "Qcur", il);
  5889. cur = build_attn(inp_attn, gf,
  5890. model.layers[il].wo, model.layers[il].bo,
  5891. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5892. }
  5893. if (il == n_layer - 1) {
  5894. // skip computing output for unused tokens
  5895. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5896. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5897. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5898. }
  5899. cur = ggml_add(ctx0, cur, residual);
  5900. residual = cur;
  5901. cur = build_norm(cur,
  5902. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5903. LLM_NORM_RMS, il);
  5904. cb(cur, "ffn_norm", il);
  5905. // feed-forward network
  5906. if (model.layers[il].ffn_gate_inp == nullptr) {
  5907. cur = build_ffn(cur,
  5908. model.layers[il].ffn_up, NULL, NULL,
  5909. NULL, NULL, NULL,
  5910. model.layers[il].ffn_down, NULL, NULL,
  5911. NULL,
  5912. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5913. cb(cur, "ffn_out", il);
  5914. } else {
  5915. // MoE branch
  5916. cur = build_moe_ffn(cur,
  5917. model.layers[il].ffn_gate_inp,
  5918. model.layers[il].ffn_up_exps,
  5919. model.layers[il].ffn_gate_exps,
  5920. model.layers[il].ffn_down_exps,
  5921. nullptr,
  5922. n_expert, n_expert_used,
  5923. LLM_FFN_SILU, true,
  5924. false, 0.0,
  5925. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5926. il);
  5927. cb(cur, "ffn_moe_out", il);
  5928. }
  5929. cur = ggml_add(ctx0, residual, cur);
  5930. cur = build_cvec(cur, il);
  5931. cb(cur, "l_out", il);
  5932. // input for next layer
  5933. inpL = cur;
  5934. }
  5935. cur = build_norm(inpL,
  5936. model.output_norm,
  5937. model.output_norm_b,
  5938. LLM_NORM_RMS, -1);
  5939. cb(cur, "result_norm", -1);
  5940. res->t_embd = cur;
  5941. cur = build_lora_mm(model.output, cur);
  5942. if (model.output_b != nullptr) {
  5943. cb(cur, "result_output_no_bias", -1);
  5944. cur = ggml_add(ctx0, cur, model.output_b);
  5945. }
  5946. cb(cur, "result_output", -1);
  5947. res->t_logits = cur;
  5948. ggml_build_forward_expand(gf, cur);
  5949. }
  5950. };
  5951. struct llm_build_plamo : public llm_graph_context {
  5952. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5953. const int64_t n_embd_head = hparams.n_embd_head_v;
  5954. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5955. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5956. ggml_tensor * cur;
  5957. ggml_tensor * inpL;
  5958. inpL = build_inp_embd(model.tok_embd);
  5959. // inp_pos - contains the positions
  5960. ggml_tensor * inp_pos = build_inp_pos();
  5961. auto * inp_attn = build_attn_inp_kv_unified();
  5962. for (int il = 0; il < n_layer; ++il) {
  5963. // norm
  5964. cur = build_norm(inpL,
  5965. model.layers[il].attn_norm, NULL,
  5966. LLM_NORM_RMS, il);
  5967. cb(cur, "attn_norm", il);
  5968. ggml_tensor * attention_norm = cur;
  5969. // self-attention
  5970. {
  5971. // compute Q and K and RoPE them
  5972. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5973. cb(Qcur, "Qcur", il);
  5974. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5975. cb(Kcur, "Kcur", il);
  5976. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5977. cb(Vcur, "Vcur", il);
  5978. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5979. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5980. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5981. Qcur = ggml_rope_ext(
  5982. ctx0, Qcur, inp_pos, nullptr,
  5983. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5984. ext_factor, attn_factor, beta_fast, beta_slow
  5985. );
  5986. Kcur = ggml_rope_ext(
  5987. ctx0, Kcur, inp_pos, nullptr,
  5988. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5989. ext_factor, attn_factor, beta_fast, beta_slow
  5990. );
  5991. cb(Qcur, "Qcur", il);
  5992. cb(Kcur, "Kcur", il);
  5993. cb(Vcur, "Vcur", il);
  5994. cur = build_attn(inp_attn, gf,
  5995. model.layers[il].wo, NULL,
  5996. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5997. }
  5998. ggml_tensor * sa_out = cur;
  5999. cur = attention_norm;
  6000. if (il == n_layer - 1) {
  6001. // skip computing output for unused tokens
  6002. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6003. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6004. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6005. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6006. }
  6007. // feed-forward network
  6008. {
  6009. cur = build_ffn(cur,
  6010. model.layers[il].ffn_up, NULL, NULL,
  6011. model.layers[il].ffn_gate, NULL, NULL,
  6012. model.layers[il].ffn_down, NULL, NULL,
  6013. NULL,
  6014. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6015. cb(cur, "ffn_out", il);
  6016. }
  6017. cur = ggml_add(ctx0, cur, sa_out);
  6018. cur = ggml_add(ctx0, cur, inpL);
  6019. cur = build_cvec(cur, il);
  6020. cb(cur, "l_out", il);
  6021. // input for next layer
  6022. inpL = cur;
  6023. }
  6024. cur = inpL;
  6025. cur = build_norm(cur,
  6026. model.output_norm, NULL,
  6027. LLM_NORM_RMS, -1);
  6028. cb(cur, "result_norm", -1);
  6029. res->t_embd = cur;
  6030. // lm_head
  6031. cur = build_lora_mm(model.output, cur);
  6032. cb(cur, "result_output", -1);
  6033. res->t_logits = cur;
  6034. ggml_build_forward_expand(gf, cur);
  6035. }
  6036. };
  6037. struct llm_build_gpt2 : public llm_graph_context {
  6038. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6039. const int64_t n_embd_head = hparams.n_embd_head_v;
  6040. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6041. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6042. ggml_tensor * cur;
  6043. ggml_tensor * pos;
  6044. ggml_tensor * inpL;
  6045. inpL = build_inp_embd(model.tok_embd);
  6046. // inp_pos - contains the positions
  6047. ggml_tensor * inp_pos = build_inp_pos();
  6048. auto * inp_attn = build_attn_inp_kv_unified();
  6049. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6050. cb(pos, "pos_embd", -1);
  6051. inpL = ggml_add(ctx0, inpL, pos);
  6052. cb(inpL, "inpL", -1);
  6053. for (int il = 0; il < n_layer; ++il) {
  6054. cur = build_norm(inpL,
  6055. model.layers[il].attn_norm,
  6056. model.layers[il].attn_norm_b,
  6057. LLM_NORM, il);
  6058. cb(cur, "attn_norm", il);
  6059. // self-attention
  6060. {
  6061. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6062. cb(cur, "wqkv", il);
  6063. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6064. cb(cur, "bqkv", il);
  6065. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6066. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6067. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6068. cb(Qcur, "Qcur", il);
  6069. cb(Kcur, "Kcur", il);
  6070. cb(Vcur, "Vcur", il);
  6071. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6072. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6073. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6074. cur = build_attn(inp_attn, gf,
  6075. model.layers[il].wo, model.layers[il].bo,
  6076. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6077. }
  6078. if (il == n_layer - 1) {
  6079. // skip computing output for unused tokens
  6080. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6081. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6082. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6083. }
  6084. // add the input
  6085. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6086. cb(ffn_inp, "ffn_inp", il);
  6087. // FF
  6088. {
  6089. cur = build_norm(ffn_inp,
  6090. model.layers[il].ffn_norm,
  6091. model.layers[il].ffn_norm_b,
  6092. LLM_NORM, il);
  6093. cb(cur, "ffn_norm", il);
  6094. cur = build_ffn(cur,
  6095. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6096. NULL, NULL, NULL,
  6097. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6098. NULL,
  6099. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6100. cb(cur, "ffn_out", il);
  6101. }
  6102. cur = ggml_add(ctx0, cur, ffn_inp);
  6103. cur = build_cvec(cur, il);
  6104. cb(cur, "l_out", il);
  6105. // input for next layer
  6106. inpL = cur;
  6107. }
  6108. cur = build_norm(inpL,
  6109. model.output_norm,
  6110. model.output_norm_b,
  6111. LLM_NORM, -1);
  6112. cb(cur, "result_norm", -1);
  6113. res->t_embd = cur;
  6114. cur = build_lora_mm(model.output, cur);
  6115. cb(cur, "result_output", -1);
  6116. res->t_logits = cur;
  6117. ggml_build_forward_expand(gf, cur);
  6118. }
  6119. };
  6120. struct llm_build_codeshell : public llm_graph_context {
  6121. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6122. const int64_t n_embd_head = hparams.n_embd_head_v;
  6123. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6124. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6125. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6126. ggml_tensor * cur;
  6127. ggml_tensor * inpL;
  6128. inpL = build_inp_embd(model.tok_embd);
  6129. // inp_pos - contains the positions
  6130. ggml_tensor * inp_pos = build_inp_pos();
  6131. auto * inp_attn = build_attn_inp_kv_unified();
  6132. for (int il = 0; il < n_layer; ++il) {
  6133. cur = build_norm(inpL,
  6134. model.layers[il].attn_norm,
  6135. model.layers[il].attn_norm_b,
  6136. LLM_NORM, il);
  6137. cb(cur, "attn_norm", il);
  6138. // self-attention
  6139. {
  6140. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6141. cb(cur, "wqkv", il);
  6142. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6143. cb(cur, "bqkv", il);
  6144. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6145. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6146. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6147. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6148. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6149. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6150. Qcur = ggml_rope_ext(
  6151. ctx0, Qcur, inp_pos, nullptr,
  6152. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6153. ext_factor, attn_factor, beta_fast, beta_slow
  6154. );
  6155. Kcur = ggml_rope_ext(
  6156. ctx0, Kcur, inp_pos, nullptr,
  6157. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6158. ext_factor, attn_factor, beta_fast, beta_slow
  6159. );
  6160. cb(Qcur, "Qcur", il);
  6161. cb(Kcur, "Kcur", il);
  6162. cb(Vcur, "Vcur", il);
  6163. cur = build_attn(inp_attn, gf,
  6164. model.layers[il].wo, model.layers[il].bo,
  6165. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6166. }
  6167. if (il == n_layer - 1) {
  6168. // skip computing output for unused tokens
  6169. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6170. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6171. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6172. }
  6173. // add the input
  6174. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6175. cb(ffn_inp, "ffn_inp", il);
  6176. // FF
  6177. {
  6178. cur = build_norm(ffn_inp,
  6179. model.layers[il].ffn_norm,
  6180. model.layers[il].ffn_norm_b,
  6181. LLM_NORM, il);
  6182. cb(cur, "ffn_norm", il);
  6183. cur = build_ffn(cur,
  6184. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6185. NULL, NULL, NULL,
  6186. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6187. NULL,
  6188. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6189. cb(cur, "ffn_out", il);
  6190. }
  6191. cur = ggml_add(ctx0, cur, ffn_inp);
  6192. cur = build_cvec(cur, il);
  6193. cb(cur, "l_out", il);
  6194. // input for next layer
  6195. inpL = cur;
  6196. }
  6197. cur = build_norm(inpL,
  6198. model.output_norm,
  6199. model.output_norm_b,
  6200. LLM_NORM, -1);
  6201. cb(cur, "result_norm", -1);
  6202. res->t_embd = cur;
  6203. cur = build_lora_mm(model.output, cur);
  6204. cb(cur, "result_output", -1);
  6205. res->t_logits = cur;
  6206. ggml_build_forward_expand(gf, cur);
  6207. }
  6208. };
  6209. struct llm_build_orion : public llm_graph_context {
  6210. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6211. const int64_t n_embd_head = hparams.n_embd_head_v;
  6212. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6213. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6214. ggml_tensor * cur;
  6215. ggml_tensor * inpL;
  6216. inpL = build_inp_embd(model.tok_embd);
  6217. // inp_pos - contains the positions
  6218. ggml_tensor * inp_pos = build_inp_pos();
  6219. auto * inp_attn = build_attn_inp_kv_unified();
  6220. for (int il = 0; il < n_layer; ++il) {
  6221. ggml_tensor * inpSA = inpL;
  6222. // norm
  6223. cur = build_norm(inpL,
  6224. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6225. LLM_NORM, il);
  6226. cb(cur, "attn_norm", il);
  6227. // self-attention
  6228. {
  6229. // compute Q and K and RoPE them
  6230. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6231. cb(Qcur, "Qcur", il);
  6232. // if (model.layers[il].bq) {
  6233. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6234. // cb(Qcur, "Qcur", il);
  6235. // }
  6236. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6237. cb(Kcur, "Kcur", il);
  6238. // if (model.layers[il].bk) {
  6239. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6240. // cb(Kcur, "Kcur", il);
  6241. // }
  6242. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6243. cb(Vcur, "Vcur", il);
  6244. // if (model.layers[il].bv) {
  6245. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6246. // cb(Vcur, "Vcur", il);
  6247. // }
  6248. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6249. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6250. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6251. Qcur = ggml_rope_ext(
  6252. ctx0, Qcur, inp_pos, nullptr,
  6253. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6254. ext_factor, attn_factor, beta_fast, beta_slow
  6255. );
  6256. Kcur = ggml_rope_ext(
  6257. ctx0, Kcur, inp_pos, nullptr,
  6258. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6259. ext_factor, attn_factor, beta_fast, beta_slow
  6260. );
  6261. cb(Qcur, "Qcur", il);
  6262. cb(Kcur, "Kcur", il);
  6263. cb(Vcur, "Vcur", il);
  6264. cur = build_attn(inp_attn, gf,
  6265. model.layers[il].wo, NULL,
  6266. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6267. }
  6268. if (il == n_layer - 1) {
  6269. // skip computing output for unused tokens
  6270. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6271. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6272. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6273. }
  6274. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6275. cb(ffn_inp, "ffn_inp", il);
  6276. // feed-forward network
  6277. cur = build_norm(ffn_inp,
  6278. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6279. LLM_NORM, il);
  6280. cb(cur, "ffn_norm", il);
  6281. cur = build_ffn(cur,
  6282. model.layers[il].ffn_up, NULL, NULL,
  6283. model.layers[il].ffn_gate, NULL, NULL,
  6284. model.layers[il].ffn_down, NULL, NULL,
  6285. NULL,
  6286. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6287. cb(cur, "ffn_out", il);
  6288. cur = ggml_add(ctx0, cur, ffn_inp);
  6289. cur = build_cvec(cur, il);
  6290. cb(cur, "l_out", il);
  6291. // input for next layer
  6292. inpL = cur;
  6293. }
  6294. cur = inpL;
  6295. cur = build_norm(cur,
  6296. model.output_norm, model.output_norm_b,
  6297. LLM_NORM, -1);
  6298. cb(cur, "result_norm", -1);
  6299. res->t_embd = cur;
  6300. // lm_head
  6301. cur = build_lora_mm(model.output, cur);
  6302. cb(cur, "result_output", -1);
  6303. res->t_logits = cur;
  6304. ggml_build_forward_expand(gf, cur);
  6305. }
  6306. };
  6307. struct llm_build_internlm2 : public llm_graph_context {
  6308. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6309. const int64_t n_embd_head = hparams.n_embd_head_v;
  6310. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6311. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6312. ggml_tensor * cur;
  6313. ggml_tensor * inpL;
  6314. inpL = build_inp_embd(model.tok_embd);
  6315. // inp_pos - contains the positions
  6316. ggml_tensor * inp_pos = build_inp_pos();
  6317. auto * inp_attn = build_attn_inp_kv_unified();
  6318. for (int il = 0; il < n_layer; ++il) {
  6319. ggml_tensor * inpSA = inpL;
  6320. // norm
  6321. cur = build_norm(inpL,
  6322. model.layers[il].attn_norm, NULL,
  6323. LLM_NORM_RMS, il);
  6324. cb(cur, "attn_norm", il);
  6325. // self-attention
  6326. {
  6327. // compute Q and K and RoPE them
  6328. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6329. cb(Qcur, "Qcur", il);
  6330. if (model.layers[il].bq) {
  6331. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6332. cb(Qcur, "Qcur", il);
  6333. }
  6334. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6335. cb(Kcur, "Kcur", il);
  6336. if (model.layers[il].bk) {
  6337. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6338. cb(Kcur, "Kcur", il);
  6339. }
  6340. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6341. cb(Vcur, "Vcur", il);
  6342. if (model.layers[il].bv) {
  6343. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6344. cb(Vcur, "Vcur", il);
  6345. }
  6346. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6347. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6348. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6349. Qcur = ggml_rope_ext(
  6350. ctx0, Qcur, inp_pos, nullptr,
  6351. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6352. ext_factor, attn_factor, beta_fast, beta_slow
  6353. );
  6354. Kcur = ggml_rope_ext(
  6355. ctx0, Kcur, inp_pos, nullptr,
  6356. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6357. ext_factor, attn_factor, beta_fast, beta_slow
  6358. );
  6359. cb(Qcur, "Qcur", il);
  6360. cb(Kcur, "Kcur", il);
  6361. cb(Vcur, "Vcur", il);
  6362. cur = build_attn(inp_attn, gf,
  6363. model.layers[il].wo, model.layers[il].bo,
  6364. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6365. }
  6366. if (il == n_layer - 1) {
  6367. // skip computing output for unused tokens
  6368. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6369. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6370. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6371. }
  6372. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6373. cb(ffn_inp, "ffn_inp", il);
  6374. // feed-forward network
  6375. cur = build_norm(ffn_inp,
  6376. model.layers[il].ffn_norm, NULL,
  6377. LLM_NORM_RMS, il);
  6378. cb(cur, "ffn_norm", il);
  6379. cur = build_ffn(cur,
  6380. model.layers[il].ffn_up, NULL, NULL,
  6381. model.layers[il].ffn_gate, NULL, NULL,
  6382. model.layers[il].ffn_down, NULL, NULL,
  6383. NULL,
  6384. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6385. cb(cur, "ffn_out", il);
  6386. cur = ggml_add(ctx0, cur, ffn_inp);
  6387. cur = build_cvec(cur, il);
  6388. cb(cur, "l_out", il);
  6389. // input for next layer
  6390. inpL = cur;
  6391. }
  6392. cur = inpL;
  6393. cur = build_norm(cur,
  6394. model.output_norm, NULL,
  6395. LLM_NORM_RMS, -1);
  6396. cb(cur, "result_norm", -1);
  6397. res->t_embd = cur;
  6398. // lm_head
  6399. cur = build_lora_mm(model.output, cur);
  6400. cb(cur, "result_output", -1);
  6401. res->t_logits = cur;
  6402. ggml_build_forward_expand(gf, cur);
  6403. }
  6404. };
  6405. struct llm_build_minicpm3 : public llm_graph_context {
  6406. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6407. //TODO: if the model varies, these parameters need to be read from the model
  6408. const int64_t n_embd_base = 256;
  6409. const float scale_embd = 12.0f;
  6410. const float scale_depth = 1.4f;
  6411. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6412. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6413. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6414. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6415. ggml_tensor * cur;
  6416. ggml_tensor * inpL;
  6417. inpL = build_inp_embd(model.tok_embd);
  6418. // scale the input embeddings
  6419. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6420. cb(inpL, "inp_scaled", -1);
  6421. // inp_pos - contains the positions
  6422. ggml_tensor * inp_pos = build_inp_pos();
  6423. auto * inp_attn = build_attn_inp_kv_unified();
  6424. for (int il = 0; il < n_layer; ++il) {
  6425. ggml_tensor * inpSA = inpL;
  6426. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  6427. // norm
  6428. cur = build_norm(inpL,
  6429. model.layers[il].attn_norm, NULL,
  6430. LLM_NORM_RMS, il);
  6431. cb(cur, "attn_norm", il);
  6432. // self_attention
  6433. {
  6434. ggml_tensor * q = NULL;
  6435. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6436. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6437. cb(q, "q", il);
  6438. q = build_norm(q,
  6439. model.layers[il].attn_q_a_norm, NULL,
  6440. LLM_NORM_RMS, il);
  6441. cb(q, "q", il);
  6442. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6443. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6444. cb(q, "q", il);
  6445. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6446. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6447. ggml_row_size(q->type, hparams.n_embd_head_k),
  6448. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6449. 0);
  6450. cb(q_nope, "q_nope", il);
  6451. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6452. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6453. ggml_row_size(q->type, hparams.n_embd_head_k),
  6454. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6455. ggml_row_size(q->type, n_embd_head_qk_nope));
  6456. cb(q_pe, "q_pe", il);
  6457. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6458. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6459. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6460. // split into {kv_lora_rank, n_tokens}
  6461. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6462. kv_pe_compresseed->nb[1],
  6463. 0);
  6464. cb(kv_compressed, "kv_compressed", il);
  6465. // and {n_embd_head_qk_rope, n_tokens}
  6466. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6467. kv_pe_compresseed->nb[1],
  6468. kv_pe_compresseed->nb[1],
  6469. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6470. cb(k_pe, "k_pe", il);
  6471. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6472. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6473. kv_compressed = build_norm(kv_compressed,
  6474. model.layers[il].attn_kv_a_norm, NULL,
  6475. LLM_NORM_RMS, il);
  6476. cb(kv_compressed, "kv_compressed", il);
  6477. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6478. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6479. cb(kv, "kv", il);
  6480. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6481. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6482. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6483. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6484. 0);
  6485. cb(k_nope, "k_nope", il);
  6486. // and {n_head * n_embd_head_v, n_tokens}
  6487. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6488. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6489. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6490. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6491. cb(v_states, "v_states", il);
  6492. v_states = ggml_cont(ctx0, v_states);
  6493. cb(v_states, "v_states", il);
  6494. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6495. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6496. 0);
  6497. cb(v_states, "v_states", il);
  6498. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6499. q_pe = ggml_rope_ext(
  6500. ctx0, q_pe, inp_pos, rope_factors,
  6501. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6502. ext_factor, attn_factor, beta_fast, beta_slow
  6503. );
  6504. cb(q_pe, "q_pe", il);
  6505. // shared RoPE key
  6506. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6507. k_pe = ggml_rope_ext(
  6508. ctx0, k_pe, inp_pos, rope_factors,
  6509. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6510. ext_factor, attn_factor, beta_fast, beta_slow
  6511. );
  6512. cb(k_pe, "k_pe", il);
  6513. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6514. cb(q_states, "q_states", il);
  6515. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6516. cb(k_states, "k_states", il);
  6517. cur = build_attn(inp_attn, gf,
  6518. model.layers[il].wo, NULL,
  6519. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6520. }
  6521. if (il == n_layer - 1) {
  6522. // skip computing output for unused tokens
  6523. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6524. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6525. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6526. }
  6527. // scale_res - scale the hidden states for residual connection
  6528. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6529. cur = ggml_scale(ctx0, cur, scale_res);
  6530. cb(cur, "hidden_scaled", il);
  6531. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6532. cb(ffn_inp, "ffn_inp", il);
  6533. // feed-forward network
  6534. {
  6535. cur = build_norm(ffn_inp,
  6536. model.layers[il].ffn_norm, NULL,
  6537. LLM_NORM_RMS, il);
  6538. cb(cur, "ffn_norm", il);
  6539. cur = build_ffn(cur,
  6540. model.layers[il].ffn_up, NULL, NULL,
  6541. model.layers[il].ffn_gate, NULL, NULL,
  6542. model.layers[il].ffn_down, NULL, NULL,
  6543. NULL,
  6544. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6545. cb(cur, "ffn_out", il);
  6546. }
  6547. // scale the hidden states for residual connection
  6548. cur = ggml_scale(ctx0, cur, scale_res);
  6549. cb(cur, "hidden_scaled_ffn", il);
  6550. cur = ggml_add(ctx0, cur, ffn_inp);
  6551. cur = build_cvec(cur, il);
  6552. cb(cur, "l_out", il);
  6553. // input for next layer
  6554. inpL = cur;
  6555. }
  6556. cur = inpL;
  6557. cur = build_norm(cur,
  6558. model.output_norm, NULL,
  6559. LLM_NORM_RMS, -1);
  6560. cb(cur, "result_norm", -1);
  6561. res->t_embd = cur;
  6562. // lm_head scaling
  6563. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6564. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6565. cb(cur, "lmhead_scaling", -1);
  6566. // lm_head
  6567. cur = build_lora_mm(model.output, cur);
  6568. cb(cur, "result_output", -1);
  6569. res->t_logits = cur;
  6570. ggml_build_forward_expand(gf, cur);
  6571. }
  6572. };
  6573. struct llm_build_gemma : public llm_graph_context {
  6574. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6575. const int64_t n_embd_head = hparams.n_embd_head_v;
  6576. ggml_tensor * cur;
  6577. ggml_tensor * inpL;
  6578. inpL = build_inp_embd(model.tok_embd);
  6579. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6580. cb(inpL, "inp_scaled", -1);
  6581. // inp_pos - contains the positions
  6582. ggml_tensor * inp_pos = build_inp_pos();
  6583. auto * inp_attn = build_attn_inp_kv_unified();
  6584. for (int il = 0; il < n_layer; ++il) {
  6585. // norm
  6586. cur = build_norm(inpL,
  6587. model.layers[il].attn_norm, NULL,
  6588. LLM_NORM_RMS, il);
  6589. cb(cur, "attn_norm", il);
  6590. // self-attention
  6591. {
  6592. // compute Q and K and RoPE them
  6593. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6594. cb(Qcur, "Qcur", il);
  6595. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6596. cb(Kcur, "Kcur", il);
  6597. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6598. cb(Vcur, "Vcur", il);
  6599. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6600. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6601. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6602. Qcur = ggml_rope_ext(
  6603. ctx0, Qcur, inp_pos, nullptr,
  6604. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6605. ext_factor, attn_factor, beta_fast, beta_slow);
  6606. Kcur = ggml_rope_ext(
  6607. ctx0, Kcur, inp_pos, nullptr,
  6608. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6609. ext_factor, attn_factor, beta_fast, beta_slow);
  6610. cb(Qcur, "Qcur", il);
  6611. cb(Kcur, "Kcur", il);
  6612. cb(Vcur, "Vcur", il);
  6613. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6614. cb(Qcur, "Qcur_scaled", il);
  6615. cur = build_attn(inp_attn, gf,
  6616. model.layers[il].wo, NULL,
  6617. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6618. }
  6619. if (il == n_layer - 1) {
  6620. // skip computing output for unused tokens
  6621. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6622. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6623. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6624. }
  6625. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6626. cb(sa_out, "sa_out", il);
  6627. cur = build_norm(sa_out,
  6628. model.layers[il].ffn_norm, NULL,
  6629. LLM_NORM_RMS, il);
  6630. cb(cur, "ffn_norm", il);
  6631. // feed-forward network
  6632. {
  6633. cur = build_ffn(cur,
  6634. model.layers[il].ffn_up, NULL, NULL,
  6635. model.layers[il].ffn_gate, NULL, NULL,
  6636. model.layers[il].ffn_down, NULL, NULL,
  6637. NULL,
  6638. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6639. cb(cur, "ffn_out", il);
  6640. }
  6641. cur = ggml_add(ctx0, cur, sa_out);
  6642. cur = build_cvec(cur, il);
  6643. cb(cur, "l_out", il);
  6644. // input for next layer
  6645. inpL = cur;
  6646. }
  6647. cur = inpL;
  6648. cur = build_norm(cur,
  6649. model.output_norm, NULL,
  6650. LLM_NORM_RMS, -1);
  6651. cb(cur, "result_norm", -1);
  6652. res->t_embd = cur;
  6653. // lm_head
  6654. cur = build_lora_mm(model.output, cur);
  6655. cb(cur, "result_output", -1);
  6656. res->t_logits = cur;
  6657. ggml_build_forward_expand(gf, cur);
  6658. }
  6659. };
  6660. struct llm_build_gemma2 : public llm_graph_context {
  6661. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6662. const int64_t n_embd_head = hparams.n_embd_head_k;
  6663. ggml_tensor * cur;
  6664. ggml_tensor * inpL;
  6665. inpL = build_inp_embd(model.tok_embd);
  6666. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6667. cb(inpL, "inp_scaled", -1);
  6668. // inp_pos - contains the positions
  6669. ggml_tensor * inp_pos = build_inp_pos();
  6670. auto * inp_attn = build_attn_inp_kv_unified();
  6671. for (int il = 0; il < n_layer; ++il) {
  6672. // norm
  6673. cur = build_norm(inpL,
  6674. model.layers[il].attn_norm, NULL,
  6675. LLM_NORM_RMS, il);
  6676. cb(cur, "attn_norm", il);
  6677. // self-attention
  6678. {
  6679. // compute Q and K and RoPE them
  6680. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6681. cb(Qcur, "Qcur", il);
  6682. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6683. cb(Kcur, "Kcur", il);
  6684. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6685. cb(Vcur, "Vcur", il);
  6686. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6687. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6688. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6689. Qcur = ggml_rope_ext(
  6690. ctx0, Qcur, inp_pos, nullptr,
  6691. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6692. ext_factor, attn_factor, beta_fast, beta_slow);
  6693. Kcur = ggml_rope_ext(
  6694. ctx0, Kcur, inp_pos, nullptr,
  6695. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6696. ext_factor, attn_factor, beta_fast, beta_slow);
  6697. cb(Qcur, "Qcur", il);
  6698. cb(Kcur, "Kcur", il);
  6699. cb(Vcur, "Vcur", il);
  6700. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6701. switch (model.type) {
  6702. case LLM_TYPE_2B:
  6703. case LLM_TYPE_9B:
  6704. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6705. default: GGML_ABORT("fatal error");
  6706. };
  6707. cb(Qcur, "Qcur_scaled", il);
  6708. cur = build_attn(inp_attn, gf,
  6709. model.layers[il].wo, NULL,
  6710. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6711. }
  6712. cur = build_norm(cur,
  6713. model.layers[il].attn_post_norm, NULL,
  6714. LLM_NORM_RMS, il);
  6715. cb(cur, "attn_post_norm", il);
  6716. if (il == n_layer - 1) {
  6717. // skip computing output for unused tokens
  6718. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6719. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6720. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6721. }
  6722. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6723. cb(sa_out, "sa_out", il);
  6724. cur = build_norm(sa_out,
  6725. model.layers[il].ffn_norm, NULL,
  6726. LLM_NORM_RMS, il);
  6727. cb(cur, "ffn_norm", il);
  6728. // feed-forward network
  6729. {
  6730. cur = build_ffn(cur,
  6731. model.layers[il].ffn_up, NULL, NULL,
  6732. model.layers[il].ffn_gate, NULL, NULL,
  6733. model.layers[il].ffn_down, NULL, NULL,
  6734. NULL,
  6735. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6736. cb(cur, "ffn_out", il);
  6737. }
  6738. cur = build_norm(cur,
  6739. model.layers[il].ffn_post_norm, NULL,
  6740. LLM_NORM_RMS, -1);
  6741. cb(cur, "ffn_post_norm", -1);
  6742. cur = ggml_add(ctx0, cur, sa_out);
  6743. cur = build_cvec(cur, il);
  6744. cb(cur, "l_out", il);
  6745. // input for next layer
  6746. inpL = cur;
  6747. }
  6748. cur = inpL;
  6749. cur = build_norm(cur,
  6750. model.output_norm, NULL,
  6751. LLM_NORM_RMS, -1);
  6752. cb(cur, "result_norm", -1);
  6753. res->t_embd = cur;
  6754. // lm_head
  6755. cur = build_lora_mm(model.output, cur);
  6756. // final logit soft-capping
  6757. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6758. cur = ggml_tanh(ctx0, cur);
  6759. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6760. cb(cur, "result_output", -1);
  6761. res->t_logits = cur;
  6762. ggml_build_forward_expand(gf, cur);
  6763. }
  6764. };
  6765. struct llm_build_gemma3 : public llm_graph_context {
  6766. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6767. const int64_t n_embd_head = hparams.n_embd_head_k;
  6768. ggml_tensor * cur;
  6769. ggml_tensor * inpL;
  6770. inpL = build_inp_embd(model.tok_embd);
  6771. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6772. if (ubatch.token) {
  6773. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6774. cb(inpL, "inp_scaled", -1);
  6775. }
  6776. // inp_pos - contains the positions
  6777. ggml_tensor * inp_pos = build_inp_pos();
  6778. // TODO: is causal == true correct? might need some changes
  6779. auto * inp_attn = build_attn_inp_kv_unified();
  6780. for (int il = 0; il < n_layer; ++il) {
  6781. const bool is_swa = hparams.is_swa(il);
  6782. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6783. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6784. // norm
  6785. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6786. cb(cur, "attn_norm", il);
  6787. // self-attention
  6788. {
  6789. // compute Q and K and RoPE them
  6790. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6791. cb(Qcur, "Qcur", il);
  6792. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6793. cb(Kcur, "Kcur", il);
  6794. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6795. cb(Vcur, "Vcur", il);
  6796. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6797. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6798. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6799. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6800. cb(Qcur, "Qcur_normed", il);
  6801. Qcur = ggml_rope_ext(
  6802. ctx0, Qcur, inp_pos, nullptr,
  6803. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6804. ext_factor, attn_factor, beta_fast, beta_slow);
  6805. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6806. cb(Kcur, "Kcur_normed", il);
  6807. Kcur = ggml_rope_ext(
  6808. ctx0, Kcur, inp_pos, nullptr,
  6809. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6810. ext_factor, attn_factor, beta_fast, beta_slow);
  6811. cb(Qcur, "Qcur", il);
  6812. cb(Kcur, "Kcur", il);
  6813. cb(Vcur, "Vcur", il);
  6814. cur = build_attn(inp_attn, gf,
  6815. model.layers[il].wo, NULL,
  6816. Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
  6817. }
  6818. cur = build_norm(cur,
  6819. model.layers[il].attn_post_norm, NULL,
  6820. LLM_NORM_RMS, il);
  6821. cb(cur, "attn_post_norm", il);
  6822. if (il == n_layer - 1) {
  6823. // skip computing output for unused tokens
  6824. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6825. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6826. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6827. }
  6828. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6829. cb(sa_out, "sa_out", il);
  6830. cur = build_norm(sa_out,
  6831. model.layers[il].ffn_norm, NULL,
  6832. LLM_NORM_RMS, il);
  6833. cb(cur, "ffn_norm", il);
  6834. // feed-forward network
  6835. {
  6836. cur = build_ffn(cur,
  6837. model.layers[il].ffn_up, NULL, NULL,
  6838. model.layers[il].ffn_gate, NULL, NULL,
  6839. model.layers[il].ffn_down, NULL, NULL,
  6840. NULL,
  6841. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6842. cb(cur, "ffn_out", il);
  6843. }
  6844. cur = build_norm(cur,
  6845. model.layers[il].ffn_post_norm, NULL,
  6846. LLM_NORM_RMS, -1);
  6847. cb(cur, "ffn_post_norm", -1);
  6848. cur = ggml_add(ctx0, cur, sa_out);
  6849. cur = build_cvec(cur, il);
  6850. cb(cur, "l_out", il);
  6851. // input for next layer
  6852. inpL = cur;
  6853. }
  6854. cur = inpL;
  6855. cur = build_norm(cur,
  6856. model.output_norm, NULL,
  6857. LLM_NORM_RMS, -1);
  6858. cb(cur, "result_norm", -1);
  6859. res->t_embd = cur;
  6860. // lm_head
  6861. cur = build_lora_mm(model.output, cur);
  6862. cb(cur, "result_output", -1);
  6863. res->t_logits = cur;
  6864. ggml_build_forward_expand(gf, cur);
  6865. }
  6866. };
  6867. // TODO: move up next to build_starcoder
  6868. struct llm_build_starcoder2 : public llm_graph_context {
  6869. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6870. const int64_t n_embd_head = hparams.n_embd_head_v;
  6871. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6872. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6873. ggml_tensor * cur;
  6874. ggml_tensor * inpL;
  6875. inpL = build_inp_embd(model.tok_embd);
  6876. // inp_pos - contains the positions
  6877. ggml_tensor * inp_pos = build_inp_pos();
  6878. auto * inp_attn = build_attn_inp_kv_unified();
  6879. for (int il = 0; il < n_layer; ++il) {
  6880. ggml_tensor * inpSA = inpL;
  6881. // norm
  6882. cur = build_norm(inpL,
  6883. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6884. LLM_NORM, il);
  6885. cb(cur, "attn_norm", il);
  6886. // self-attention
  6887. {
  6888. // compute Q and K and RoPE them
  6889. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6890. cb(Qcur, "Qcur", il);
  6891. if (model.layers[il].bq) {
  6892. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6893. cb(Qcur, "Qcur", il);
  6894. }
  6895. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6896. cb(Kcur, "Kcur", il);
  6897. if (model.layers[il].bk) {
  6898. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6899. cb(Kcur, "Kcur", il);
  6900. }
  6901. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6902. cb(Vcur, "Vcur", il);
  6903. if (model.layers[il].bv) {
  6904. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6905. cb(Vcur, "Vcur", il);
  6906. }
  6907. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6908. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6909. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6910. Qcur = ggml_rope_ext(
  6911. ctx0, Qcur, inp_pos, nullptr,
  6912. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6913. ext_factor, attn_factor, beta_fast, beta_slow
  6914. );
  6915. Kcur = ggml_rope_ext(
  6916. ctx0, Kcur, inp_pos, nullptr,
  6917. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6918. ext_factor, attn_factor, beta_fast, beta_slow
  6919. );
  6920. cb(Qcur, "Qcur", il);
  6921. cb(Kcur, "Kcur", il);
  6922. cb(Vcur, "Vcur", il);
  6923. cur = build_attn(inp_attn, gf,
  6924. model.layers[il].wo, model.layers[il].bo,
  6925. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6926. }
  6927. if (il == n_layer - 1) {
  6928. // skip computing output for unused tokens
  6929. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6930. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6931. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6932. }
  6933. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6934. cb(ffn_inp, "ffn_inp", il);
  6935. // feed-forward network
  6936. cur = build_norm(ffn_inp,
  6937. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6938. LLM_NORM, il);
  6939. cb(cur, "ffn_norm", il);
  6940. cur = build_ffn(cur,
  6941. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6942. NULL, NULL, NULL,
  6943. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6944. NULL,
  6945. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6946. cb(cur, "ffn_out", il);
  6947. cur = ggml_add(ctx0, cur, ffn_inp);
  6948. cur = build_cvec(cur, il);
  6949. cb(cur, "l_out", il);
  6950. // input for next layer
  6951. inpL = cur;
  6952. }
  6953. cur = inpL;
  6954. cur = build_norm(cur,
  6955. model.output_norm, model.output_norm_b,
  6956. LLM_NORM, -1);
  6957. cb(cur, "result_norm", -1);
  6958. res->t_embd = cur;
  6959. // lm_head
  6960. cur = build_lora_mm(model.output, cur);
  6961. cb(cur, "result_output", -1);
  6962. res->t_logits = cur;
  6963. ggml_build_forward_expand(gf, cur);
  6964. }
  6965. };
  6966. struct llm_build_mamba : public llm_graph_context {
  6967. const llama_model & model;
  6968. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6969. ggml_tensor * cur;
  6970. ggml_tensor * inpL;
  6971. // {n_embd, n_tokens}
  6972. inpL = build_inp_embd(model.tok_embd);
  6973. ggml_tensor * state_copy = build_inp_s_copy();
  6974. ggml_tensor * state_mask = build_inp_s_mask();
  6975. for (int il = 0; il < n_layer; ++il) {
  6976. // norm
  6977. cur = build_norm(inpL,
  6978. model.layers[il].attn_norm, NULL,
  6979. LLM_NORM_RMS, il);
  6980. cb(cur, "attn_norm", il);
  6981. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6982. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6983. if (il == n_layer - 1) {
  6984. // skip computing output for unused tokens
  6985. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6986. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6987. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6988. }
  6989. // residual
  6990. cur = ggml_add(ctx0, cur, inpL);
  6991. cur = build_cvec(cur, il);
  6992. cb(cur, "l_out", il);
  6993. // input for next layer
  6994. inpL = cur;
  6995. }
  6996. // final rmsnorm
  6997. cur = build_norm(inpL,
  6998. model.output_norm, NULL,
  6999. LLM_NORM_RMS, -1);
  7000. cb(cur, "result_norm", -1);
  7001. res->t_embd = cur;
  7002. // lm_head
  7003. cur = build_lora_mm(model.output, cur);
  7004. cb(cur, "result_output", -1);
  7005. res->t_logits = cur;
  7006. ggml_build_forward_expand(gf, cur);
  7007. }
  7008. // TODO: split
  7009. ggml_tensor * build_mamba_layer(
  7010. ggml_cgraph * gf,
  7011. ggml_tensor * cur,
  7012. ggml_tensor * state_copy,
  7013. ggml_tensor * state_mask,
  7014. const llama_ubatch & ubatch,
  7015. int il) const {
  7016. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  7017. const auto kv_head = kv_self->head;
  7018. const int64_t d_conv = hparams.ssm_d_conv;
  7019. const int64_t d_inner = hparams.ssm_d_inner;
  7020. const int64_t d_state = hparams.ssm_d_state;
  7021. const int64_t dt_rank = hparams.ssm_dt_rank;
  7022. const int64_t n_seqs = ubatch.n_seqs;
  7023. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  7024. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  7025. // Use the same RMS norm as the final layer norm
  7026. const float norm_rms_eps = hparams.f_norm_rms_eps;
  7027. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  7028. GGML_ASSERT(n_seqs != 0);
  7029. GGML_ASSERT(ubatch.equal_seqs);
  7030. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7031. ggml_tensor * conv_states_all = kv_self->k_l[il];
  7032. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  7033. // (ab)using the KV cache to store the states
  7034. ggml_tensor * conv = build_copy_mask_state(
  7035. gf, conv_states_all, state_copy, state_mask,
  7036. hparams.n_embd_k_s(), n_seqs);
  7037. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7038. ggml_tensor * ssm = build_copy_mask_state(
  7039. gf, ssm_states_all, state_copy, state_mask,
  7040. hparams.n_embd_v_s(), n_seqs);
  7041. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7042. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7043. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7044. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7045. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7046. // split the above in two
  7047. // => {d_inner, n_seq_tokens, n_seqs}
  7048. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7049. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7050. // conv
  7051. {
  7052. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7053. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7054. // copy last (d_conv - 1) columns back into the state cache
  7055. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7056. ggml_build_forward_expand(gf,
  7057. ggml_cpy(ctx0, last_conv,
  7058. ggml_view_1d(ctx0, conv_states_all,
  7059. (d_conv - 1)*(d_inner)*(n_seqs),
  7060. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7061. // 1D convolution
  7062. // The equivalent is to make a self-overlapping view of conv_x
  7063. // over d_conv columns at each stride in the 3rd dimension,
  7064. // then element-wise multiply that with the conv1d weight,
  7065. // then sum the elements of each row,
  7066. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7067. // then permute away the ne[0] dimension,
  7068. // and then you're left with the resulting x tensor.
  7069. // For simultaneous sequences, all sequences need to have the same length.
  7070. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7071. // bias
  7072. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7073. x = ggml_silu(ctx0, x);
  7074. }
  7075. // ssm
  7076. {
  7077. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7078. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7079. // split
  7080. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7081. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7082. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7083. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7084. if (ssm_dt_b_c_rms) {
  7085. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7086. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7087. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7088. }
  7089. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7090. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7091. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7092. // Custom operator to optimize the parallel associative scan
  7093. // as described in the Annex D of the Mamba paper.
  7094. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7095. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7096. // store last states
  7097. ggml_build_forward_expand(gf,
  7098. ggml_cpy(ctx0,
  7099. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7100. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7101. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7102. // TODO: skip computing output earlier for unused tokens
  7103. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7104. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7105. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7106. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7107. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7108. }
  7109. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7110. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7111. //cb(cur, "mamba_out", il);
  7112. return cur;
  7113. }
  7114. };
  7115. struct llm_build_command_r : public llm_graph_context {
  7116. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7117. const int64_t n_embd_head = hparams.n_embd_head_v;
  7118. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7119. const float f_logit_scale = hparams.f_logit_scale;
  7120. ggml_tensor * cur;
  7121. ggml_tensor * inpL;
  7122. inpL = build_inp_embd(model.tok_embd);
  7123. // inp_pos - contains the positions
  7124. ggml_tensor * inp_pos = build_inp_pos();
  7125. auto * inp_attn = build_attn_inp_kv_unified();
  7126. for (int il = 0; il < n_layer; ++il) {
  7127. // norm
  7128. cur = build_norm(inpL,
  7129. model.layers[il].attn_norm, NULL,
  7130. LLM_NORM, il);
  7131. cb(cur, "attn_norm", il);
  7132. ggml_tensor * ffn_inp = cur;
  7133. // self-attention
  7134. {
  7135. // compute Q and K and RoPE them
  7136. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7137. cb(Qcur, "Qcur", il);
  7138. if (model.layers[il].bq) {
  7139. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7140. cb(Qcur, "Qcur", il);
  7141. }
  7142. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7143. cb(Kcur, "Kcur", il);
  7144. if (model.layers[il].bk) {
  7145. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7146. cb(Kcur, "Kcur", il);
  7147. }
  7148. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7149. cb(Vcur, "Vcur", il);
  7150. if (model.layers[il].bv) {
  7151. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7152. cb(Vcur, "Vcur", il);
  7153. }
  7154. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7155. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7156. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7157. if (model.layers[il].attn_q_norm) {
  7158. Qcur = build_norm(Qcur,
  7159. model.layers[il].attn_q_norm,
  7160. NULL,
  7161. LLM_NORM, il);
  7162. cb(Qcur, "Qcur", il);
  7163. }
  7164. Qcur = ggml_rope_ext(
  7165. ctx0, Qcur, inp_pos, nullptr,
  7166. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7167. ext_factor, attn_factor, beta_fast, beta_slow
  7168. );
  7169. if (model.layers[il].attn_k_norm) {
  7170. Kcur = build_norm(Kcur,
  7171. model.layers[il].attn_k_norm,
  7172. NULL,
  7173. LLM_NORM, il);
  7174. cb(Kcur, "Kcur", il);
  7175. }
  7176. Kcur = ggml_rope_ext(
  7177. ctx0, Kcur, inp_pos, nullptr,
  7178. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7179. ext_factor, attn_factor, beta_fast, beta_slow
  7180. );
  7181. cb(Qcur, "Qcur", il);
  7182. cb(Kcur, "Kcur", il);
  7183. cb(Vcur, "Vcur", il);
  7184. cur = build_attn(inp_attn, gf,
  7185. model.layers[il].wo, model.layers[il].bo,
  7186. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7187. }
  7188. if (il == n_layer - 1) {
  7189. // skip computing output for unused tokens
  7190. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7191. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7192. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7193. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7194. }
  7195. ggml_tensor * attn_out = cur;
  7196. // feed-forward network
  7197. {
  7198. cur = build_ffn(ffn_inp,
  7199. model.layers[il].ffn_up, NULL, NULL,
  7200. model.layers[il].ffn_gate, NULL, NULL,
  7201. model.layers[il].ffn_down, NULL, NULL,
  7202. NULL,
  7203. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7204. cb(cur, "ffn_out", il);
  7205. }
  7206. // add together residual + FFN + self-attention
  7207. cur = ggml_add(ctx0, cur, inpL);
  7208. cur = ggml_add(ctx0, cur, attn_out);
  7209. cur = build_cvec(cur, il);
  7210. cb(cur, "l_out", il);
  7211. // input for next layer
  7212. inpL = cur;
  7213. }
  7214. cur = inpL;
  7215. cur = build_norm(cur,
  7216. model.output_norm, NULL,
  7217. LLM_NORM, -1);
  7218. cb(cur, "result_norm", -1);
  7219. res->t_embd = cur;
  7220. // lm_head
  7221. cur = build_lora_mm(model.output, cur);
  7222. if (f_logit_scale) {
  7223. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7224. }
  7225. cb(cur, "result_output", -1);
  7226. res->t_logits = cur;
  7227. ggml_build_forward_expand(gf, cur);
  7228. }
  7229. };
  7230. struct llm_build_cohere2 : public llm_graph_context {
  7231. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7232. const int64_t n_embd_head = hparams.n_embd_head_v;
  7233. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7234. const float f_logit_scale = hparams.f_logit_scale;
  7235. ggml_tensor * cur;
  7236. ggml_tensor * inpL;
  7237. inpL = build_inp_embd(model.tok_embd);
  7238. // inp_pos - contains the positions
  7239. ggml_tensor * inp_pos = build_inp_pos();
  7240. auto * inp_attn = build_attn_inp_kv_unified();
  7241. for (int il = 0; il < n_layer; ++il) {
  7242. const bool is_swa = hparams.is_swa(il);
  7243. // norm
  7244. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7245. cb(cur, "attn_norm", il);
  7246. ggml_tensor * ffn_inp = cur;
  7247. // self-attention
  7248. {
  7249. // rope freq factors for 128k context
  7250. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7251. // compute Q and K and RoPE them
  7252. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7253. cb(Qcur, "Qcur", il);
  7254. if (model.layers[il].bq) {
  7255. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7256. cb(Qcur, "Qcur", il);
  7257. }
  7258. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7259. cb(Kcur, "Kcur", il);
  7260. if (model.layers[il].bk) {
  7261. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7262. cb(Kcur, "Kcur", il);
  7263. }
  7264. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7265. cb(Vcur, "Vcur", il);
  7266. if (model.layers[il].bv) {
  7267. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7268. cb(Vcur, "Vcur", il);
  7269. }
  7270. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7271. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7272. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7273. if (is_swa) {
  7274. Qcur = ggml_rope_ext(
  7275. ctx0, Qcur, inp_pos, rope_factors,
  7276. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7277. ext_factor, attn_factor, beta_fast, beta_slow
  7278. );
  7279. Kcur = ggml_rope_ext(
  7280. ctx0, Kcur, inp_pos, rope_factors,
  7281. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7282. ext_factor, attn_factor, beta_fast, beta_slow
  7283. );
  7284. }
  7285. cb(Qcur, "Qcur", il);
  7286. cb(Kcur, "Kcur", il);
  7287. cb(Vcur, "Vcur", il);
  7288. cur = build_attn(inp_attn, gf,
  7289. model.layers[il].wo, model.layers[il].bo,
  7290. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7291. }
  7292. if (il == n_layer - 1) {
  7293. // skip computing output for unused tokens
  7294. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7295. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7296. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7297. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7298. }
  7299. ggml_tensor * attn_out = cur;
  7300. // feed-forward network
  7301. {
  7302. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7303. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7304. il);
  7305. cb(cur, "ffn_out", il);
  7306. }
  7307. // add together residual + FFN + self-attention
  7308. cur = ggml_add(ctx0, cur, inpL);
  7309. cur = ggml_add(ctx0, cur, attn_out);
  7310. cur = build_cvec(cur, il);
  7311. cb(cur, "l_out", il);
  7312. // input for next layer
  7313. inpL = cur;
  7314. }
  7315. cur = inpL;
  7316. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7317. cb(cur, "result_norm", -1);
  7318. res->t_embd = cur;
  7319. // lm_head
  7320. cur = build_lora_mm(model.output, cur);
  7321. if (f_logit_scale) {
  7322. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7323. }
  7324. cb(cur, "result_output", -1);
  7325. res->t_logits = cur;
  7326. ggml_build_forward_expand(gf, cur);
  7327. }
  7328. };
  7329. // ref: https://allenai.org/olmo
  7330. // based on the original build_llama() function, changes:
  7331. // * non-parametric layer norm
  7332. // * clamp qkv
  7333. // * removed bias
  7334. // * removed MoE
  7335. struct llm_build_olmo : public llm_graph_context {
  7336. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7337. const int64_t n_embd_head = hparams.n_embd_head_v;
  7338. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7339. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7340. ggml_tensor * cur;
  7341. ggml_tensor * inpL;
  7342. inpL = build_inp_embd(model.tok_embd);
  7343. // inp_pos - contains the positions
  7344. ggml_tensor * inp_pos = build_inp_pos();
  7345. auto * inp_attn = build_attn_inp_kv_unified();
  7346. for (int il = 0; il < n_layer; ++il) {
  7347. ggml_tensor * inpSA = inpL;
  7348. // norm
  7349. cur = build_norm(inpL,
  7350. NULL, NULL,
  7351. LLM_NORM, il);
  7352. cb(cur, "attn_norm", il);
  7353. // self-attention
  7354. {
  7355. // compute Q and K and RoPE them
  7356. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7357. cb(Qcur, "Qcur", il);
  7358. if (hparams.f_clamp_kqv > 0.0f) {
  7359. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7360. cb(Qcur, "Qcur", il);
  7361. }
  7362. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7363. cb(Kcur, "Kcur", il);
  7364. if (hparams.f_clamp_kqv > 0.0f) {
  7365. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7366. cb(Kcur, "Kcur", il);
  7367. }
  7368. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7369. cb(Vcur, "Vcur", il);
  7370. if (hparams.f_clamp_kqv > 0.0f) {
  7371. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7372. cb(Vcur, "Vcur", il);
  7373. }
  7374. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7375. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7376. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7377. Qcur = ggml_rope_ext(
  7378. ctx0, Qcur, inp_pos, nullptr,
  7379. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7380. ext_factor, attn_factor, beta_fast, beta_slow
  7381. );
  7382. Kcur = ggml_rope_ext(
  7383. ctx0, Kcur, inp_pos, nullptr,
  7384. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7385. ext_factor, attn_factor, beta_fast, beta_slow
  7386. );
  7387. cb(Qcur, "Qcur", il);
  7388. cb(Kcur, "Kcur", il);
  7389. cb(Vcur, "Vcur", il);
  7390. cur = build_attn(inp_attn, gf,
  7391. model.layers[il].wo, nullptr,
  7392. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7393. }
  7394. if (il == n_layer - 1) {
  7395. // skip computing output for unused tokens
  7396. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7397. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7398. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7399. }
  7400. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7401. cb(ffn_inp, "ffn_inp", il);
  7402. // feed-forward network
  7403. cur = build_norm(ffn_inp,
  7404. NULL, NULL,
  7405. LLM_NORM, il);
  7406. cb(cur, "ffn_norm", il);
  7407. cur = build_ffn(cur,
  7408. model.layers[il].ffn_up, NULL, NULL,
  7409. model.layers[il].ffn_gate, NULL, NULL,
  7410. model.layers[il].ffn_down, NULL, NULL,
  7411. NULL,
  7412. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7413. cb(cur, "ffn_out", il);
  7414. cur = ggml_add(ctx0, cur, ffn_inp);
  7415. cb(cur, "ffn_out", il);
  7416. cur = build_cvec(cur, il);
  7417. cb(cur, "l_out", il);
  7418. // input for next layer
  7419. inpL = cur;
  7420. }
  7421. cur = inpL;
  7422. cur = build_norm(cur,
  7423. NULL, NULL,
  7424. LLM_NORM, -1);
  7425. cb(cur, "result_norm", -1);
  7426. res->t_embd = cur;
  7427. // lm_head
  7428. cur = build_lora_mm(model.output, cur);
  7429. cb(cur, "result_output", -1);
  7430. res->t_logits = cur;
  7431. ggml_build_forward_expand(gf, cur);
  7432. }
  7433. };
  7434. struct llm_build_olmo2 : public llm_graph_context {
  7435. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7436. const int64_t n_embd_head = hparams.n_embd_head_v;
  7437. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7438. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7439. ggml_tensor * cur;
  7440. ggml_tensor * inpL;
  7441. inpL = build_inp_embd(model.tok_embd);
  7442. // inp_pos - contains the positions
  7443. ggml_tensor * inp_pos = build_inp_pos();
  7444. auto * inp_attn = build_attn_inp_kv_unified();
  7445. for (int il = 0; il < n_layer; ++il) {
  7446. ggml_tensor * inpSA = inpL;
  7447. cur = inpL;
  7448. // self_attention
  7449. {
  7450. // compute Q and K and RoPE them
  7451. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7452. cb(Qcur, "Qcur", il);
  7453. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7454. cb(Kcur, "Kcur", il);
  7455. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7456. cb(Vcur, "Vcur", il);
  7457. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7458. LLM_NORM_RMS, il);
  7459. cb(Qcur, "Qcur_normed", il);
  7460. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7461. LLM_NORM_RMS, il);
  7462. cb(Kcur, "Kcur_normed", il);
  7463. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7464. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7465. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7466. Qcur = ggml_rope_ext(
  7467. ctx0, Qcur, inp_pos, nullptr,
  7468. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7469. ext_factor, attn_factor, beta_fast, beta_slow
  7470. );
  7471. Kcur = ggml_rope_ext(
  7472. ctx0, Kcur, inp_pos, nullptr,
  7473. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7474. ext_factor, attn_factor, beta_fast, beta_slow
  7475. );
  7476. cb(Qcur, "Qcur", il);
  7477. cb(Kcur, "Kcur", il);
  7478. cb(Vcur, "Vcur", il);
  7479. cur = build_attn(inp_attn, gf,
  7480. model.layers[il].wo, NULL,
  7481. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7482. }
  7483. cur = build_norm(cur,
  7484. model.layers[il].attn_post_norm, NULL,
  7485. LLM_NORM_RMS, il);
  7486. cb(cur, "attn_post_norm", il);
  7487. if (il == n_layer - 1) {
  7488. // skip computing output for unused tokens
  7489. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7490. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7491. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7492. }
  7493. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7494. cb(ffn_inp, "ffn_inp", il);
  7495. // feed-forward network
  7496. cur = build_ffn(ffn_inp,
  7497. model.layers[il].ffn_up, NULL, NULL,
  7498. model.layers[il].ffn_gate, NULL, NULL,
  7499. model.layers[il].ffn_down, NULL, NULL,
  7500. NULL,
  7501. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7502. cb(cur, "ffn_out", il);
  7503. cur = build_norm(cur,
  7504. model.layers[il].ffn_post_norm, NULL,
  7505. LLM_NORM_RMS, -1);
  7506. cb(cur, "ffn_post_norm", -1);
  7507. cur = ggml_add(ctx0, cur, ffn_inp);
  7508. cb(cur, "ffn_out", il);
  7509. cur = build_cvec(cur, il);
  7510. cb(cur, "l_out", il);
  7511. // input for next layer
  7512. inpL = cur;
  7513. }
  7514. cur = inpL;
  7515. cur = build_norm(cur,
  7516. model.output_norm, NULL,
  7517. LLM_NORM_RMS, -1);
  7518. cb(cur, "result_norm", -1);
  7519. res->t_embd = cur;
  7520. // lm_head
  7521. cur = build_lora_mm(model.output, cur);
  7522. cb(cur, "result_output", -1);
  7523. res->t_logits = cur;
  7524. ggml_build_forward_expand(gf, cur);
  7525. }
  7526. };
  7527. // based on the build_qwen2moe() function, changes:
  7528. // * removed shared experts
  7529. // * removed bias
  7530. // * added q, k norm
  7531. struct llm_build_olmoe : public llm_graph_context {
  7532. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7533. const int64_t n_embd_head = hparams.n_embd_head_v;
  7534. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7535. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7536. ggml_tensor * cur;
  7537. ggml_tensor * inpL;
  7538. inpL = build_inp_embd(model.tok_embd);
  7539. // inp_pos - contains the positions
  7540. ggml_tensor * inp_pos = build_inp_pos();
  7541. auto * inp_attn = build_attn_inp_kv_unified();
  7542. for (int il = 0; il < n_layer; ++il) {
  7543. ggml_tensor * inpSA = inpL;
  7544. // norm
  7545. cur = build_norm(inpL,
  7546. model.layers[il].attn_norm, NULL,
  7547. LLM_NORM_RMS, il);
  7548. cb(cur, "attn_norm", il);
  7549. // self_attention
  7550. {
  7551. // compute Q and K and RoPE them
  7552. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7553. cb(Qcur, "Qcur", il);
  7554. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7555. cb(Kcur, "Kcur", il);
  7556. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7557. cb(Vcur, "Vcur", il);
  7558. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7559. LLM_NORM_RMS, il);
  7560. cb(Qcur, "Qcur_normed", il);
  7561. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7562. LLM_NORM_RMS, il);
  7563. cb(Kcur, "Kcur_normed", il);
  7564. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7565. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7566. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7567. Qcur = ggml_rope_ext(
  7568. ctx0, Qcur, inp_pos, nullptr,
  7569. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7570. ext_factor, attn_factor, beta_fast, beta_slow
  7571. );
  7572. Kcur = ggml_rope_ext(
  7573. ctx0, Kcur, inp_pos, nullptr,
  7574. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7575. ext_factor, attn_factor, beta_fast, beta_slow
  7576. );
  7577. cb(Qcur, "Qcur", il);
  7578. cb(Kcur, "Kcur", il);
  7579. cb(Vcur, "Vcur", il);
  7580. cur = build_attn(inp_attn, gf,
  7581. model.layers[il].wo, NULL,
  7582. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7583. }
  7584. if (il == n_layer - 1) {
  7585. // skip computing output for unused tokens
  7586. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7587. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7588. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7589. }
  7590. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7591. cb(ffn_inp, "ffn_inp", il);
  7592. // MoE branch
  7593. cur = build_norm(ffn_inp,
  7594. model.layers[il].ffn_norm, NULL,
  7595. LLM_NORM_RMS, il);
  7596. cb(cur, "ffn_norm", il);
  7597. cur = build_moe_ffn(cur,
  7598. model.layers[il].ffn_gate_inp,
  7599. model.layers[il].ffn_up_exps,
  7600. model.layers[il].ffn_gate_exps,
  7601. model.layers[il].ffn_down_exps,
  7602. nullptr,
  7603. n_expert, n_expert_used,
  7604. LLM_FFN_SILU, false,
  7605. false, 0.0,
  7606. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7607. il);
  7608. cb(cur, "ffn_moe_out", il);
  7609. cur = ggml_add(ctx0, cur, ffn_inp);
  7610. cur = build_cvec(cur, il);
  7611. cb(cur, "l_out", il);
  7612. // input for next layer
  7613. inpL = cur;
  7614. }
  7615. cur = inpL;
  7616. cur = build_norm(cur,
  7617. model.output_norm, NULL,
  7618. LLM_NORM_RMS, -1);
  7619. cb(cur, "result_norm", -1);
  7620. res->t_embd = cur;
  7621. // lm_head
  7622. cur = build_lora_mm(model.output, cur);
  7623. cb(cur, "result_output", -1);
  7624. res->t_logits = cur;
  7625. ggml_build_forward_expand(gf, cur);
  7626. }
  7627. };
  7628. struct llm_build_openelm : public llm_graph_context {
  7629. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7630. const int64_t n_embd_head = hparams.n_embd_head_v;
  7631. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7632. ggml_tensor * cur;
  7633. ggml_tensor * inpL;
  7634. inpL = build_inp_embd(model.tok_embd);
  7635. // inp_pos - contains the positions
  7636. ggml_tensor * inp_pos = build_inp_pos();
  7637. auto * inp_attn = build_attn_inp_kv_unified();
  7638. for (int il = 0; il < n_layer; ++il) {
  7639. const int64_t n_head = hparams.n_head(il);
  7640. const int64_t n_head_kv = hparams.n_head_kv(il);
  7641. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7642. cur = inpL;
  7643. ggml_tensor * residual = cur;
  7644. // norm
  7645. cur = build_norm(inpL,
  7646. model.layers[il].attn_norm, NULL,
  7647. LLM_NORM_RMS, il);
  7648. cb(cur, "attn_norm", il);
  7649. // self-attention
  7650. {
  7651. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7652. cb(cur, "wqkv", il);
  7653. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7654. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7655. cb(Qcur, "Qcur", il);
  7656. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7657. cb(Kcur, "Kcur", il);
  7658. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7659. cb(Vcur, "Vcur", il);
  7660. Qcur = build_norm(Qcur,
  7661. model.layers[il].attn_q_norm, NULL,
  7662. LLM_NORM_RMS, il);
  7663. cb(Qcur, "Qcur", il);
  7664. Kcur = build_norm(Kcur,
  7665. model.layers[il].attn_k_norm, NULL,
  7666. LLM_NORM_RMS, il);
  7667. cb(Kcur, "Kcur", il);
  7668. Qcur = ggml_rope_ext(
  7669. ctx0, Qcur, inp_pos, NULL,
  7670. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7671. ext_factor, attn_factor, beta_fast, beta_slow
  7672. );
  7673. Kcur = ggml_rope_ext(
  7674. ctx0, Kcur, inp_pos, NULL,
  7675. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7676. ext_factor, attn_factor, beta_fast, beta_slow
  7677. );
  7678. cb(Qcur, "Qcur", il);
  7679. cb(Kcur, "Kcur", il);
  7680. cb(Qcur, "Vcur", il);
  7681. cur = build_attn(inp_attn, gf,
  7682. model.layers[il].wo, NULL,
  7683. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7684. }
  7685. if (il == n_layer - 1) {
  7686. // skip computing output for unused tokens
  7687. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7688. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7689. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7690. }
  7691. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7692. cb(ffn_inp, "ffn_inp", il);
  7693. // feed-forward network
  7694. {
  7695. cur = build_norm(ffn_inp,
  7696. model.layers[il].ffn_norm, NULL,
  7697. LLM_NORM_RMS, il);
  7698. cb(cur, "ffn_norm", il);
  7699. cur = build_ffn(cur,
  7700. model.layers[il].ffn_up, NULL, NULL,
  7701. model.layers[il].ffn_gate, NULL, NULL,
  7702. model.layers[il].ffn_down, NULL, NULL,
  7703. NULL,
  7704. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7705. cb(cur, "ffn_out", il);
  7706. }
  7707. cur = ggml_add(ctx0, cur, ffn_inp);
  7708. cur = build_cvec(cur, il);
  7709. cb(cur, "l_out", il);
  7710. inpL = cur;
  7711. }
  7712. cur = inpL;
  7713. // norm
  7714. cur = build_norm(cur,
  7715. model.output_norm, NULL,
  7716. LLM_NORM_RMS, -1);
  7717. cb(cur, "result_norm", -1);
  7718. res->t_embd = cur;
  7719. cur = build_lora_mm(model.output, cur);
  7720. cb(cur, "result_output", -1);
  7721. res->t_logits = cur;
  7722. ggml_build_forward_expand(gf, cur);
  7723. }
  7724. };
  7725. struct llm_build_gptneox : public llm_graph_context {
  7726. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7727. const int64_t n_embd_head = hparams.n_embd_head_v;
  7728. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7729. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7730. ggml_tensor * cur;
  7731. ggml_tensor * inpL;
  7732. inpL = build_inp_embd(model.tok_embd);
  7733. // inp_pos - contains the positions
  7734. ggml_tensor * inp_pos = build_inp_pos();
  7735. auto * inp_attn = build_attn_inp_kv_unified();
  7736. for (int il = 0; il < n_layer; ++il) {
  7737. cur = build_norm(inpL,
  7738. model.layers[il].attn_norm,
  7739. model.layers[il].attn_norm_b,
  7740. LLM_NORM, il);
  7741. cb(cur, "attn_norm", il);
  7742. // self-attention
  7743. {
  7744. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7745. cb(cur, "wqkv", il);
  7746. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7747. cb(cur, "bqkv", il);
  7748. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7749. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7750. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7751. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7752. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7753. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7754. Qcur = ggml_rope_ext(
  7755. ctx0, Qcur, inp_pos, nullptr,
  7756. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7757. ext_factor, attn_factor, beta_fast, beta_slow
  7758. );
  7759. Kcur = ggml_rope_ext(
  7760. ctx0, Kcur, inp_pos, nullptr,
  7761. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7762. ext_factor, attn_factor, beta_fast, beta_slow
  7763. );
  7764. cb(Qcur, "Qcur", il);
  7765. cb(Kcur, "Kcur", il);
  7766. cb(Vcur, "Vcur", il);
  7767. cur = build_attn(inp_attn, gf,
  7768. model.layers[il].wo, model.layers[il].bo,
  7769. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7770. }
  7771. if (il == n_layer - 1) {
  7772. // skip computing output for unused tokens
  7773. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7774. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7775. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7776. }
  7777. // ffn
  7778. if (hparams.use_par_res) {
  7779. // attention and ffn are computed in parallel
  7780. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7781. ggml_tensor * attn_out = cur;
  7782. cur = build_norm(inpL,
  7783. model.layers[il].ffn_norm,
  7784. model.layers[il].ffn_norm_b,
  7785. LLM_NORM, il);
  7786. cb(cur, "ffn_norm", il);
  7787. cur = build_ffn(cur,
  7788. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7789. NULL, NULL, NULL,
  7790. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7791. NULL,
  7792. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7793. cb(cur, "ffn_out", il);
  7794. cur = ggml_add(ctx0, cur, inpL);
  7795. cb(cur, "ffn_out", il);
  7796. cur = ggml_add(ctx0, cur, attn_out);
  7797. cur = build_cvec(cur, il);
  7798. cb(cur, "l_out", il);
  7799. // input for next layer
  7800. inpL = cur;
  7801. } else {
  7802. // attention and ffn are computed sequentially
  7803. // x = x + attn(ln1(x))
  7804. // x = x + ffn(ln2(x))
  7805. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7806. cb(ffn_inp, "ffn_inp", il);
  7807. cur = build_norm(ffn_inp,
  7808. model.layers[il].ffn_norm,
  7809. model.layers[il].ffn_norm_b,
  7810. LLM_NORM, il);
  7811. cb(cur, "ffn_norm", il);
  7812. cur = build_ffn(cur,
  7813. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7814. NULL, NULL, NULL,
  7815. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7816. NULL,
  7817. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7818. cb(cur, "ffn_out", il);
  7819. cur = ggml_add(ctx0, cur, ffn_inp);
  7820. cur = build_cvec(cur, il);
  7821. cb(cur, "l_out", il);
  7822. // input for next layer
  7823. inpL = cur;
  7824. }
  7825. }
  7826. cur = build_norm(inpL,
  7827. model.output_norm,
  7828. model.output_norm_b,
  7829. LLM_NORM, -1);
  7830. cb(cur, "result_norm", -1);
  7831. res->t_embd = cur;
  7832. cur = build_lora_mm(model.output, cur);
  7833. cb(cur, "result_output", -1);
  7834. res->t_logits = cur;
  7835. ggml_build_forward_expand(gf, cur);
  7836. }
  7837. };
  7838. struct llm_build_arctic : public llm_graph_context {
  7839. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7840. const int64_t n_embd_head = hparams.n_embd_head_v;
  7841. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7842. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7843. ggml_tensor * cur;
  7844. ggml_tensor * inpL;
  7845. inpL = build_inp_embd(model.tok_embd);
  7846. // inp_pos - contains the positions
  7847. ggml_tensor * inp_pos = build_inp_pos();
  7848. auto * inp_attn = build_attn_inp_kv_unified();
  7849. for (int il = 0; il < n_layer; ++il) {
  7850. ggml_tensor * inpSA = inpL;
  7851. // norm
  7852. cur = build_norm(inpL,
  7853. model.layers[il].attn_norm, NULL,
  7854. LLM_NORM_RMS, il);
  7855. cb(cur, "attn_norm", il);
  7856. // self-attention
  7857. {
  7858. // compute Q and K and RoPE them
  7859. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7860. cb(Qcur, "Qcur", il);
  7861. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7862. cb(Kcur, "Kcur", il);
  7863. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7864. cb(Vcur, "Vcur", il);
  7865. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7866. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7867. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7868. Qcur = ggml_rope_ext(
  7869. ctx0, Qcur, inp_pos, nullptr,
  7870. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7871. ext_factor, attn_factor, beta_fast, beta_slow
  7872. );
  7873. Kcur = ggml_rope_ext(
  7874. ctx0, Kcur, inp_pos, nullptr,
  7875. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7876. ext_factor, attn_factor, beta_fast, beta_slow
  7877. );
  7878. cb(Qcur, "Qcur", il);
  7879. cb(Kcur, "Kcur", il);
  7880. cb(Vcur, "Vcur", il);
  7881. cur = build_attn(inp_attn, gf,
  7882. model.layers[il].wo, NULL,
  7883. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7884. }
  7885. if (il == n_layer - 1) {
  7886. // skip computing output for unused tokens
  7887. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7888. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7889. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7890. }
  7891. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7892. cb(ffn_inp, "ffn_inp", il);
  7893. // feed-forward network
  7894. cur = build_norm(ffn_inp,
  7895. model.layers[il].ffn_norm, NULL,
  7896. LLM_NORM_RMS, il);
  7897. cb(cur, "ffn_norm", il);
  7898. cur = build_ffn(cur,
  7899. model.layers[il].ffn_up, NULL, NULL,
  7900. model.layers[il].ffn_gate, NULL, NULL,
  7901. model.layers[il].ffn_down, NULL, NULL,
  7902. NULL,
  7903. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7904. cb(cur, "ffn_out", il);
  7905. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7906. cb(ffn_out, "ffn_out", il);
  7907. // MoE
  7908. cur = build_norm(inpSA,
  7909. model.layers[il].ffn_norm_exps, NULL,
  7910. LLM_NORM_RMS, il);
  7911. cb(cur, "ffn_norm_exps", il);
  7912. cur = build_moe_ffn(cur,
  7913. model.layers[il].ffn_gate_inp,
  7914. model.layers[il].ffn_up_exps,
  7915. model.layers[il].ffn_gate_exps,
  7916. model.layers[il].ffn_down_exps,
  7917. nullptr,
  7918. n_expert, n_expert_used,
  7919. LLM_FFN_SILU, true,
  7920. false, 0.0,
  7921. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7922. il);
  7923. cb(cur, "ffn_moe_out", il);
  7924. cur = ggml_add(ctx0, cur, ffn_out);
  7925. cb(cur, "ffn_out", il);
  7926. cur = build_cvec(cur, il);
  7927. cb(cur, "l_out", il);
  7928. // input for next layer
  7929. inpL = cur;
  7930. }
  7931. cur = inpL;
  7932. cur = build_norm(cur,
  7933. model.output_norm, NULL,
  7934. LLM_NORM_RMS, -1);
  7935. cb(cur, "result_norm", -1);
  7936. res->t_embd = cur;
  7937. // lm_head
  7938. cur = build_lora_mm(model.output, cur);
  7939. cb(cur, "result_output", -1);
  7940. res->t_logits = cur;
  7941. ggml_build_forward_expand(gf, cur);
  7942. }
  7943. };
  7944. struct llm_build_deepseek : public llm_graph_context {
  7945. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7946. const int64_t n_embd_head = hparams.n_embd_head_v;
  7947. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7948. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7949. ggml_tensor * cur;
  7950. ggml_tensor * inpL;
  7951. inpL = build_inp_embd(model.tok_embd);
  7952. // inp_pos - contains the positions
  7953. ggml_tensor * inp_pos = build_inp_pos();
  7954. auto * inp_attn = build_attn_inp_kv_unified();
  7955. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7956. for (int il = 0; il < n_layer; ++il) {
  7957. ggml_tensor * inpSA = inpL;
  7958. // norm
  7959. cur = build_norm(inpL,
  7960. model.layers[il].attn_norm, NULL,
  7961. LLM_NORM_RMS, il);
  7962. cb(cur, "attn_norm", il);
  7963. // self-attention
  7964. {
  7965. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7966. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7967. // compute Q and K and RoPE them
  7968. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7969. cb(Qcur, "Qcur", il);
  7970. if (model.layers[il].bq) {
  7971. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7972. cb(Qcur, "Qcur", il);
  7973. }
  7974. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7975. cb(Kcur, "Kcur", il);
  7976. if (model.layers[il].bk) {
  7977. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7978. cb(Kcur, "Kcur", il);
  7979. }
  7980. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7981. cb(Vcur, "Vcur", il);
  7982. if (model.layers[il].bv) {
  7983. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7984. cb(Vcur, "Vcur", il);
  7985. }
  7986. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7987. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7988. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7989. Qcur = ggml_rope_ext(
  7990. ctx0, Qcur, inp_pos, rope_factors,
  7991. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7992. ext_factor, attn_factor, beta_fast, beta_slow
  7993. );
  7994. Kcur = ggml_rope_ext(
  7995. ctx0, Kcur, inp_pos, rope_factors,
  7996. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7997. ext_factor, attn_factor, beta_fast, beta_slow
  7998. );
  7999. cb(Qcur, "Qcur", il);
  8000. cb(Kcur, "Kcur", il);
  8001. cb(Vcur, "Vcur", il);
  8002. cur = build_attn(inp_attn, gf,
  8003. model.layers[il].wo, model.layers[il].bo,
  8004. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8005. }
  8006. if (il == n_layer - 1) {
  8007. // skip computing output for unused tokens
  8008. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8009. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8010. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8011. }
  8012. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8013. cb(ffn_inp, "ffn_inp", il);
  8014. cur = build_norm(ffn_inp,
  8015. model.layers[il].ffn_norm, NULL,
  8016. LLM_NORM_RMS, il);
  8017. cb(cur, "ffn_norm", il);
  8018. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8019. cur = build_ffn(cur,
  8020. model.layers[il].ffn_up, NULL, NULL,
  8021. model.layers[il].ffn_gate, NULL, NULL,
  8022. model.layers[il].ffn_down, NULL, NULL,
  8023. NULL,
  8024. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8025. cb(cur, "ffn_out", il);
  8026. } else {
  8027. // MoE branch
  8028. ggml_tensor * moe_out =
  8029. build_moe_ffn(cur,
  8030. model.layers[il].ffn_gate_inp,
  8031. model.layers[il].ffn_up_exps,
  8032. model.layers[il].ffn_gate_exps,
  8033. model.layers[il].ffn_down_exps,
  8034. nullptr,
  8035. n_expert, n_expert_used,
  8036. LLM_FFN_SILU, false,
  8037. false, hparams.expert_weights_scale,
  8038. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8039. il);
  8040. cb(moe_out, "ffn_moe_out", il);
  8041. // FFN shared expert
  8042. {
  8043. ggml_tensor * ffn_shexp = build_ffn(cur,
  8044. model.layers[il].ffn_up_shexp, NULL, NULL,
  8045. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8046. model.layers[il].ffn_down_shexp, NULL, NULL,
  8047. NULL,
  8048. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8049. cb(ffn_shexp, "ffn_shexp", il);
  8050. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8051. cb(cur, "ffn_out", il);
  8052. }
  8053. }
  8054. cur = ggml_add(ctx0, cur, ffn_inp);
  8055. cur = build_cvec(cur, il);
  8056. cb(cur, "l_out", il);
  8057. // input for next layer
  8058. inpL = cur;
  8059. }
  8060. cur = inpL;
  8061. cur = build_norm(cur,
  8062. model.output_norm, NULL,
  8063. LLM_NORM_RMS, -1);
  8064. cb(cur, "result_norm", -1);
  8065. res->t_embd = cur;
  8066. // lm_head
  8067. cur = build_lora_mm(model.output, cur);
  8068. cb(cur, "result_output", -1);
  8069. res->t_logits = cur;
  8070. ggml_build_forward_expand(gf, cur);
  8071. }
  8072. };
  8073. struct llm_build_deepseek2 : public llm_graph_context {
  8074. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8075. bool is_lite = (hparams.n_layer == 27);
  8076. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8077. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8078. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8079. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8080. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8081. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8082. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8083. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8084. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8085. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8086. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8087. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8088. ggml_tensor * cur;
  8089. ggml_tensor * inpL;
  8090. // {n_embd, n_tokens}
  8091. inpL = build_inp_embd(model.tok_embd);
  8092. // inp_pos - contains the positions
  8093. ggml_tensor * inp_pos = build_inp_pos();
  8094. auto * inp_attn = build_attn_inp_kv_unified();
  8095. for (int il = 0; il < n_layer; ++il) {
  8096. ggml_tensor * inpSA = inpL;
  8097. // norm
  8098. cur = build_norm(inpL,
  8099. model.layers[il].attn_norm, NULL,
  8100. LLM_NORM_RMS, il);
  8101. cb(cur, "attn_norm", il);
  8102. // self_attention
  8103. {
  8104. ggml_tensor * q = NULL;
  8105. if (!is_lite) {
  8106. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8107. cb(q, "q", il);
  8108. q = build_norm(q,
  8109. model.layers[il].attn_q_a_norm, nullptr,
  8110. LLM_NORM_RMS, il);
  8111. cb(q, "q", il);
  8112. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8113. cb(q, "q", il);
  8114. } else {
  8115. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8116. cb(q, "q", il);
  8117. }
  8118. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8119. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8120. n_embd_head_qk_nope, n_head, n_tokens,
  8121. ggml_row_size(q->type, n_embd_head_k),
  8122. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8123. 0);
  8124. cb(q_nope, "q_nope", il);
  8125. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8126. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8127. n_embd_head_qk_rope, n_head, n_tokens,
  8128. ggml_row_size(q->type, n_embd_head_k),
  8129. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8130. ggml_row_size(q->type, n_embd_head_qk_nope));
  8131. cb(q_pe, "q_pe", il);
  8132. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8133. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8134. // split into {kv_lora_rank, n_tokens}
  8135. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8136. kv_lora_rank, n_tokens,
  8137. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8138. 0);
  8139. cb(kv_cmpr, "kv_cmpr", il);
  8140. // and {n_embd_head_qk_rope, 1, n_tokens}
  8141. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8142. n_embd_head_qk_rope, 1, n_tokens,
  8143. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8144. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8145. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8146. cb(k_pe, "k_pe", il);
  8147. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8148. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8149. ext_factor, attn_factor, beta_fast, beta_slow
  8150. );
  8151. cb(q_pe, "q_pe", il);
  8152. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8153. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8154. ext_factor, attn_factor, beta_fast, beta_slow
  8155. );
  8156. cb(k_pe, "k_pe", il);
  8157. kv_cmpr = build_norm(kv_cmpr,
  8158. model.layers[il].attn_kv_a_norm, nullptr,
  8159. LLM_NORM_RMS, il);
  8160. cb(kv_cmpr, "kv_cmpr", il);
  8161. if (is_mla) {
  8162. // {n_embd_head_qk_nope, n_tokens, n_head}
  8163. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8164. cb(q_nope, "q_nope_perm", il);
  8165. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8166. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8167. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8168. // {kv_lora_rank, n_head, n_tokens}
  8169. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8170. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8171. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8172. // note: rope must go first for in-place context shifting in build_rope_shift()
  8173. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8174. cb(Qcur, "Qcur", il);
  8175. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8176. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8177. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8178. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8179. cb(Kcur, "Kcur", il);
  8180. // {kv_lora_rank, 1, n_tokens}
  8181. ggml_tensor * Vcur = kv_cmpr;
  8182. cb(Vcur, "Vcur", il);
  8183. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8184. cur = build_attn(inp_attn, gf,
  8185. model.layers[il].wo, NULL,
  8186. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8187. } else {
  8188. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8189. cb(kv, "kv", il);
  8190. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8191. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8192. n_embd_head_qk_nope, n_head, n_tokens,
  8193. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8194. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8195. 0);
  8196. cb(k_nope, "k_nope_view", il);
  8197. // and {n_embd_head_v, n_head, n_tokens}
  8198. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8199. n_embd_head_v, n_head, n_tokens,
  8200. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8201. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8202. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8203. cb(Vcur, "Vcur_view", il);
  8204. Vcur = ggml_cont(ctx0, Vcur);
  8205. cb(Vcur, "Vcur_cont", il);
  8206. // note: rope must go first for in-place context shifting in build_rope_shift()
  8207. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8208. cb(Qcur, "Qcur", il);
  8209. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8210. cb(Kcur, "Kcur", il);
  8211. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8212. cur = build_attn(inp_attn, gf,
  8213. model.layers[il].wo, NULL,
  8214. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8215. }
  8216. }
  8217. if (il == n_layer - 1) {
  8218. // skip computing output for unused tokens
  8219. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8220. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8221. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8222. }
  8223. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8224. cb(ffn_inp, "ffn_inp", il);
  8225. cur = build_norm(ffn_inp,
  8226. model.layers[il].ffn_norm, NULL,
  8227. LLM_NORM_RMS, il);
  8228. cb(cur, "ffn_norm", il);
  8229. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8230. cur = build_ffn(cur,
  8231. model.layers[il].ffn_up, NULL, NULL,
  8232. model.layers[il].ffn_gate, NULL, NULL,
  8233. model.layers[il].ffn_down, NULL, NULL,
  8234. NULL,
  8235. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8236. cb(cur, "ffn_out", il);
  8237. } else {
  8238. // MoE branch
  8239. ggml_tensor * moe_out =
  8240. build_moe_ffn(cur,
  8241. model.layers[il].ffn_gate_inp,
  8242. model.layers[il].ffn_up_exps,
  8243. model.layers[il].ffn_gate_exps,
  8244. model.layers[il].ffn_down_exps,
  8245. model.layers[il].ffn_exp_probs_b,
  8246. n_expert, n_expert_used,
  8247. LLM_FFN_SILU, hparams.expert_weights_norm,
  8248. true, hparams.expert_weights_scale,
  8249. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8250. il);
  8251. cb(moe_out, "ffn_moe_out", il);
  8252. // FFN shared expert
  8253. {
  8254. ggml_tensor * ffn_shexp = build_ffn(cur,
  8255. model.layers[il].ffn_up_shexp, NULL, NULL,
  8256. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8257. model.layers[il].ffn_down_shexp, NULL, NULL,
  8258. NULL,
  8259. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8260. cb(ffn_shexp, "ffn_shexp", il);
  8261. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8262. cb(cur, "ffn_out", il);
  8263. }
  8264. }
  8265. cur = ggml_add(ctx0, cur, ffn_inp);
  8266. cur = build_cvec(cur, il);
  8267. cb(cur, "l_out", il);
  8268. // input for next layer
  8269. inpL = cur;
  8270. }
  8271. cur = inpL;
  8272. cur = build_norm(cur,
  8273. model.output_norm, NULL,
  8274. LLM_NORM_RMS, -1);
  8275. cb(cur, "result_norm", -1);
  8276. res->t_embd = cur;
  8277. // lm_head
  8278. cur = ggml_mul_mat(ctx0, model.output, cur);
  8279. cb(cur, "result_output", -1);
  8280. res->t_logits = cur;
  8281. ggml_build_forward_expand(gf, cur);
  8282. }
  8283. };
  8284. struct llm_build_bitnet : public llm_graph_context {
  8285. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8286. const int64_t n_embd_head = hparams.n_embd_head_v;
  8287. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8288. ggml_tensor * cur;
  8289. ggml_tensor * inpL;
  8290. inpL = build_inp_embd(model.tok_embd);
  8291. // inp_pos - contains the positions
  8292. ggml_tensor * inp_pos = build_inp_pos();
  8293. auto * inp_attn = build_attn_inp_kv_unified();
  8294. for (int il = 0; il < n_layer; ++il) {
  8295. ggml_tensor * inpSA = inpL;
  8296. cur = build_norm(inpL,
  8297. model.layers[il].attn_norm, NULL,
  8298. LLM_NORM_RMS, il);
  8299. cb(cur, "attn_norm", il);
  8300. // self-attention
  8301. {
  8302. // compute Q and K and RoPE them
  8303. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8304. if (model.layers[il].wq_scale) {
  8305. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8306. }
  8307. cb(Qcur, "Qcur", il);
  8308. if (model.layers[il].bq) {
  8309. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8310. cb(Qcur, "Qcur", il);
  8311. }
  8312. // B1.K
  8313. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8314. if (model.layers[il].wk_scale) {
  8315. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8316. }
  8317. cb(Kcur, "Kcur", il);
  8318. if (model.layers[il].bk) {
  8319. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8320. cb(Kcur, "Kcur", il);
  8321. }
  8322. // B1.V
  8323. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8324. if (model.layers[il].wv_scale) {
  8325. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8326. }
  8327. cb(Vcur, "Vcur", il);
  8328. if (model.layers[il].bv) {
  8329. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8330. cb(Vcur, "Vcur", il);
  8331. }
  8332. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8333. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8334. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8335. Qcur = ggml_rope_ext(
  8336. ctx0, Qcur, inp_pos, nullptr,
  8337. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8338. ext_factor, attn_factor, beta_fast, beta_slow
  8339. );
  8340. Kcur = ggml_rope_ext(
  8341. ctx0, Kcur, inp_pos, nullptr,
  8342. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8343. ext_factor, attn_factor, beta_fast, beta_slow
  8344. );
  8345. cb(Qcur, "Qcur", il);
  8346. cb(Kcur, "Kcur", il);
  8347. cb(Vcur, "Vcur", il);
  8348. cur = build_attn(inp_attn, gf,
  8349. NULL, NULL,
  8350. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8351. cur = build_norm(cur,
  8352. model.layers[il].attn_sub_norm, NULL,
  8353. LLM_NORM_RMS, il);
  8354. cb(cur, "attn_sub_norm", il);
  8355. cur = build_lora_mm(model.layers[il].wo, cur);
  8356. if (model.layers[il].wo_scale) {
  8357. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8358. }
  8359. if (model.layers[il].bo) {
  8360. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8361. }
  8362. cb(cur, "attn_o_out", il);
  8363. }
  8364. if (il == n_layer - 1) {
  8365. // skip computing output for unused tokens
  8366. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8367. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8368. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8369. }
  8370. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8371. cb(ffn_inp, "ffn_inp", il);
  8372. // feed-forward forward
  8373. cur = build_norm(ffn_inp,
  8374. model.layers[il].ffn_norm, NULL,
  8375. LLM_NORM_RMS, il);
  8376. cb(cur, "ffn_norm", il);
  8377. cur = build_ffn(cur,
  8378. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8379. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8380. NULL, NULL, NULL,
  8381. NULL,
  8382. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8383. cb(cur, "ffn_sub_out", il);
  8384. cur = build_norm(cur,
  8385. model.layers[il].ffn_sub_norm, NULL,
  8386. LLM_NORM_RMS, il);
  8387. cb(cur, "ffn_sub_norm", il);
  8388. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8389. if (model.layers[il].ffn_down_scale) {
  8390. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8391. }
  8392. cb(cur, "ffn_down", il);
  8393. cur = ggml_add(ctx0, cur, ffn_inp);
  8394. cb(cur, "l_out", il);
  8395. // input for next layer
  8396. inpL = cur;
  8397. }
  8398. cur = inpL;
  8399. cur = build_norm(cur,
  8400. model.output_norm, NULL,
  8401. LLM_NORM_RMS, -1);
  8402. cb(cur, "result_norm", -1);
  8403. res->t_embd = cur;
  8404. // lm_head
  8405. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8406. cur = build_lora_mm(model.tok_embd, cur);
  8407. cb(cur, "result_output", -1);
  8408. res->t_logits = cur;
  8409. ggml_build_forward_expand(gf, cur);
  8410. }
  8411. };
  8412. struct llm_build_t5_enc : public llm_graph_context {
  8413. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8414. const int64_t n_embd_head = hparams.n_embd_head_v;
  8415. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8416. ggml_tensor * cur;
  8417. ggml_tensor * inpL;
  8418. inpL = build_inp_embd(model.tok_embd);
  8419. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8420. auto * inp_attn = build_attn_inp_no_cache();
  8421. for (int il = 0; il < n_layer; ++il) {
  8422. ggml_tensor * inpSA = inpL;
  8423. // norm
  8424. cur = build_norm(inpL,
  8425. model.layers[il].attn_norm_enc, NULL,
  8426. LLM_NORM_RMS, il);
  8427. cb(cur, "attn_norm", il);
  8428. // self-attention
  8429. {
  8430. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8431. cb(Qcur, "Qcur", il);
  8432. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8433. cb(Kcur, "Kcur", il);
  8434. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8435. cb(Vcur, "Vcur", il);
  8436. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8437. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8438. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8439. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8440. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8441. cur = build_attn(inp_attn, gf,
  8442. model.layers[il].wo_enc, nullptr,
  8443. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8444. cb(cur, "kqv_out", il);
  8445. }
  8446. if (il == n_layer - 1) {
  8447. // skip computing output for unused tokens
  8448. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8449. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8450. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8451. }
  8452. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8453. cb(ffn_inp, "ffn_inp", il);
  8454. // feed-forward network
  8455. {
  8456. cur = build_norm(ffn_inp,
  8457. model.layers[il].ffn_norm_enc, NULL,
  8458. LLM_NORM_RMS, il);
  8459. cb(cur, "ffn_norm", il);
  8460. // T5 uses relu, flan-T5 uses gelu-gated
  8461. cur = build_ffn(cur,
  8462. model.layers[il].ffn_up_enc, NULL, NULL,
  8463. model.layers[il].ffn_gate_enc, NULL, NULL,
  8464. model.layers[il].ffn_down_enc, NULL, NULL,
  8465. NULL,
  8466. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8467. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8468. il);
  8469. cb(cur, "ffn_out", il);
  8470. }
  8471. cur = ggml_add(ctx0, cur, ffn_inp);
  8472. cb(cur, "ffn_out", il);
  8473. cur = build_cvec(cur, il);
  8474. cb(cur, "l_out", il);
  8475. // input for next layer
  8476. inpL = cur;
  8477. }
  8478. cur = inpL;
  8479. cb(cur, "result_embd", -1);
  8480. cur = build_norm(cur,
  8481. model.output_norm_enc, NULL,
  8482. LLM_NORM_RMS, -1);
  8483. cb(cur, "result_norm", -1);
  8484. res->t_embd = cur;
  8485. ggml_build_forward_expand(gf, cur);
  8486. }
  8487. };
  8488. struct llm_build_t5_dec : public llm_graph_context {
  8489. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8490. const int64_t n_embd_head = hparams.n_embd_head_v;
  8491. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8492. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8493. ggml_tensor * cur;
  8494. ggml_tensor * inpL;
  8495. inpL = build_inp_embd(model.tok_embd);
  8496. ggml_tensor * embd_enc = build_inp_cross_embd();
  8497. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8498. const int64_t n_outputs_enc = embd_enc->ne[1];
  8499. auto * inp_attn_self = build_attn_inp_kv_unified();
  8500. auto * inp_attn_cross = build_attn_inp_cross();
  8501. for (int il = 0; il < n_layer; ++il) {
  8502. ggml_tensor * inpSA = inpL;
  8503. // norm
  8504. cur = build_norm(inpL,
  8505. model.layers[il].attn_norm, NULL,
  8506. LLM_NORM_RMS, il);
  8507. cb(cur, "attn_norm", il);
  8508. // self-attention
  8509. {
  8510. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8511. cb(Qcur, "Qcur", il);
  8512. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8513. cb(Kcur, "Kcur", il);
  8514. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8515. cb(Vcur, "Vcur", il);
  8516. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8517. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8518. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8519. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8520. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8521. cur = build_attn(inp_attn_self, gf,
  8522. model.layers[il].wo, model.layers[il].bo,
  8523. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8524. cb(cur, "kqv_out", il);
  8525. }
  8526. cur = ggml_add(ctx0, cur, inpSA);
  8527. cb(cur, "cross_inp", il);
  8528. ggml_tensor * inpCA = cur;
  8529. // norm
  8530. cur = build_norm(cur,
  8531. model.layers[il].attn_norm_cross, NULL,
  8532. LLM_NORM_RMS, il);
  8533. cb(cur, "attn_norm_cross", il);
  8534. // cross-attention
  8535. {
  8536. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8537. cb(Qcur, "Qcur", il);
  8538. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8539. cb(Kcur, "Kcur", il);
  8540. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8541. cb(Vcur, "Vcur", il);
  8542. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8543. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8544. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8545. cur = build_attn(inp_attn_cross, gf,
  8546. model.layers[il].wo_cross, nullptr,
  8547. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8548. cb(cur, "kqv_out", il);
  8549. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8550. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8551. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8552. //cb(kq, "kq", il);
  8553. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8554. //cb(kq, "kq_soft_max_ext", il);
  8555. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8556. //cb(v, "v", il);
  8557. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8558. //cb(kqv, "kqv", il);
  8559. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8560. //cb(kqv_merged, "kqv_merged", il);
  8561. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8562. //cb(cur, "kqv_merged_cont", il);
  8563. //ggml_build_forward_expand(gf, cur);
  8564. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8565. //cb(cur, "kqv_out", il);
  8566. }
  8567. if (il == n_layer - 1) {
  8568. // skip computing output for unused tokens
  8569. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8570. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8571. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8572. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8573. }
  8574. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8575. cb(ffn_inp, "ffn_inp", il);
  8576. // feed-forward network
  8577. {
  8578. cur = build_norm(ffn_inp,
  8579. model.layers[il].ffn_norm, NULL,
  8580. LLM_NORM_RMS, il);
  8581. cb(cur, "ffn_norm", il);
  8582. // T5 uses relu, flan-T5 uses gelu-gated
  8583. cur = build_ffn(cur,
  8584. model.layers[il].ffn_up, NULL, NULL,
  8585. model.layers[il].ffn_gate, NULL, NULL,
  8586. model.layers[il].ffn_down, NULL, NULL,
  8587. NULL,
  8588. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8589. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8590. il);
  8591. cb(cur, "ffn_out", il);
  8592. }
  8593. cur = ggml_add(ctx0, cur, ffn_inp);
  8594. cb(cur, "ffn_out", il);
  8595. cur = build_cvec(cur, il);
  8596. cb(cur, "l_out", il);
  8597. // input for next layer
  8598. inpL = cur;
  8599. }
  8600. cur = inpL;
  8601. cb(cur, "result_embd", -1);
  8602. cur = build_norm(cur,
  8603. model.output_norm, NULL,
  8604. LLM_NORM_RMS, -1);
  8605. cb(cur, "result_norm", -1);
  8606. res->t_embd = cur;
  8607. // lm_head
  8608. cur = build_lora_mm(model.output, cur);
  8609. cb(cur, "result_output", -1);
  8610. res->t_logits = cur;
  8611. ggml_build_forward_expand(gf, cur);
  8612. }
  8613. };
  8614. struct llm_build_jais : public llm_graph_context {
  8615. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8616. const int64_t n_embd_head = hparams.n_embd_head_v;
  8617. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8618. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8619. ggml_tensor * cur;
  8620. ggml_tensor * inpL;
  8621. inpL = build_inp_embd(model.tok_embd);
  8622. auto * inp_attn = build_attn_inp_kv_unified();
  8623. for (int il = 0; il < n_layer; ++il) {
  8624. cur = build_norm(inpL,
  8625. model.layers[il].attn_norm,
  8626. model.layers[il].attn_norm_b,
  8627. LLM_NORM, il);
  8628. cb(cur, "attn_norm", il);
  8629. // self-attention
  8630. {
  8631. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8632. cb(cur, "wqkv", il);
  8633. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8634. cb(cur, "bqkv", il);
  8635. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8636. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8637. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8638. cb(Qcur, "Qcur", il);
  8639. cb(Kcur, "Kcur", il);
  8640. cb(Vcur, "Vcur", il);
  8641. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8642. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8643. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8644. cur = build_attn(inp_attn, gf,
  8645. model.layers[il].wo, model.layers[il].bo,
  8646. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8647. }
  8648. if (il == n_layer - 1) {
  8649. // skip computing output for unused tokens
  8650. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8651. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8652. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8653. }
  8654. // add the input
  8655. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8656. cb(ffn_inp, "ffn_inp", il);
  8657. // FF
  8658. {
  8659. cur = build_norm(ffn_inp,
  8660. model.layers[il].ffn_norm,
  8661. model.layers[il].ffn_norm_b,
  8662. LLM_NORM, il);
  8663. cb(cur, "ffn_norm", il);
  8664. cur = build_ffn(cur,
  8665. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8666. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8667. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8668. NULL,
  8669. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8670. cb(cur, "ffn_out", il);
  8671. }
  8672. inpL = ggml_add(ctx0, cur, ffn_inp);
  8673. cb(inpL, "l_out", il);
  8674. }
  8675. cur = build_norm(inpL,
  8676. model.output_norm,
  8677. model.output_norm_b,
  8678. LLM_NORM, -1);
  8679. cb(cur, "result_norm", -1);
  8680. res->t_embd = cur;
  8681. cur = build_lora_mm(model.output, cur);
  8682. cb(cur, "result_output", -1);
  8683. res->t_logits = cur;
  8684. ggml_build_forward_expand(gf, cur);
  8685. }
  8686. };
  8687. struct llm_build_chatglm : public llm_graph_context {
  8688. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8689. const int64_t n_embd_head = hparams.n_embd_head_v;
  8690. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8691. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8692. ggml_tensor * cur;
  8693. ggml_tensor * inpL;
  8694. inpL = build_inp_embd(model.tok_embd);
  8695. // inp_pos - contains the positions
  8696. ggml_tensor * inp_pos = build_inp_pos();
  8697. auto * inp_attn = build_attn_inp_kv_unified();
  8698. for (int il = 0; il < n_layer; ++il) {
  8699. ggml_tensor * inpSA = inpL;
  8700. cur = build_norm(inpL,
  8701. model.layers[il].attn_norm,
  8702. NULL,
  8703. LLM_NORM_RMS, il);
  8704. cb(cur, "attn_norm", il);
  8705. // self-attention
  8706. {
  8707. ggml_tensor * Qcur = nullptr;
  8708. ggml_tensor * Kcur = nullptr;
  8709. ggml_tensor * Vcur = nullptr;
  8710. if (model.layers[il].wqkv == nullptr) {
  8711. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8712. if (model.layers[il].bq) {
  8713. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8714. }
  8715. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8716. if (model.layers[il].bk) {
  8717. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8718. }
  8719. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8720. if (model.layers[il].bv) {
  8721. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8722. }
  8723. } else {
  8724. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8725. cb(cur, "wqkv", il);
  8726. if (model.layers[il].bqkv) {
  8727. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8728. cb(cur, "bqkv", il);
  8729. }
  8730. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8731. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8732. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8733. }
  8734. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8735. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8736. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8737. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8738. Qcur = ggml_rope_ext(
  8739. ctx0, Qcur, inp_pos, nullptr,
  8740. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8741. ext_factor, attn_factor, beta_fast, beta_slow
  8742. );
  8743. Kcur = ggml_rope_ext(
  8744. ctx0, Kcur, inp_pos, nullptr,
  8745. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8746. ext_factor, attn_factor, beta_fast, beta_slow
  8747. );
  8748. cb(Qcur, "Qcur", il);
  8749. cb(Kcur, "Kcur", il);
  8750. cb(Vcur, "Vcur", il);
  8751. cur = build_attn(inp_attn, gf,
  8752. model.layers[il].wo, NULL,
  8753. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8754. }
  8755. if (il == n_layer - 1) {
  8756. // skip computing output for unused tokens
  8757. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8758. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8759. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8760. }
  8761. // Add the input
  8762. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8763. cb(ffn_inp, "ffn_inp", il);
  8764. // FF
  8765. {
  8766. cur = build_norm(ffn_inp,
  8767. model.layers[il].ffn_norm,
  8768. NULL,
  8769. LLM_NORM_RMS, il);
  8770. cb(cur, "ffn_norm", il);
  8771. cur = build_ffn(cur,
  8772. model.layers[il].ffn_up, NULL, NULL,
  8773. NULL, NULL, NULL,
  8774. model.layers[il].ffn_down, NULL, NULL,
  8775. NULL,
  8776. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8777. cb(cur, "ffn_out", il);
  8778. }
  8779. inpL = ggml_add(ctx0, cur, ffn_inp);
  8780. cb(inpL, "l_out", il);
  8781. }
  8782. cur = build_norm(inpL,
  8783. model.output_norm,
  8784. NULL,
  8785. LLM_NORM_RMS, -1);
  8786. cb(cur, "result_norm", -1);
  8787. res->t_embd = cur;
  8788. cur = build_lora_mm(model.output, cur);
  8789. cb(cur, "result_output", -1);
  8790. res->t_logits = cur;
  8791. ggml_build_forward_expand(gf, cur);
  8792. }
  8793. };
  8794. struct llm_build_glm4 : public llm_graph_context {
  8795. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8796. const int64_t n_embd_head = hparams.n_embd_head_v;
  8797. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8798. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8799. ggml_tensor * cur;
  8800. ggml_tensor * inpL;
  8801. inpL = build_inp_embd(model.tok_embd);
  8802. // inp_pos - contains the positions
  8803. ggml_tensor * inp_pos = build_inp_pos();
  8804. auto * inp_attn = build_attn_inp_kv_unified();
  8805. for (int il = 0; il < n_layer; ++il) {
  8806. ggml_tensor * inpSA = inpL;
  8807. // Pre-attention norm
  8808. cur = build_norm(inpL,
  8809. model.layers[il].attn_norm,
  8810. NULL,
  8811. LLM_NORM_RMS, il);
  8812. cb(cur, "attn_norm", il);
  8813. // self-attention
  8814. {
  8815. ggml_tensor * Qcur = nullptr;
  8816. ggml_tensor * Kcur = nullptr;
  8817. ggml_tensor * Vcur = nullptr;
  8818. if (model.layers[il].wqkv == nullptr) {
  8819. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8820. if (model.layers[il].bq) {
  8821. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8822. }
  8823. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8824. if (model.layers[il].bk) {
  8825. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8826. }
  8827. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8828. if (model.layers[il].bv) {
  8829. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8830. }
  8831. } else {
  8832. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8833. cb(cur, "wqkv", il);
  8834. if (model.layers[il].bqkv) {
  8835. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8836. cb(cur, "bqkv", il);
  8837. }
  8838. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8839. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8840. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8841. }
  8842. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8843. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8844. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8845. Qcur = ggml_rope_ext(
  8846. ctx0, Qcur, inp_pos, nullptr,
  8847. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8848. ext_factor, attn_factor, beta_fast, beta_slow
  8849. );
  8850. Kcur = ggml_rope_ext(
  8851. ctx0, Kcur, inp_pos, nullptr,
  8852. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8853. ext_factor, attn_factor, beta_fast, beta_slow
  8854. );
  8855. cb(Qcur, "Qcur", il);
  8856. cb(Kcur, "Kcur", il);
  8857. cb(Vcur, "Vcur", il);
  8858. cur = build_attn(inp_attn, gf,
  8859. model.layers[il].wo, NULL,
  8860. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8861. }
  8862. if (il == n_layer - 1) {
  8863. // skip computing output for unused tokens
  8864. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8865. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8866. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8867. }
  8868. // Post-attention norm (new!)
  8869. cur = build_norm(cur,
  8870. model.layers[il].attn_post_norm,
  8871. NULL,
  8872. LLM_NORM_RMS, il);
  8873. cb(cur, "post_attn_norm", il);
  8874. // Add the input (residual connection after post-attention norm)
  8875. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8876. cb(ffn_inp, "ffn_inp", il);
  8877. // FF
  8878. {
  8879. // Pre-MLP norm
  8880. cur = build_norm(ffn_inp,
  8881. model.layers[il].ffn_norm,
  8882. NULL,
  8883. LLM_NORM_RMS, il);
  8884. cb(cur, "ffn_norm", il);
  8885. // MLP
  8886. cur = build_ffn(cur,
  8887. model.layers[il].ffn_up, NULL, NULL,
  8888. NULL, NULL, NULL,
  8889. model.layers[il].ffn_down, NULL, NULL,
  8890. NULL,
  8891. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8892. cb(cur, "ffn_out", il);
  8893. // Post-MLP norm
  8894. cur = build_norm(cur,
  8895. model.layers[il].ffn_post_norm,
  8896. NULL,
  8897. LLM_NORM_RMS, il);
  8898. cb(cur, "post_mlp_norm", il);
  8899. }
  8900. // Add residual connection after post-MLP norm
  8901. inpL = ggml_add(ctx0, cur, ffn_inp);
  8902. cb(inpL, "l_out", il);
  8903. }
  8904. // Final norm
  8905. cur = build_norm(inpL,
  8906. model.output_norm,
  8907. NULL,
  8908. LLM_NORM_RMS, -1);
  8909. cb(cur, "result_norm", -1);
  8910. res->t_embd = cur;
  8911. // Output projection
  8912. cur = build_lora_mm(model.output, cur);
  8913. cb(cur, "result_output", -1);
  8914. res->t_logits = cur;
  8915. ggml_build_forward_expand(gf, cur);
  8916. }
  8917. };
  8918. struct llm_build_nemotron : public llm_graph_context {
  8919. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8920. const int64_t n_embd_head = hparams.n_embd_head_v;
  8921. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8922. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8923. ggml_tensor * cur;
  8924. ggml_tensor * inpL;
  8925. inpL = build_inp_embd(model.tok_embd);
  8926. // inp_pos - contains the positions
  8927. ggml_tensor * inp_pos = build_inp_pos();
  8928. auto * inp_attn = build_attn_inp_kv_unified();
  8929. for (int il = 0; il < n_layer; ++il) {
  8930. ggml_tensor * inpSA = inpL;
  8931. // norm
  8932. cur = build_norm(inpL,
  8933. model.layers[il].attn_norm,
  8934. model.layers[il].attn_norm_b,
  8935. LLM_NORM, il);
  8936. cb(cur, "attn_norm", il);
  8937. // self-attention
  8938. {
  8939. // compute Q and K and RoPE them
  8940. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8941. cb(Qcur, "Qcur", il);
  8942. if (model.layers[il].bq) {
  8943. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8944. cb(Qcur, "Qcur", il);
  8945. }
  8946. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8947. cb(Kcur, "Kcur", il);
  8948. if (model.layers[il].bk) {
  8949. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8950. cb(Kcur, "Kcur", il);
  8951. }
  8952. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8953. cb(Vcur, "Vcur", il);
  8954. if (model.layers[il].bv) {
  8955. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8956. cb(Vcur, "Vcur", il);
  8957. }
  8958. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8959. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8960. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8961. Qcur = ggml_rope_ext(
  8962. ctx0, Qcur, inp_pos, nullptr,
  8963. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8964. ext_factor, attn_factor, beta_fast, beta_slow
  8965. );
  8966. Kcur = ggml_rope_ext(
  8967. ctx0, Kcur, inp_pos, nullptr,
  8968. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8969. ext_factor, attn_factor, beta_fast, beta_slow
  8970. );
  8971. cb(Qcur, "Qcur", il);
  8972. cb(Kcur, "Kcur", il);
  8973. cb(Vcur, "Vcur", il);
  8974. cur = build_attn(inp_attn, gf,
  8975. model.layers[il].wo, model.layers[il].bo,
  8976. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8977. }
  8978. if (il == n_layer - 1) {
  8979. // skip computing output for unused tokens
  8980. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8981. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8982. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8983. }
  8984. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8985. cb(ffn_inp, "ffn_inp", il);
  8986. // feed-forward network
  8987. cur = build_norm(ffn_inp,
  8988. model.layers[il].ffn_norm,
  8989. model.layers[il].ffn_norm_b,
  8990. LLM_NORM, il);
  8991. cb(cur, "ffn_norm", il);
  8992. cur = build_ffn(cur,
  8993. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8994. NULL, NULL, NULL,
  8995. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8996. NULL,
  8997. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  8998. cur = ggml_add(ctx0, cur, ffn_inp);
  8999. cb(cur, "ffn_out", il);
  9000. cur = build_cvec(cur, il);
  9001. cb(cur, "l_out", il);
  9002. // input for next layer
  9003. inpL = cur;
  9004. }
  9005. cur = inpL;
  9006. cur = build_norm(cur,
  9007. model.output_norm, model.output_norm_b,
  9008. LLM_NORM, -1);
  9009. cb(cur, "result_norm", -1);
  9010. res->t_embd = cur;
  9011. // lm_head
  9012. cur = build_lora_mm(model.output, cur);
  9013. cb(cur, "result_output", -1);
  9014. res->t_logits = cur;
  9015. ggml_build_forward_expand(gf, cur);
  9016. }
  9017. };
  9018. struct llm_build_exaone : public llm_graph_context {
  9019. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9020. const int64_t n_embd_head = hparams.n_embd_head_v;
  9021. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9022. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9023. ggml_tensor * cur;
  9024. ggml_tensor * inpL;
  9025. inpL = build_inp_embd(model.tok_embd);
  9026. // inp_pos - contains the positions
  9027. ggml_tensor * inp_pos = build_inp_pos();
  9028. auto * inp_attn = build_attn_inp_kv_unified();
  9029. for (int il = 0; il < n_layer; ++il) {
  9030. ggml_tensor * inpSA = inpL;
  9031. // norm
  9032. cur = build_norm(inpL,
  9033. model.layers[il].attn_norm, NULL,
  9034. LLM_NORM_RMS, il);
  9035. cb(cur, "attn_norm", il);
  9036. // self-attention
  9037. {
  9038. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9039. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  9040. // compute Q and K and RoPE them
  9041. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9042. cb(Qcur, "Qcur", il);
  9043. if (model.layers[il].bq) {
  9044. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9045. cb(Qcur, "Qcur", il);
  9046. }
  9047. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9048. cb(Kcur, "Kcur", il);
  9049. if (model.layers[il].bk) {
  9050. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9051. cb(Kcur, "Kcur", il);
  9052. }
  9053. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9054. cb(Vcur, "Vcur", il);
  9055. if (model.layers[il].bv) {
  9056. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9057. cb(Vcur, "Vcur", il);
  9058. }
  9059. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9060. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9061. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9062. Qcur = ggml_rope_ext(
  9063. ctx0, Qcur, inp_pos, rope_factors,
  9064. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9065. ext_factor, attn_factor, beta_fast, beta_slow
  9066. );
  9067. Kcur = ggml_rope_ext(
  9068. ctx0, Kcur, inp_pos, rope_factors,
  9069. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9070. ext_factor, attn_factor, beta_fast, beta_slow
  9071. );
  9072. cb(Qcur, "Qcur", il);
  9073. cb(Kcur, "Kcur", il);
  9074. cb(Vcur, "Vcur", il);
  9075. cur = build_attn(inp_attn, gf,
  9076. model.layers[il].wo, model.layers[il].bo,
  9077. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9078. }
  9079. if (il == n_layer - 1) {
  9080. // skip computing output for unused tokens
  9081. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9082. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9083. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9084. }
  9085. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9086. cb(ffn_inp, "ffn_inp", il);
  9087. // feed-forward network
  9088. cur = build_norm(ffn_inp,
  9089. model.layers[il].ffn_norm, NULL,
  9090. LLM_NORM_RMS, il);
  9091. cb(cur, "ffn_norm", il);
  9092. cur = build_ffn(cur,
  9093. model.layers[il].ffn_up, NULL, NULL,
  9094. model.layers[il].ffn_gate, NULL, NULL,
  9095. model.layers[il].ffn_down, NULL, NULL,
  9096. NULL,
  9097. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9098. cb(cur, "ffn_out", il);
  9099. cur = ggml_add(ctx0, cur, ffn_inp);
  9100. cb(cur, "ffn_out", il);
  9101. cur = build_cvec(cur, il);
  9102. cb(cur, "l_out", il);
  9103. // input for next layer
  9104. inpL = cur;
  9105. }
  9106. cur = inpL;
  9107. cur = build_norm(cur,
  9108. model.output_norm, NULL,
  9109. LLM_NORM_RMS, -1);
  9110. cb(cur, "result_norm", -1);
  9111. res->t_embd = cur;
  9112. // lm_head
  9113. cur = build_lora_mm(model.output, cur);
  9114. cb(cur, "result_output", -1);
  9115. res->t_logits = cur;
  9116. ggml_build_forward_expand(gf, cur);
  9117. }
  9118. };
  9119. struct llm_build_rwkv6_base : public llm_graph_context {
  9120. const llama_model & model;
  9121. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9122. }
  9123. ggml_tensor * build_rwkv6_channel_mix(
  9124. const llama_layer * layer,
  9125. ggml_tensor * cur,
  9126. ggml_tensor * x_prev,
  9127. llm_arch arch) const {
  9128. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9129. switch (arch) {
  9130. case LLM_ARCH_RWKV6:
  9131. {
  9132. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9133. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9134. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9135. ggml_tensor * k = ggml_sqr(
  9136. ctx0,
  9137. ggml_relu(
  9138. ctx0,
  9139. build_lora_mm(layer->channel_mix_key, xk)
  9140. )
  9141. );
  9142. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9143. } break;
  9144. default:
  9145. GGML_ABORT("fatal error");
  9146. }
  9147. return cur;
  9148. }
  9149. ggml_tensor * build_rwkv6_time_mix(
  9150. ggml_cgraph * gf,
  9151. ggml_tensor * cur,
  9152. ggml_tensor * x_prev,
  9153. ggml_tensor * state_copy,
  9154. ggml_tensor * state_mask,
  9155. const llama_ubatch & ubatch,
  9156. int il) const {
  9157. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9158. const auto n_tokens = ubatch.n_tokens;
  9159. const auto n_seqs = ubatch.n_seqs;
  9160. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9161. const auto n_embd = hparams.n_embd;
  9162. const auto head_size = hparams.wkv_head_size;
  9163. const auto n_head = n_embd / head_size;
  9164. const auto n_head_kv = hparams.n_head_kv(il);
  9165. const auto kv_head = kv_self->head;
  9166. const auto & layer = model.layers[il];
  9167. bool is_qrwkv = layer.time_mix_first == nullptr;
  9168. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9169. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9170. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9171. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9172. xxx = ggml_reshape_4d(
  9173. ctx0,
  9174. ggml_tanh(
  9175. ctx0,
  9176. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9177. ),
  9178. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9179. );
  9180. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9181. xxx = ggml_mul_mat(
  9182. ctx0,
  9183. ggml_reshape_4d(
  9184. ctx0,
  9185. layer.time_mix_w2,
  9186. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9187. ),
  9188. xxx
  9189. );
  9190. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9191. if (layer.time_mix_lerp_fused) {
  9192. // fusing these weights makes some performance improvement
  9193. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9194. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9195. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9196. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9197. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9198. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9199. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9200. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9201. } else {
  9202. // for backward compatibility
  9203. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9204. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9205. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9206. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9207. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9208. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9209. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9210. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9211. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9212. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9213. }
  9214. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9215. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9216. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9217. if (layer.time_mix_receptance_b) {
  9218. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9219. }
  9220. if (layer.time_mix_key_b) {
  9221. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9222. }
  9223. if (layer.time_mix_value_b) {
  9224. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9225. }
  9226. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9227. if (is_qrwkv) {
  9228. g = ggml_sigmoid(ctx0, g);
  9229. } else {
  9230. g = ggml_silu(ctx0, g);
  9231. }
  9232. if (n_head_kv != 0 && n_head_kv != n_head) {
  9233. GGML_ASSERT(n_head % n_head_kv == 0);
  9234. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9235. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9236. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9237. k = ggml_repeat(ctx0, k, tmp);
  9238. v = ggml_repeat(ctx0, v, tmp);
  9239. }
  9240. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9241. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9242. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9243. ggml_tensor * w = ggml_mul_mat(
  9244. ctx0,
  9245. layer.time_mix_decay_w2,
  9246. ggml_tanh(
  9247. ctx0,
  9248. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9249. )
  9250. );
  9251. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9252. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9253. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9254. if (is_qrwkv) {
  9255. // k = k * (1 - w)
  9256. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9257. }
  9258. ggml_tensor * wkv_state = build_copy_mask_state(
  9259. gf, kv_self->v_l[il], state_copy, state_mask,
  9260. hparams.n_embd_v_s(), n_seqs);
  9261. ggml_tensor * wkv_output;
  9262. if (is_qrwkv) {
  9263. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9264. } else {
  9265. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9266. }
  9267. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9268. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9269. ggml_build_forward_expand(
  9270. gf,
  9271. ggml_cpy(
  9272. ctx0,
  9273. wkv_state,
  9274. ggml_view_1d(
  9275. ctx0,
  9276. kv_self->v_l[il],
  9277. hparams.n_embd_v_s() * n_seqs,
  9278. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9279. )
  9280. )
  9281. );
  9282. if (!is_qrwkv) {
  9283. // group norm with head_count groups
  9284. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9285. cur = ggml_norm(ctx0, cur, 64e-5f);
  9286. // Convert back to regular vectors.
  9287. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9288. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9289. } else {
  9290. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9291. }
  9292. cur = ggml_mul(ctx0, cur, g);
  9293. cur = build_lora_mm(layer.time_mix_output, cur);
  9294. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9295. }
  9296. };
  9297. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9298. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9299. GGML_ASSERT(hparams.token_shift_count == 2);
  9300. ggml_tensor * cur;
  9301. ggml_tensor * inpL;
  9302. inpL = build_inp_embd(model.tok_embd);
  9303. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9304. ggml_tensor * state_copy = build_inp_s_copy();
  9305. ggml_tensor * state_mask = build_inp_s_mask();
  9306. const auto n_embd = hparams.n_embd;
  9307. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9308. const auto n_seqs = ubatch.n_seqs;
  9309. for (int il = 0; il < n_layer; ++il) {
  9310. const llama_layer * layer = &model.layers[il];
  9311. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9312. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9313. gf, state_copy, state_mask, ubatch, il
  9314. );
  9315. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9316. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9317. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9318. cb(att_norm, "attn_norm", il);
  9319. ggml_tensor * x_prev = ggml_concat(
  9320. ctx0,
  9321. att_shift,
  9322. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9323. 1
  9324. );
  9325. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9326. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9327. cb(ffn_inp, "ffn_inp", il);
  9328. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9329. cb(ffn_norm, "ffn_norm", il);
  9330. x_prev = ggml_concat(
  9331. ctx0,
  9332. ffn_shift,
  9333. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9334. 1
  9335. );
  9336. token_shift = ggml_concat(ctx0,
  9337. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9338. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9339. 1
  9340. );
  9341. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9342. if (il == n_layer - 1) {
  9343. // skip computing output for unused tokens
  9344. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9345. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9346. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9347. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9348. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9349. }
  9350. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9351. cur = ggml_add(ctx0, cur, ffn_inp);
  9352. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9353. cur = ggml_scale(ctx0, cur, 0.5F);
  9354. }
  9355. cur = build_cvec(cur, il);
  9356. cb(cur, "l_out", il);
  9357. // input for next layer
  9358. inpL = cur;
  9359. }
  9360. cur = inpL;
  9361. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9362. cb(cur, "result_norm", -1);
  9363. res->t_embd = cur;
  9364. cur = build_lora_mm(model.output, cur);
  9365. cb(cur, "result_output", -1);
  9366. res->t_logits = cur;
  9367. ggml_build_forward_expand(gf, cur);
  9368. }
  9369. };
  9370. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9371. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9372. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9373. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9374. ggml_tensor * cur;
  9375. ggml_tensor * inpL;
  9376. inpL = build_inp_embd(model.tok_embd);
  9377. ggml_tensor * state_copy = build_inp_s_copy();
  9378. ggml_tensor * state_mask = build_inp_s_mask();
  9379. const auto n_embd = hparams.n_embd;
  9380. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9381. const auto n_seqs = ubatch.n_seqs;
  9382. for (int il = 0; il < n_layer; ++il) {
  9383. const llama_layer * layer = &model.layers[il];
  9384. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9385. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9386. gf, state_copy, state_mask, ubatch, il
  9387. );
  9388. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9389. cb(att_norm, "attn_norm", il);
  9390. ggml_tensor * x_prev = ggml_concat(
  9391. ctx0,
  9392. token_shift,
  9393. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9394. 1
  9395. );
  9396. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9397. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9398. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9399. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9400. cb(ffn_inp, "ffn_inp", il);
  9401. if (il == n_layer - 1) {
  9402. // skip computing output for unused tokens
  9403. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9404. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9405. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9406. }
  9407. // feed-forward network
  9408. cur = build_norm(ffn_inp,
  9409. model.layers[il].ffn_norm, NULL,
  9410. LLM_NORM_RMS, il);
  9411. cb(cur, "ffn_norm", il);
  9412. cur = build_ffn(cur,
  9413. model.layers[il].ffn_up, NULL, NULL,
  9414. model.layers[il].ffn_gate, NULL, NULL,
  9415. model.layers[il].ffn_down, NULL, NULL,
  9416. NULL,
  9417. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9418. cb(cur, "ffn_out", il);
  9419. cur = ggml_add(ctx0, cur, ffn_inp);
  9420. cur = build_cvec(cur, il);
  9421. cb(cur, "l_out", il);
  9422. // input for next layer
  9423. inpL = cur;
  9424. }
  9425. cur = inpL;
  9426. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9427. cb(cur, "result_norm", -1);
  9428. res->t_embd = cur;
  9429. cur = build_lora_mm(model.output, cur);
  9430. cb(cur, "result_output", -1);
  9431. res->t_logits = cur;
  9432. ggml_build_forward_expand(gf, cur);
  9433. }
  9434. };
  9435. struct llm_build_rwkv7_base : public llm_graph_context {
  9436. const llama_model & model;
  9437. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9438. }
  9439. ggml_tensor * build_rwkv7_channel_mix(
  9440. const llama_layer * layer,
  9441. ggml_tensor * cur,
  9442. ggml_tensor * x_prev,
  9443. llm_arch arch) const {
  9444. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9445. switch (arch) {
  9446. case LLM_ARCH_RWKV7:
  9447. {
  9448. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9449. ggml_tensor * k = ggml_sqr(
  9450. ctx0,
  9451. ggml_relu(
  9452. ctx0,
  9453. build_lora_mm(layer->channel_mix_key, xk)
  9454. )
  9455. );
  9456. cur = build_lora_mm(layer->channel_mix_value, k);
  9457. } break;
  9458. default:
  9459. GGML_ABORT("fatal error");
  9460. }
  9461. return cur;
  9462. }
  9463. ggml_tensor * build_rwkv7_time_mix(
  9464. ggml_cgraph * gf,
  9465. ggml_tensor * cur,
  9466. ggml_tensor * x_prev,
  9467. ggml_tensor * state_copy,
  9468. ggml_tensor * state_mask,
  9469. ggml_tensor *& first_layer_value,
  9470. const llama_ubatch & ubatch,
  9471. int il) const {
  9472. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9473. const auto n_tokens = ubatch.n_tokens;
  9474. const auto n_seqs = ubatch.n_seqs;
  9475. const auto n_embd = hparams.n_embd;
  9476. const auto head_size = hparams.wkv_head_size;
  9477. const auto head_count = n_embd / head_size;
  9478. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9479. const auto kv_head = kv_self->head;
  9480. const auto & layer = model.layers[il];
  9481. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9482. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9483. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9484. sx = ggml_repeat(ctx0, sx, dummy);
  9485. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9486. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9487. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9488. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9489. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9490. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9491. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9492. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9493. ggml_tensor * w = ggml_add(
  9494. ctx0,
  9495. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9496. layer.time_mix_w0
  9497. );
  9498. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9499. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9500. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9501. if (first_layer_value == nullptr) {
  9502. first_layer_value = v;
  9503. } else {
  9504. // Add the first layer value as a residual connection.
  9505. v = ggml_add(ctx0, v,
  9506. ggml_mul(ctx0,
  9507. ggml_sub(ctx0, first_layer_value, v),
  9508. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9509. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9510. layer.time_mix_v0
  9511. )
  9512. )
  9513. )
  9514. );
  9515. }
  9516. ggml_tensor * g = nullptr;
  9517. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9518. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9519. }
  9520. ggml_tensor * a = ggml_sigmoid(ctx0,
  9521. ggml_add(
  9522. ctx0,
  9523. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9524. layer.time_mix_a0
  9525. )
  9526. );
  9527. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9528. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9529. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9530. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9531. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9532. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9533. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9534. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9535. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9536. ggml_tensor * wkv_state = build_copy_mask_state(
  9537. gf, kv_self->v_l[il], state_copy, state_mask,
  9538. hparams.n_embd_v_s(), n_seqs);
  9539. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9540. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9541. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9542. ggml_build_forward_expand(
  9543. gf,
  9544. ggml_cpy(
  9545. ctx0,
  9546. wkv_state,
  9547. ggml_view_1d(
  9548. ctx0,
  9549. kv_self->v_l[il],
  9550. hparams.n_embd_v_s() * n_seqs,
  9551. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9552. )
  9553. )
  9554. );
  9555. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9556. // group norm with head_count groups
  9557. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9558. cur = ggml_norm(ctx0, cur, 64e-5f);
  9559. // Convert back to regular vectors.
  9560. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9561. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9562. } else {
  9563. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9564. }
  9565. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9566. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9567. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9568. if (has_gating) {
  9569. cur = ggml_mul(ctx0, cur, g);
  9570. }
  9571. cur = build_lora_mm(layer.time_mix_output, cur);
  9572. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9573. }
  9574. };
  9575. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9576. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9577. GGML_ASSERT(hparams.token_shift_count == 2);
  9578. ggml_tensor * cur;
  9579. ggml_tensor * inpL;
  9580. ggml_tensor * v_first = nullptr;
  9581. inpL = build_inp_embd(model.tok_embd);
  9582. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9583. ggml_tensor * state_copy = build_inp_s_copy();
  9584. ggml_tensor * state_mask = build_inp_s_mask();
  9585. const auto n_embd = hparams.n_embd;
  9586. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9587. const auto n_seqs = ubatch.n_seqs;
  9588. for (int il = 0; il < n_layer; ++il) {
  9589. const llama_layer * layer = &model.layers[il];
  9590. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9591. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9592. gf, state_copy, state_mask, ubatch, il
  9593. );
  9594. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9595. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9596. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9597. cb(att_norm, "attn_norm", il);
  9598. ggml_tensor * x_prev = ggml_concat(
  9599. ctx0,
  9600. att_shift,
  9601. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9602. 1
  9603. );
  9604. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9605. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9606. cb(ffn_inp, "ffn_inp", il);
  9607. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9608. cb(ffn_norm, "ffn_norm", il);
  9609. x_prev = ggml_concat(
  9610. ctx0,
  9611. ffn_shift,
  9612. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9613. 1
  9614. );
  9615. token_shift = ggml_concat(ctx0,
  9616. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9617. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9618. 1
  9619. );
  9620. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9621. if (il == n_layer - 1) {
  9622. // skip computing output for unused tokens
  9623. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9624. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9625. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9626. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9627. }
  9628. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9629. cur = ggml_add(ctx0, cur, ffn_inp);
  9630. cur = build_cvec(cur, il);
  9631. cb(cur, "l_out", il);
  9632. // input for next layer
  9633. inpL = cur;
  9634. }
  9635. cur = inpL;
  9636. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9637. cb(cur, "result_norm", -1);
  9638. res->t_embd = cur;
  9639. cur = build_lora_mm(model.output, cur);
  9640. cb(cur, "result_output", -1);
  9641. res->t_logits = cur;
  9642. ggml_build_forward_expand(gf, cur);
  9643. }
  9644. };
  9645. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9646. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9647. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9648. ggml_tensor * cur;
  9649. ggml_tensor * inpL;
  9650. ggml_tensor * v_first = nullptr;
  9651. inpL = build_inp_embd(model.tok_embd);
  9652. ggml_tensor * state_copy = build_inp_s_copy();
  9653. ggml_tensor * state_mask = build_inp_s_mask();
  9654. const auto n_embd = hparams.n_embd;
  9655. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9656. const auto n_seqs = ubatch.n_seqs;
  9657. for (int il = 0; il < n_layer; ++il) {
  9658. const llama_layer * layer = &model.layers[il];
  9659. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9660. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9661. gf, state_copy, state_mask, ubatch, il
  9662. );
  9663. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9664. cb(att_norm, "attn_norm", il);
  9665. ggml_tensor * x_prev = ggml_concat(
  9666. ctx0,
  9667. token_shift,
  9668. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9669. 1
  9670. );
  9671. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9672. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9673. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9674. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9675. cb(ffn_inp, "ffn_inp", il);
  9676. if (il == n_layer - 1) {
  9677. // skip computing output for unused tokens
  9678. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9679. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9680. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9681. }
  9682. // feed-forward network
  9683. cur = build_norm(ffn_inp,
  9684. model.layers[il].ffn_norm, NULL,
  9685. LLM_NORM_RMS, il);
  9686. cb(cur, "ffn_norm", il);
  9687. cur = build_ffn(cur,
  9688. model.layers[il].ffn_up, NULL, NULL,
  9689. model.layers[il].ffn_gate, NULL, NULL,
  9690. model.layers[il].ffn_down, NULL, NULL,
  9691. NULL,
  9692. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9693. cb(cur, "ffn_out", il);
  9694. cur = ggml_add(ctx0, cur, ffn_inp);
  9695. cur = build_cvec(cur, il);
  9696. cb(cur, "l_out", il);
  9697. // input for next layer
  9698. inpL = cur;
  9699. }
  9700. cur = inpL;
  9701. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9702. cb(cur, "result_norm", -1);
  9703. res->t_embd = cur;
  9704. cur = build_lora_mm(model.output, cur);
  9705. cb(cur, "result_output", -1);
  9706. res->t_logits = cur;
  9707. ggml_build_forward_expand(gf, cur);
  9708. }
  9709. };
  9710. // ref: https://github.com/facebookresearch/chameleon
  9711. // based on the original build_llama() function, changes:
  9712. // * qk-norm
  9713. // * swin-norm
  9714. // * removed bias
  9715. // * removed MoE
  9716. struct llm_build_chameleon : public llm_graph_context {
  9717. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9718. const int64_t n_embd_head = hparams.n_embd_head_v;
  9719. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9720. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9721. ggml_tensor * cur;
  9722. ggml_tensor * inpL;
  9723. inpL = build_inp_embd(model.tok_embd);
  9724. // inp_pos - contains the positions
  9725. ggml_tensor * inp_pos = build_inp_pos();
  9726. auto * inp_attn = build_attn_inp_kv_unified();
  9727. for (int il = 0; il < n_layer; ++il) {
  9728. ggml_tensor * inpSA = inpL;
  9729. // norm
  9730. if (hparams.swin_norm) {
  9731. cur = inpL;
  9732. } else {
  9733. cur = build_norm(inpL,
  9734. model.layers[il].attn_norm, NULL,
  9735. LLM_NORM_RMS, il);
  9736. cb(cur, "attn_norm", il);
  9737. }
  9738. // self-attention
  9739. {
  9740. // compute Q and K and RoPE them
  9741. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9742. cb(Qcur, "Qcur", il);
  9743. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9744. cb(Kcur, "Kcur", il);
  9745. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9746. cb(Vcur, "Vcur", il);
  9747. if (model.layers[il].attn_q_norm) {
  9748. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9749. ggml_element_size(Qcur) * n_embd_head,
  9750. ggml_element_size(Qcur) * n_embd_head * n_head,
  9751. 0);
  9752. cb(Qcur, "Qcur", il);
  9753. Qcur = build_norm(Qcur,
  9754. model.layers[il].attn_q_norm,
  9755. model.layers[il].attn_q_norm_b,
  9756. LLM_NORM, il);
  9757. cb(Qcur, "Qcur", il);
  9758. }
  9759. if (model.layers[il].attn_k_norm) {
  9760. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9761. ggml_element_size(Kcur) * n_embd_head,
  9762. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9763. 0);
  9764. cb(Kcur, "Kcur", il);
  9765. Kcur = build_norm(Kcur,
  9766. model.layers[il].attn_k_norm,
  9767. model.layers[il].attn_k_norm_b,
  9768. LLM_NORM, il);
  9769. cb(Kcur, "Kcur", il);
  9770. }
  9771. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9772. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9773. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9774. Qcur = ggml_rope_ext(
  9775. ctx0, Qcur, inp_pos, nullptr,
  9776. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9777. ext_factor, attn_factor, beta_fast, beta_slow
  9778. );
  9779. Kcur = ggml_rope_ext(
  9780. ctx0, Kcur, inp_pos, nullptr,
  9781. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9782. ext_factor, attn_factor, beta_fast, beta_slow
  9783. );
  9784. cb(Qcur, "Qcur", il);
  9785. cb(Kcur, "Kcur", il);
  9786. cb(Vcur, "Vcur", il);
  9787. cur = build_attn(inp_attn, gf,
  9788. model.layers[il].wo, nullptr,
  9789. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9790. if (hparams.swin_norm) {
  9791. cur = build_norm(cur,
  9792. model.layers[il].attn_norm, NULL,
  9793. LLM_NORM_RMS, il);
  9794. }
  9795. }
  9796. if (il == n_layer - 1) {
  9797. // skip computing output for unused tokens
  9798. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9799. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9800. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9801. }
  9802. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9803. cb(ffn_inp, "ffn_inp", il);
  9804. // feed-forward network
  9805. if (!hparams.swin_norm) {
  9806. cur = build_norm(ffn_inp,
  9807. model.layers[il].ffn_norm, NULL,
  9808. LLM_NORM_RMS, il);
  9809. cb(cur, "ffn_norm", il);
  9810. }
  9811. cur = build_ffn(cur,
  9812. model.layers[il].ffn_up, NULL, NULL,
  9813. model.layers[il].ffn_gate, NULL, NULL,
  9814. model.layers[il].ffn_down, NULL, NULL,
  9815. NULL,
  9816. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9817. cb(cur, "ffn_out", il);
  9818. if (hparams.swin_norm) {
  9819. cur = build_norm(cur,
  9820. model.layers[il].ffn_norm, NULL,
  9821. LLM_NORM_RMS, il);
  9822. cb(cur, "ffn_norm", il);
  9823. }
  9824. cur = ggml_add(ctx0, cur, ffn_inp);
  9825. cb(cur, "ffn_out", il);
  9826. cur = build_cvec(cur, il);
  9827. cb(cur, "l_out", il);
  9828. // input for next layer
  9829. inpL = cur;
  9830. }
  9831. cur = inpL;
  9832. cur = build_norm(cur,
  9833. model.output_norm, NULL,
  9834. LLM_NORM_RMS, -1);
  9835. cb(cur, "result_norm", -1);
  9836. res->t_embd = cur;
  9837. // lm_head
  9838. cur = build_lora_mm(model.output, cur);
  9839. cb(cur, "result_output_with_img_logits", -1);
  9840. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9841. // Needs to be removed once image outputs are supported.
  9842. int img_token_end_idx = 8196;
  9843. int img_token_start_idx = 4;
  9844. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9845. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9846. // which ensures that text token values are always at least larger than image token values
  9847. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9848. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9849. cb(img_logits, "img_logits", -1);
  9850. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9851. cb(cur, "result_output", -1);
  9852. res->t_logits = cur;
  9853. ggml_build_forward_expand(gf, cur);
  9854. }
  9855. };
  9856. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9857. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9858. ggml_tensor * cur;
  9859. ggml_tensor * inpL;
  9860. inpL = build_inp_embd(model.tok_embd);
  9861. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9862. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9863. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9864. // posnet
  9865. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9866. const auto & layer = model.layers[il].posnet;
  9867. inpL = cur;
  9868. switch (il) {
  9869. case 0:
  9870. case 1:
  9871. case 3:
  9872. case 4:
  9873. {
  9874. cur = build_norm(cur,
  9875. layer.norm1,
  9876. layer.norm1_b,
  9877. LLM_NORM_GROUP, 0);
  9878. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9879. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9880. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9881. cur = build_norm(cur,
  9882. layer.norm2,
  9883. layer.norm2_b,
  9884. LLM_NORM_GROUP, 0);
  9885. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9886. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9887. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9888. cur = ggml_add(ctx0, cur, inpL);
  9889. } break;
  9890. case 2:
  9891. {
  9892. cur = build_norm(cur,
  9893. layer.attn_norm,
  9894. layer.attn_norm_b,
  9895. LLM_NORM_GROUP, 0);
  9896. ggml_tensor * q;
  9897. ggml_tensor * k;
  9898. ggml_tensor * v;
  9899. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9900. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9901. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9902. q = ggml_add(ctx0, q, layer.attn_q_b);
  9903. k = ggml_add(ctx0, k, layer.attn_k_b);
  9904. v = ggml_add(ctx0, v, layer.attn_v_b);
  9905. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9906. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9907. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9908. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9909. cur = ggml_mul_mat(ctx0, kq, v);
  9910. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9911. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9912. cur = ggml_add(ctx0, cur, inpL);
  9913. } break;
  9914. case 5:
  9915. {
  9916. cur = build_norm(cur,
  9917. layer.norm,
  9918. layer.norm_b,
  9919. LLM_NORM_GROUP, 0);
  9920. } break;
  9921. default: GGML_ABORT("unknown posnet layer");
  9922. };
  9923. }
  9924. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9925. cur = build_norm(cur,
  9926. model.tok_norm,
  9927. model.tok_norm_b,
  9928. LLM_NORM, -1);
  9929. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9930. inpL = cur;
  9931. // convnext
  9932. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9933. const auto & layer = model.layers[il].convnext;
  9934. cur = inpL;
  9935. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9936. cur = ggml_add(ctx0, cur, layer.dw_b);
  9937. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9938. cur = build_norm(cur,
  9939. layer.norm,
  9940. layer.norm_b,
  9941. LLM_NORM, -1);
  9942. cur = build_ffn(cur,
  9943. layer.pw1, layer.pw1_b, NULL,
  9944. NULL, NULL, NULL,
  9945. layer.pw2, layer.pw2_b, NULL,
  9946. NULL,
  9947. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9948. cur = ggml_mul(ctx0, cur, layer.gamma);
  9949. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9950. inpL = ggml_add(ctx0, cur, inpL);
  9951. }
  9952. cur = inpL;
  9953. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9954. cur = build_norm(cur,
  9955. model.output_norm,
  9956. model.output_norm_b,
  9957. LLM_NORM, -1);
  9958. // lm_head
  9959. cur = build_lora_mm(model.output, cur);
  9960. cur = ggml_add(ctx0, cur, model.output_b);
  9961. cb(cur, "result_embd", -1);
  9962. res->t_embd = cur;
  9963. ggml_build_forward_expand(gf, cur);
  9964. }
  9965. };
  9966. struct llm_build_plm : public llm_graph_context {
  9967. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9968. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  9969. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9970. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9971. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9972. ggml_tensor * cur;
  9973. ggml_tensor * inpL;
  9974. // {n_embd, n_tokens}
  9975. inpL = build_inp_embd(model.tok_embd);
  9976. // inp_pos - contains the positions
  9977. ggml_tensor * inp_pos = build_inp_pos();
  9978. auto * inp_attn = build_attn_inp_kv_unified();
  9979. for (int il = 0; il < n_layer; ++il) {
  9980. ggml_tensor * inpSA = inpL;
  9981. // norm
  9982. cur = build_norm(inpL,
  9983. model.layers[il].attn_norm, NULL,
  9984. LLM_NORM_RMS, il);
  9985. cb(cur, "attn_norm", il);
  9986. // self_attention
  9987. {
  9988. ggml_tensor * q = NULL;
  9989. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9990. cb(q, "q", il);
  9991. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9992. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9993. ggml_row_size(q->type, hparams.n_embd_head_k),
  9994. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9995. 0);
  9996. cb(q_nope, "q_nope", il);
  9997. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9998. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9999. ggml_row_size(q->type, hparams.n_embd_head_k),
  10000. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10001. ggml_row_size(q->type, n_embd_head_qk_nope));
  10002. cb(q_pe, "q_pe", il);
  10003. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10004. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10005. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10006. // split into {kv_lora_rank, n_tokens}
  10007. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10008. kv_pe_compresseed->nb[1],
  10009. 0);
  10010. cb(kv_compressed, "kv_compressed", il);
  10011. // and {n_embd_head_qk_rope, n_tokens}
  10012. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10013. kv_pe_compresseed->nb[1],
  10014. kv_pe_compresseed->nb[1],
  10015. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10016. cb(k_pe, "k_pe", il);
  10017. kv_compressed = build_norm(kv_compressed,
  10018. model.layers[il].attn_kv_a_norm, NULL,
  10019. LLM_NORM_RMS, il);
  10020. cb(kv_compressed, "kv_compressed", il);
  10021. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10022. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10023. cb(kv, "kv", il);
  10024. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10025. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10026. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10027. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10028. 0);
  10029. cb(k_nope, "k_nope", il);
  10030. // and {n_head * n_embd_head_v, n_tokens}
  10031. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10032. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10033. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10034. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10035. cb(v_states, "v_states", il);
  10036. v_states = ggml_cont(ctx0, v_states);
  10037. cb(v_states, "v_states", il);
  10038. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10039. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10040. 0);
  10041. cb(v_states, "v_states", il);
  10042. q_pe = ggml_rope_ext(
  10043. ctx0, q_pe, inp_pos, nullptr,
  10044. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10045. ext_factor, attn_factor, beta_fast, beta_slow
  10046. );
  10047. cb(q_pe, "q_pe", il);
  10048. // shared RoPE key
  10049. k_pe = ggml_rope_ext(
  10050. ctx0, k_pe, inp_pos, nullptr,
  10051. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10052. ext_factor, attn_factor, beta_fast, beta_slow
  10053. );
  10054. cb(k_pe, "k_pe", il);
  10055. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10056. cb(q_states, "q_states", il);
  10057. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10058. cb(k_states, "k_states", il);
  10059. cur = build_attn(inp_attn, gf,
  10060. model.layers[il].wo, NULL,
  10061. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10062. }
  10063. if (il == n_layer - 1) {
  10064. // skip computing output for unused tokens
  10065. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10066. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10067. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10068. }
  10069. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10070. cb(ffn_inp, "ffn_inp", il);
  10071. cur = build_norm(ffn_inp,
  10072. model.layers[il].ffn_norm, NULL,
  10073. LLM_NORM_RMS, il);
  10074. cb(cur, "ffn_norm", il);
  10075. cur = build_ffn(cur,
  10076. model.layers[il].ffn_up, NULL, NULL,
  10077. NULL, NULL, NULL,
  10078. model.layers[il].ffn_down, NULL, NULL,
  10079. NULL,
  10080. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10081. cb(cur, "ffn_out", il);
  10082. cur = ggml_add(ctx0, cur, ffn_inp);
  10083. cur = build_cvec(cur, il);
  10084. cb(cur, "l_out", il);
  10085. // input for next layer
  10086. inpL = cur;
  10087. }
  10088. cur = inpL;
  10089. cur = build_norm(cur,
  10090. model.output_norm, NULL,
  10091. LLM_NORM_RMS, -1);
  10092. cb(cur, "result_norm", -1);
  10093. res->t_embd = cur;
  10094. cur = build_lora_mm(model.output, cur);
  10095. cb(cur, "result_output", -1);
  10096. res->t_logits = cur;
  10097. ggml_build_forward_expand(gf, cur);
  10098. }
  10099. };
  10100. struct llm_build_bailingmoe : public llm_graph_context {
  10101. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10102. ggml_tensor * cur;
  10103. ggml_tensor * inpL;
  10104. inpL = build_inp_embd(model.tok_embd);
  10105. // inp_pos - contains the positions
  10106. ggml_tensor * inp_pos = build_inp_pos();
  10107. auto * inp_attn = build_attn_inp_kv_unified();
  10108. for (int il = 0; il < n_layer; ++il) {
  10109. ggml_tensor * inpSA = inpL;
  10110. // norm
  10111. cur = build_norm(inpL,
  10112. model.layers[il].attn_norm, NULL,
  10113. LLM_NORM_RMS, il);
  10114. cb(cur, "attn_norm", il);
  10115. // self-attention
  10116. {
  10117. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10118. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  10119. // compute Q and K and RoPE them
  10120. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10121. cb(Qcur, "Qcur", il);
  10122. if (model.layers[il].bq) {
  10123. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10124. cb(Qcur, "Qcur", il);
  10125. }
  10126. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10127. cb(Kcur, "Kcur", il);
  10128. if (model.layers[il].bk) {
  10129. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10130. cb(Kcur, "Kcur", il);
  10131. }
  10132. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10133. cb(Vcur, "Vcur", il);
  10134. if (model.layers[il].bv) {
  10135. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10136. cb(Vcur, "Vcur", il);
  10137. }
  10138. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10139. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10140. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10141. Qcur = ggml_rope_ext(
  10142. ctx0, Qcur, inp_pos, rope_factors,
  10143. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10144. ext_factor, attn_factor, beta_fast, beta_slow
  10145. );
  10146. Kcur = ggml_rope_ext(
  10147. ctx0, Kcur, inp_pos, rope_factors,
  10148. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10149. ext_factor, attn_factor, beta_fast, beta_slow
  10150. );
  10151. cb(Qcur, "Qcur", il);
  10152. cb(Kcur, "Kcur", il);
  10153. cb(Vcur, "Vcur", il);
  10154. cur = build_attn(inp_attn, gf,
  10155. model.layers[il].wo, model.layers[il].bo,
  10156. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10157. }
  10158. if (il == n_layer - 1) {
  10159. // skip computing output for unused tokens
  10160. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10161. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10162. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10163. }
  10164. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10165. cb(ffn_inp, "ffn_inp", il);
  10166. cur = build_norm(ffn_inp,
  10167. model.layers[il].ffn_norm, NULL,
  10168. LLM_NORM_RMS, il);
  10169. cb(cur, "ffn_norm", il);
  10170. ggml_tensor * moe_out =
  10171. build_moe_ffn(cur,
  10172. model.layers[il].ffn_gate_inp,
  10173. model.layers[il].ffn_up_exps,
  10174. model.layers[il].ffn_gate_exps,
  10175. model.layers[il].ffn_down_exps,
  10176. nullptr,
  10177. n_expert, n_expert_used,
  10178. LLM_FFN_SILU, hparams.expert_weights_norm,
  10179. false, hparams.expert_weights_scale,
  10180. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10181. il);
  10182. cb(moe_out, "ffn_moe_out", il);
  10183. // FFN shared expert
  10184. {
  10185. ggml_tensor * ffn_shexp = build_ffn(cur,
  10186. model.layers[il].ffn_up_shexp, NULL, NULL,
  10187. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10188. model.layers[il].ffn_down_shexp, NULL, NULL,
  10189. NULL,
  10190. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10191. cb(ffn_shexp, "ffn_shexp", il);
  10192. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10193. cb(cur, "ffn_out", il);
  10194. }
  10195. cur = ggml_add(ctx0, cur, ffn_inp);
  10196. cur = build_cvec(cur, il);
  10197. cb(cur, "l_out", il);
  10198. // input for next layer
  10199. inpL = cur;
  10200. }
  10201. cur = inpL;
  10202. cur = build_norm(cur,
  10203. model.output_norm, NULL,
  10204. LLM_NORM_RMS, -1);
  10205. cb(cur, "result_norm", -1);
  10206. res->t_embd = cur;
  10207. // lm_head
  10208. cur = build_lora_mm(model.output, cur);
  10209. cb(cur, "result_output", -1);
  10210. res->t_logits = cur;
  10211. ggml_build_forward_expand(gf, cur);
  10212. }
  10213. };
  10214. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  10215. llama_memory_i * res;
  10216. switch (arch) {
  10217. case LLM_ARCH_MAMBA:
  10218. case LLM_ARCH_RWKV6:
  10219. case LLM_ARCH_RWKV6QWEN2:
  10220. case LLM_ARCH_RWKV7:
  10221. case LLM_ARCH_ARWKV7:
  10222. {
  10223. res = new llama_kv_cache_recurrent(
  10224. *this,
  10225. GGML_TYPE_F32,
  10226. GGML_TYPE_F32,
  10227. cparams.offload_kqv,
  10228. std::max((uint32_t) 1, cparams.n_seq_max));
  10229. } break;
  10230. default:
  10231. {
  10232. const auto padding = llama_kv_cache_unified::get_padding(cparams);
  10233. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  10234. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  10235. res = new llama_kv_cache_unified(
  10236. *this,
  10237. params.type_k,
  10238. params.type_v,
  10239. !cparams.flash_attn,
  10240. cparams.offload_kqv,
  10241. cparams.n_ctx,
  10242. padding);
  10243. }
  10244. }
  10245. return res;
  10246. }
  10247. llm_graph_result_ptr llama_model::build_graph(
  10248. const llm_graph_params & params,
  10249. ggml_cgraph * gf,
  10250. llm_graph_type type) const {
  10251. std::unique_ptr<llm_graph_context> llm;
  10252. switch (arch) {
  10253. case LLM_ARCH_LLAMA:
  10254. case LLM_ARCH_LLAMA4:
  10255. case LLM_ARCH_MINICPM:
  10256. case LLM_ARCH_GRANITE:
  10257. case LLM_ARCH_GRANITE_MOE:
  10258. {
  10259. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10260. } break;
  10261. case LLM_ARCH_DECI:
  10262. {
  10263. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10264. } break;
  10265. case LLM_ARCH_BAICHUAN:
  10266. {
  10267. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10268. } break;
  10269. case LLM_ARCH_FALCON:
  10270. {
  10271. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10272. } break;
  10273. case LLM_ARCH_GROK:
  10274. {
  10275. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10276. } break;
  10277. case LLM_ARCH_STARCODER:
  10278. {
  10279. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10280. } break;
  10281. case LLM_ARCH_REFACT:
  10282. {
  10283. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10284. } break;
  10285. case LLM_ARCH_BERT:
  10286. case LLM_ARCH_JINA_BERT_V2:
  10287. case LLM_ARCH_NOMIC_BERT:
  10288. case LLM_ARCH_NOMIC_BERT_MOE:
  10289. {
  10290. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10291. } break;
  10292. case LLM_ARCH_BLOOM:
  10293. {
  10294. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10295. } break;
  10296. case LLM_ARCH_MPT:
  10297. {
  10298. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10299. } break;
  10300. case LLM_ARCH_STABLELM:
  10301. {
  10302. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10303. } break;
  10304. case LLM_ARCH_QWEN:
  10305. {
  10306. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10307. } break;
  10308. case LLM_ARCH_QWEN2:
  10309. {
  10310. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10311. } break;
  10312. case LLM_ARCH_QWEN2VL:
  10313. {
  10314. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10315. } break;
  10316. case LLM_ARCH_QWEN2MOE:
  10317. {
  10318. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10319. } break;
  10320. case LLM_ARCH_QWEN3:
  10321. {
  10322. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10323. } break;
  10324. case LLM_ARCH_QWEN3MOE:
  10325. {
  10326. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10327. } break;
  10328. case LLM_ARCH_PHI2:
  10329. {
  10330. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10331. } break;
  10332. case LLM_ARCH_PHI3:
  10333. case LLM_ARCH_PHIMOE:
  10334. {
  10335. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  10336. } break;
  10337. case LLM_ARCH_PLAMO:
  10338. {
  10339. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10340. } break;
  10341. case LLM_ARCH_GPT2:
  10342. {
  10343. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10344. } break;
  10345. case LLM_ARCH_CODESHELL:
  10346. {
  10347. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10348. } break;
  10349. case LLM_ARCH_ORION:
  10350. {
  10351. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10352. } break;
  10353. case LLM_ARCH_INTERNLM2:
  10354. {
  10355. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10356. } break;
  10357. case LLM_ARCH_MINICPM3:
  10358. {
  10359. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10360. } break;
  10361. case LLM_ARCH_GEMMA:
  10362. {
  10363. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10364. } break;
  10365. case LLM_ARCH_GEMMA2:
  10366. {
  10367. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  10368. } break;
  10369. case LLM_ARCH_GEMMA3:
  10370. {
  10371. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  10372. } break;
  10373. case LLM_ARCH_STARCODER2:
  10374. {
  10375. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10376. } break;
  10377. case LLM_ARCH_MAMBA:
  10378. {
  10379. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10380. } break;
  10381. case LLM_ARCH_XVERSE:
  10382. {
  10383. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10384. } break;
  10385. case LLM_ARCH_COMMAND_R:
  10386. {
  10387. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10388. } break;
  10389. case LLM_ARCH_COHERE2:
  10390. {
  10391. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  10392. } break;
  10393. case LLM_ARCH_DBRX:
  10394. {
  10395. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10396. } break;
  10397. case LLM_ARCH_OLMO:
  10398. {
  10399. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10400. } break;
  10401. case LLM_ARCH_OLMO2:
  10402. {
  10403. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10404. } break;
  10405. case LLM_ARCH_OLMOE:
  10406. {
  10407. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10408. } break;
  10409. case LLM_ARCH_OPENELM:
  10410. {
  10411. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10412. } break;
  10413. case LLM_ARCH_GPTNEOX:
  10414. {
  10415. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10416. } break;
  10417. case LLM_ARCH_ARCTIC:
  10418. {
  10419. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10420. } break;
  10421. case LLM_ARCH_DEEPSEEK:
  10422. {
  10423. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10424. } break;
  10425. case LLM_ARCH_DEEPSEEK2:
  10426. {
  10427. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10428. } break;
  10429. case LLM_ARCH_CHATGLM:
  10430. {
  10431. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10432. } break;
  10433. case LLM_ARCH_GLM4:
  10434. {
  10435. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10436. } break;
  10437. case LLM_ARCH_BITNET:
  10438. {
  10439. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10440. } break;
  10441. case LLM_ARCH_T5:
  10442. {
  10443. switch (type) {
  10444. case LLM_GRAPH_TYPE_ENCODER:
  10445. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10446. break;
  10447. case LLM_GRAPH_TYPE_DEFAULT:
  10448. case LLM_GRAPH_TYPE_DECODER:
  10449. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10450. break;
  10451. default:
  10452. GGML_ABORT("invalid graph type");
  10453. };
  10454. } break;
  10455. case LLM_ARCH_T5ENCODER:
  10456. {
  10457. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10458. }
  10459. break;
  10460. case LLM_ARCH_JAIS:
  10461. {
  10462. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10463. } break;
  10464. case LLM_ARCH_NEMOTRON:
  10465. {
  10466. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10467. } break;
  10468. case LLM_ARCH_EXAONE:
  10469. {
  10470. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10471. } break;
  10472. case LLM_ARCH_RWKV6:
  10473. {
  10474. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10475. } break;
  10476. case LLM_ARCH_RWKV6QWEN2:
  10477. {
  10478. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10479. } break;
  10480. case LLM_ARCH_RWKV7:
  10481. {
  10482. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10483. } break;
  10484. case LLM_ARCH_ARWKV7:
  10485. {
  10486. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10487. } break;
  10488. case LLM_ARCH_CHAMELEON:
  10489. {
  10490. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10491. } break;
  10492. case LLM_ARCH_WAVTOKENIZER_DEC:
  10493. {
  10494. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10495. } break;
  10496. case LLM_ARCH_PLM:
  10497. {
  10498. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10499. } break;
  10500. case LLM_ARCH_BAILINGMOE:
  10501. {
  10502. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10503. } break;
  10504. default:
  10505. GGML_ABORT("fatal error");
  10506. }
  10507. // add on pooling layer
  10508. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10509. return std::move(llm->res);
  10510. }
  10511. //
  10512. // interface implementation
  10513. //
  10514. llama_model_params llama_model_default_params() {
  10515. llama_model_params result = {
  10516. /*.devices =*/ nullptr,
  10517. /*.tensor_buft_overrides =*/ nullptr,
  10518. /*.n_gpu_layers =*/ 0,
  10519. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10520. /*.main_gpu =*/ 0,
  10521. /*.tensor_split =*/ nullptr,
  10522. /*.progress_callback =*/ nullptr,
  10523. /*.progress_callback_user_data =*/ nullptr,
  10524. /*.kv_overrides =*/ nullptr,
  10525. /*.vocab_only =*/ false,
  10526. /*.use_mmap =*/ true,
  10527. /*.use_mlock =*/ false,
  10528. /*.check_tensors =*/ false,
  10529. };
  10530. #ifdef GGML_USE_METAL
  10531. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10532. result.n_gpu_layers = 999;
  10533. #endif
  10534. return result;
  10535. }
  10536. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10537. return &model->vocab;
  10538. }
  10539. void llama_free_model(llama_model * model) {
  10540. llama_model_free(model);
  10541. }
  10542. void llama_model_free(llama_model * model) {
  10543. delete model;
  10544. }
  10545. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10546. return model->hparams.n_ctx_train;
  10547. }
  10548. int32_t llama_model_n_embd(const llama_model * model) {
  10549. return model->hparams.n_embd;
  10550. }
  10551. int32_t llama_model_n_layer(const llama_model * model) {
  10552. return model->hparams.n_layer;
  10553. }
  10554. int32_t llama_model_n_head(const llama_model * model) {
  10555. return model->hparams.n_head();
  10556. }
  10557. int32_t llama_model_n_head_kv(const llama_model * model) {
  10558. return model->hparams.n_head_kv();
  10559. }
  10560. // deprecated
  10561. int32_t llama_n_ctx_train(const llama_model * model) {
  10562. return llama_model_n_ctx_train(model);
  10563. }
  10564. // deprecated
  10565. int32_t llama_n_embd(const llama_model * model) {
  10566. return llama_model_n_embd(model);
  10567. }
  10568. // deprecated
  10569. int32_t llama_n_layer(const llama_model * model) {
  10570. return llama_model_n_layer(model);
  10571. }
  10572. // deprecated
  10573. int32_t llama_n_head(const llama_model * model) {
  10574. return llama_model_n_head(model);
  10575. }
  10576. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10577. switch (model->arch) {
  10578. // these models do not use RoPE
  10579. case LLM_ARCH_GPT2:
  10580. case LLM_ARCH_GPTJ:
  10581. case LLM_ARCH_MPT:
  10582. case LLM_ARCH_REFACT:
  10583. case LLM_ARCH_BLOOM:
  10584. case LLM_ARCH_MAMBA:
  10585. case LLM_ARCH_JINA_BERT_V2:
  10586. case LLM_ARCH_T5:
  10587. case LLM_ARCH_T5ENCODER:
  10588. case LLM_ARCH_JAIS:
  10589. case LLM_ARCH_RWKV6:
  10590. case LLM_ARCH_RWKV6QWEN2:
  10591. case LLM_ARCH_RWKV7:
  10592. case LLM_ARCH_ARWKV7:
  10593. case LLM_ARCH_WAVTOKENIZER_DEC:
  10594. return LLAMA_ROPE_TYPE_NONE;
  10595. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10596. case LLM_ARCH_LLAMA:
  10597. case LLM_ARCH_LLAMA4:
  10598. case LLM_ARCH_DECI:
  10599. case LLM_ARCH_BAICHUAN:
  10600. case LLM_ARCH_STARCODER:
  10601. case LLM_ARCH_INTERNLM2:
  10602. case LLM_ARCH_MINICPM:
  10603. case LLM_ARCH_XVERSE:
  10604. case LLM_ARCH_COMMAND_R:
  10605. case LLM_ARCH_COHERE2:
  10606. case LLM_ARCH_OLMO:
  10607. case LLM_ARCH_ARCTIC:
  10608. case LLM_ARCH_DEEPSEEK:
  10609. case LLM_ARCH_DEEPSEEK2:
  10610. case LLM_ARCH_PLM:
  10611. case LLM_ARCH_CHATGLM:
  10612. case LLM_ARCH_GLM4:
  10613. case LLM_ARCH_GRANITE:
  10614. case LLM_ARCH_GRANITE_MOE:
  10615. case LLM_ARCH_CHAMELEON:
  10616. case LLM_ARCH_BAILINGMOE:
  10617. return LLAMA_ROPE_TYPE_NORM;
  10618. // the pairs of head values are offset by n_rot/2
  10619. case LLM_ARCH_FALCON:
  10620. case LLM_ARCH_GROK:
  10621. case LLM_ARCH_DBRX:
  10622. case LLM_ARCH_BERT:
  10623. case LLM_ARCH_NOMIC_BERT:
  10624. case LLM_ARCH_NOMIC_BERT_MOE:
  10625. case LLM_ARCH_STABLELM:
  10626. case LLM_ARCH_BITNET:
  10627. case LLM_ARCH_QWEN:
  10628. case LLM_ARCH_QWEN2:
  10629. case LLM_ARCH_QWEN2MOE:
  10630. case LLM_ARCH_QWEN3:
  10631. case LLM_ARCH_QWEN3MOE:
  10632. case LLM_ARCH_OLMO2:
  10633. case LLM_ARCH_OLMOE:
  10634. case LLM_ARCH_PHI2:
  10635. case LLM_ARCH_PHI3:
  10636. case LLM_ARCH_PHIMOE:
  10637. case LLM_ARCH_PLAMO:
  10638. case LLM_ARCH_GEMMA:
  10639. case LLM_ARCH_GEMMA2:
  10640. case LLM_ARCH_GEMMA3:
  10641. case LLM_ARCH_STARCODER2:
  10642. case LLM_ARCH_OPENELM:
  10643. case LLM_ARCH_GPTNEOX:
  10644. case LLM_ARCH_CODESHELL:
  10645. case LLM_ARCH_ORION:
  10646. case LLM_ARCH_NEMOTRON:
  10647. case LLM_ARCH_EXAONE:
  10648. case LLM_ARCH_MINICPM3:
  10649. return LLAMA_ROPE_TYPE_NEOX;
  10650. case LLM_ARCH_QWEN2VL:
  10651. return LLAMA_ROPE_TYPE_MROPE;
  10652. // all model arches should be listed explicitly here
  10653. case LLM_ARCH_UNKNOWN:
  10654. GGML_ABORT("unknown architecture");
  10655. }
  10656. return LLAMA_ROPE_TYPE_NONE;
  10657. }
  10658. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10659. return model->hparams.rope_freq_scale_train;
  10660. }
  10661. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10662. const auto & it = model->gguf_kv.find(key);
  10663. if (it == model->gguf_kv.end()) {
  10664. if (buf_size > 0) {
  10665. buf[0] = '\0';
  10666. }
  10667. return -1;
  10668. }
  10669. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10670. }
  10671. int32_t llama_model_meta_count(const llama_model * model) {
  10672. return (int)model->gguf_kv.size();
  10673. }
  10674. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10675. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10676. if (buf_size > 0) {
  10677. buf[0] = '\0';
  10678. }
  10679. return -1;
  10680. }
  10681. auto it = model->gguf_kv.begin();
  10682. std::advance(it, i);
  10683. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10684. }
  10685. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10686. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10687. if (buf_size > 0) {
  10688. buf[0] = '\0';
  10689. }
  10690. return -1;
  10691. }
  10692. auto it = model->gguf_kv.begin();
  10693. std::advance(it, i);
  10694. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10695. }
  10696. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  10697. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  10698. }
  10699. uint64_t llama_model_size(const llama_model * model) {
  10700. return model->size();
  10701. }
  10702. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  10703. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  10704. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  10705. const auto & it = model->gguf_kv.find(key);
  10706. if (it == model->gguf_kv.end()) {
  10707. return nullptr;
  10708. }
  10709. return it->second.c_str();
  10710. }
  10711. uint64_t llama_model_n_params(const llama_model * model) {
  10712. return model->n_elements();
  10713. }
  10714. bool llama_model_has_encoder(const llama_model * model) {
  10715. switch (model->arch) {
  10716. case LLM_ARCH_T5: return true;
  10717. case LLM_ARCH_T5ENCODER: return true;
  10718. default: return false;
  10719. }
  10720. }
  10721. bool llama_model_has_decoder(const llama_model * model) {
  10722. switch (model->arch) {
  10723. case LLM_ARCH_T5ENCODER: return false;
  10724. default: return true;
  10725. }
  10726. }
  10727. llama_token llama_model_decoder_start_token(const llama_model * model) {
  10728. return model->hparams.dec_start_token_id;
  10729. }
  10730. bool llama_model_is_recurrent(const llama_model * model) {
  10731. switch (model->arch) {
  10732. case LLM_ARCH_MAMBA: return true;
  10733. case LLM_ARCH_RWKV6: return true;
  10734. case LLM_ARCH_RWKV6QWEN2: return true;
  10735. case LLM_ARCH_RWKV7: return true;
  10736. case LLM_ARCH_ARWKV7: return true;
  10737. default: return false;
  10738. }
  10739. }
  10740. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  10741. return model->tensors_by_name;
  10742. }