1
0

server.cpp 157 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  61. enum error_type {
  62. ERROR_TYPE_INVALID_REQUEST,
  63. ERROR_TYPE_AUTHENTICATION,
  64. ERROR_TYPE_SERVER,
  65. ERROR_TYPE_NOT_FOUND,
  66. ERROR_TYPE_PERMISSION,
  67. ERROR_TYPE_UNAVAILABLE, // custom error
  68. ERROR_TYPE_NOT_SUPPORTED, // custom error
  69. };
  70. struct slot_params {
  71. bool stream = true;
  72. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  73. bool return_tokens = false;
  74. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  75. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  76. int32_t n_predict = -1; // new tokens to predict
  77. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  78. int64_t t_max_prompt_ms = -1; // TODO: implement
  79. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  80. std::vector<std::string> antiprompt;
  81. bool timings_per_token = false;
  82. bool ignore_eos = false;
  83. struct common_params_sampling sampling;
  84. struct common_params_speculative speculative;
  85. // OAI-compat fields
  86. bool verbose = false;
  87. bool oaicompat = false;
  88. bool oaicompat_chat = true;
  89. std::string oaicompat_model;
  90. std::string oaicompat_cmpl_id;
  91. json to_json() const {
  92. std::vector<std::string> samplers;
  93. samplers.reserve(sampling.samplers.size());
  94. for (const auto & sampler : sampling.samplers) {
  95. samplers.emplace_back(common_sampler_type_to_str(sampler));
  96. }
  97. return json {
  98. {"n_predict", n_predict}, // Server configured n_predict
  99. {"seed", sampling.seed},
  100. {"temperature", sampling.temp},
  101. {"dynatemp_range", sampling.dynatemp_range},
  102. {"dynatemp_exponent", sampling.dynatemp_exponent},
  103. {"top_k", sampling.top_k},
  104. {"top_p", sampling.top_p},
  105. {"min_p", sampling.min_p},
  106. {"xtc_probability", sampling.xtc_probability},
  107. {"xtc_threshold", sampling.xtc_threshold},
  108. {"typical_p", sampling.typ_p},
  109. {"repeat_last_n", sampling.penalty_last_n},
  110. {"repeat_penalty", sampling.penalty_repeat},
  111. {"presence_penalty", sampling.penalty_present},
  112. {"frequency_penalty", sampling.penalty_freq},
  113. {"dry_multiplier", sampling.dry_multiplier},
  114. {"dry_base", sampling.dry_base},
  115. {"dry_allowed_length", sampling.dry_allowed_length},
  116. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  117. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  118. {"mirostat", sampling.mirostat},
  119. {"mirostat_tau", sampling.mirostat_tau},
  120. {"mirostat_eta", sampling.mirostat_eta},
  121. {"stop", antiprompt},
  122. {"max_tokens", n_predict}, // User configured n_predict
  123. {"n_keep", n_keep},
  124. {"n_discard", n_discard},
  125. {"ignore_eos", sampling.ignore_eos},
  126. {"stream", stream},
  127. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  128. {"n_probs", sampling.n_probs},
  129. {"min_keep", sampling.min_keep},
  130. {"grammar", sampling.grammar},
  131. {"samplers", samplers},
  132. {"speculative.n_max", speculative.n_max},
  133. {"speculative.n_min", speculative.n_min},
  134. {"speculative.p_min", speculative.p_min},
  135. {"timings_per_token", timings_per_token},
  136. };
  137. }
  138. };
  139. struct server_task {
  140. int id = -1; // to be filled by server_queue
  141. int index = -1; // used when there are multiple prompts (batch request)
  142. server_task_type type;
  143. // used by SERVER_TASK_TYPE_CANCEL
  144. int id_target = -1;
  145. // used by SERVER_TASK_TYPE_INFERENCE
  146. slot_params params;
  147. llama_tokens prompt_tokens;
  148. int id_selected_slot = -1;
  149. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  150. struct slot_action {
  151. int slot_id;
  152. std::string filename;
  153. std::string filepath;
  154. };
  155. slot_action slot_action;
  156. // used by SERVER_TASK_TYPE_METRICS
  157. bool metrics_reset_bucket = false;
  158. server_task(server_task_type type) : type(type) {}
  159. static slot_params params_from_json_cmpl(
  160. const llama_model * model,
  161. const llama_context * ctx,
  162. const common_params & params_base,
  163. const json & data) {
  164. slot_params params;
  165. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  166. slot_params defaults;
  167. defaults.sampling = params_base.sampling;
  168. defaults.speculative = params_base.speculative;
  169. // enabling this will output extra debug information in the HTTP responses from the server
  170. params.verbose = params_base.verbosity > 9;
  171. params.timings_per_token = json_value(data, "timings_per_token", false);
  172. params.stream = json_value(data, "stream", false);
  173. params.cache_prompt = json_value(data, "cache_prompt", true);
  174. params.return_tokens = json_value(data, "return_tokens", false);
  175. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  176. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  177. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  178. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  179. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  180. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  181. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  182. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  183. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  184. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  185. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  186. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  187. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  188. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  189. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  190. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  191. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  192. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  193. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  194. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  195. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  196. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  197. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  198. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  199. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  200. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  201. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  202. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  203. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  204. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  205. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  206. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  207. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  208. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  209. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  210. // TODO: add more sanity checks for the input parameters
  211. if (params.sampling.penalty_last_n < -1) {
  212. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  213. }
  214. if (params.sampling.dry_penalty_last_n < -1) {
  215. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  216. }
  217. if (params.sampling.penalty_last_n == -1) {
  218. // note: should be the slot's context and not the full context, but it's ok
  219. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  220. }
  221. if (params.sampling.dry_penalty_last_n == -1) {
  222. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  223. }
  224. if (params.sampling.dry_base < 1.0f) {
  225. params.sampling.dry_base = defaults.sampling.dry_base;
  226. }
  227. // sequence breakers for DRY
  228. {
  229. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  230. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  231. if (data.contains("dry_sequence_breakers")) {
  232. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  233. if (params.sampling.dry_sequence_breakers.empty()) {
  234. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  235. }
  236. }
  237. }
  238. // process "json_schema" and "grammar"
  239. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  240. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  241. }
  242. if (data.contains("json_schema") && !data.contains("grammar")) {
  243. try {
  244. auto schema = json_value(data, "json_schema", json::object());
  245. params.sampling.grammar = json_schema_to_grammar(schema);
  246. } catch (const std::exception & e) {
  247. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  248. }
  249. } else {
  250. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  251. }
  252. {
  253. params.sampling.logit_bias.clear();
  254. params.ignore_eos = json_value(data, "ignore_eos", false);
  255. const auto & logit_bias = data.find("logit_bias");
  256. if (logit_bias != data.end() && logit_bias->is_array()) {
  257. const int n_vocab = llama_n_vocab(model);
  258. for (const auto & el : *logit_bias) {
  259. // TODO: we may want to throw errors here, in case "el" is incorrect
  260. if (el.is_array() && el.size() == 2) {
  261. float bias;
  262. if (el[1].is_number()) {
  263. bias = el[1].get<float>();
  264. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  265. bias = -INFINITY;
  266. } else {
  267. continue;
  268. }
  269. if (el[0].is_number_integer()) {
  270. llama_token tok = el[0].get<llama_token>();
  271. if (tok >= 0 && tok < n_vocab) {
  272. params.sampling.logit_bias.push_back({tok, bias});
  273. }
  274. } else if (el[0].is_string()) {
  275. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  276. for (auto tok : toks) {
  277. params.sampling.logit_bias.push_back({tok, bias});
  278. }
  279. }
  280. }
  281. }
  282. }
  283. }
  284. {
  285. params.antiprompt.clear();
  286. const auto & stop = data.find("stop");
  287. if (stop != data.end() && stop->is_array()) {
  288. for (const auto & word : *stop) {
  289. if (!word.empty()) {
  290. params.antiprompt.push_back(word);
  291. }
  292. }
  293. }
  294. }
  295. {
  296. const auto & samplers = data.find("samplers");
  297. if (samplers != data.end()) {
  298. if (samplers->is_array()) {
  299. std::vector<std::string> sampler_names;
  300. for (const auto & name : *samplers) {
  301. if (name.is_string()) {
  302. sampler_names.emplace_back(name);
  303. }
  304. }
  305. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  306. } else if (samplers->is_string()){
  307. std::string sampler_string;
  308. for (const auto & name : *samplers) {
  309. sampler_string += name;
  310. }
  311. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  312. }
  313. } else {
  314. params.sampling.samplers = defaults.sampling.samplers;
  315. }
  316. }
  317. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  318. params.oaicompat_model = json_value(data, "model", model_name);
  319. return params;
  320. }
  321. // utility function
  322. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  323. std::unordered_set<int> ids(tasks.size());
  324. for (size_t i = 0; i < tasks.size(); i++) {
  325. ids.insert(tasks[i].id);
  326. }
  327. return ids;
  328. }
  329. };
  330. struct result_timings {
  331. int32_t prompt_n = -1;
  332. double prompt_ms;
  333. double prompt_per_token_ms;
  334. double prompt_per_second;
  335. int32_t predicted_n = -1;
  336. double predicted_ms;
  337. double predicted_per_token_ms;
  338. double predicted_per_second;
  339. json to_json() const {
  340. return {
  341. {"prompt_n", prompt_n},
  342. {"prompt_ms", prompt_ms},
  343. {"prompt_per_token_ms", prompt_per_token_ms},
  344. {"prompt_per_second", prompt_per_second},
  345. {"predicted_n", predicted_n},
  346. {"predicted_ms", predicted_ms},
  347. {"predicted_per_token_ms", predicted_per_token_ms},
  348. {"predicted_per_second", predicted_per_second},
  349. };
  350. }
  351. };
  352. struct server_task_result {
  353. int id = -1;
  354. int id_slot = -1;
  355. virtual bool is_error() {
  356. // only used by server_task_result_error
  357. return false;
  358. }
  359. virtual bool is_stop() {
  360. // only used by server_task_result_cmpl_*
  361. return false;
  362. }
  363. virtual int get_index() {
  364. return -1;
  365. }
  366. virtual json to_json() = 0;
  367. virtual ~server_task_result() = default;
  368. };
  369. // using shared_ptr for polymorphism of server_task_result
  370. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  371. inline std::string stop_type_to_str(stop_type type) {
  372. switch (type) {
  373. case STOP_TYPE_EOS: return "eos";
  374. case STOP_TYPE_WORD: return "word";
  375. case STOP_TYPE_LIMIT: return "limit";
  376. default: return "none";
  377. }
  378. }
  379. struct completion_token_output {
  380. llama_token tok;
  381. std::string text_to_send;
  382. struct token_prob {
  383. llama_token tok;
  384. std::string tok_str;
  385. float prob;
  386. };
  387. std::vector<token_prob> probs;
  388. json to_json() const {
  389. json probs_for_token = json::array();
  390. for (const auto & p : probs) {
  391. probs_for_token.push_back(json {
  392. {"tok_str", p.tok_str},
  393. {"prob", p.prob},
  394. });
  395. }
  396. return probs_for_token;
  397. }
  398. static json probs_vector_to_json(const std::vector<completion_token_output> & probs) {
  399. json out = json::array();
  400. for (const auto & prob : probs) {
  401. const std::string tok_str = prob.text_to_send;
  402. out.push_back(json {
  403. {"content", tok_str},
  404. {"probs", prob.to_json()},
  405. });
  406. }
  407. return out;
  408. }
  409. };
  410. struct server_task_result_cmpl_final : server_task_result {
  411. int index = 0;
  412. std::string content;
  413. llama_tokens tokens;
  414. bool stream;
  415. result_timings timings;
  416. std::string prompt;
  417. bool truncated;
  418. int32_t n_decoded;
  419. int32_t n_prompt_tokens;
  420. int32_t n_tokens_cached;
  421. bool has_new_line;
  422. std::string stopping_word;
  423. stop_type stop = STOP_TYPE_NONE;
  424. std::vector<completion_token_output> probs_output;
  425. slot_params generation_params;
  426. // OAI-compat fields
  427. bool verbose = false;
  428. bool oaicompat = false;
  429. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  430. std::string oaicompat_model;
  431. std::string oaicompat_cmpl_id;
  432. virtual int get_index() override {
  433. return index;
  434. }
  435. virtual bool is_stop() override {
  436. return true; // in stream mode, final responses are considered stop
  437. }
  438. virtual json to_json() override {
  439. return oaicompat
  440. ? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat())
  441. : to_json_non_oaicompat();
  442. }
  443. json to_json_non_oaicompat() {
  444. json res = json {
  445. {"index", index},
  446. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  447. {"tokens", stream ? llama_tokens {} : tokens},
  448. {"id_slot", id_slot},
  449. {"stop", true},
  450. {"model", oaicompat_model},
  451. {"tokens_predicted", n_decoded},
  452. {"tokens_evaluated", n_prompt_tokens},
  453. {"generation_settings", generation_params.to_json()},
  454. {"prompt", prompt},
  455. {"has_new_line", has_new_line},
  456. {"truncated", truncated},
  457. {"stop_type", stop_type_to_str(stop)},
  458. {"stopping_word", stopping_word},
  459. {"tokens_cached", n_tokens_cached},
  460. {"timings", timings.to_json()},
  461. };
  462. if (!probs_output.empty()) {
  463. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  464. }
  465. return res;
  466. }
  467. json to_json_oaicompat_chat() {
  468. std::string finish_reason = "length";
  469. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  470. finish_reason = "stop";
  471. }
  472. json choices = json::array({json{
  473. {"finish_reason", finish_reason},
  474. {"index", 0},
  475. {"message", json {
  476. {"content", content},
  477. {"role", "assistant"}
  478. }
  479. }}});
  480. std::time_t t = std::time(0);
  481. json res = json {
  482. {"choices", choices},
  483. {"created", t},
  484. {"model", oaicompat_model},
  485. {"object", "chat.completion"},
  486. {"usage", json {
  487. {"completion_tokens", n_decoded},
  488. {"prompt_tokens", n_prompt_tokens},
  489. {"total_tokens", n_decoded + n_prompt_tokens}
  490. }},
  491. {"id", oaicompat_cmpl_id}
  492. };
  493. // extra fields for debugging purposes
  494. if (verbose) {
  495. res["__verbose"] = to_json_non_oaicompat();
  496. }
  497. if (timings.prompt_n >= 0) {
  498. res.push_back({"timings", timings.to_json()});
  499. }
  500. return res;
  501. }
  502. json to_json_oaicompat_chat_stream() {
  503. std::time_t t = std::time(0);
  504. std::string finish_reason = "length";
  505. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  506. finish_reason = "stop";
  507. }
  508. json choices = json::array({json{{"finish_reason", finish_reason},
  509. {"index", 0},
  510. {"delta", json::object()}}});
  511. json ret = json {
  512. {"choices", choices},
  513. {"created", t},
  514. {"id", oaicompat_cmpl_id},
  515. {"model", oaicompat_model},
  516. {"object", "chat.completion.chunk"},
  517. {"usage", json {
  518. {"completion_tokens", n_decoded},
  519. {"prompt_tokens", n_prompt_tokens},
  520. {"total_tokens", n_decoded + n_prompt_tokens},
  521. }},
  522. };
  523. if (timings.prompt_n >= 0) {
  524. ret.push_back({"timings", timings.to_json()});
  525. }
  526. return ret;
  527. }
  528. };
  529. struct server_task_result_cmpl_partial : server_task_result {
  530. int index = 0;
  531. std::string content;
  532. llama_tokens tokens;
  533. int32_t n_decoded;
  534. int32_t n_prompt_tokens;
  535. std::vector<completion_token_output> probs_output;
  536. result_timings timings;
  537. // OAI-compat fields
  538. bool verbose = false;
  539. bool oaicompat = false;
  540. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  541. std::string oaicompat_model;
  542. std::string oaicompat_cmpl_id;
  543. virtual int get_index() override {
  544. return index;
  545. }
  546. virtual bool is_stop() override {
  547. return false; // in stream mode, partial responses are not considered stop
  548. }
  549. virtual json to_json() override {
  550. return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
  551. }
  552. json to_json_non_oaicompat() {
  553. // non-OAI-compat JSON
  554. json res = json {
  555. {"index", index},
  556. {"content", content},
  557. {"tokens", tokens},
  558. {"stop", false},
  559. {"id_slot", id_slot},
  560. {"tokens_predicted", n_decoded},
  561. {"tokens_evaluated", n_prompt_tokens},
  562. };
  563. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  564. if (timings.prompt_n > 0) {
  565. res.push_back({"timings", timings.to_json()});
  566. }
  567. if (!probs_output.empty()) {
  568. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  569. }
  570. return res;
  571. }
  572. json to_json_oaicompat() {
  573. bool first = n_decoded == 0;
  574. std::time_t t = std::time(0);
  575. json choices;
  576. if (first) {
  577. if (content.empty()) {
  578. choices = json::array({json{{"finish_reason", nullptr},
  579. {"index", 0},
  580. {"delta", json{{"role", "assistant"}}}}});
  581. } else {
  582. // We have to send this as two updates to conform to openai behavior
  583. json initial_ret = json{{"choices", json::array({json{
  584. {"finish_reason", nullptr},
  585. {"index", 0},
  586. {"delta", json{
  587. {"role", "assistant"}
  588. }}}})},
  589. {"created", t},
  590. {"id", oaicompat_cmpl_id},
  591. {"model", oaicompat_model},
  592. {"object", "chat.completion.chunk"}};
  593. json second_ret = json{
  594. {"choices", json::array({json{{"finish_reason", nullptr},
  595. {"index", 0},
  596. {"delta", json {
  597. {"content", content}}}
  598. }})},
  599. {"created", t},
  600. {"id", oaicompat_cmpl_id},
  601. {"model", oaicompat_model},
  602. {"object", "chat.completion.chunk"}};
  603. return std::vector<json>({initial_ret, second_ret});
  604. }
  605. } else {
  606. choices = json::array({json{
  607. {"finish_reason", nullptr},
  608. {"index", 0},
  609. {"delta",
  610. json {
  611. {"content", content},
  612. }},
  613. }});
  614. }
  615. json ret = json {
  616. {"choices", choices},
  617. {"created", t},
  618. {"id", oaicompat_cmpl_id},
  619. {"model", oaicompat_model},
  620. {"object", "chat.completion.chunk"}
  621. };
  622. if (timings.prompt_n >= 0) {
  623. ret.push_back({"timings", timings.to_json()});
  624. }
  625. return std::vector<json>({ret});
  626. }
  627. };
  628. struct server_task_result_embd : server_task_result {
  629. int index = 0;
  630. std::vector<std::vector<float>> embedding;
  631. int32_t n_tokens;
  632. // OAI-compat fields
  633. bool oaicompat = false;
  634. virtual int get_index() override {
  635. return index;
  636. }
  637. virtual json to_json() override {
  638. return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
  639. }
  640. json to_json_non_oaicompat() {
  641. return json {
  642. {"index", index},
  643. {"embedding", embedding},
  644. };
  645. }
  646. json to_json_oaicompat() {
  647. return json {
  648. {"index", index},
  649. {"embedding", embedding[0]},
  650. {"tokens_evaluated", n_tokens},
  651. };
  652. }
  653. };
  654. struct server_task_result_rerank : server_task_result {
  655. int index = 0;
  656. float score = -1e6;
  657. int32_t n_tokens;
  658. virtual int get_index() override {
  659. return index;
  660. }
  661. virtual json to_json() override {
  662. return json {
  663. {"index", index},
  664. {"score", score},
  665. {"tokens_evaluated", n_tokens},
  666. };
  667. }
  668. };
  669. // this function maybe used outside of server_task_result_error
  670. static json format_error_response(const std::string & message, const enum error_type type) {
  671. std::string type_str;
  672. int code = 500;
  673. switch (type) {
  674. case ERROR_TYPE_INVALID_REQUEST:
  675. type_str = "invalid_request_error";
  676. code = 400;
  677. break;
  678. case ERROR_TYPE_AUTHENTICATION:
  679. type_str = "authentication_error";
  680. code = 401;
  681. break;
  682. case ERROR_TYPE_NOT_FOUND:
  683. type_str = "not_found_error";
  684. code = 404;
  685. break;
  686. case ERROR_TYPE_SERVER:
  687. type_str = "server_error";
  688. code = 500;
  689. break;
  690. case ERROR_TYPE_PERMISSION:
  691. type_str = "permission_error";
  692. code = 403;
  693. break;
  694. case ERROR_TYPE_NOT_SUPPORTED:
  695. type_str = "not_supported_error";
  696. code = 501;
  697. break;
  698. case ERROR_TYPE_UNAVAILABLE:
  699. type_str = "unavailable_error";
  700. code = 503;
  701. break;
  702. }
  703. return json {
  704. {"code", code},
  705. {"message", message},
  706. {"type", type_str},
  707. };
  708. }
  709. struct server_task_result_error : server_task_result {
  710. int index = 0;
  711. error_type err_type = ERROR_TYPE_SERVER;
  712. std::string err_msg;
  713. virtual bool is_error() override {
  714. return true;
  715. }
  716. virtual json to_json() override {
  717. return format_error_response(err_msg, err_type);
  718. }
  719. };
  720. struct server_task_result_metrics : server_task_result {
  721. int n_idle_slots;
  722. int n_processing_slots;
  723. int n_tasks_deferred;
  724. int64_t t_start;
  725. int32_t kv_cache_tokens_count;
  726. int32_t kv_cache_used_cells;
  727. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  728. uint64_t n_prompt_tokens_processed_total = 0;
  729. uint64_t t_prompt_processing_total = 0;
  730. uint64_t n_tokens_predicted_total = 0;
  731. uint64_t t_tokens_generation_total = 0;
  732. uint64_t n_prompt_tokens_processed = 0;
  733. uint64_t t_prompt_processing = 0;
  734. uint64_t n_tokens_predicted = 0;
  735. uint64_t t_tokens_generation = 0;
  736. uint64_t n_decode_total = 0;
  737. uint64_t n_busy_slots_total = 0;
  738. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  739. // therefore, we use json to temporarily store the slot.to_json() result
  740. json slots_data = json::array();
  741. virtual json to_json() override {
  742. return json {
  743. { "idle", n_idle_slots },
  744. { "processing", n_processing_slots },
  745. { "deferred", n_tasks_deferred },
  746. { "t_start", t_start },
  747. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  748. { "t_tokens_generation_total", t_tokens_generation_total },
  749. { "n_tokens_predicted_total", n_tokens_predicted_total },
  750. { "t_prompt_processing_total", t_prompt_processing_total },
  751. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  752. { "t_prompt_processing", t_prompt_processing },
  753. { "n_tokens_predicted", n_tokens_predicted },
  754. { "t_tokens_generation", t_tokens_generation },
  755. { "n_decode_total", n_decode_total },
  756. { "n_busy_slots_total", n_busy_slots_total },
  757. { "kv_cache_tokens_count", kv_cache_tokens_count },
  758. { "kv_cache_used_cells", kv_cache_used_cells },
  759. { "slots", slots_data },
  760. };
  761. }
  762. };
  763. struct server_task_result_slot_save_load : server_task_result {
  764. std::string filename;
  765. bool is_save; // true = save, false = load
  766. size_t n_tokens;
  767. size_t n_bytes;
  768. double t_ms;
  769. virtual json to_json() override {
  770. if (is_save) {
  771. return json {
  772. { "id_slot", id_slot },
  773. { "filename", filename },
  774. { "n_saved", n_tokens },
  775. { "n_written", n_bytes },
  776. { "timings", {
  777. { "save_ms", t_ms }
  778. }},
  779. };
  780. } else {
  781. return json {
  782. { "id_slot", id_slot },
  783. { "filename", filename },
  784. { "n_restored", n_tokens },
  785. { "n_read", n_bytes },
  786. { "timings", {
  787. { "restore_ms", t_ms }
  788. }},
  789. };
  790. }
  791. }
  792. };
  793. struct server_task_result_slot_erase : server_task_result {
  794. size_t n_erased;
  795. virtual json to_json() override {
  796. return json {
  797. { "id_slot", id_slot },
  798. { "n_erased", n_erased },
  799. };
  800. }
  801. };
  802. struct server_task_result_apply_lora : server_task_result {
  803. virtual json to_json() override {
  804. return json {{ "success", true }};
  805. }
  806. };
  807. struct server_slot {
  808. int id;
  809. int id_task = -1;
  810. // only used for completion/embedding/infill/rerank
  811. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  812. llama_batch batch_spec = {};
  813. llama_context * ctx = nullptr;
  814. llama_context * ctx_dft = nullptr;
  815. common_speculative * spec = nullptr;
  816. // the index relative to completion multi-task request
  817. size_t index = 0;
  818. struct slot_params params;
  819. slot_state state = SLOT_STATE_IDLE;
  820. // used to determine the slot that has been used the longest
  821. int64_t t_last_used = -1;
  822. // generation props
  823. int32_t n_ctx = 0; // context size per slot
  824. int32_t n_past = 0;
  825. int32_t n_decoded = 0;
  826. int32_t n_remaining = -1;
  827. int32_t i_batch = -1;
  828. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  829. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  830. int32_t n_prompt_tokens = 0;
  831. int32_t n_prompt_tokens_processed = 0;
  832. // input prompt tokens
  833. llama_tokens prompt_tokens;
  834. size_t last_nl_pos = 0;
  835. std::string generated_text;
  836. llama_tokens generated_tokens;
  837. llama_tokens cache_tokens;
  838. std::vector<completion_token_output> generated_token_probs;
  839. bool has_next_token = true;
  840. bool has_new_line = false;
  841. bool truncated = false;
  842. stop_type stop;
  843. std::string stopping_word;
  844. // sampling
  845. json json_schema;
  846. struct common_sampler * smpl = nullptr;
  847. llama_token sampled;
  848. // stats
  849. size_t n_sent_text = 0; // number of sent text character
  850. size_t n_sent_token_probs = 0;
  851. int64_t t_start_process_prompt;
  852. int64_t t_start_generation;
  853. double t_prompt_processing; // ms
  854. double t_token_generation; // ms
  855. std::function<void(int)> callback_on_release;
  856. void reset() {
  857. SLT_DBG(*this, "%s", "\n");
  858. n_prompt_tokens = 0;
  859. last_nl_pos = 0;
  860. generated_text = "";
  861. has_new_line = false;
  862. truncated = false;
  863. stop = STOP_TYPE_NONE;
  864. stopping_word = "";
  865. n_past = 0;
  866. n_sent_text = 0;
  867. n_sent_token_probs = 0;
  868. task_type = SERVER_TASK_TYPE_COMPLETION;
  869. generated_tokens.clear();
  870. generated_token_probs.clear();
  871. }
  872. bool is_non_causal() const {
  873. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  874. }
  875. bool has_budget(const common_params & global_params) {
  876. if (params.n_predict == -1 && global_params.n_predict == -1) {
  877. return true; // limitless
  878. }
  879. n_remaining = -1;
  880. if (params.n_predict != -1) {
  881. n_remaining = params.n_predict - n_decoded;
  882. } else if (global_params.n_predict != -1) {
  883. n_remaining = global_params.n_predict - n_decoded;
  884. }
  885. return n_remaining > 0; // no budget
  886. }
  887. bool is_processing() const {
  888. return state != SLOT_STATE_IDLE;
  889. }
  890. bool can_speculate() const {
  891. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  892. }
  893. void add_token(const completion_token_output & token) {
  894. if (!is_processing()) {
  895. SLT_WRN(*this, "%s", "slot is not processing\n");
  896. return;
  897. }
  898. generated_token_probs.push_back(token);
  899. }
  900. void release() {
  901. if (is_processing()) {
  902. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  903. t_last_used = ggml_time_us();
  904. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  905. state = SLOT_STATE_IDLE;
  906. callback_on_release(id);
  907. }
  908. }
  909. result_timings get_timings() const {
  910. result_timings timings;
  911. timings.prompt_n = n_prompt_tokens_processed;
  912. timings.prompt_ms = t_prompt_processing;
  913. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  914. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  915. timings.predicted_n = n_decoded;
  916. timings.predicted_ms = t_token_generation;
  917. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  918. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  919. return timings;
  920. }
  921. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  922. size_t stop_pos = std::string::npos;
  923. for (const std::string & word : params.antiprompt) {
  924. size_t pos;
  925. if (is_full_stop) {
  926. const size_t tmp = word.size() + last_token_size;
  927. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  928. pos = text.find(word, from_pos);
  929. } else {
  930. // otherwise, partial stop
  931. pos = find_partial_stop_string(word, text);
  932. }
  933. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  934. if (is_full_stop) {
  935. stop = STOP_TYPE_WORD;
  936. stopping_word = word;
  937. has_next_token = false;
  938. }
  939. stop_pos = pos;
  940. }
  941. }
  942. return stop_pos;
  943. }
  944. void print_timings() const {
  945. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  946. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  947. const double t_gen = t_token_generation / n_decoded;
  948. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  949. SLT_INF(*this,
  950. "\n"
  951. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  952. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  953. " total time = %10.2f ms / %5d tokens\n",
  954. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  955. t_token_generation, n_decoded, t_gen, n_gen_second,
  956. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  957. }
  958. json to_json() const {
  959. return json {
  960. {"id", id},
  961. {"id_task", id_task},
  962. {"n_ctx", n_ctx},
  963. {"speculative", can_speculate()},
  964. {"is_processing", is_processing()},
  965. {"non_causal", is_non_causal()},
  966. {"params", params.to_json()},
  967. {"prompt", common_detokenize(ctx, prompt_tokens)},
  968. {"next_token",
  969. {
  970. {"has_next_token", has_next_token},
  971. {"has_new_line", has_new_line},
  972. {"n_remain", n_remaining},
  973. {"n_decoded", n_decoded},
  974. {"stopping_word", stopping_word},
  975. }
  976. },
  977. };
  978. }
  979. };
  980. struct server_metrics {
  981. int64_t t_start = 0;
  982. uint64_t n_prompt_tokens_processed_total = 0;
  983. uint64_t t_prompt_processing_total = 0;
  984. uint64_t n_tokens_predicted_total = 0;
  985. uint64_t t_tokens_generation_total = 0;
  986. uint64_t n_prompt_tokens_processed = 0;
  987. uint64_t t_prompt_processing = 0;
  988. uint64_t n_tokens_predicted = 0;
  989. uint64_t t_tokens_generation = 0;
  990. uint64_t n_decode_total = 0;
  991. uint64_t n_busy_slots_total = 0;
  992. void init() {
  993. t_start = ggml_time_us();
  994. }
  995. void on_prompt_eval(const server_slot & slot) {
  996. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  997. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  998. t_prompt_processing += slot.t_prompt_processing;
  999. t_prompt_processing_total += slot.t_prompt_processing;
  1000. }
  1001. void on_prediction(const server_slot & slot) {
  1002. n_tokens_predicted_total += slot.n_decoded;
  1003. n_tokens_predicted += slot.n_decoded;
  1004. t_tokens_generation += slot.t_token_generation;
  1005. t_tokens_generation_total += slot.t_token_generation;
  1006. }
  1007. void on_decoded(const std::vector<server_slot> & slots) {
  1008. n_decode_total++;
  1009. for (const auto & slot : slots) {
  1010. if (slot.is_processing()) {
  1011. n_busy_slots_total++;
  1012. }
  1013. }
  1014. }
  1015. void reset_bucket() {
  1016. n_prompt_tokens_processed = 0;
  1017. t_prompt_processing = 0;
  1018. n_tokens_predicted = 0;
  1019. t_tokens_generation = 0;
  1020. }
  1021. };
  1022. struct server_queue {
  1023. int id = 0;
  1024. bool running;
  1025. // queues
  1026. std::deque<server_task> queue_tasks;
  1027. std::deque<server_task> queue_tasks_deferred;
  1028. std::mutex mutex_tasks;
  1029. std::condition_variable condition_tasks;
  1030. // callback functions
  1031. std::function<void(server_task)> callback_new_task;
  1032. std::function<void(void)> callback_update_slots;
  1033. // Add a new task to the end of the queue
  1034. int post(server_task task, bool front = false) {
  1035. std::unique_lock<std::mutex> lock(mutex_tasks);
  1036. GGML_ASSERT(task.id != -1);
  1037. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1038. if (front) {
  1039. queue_tasks.push_front(std::move(task));
  1040. } else {
  1041. queue_tasks.push_back(std::move(task));
  1042. }
  1043. condition_tasks.notify_one();
  1044. return task.id;
  1045. }
  1046. // multi-task version of post()
  1047. int post(std::vector<server_task> & tasks, bool front = false) {
  1048. std::unique_lock<std::mutex> lock(mutex_tasks);
  1049. for (auto & task : tasks) {
  1050. if (task.id == -1) {
  1051. task.id = id++;
  1052. }
  1053. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1054. if (front) {
  1055. queue_tasks.push_front(std::move(task));
  1056. } else {
  1057. queue_tasks.push_back(std::move(task));
  1058. }
  1059. }
  1060. condition_tasks.notify_one();
  1061. return 0;
  1062. }
  1063. // Add a new task, but defer until one slot is available
  1064. void defer(server_task task) {
  1065. std::unique_lock<std::mutex> lock(mutex_tasks);
  1066. QUE_DBG("defer task, id = %d\n", task.id);
  1067. queue_tasks_deferred.push_back(std::move(task));
  1068. condition_tasks.notify_one();
  1069. }
  1070. // Get the next id for creating a new task
  1071. int get_new_id() {
  1072. std::unique_lock<std::mutex> lock(mutex_tasks);
  1073. int new_id = id++;
  1074. return new_id;
  1075. }
  1076. // Register function to process a new task
  1077. void on_new_task(std::function<void(server_task)> callback) {
  1078. callback_new_task = std::move(callback);
  1079. }
  1080. // Register the function to be called when all slots data is ready to be processed
  1081. void on_update_slots(std::function<void(void)> callback) {
  1082. callback_update_slots = std::move(callback);
  1083. }
  1084. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1085. void pop_deferred_task() {
  1086. std::unique_lock<std::mutex> lock(mutex_tasks);
  1087. if (!queue_tasks_deferred.empty()) {
  1088. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1089. queue_tasks_deferred.pop_front();
  1090. }
  1091. condition_tasks.notify_one();
  1092. }
  1093. // end the start_loop routine
  1094. void terminate() {
  1095. std::unique_lock<std::mutex> lock(mutex_tasks);
  1096. running = false;
  1097. condition_tasks.notify_all();
  1098. }
  1099. /**
  1100. * Main loop consists of these steps:
  1101. * - Wait until a new task arrives
  1102. * - Process the task (i.e. maybe copy data into slot)
  1103. * - Check if multitask is finished
  1104. * - Update all slots
  1105. */
  1106. void start_loop() {
  1107. running = true;
  1108. while (true) {
  1109. QUE_DBG("%s", "processing new tasks\n");
  1110. while (true) {
  1111. std::unique_lock<std::mutex> lock(mutex_tasks);
  1112. if (queue_tasks.empty()) {
  1113. lock.unlock();
  1114. break;
  1115. }
  1116. server_task task = queue_tasks.front();
  1117. queue_tasks.pop_front();
  1118. lock.unlock();
  1119. QUE_DBG("processing task, id = %d\n", task.id);
  1120. callback_new_task(std::move(task));
  1121. }
  1122. // all tasks in the current loop is processed, slots data is now ready
  1123. QUE_DBG("%s", "update slots\n");
  1124. callback_update_slots();
  1125. QUE_DBG("%s", "waiting for new tasks\n");
  1126. {
  1127. std::unique_lock<std::mutex> lock(mutex_tasks);
  1128. if (queue_tasks.empty()) {
  1129. if (!running) {
  1130. QUE_DBG("%s", "terminate\n");
  1131. return;
  1132. }
  1133. condition_tasks.wait(lock, [&]{
  1134. return (!queue_tasks.empty() || !running);
  1135. });
  1136. }
  1137. }
  1138. }
  1139. }
  1140. };
  1141. struct server_response {
  1142. // for keeping track of all tasks waiting for the result
  1143. std::unordered_set<int> waiting_task_ids;
  1144. // the main result queue (using ptr for polymorphism)
  1145. std::vector<server_task_result_ptr> queue_results;
  1146. std::mutex mutex_results;
  1147. std::condition_variable condition_results;
  1148. // add the id_task to the list of tasks waiting for response
  1149. void add_waiting_task_id(int id_task) {
  1150. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1151. std::unique_lock<std::mutex> lock(mutex_results);
  1152. waiting_task_ids.insert(id_task);
  1153. }
  1154. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1155. std::unique_lock<std::mutex> lock(mutex_results);
  1156. for (const auto & task : tasks) {
  1157. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1158. waiting_task_ids.insert(task.id);
  1159. }
  1160. }
  1161. // when the request is finished, we can remove task associated with it
  1162. void remove_waiting_task_id(int id_task) {
  1163. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1164. std::unique_lock<std::mutex> lock(mutex_results);
  1165. waiting_task_ids.erase(id_task);
  1166. }
  1167. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1168. std::unique_lock<std::mutex> lock(mutex_results);
  1169. for (const auto & id_task : id_tasks) {
  1170. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1171. waiting_task_ids.erase(id_task);
  1172. }
  1173. }
  1174. // This function blocks the thread until there is a response for one of the id_tasks
  1175. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1176. while (true) {
  1177. std::unique_lock<std::mutex> lock(mutex_results);
  1178. condition_results.wait(lock, [&]{
  1179. return !queue_results.empty();
  1180. });
  1181. for (int i = 0; i < (int) queue_results.size(); i++) {
  1182. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1183. server_task_result_ptr res = std::move(queue_results[i]);
  1184. queue_results.erase(queue_results.begin() + i);
  1185. return res;
  1186. }
  1187. }
  1188. }
  1189. // should never reach here
  1190. }
  1191. // single-task version of recv()
  1192. server_task_result_ptr recv(int id_task) {
  1193. std::unordered_set<int> id_tasks = {id_task};
  1194. return recv(id_tasks);
  1195. }
  1196. // Send a new result to a waiting id_task
  1197. void send(server_task_result_ptr && result) {
  1198. SRV_DBG("sending result for task id = %d\n", result->id);
  1199. std::unique_lock<std::mutex> lock(mutex_results);
  1200. for (const auto & id_task : waiting_task_ids) {
  1201. if (result->id == id_task) {
  1202. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1203. queue_results.emplace_back(std::move(result));
  1204. condition_results.notify_all();
  1205. return;
  1206. }
  1207. }
  1208. }
  1209. };
  1210. struct server_context {
  1211. common_params params_base;
  1212. llama_model * model = nullptr;
  1213. llama_context * ctx = nullptr;
  1214. std::vector<common_lora_adapter_container> loras;
  1215. llama_model * model_dft = nullptr;
  1216. llama_context_params cparams_dft;
  1217. llama_batch batch = {};
  1218. bool clean_kv_cache = true;
  1219. bool add_bos_token = true;
  1220. bool has_eos_token = false;
  1221. int32_t n_ctx; // total context for all clients / slots
  1222. // slots / clients
  1223. std::vector<server_slot> slots;
  1224. json default_generation_settings_for_props;
  1225. server_queue queue_tasks;
  1226. server_response queue_results;
  1227. server_metrics metrics;
  1228. // Necessary similarity of prompt for slot selection
  1229. float slot_prompt_similarity = 0.0f;
  1230. ~server_context() {
  1231. if (ctx) {
  1232. llama_free(ctx);
  1233. ctx = nullptr;
  1234. }
  1235. if (model) {
  1236. llama_free_model(model);
  1237. model = nullptr;
  1238. }
  1239. if (model_dft) {
  1240. llama_free_model(model_dft);
  1241. model_dft = nullptr;
  1242. }
  1243. // Clear any sampling context
  1244. for (server_slot & slot : slots) {
  1245. common_sampler_free(slot.smpl);
  1246. slot.smpl = nullptr;
  1247. llama_free(slot.ctx_dft);
  1248. slot.ctx_dft = nullptr;
  1249. common_speculative_free(slot.spec);
  1250. slot.spec = nullptr;
  1251. llama_batch_free(slot.batch_spec);
  1252. }
  1253. llama_batch_free(batch);
  1254. }
  1255. bool load_model(const common_params & params) {
  1256. SRV_INF("loading model '%s'\n", params.model.c_str());
  1257. params_base = params;
  1258. common_init_result llama_init = common_init_from_params(params_base);
  1259. model = llama_init.model;
  1260. ctx = llama_init.context;
  1261. loras = llama_init.lora_adapters;
  1262. if (model == nullptr) {
  1263. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1264. return false;
  1265. }
  1266. n_ctx = llama_n_ctx(ctx);
  1267. add_bos_token = llama_add_bos_token(model);
  1268. has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
  1269. if (!params_base.speculative.model.empty()) {
  1270. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1271. auto params_dft = params_base;
  1272. params_dft.devices = params_base.speculative.devices;
  1273. params_dft.model = params_base.speculative.model;
  1274. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1275. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1276. params_dft.n_parallel = 1;
  1277. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1278. model_dft = llama_init_dft.model;
  1279. if (model_dft == nullptr) {
  1280. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1281. return false;
  1282. }
  1283. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1284. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1285. llama_free (llama_init_dft.context);
  1286. llama_free_model(llama_init_dft.model);
  1287. return false;
  1288. }
  1289. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1290. cparams_dft = common_context_params_to_llama(params_dft);
  1291. cparams_dft.n_batch = n_ctx_dft;
  1292. // force F16 KV cache for the draft model for extra performance
  1293. cparams_dft.type_k = GGML_TYPE_F16;
  1294. cparams_dft.type_v = GGML_TYPE_F16;
  1295. // the context is not needed - we will create one for each slot
  1296. llama_free(llama_init_dft.context);
  1297. }
  1298. return true;
  1299. }
  1300. bool validate_model_chat_template() const {
  1301. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  1302. std::string template_key = "tokenizer.chat_template";
  1303. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  1304. if (res >= 0) {
  1305. llama_chat_message chat[] = {{"user", "test"}};
  1306. std::string tmpl = std::string(model_template.data(), model_template.size());
  1307. int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1308. return chat_res > 0;
  1309. }
  1310. return false;
  1311. }
  1312. void init() {
  1313. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1314. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1315. for (int i = 0; i < params_base.n_parallel; i++) {
  1316. server_slot slot;
  1317. slot.id = i;
  1318. slot.ctx = ctx;
  1319. slot.n_ctx = n_ctx_slot;
  1320. slot.n_predict = params_base.n_predict;
  1321. if (model_dft) {
  1322. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1323. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1324. if (slot.ctx_dft == nullptr) {
  1325. SRV_ERR("%s", "failed to create draft context\n");
  1326. return;
  1327. }
  1328. slot.spec = common_speculative_init(slot.ctx_dft);
  1329. if (slot.spec == nullptr) {
  1330. SRV_ERR("%s", "failed to create speculator\n");
  1331. return;
  1332. }
  1333. }
  1334. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1335. slot.params.sampling = params_base.sampling;
  1336. slot.callback_on_release = [this](int) {
  1337. queue_tasks.pop_deferred_task();
  1338. };
  1339. slot.reset();
  1340. slots.push_back(slot);
  1341. }
  1342. default_generation_settings_for_props = slots[0].to_json();
  1343. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1344. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1345. {
  1346. const int32_t n_batch = llama_n_batch(ctx);
  1347. // only a single seq_id per token is needed
  1348. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1349. }
  1350. metrics.init();
  1351. }
  1352. server_slot * get_slot_by_id(int id) {
  1353. for (server_slot & slot : slots) {
  1354. if (slot.id == id) {
  1355. return &slot;
  1356. }
  1357. }
  1358. return nullptr;
  1359. }
  1360. server_slot * get_available_slot(const server_task & task) {
  1361. server_slot * ret = nullptr;
  1362. // find the slot that has at least n% prompt similarity
  1363. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1364. int lcs_len = 0;
  1365. float similarity = 0;
  1366. for (server_slot & slot : slots) {
  1367. // skip the slot if it is not available
  1368. if (slot.is_processing()) {
  1369. continue;
  1370. }
  1371. // skip the slot if it does not contains cached tokens
  1372. if (slot.cache_tokens.empty()) {
  1373. continue;
  1374. }
  1375. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1376. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1377. // fraction of the common subsequence length compared to the current slot's prompt length
  1378. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1379. // select the current slot if the criteria match
  1380. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1381. lcs_len = cur_lcs_len;
  1382. similarity = cur_similarity;
  1383. ret = &slot;
  1384. }
  1385. }
  1386. if (ret != nullptr) {
  1387. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1388. }
  1389. }
  1390. // find the slot that has been least recently used
  1391. if (ret == nullptr) {
  1392. int64_t t_last = ggml_time_us();
  1393. for (server_slot & slot : slots) {
  1394. // skip the slot if it is not available
  1395. if (slot.is_processing()) {
  1396. continue;
  1397. }
  1398. // select the current slot if the criteria match
  1399. if (slot.t_last_used < t_last) {
  1400. t_last = slot.t_last_used;
  1401. ret = &slot;
  1402. }
  1403. }
  1404. if (ret != nullptr) {
  1405. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1406. }
  1407. }
  1408. return ret;
  1409. }
  1410. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1411. slot.reset();
  1412. slot.id_task = task.id;
  1413. slot.index = task.index;
  1414. slot.task_type = task.type;
  1415. slot.params = std::move(task.params);
  1416. slot.prompt_tokens = std::move(task.prompt_tokens);
  1417. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1418. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1419. // Might be better to reject the request with a 400 ?
  1420. slot.params.n_predict = slot.n_predict;
  1421. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1422. }
  1423. if (slot.params.ignore_eos && has_eos_token) {
  1424. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1425. }
  1426. {
  1427. if (slot.smpl != nullptr) {
  1428. common_sampler_free(slot.smpl);
  1429. }
  1430. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1431. if (slot.smpl == nullptr) {
  1432. // for now, the only error that may happen here is invalid grammar
  1433. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1434. return false;
  1435. }
  1436. }
  1437. if (slot.ctx_dft) {
  1438. llama_batch_free(slot.batch_spec);
  1439. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1440. }
  1441. slot.state = SLOT_STATE_STARTED;
  1442. SLT_INF(slot, "%s", "processing task\n");
  1443. return true;
  1444. }
  1445. void kv_cache_clear() {
  1446. SRV_DBG("%s", "clearing KV cache\n");
  1447. // clear the entire KV cache
  1448. llama_kv_cache_clear(ctx);
  1449. clean_kv_cache = false;
  1450. }
  1451. bool process_token(completion_token_output & result, server_slot & slot) {
  1452. // remember which tokens were sampled - used for repetition penalties during sampling
  1453. const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
  1454. slot.sampled = result.tok;
  1455. slot.generated_text += token_str;
  1456. if (slot.params.return_tokens) {
  1457. slot.generated_tokens.push_back(result.tok);
  1458. }
  1459. slot.has_next_token = true;
  1460. // check if there is incomplete UTF-8 character at the end
  1461. bool incomplete = false;
  1462. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  1463. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  1464. if ((c & 0xC0) == 0x80) {
  1465. // continuation byte: 10xxxxxx
  1466. continue;
  1467. }
  1468. if ((c & 0xE0) == 0xC0) {
  1469. // 2-byte character: 110xxxxx ...
  1470. incomplete = i < 2;
  1471. } else if ((c & 0xF0) == 0xE0) {
  1472. // 3-byte character: 1110xxxx ...
  1473. incomplete = i < 3;
  1474. } else if ((c & 0xF8) == 0xF0) {
  1475. // 4-byte character: 11110xxx ...
  1476. incomplete = i < 4;
  1477. }
  1478. // else 1-byte character or invalid byte
  1479. break;
  1480. }
  1481. // search stop word and delete it
  1482. if (!incomplete) {
  1483. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1484. const std::string str_test = slot.generated_text.substr(pos);
  1485. bool send_text = true;
  1486. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1487. if (stop_pos != std::string::npos) {
  1488. slot.generated_text.erase(
  1489. slot.generated_text.begin() + pos + stop_pos,
  1490. slot.generated_text.end());
  1491. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1492. } else if (slot.has_next_token) {
  1493. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1494. send_text = stop_pos == std::string::npos;
  1495. }
  1496. // check if there is any token to predict
  1497. if (send_text) {
  1498. // no send the stop word in the response
  1499. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1500. slot.n_sent_text += result.text_to_send.size();
  1501. // add the token to slot queue and cache
  1502. }
  1503. slot.add_token(result);
  1504. if (slot.params.stream) {
  1505. send_partial_response(slot, result);
  1506. }
  1507. }
  1508. if (incomplete) {
  1509. slot.has_next_token = true;
  1510. }
  1511. // check the limits
  1512. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1513. slot.stop = STOP_TYPE_LIMIT;
  1514. slot.has_next_token = false;
  1515. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1516. }
  1517. if (slot.has_new_line) {
  1518. // if we have already seen a new line, we stop after a certain time limit
  1519. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1520. slot.stop = STOP_TYPE_LIMIT;
  1521. slot.has_next_token = false;
  1522. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1523. }
  1524. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1525. if (slot.params.n_indent > 0) {
  1526. // check the current indentation
  1527. // TODO: improve by not doing it more than once for each new line
  1528. if (slot.last_nl_pos > 0) {
  1529. size_t pos = slot.last_nl_pos;
  1530. int n_indent = 0;
  1531. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1532. n_indent++;
  1533. pos++;
  1534. }
  1535. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1536. slot.stop = STOP_TYPE_LIMIT;
  1537. slot.has_next_token = false;
  1538. // cut the last line
  1539. slot.generated_text.erase(pos, std::string::npos);
  1540. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1541. }
  1542. }
  1543. // find the next new line
  1544. {
  1545. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1546. if (pos != std::string::npos) {
  1547. slot.last_nl_pos = pos + 1;
  1548. }
  1549. }
  1550. }
  1551. }
  1552. // check if there is a new line in the generated text
  1553. if (result.text_to_send.find('\n') != std::string::npos) {
  1554. slot.has_new_line = true;
  1555. }
  1556. // if context shift is disabled, we stop when it reaches the context limit
  1557. if (slot.n_past >= slot.n_ctx) {
  1558. slot.truncated = true;
  1559. slot.stop = STOP_TYPE_LIMIT;
  1560. slot.has_next_token = false;
  1561. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1562. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1563. }
  1564. if (llama_token_is_eog(model, result.tok)) {
  1565. slot.stop = STOP_TYPE_EOS;
  1566. slot.has_next_token = false;
  1567. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1568. }
  1569. const auto n_ctx_train = llama_n_ctx_train(model);
  1570. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1571. slot.truncated = true;
  1572. slot.stop = STOP_TYPE_LIMIT;
  1573. slot.has_next_token = false; // stop prediction
  1574. SLT_WRN(slot,
  1575. "n_predict (%d) is set for infinite generation. "
  1576. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1577. slot.params.n_predict, n_ctx_train);
  1578. }
  1579. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1580. return slot.has_next_token; // continue
  1581. }
  1582. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1583. send_error(task.id, error, type);
  1584. }
  1585. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1586. send_error(slot.id_task, error, type);
  1587. }
  1588. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1589. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1590. auto res = std::make_unique<server_task_result_error>();
  1591. res->id = id_task;
  1592. res->err_type = type;
  1593. res->err_msg = error;
  1594. queue_results.send(std::move(res));
  1595. }
  1596. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1597. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1598. res->id = slot.id_task;
  1599. res->index = slot.index;
  1600. res->content = tkn.text_to_send;
  1601. res->tokens = { tkn.tok };
  1602. res->n_decoded = slot.n_decoded;
  1603. res->n_prompt_tokens = slot.n_prompt_tokens;
  1604. res->verbose = slot.params.verbose;
  1605. res->oaicompat = slot.params.oaicompat;
  1606. res->oaicompat_chat = slot.params.oaicompat_chat;
  1607. res->oaicompat_model = slot.params.oaicompat_model;
  1608. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1609. // populate res.probs_output
  1610. if (slot.params.sampling.n_probs > 0) {
  1611. const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
  1612. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1613. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1614. std::vector<completion_token_output> probs_output;
  1615. if (probs_pos < probs_stop_pos) {
  1616. res->probs_output = std::vector<completion_token_output>(
  1617. slot.generated_token_probs.begin() + probs_pos,
  1618. slot.generated_token_probs.begin() + probs_stop_pos);
  1619. }
  1620. }
  1621. // populate timings if this is final response or timings_per_token is enabled
  1622. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1623. res->timings = slot.get_timings();
  1624. }
  1625. queue_results.send(std::move(res));
  1626. }
  1627. void send_final_response(server_slot & slot) {
  1628. auto res = std::make_unique<server_task_result_cmpl_final>();
  1629. res->id = slot.id_task;
  1630. res->id_slot = slot.id;
  1631. res->index = slot.index;
  1632. res->content = slot.generated_text;
  1633. res->tokens = slot.generated_tokens;
  1634. res->timings = slot.get_timings();
  1635. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1636. res->truncated = slot.truncated;
  1637. res->n_decoded = slot.n_decoded;
  1638. res->n_prompt_tokens = slot.n_prompt_tokens;
  1639. res->n_tokens_cached = slot.n_past;
  1640. res->has_new_line = slot.has_new_line;
  1641. res->stopping_word = slot.stopping_word;
  1642. res->stop = slot.stop;
  1643. res->verbose = slot.params.verbose;
  1644. res->stream = slot.params.stream;
  1645. res->oaicompat = slot.params.oaicompat;
  1646. res->oaicompat_chat = slot.params.oaicompat_chat;
  1647. res->oaicompat_model = slot.params.oaicompat_model;
  1648. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1649. // populate res.probs_output
  1650. if (slot.params.sampling.n_probs > 0) {
  1651. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1652. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1653. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1654. res->probs_output = std::vector<completion_token_output>(
  1655. slot.generated_token_probs.begin(),
  1656. slot.generated_token_probs.end() - safe_offset);
  1657. } else {
  1658. res->probs_output = std::vector<completion_token_output>(
  1659. slot.generated_token_probs.begin(),
  1660. slot.generated_token_probs.end());
  1661. }
  1662. }
  1663. res->generation_params = slot.params; // copy the parameters
  1664. queue_results.send(std::move(res));
  1665. }
  1666. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1667. auto res = std::make_unique<server_task_result_embd>();
  1668. res->id = slot.id_task;
  1669. res->index = slot.index;
  1670. res->n_tokens = slot.n_prompt_tokens;
  1671. res->oaicompat = slot.params.oaicompat;
  1672. const int n_embd = llama_n_embd(model);
  1673. std::vector<float> embd_res(n_embd, 0.0f);
  1674. for (int i = 0; i < batch.n_tokens; ++i) {
  1675. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1676. continue;
  1677. }
  1678. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1679. if (embd == NULL) {
  1680. embd = llama_get_embeddings_ith(ctx, i);
  1681. }
  1682. if (embd == NULL) {
  1683. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1684. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1685. continue;
  1686. }
  1687. // normalize only when there is pooling
  1688. // TODO: configurable
  1689. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1690. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1691. res->embedding.push_back(embd_res);
  1692. } else {
  1693. res->embedding.push_back({ embd, embd + n_embd });
  1694. }
  1695. }
  1696. SLT_DBG(slot, "%s", "sending embeddings\n");
  1697. queue_results.send(std::move(res));
  1698. }
  1699. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1700. auto res = std::make_unique<server_task_result_rerank>();
  1701. res->id = slot.id_task;
  1702. res->index = slot.index;
  1703. res->n_tokens = slot.n_prompt_tokens;
  1704. for (int i = 0; i < batch.n_tokens; ++i) {
  1705. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1706. continue;
  1707. }
  1708. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1709. if (embd == NULL) {
  1710. embd = llama_get_embeddings_ith(ctx, i);
  1711. }
  1712. if (embd == NULL) {
  1713. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1714. res->score = -1e6;
  1715. continue;
  1716. }
  1717. res->score = embd[0];
  1718. }
  1719. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1720. queue_results.send(std::move(res));
  1721. }
  1722. //
  1723. // Functions to create new task(s) and receive result(s)
  1724. //
  1725. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1726. std::vector<server_task> cancel_tasks;
  1727. cancel_tasks.reserve(id_tasks.size());
  1728. for (const auto & id_task : id_tasks) {
  1729. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1730. server_task task(SERVER_TASK_TYPE_CANCEL);
  1731. task.id_target = id_task;
  1732. cancel_tasks.push_back(task);
  1733. queue_results.remove_waiting_task_id(id_task);
  1734. }
  1735. // push to beginning of the queue, so it has highest priority
  1736. queue_tasks.post(cancel_tasks, true);
  1737. }
  1738. // receive the results from task(s)
  1739. void receive_multi_results(
  1740. const std::unordered_set<int> & id_tasks,
  1741. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1742. const std::function<void(json)> & error_handler) {
  1743. std::vector<server_task_result_ptr> results(id_tasks.size());
  1744. for (size_t i = 0; i < id_tasks.size(); i++) {
  1745. server_task_result_ptr result = queue_results.recv(id_tasks);
  1746. if (result->is_error()) {
  1747. error_handler(result->to_json());
  1748. cancel_tasks(id_tasks);
  1749. return;
  1750. }
  1751. GGML_ASSERT(
  1752. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1753. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1754. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1755. );
  1756. const size_t idx = result->get_index();
  1757. GGML_ASSERT(idx < results.size() && "index out of range");
  1758. results[idx] = std::move(result);
  1759. }
  1760. result_handler(results);
  1761. }
  1762. // receive the results from task(s), in stream mode
  1763. void receive_cmpl_results_stream(
  1764. const std::unordered_set<int> & id_tasks,
  1765. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1766. const std::function<void(json)> & error_handler) {
  1767. size_t n_finished = 0;
  1768. while (true) {
  1769. server_task_result_ptr result = queue_results.recv(id_tasks);
  1770. if (result->is_error()) {
  1771. error_handler(result->to_json());
  1772. cancel_tasks(id_tasks);
  1773. return;
  1774. }
  1775. GGML_ASSERT(
  1776. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1777. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1778. );
  1779. if (!result_handler(result)) {
  1780. cancel_tasks(id_tasks);
  1781. break;
  1782. }
  1783. if (result->is_stop()) {
  1784. if (++n_finished == id_tasks.size()) {
  1785. break;
  1786. }
  1787. }
  1788. }
  1789. }
  1790. //
  1791. // Functions to process the task
  1792. //
  1793. void process_single_task(server_task task) {
  1794. switch (task.type) {
  1795. case SERVER_TASK_TYPE_COMPLETION:
  1796. case SERVER_TASK_TYPE_INFILL:
  1797. case SERVER_TASK_TYPE_EMBEDDING:
  1798. case SERVER_TASK_TYPE_RERANK:
  1799. {
  1800. const int id_slot = task.id_selected_slot;
  1801. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1802. if (slot == nullptr) {
  1803. // if no slot is available, we defer this task for processing later
  1804. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1805. queue_tasks.defer(task);
  1806. break;
  1807. }
  1808. if (slot->is_processing()) {
  1809. // if requested slot is unavailable, we defer this task for processing later
  1810. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1811. queue_tasks.defer(task);
  1812. break;
  1813. }
  1814. if (!launch_slot_with_task(*slot, task)) {
  1815. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1816. break;
  1817. }
  1818. } break;
  1819. case SERVER_TASK_TYPE_CANCEL:
  1820. {
  1821. // release slot linked with the task id
  1822. for (auto & slot : slots) {
  1823. if (slot.id_task == task.id_target) {
  1824. slot.release();
  1825. break;
  1826. }
  1827. }
  1828. } break;
  1829. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1830. {
  1831. // do nothing
  1832. } break;
  1833. case SERVER_TASK_TYPE_METRICS:
  1834. {
  1835. json slots_data = json::array();
  1836. int n_idle_slots = 0;
  1837. int n_processing_slots = 0;
  1838. for (server_slot & slot : slots) {
  1839. json slot_data = slot.to_json();
  1840. if (slot.is_processing()) {
  1841. n_processing_slots++;
  1842. } else {
  1843. n_idle_slots++;
  1844. }
  1845. slots_data.push_back(slot_data);
  1846. }
  1847. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1848. auto res = std::make_unique<server_task_result_metrics>();
  1849. res->id = task.id;
  1850. res->slots_data = std::move(slots_data);
  1851. res->n_idle_slots = n_idle_slots;
  1852. res->n_processing_slots = n_processing_slots;
  1853. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  1854. res->t_start = metrics.t_start;
  1855. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  1856. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  1857. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  1858. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  1859. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  1860. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  1861. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  1862. res->t_prompt_processing = metrics.t_prompt_processing;
  1863. res->n_tokens_predicted = metrics.n_tokens_predicted;
  1864. res->t_tokens_generation = metrics.t_tokens_generation;
  1865. res->n_decode_total = metrics.n_decode_total;
  1866. res->n_busy_slots_total = metrics.n_busy_slots_total;
  1867. if (task.metrics_reset_bucket) {
  1868. metrics.reset_bucket();
  1869. }
  1870. queue_results.send(std::move(res));
  1871. } break;
  1872. case SERVER_TASK_TYPE_SLOT_SAVE:
  1873. {
  1874. int id_slot = task.slot_action.slot_id;
  1875. server_slot * slot = get_slot_by_id(id_slot);
  1876. if (slot == nullptr) {
  1877. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1878. break;
  1879. }
  1880. if (slot->is_processing()) {
  1881. // if requested slot is unavailable, we defer this task for processing later
  1882. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1883. queue_tasks.defer(task);
  1884. break;
  1885. }
  1886. const size_t token_count = slot->cache_tokens.size();
  1887. const int64_t t_start = ggml_time_us();
  1888. std::string filename = task.slot_action.filename;
  1889. std::string filepath = task.slot_action.filepath;
  1890. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  1891. const int64_t t_end = ggml_time_us();
  1892. const double t_save_ms = (t_end - t_start) / 1000.0;
  1893. auto res = std::make_unique<server_task_result_slot_save_load>();
  1894. res->id = task.id;
  1895. res->id_slot = id_slot;
  1896. res->filename = filename;
  1897. res->is_save = true;
  1898. res->n_tokens = token_count;
  1899. res->n_bytes = nwrite;
  1900. res->t_ms = t_save_ms;
  1901. queue_results.send(std::move(res));
  1902. } break;
  1903. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1904. {
  1905. int id_slot = task.slot_action.slot_id;
  1906. server_slot * slot = get_slot_by_id(id_slot);
  1907. if (slot == nullptr) {
  1908. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1909. break;
  1910. }
  1911. if (slot->is_processing()) {
  1912. // if requested slot is unavailable, we defer this task for processing later
  1913. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1914. queue_tasks.defer(task);
  1915. break;
  1916. }
  1917. const int64_t t_start = ggml_time_us();
  1918. std::string filename = task.slot_action.filename;
  1919. std::string filepath = task.slot_action.filepath;
  1920. slot->cache_tokens.resize(slot->n_ctx);
  1921. size_t token_count = 0;
  1922. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1923. if (nread == 0) {
  1924. slot->cache_tokens.resize(0);
  1925. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1926. break;
  1927. }
  1928. slot->cache_tokens.resize(token_count);
  1929. const int64_t t_end = ggml_time_us();
  1930. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1931. auto res = std::make_unique<server_task_result_slot_save_load>();
  1932. res->id = task.id;
  1933. res->id_slot = id_slot;
  1934. res->filename = filename;
  1935. res->is_save = false;
  1936. res->n_tokens = token_count;
  1937. res->n_bytes = nread;
  1938. res->t_ms = t_restore_ms;
  1939. queue_results.send(std::move(res));
  1940. } break;
  1941. case SERVER_TASK_TYPE_SLOT_ERASE:
  1942. {
  1943. int id_slot = task.slot_action.slot_id;
  1944. server_slot * slot = get_slot_by_id(id_slot);
  1945. if (slot == nullptr) {
  1946. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1947. break;
  1948. }
  1949. if (slot->is_processing()) {
  1950. // if requested slot is unavailable, we defer this task for processing later
  1951. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1952. queue_tasks.defer(task);
  1953. break;
  1954. }
  1955. // Erase token cache
  1956. const size_t n_erased = slot->cache_tokens.size();
  1957. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  1958. slot->cache_tokens.clear();
  1959. auto res = std::make_unique<server_task_result_slot_erase>();
  1960. res->id = task.id;
  1961. res->id_slot = id_slot;
  1962. res->n_erased = n_erased;
  1963. queue_results.send(std::move(res));
  1964. } break;
  1965. case SERVER_TASK_TYPE_SET_LORA:
  1966. {
  1967. common_lora_adapters_apply(ctx, loras);
  1968. auto res = std::make_unique<server_task_result_apply_lora>();
  1969. res->id = task.id;
  1970. queue_results.send(std::move(res));
  1971. } break;
  1972. }
  1973. }
  1974. void update_slots() {
  1975. // check if all slots are idle
  1976. {
  1977. bool all_idle = true;
  1978. for (auto & slot : slots) {
  1979. if (slot.is_processing()) {
  1980. all_idle = false;
  1981. break;
  1982. }
  1983. }
  1984. if (all_idle) {
  1985. SRV_INF("%s", "all slots are idle\n");
  1986. if (clean_kv_cache) {
  1987. kv_cache_clear();
  1988. }
  1989. return;
  1990. }
  1991. }
  1992. {
  1993. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1994. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  1995. task.id = queue_tasks.get_new_id();
  1996. queue_tasks.post(task);
  1997. }
  1998. // apply context-shift if needed
  1999. // TODO: simplify and improve
  2000. for (server_slot & slot : slots) {
  2001. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2002. if (!params_base.ctx_shift) {
  2003. // this check is redundant (for good)
  2004. // we should never get here, because generation should already stopped in process_token()
  2005. slot.release();
  2006. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2007. continue;
  2008. }
  2009. // Shift context
  2010. const int n_keep = slot.params.n_keep + add_bos_token;
  2011. const int n_left = slot.n_past - n_keep;
  2012. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2013. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2014. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2015. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2016. if (slot.params.cache_prompt) {
  2017. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2018. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2019. }
  2020. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2021. }
  2022. slot.n_past -= n_discard;
  2023. slot.truncated = true;
  2024. }
  2025. }
  2026. // start populating the batch for this iteration
  2027. common_batch_clear(batch);
  2028. // frist, add sampled tokens from any ongoing sequences
  2029. for (auto & slot : slots) {
  2030. if (slot.state != SLOT_STATE_GENERATING) {
  2031. continue;
  2032. }
  2033. slot.i_batch = batch.n_tokens;
  2034. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2035. slot.n_past += 1;
  2036. if (slot.params.cache_prompt) {
  2037. slot.cache_tokens.push_back(slot.sampled);
  2038. }
  2039. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2040. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2041. }
  2042. // process in chunks of params.n_batch
  2043. int32_t n_batch = llama_n_batch(ctx);
  2044. int32_t n_ubatch = llama_n_ubatch(ctx);
  2045. // track if this is an embedding or non-embedding batch
  2046. // if we've added sampled tokens above, we are in non-embedding mode
  2047. // -1: none, 0: non-embedding, 1: embedding
  2048. // TODO: make enum
  2049. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  2050. // next, batch any pending prompts without exceeding n_batch
  2051. if (params_base.cont_batching || batch.n_tokens == 0) {
  2052. for (auto & slot : slots) {
  2053. // this slot still has a prompt to be processed
  2054. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2055. auto & prompt_tokens = slot.prompt_tokens;
  2056. // TODO: maybe move branch to outside of this loop in the future
  2057. if (slot.state == SLOT_STATE_STARTED) {
  2058. slot.t_start_process_prompt = ggml_time_us();
  2059. slot.t_start_generation = 0;
  2060. slot.n_past = 0;
  2061. slot.n_prompt_tokens = prompt_tokens.size();
  2062. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2063. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2064. // print prompt tokens (for debugging)
  2065. if (1) {
  2066. // first 16 tokens (avoid flooding logs)
  2067. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2068. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2069. }
  2070. } else {
  2071. // all
  2072. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2073. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2074. }
  2075. }
  2076. // empty prompt passed -> release the slot and send empty response
  2077. if (prompt_tokens.empty()) {
  2078. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2079. slot.release();
  2080. slot.print_timings();
  2081. send_final_response(slot);
  2082. continue;
  2083. }
  2084. if (slot.is_non_causal()) {
  2085. if (slot.n_prompt_tokens > n_ubatch) {
  2086. slot.release();
  2087. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2088. continue;
  2089. }
  2090. if (slot.n_prompt_tokens > slot.n_ctx) {
  2091. slot.release();
  2092. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2093. continue;
  2094. }
  2095. } else {
  2096. if (!params_base.ctx_shift) {
  2097. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2098. // TODO: there should be a separate parameter that control prompt truncation
  2099. // context shift should be applied only during the generation phase
  2100. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2101. slot.release();
  2102. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2103. continue;
  2104. }
  2105. }
  2106. if (slot.params.n_keep < 0) {
  2107. slot.params.n_keep = slot.n_prompt_tokens;
  2108. }
  2109. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2110. // if input prompt is too big, truncate it
  2111. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2112. const int n_left = slot.n_ctx - slot.params.n_keep;
  2113. const int n_block_size = n_left / 2;
  2114. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2115. llama_tokens new_tokens(
  2116. prompt_tokens.begin(),
  2117. prompt_tokens.begin() + slot.params.n_keep);
  2118. new_tokens.insert(
  2119. new_tokens.end(),
  2120. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2121. prompt_tokens.end());
  2122. prompt_tokens = std::move(new_tokens);
  2123. slot.truncated = true;
  2124. slot.n_prompt_tokens = prompt_tokens.size();
  2125. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2126. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2127. }
  2128. if (slot.params.cache_prompt) {
  2129. // reuse any previously computed tokens that are common with the new prompt
  2130. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2131. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2132. if (params_base.n_cache_reuse > 0) {
  2133. size_t head_c = slot.n_past; // cache
  2134. size_t head_p = slot.n_past; // current prompt
  2135. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2136. while (head_c < slot.cache_tokens.size() &&
  2137. head_p < prompt_tokens.size()) {
  2138. size_t n_match = 0;
  2139. while (head_c + n_match < slot.cache_tokens.size() &&
  2140. head_p + n_match < prompt_tokens.size() &&
  2141. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2142. n_match++;
  2143. }
  2144. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2145. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2146. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2147. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2148. //}
  2149. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2150. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2151. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2152. for (size_t i = 0; i < n_match; i++) {
  2153. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2154. slot.n_past++;
  2155. }
  2156. head_c += n_match;
  2157. head_p += n_match;
  2158. } else {
  2159. head_c += 1;
  2160. }
  2161. }
  2162. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2163. }
  2164. }
  2165. }
  2166. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2167. // we have to evaluate at least 1 token to generate logits.
  2168. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2169. slot.n_past--;
  2170. }
  2171. slot.n_prompt_tokens_processed = 0;
  2172. }
  2173. // non-causal tasks require to fit the entire prompt in the physical batch
  2174. if (slot.is_non_causal()) {
  2175. // cannot fit the prompt in the current batch - will try next iter
  2176. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2177. continue;
  2178. }
  2179. }
  2180. // check that we are in the right batch_type, if not defer the slot
  2181. int slot_type = slot.is_non_causal();
  2182. if (batch_type == -1) {
  2183. batch_type = slot_type;
  2184. } else if (batch_type != slot_type) {
  2185. continue;
  2186. }
  2187. // keep only the common part
  2188. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2189. // could not partially delete (likely using a non-Transformer model)
  2190. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2191. // there is no common part left
  2192. slot.n_past = 0;
  2193. }
  2194. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2195. // remove the non-common part from the cache
  2196. slot.cache_tokens.resize(slot.n_past);
  2197. // add prompt tokens for processing in the current batch
  2198. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2199. // without pooling, we want to output the embeddings for all the tokens in the batch
  2200. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2201. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2202. if (slot.params.cache_prompt) {
  2203. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2204. }
  2205. slot.n_prompt_tokens_processed++;
  2206. slot.n_past++;
  2207. }
  2208. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2209. // entire prompt has been processed
  2210. if (slot.n_past == slot.n_prompt_tokens) {
  2211. slot.state = SLOT_STATE_DONE_PROMPT;
  2212. GGML_ASSERT(batch.n_tokens > 0);
  2213. common_sampler_reset(slot.smpl);
  2214. // Process all prompt tokens through sampler system
  2215. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2216. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2217. }
  2218. // extract the logits only for the last token
  2219. batch.logits[batch.n_tokens - 1] = true;
  2220. slot.n_decoded = 0;
  2221. slot.i_batch = batch.n_tokens - 1;
  2222. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2223. }
  2224. }
  2225. if (batch.n_tokens >= n_batch) {
  2226. break;
  2227. }
  2228. }
  2229. }
  2230. if (batch.n_tokens == 0) {
  2231. SRV_WRN("%s", "no tokens to decode\n");
  2232. return;
  2233. }
  2234. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2235. // make sure we're in the right embedding mode
  2236. llama_set_embeddings(ctx, batch_type == 1);
  2237. // process the created batch of tokens
  2238. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2239. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2240. llama_batch batch_view = {
  2241. n_tokens,
  2242. batch.token + i,
  2243. nullptr,
  2244. batch.pos + i,
  2245. batch.n_seq_id + i,
  2246. batch.seq_id + i,
  2247. batch.logits + i,
  2248. };
  2249. const int ret = llama_decode(ctx, batch_view);
  2250. metrics.on_decoded(slots);
  2251. if (ret != 0) {
  2252. if (n_batch == 1 || ret < 0) {
  2253. // if you get here, it means the KV cache is full - try increasing it via the context size
  2254. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2255. for (auto & slot : slots) {
  2256. slot.release();
  2257. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2258. }
  2259. break; // break loop of n_batch
  2260. }
  2261. // retry with half the batch size to try to find a free slot in the KV cache
  2262. n_batch /= 2;
  2263. i -= n_batch;
  2264. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2265. continue; // continue loop of n_batch
  2266. }
  2267. for (auto & slot : slots) {
  2268. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2269. continue; // continue loop of slots
  2270. }
  2271. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2272. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2273. // prompt evaluated for embedding
  2274. send_embedding(slot, batch_view);
  2275. slot.release();
  2276. slot.i_batch = -1;
  2277. continue; // continue loop of slots
  2278. }
  2279. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2280. send_rerank(slot, batch_view);
  2281. slot.release();
  2282. slot.i_batch = -1;
  2283. continue; // continue loop of slots
  2284. }
  2285. // prompt evaluated for next-token prediction
  2286. slot.state = SLOT_STATE_GENERATING;
  2287. } else if (slot.state != SLOT_STATE_GENERATING) {
  2288. continue; // continue loop of slots
  2289. }
  2290. llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  2291. slot.i_batch = -1;
  2292. common_sampler_accept(slot.smpl, id, true);
  2293. slot.n_decoded += 1;
  2294. const int64_t t_current = ggml_time_us();
  2295. if (slot.n_decoded == 1) {
  2296. slot.t_start_generation = t_current;
  2297. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2298. metrics.on_prompt_eval(slot);
  2299. }
  2300. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2301. completion_token_output result;
  2302. result.tok = id;
  2303. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2304. for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
  2305. auto tok_id = cur_p->data[i].id;
  2306. result.probs.push_back({
  2307. tok_id,
  2308. tokens_to_output_formatted_string(ctx, tok_id),
  2309. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  2310. });
  2311. }
  2312. if (!process_token(result, slot)) {
  2313. // release slot because of stop condition
  2314. slot.release();
  2315. slot.print_timings();
  2316. send_final_response(slot);
  2317. metrics.on_prediction(slot);
  2318. continue;
  2319. }
  2320. }
  2321. // do speculative decoding
  2322. for (auto & slot : slots) {
  2323. if (!slot.is_processing() || !slot.can_speculate()) {
  2324. continue;
  2325. }
  2326. if (slot.state != SLOT_STATE_GENERATING) {
  2327. continue;
  2328. }
  2329. // determine the max draft that fits the current slot state
  2330. int n_draft_max = slot.params.speculative.n_max;
  2331. // note: n_past is not yet increased for the `id` token sampled above
  2332. // also, need to leave space for 1 extra token to allow context shifts
  2333. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2334. if (slot.n_remaining > 0) {
  2335. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2336. }
  2337. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2338. if (n_draft_max < slot.params.speculative.n_min) {
  2339. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2340. continue;
  2341. }
  2342. llama_token id = slot.sampled;
  2343. struct common_speculative_params params_spec;
  2344. params_spec.n_draft = n_draft_max;
  2345. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2346. params_spec.p_min = slot.params.speculative.p_min;
  2347. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2348. // ignore small drafts
  2349. if (slot.params.speculative.n_min > (int) draft.size()) {
  2350. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2351. continue;
  2352. }
  2353. // construct the speculation batch
  2354. common_batch_clear(slot.batch_spec);
  2355. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2356. for (size_t i = 0; i < draft.size(); ++i) {
  2357. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2358. }
  2359. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2360. llama_decode(ctx, slot.batch_spec);
  2361. // the accepted tokens from the speculation
  2362. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2363. slot.n_past += ids.size();
  2364. slot.n_decoded += ids.size();
  2365. slot.cache_tokens.push_back(id);
  2366. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2367. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2368. for (size_t i = 0; i < ids.size(); ++i) {
  2369. completion_token_output result;
  2370. result.tok = ids[i];
  2371. if (!process_token(result, slot)) {
  2372. // release slot because of stop condition
  2373. slot.release();
  2374. slot.print_timings();
  2375. send_final_response(slot);
  2376. metrics.on_prediction(slot);
  2377. break;
  2378. }
  2379. }
  2380. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2381. }
  2382. }
  2383. SRV_DBG("%s", "run slots completed\n");
  2384. }
  2385. json model_meta() const {
  2386. return json {
  2387. {"vocab_type", llama_vocab_type (model)},
  2388. {"n_vocab", llama_n_vocab (model)},
  2389. {"n_ctx_train", llama_n_ctx_train (model)},
  2390. {"n_embd", llama_n_embd (model)},
  2391. {"n_params", llama_model_n_params(model)},
  2392. {"size", llama_model_size (model)},
  2393. };
  2394. }
  2395. };
  2396. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2397. // skip GH copilot requests when using default port
  2398. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2399. return;
  2400. }
  2401. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2402. LOG_DBG("request: %s\n", req.body.c_str());
  2403. LOG_DBG("response: %s\n", res.body.c_str());
  2404. }
  2405. std::function<void(int)> shutdown_handler;
  2406. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2407. inline void signal_handler(int signal) {
  2408. if (is_terminating.test_and_set()) {
  2409. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2410. // this is for better developer experience, we can remove when the server is stable enough
  2411. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2412. exit(1);
  2413. }
  2414. shutdown_handler(signal);
  2415. }
  2416. int main(int argc, char ** argv) {
  2417. // own arguments required by this example
  2418. common_params params;
  2419. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2420. return 1;
  2421. }
  2422. common_init();
  2423. // struct that contains llama context and inference
  2424. server_context ctx_server;
  2425. llama_backend_init();
  2426. llama_numa_init(params.numa);
  2427. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2428. LOG_INF("\n");
  2429. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2430. LOG_INF("\n");
  2431. std::unique_ptr<httplib::Server> svr;
  2432. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2433. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2434. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2435. svr.reset(
  2436. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2437. );
  2438. } else {
  2439. LOG_INF("Running without SSL\n");
  2440. svr.reset(new httplib::Server());
  2441. }
  2442. #else
  2443. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2444. LOG_ERR("Server is built without SSL support\n");
  2445. return 1;
  2446. }
  2447. svr.reset(new httplib::Server());
  2448. #endif
  2449. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2450. svr->set_default_headers({{"Server", "llama.cpp"}});
  2451. svr->set_logger(log_server_request);
  2452. auto res_error = [](httplib::Response & res, const json & error_data) {
  2453. json final_response {{"error", error_data}};
  2454. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2455. res.status = json_value(error_data, "code", 500);
  2456. };
  2457. auto res_ok = [](httplib::Response & res, const json & data) {
  2458. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2459. res.status = 200;
  2460. };
  2461. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2462. std::string message;
  2463. try {
  2464. std::rethrow_exception(ep);
  2465. } catch (const std::exception & e) {
  2466. message = e.what();
  2467. } catch (...) {
  2468. message = "Unknown Exception";
  2469. }
  2470. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2471. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2472. res_error(res, formatted_error);
  2473. });
  2474. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2475. if (res.status == 404) {
  2476. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2477. }
  2478. // for other error codes, we skip processing here because it's already done by res_error()
  2479. });
  2480. // set timeouts and change hostname and port
  2481. svr->set_read_timeout (params.timeout_read);
  2482. svr->set_write_timeout(params.timeout_write);
  2483. std::unordered_map<std::string, std::string> log_data;
  2484. log_data["hostname"] = params.hostname;
  2485. log_data["port"] = std::to_string(params.port);
  2486. if (params.api_keys.size() == 1) {
  2487. auto key = params.api_keys[0];
  2488. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2489. } else if (params.api_keys.size() > 1) {
  2490. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2491. }
  2492. // Necessary similarity of prompt for slot selection
  2493. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2494. //
  2495. // Middlewares
  2496. //
  2497. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2498. static const std::unordered_set<std::string> public_endpoints = {
  2499. "/health",
  2500. "/models",
  2501. "/v1/models",
  2502. };
  2503. // If API key is not set, skip validation
  2504. if (params.api_keys.empty()) {
  2505. return true;
  2506. }
  2507. // If path is public or is static file, skip validation
  2508. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2509. return true;
  2510. }
  2511. // Check for API key in the header
  2512. auto auth_header = req.get_header_value("Authorization");
  2513. std::string prefix = "Bearer ";
  2514. if (auth_header.substr(0, prefix.size()) == prefix) {
  2515. std::string received_api_key = auth_header.substr(prefix.size());
  2516. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2517. return true; // API key is valid
  2518. }
  2519. }
  2520. // API key is invalid or not provided
  2521. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2522. LOG_WRN("Unauthorized: Invalid API Key\n");
  2523. return false;
  2524. };
  2525. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2526. server_state current_state = state.load();
  2527. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2528. auto tmp = string_split<std::string>(req.path, '.');
  2529. if (req.path == "/" || tmp.back() == "html") {
  2530. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2531. res.status = 503;
  2532. } else {
  2533. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2534. }
  2535. return false;
  2536. }
  2537. return true;
  2538. };
  2539. // register server middlewares
  2540. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2541. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2542. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2543. if (req.method == "OPTIONS") {
  2544. res.set_header("Access-Control-Allow-Credentials", "true");
  2545. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2546. res.set_header("Access-Control-Allow-Headers", "*");
  2547. res.set_content("", "text/html"); // blank response, no data
  2548. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2549. }
  2550. if (!middleware_server_state(req, res)) {
  2551. return httplib::Server::HandlerResponse::Handled;
  2552. }
  2553. if (!middleware_validate_api_key(req, res)) {
  2554. return httplib::Server::HandlerResponse::Handled;
  2555. }
  2556. return httplib::Server::HandlerResponse::Unhandled;
  2557. });
  2558. //
  2559. // Route handlers (or controllers)
  2560. //
  2561. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2562. // error and loading states are handled by middleware
  2563. json health = {{"status", "ok"}};
  2564. res_ok(res, health);
  2565. };
  2566. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2567. if (!params.endpoint_slots) {
  2568. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2569. return;
  2570. }
  2571. // request slots data using task queue
  2572. server_task task(SERVER_TASK_TYPE_METRICS);
  2573. task.id = ctx_server.queue_tasks.get_new_id();
  2574. ctx_server.queue_results.add_waiting_task_id(task.id);
  2575. ctx_server.queue_tasks.post(task, true); // high-priority task
  2576. // get the result
  2577. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2578. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2579. if (result->is_error()) {
  2580. res_error(res, result->to_json());
  2581. return;
  2582. }
  2583. // TODO: get rid of this dynamic_cast
  2584. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2585. GGML_ASSERT(res_metrics != nullptr);
  2586. // optionally return "fail_on_no_slot" error
  2587. if (req.has_param("fail_on_no_slot")) {
  2588. if (res_metrics->n_idle_slots == 0) {
  2589. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2590. return;
  2591. }
  2592. }
  2593. res_ok(res, res_metrics->slots_data);
  2594. };
  2595. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2596. if (!params.endpoint_metrics) {
  2597. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2598. return;
  2599. }
  2600. // request slots data using task queue
  2601. server_task task(SERVER_TASK_TYPE_METRICS);
  2602. task.id = ctx_server.queue_tasks.get_new_id();
  2603. task.metrics_reset_bucket = true;
  2604. ctx_server.queue_results.add_waiting_task_id(task.id);
  2605. ctx_server.queue_tasks.post(task, true); // high-priority task
  2606. // get the result
  2607. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2608. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2609. if (result->is_error()) {
  2610. res_error(res, result->to_json());
  2611. return;
  2612. }
  2613. // TODO: get rid of this dynamic_cast
  2614. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2615. GGML_ASSERT(res_metrics != nullptr);
  2616. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2617. json all_metrics_def = json {
  2618. {"counter", {{
  2619. {"name", "prompt_tokens_total"},
  2620. {"help", "Number of prompt tokens processed."},
  2621. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2622. }, {
  2623. {"name", "prompt_seconds_total"},
  2624. {"help", "Prompt process time"},
  2625. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2626. }, {
  2627. {"name", "tokens_predicted_total"},
  2628. {"help", "Number of generation tokens processed."},
  2629. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2630. }, {
  2631. {"name", "tokens_predicted_seconds_total"},
  2632. {"help", "Predict process time"},
  2633. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2634. }, {
  2635. {"name", "n_decode_total"},
  2636. {"help", "Total number of llama_decode() calls"},
  2637. {"value", res_metrics->n_decode_total}
  2638. }, {
  2639. {"name", "n_busy_slots_per_decode"},
  2640. {"help", "Average number of busy slots per llama_decode() call"},
  2641. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2642. }}},
  2643. {"gauge", {{
  2644. {"name", "prompt_tokens_seconds"},
  2645. {"help", "Average prompt throughput in tokens/s."},
  2646. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2647. },{
  2648. {"name", "predicted_tokens_seconds"},
  2649. {"help", "Average generation throughput in tokens/s."},
  2650. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2651. },{
  2652. {"name", "kv_cache_usage_ratio"},
  2653. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2654. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2655. },{
  2656. {"name", "kv_cache_tokens"},
  2657. {"help", "KV-cache tokens."},
  2658. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2659. },{
  2660. {"name", "requests_processing"},
  2661. {"help", "Number of request processing."},
  2662. {"value", (uint64_t) res_metrics->n_processing_slots}
  2663. },{
  2664. {"name", "requests_deferred"},
  2665. {"help", "Number of request deferred."},
  2666. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2667. }}}
  2668. };
  2669. std::stringstream prometheus;
  2670. for (const auto & el : all_metrics_def.items()) {
  2671. const auto & type = el.key();
  2672. const auto & metrics_def = el.value();
  2673. for (const auto & metric_def : metrics_def) {
  2674. const std::string name = metric_def.at("name");
  2675. const std::string help = metric_def.at("help");
  2676. auto value = json_value(metric_def, "value", 0.);
  2677. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2678. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2679. << "llamacpp:" << name << " " << value << "\n";
  2680. }
  2681. }
  2682. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2683. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2684. res.status = 200; // HTTP OK
  2685. };
  2686. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2687. json request_data = json::parse(req.body);
  2688. std::string filename = request_data.at("filename");
  2689. if (!fs_validate_filename(filename)) {
  2690. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2691. return;
  2692. }
  2693. std::string filepath = params.slot_save_path + filename;
  2694. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2695. task.id = ctx_server.queue_tasks.get_new_id();
  2696. task.slot_action.slot_id = id_slot;
  2697. task.slot_action.filename = filename;
  2698. task.slot_action.filepath = filepath;
  2699. ctx_server.queue_results.add_waiting_task_id(task.id);
  2700. ctx_server.queue_tasks.post(task);
  2701. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2702. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2703. if (result->is_error()) {
  2704. res_error(res, result->to_json());
  2705. return;
  2706. }
  2707. res_ok(res, result->to_json());
  2708. };
  2709. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2710. json request_data = json::parse(req.body);
  2711. std::string filename = request_data.at("filename");
  2712. if (!fs_validate_filename(filename)) {
  2713. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2714. return;
  2715. }
  2716. std::string filepath = params.slot_save_path + filename;
  2717. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2718. task.id = ctx_server.queue_tasks.get_new_id();
  2719. task.slot_action.slot_id = id_slot;
  2720. task.slot_action.filename = filename;
  2721. task.slot_action.filepath = filepath;
  2722. ctx_server.queue_results.add_waiting_task_id(task.id);
  2723. ctx_server.queue_tasks.post(task);
  2724. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2725. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2726. if (result->is_error()) {
  2727. res_error(res, result->to_json());
  2728. return;
  2729. }
  2730. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2731. res_ok(res, result->to_json());
  2732. };
  2733. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2734. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2735. task.id = ctx_server.queue_tasks.get_new_id();
  2736. task.slot_action.slot_id = id_slot;
  2737. ctx_server.queue_results.add_waiting_task_id(task.id);
  2738. ctx_server.queue_tasks.post(task);
  2739. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2740. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2741. if (result->is_error()) {
  2742. res_error(res, result->to_json());
  2743. return;
  2744. }
  2745. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2746. res_ok(res, result->to_json());
  2747. };
  2748. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2749. if (params.slot_save_path.empty()) {
  2750. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2751. return;
  2752. }
  2753. std::string id_slot_str = req.path_params.at("id_slot");
  2754. int id_slot;
  2755. try {
  2756. id_slot = std::stoi(id_slot_str);
  2757. } catch (const std::exception &) {
  2758. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2759. return;
  2760. }
  2761. std::string action = req.get_param_value("action");
  2762. if (action == "save") {
  2763. handle_slots_save(req, res, id_slot);
  2764. } else if (action == "restore") {
  2765. handle_slots_restore(req, res, id_slot);
  2766. } else if (action == "erase") {
  2767. handle_slots_erase(req, res, id_slot);
  2768. } else {
  2769. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2770. }
  2771. };
  2772. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2773. // this endpoint is publicly available, please only return what is safe to be exposed
  2774. json data = {
  2775. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2776. { "total_slots", ctx_server.params_base.n_parallel },
  2777. { "model_path", ctx_server.params_base.model },
  2778. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2779. };
  2780. res_ok(res, data);
  2781. };
  2782. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2783. if (!ctx_server.params_base.endpoint_props) {
  2784. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2785. return;
  2786. }
  2787. json data = json::parse(req.body);
  2788. // update any props here
  2789. res_ok(res, {{ "success", true }});
  2790. };
  2791. // handle completion-like requests (completion, chat, infill)
  2792. // we can optionally provide a custom format for partial results and final results
  2793. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
  2794. server_task_type type,
  2795. json & data,
  2796. httplib::Response & res,
  2797. bool oaicompat = false,
  2798. bool oaicompat_chat = false) {
  2799. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2800. if (ctx_server.params_base.embedding) {
  2801. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2802. return;
  2803. }
  2804. auto completion_id = gen_chatcmplid();
  2805. std::vector<server_task> tasks;
  2806. try {
  2807. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2808. tasks.reserve(tokenized_prompts.size());
  2809. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2810. server_task task = server_task(type);
  2811. task.id = ctx_server.queue_tasks.get_new_id();
  2812. task.index = i;
  2813. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2814. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
  2815. task.id_selected_slot = json_value(data, "id_slot", -1);
  2816. // OAI-compat
  2817. task.params.oaicompat = oaicompat;
  2818. task.params.oaicompat_chat = oaicompat_chat;
  2819. task.params.oaicompat_cmpl_id = completion_id;
  2820. // oaicompat_model is already populated by params_from_json_cmpl
  2821. tasks.push_back(task);
  2822. }
  2823. } catch (const std::exception & e) {
  2824. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2825. return;
  2826. }
  2827. ctx_server.queue_results.add_waiting_tasks(tasks);
  2828. ctx_server.queue_tasks.post(tasks);
  2829. bool stream = json_value(data, "stream", false);
  2830. const auto task_ids = server_task::get_list_id(tasks);
  2831. if (!stream) {
  2832. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2833. if (results.size() == 1) {
  2834. // single result
  2835. res_ok(res, results[0]->to_json());
  2836. } else {
  2837. // multiple results (multitask)
  2838. json arr = json::array();
  2839. for (auto & res : results) {
  2840. arr.push_back(res->to_json());
  2841. }
  2842. res_ok(res, arr);
  2843. }
  2844. }, [&](const json & error_data) {
  2845. res_error(res, error_data);
  2846. });
  2847. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2848. } else {
  2849. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  2850. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  2851. json res_json = result->to_json();
  2852. if (res_json.is_array()) {
  2853. for (const auto & res : res_json) {
  2854. if (!server_sent_event(sink, "data", res)) {
  2855. return false;
  2856. }
  2857. }
  2858. return true;
  2859. } else {
  2860. return server_sent_event(sink, "data", res_json);
  2861. }
  2862. }, [&](const json & error_data) {
  2863. server_sent_event(sink, "error", error_data);
  2864. });
  2865. if (oaicompat) {
  2866. static const std::string ev_done = "data: [DONE]\n\n";
  2867. sink.write(ev_done.data(), ev_done.size());
  2868. }
  2869. sink.done();
  2870. return false;
  2871. };
  2872. auto on_complete = [task_ids, &ctx_server] (bool) {
  2873. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2874. };
  2875. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2876. }
  2877. };
  2878. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2879. json data = json::parse(req.body);
  2880. return handle_completions_generic(
  2881. SERVER_TASK_TYPE_COMPLETION,
  2882. data,
  2883. res,
  2884. /* oaicompat */ false,
  2885. /* oaicompat_chat */ false);
  2886. };
  2887. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2888. // check model compatibility
  2889. std::string err;
  2890. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2891. err += "prefix token is missing. ";
  2892. }
  2893. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2894. err += "suffix token is missing. ";
  2895. }
  2896. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2897. err += "middle token is missing. ";
  2898. }
  2899. if (!err.empty()) {
  2900. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2901. return;
  2902. }
  2903. json data = json::parse(req.body);
  2904. // validate input
  2905. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  2906. // prompt is optional
  2907. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2908. }
  2909. if (!data.contains("input_prefix")) {
  2910. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2911. }
  2912. if (!data.contains("input_suffix")) {
  2913. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2914. }
  2915. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2916. // input_extra is optional
  2917. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2918. return;
  2919. }
  2920. json input_extra = json_value(data, "input_extra", json::array());
  2921. for (const auto & chunk : input_extra) {
  2922. // { "text": string, "filename": string }
  2923. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2924. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2925. return;
  2926. }
  2927. // filename is optional
  2928. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  2929. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  2930. return;
  2931. }
  2932. }
  2933. data["input_extra"] = input_extra; // default to empty array if it's not exist
  2934. std::string prompt = json_value(data, "prompt", std::string());
  2935. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  2936. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  2937. data["prompt"] = format_infill(
  2938. ctx_server.ctx,
  2939. data.at("input_prefix"),
  2940. data.at("input_suffix"),
  2941. data.at("input_extra"),
  2942. ctx_server.params_base.n_batch,
  2943. ctx_server.params_base.n_predict,
  2944. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  2945. ctx_server.params_base.spm_infill,
  2946. tokenized_prompts[0]
  2947. );
  2948. return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
  2949. };
  2950. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2951. if (ctx_server.params_base.embedding) {
  2952. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2953. return;
  2954. }
  2955. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2956. return handle_completions_generic(
  2957. SERVER_TASK_TYPE_COMPLETION,
  2958. data,
  2959. res,
  2960. /* oaicompat */ true,
  2961. /* oaicompat_chat */ true);
  2962. };
  2963. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2964. json models = {
  2965. {"object", "list"},
  2966. {"data", {
  2967. {
  2968. {"id", params.model_alias},
  2969. {"object", "model"},
  2970. {"created", std::time(0)},
  2971. {"owned_by", "llamacpp"},
  2972. {"meta", ctx_server.model_meta()}
  2973. },
  2974. }}
  2975. };
  2976. res_ok(res, models);
  2977. };
  2978. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2979. const json body = json::parse(req.body);
  2980. json tokens_response = json::array();
  2981. if (body.count("content") != 0) {
  2982. const bool add_special = json_value(body, "add_special", false);
  2983. const bool with_pieces = json_value(body, "with_pieces", false);
  2984. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  2985. if (with_pieces) {
  2986. for (const auto& token : tokens) {
  2987. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  2988. json piece_json;
  2989. // Check if the piece is valid UTF-8
  2990. if (is_valid_utf8(piece)) {
  2991. piece_json = piece;
  2992. } else {
  2993. // If not valid UTF-8, store as array of byte values
  2994. piece_json = json::array();
  2995. for (unsigned char c : piece) {
  2996. piece_json.push_back(static_cast<int>(c));
  2997. }
  2998. }
  2999. tokens_response.push_back({
  3000. {"id", token},
  3001. {"piece", piece_json}
  3002. });
  3003. }
  3004. } else {
  3005. tokens_response = tokens;
  3006. }
  3007. }
  3008. const json data = format_tokenizer_response(tokens_response);
  3009. res_ok(res, data);
  3010. };
  3011. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3012. const json body = json::parse(req.body);
  3013. std::string content;
  3014. if (body.count("tokens") != 0) {
  3015. const llama_tokens tokens = body.at("tokens");
  3016. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3017. }
  3018. const json data = format_detokenized_response(content);
  3019. res_ok(res, data);
  3020. };
  3021. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) {
  3022. const json body = json::parse(req.body);
  3023. if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3024. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3025. return;
  3026. }
  3027. // for the shape of input/content, see tokenize_input_prompts()
  3028. json prompt;
  3029. if (body.count("input") != 0) {
  3030. prompt = body.at("input");
  3031. } else if (body.contains("content")) {
  3032. oaicompat = false;
  3033. prompt = body.at("content");
  3034. } else {
  3035. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3036. return;
  3037. }
  3038. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3039. for (const auto & tokens : tokenized_prompts) {
  3040. // this check is necessary for models that do not add BOS token to the input
  3041. if (tokens.empty()) {
  3042. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3043. return;
  3044. }
  3045. }
  3046. // create and queue the task
  3047. json responses = json::array();
  3048. bool error = false;
  3049. {
  3050. std::vector<server_task> tasks;
  3051. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3052. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3053. task.id = ctx_server.queue_tasks.get_new_id();
  3054. task.index = i;
  3055. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3056. // OAI-compat
  3057. task.params.oaicompat = oaicompat;
  3058. tasks.push_back(task);
  3059. }
  3060. ctx_server.queue_results.add_waiting_tasks(tasks);
  3061. ctx_server.queue_tasks.post(tasks);
  3062. // get the result
  3063. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3064. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3065. for (auto & res : results) {
  3066. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3067. responses.push_back(res->to_json());
  3068. }
  3069. }, [&](const json & error_data) {
  3070. res_error(res, error_data);
  3071. error = true;
  3072. });
  3073. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3074. }
  3075. if (error) {
  3076. return;
  3077. }
  3078. // write JSON response
  3079. json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses);
  3080. res_ok(res, root);
  3081. };
  3082. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3083. handle_embeddings_impl(req, res, false);
  3084. };
  3085. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3086. handle_embeddings_impl(req, res, true);
  3087. };
  3088. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3089. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3090. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3091. return;
  3092. }
  3093. const json body = json::parse(req.body);
  3094. // TODO: implement
  3095. //int top_n = 1;
  3096. //if (body.count("top_n") != 1) {
  3097. // top_n = body.at("top_n");
  3098. //} else {
  3099. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3100. // return;
  3101. //}
  3102. json query;
  3103. if (body.count("query") == 1) {
  3104. query = body.at("query");
  3105. if (!query.is_string()) {
  3106. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3107. return;
  3108. }
  3109. } else {
  3110. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3111. return;
  3112. }
  3113. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3114. if (documents.empty()) {
  3115. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3116. return;
  3117. }
  3118. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3119. // create and queue the task
  3120. json responses = json::array();
  3121. bool error = false;
  3122. {
  3123. std::vector<server_task> tasks;
  3124. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3125. tasks.reserve(tokenized_docs.size());
  3126. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3127. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3128. task.id = ctx_server.queue_tasks.get_new_id();
  3129. task.index = i;
  3130. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3131. tasks.push_back(task);
  3132. }
  3133. ctx_server.queue_results.add_waiting_tasks(tasks);
  3134. ctx_server.queue_tasks.post(tasks);
  3135. // get the result
  3136. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3137. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3138. for (auto & res : results) {
  3139. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3140. responses.push_back(res->to_json());
  3141. }
  3142. }, [&](const json & error_data) {
  3143. res_error(res, error_data);
  3144. error = true;
  3145. });
  3146. }
  3147. if (error) {
  3148. return;
  3149. }
  3150. // write JSON response
  3151. json root = format_response_rerank(body, responses);
  3152. res_ok(res, root);
  3153. };
  3154. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3155. json result = json::array();
  3156. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3157. auto & lora = ctx_server.loras[i];
  3158. result.push_back({
  3159. {"id", i},
  3160. {"path", lora.path},
  3161. {"scale", lora.scale},
  3162. });
  3163. }
  3164. res_ok(res, result);
  3165. res.status = 200; // HTTP OK
  3166. };
  3167. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3168. const std::vector<json> body = json::parse(req.body);
  3169. int max_idx = ctx_server.loras.size();
  3170. // clear existing value
  3171. for (auto & lora : ctx_server.loras) {
  3172. lora.scale = 0.0f;
  3173. }
  3174. // set value
  3175. for (auto entry : body) {
  3176. int id = entry.at("id");
  3177. float scale = entry.at("scale");
  3178. if (0 <= id && id < max_idx) {
  3179. ctx_server.loras[id].scale = scale;
  3180. } else {
  3181. throw std::runtime_error("invalid adapter id");
  3182. }
  3183. }
  3184. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3185. task.id = ctx_server.queue_tasks.get_new_id();
  3186. ctx_server.queue_results.add_waiting_task_id(task.id);
  3187. ctx_server.queue_tasks.post(task);
  3188. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3189. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3190. if (result->is_error()) {
  3191. res_error(res, result->to_json());
  3192. return;
  3193. }
  3194. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3195. res_ok(res, result->to_json());
  3196. };
  3197. //
  3198. // Router
  3199. //
  3200. if (!params.webui) {
  3201. LOG_INF("Web UI is disabled\n");
  3202. } else {
  3203. // register static assets routes
  3204. if (!params.public_path.empty()) {
  3205. // Set the base directory for serving static files
  3206. bool is_found = svr->set_mount_point("/", params.public_path);
  3207. if (!is_found) {
  3208. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3209. return 1;
  3210. }
  3211. } else {
  3212. // using embedded static index.html
  3213. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3214. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3215. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3216. } else {
  3217. res.set_header("Content-Encoding", "gzip");
  3218. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3219. }
  3220. return false;
  3221. });
  3222. }
  3223. }
  3224. // register API routes
  3225. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3226. svr->Get ("/metrics", handle_metrics);
  3227. svr->Get ("/props", handle_props);
  3228. svr->Post("/props", handle_props_change);
  3229. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3230. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3231. svr->Post("/completion", handle_completions); // legacy
  3232. svr->Post("/completions", handle_completions);
  3233. svr->Post("/v1/completions", handle_completions);
  3234. svr->Post("/chat/completions", handle_chat_completions);
  3235. svr->Post("/v1/chat/completions", handle_chat_completions);
  3236. svr->Post("/infill", handle_infill);
  3237. svr->Post("/embedding", handle_embeddings); // legacy
  3238. svr->Post("/embeddings", handle_embeddings);
  3239. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3240. svr->Post("/rerank", handle_rerank);
  3241. svr->Post("/reranking", handle_rerank);
  3242. svr->Post("/v1/rerank", handle_rerank);
  3243. svr->Post("/v1/reranking", handle_rerank);
  3244. svr->Post("/tokenize", handle_tokenize);
  3245. svr->Post("/detokenize", handle_detokenize);
  3246. // LoRA adapters hotswap
  3247. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3248. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3249. // Save & load slots
  3250. svr->Get ("/slots", handle_slots);
  3251. svr->Post("/slots/:id_slot", handle_slots_action);
  3252. //
  3253. // Start the server
  3254. //
  3255. if (params.n_threads_http < 1) {
  3256. // +2 threads for monitoring endpoints
  3257. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3258. }
  3259. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3260. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3261. // clean up function, to be called before exit
  3262. auto clean_up = [&svr]() {
  3263. svr->stop();
  3264. llama_backend_free();
  3265. };
  3266. // bind HTTP listen port
  3267. bool was_bound = false;
  3268. if (params.port == 0) {
  3269. int bound_port = svr->bind_to_any_port(params.hostname);
  3270. if ((was_bound = (bound_port >= 0))) {
  3271. params.port = bound_port;
  3272. }
  3273. } else {
  3274. was_bound = svr->bind_to_port(params.hostname, params.port);
  3275. }
  3276. if (!was_bound) {
  3277. //LOG_ERROR("couldn't bind HTTP server socket", {
  3278. // {"hostname", params.hostname},
  3279. // {"port", params.port},
  3280. //});
  3281. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3282. clean_up();
  3283. return 1;
  3284. }
  3285. // run the HTTP server in a thread
  3286. std::thread t([&]() { svr->listen_after_bind(); });
  3287. svr->wait_until_ready();
  3288. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3289. // load the model
  3290. LOG_INF("%s: loading model\n", __func__);
  3291. if (!ctx_server.load_model(params)) {
  3292. clean_up();
  3293. t.join();
  3294. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3295. return 1;
  3296. }
  3297. ctx_server.init();
  3298. state.store(SERVER_STATE_READY);
  3299. LOG_INF("%s: model loaded\n", __func__);
  3300. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3301. if (params.chat_template.empty()) {
  3302. if (!ctx_server.validate_model_chat_template()) {
  3303. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3304. params.chat_template = "chatml";
  3305. }
  3306. }
  3307. // print sample chat example to make it clear which template is used
  3308. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3309. ctx_server.queue_tasks.on_new_task(std::bind(
  3310. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3311. ctx_server.queue_tasks.on_update_slots(std::bind(
  3312. &server_context::update_slots, &ctx_server));
  3313. shutdown_handler = [&](int) {
  3314. ctx_server.queue_tasks.terminate();
  3315. };
  3316. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3317. ctx_server.queue_tasks.start_loop();
  3318. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3319. struct sigaction sigint_action;
  3320. sigint_action.sa_handler = signal_handler;
  3321. sigemptyset (&sigint_action.sa_mask);
  3322. sigint_action.sa_flags = 0;
  3323. sigaction(SIGINT, &sigint_action, NULL);
  3324. sigaction(SIGTERM, &sigint_action, NULL);
  3325. #elif defined (_WIN32)
  3326. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3327. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3328. };
  3329. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3330. #endif
  3331. clean_up();
  3332. t.join();
  3333. return 0;
  3334. }