clip.cpp 157 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #define STB_IMAGE_IMPLEMENTATION
  14. #include "stb_image.h"
  15. #include <cassert>
  16. #include <cmath>
  17. #include <cstdlib>
  18. #include <cstring>
  19. #include <fstream>
  20. #include <map>
  21. #include <regex>
  22. #include <stdexcept>
  23. #include <unordered_set>
  24. #include <vector>
  25. #include <sstream>
  26. #include <cinttypes>
  27. #include <limits>
  28. #include <array>
  29. #include <numeric>
  30. #include <functional>
  31. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  32. enum ffn_op_type {
  33. FFN_GELU,
  34. FFN_SILU,
  35. FFN_GELU_QUICK,
  36. };
  37. enum norm_type {
  38. NORM_TYPE_NORMAL,
  39. NORM_TYPE_RMS,
  40. };
  41. //#define CLIP_DEBUG_FUNCTIONS
  42. #ifdef CLIP_DEBUG_FUNCTIONS
  43. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  44. std::ofstream file(filename, std::ios::binary);
  45. if (!file.is_open()) {
  46. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  47. return;
  48. }
  49. // PPM header: P6 format, width, height, and max color value
  50. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  51. // Write pixel data
  52. for (size_t i = 0; i < img.buf.size(); i += 3) {
  53. // PPM expects binary data in RGB format, which matches our image buffer
  54. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  55. }
  56. file.close();
  57. }
  58. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  59. std::ofstream file(filename, std::ios::binary);
  60. if (!file.is_open()) {
  61. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  62. return;
  63. }
  64. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  65. int bytesPerPixel = 3;
  66. int widthInBytes = img.nx * bytesPerPixel;
  67. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  68. int stride = widthInBytes + paddingAmount;
  69. // Bitmap file header
  70. unsigned char fileHeader[14] = {
  71. 'B','M', // Signature
  72. 0,0,0,0, // Image file size in bytes
  73. 0,0,0,0, // Reserved
  74. 54,0,0,0 // Start of pixel array
  75. };
  76. // Total file size
  77. fileSize = 54 + (stride * img.ny);
  78. fileHeader[2] = (unsigned char)(fileSize);
  79. fileHeader[3] = (unsigned char)(fileSize >> 8);
  80. fileHeader[4] = (unsigned char)(fileSize >> 16);
  81. fileHeader[5] = (unsigned char)(fileSize >> 24);
  82. // Bitmap information header (BITMAPINFOHEADER)
  83. unsigned char infoHeader[40] = {
  84. 40,0,0,0, // Size of this header (40 bytes)
  85. 0,0,0,0, // Image width
  86. 0,0,0,0, // Image height
  87. 1,0, // Number of color planes
  88. 24,0, // Bits per pixel
  89. 0,0,0,0, // No compression
  90. 0,0,0,0, // Image size (can be 0 for no compression)
  91. 0,0,0,0, // X pixels per meter (not specified)
  92. 0,0,0,0, // Y pixels per meter (not specified)
  93. 0,0,0,0, // Total colors (color table not used)
  94. 0,0,0,0 // Important colors (all are important)
  95. };
  96. // Width and height in the information header
  97. infoHeader[4] = (unsigned char)(img.nx);
  98. infoHeader[5] = (unsigned char)(img.nx >> 8);
  99. infoHeader[6] = (unsigned char)(img.nx >> 16);
  100. infoHeader[7] = (unsigned char)(img.nx >> 24);
  101. infoHeader[8] = (unsigned char)(img.ny);
  102. infoHeader[9] = (unsigned char)(img.ny >> 8);
  103. infoHeader[10] = (unsigned char)(img.ny >> 16);
  104. infoHeader[11] = (unsigned char)(img.ny >> 24);
  105. // Write file headers
  106. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  107. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  108. // Pixel data
  109. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  110. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  111. for (int x = 0; x < img.nx; ++x) {
  112. // Each pixel
  113. size_t pixelIndex = (y * img.nx + x) * 3;
  114. unsigned char pixel[3] = {
  115. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  116. img.buf[pixelIndex + 1],
  117. img.buf[pixelIndex]
  118. };
  119. file.write(reinterpret_cast<char*>(pixel), 3);
  120. }
  121. // Write padding for the row
  122. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  123. }
  124. file.close();
  125. }
  126. // debug function to convert f32 to u8
  127. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  128. dst.nx = src.nx;
  129. dst.ny = src.ny;
  130. dst.buf.resize(3 * src.nx * src.ny);
  131. for (size_t i = 0; i < src.buf.size(); ++i) {
  132. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  133. }
  134. }
  135. #endif
  136. //
  137. // clip layers
  138. //
  139. enum patch_merge_type {
  140. PATCH_MERGE_FLAT,
  141. PATCH_MERGE_SPATIAL_UNPAD,
  142. };
  143. struct clip_hparams {
  144. int32_t image_size;
  145. int32_t patch_size;
  146. int32_t n_embd;
  147. int32_t n_ff;
  148. int32_t projection_dim;
  149. int32_t n_head;
  150. int32_t n_layer;
  151. int32_t proj_scale_factor = 0; // idefics3
  152. // for models using dynamic image size, we need to have a smaller image size to warmup
  153. // otherwise, user will get OOM everytime they load the model
  154. int32_t warmup_image_size = 0;
  155. ffn_op_type ffn_op = FFN_GELU;
  156. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  157. float eps = 1e-6;
  158. float rope_theta = 0.0;
  159. std::vector<int32_t> image_grid_pinpoints;
  160. int32_t image_crop_resolution;
  161. std::unordered_set<int32_t> vision_feature_layer;
  162. int32_t attn_window_size = 0;
  163. int32_t n_wa_pattern = 0;
  164. int32_t spatial_merge_size = 0;
  165. };
  166. struct clip_layer {
  167. // attention
  168. ggml_tensor * k_w = nullptr;
  169. ggml_tensor * k_b = nullptr;
  170. ggml_tensor * q_w = nullptr;
  171. ggml_tensor * q_b = nullptr;
  172. ggml_tensor * v_w = nullptr;
  173. ggml_tensor * v_b = nullptr;
  174. ggml_tensor * o_w = nullptr;
  175. ggml_tensor * o_b = nullptr;
  176. // layernorm 1
  177. ggml_tensor * ln_1_w = nullptr;
  178. ggml_tensor * ln_1_b = nullptr;
  179. ggml_tensor * ff_up_w = nullptr;
  180. ggml_tensor * ff_up_b = nullptr;
  181. ggml_tensor * ff_gate_w = nullptr;
  182. ggml_tensor * ff_gate_b = nullptr;
  183. ggml_tensor * ff_down_w = nullptr;
  184. ggml_tensor * ff_down_b = nullptr;
  185. // layernorm 2
  186. ggml_tensor * ln_2_w = nullptr;
  187. ggml_tensor * ln_2_b = nullptr;
  188. // layer scale (no bias)
  189. ggml_tensor * ls_1_w = nullptr;
  190. ggml_tensor * ls_2_w = nullptr;
  191. };
  192. struct clip_vision_model {
  193. struct clip_hparams hparams;
  194. // embeddings
  195. ggml_tensor * class_embedding = nullptr;
  196. ggml_tensor * patch_embeddings_0 = nullptr;
  197. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  198. ggml_tensor * patch_bias = nullptr;
  199. ggml_tensor * position_embeddings = nullptr;
  200. ggml_tensor * pre_ln_w = nullptr;
  201. ggml_tensor * pre_ln_b = nullptr;
  202. std::vector<clip_layer> layers;
  203. ggml_tensor * post_ln_w;
  204. ggml_tensor * post_ln_b;
  205. ggml_tensor * projection;
  206. // LLaVA projection
  207. ggml_tensor * mm_input_norm_w = nullptr;
  208. ggml_tensor * mm_0_w = nullptr;
  209. ggml_tensor * mm_0_b = nullptr;
  210. ggml_tensor * mm_2_w = nullptr;
  211. ggml_tensor * mm_2_b = nullptr;
  212. ggml_tensor * image_newline = nullptr;
  213. // Yi type models with mlp+normalization projection
  214. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  215. ggml_tensor * mm_1_b = nullptr;
  216. ggml_tensor * mm_3_w = nullptr;
  217. ggml_tensor * mm_3_b = nullptr;
  218. ggml_tensor * mm_4_w = nullptr;
  219. ggml_tensor * mm_4_b = nullptr;
  220. // GLMV-Edge projection
  221. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  222. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  223. ggml_tensor * mm_glm_tok_boi = nullptr;
  224. ggml_tensor * mm_glm_tok_eoi = nullptr;
  225. // MobileVLM projection
  226. ggml_tensor * mm_model_mlp_1_w = nullptr;
  227. ggml_tensor * mm_model_mlp_1_b = nullptr;
  228. ggml_tensor * mm_model_mlp_3_w = nullptr;
  229. ggml_tensor * mm_model_mlp_3_b = nullptr;
  230. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  231. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  232. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  233. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  234. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  235. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  236. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  237. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  238. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  239. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  240. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  241. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  242. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  243. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  244. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  245. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  246. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  247. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  248. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  249. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  250. // MobileVLM_V2 projection
  251. ggml_tensor * mm_model_mlp_0_w = nullptr;
  252. ggml_tensor * mm_model_mlp_0_b = nullptr;
  253. ggml_tensor * mm_model_mlp_2_w = nullptr;
  254. ggml_tensor * mm_model_mlp_2_b = nullptr;
  255. ggml_tensor * mm_model_peg_0_w = nullptr;
  256. ggml_tensor * mm_model_peg_0_b = nullptr;
  257. // MINICPMV projection
  258. ggml_tensor * mm_model_pos_embed_k = nullptr;
  259. ggml_tensor * mm_model_query = nullptr;
  260. ggml_tensor * mm_model_proj = nullptr;
  261. ggml_tensor * mm_model_kv_proj = nullptr;
  262. ggml_tensor * mm_model_attn_q_w = nullptr;
  263. ggml_tensor * mm_model_attn_q_b = nullptr;
  264. ggml_tensor * mm_model_attn_k_w = nullptr;
  265. ggml_tensor * mm_model_attn_k_b = nullptr;
  266. ggml_tensor * mm_model_attn_v_w = nullptr;
  267. ggml_tensor * mm_model_attn_v_b = nullptr;
  268. ggml_tensor * mm_model_attn_o_w = nullptr;
  269. ggml_tensor * mm_model_attn_o_b = nullptr;
  270. ggml_tensor * mm_model_ln_q_w = nullptr;
  271. ggml_tensor * mm_model_ln_q_b = nullptr;
  272. ggml_tensor * mm_model_ln_kv_w = nullptr;
  273. ggml_tensor * mm_model_ln_kv_b = nullptr;
  274. ggml_tensor * mm_model_ln_post_w = nullptr;
  275. ggml_tensor * mm_model_ln_post_b = nullptr;
  276. // gemma3
  277. ggml_tensor * mm_input_proj_w = nullptr;
  278. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  279. // pixtral
  280. ggml_tensor * token_embd_img_break = nullptr;
  281. ggml_tensor * mm_patch_merger_w = nullptr;
  282. };
  283. struct clip_ctx {
  284. bool has_llava_projector = false;
  285. int minicpmv_version = 0;
  286. struct clip_vision_model vision_model;
  287. projector_type proj_type = PROJECTOR_TYPE_MLP;
  288. float image_mean[3];
  289. float image_std[3];
  290. gguf_context_ptr ctx_gguf;
  291. ggml_context_ptr ctx_data;
  292. std::vector<uint8_t> buf_compute_meta;
  293. std::vector<ggml_backend_t> backend_ptrs;
  294. std::vector<ggml_backend_buffer_type_t> backend_buft;
  295. ggml_backend_t backend;
  296. ggml_backend_t backend_cpu;
  297. ggml_backend_buffer_ptr buf;
  298. int max_nodes = 8192;
  299. ggml_backend_sched_ptr sched;
  300. clip_image_size load_image_size;
  301. clip_ctx(clip_context_params & ctx_params) {
  302. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  303. if (!backend_cpu) {
  304. throw std::runtime_error("failed to initialize CPU backend");
  305. }
  306. backend = ctx_params.use_gpu
  307. ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
  308. : nullptr;
  309. if (backend) {
  310. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  311. backend_ptrs.push_back(backend);
  312. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  313. } else {
  314. backend = backend_cpu;
  315. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  316. }
  317. backend_ptrs.push_back(backend_cpu);
  318. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  319. sched.reset(
  320. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
  321. );
  322. }
  323. ~clip_ctx() {
  324. ggml_backend_free(backend);
  325. if (backend != backend_cpu) {
  326. ggml_backend_free(backend_cpu);
  327. }
  328. }
  329. };
  330. struct clip_graph {
  331. clip_ctx * ctx;
  332. const clip_vision_model & model;
  333. const clip_hparams & hparams;
  334. // we only support single image per batch
  335. const clip_image_f32 & img;
  336. const int patch_size;
  337. const int n_patches_x;
  338. const int n_patches_y;
  339. const int n_patches;
  340. const int n_embd;
  341. const int n_head;
  342. const int d_head;
  343. const int n_layer;
  344. const float eps;
  345. const float kq_scale;
  346. ggml_context_ptr ctx0_ptr;
  347. ggml_context * ctx0;
  348. ggml_cgraph * gf;
  349. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  350. ctx(ctx),
  351. model(ctx->vision_model),
  352. hparams(model.hparams),
  353. img(img),
  354. patch_size(hparams.patch_size),
  355. n_patches_x(img.nx / patch_size),
  356. n_patches_y(img.ny / patch_size),
  357. n_patches(n_patches_x * n_patches_y),
  358. n_embd(hparams.n_embd),
  359. n_head(hparams.n_head),
  360. d_head(n_embd / n_head),
  361. n_layer(hparams.n_layer),
  362. eps(hparams.eps),
  363. kq_scale(1.0f / sqrtf((float)d_head)) {
  364. struct ggml_init_params params = {
  365. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  366. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  367. /*.no_alloc =*/ true,
  368. };
  369. ctx0_ptr.reset(ggml_init(params));
  370. ctx0 = ctx0_ptr.get();
  371. gf = ggml_new_graph(ctx0);
  372. }
  373. ggml_cgraph * build_siglip() {
  374. ggml_tensor * inp = build_inp();
  375. ggml_tensor * cur = build_vit(
  376. inp, n_patches,
  377. NORM_TYPE_NORMAL,
  378. hparams.ffn_op,
  379. model.position_embeddings,
  380. nullptr);
  381. if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  382. const int batch_size = 1;
  383. GGML_ASSERT(n_patches_x == n_patches_y);
  384. const int patches_per_image = n_patches_x;
  385. const int kernel_size = hparams.proj_scale_factor;
  386. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  387. cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  388. // doing a pool2d to reduce the number of output tokens
  389. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  390. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  391. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  392. // apply norm before projection
  393. cur = ggml_rms_norm(ctx0, cur, eps);
  394. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  395. // apply projection
  396. cur = ggml_mul_mat(ctx0,
  397. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  398. cur);
  399. } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
  400. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  401. const int scale_factor = model.hparams.proj_scale_factor;
  402. const int n_embd = cur->ne[0];
  403. const int seq = cur->ne[1];
  404. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  405. const int height = std::sqrt(seq);
  406. const int width = std::sqrt(seq);
  407. GGML_ASSERT(scale_factor != 0);
  408. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
  409. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  410. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  411. n_embd * scale_factor * scale_factor,
  412. height / scale_factor,
  413. width / scale_factor,
  414. bsz);
  415. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  416. cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
  417. n_embd * scale_factor * scale_factor,
  418. seq / (scale_factor * scale_factor),
  419. bsz);
  420. cur = ggml_mul_mat(ctx0, model.projection, cur);
  421. } else {
  422. GGML_ABORT("SigLIP: Unsupported projector type");
  423. }
  424. // build the graph
  425. ggml_build_forward_expand(gf, cur);
  426. return gf;
  427. }
  428. ggml_cgraph * build_pixtral() {
  429. const int n_merge = hparams.spatial_merge_size;
  430. // 2D input positions
  431. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  432. ggml_set_name(pos_h, "pos_h");
  433. ggml_set_input(pos_h);
  434. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  435. ggml_set_name(pos_w, "pos_w");
  436. ggml_set_input(pos_w);
  437. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  438. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta);
  439. };
  440. ggml_tensor * inp = build_inp();
  441. ggml_tensor * cur = build_vit(
  442. inp, n_patches,
  443. NORM_TYPE_RMS,
  444. hparams.ffn_op,
  445. nullptr, // no learned pos embd
  446. add_pos);
  447. // mistral small 3.1 patch merger
  448. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  449. if (model.mm_patch_merger_w) {
  450. GGML_ASSERT(hparams.spatial_merge_size > 0);
  451. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  452. // reshape image tokens to 2D grid
  453. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  454. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  455. cur = ggml_cont(ctx0, cur);
  456. // torch.nn.functional.unfold is just an im2col under the hood
  457. // we just need a dummy kernel to make it work
  458. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  459. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  460. // project to n_embd
  461. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  462. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  463. }
  464. // LlavaMultiModalProjector (always using GELU activation)
  465. {
  466. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  467. if (model.mm_1_b) {
  468. cur = ggml_add(ctx0, cur, model.mm_1_b);
  469. }
  470. cur = ggml_gelu(ctx0, cur);
  471. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  472. if (model.mm_2_b) {
  473. cur = ggml_add(ctx0, cur, model.mm_2_b);
  474. }
  475. }
  476. // arrangement of the [IMG_BREAK] token
  477. {
  478. // not efficient, but works
  479. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  480. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  481. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  482. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  483. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  484. const int p_total = p_x * p_y;
  485. const int n_embd_text = cur->ne[0];
  486. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  487. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  488. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  489. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  490. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  491. tmp = ggml_concat(ctx0, tmp, tok, 1);
  492. cur = ggml_view_2d(ctx0, tmp,
  493. n_embd_text, n_tokens_output,
  494. ggml_row_size(tmp->type, n_embd_text), 0);
  495. }
  496. // build the graph
  497. ggml_build_forward_expand(gf, cur);
  498. return gf;
  499. }
  500. // Qwen2VL and Qwen2.5VL use M-RoPE
  501. ggml_cgraph * build_qwen2vl() {
  502. GGML_ASSERT(model.patch_bias == nullptr);
  503. GGML_ASSERT(model.class_embedding == nullptr);
  504. const int batch_size = 1;
  505. const bool use_window_attn = hparams.n_wa_pattern > 0;
  506. const int n_wa_pattern = hparams.n_wa_pattern;
  507. const int n_pos = n_patches;
  508. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  509. norm_type norm_t = ctx->proj_type == PROJECTOR_TYPE_QWEN25VL
  510. ? NORM_TYPE_RMS // qwen 2.5 vl
  511. : NORM_TYPE_NORMAL; // qwen 2 vl
  512. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  513. ggml_tensor * inp_raw = build_inp_raw();
  514. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  515. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  516. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  517. // second conv dimension
  518. {
  519. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  520. inp = ggml_add(ctx0, inp, inp_1);
  521. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  522. inp = ggml_reshape_4d(
  523. ctx0, inp,
  524. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  525. inp = ggml_reshape_4d(
  526. ctx0, inp,
  527. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  528. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  529. inp = ggml_reshape_3d(
  530. ctx0, inp,
  531. n_embd, n_patches_x * n_patches_y, batch_size);
  532. }
  533. ggml_tensor * inpL = inp;
  534. ggml_tensor * window_mask = nullptr;
  535. ggml_tensor * window_idx = nullptr;
  536. ggml_tensor * inv_window_idx = nullptr;
  537. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  538. ggml_set_name(positions, "positions");
  539. ggml_set_input(positions);
  540. // pre-layernorm
  541. if (model.pre_ln_w) {
  542. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  543. }
  544. if (use_window_attn) {
  545. // handle window attention inputs
  546. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  547. ggml_set_name(inv_window_idx, "inv_window_idx");
  548. ggml_set_input(inv_window_idx);
  549. // mask for window attention
  550. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  551. ggml_set_name(window_mask, "window_mask");
  552. ggml_set_input(window_mask);
  553. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  554. GGML_ASSERT(batch_size == 1);
  555. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  556. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  557. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  558. }
  559. // loop over layers
  560. for (int il = 0; il < n_layer; il++) {
  561. auto & layer = model.layers[il];
  562. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  563. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  564. // layernorm1
  565. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  566. cb(cur, "ln1", il);
  567. // self-attention
  568. {
  569. ggml_tensor * Qcur = ggml_add(ctx0,
  570. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  571. ggml_tensor * Kcur = ggml_add(ctx0,
  572. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  573. ggml_tensor * Vcur = ggml_add(ctx0,
  574. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  575. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  576. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  577. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  578. cb(Qcur, "Qcur", il);
  579. cb(Kcur, "Kcur", il);
  580. cb(Vcur, "Vcur", il);
  581. // apply M-RoPE
  582. Qcur = ggml_rope_multi(
  583. ctx0, Qcur, positions, nullptr,
  584. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  585. Kcur = ggml_rope_multi(
  586. ctx0, Kcur, positions, nullptr,
  587. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  588. cb(Qcur, "Qcur_rope", il);
  589. cb(Kcur, "Kcur_rope", il);
  590. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  591. cur = build_attn(layer.o_w, layer.o_b,
  592. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  593. cb(cur, "attn_out", il);
  594. }
  595. // re-add the layer input, e.g., residual
  596. cur = ggml_add(ctx0, cur, inpL);
  597. inpL = cur; // inpL = residual, cur = hidden_states
  598. cb(cur, "ffn_inp", il);
  599. // layernorm2
  600. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  601. cb(cur, "ffn_inp_normed", il);
  602. // ffn
  603. cur = build_ffn(cur,
  604. layer.ff_up_w, layer.ff_up_b,
  605. layer.ff_gate_w, layer.ff_gate_b,
  606. layer.ff_down_w, layer.ff_down_b,
  607. hparams.ffn_op, il);
  608. cb(cur, "ffn_out", il);
  609. // residual 2
  610. cur = ggml_add(ctx0, inpL, cur);
  611. cb(cur, "layer_out", il);
  612. inpL = cur;
  613. }
  614. // post-layernorm
  615. if (model.post_ln_w) {
  616. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  617. }
  618. // multimodal projection
  619. ggml_tensor * embeddings = inpL;
  620. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  621. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  622. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  623. // GELU activation
  624. embeddings = ggml_gelu(ctx0, embeddings);
  625. // Second linear layer
  626. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  627. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  628. if (use_window_attn) {
  629. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  630. ggml_set_name(window_idx, "window_idx");
  631. ggml_set_input(window_idx);
  632. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  633. GGML_ASSERT(batch_size == 1);
  634. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  635. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  636. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  637. }
  638. // build the graph
  639. ggml_build_forward_expand(gf, embeddings);
  640. return gf;
  641. }
  642. ggml_cgraph * build_minicpmv() {
  643. const int batch_size = 1;
  644. GGML_ASSERT(model.class_embedding == nullptr);
  645. const int n_pos = n_patches;
  646. // position embeddings for the projector (not for ViT)
  647. int n_output_dim = clip_n_mmproj_embd(ctx);
  648. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  649. ggml_set_name(pos_embed, "pos_embed");
  650. ggml_set_input(pos_embed);
  651. // for selecting learned pos embd, used by ViT
  652. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  653. ggml_set_name(positions, "positions");
  654. ggml_set_input(positions);
  655. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  656. ggml_tensor * inp = build_inp();
  657. ggml_tensor * embeddings = build_vit(
  658. inp, n_patches,
  659. NORM_TYPE_NORMAL,
  660. hparams.ffn_op,
  661. learned_pos_embd,
  662. nullptr);
  663. // resampler projector (it is just another transformer)
  664. ggml_tensor * q = model.mm_model_query;
  665. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  666. // norm
  667. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  668. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  669. // k = v + pos_embed
  670. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  671. // attention
  672. {
  673. int n_embd = clip_n_mmproj_embd(ctx);
  674. const int d_head = 128;
  675. int n_head = n_embd/d_head;
  676. int num_query = 96;
  677. if (ctx->minicpmv_version == 2) {
  678. num_query = 96;
  679. } else if (ctx->minicpmv_version == 3) {
  680. num_query = 64;
  681. } else if (ctx->minicpmv_version == 4) {
  682. num_query = 64;
  683. }
  684. ggml_tensor * Q = ggml_add(ctx0,
  685. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  686. model.mm_model_attn_q_b);
  687. ggml_tensor * K = ggml_add(ctx0,
  688. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  689. model.mm_model_attn_k_b);
  690. ggml_tensor * V = ggml_add(ctx0,
  691. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  692. model.mm_model_attn_v_b);
  693. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  694. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  695. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  696. cb(Q, "resampler_Q", -1);
  697. cb(K, "resampler_K", -1);
  698. cb(V, "resampler_V", -1);
  699. embeddings = build_attn(
  700. model.mm_model_attn_o_w,
  701. model.mm_model_attn_o_b,
  702. Q, K, V, nullptr, kq_scale, -1);
  703. cb(embeddings, "resampler_attn_out", -1);
  704. }
  705. // layernorm
  706. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  707. // projection
  708. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  709. // build the graph
  710. ggml_build_forward_expand(gf, embeddings);
  711. return gf;
  712. }
  713. ggml_cgraph * build_internvl() {
  714. GGML_ASSERT(model.class_embedding != nullptr);
  715. GGML_ASSERT(model.position_embeddings != nullptr);
  716. const int n_pos = n_patches + 1;
  717. ggml_tensor * inp = build_inp();
  718. // add CLS token
  719. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  720. ggml_tensor * cur = build_vit(
  721. inp, n_pos,
  722. NORM_TYPE_NORMAL,
  723. hparams.ffn_op,
  724. model.position_embeddings,
  725. nullptr);
  726. // remove CLS token
  727. cur = ggml_view_2d(ctx0, cur,
  728. n_embd, n_patches,
  729. ggml_row_size(cur->type, n_embd), 0);
  730. // pixel shuffle
  731. {
  732. const int scale_factor = model.hparams.proj_scale_factor;
  733. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  734. const int height = n_patches_y;
  735. const int width = n_patches_x;
  736. GGML_ASSERT(scale_factor > 0);
  737. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  738. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  739. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  740. n_embd * scale_factor * scale_factor,
  741. height / scale_factor,
  742. width / scale_factor,
  743. bsz);
  744. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  745. // flatten to 2D
  746. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  747. n_embd * scale_factor * scale_factor,
  748. cur->ne[1] * cur->ne[2]);
  749. }
  750. // projector (always using GELU activation)
  751. {
  752. // projector LayerNorm uses pytorch's default eps = 1e-5
  753. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  754. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  755. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  756. cur = ggml_add(ctx0, cur, model.mm_1_b);
  757. cur = ggml_gelu(ctx0, cur);
  758. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  759. cur = ggml_add(ctx0, cur, model.mm_3_b);
  760. }
  761. // build the graph
  762. ggml_build_forward_expand(gf, cur);
  763. return gf;
  764. }
  765. // this graph is used by llava, granite and glm
  766. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  767. ggml_cgraph * build_llava() {
  768. const int batch_size = 1;
  769. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  770. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  771. // Calculate the deepest feature layer based on hparams and projector type
  772. int max_feature_layer = n_layer;
  773. {
  774. // Get the index of the second to last layer; this is the default for models that have a llava projector
  775. int il_last = hparams.n_layer - 1;
  776. int deepest_feature_layer = -1;
  777. if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  778. il_last += 1;
  779. }
  780. // If we set explicit vision feature layers, only go up to the deepest one
  781. // NOTE: only used by granite-vision models for now
  782. for (const auto & feature_layer : hparams.vision_feature_layer) {
  783. if (feature_layer > deepest_feature_layer) {
  784. deepest_feature_layer = feature_layer;
  785. }
  786. }
  787. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  788. }
  789. ggml_tensor * inp = build_inp();
  790. // concat class_embeddings and patch_embeddings
  791. if (model.class_embedding) {
  792. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  793. }
  794. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  795. ggml_set_name(positions, "positions");
  796. ggml_set_input(positions);
  797. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  798. ggml_tensor * inpL = inp;
  799. // pre-layernorm
  800. if (model.pre_ln_w) {
  801. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  802. cb(inpL, "pre_ln", -1);
  803. }
  804. std::vector<ggml_tensor *> embedding_stack;
  805. const auto & vision_feature_layer = hparams.vision_feature_layer;
  806. // loop over layers
  807. for (int il = 0; il < max_feature_layer; il++) {
  808. auto & layer = model.layers[il];
  809. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  810. // If this is an embedding feature layer, save the output.
  811. // NOTE: 0 index here refers to the input to the encoder.
  812. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  813. embedding_stack.push_back(cur);
  814. }
  815. // layernorm1
  816. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  817. cb(cur, "layer_inp_normed", il);
  818. // self-attention
  819. {
  820. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  821. if (layer.q_b) {
  822. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  823. }
  824. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  825. if (layer.k_b) {
  826. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  827. }
  828. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  829. if (layer.v_b) {
  830. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  831. }
  832. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  833. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  834. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  835. cb(Qcur, "Qcur", il);
  836. cb(Kcur, "Kcur", il);
  837. cb(Vcur, "Vcur", il);
  838. cur = build_attn(layer.o_w, layer.o_b,
  839. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  840. cb(cur, "attn_out", il);
  841. }
  842. // re-add the layer input, e.g., residual
  843. cur = ggml_add(ctx0, cur, inpL);
  844. inpL = cur; // inpL = residual, cur = hidden_states
  845. cb(cur, "ffn_inp", il);
  846. // layernorm2
  847. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  848. cb(cur, "ffn_inp_normed", il);
  849. // ffn
  850. cur = build_ffn(cur,
  851. layer.ff_up_w, layer.ff_up_b,
  852. layer.ff_gate_w, layer.ff_gate_b,
  853. layer.ff_down_w, layer.ff_down_b,
  854. hparams.ffn_op, il);
  855. cb(cur, "ffn_out", il);
  856. // residual 2
  857. cur = ggml_add(ctx0, inpL, cur);
  858. cb(cur, "layer_out", il);
  859. inpL = cur;
  860. }
  861. // post-layernorm
  862. if (model.post_ln_w) {
  863. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  864. }
  865. ggml_tensor * embeddings = inpL;
  866. // process vision feature layers (used by granite)
  867. {
  868. // final layer is a vision feature layer
  869. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  870. embedding_stack.push_back(inpL);
  871. }
  872. // If feature layers are explicitly set, stack them (if we have multiple)
  873. if (!embedding_stack.empty()) {
  874. embeddings = embedding_stack[0];
  875. for (size_t i = 1; i < embedding_stack.size(); i++) {
  876. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  877. }
  878. }
  879. }
  880. // llava projector (also used by granite)
  881. if (ctx->has_llava_projector) {
  882. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  883. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  884. ggml_set_name(patches, "patches");
  885. ggml_set_input(patches);
  886. // shape [1, 576, 1024]
  887. // ne is whcn, ne = [1024, 576, 1, 1]
  888. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  889. // print_tensor_info(embeddings, "embeddings");
  890. // llava projector
  891. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  892. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  893. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  894. embeddings = ggml_gelu(ctx0, embeddings);
  895. if (model.mm_2_w) {
  896. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  897. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  898. }
  899. }
  900. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  901. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  902. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  903. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  904. // First LayerNorm
  905. embeddings = ggml_norm(ctx0, embeddings, eps);
  906. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  907. model.mm_1_b);
  908. // GELU activation
  909. embeddings = ggml_gelu(ctx0, embeddings);
  910. // Second linear layer
  911. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  912. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  913. // Second LayerNorm
  914. embeddings = ggml_norm(ctx0, embeddings, eps);
  915. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  916. model.mm_4_b);
  917. }
  918. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  919. // MobileVLM projector
  920. int n_patch = 24;
  921. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  922. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  923. mlp_1 = ggml_gelu(ctx0, mlp_1);
  924. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  925. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  926. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  927. // block 1
  928. ggml_tensor * block_1 = nullptr;
  929. {
  930. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  931. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  932. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  933. // stride = 1, padding = 1, bias is nullptr
  934. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  935. // layer norm
  936. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  937. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  938. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  939. block_1 = ggml_norm(ctx0, block_1, eps);
  940. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  941. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  942. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  943. // hardswish
  944. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  945. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  946. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  947. // pointwise conv
  948. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  949. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  950. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  951. block_1 = ggml_relu(ctx0, block_1);
  952. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  953. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  954. block_1 = ggml_hardsigmoid(ctx0, block_1);
  955. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  956. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  957. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  958. int w = block_1->ne[0], h = block_1->ne[1];
  959. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  960. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  961. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  962. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  963. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  964. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  965. block_1 = ggml_norm(ctx0, block_1, eps);
  966. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  967. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  968. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  969. // residual
  970. block_1 = ggml_add(ctx0, mlp_3, block_1);
  971. }
  972. // block_2
  973. {
  974. // stride = 2
  975. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  976. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  977. // layer norm
  978. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  979. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  980. block_1 = ggml_norm(ctx0, block_1, eps);
  981. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  982. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  983. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  984. // hardswish
  985. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  986. // not sure the parameters is right for globalAvgPooling
  987. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  988. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  989. // pointwise conv
  990. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  991. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  992. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  993. block_1 = ggml_relu(ctx0, block_1);
  994. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  995. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  996. block_1 = ggml_hardsigmoid(ctx0, block_1);
  997. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  998. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  999. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1000. int w = block_1->ne[0], h = block_1->ne[1];
  1001. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1002. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1003. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1004. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1005. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1006. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1007. block_1 = ggml_norm(ctx0, block_1, eps);
  1008. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1009. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1010. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1011. }
  1012. embeddings = block_1;
  1013. }
  1014. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  1015. {
  1016. int n_patch = 24;
  1017. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1018. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1019. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1020. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1021. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1022. // mlp_2 ne = [2048, 576, 1, 1]
  1023. // // AVG Pool Layer 2*2, strides = 2
  1024. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  1025. // mlp_2 ne = [576, 2048, 1, 1]
  1026. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1027. // mlp_2 ne [24, 24, 2048, 1]
  1028. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1029. // weight ne = [3, 3, 2048, 1]
  1030. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1031. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1032. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1033. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1034. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1035. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1036. embeddings = peg_0;
  1037. }
  1038. else {
  1039. GGML_ABORT("fatal error");
  1040. }
  1041. }
  1042. // glm projector
  1043. else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  1044. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1045. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  1046. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1047. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1048. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1049. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1050. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1051. // GLU
  1052. {
  1053. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1054. embeddings = ggml_norm(ctx0, embeddings, eps);
  1055. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1056. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1057. ggml_tensor * x = embeddings;
  1058. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1059. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1060. embeddings = ggml_silu_inplace(ctx0, embeddings);
  1061. embeddings = ggml_mul(ctx0, embeddings,x);
  1062. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1063. }
  1064. // arrangement of BOI/EOI token embeddings
  1065. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1066. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1067. {
  1068. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1069. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1070. }
  1071. }
  1072. else {
  1073. GGML_ABORT("llava: unknown projector type");
  1074. }
  1075. // build the graph
  1076. ggml_build_forward_expand(gf, embeddings);
  1077. return gf;
  1078. }
  1079. private:
  1080. //
  1081. // utility functions
  1082. //
  1083. void cb(ggml_tensor * cur, const char * name, int il) const {
  1084. // TODO: implement this
  1085. GGML_UNUSED(cur);
  1086. GGML_UNUSED(name);
  1087. GGML_UNUSED(il);
  1088. }
  1089. // build vision transformer (ViT) cgraph
  1090. // this function should cover most of the models
  1091. // if your model has specific features, you should probably duplicate this function
  1092. ggml_tensor * build_vit(
  1093. ggml_tensor * inp,
  1094. int64_t n_pos,
  1095. norm_type norm_t,
  1096. ffn_op_type ffn_t,
  1097. ggml_tensor * learned_pos_embd,
  1098. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1099. ) {
  1100. if (learned_pos_embd) {
  1101. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1102. cb(inp, "pos_embed", -1);
  1103. }
  1104. ggml_tensor * inpL = inp;
  1105. // pre-layernorm
  1106. if (model.pre_ln_w) {
  1107. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1108. cb(inpL, "pre_ln", -1);
  1109. }
  1110. // loop over layers
  1111. for (int il = 0; il < n_layer; il++) {
  1112. auto & layer = model.layers[il];
  1113. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1114. // layernorm1
  1115. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1116. cb(cur, "layer_inp_normed", il);
  1117. // self-attention
  1118. {
  1119. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1120. if (layer.q_b) {
  1121. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1122. }
  1123. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1124. if (layer.k_b) {
  1125. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1126. }
  1127. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1128. if (layer.v_b) {
  1129. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1130. }
  1131. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1132. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1133. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1134. cb(Qcur, "Qcur", il);
  1135. cb(Kcur, "Kcur", il);
  1136. cb(Vcur, "Vcur", il);
  1137. if (add_pos) {
  1138. Qcur = add_pos(Qcur, layer);
  1139. Kcur = add_pos(Kcur, layer);
  1140. cb(Qcur, "Qcur_pos", il);
  1141. cb(Kcur, "Kcur_pos", il);
  1142. }
  1143. cur = build_attn(layer.o_w, layer.o_b,
  1144. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1145. cb(cur, "attn_out", il);
  1146. }
  1147. if (layer.ls_1_w) {
  1148. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1149. cb(cur, "attn_out_scaled", il);
  1150. }
  1151. // re-add the layer input, e.g., residual
  1152. cur = ggml_add(ctx0, cur, inpL);
  1153. inpL = cur; // inpL = residual, cur = hidden_states
  1154. cb(cur, "ffn_inp", il);
  1155. // layernorm2
  1156. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1157. cb(cur, "ffn_inp_normed", il);
  1158. // ffn
  1159. cur = build_ffn(cur,
  1160. layer.ff_up_w, layer.ff_up_b,
  1161. layer.ff_gate_w, layer.ff_gate_b,
  1162. layer.ff_down_w, layer.ff_down_b,
  1163. ffn_t, il);
  1164. cb(cur, "ffn_out", il);
  1165. if (layer.ls_2_w) {
  1166. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1167. cb(cur, "ffn_out_scaled", il);
  1168. }
  1169. // residual 2
  1170. cur = ggml_add(ctx0, inpL, cur);
  1171. cb(cur, "layer_out", il);
  1172. inpL = cur;
  1173. }
  1174. // post-layernorm
  1175. if (model.post_ln_w) {
  1176. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1177. }
  1178. return inpL;
  1179. }
  1180. // build the input after conv2d (inp_raw --> patches)
  1181. // returns tensor with shape [n_embd, n_patches]
  1182. ggml_tensor * build_inp() {
  1183. ggml_tensor * inp_raw = build_inp_raw();
  1184. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1185. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1186. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1187. if (model.patch_bias) {
  1188. inp = ggml_add(ctx0, inp, model.patch_bias);
  1189. cb(inp, "patch_bias", -1);
  1190. }
  1191. return inp;
  1192. }
  1193. ggml_tensor * build_inp_raw() {
  1194. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, 3);
  1195. ggml_set_name(inp_raw, "inp_raw");
  1196. ggml_set_input(inp_raw);
  1197. return inp_raw;
  1198. }
  1199. ggml_tensor * build_norm(
  1200. ggml_tensor * cur,
  1201. ggml_tensor * mw,
  1202. ggml_tensor * mb,
  1203. norm_type type,
  1204. float norm_eps,
  1205. int il) const {
  1206. cur = type == NORM_TYPE_RMS
  1207. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1208. : ggml_norm(ctx0, cur, norm_eps);
  1209. if (mw || mb) {
  1210. cb(cur, "norm", il);
  1211. }
  1212. if (mw) {
  1213. cur = ggml_mul(ctx0, cur, mw);
  1214. if (mb) {
  1215. cb(cur, "norm_w", il);
  1216. }
  1217. }
  1218. if (mb) {
  1219. cur = ggml_add(ctx0, cur, mb);
  1220. }
  1221. return cur;
  1222. }
  1223. ggml_tensor * build_ffn(
  1224. ggml_tensor * cur,
  1225. ggml_tensor * up,
  1226. ggml_tensor * up_b,
  1227. ggml_tensor * gate,
  1228. ggml_tensor * gate_b,
  1229. ggml_tensor * down,
  1230. ggml_tensor * down_b,
  1231. ffn_op_type type_op,
  1232. int il) const {
  1233. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1234. cb(tmp, "ffn_up", il);
  1235. if (up_b) {
  1236. tmp = ggml_add(ctx0, tmp, up_b);
  1237. cb(tmp, "ffn_up_b", il);
  1238. }
  1239. if (gate) {
  1240. cur = ggml_mul_mat(ctx0, gate, cur);
  1241. cb(cur, "ffn_gate", il);
  1242. if (gate_b) {
  1243. cur = ggml_add(ctx0, cur, gate_b);
  1244. cb(cur, "ffn_gate_b", il);
  1245. }
  1246. } else {
  1247. cur = tmp;
  1248. }
  1249. switch (type_op) {
  1250. case FFN_SILU:
  1251. {
  1252. cur = ggml_silu(ctx0, cur);
  1253. cb(cur, "ffn_silu", il);
  1254. } break;
  1255. case FFN_GELU:
  1256. {
  1257. cur = ggml_gelu(ctx0, cur);
  1258. cb(cur, "ffn_gelu", il);
  1259. } break;
  1260. case FFN_GELU_QUICK:
  1261. {
  1262. cur = ggml_gelu_quick(ctx0, cur);
  1263. cb(cur, "ffn_relu", il);
  1264. } break;
  1265. }
  1266. // we only support parallel ffn for now
  1267. if (gate) {
  1268. cur = ggml_mul(ctx0, cur, tmp);
  1269. cb(cur, "ffn_gate_par", il);
  1270. }
  1271. if (down) {
  1272. cur = ggml_mul_mat(ctx0, down, cur);
  1273. }
  1274. if (down_b) {
  1275. cb(cur, "ffn_down", il);
  1276. }
  1277. if (down_b) {
  1278. cur = ggml_add(ctx0, cur, down_b);
  1279. }
  1280. return cur;
  1281. }
  1282. ggml_tensor * build_attn(
  1283. ggml_tensor * wo,
  1284. ggml_tensor * wo_b,
  1285. ggml_tensor * q_cur,
  1286. ggml_tensor * k_cur,
  1287. ggml_tensor * v_cur,
  1288. ggml_tensor * kq_mask,
  1289. float kq_scale,
  1290. int il) const {
  1291. // these nodes are added to the graph together so that they are not reordered
  1292. // by doing so, the number of splits in the graph is reduced
  1293. ggml_build_forward_expand(gf, q_cur);
  1294. ggml_build_forward_expand(gf, k_cur);
  1295. ggml_build_forward_expand(gf, v_cur);
  1296. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1297. //cb(q, "q", il);
  1298. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1299. //cb(k, "k", il);
  1300. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1301. v = ggml_cont(ctx0, v);
  1302. //cb(k, "v", il);
  1303. ggml_tensor * cur;
  1304. // TODO @ngxson : support flash attention
  1305. {
  1306. const auto n_tokens = q->ne[1];
  1307. const auto n_head = q->ne[2];
  1308. // const auto n_kv = k->ne[1]; // for flash attention
  1309. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1310. // F32 may not needed for vision encoders?
  1311. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1312. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1313. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1314. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1315. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1316. }
  1317. cb(cur, "kqv_out", il);
  1318. if (wo) {
  1319. cur = ggml_mul_mat(ctx0, wo, cur);
  1320. }
  1321. if (wo_b) {
  1322. cur = ggml_add(ctx0, cur, wo_b);
  1323. }
  1324. return cur;
  1325. }
  1326. // implementation of the 2D RoPE without adding a new op in ggml
  1327. // this is not efficient (use double the memory), but works on all backends
  1328. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1329. static ggml_tensor * build_rope_2d(
  1330. ggml_context * ctx0,
  1331. ggml_tensor * cur,
  1332. ggml_tensor * pos_h,
  1333. ggml_tensor * pos_w,
  1334. const float freq_base
  1335. ) {
  1336. const int64_t n_dim = cur->ne[0];
  1337. const int64_t n_head = cur->ne[1];
  1338. const int64_t n_pos = cur->ne[2];
  1339. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1340. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1341. // first half of cur will use 1e-0, 1e-2 (even)
  1342. // second half of cur will use 1e-1, 1e-3 (odd)
  1343. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1344. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1345. // then for the second half, we use freq_scale to shift the inv_freq
  1346. // ^ why? replace (2i) with (2i+1) in the above equation
  1347. const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
  1348. // first half
  1349. ggml_tensor * first;
  1350. {
  1351. first = ggml_view_3d(ctx0, cur,
  1352. n_dim/2, n_head, n_pos,
  1353. ggml_row_size(cur->type, n_dim),
  1354. ggml_row_size(cur->type, n_dim*n_head),
  1355. 0);
  1356. first = ggml_rope_ext(
  1357. ctx0,
  1358. first,
  1359. pos_h, // positions
  1360. nullptr, // freq factors
  1361. n_dim/2, // n_dims
  1362. 0, 0, freq_base,
  1363. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1364. );
  1365. }
  1366. // second half
  1367. ggml_tensor * second;
  1368. {
  1369. second = ggml_view_3d(ctx0, cur,
  1370. n_dim/2, n_head, n_pos,
  1371. ggml_row_size(cur->type, n_dim),
  1372. ggml_row_size(cur->type, n_dim*n_head),
  1373. n_dim/2 * ggml_element_size(cur));
  1374. second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
  1375. second = ggml_rope_ext(
  1376. ctx0,
  1377. second,
  1378. pos_w, // positions
  1379. nullptr, // freq factors
  1380. n_dim/2, // n_dims
  1381. 0, 0, freq_base,
  1382. freq_scale_odd,
  1383. 0.0f, 1.0f, 0.0f, 0.0f
  1384. );
  1385. }
  1386. cur = ggml_concat(ctx0, first, second, 0);
  1387. return cur;
  1388. }
  1389. };
  1390. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1391. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1392. clip_graph graph(ctx, *imgs.entries[0]);
  1393. ggml_cgraph * res;
  1394. switch (ctx->proj_type) {
  1395. case PROJECTOR_TYPE_GEMMA3:
  1396. case PROJECTOR_TYPE_IDEFICS3:
  1397. {
  1398. res = graph.build_siglip();
  1399. } break;
  1400. case PROJECTOR_TYPE_PIXTRAL:
  1401. {
  1402. res = graph.build_pixtral();
  1403. } break;
  1404. case PROJECTOR_TYPE_QWEN2VL:
  1405. case PROJECTOR_TYPE_QWEN25VL:
  1406. {
  1407. res = graph.build_qwen2vl();
  1408. } break;
  1409. case PROJECTOR_TYPE_MINICPMV:
  1410. {
  1411. res = graph.build_minicpmv();
  1412. } break;
  1413. case PROJECTOR_TYPE_INTERNVL:
  1414. {
  1415. res = graph.build_internvl();
  1416. } break;
  1417. default:
  1418. {
  1419. res = graph.build_llava();
  1420. } break;
  1421. }
  1422. return res;
  1423. }
  1424. struct clip_model_loader {
  1425. ggml_context_ptr ctx_meta;
  1426. gguf_context_ptr ctx_gguf;
  1427. clip_ctx & ctx_clip;
  1428. std::string fname;
  1429. size_t model_size = 0; // in bytes
  1430. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
  1431. clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
  1432. struct ggml_context * meta = nullptr;
  1433. struct gguf_init_params params = {
  1434. /*.no_alloc = */ true,
  1435. /*.ctx = */ &meta,
  1436. };
  1437. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1438. if (!ctx_gguf.get()) {
  1439. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1440. }
  1441. ctx_meta.reset(meta);
  1442. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1443. // print gguf info
  1444. {
  1445. std::string name;
  1446. get_string(KEY_NAME, name, false);
  1447. std::string description;
  1448. get_string(KEY_DESCRIPTION, description, false);
  1449. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1450. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1451. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1452. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1453. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1454. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1455. LOG_INF("\n");
  1456. }
  1457. // tensors
  1458. {
  1459. for (int i = 0; i < n_tensors; ++i) {
  1460. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1461. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1462. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1463. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1464. size_t tensor_size = ggml_nbytes(cur);
  1465. model_size += tensor_size;
  1466. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1467. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1468. }
  1469. }
  1470. }
  1471. void load_hparams() {
  1472. auto & hparams = ctx_clip.vision_model.hparams;
  1473. std::string log_ffn_op; // for logging
  1474. // projector type
  1475. std::string proj_type;
  1476. {
  1477. get_string(KEY_PROJ_TYPE, proj_type, false);
  1478. if (!proj_type.empty()) {
  1479. ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
  1480. }
  1481. if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1482. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1483. }
  1484. }
  1485. // other hparams
  1486. {
  1487. get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); // legacy
  1488. get_u32(KEY_N_EMBD, hparams.n_embd);
  1489. get_u32(KEY_N_HEAD, hparams.n_head);
  1490. get_u32(KEY_N_FF, hparams.n_ff);
  1491. get_u32(KEY_N_BLOCK, hparams.n_layer);
  1492. get_u32(KEY_PROJ_DIM, hparams.projection_dim);
  1493. get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
  1494. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1495. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1496. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1497. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
  1498. // default warmup value
  1499. hparams.warmup_image_size = hparams.image_size;
  1500. ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
  1501. || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
  1502. || ctx_clip.proj_type == PROJECTOR_TYPE_LDP
  1503. || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
  1504. {
  1505. bool use_gelu = false;
  1506. bool use_silu = false;
  1507. get_bool(KEY_USE_GELU, use_gelu, false);
  1508. get_bool(KEY_USE_SILU, use_silu, false);
  1509. if (use_gelu && use_silu) {
  1510. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1511. }
  1512. if (use_gelu) {
  1513. hparams.ffn_op = FFN_GELU;
  1514. log_ffn_op = "gelu";
  1515. } else if (use_silu) {
  1516. hparams.ffn_op = FFN_SILU;
  1517. log_ffn_op = "silu";
  1518. } else {
  1519. hparams.ffn_op = FFN_GELU_QUICK;
  1520. log_ffn_op = "gelu_quick";
  1521. }
  1522. }
  1523. {
  1524. std::string mm_patch_merge_type;
  1525. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1526. if (mm_patch_merge_type == "spatial_unpad") {
  1527. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1528. }
  1529. }
  1530. {
  1531. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1532. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1533. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1534. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1535. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1536. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1537. for (int i = 0; i < 3; ++i) {
  1538. ctx_clip.image_mean[i] = mean_data[i];
  1539. ctx_clip.image_std[i] = std_data[i];
  1540. }
  1541. }
  1542. // Load the vision feature layer indices if they are explicitly provided;
  1543. // if multiple vision feature layers are present, the values will be concatenated
  1544. // to form the final visual features.
  1545. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1546. // be non-negative, since we use -1 to mark values as unset here.
  1547. std::vector<int> vision_feature_layer;
  1548. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1549. // convert std::vector to std::unordered_set
  1550. for (auto & layer : vision_feature_layer) {
  1551. hparams.vision_feature_layer.insert(layer);
  1552. }
  1553. // model-specific params
  1554. switch (ctx_clip.proj_type) {
  1555. case PROJECTOR_TYPE_MINICPMV:
  1556. {
  1557. if (ctx_clip.minicpmv_version == 0) {
  1558. ctx_clip.minicpmv_version = 2; // default to 2 if not set
  1559. }
  1560. } break;
  1561. case PROJECTOR_TYPE_IDEFICS3:
  1562. case PROJECTOR_TYPE_INTERNVL:
  1563. {
  1564. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1565. } break;
  1566. case PROJECTOR_TYPE_PIXTRAL:
  1567. {
  1568. hparams.rope_theta = 10000.0f;
  1569. hparams.warmup_image_size = hparams.patch_size * 8;
  1570. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1571. } break;
  1572. case PROJECTOR_TYPE_GEMMA3:
  1573. {
  1574. // default value (used by all model sizes in gemma 3 family)
  1575. // number of patches for each **side** is reduced by a factor of 4
  1576. hparams.proj_scale_factor = 4;
  1577. // test model (tinygemma3) has a different value, we optionally read it
  1578. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1579. } break;
  1580. case PROJECTOR_TYPE_QWEN2VL:
  1581. {
  1582. // max image size = sqrt(max_pixels)
  1583. // https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  1584. hparams.image_size = 3584;
  1585. hparams.warmup_image_size = hparams.patch_size * 8;
  1586. } break;
  1587. case PROJECTOR_TYPE_QWEN25VL:
  1588. {
  1589. // max image size = sqrt(max_pixels)
  1590. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  1591. hparams.image_size = 3584;
  1592. hparams.warmup_image_size = hparams.patch_size * 8;
  1593. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  1594. } break;
  1595. default:
  1596. break;
  1597. }
  1598. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1599. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1600. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1601. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1602. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1603. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1604. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1605. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1606. LOG_INF("\n");
  1607. LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector);
  1608. LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
  1609. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  1610. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  1611. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1612. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1613. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1614. }
  1615. }
  1616. void load_tensors() {
  1617. auto & hparams = ctx_clip.vision_model.hparams;
  1618. std::map<std::string, size_t> tensor_offset;
  1619. std::vector<ggml_tensor *> tensors_to_load;
  1620. // get offsets
  1621. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1622. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1623. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1624. }
  1625. // create data context
  1626. struct ggml_init_params params = {
  1627. /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1628. /*.mem_buffer =*/ NULL,
  1629. /*.no_alloc =*/ true,
  1630. };
  1631. ctx_clip.ctx_data.reset(ggml_init(params));
  1632. if (!ctx_clip.ctx_data) {
  1633. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1634. }
  1635. // helper function
  1636. auto get_tensor = [&](const std::string & name, bool required = true) {
  1637. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1638. if (!cur && required) {
  1639. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1640. }
  1641. if (cur) {
  1642. tensors_to_load.push_back(cur);
  1643. // add tensors to context
  1644. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1645. ggml_set_name(data_tensor, cur->name);
  1646. cur = data_tensor;
  1647. }
  1648. return cur;
  1649. };
  1650. auto & vision_model = ctx_clip.vision_model;
  1651. vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1652. vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
  1653. vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false);
  1654. vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
  1655. vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false);
  1656. vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  1657. vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  1658. vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  1659. vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
  1660. // layers
  1661. vision_model.layers.resize(hparams.n_layer);
  1662. for (int il = 0; il < hparams.n_layer; ++il) {
  1663. auto & layer = vision_model.layers[il];
  1664. layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
  1665. layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
  1666. layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
  1667. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1668. layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
  1669. layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
  1670. layer.ls_1_w = get_tensor(string_format(TN_LS_1, "v", il, "weight"), false); // no bias
  1671. layer.ls_2_w = get_tensor(string_format(TN_LS_2, "v", il, "weight"), false); // no bias
  1672. layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
  1673. layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
  1674. layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
  1675. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
  1676. layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
  1677. layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
  1678. // ffn
  1679. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
  1680. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
  1681. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
  1682. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"), false);
  1683. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
  1684. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
  1685. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  1686. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  1687. if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
  1688. // swap up and down weights
  1689. ggml_tensor * tmp = layer.ff_up_w;
  1690. layer.ff_up_w = layer.ff_down_w;
  1691. layer.ff_down_w = tmp;
  1692. // swap up and down biases
  1693. tmp = layer.ff_up_b;
  1694. layer.ff_up_b = layer.ff_down_b;
  1695. layer.ff_down_b = tmp;
  1696. }
  1697. }
  1698. switch (ctx_clip.proj_type) {
  1699. case PROJECTOR_TYPE_MLP:
  1700. case PROJECTOR_TYPE_MLP_NORM:
  1701. {
  1702. // LLaVA projection
  1703. vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  1704. vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  1705. // Yi-type llava
  1706. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  1707. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1708. // missing in Yi-type llava
  1709. vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  1710. vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1711. // Yi-type llava
  1712. vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  1713. vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  1714. vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  1715. vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  1716. if (vision_model.mm_3_w) {
  1717. // TODO: this is a hack to support Yi-type llava
  1718. ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
  1719. }
  1720. vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  1721. } break;
  1722. case PROJECTOR_TYPE_LDP:
  1723. {
  1724. // MobileVLM projection
  1725. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1726. vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1727. vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1728. vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1729. vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1730. vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1731. vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1732. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1733. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1734. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1735. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1736. vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1737. vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1738. vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1739. vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1740. vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1741. vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1742. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1743. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1744. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1745. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1746. vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1747. vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1748. vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1749. } break;
  1750. case PROJECTOR_TYPE_LDPV2:
  1751. {
  1752. // MobilVLM_V2 projection
  1753. vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1754. vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1755. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1756. vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1757. vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1758. vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1759. } break;
  1760. case PROJECTOR_TYPE_MINICPMV:
  1761. {
  1762. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1763. vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  1764. vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  1765. vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  1766. vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  1767. vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  1768. vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  1769. vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  1770. vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  1771. vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  1772. vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  1773. vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  1774. vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  1775. vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  1776. vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  1777. vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  1778. vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  1779. vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  1780. vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  1781. } break;
  1782. case PROJECTOR_TYPE_GLM_EDGE:
  1783. {
  1784. vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  1785. vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  1786. vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  1787. vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  1788. vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  1789. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  1790. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  1791. vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  1792. vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  1793. vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  1794. } break;
  1795. case PROJECTOR_TYPE_QWEN2VL:
  1796. case PROJECTOR_TYPE_QWEN25VL:
  1797. {
  1798. vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1799. vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1800. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1801. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1802. } break;
  1803. case PROJECTOR_TYPE_GEMMA3:
  1804. {
  1805. vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  1806. vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  1807. } break;
  1808. case PROJECTOR_TYPE_IDEFICS3:
  1809. {
  1810. vision_model.projection = get_tensor(TN_MM_PROJECTOR);
  1811. } break;
  1812. case PROJECTOR_TYPE_PIXTRAL:
  1813. {
  1814. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1815. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1816. vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1817. vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1818. // [IMG_BREAK] token embedding
  1819. vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  1820. // for mistral small 3.1
  1821. vision_model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  1822. vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  1823. } break;
  1824. case PROJECTOR_TYPE_INTERNVL:
  1825. {
  1826. vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1827. vision_model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1828. vision_model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1829. vision_model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1830. vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1831. vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1832. } break;
  1833. default:
  1834. GGML_ASSERT(false && "unknown projector type");
  1835. }
  1836. // load data
  1837. {
  1838. std::vector<uint8_t> read_buf;
  1839. auto fin = std::ifstream(fname, std::ios::binary);
  1840. if (!fin) {
  1841. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  1842. }
  1843. // alloc memory and offload data
  1844. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  1845. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  1846. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  1847. for (auto & t : tensors_to_load) {
  1848. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  1849. const size_t offset = tensor_offset[t->name];
  1850. fin.seekg(offset, std::ios::beg);
  1851. if (!fin) {
  1852. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  1853. }
  1854. size_t num_bytes = ggml_nbytes(cur);
  1855. if (ggml_backend_buft_is_host(buft)) {
  1856. // for the CPU and Metal backend, we can read directly into the tensor
  1857. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1858. } else {
  1859. // read into a temporary buffer first, then copy to device memory
  1860. read_buf.resize(num_bytes);
  1861. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1862. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1863. }
  1864. }
  1865. fin.close();
  1866. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  1867. }
  1868. }
  1869. void alloc_compute_meta() {
  1870. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  1871. // create a fake batch
  1872. clip_image_f32_batch batch;
  1873. clip_image_f32_ptr img(clip_image_f32_init());
  1874. img->nx = ctx_clip.vision_model.hparams.warmup_image_size;
  1875. img->ny = ctx_clip.vision_model.hparams.warmup_image_size;
  1876. img->buf.resize(img->nx * img->ny * 3);
  1877. batch.entries.push_back(std::move(img));
  1878. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  1879. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  1880. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  1881. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  1882. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  1883. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  1884. if (size > 1) {
  1885. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  1886. ggml_backend_buft_name(buft),
  1887. size / 1024.0 / 1024.0);
  1888. }
  1889. }
  1890. }
  1891. void get_bool(const std::string & key, bool & output, bool required = true) {
  1892. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1893. if (i < 0) {
  1894. if (required) throw std::runtime_error("Key not found: " + key);
  1895. return;
  1896. }
  1897. output = gguf_get_val_bool(ctx_gguf.get(), i);
  1898. }
  1899. void get_i32(const std::string & key, int & output, bool required = true) {
  1900. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1901. if (i < 0) {
  1902. if (required) throw std::runtime_error("Key not found: " + key);
  1903. return;
  1904. }
  1905. output = gguf_get_val_i32(ctx_gguf.get(), i);
  1906. }
  1907. void get_u32(const std::string & key, int & output, bool required = true) {
  1908. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1909. if (i < 0) {
  1910. if (required) throw std::runtime_error("Key not found: " + key);
  1911. return;
  1912. }
  1913. output = gguf_get_val_u32(ctx_gguf.get(), i);
  1914. }
  1915. void get_f32(const std::string & key, float & output, bool required = true) {
  1916. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1917. if (i < 0) {
  1918. if (required) throw std::runtime_error("Key not found: " + key);
  1919. return;
  1920. }
  1921. output = gguf_get_val_f32(ctx_gguf.get(), i);
  1922. }
  1923. void get_string(const std::string & key, std::string & output, bool required = true) {
  1924. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1925. if (i < 0) {
  1926. if (required) throw std::runtime_error("Key not found: " + key);
  1927. return;
  1928. }
  1929. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  1930. }
  1931. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  1932. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1933. if (i < 0) {
  1934. if (required) throw std::runtime_error("Key not found: " + key);
  1935. return;
  1936. }
  1937. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  1938. output.resize(n);
  1939. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  1940. for (int i = 0; i < n; ++i) {
  1941. output[i] = values[i];
  1942. }
  1943. }
  1944. };
  1945. // read and create ggml_context containing the tensors and their data
  1946. struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
  1947. return clip_init(fname, clip_context_params{
  1948. /* use_gpu */ true,
  1949. /* verbosity */ static_cast<ggml_log_level>(verbosity),
  1950. });
  1951. }
  1952. struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
  1953. g_logger_state.verbosity_thold = ctx_params.verbosity;
  1954. clip_ctx * ctx_clip = nullptr;
  1955. try {
  1956. ctx_clip = new clip_ctx(ctx_params);
  1957. clip_model_loader loader(fname, *ctx_clip);
  1958. loader.load_hparams();
  1959. loader.load_tensors();
  1960. loader.alloc_compute_meta();
  1961. } catch (const std::exception & e) {
  1962. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  1963. delete ctx_clip;
  1964. return nullptr;
  1965. }
  1966. return ctx_clip;
  1967. }
  1968. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1969. ctx_clip->load_image_size = *load_image_size; // copy
  1970. }
  1971. struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
  1972. return &ctx_clip->load_image_size;
  1973. }
  1974. struct clip_image_size * clip_image_size_init() {
  1975. struct clip_image_size * load_image_size = new struct clip_image_size();
  1976. load_image_size->width = 448;
  1977. load_image_size->height = 448;
  1978. return load_image_size;
  1979. }
  1980. struct clip_image_u8 * clip_image_u8_init() {
  1981. return new clip_image_u8();
  1982. }
  1983. struct clip_image_f32 * clip_image_f32_init() {
  1984. return new clip_image_f32();
  1985. }
  1986. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  1987. return new clip_image_f32_batch();
  1988. }
  1989. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  1990. if (nx) *nx = img->nx;
  1991. if (ny) *ny = img->ny;
  1992. return img->buf.data();
  1993. }
  1994. void clip_image_size_free(struct clip_image_size * load_image_size) {
  1995. if (load_image_size == nullptr) {
  1996. return;
  1997. }
  1998. delete load_image_size;
  1999. }
  2000. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2001. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2002. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2003. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2004. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2005. return batch->entries.size();
  2006. }
  2007. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2008. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2009. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2010. return 0;
  2011. }
  2012. return batch->entries[idx]->nx;
  2013. }
  2014. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2015. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2016. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2017. return 0;
  2018. }
  2019. return batch->entries[idx]->ny;
  2020. }
  2021. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2022. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2023. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2024. return nullptr;
  2025. }
  2026. return batch->entries[idx].get();
  2027. }
  2028. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2029. img->nx = nx;
  2030. img->ny = ny;
  2031. img->buf.resize(3 * nx * ny);
  2032. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2033. }
  2034. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  2035. int nx, ny, nc;
  2036. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  2037. if (!data) {
  2038. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  2039. return false;
  2040. }
  2041. clip_build_img_from_pixels(data, nx, ny, img);
  2042. stbi_image_free(data);
  2043. return true;
  2044. }
  2045. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  2046. int nx, ny, nc;
  2047. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  2048. if (!data) {
  2049. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  2050. return false;
  2051. }
  2052. clip_build_img_from_pixels(data, nx, ny, img);
  2053. stbi_image_free(data);
  2054. return true;
  2055. }
  2056. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2057. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2058. dst.nx = src.nx;
  2059. dst.ny = src.ny;
  2060. dst.buf.resize(src.buf.size());
  2061. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2062. for (size_t i = 0; i < src.buf.size(); ++i) {
  2063. int c = i % 3; // rgb
  2064. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2065. }
  2066. }
  2067. // set of tools to manupulate images
  2068. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2069. struct image_manipulation {
  2070. // Bilinear resize function
  2071. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2072. dst.nx = target_width;
  2073. dst.ny = target_height;
  2074. dst.buf.resize(3 * target_width * target_height);
  2075. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2076. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2077. for (int y = 0; y < target_height; y++) {
  2078. for (int x = 0; x < target_width; x++) {
  2079. float px = x_ratio * x;
  2080. float py = y_ratio * y;
  2081. int x_floor = static_cast<int>(px);
  2082. int y_floor = static_cast<int>(py);
  2083. float x_lerp = px - x_floor;
  2084. float y_lerp = py - y_floor;
  2085. for (int c = 0; c < 3; c++) {
  2086. float top = lerp(
  2087. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2088. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2089. x_lerp
  2090. );
  2091. float bottom = lerp(
  2092. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2093. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2094. x_lerp
  2095. );
  2096. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2097. }
  2098. }
  2099. }
  2100. }
  2101. // Bicubic resize function
  2102. // part of image will be cropped if the aspect ratio is different
  2103. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2104. const int nx = img.nx;
  2105. const int ny = img.ny;
  2106. dst.nx = target_width;
  2107. dst.ny = target_height;
  2108. dst.buf.resize(3 * target_width * target_height);
  2109. float Cc;
  2110. float C[5];
  2111. float d0, d2, d3, a0, a1, a2, a3;
  2112. int i, j, k, jj;
  2113. int x, y;
  2114. float dx, dy;
  2115. float tx, ty;
  2116. tx = (float)nx / (float)target_width;
  2117. ty = (float)ny / (float)target_height;
  2118. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2119. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2120. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2121. for (i = 0; i < target_height; i++) {
  2122. for (j = 0; j < target_width; j++) {
  2123. x = (int)(tx * j);
  2124. y = (int)(ty * i);
  2125. dx = tx * j - x;
  2126. dy = ty * i - y;
  2127. for (k = 0; k < 3; k++) {
  2128. for (jj = 0; jj <= 3; jj++) {
  2129. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2130. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2131. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2132. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2133. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2134. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2135. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2136. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2137. d0 = C[0] - C[1];
  2138. d2 = C[2] - C[1];
  2139. d3 = C[3] - C[1];
  2140. a0 = C[1];
  2141. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2142. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2143. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2144. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2145. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2146. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2147. }
  2148. }
  2149. }
  2150. }
  2151. return true;
  2152. }
  2153. // llava-1.6 type of resize_and_pad
  2154. // if the ratio is not 1:1, padding with pad_color will be applied
  2155. // pad_color is single channel, default is 0 (black)
  2156. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2157. int target_width = target_resolution.width;
  2158. int target_height = target_resolution.height;
  2159. float scale_w = static_cast<float>(target_width) / image.nx;
  2160. float scale_h = static_cast<float>(target_height) / image.ny;
  2161. int new_width, new_height;
  2162. if (scale_w < scale_h) {
  2163. new_width = target_width;
  2164. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2165. } else {
  2166. new_height = target_height;
  2167. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2168. }
  2169. clip_image_u8 resized_image;
  2170. bicubic_resize(image, resized_image, new_width, new_height);
  2171. clip_image_u8 padded_image;
  2172. padded_image.nx = target_width;
  2173. padded_image.ny = target_height;
  2174. padded_image.buf.resize(3 * target_width * target_height);
  2175. // Fill the padded image with the fill color
  2176. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2177. padded_image.buf[i] = pad_color[0];
  2178. padded_image.buf[i + 1] = pad_color[1];
  2179. padded_image.buf[i + 2] = pad_color[2];
  2180. }
  2181. // Calculate padding offsets
  2182. int pad_x = (target_width - new_width) / 2;
  2183. int pad_y = (target_height - new_height) / 2;
  2184. // Copy the resized image into the center of the padded buffer
  2185. for (int y = 0; y < new_height; ++y) {
  2186. for (int x = 0; x < new_width; ++x) {
  2187. for (int c = 0; c < 3; ++c) {
  2188. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2189. }
  2190. }
  2191. }
  2192. dst = std::move(padded_image);
  2193. }
  2194. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2195. dst.nx = w;
  2196. dst.ny = h;
  2197. dst.buf.resize(3 * w * h);
  2198. for (int i = 0; i < h; ++i) {
  2199. for (int j = 0; j < w; ++j) {
  2200. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2201. int dst_idx = 3 * (i*w + j);
  2202. dst.buf[dst_idx] = image.buf[src_idx];
  2203. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2204. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2205. }
  2206. }
  2207. }
  2208. // calculate the size of the **resized** image, while preserving the aspect ratio
  2209. // the calculated size will be aligned to the nearest multiple of align_size
  2210. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2211. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2212. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2213. return {0, 0};
  2214. }
  2215. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2216. static_cast<float>(max_dimension) / inp_size.height));
  2217. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2218. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2219. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2220. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2221. return {aligned_width, aligned_height};
  2222. }
  2223. private:
  2224. static inline int clip(int x, int lower, int upper) {
  2225. return std::max(lower, std::min(x, upper));
  2226. }
  2227. // Linear interpolation between two points
  2228. static inline float lerp(float s, float e, float t) {
  2229. return s + (e - s) * t;
  2230. }
  2231. };
  2232. /**
  2233. * implementation of LLaVA-UHD:
  2234. * - https://arxiv.org/pdf/2403.11703
  2235. * - https://github.com/thunlp/LLaVA-UHD
  2236. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2237. *
  2238. * overview:
  2239. * - an image always have a single overview (downscaled image)
  2240. * - an image can have 0 or multiple slices, depending on the image size
  2241. * - each slice can then be considered as a separate image
  2242. *
  2243. * for example:
  2244. *
  2245. * [overview] --> [slice 1] --> [slice 2]
  2246. * | |
  2247. * +--> [slice 3] --> [slice 4]
  2248. */
  2249. struct llava_uhd {
  2250. struct slice_coordinates {
  2251. int x;
  2252. int y;
  2253. clip_image_size size;
  2254. };
  2255. struct slice_instructions {
  2256. clip_image_size overview_size; // size of downscaled image
  2257. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2258. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2259. std::vector<slice_coordinates> slices;
  2260. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2261. };
  2262. static int get_max_slices(struct clip_ctx * ctx) {
  2263. if (clip_is_minicpmv(ctx)) {
  2264. return 9;
  2265. }
  2266. return 0;
  2267. }
  2268. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2269. slice_instructions res;
  2270. const int patch_size = clip_get_patch_size(ctx);
  2271. const int slice_size = clip_get_image_size(ctx);
  2272. const int max_slice_nums = get_max_slices(ctx);
  2273. const int original_width = original_size.width;
  2274. const int original_height = original_size.height;
  2275. const float log_ratio = log((float)original_width / original_height);
  2276. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2277. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2278. const bool has_slices = (multiple > 1);
  2279. const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
  2280. if (has_pinpoints) {
  2281. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2282. auto refine_size = llava_uhd::select_best_resolution(
  2283. ctx->vision_model.hparams.image_grid_pinpoints,
  2284. original_size);
  2285. res.overview_size = clip_image_size{slice_size, slice_size};
  2286. res.refined_size = refine_size;
  2287. res.grid_size = clip_image_size{0, 0};
  2288. res.padding_refined = true;
  2289. for (int y = 0; y < refine_size.height; y += slice_size) {
  2290. for (int x = 0; x < refine_size.width; x += slice_size) {
  2291. slice_coordinates slice;
  2292. slice.x = x;
  2293. slice.y = y;
  2294. slice.size.width = std::min(slice_size, refine_size.width - x);
  2295. slice.size.height = std::min(slice_size, refine_size.height - y);
  2296. res.slices.push_back(slice);
  2297. if (x == 0) {
  2298. res.grid_size.width++;
  2299. }
  2300. }
  2301. res.grid_size.height++;
  2302. }
  2303. return res;
  2304. }
  2305. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2306. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2307. res.overview_size = best_size;
  2308. if (!has_slices) {
  2309. // skip slicing logic
  2310. res.refined_size = clip_image_size{0, 0};
  2311. res.grid_size = clip_image_size{0, 0};
  2312. } else {
  2313. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2314. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2315. res.grid_size = best_grid;
  2316. res.refined_size = refine_size;
  2317. int width = refine_size.width;
  2318. int height = refine_size.height;
  2319. int grid_x = int(width / best_grid.width);
  2320. int grid_y = int(height / best_grid.height);
  2321. for (int patches_y = 0, ic = 0;
  2322. patches_y < refine_size.height && ic < best_grid.height;
  2323. patches_y += grid_y, ic += 1) {
  2324. for (int patches_x = 0, jc = 0;
  2325. patches_x < refine_size.width && jc < best_grid.width;
  2326. patches_x += grid_x, jc += 1) {
  2327. slice_coordinates slice;
  2328. slice.x = patches_x;
  2329. slice.y = patches_y;
  2330. slice.size.width = grid_x;
  2331. slice.size.height = grid_y;
  2332. res.slices.push_back(slice);
  2333. // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
  2334. }
  2335. }
  2336. }
  2337. return res;
  2338. }
  2339. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2340. std::vector<clip_image_u8_ptr> output;
  2341. // resize to overview size
  2342. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2343. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2344. output.push_back(std::move(resized_img));
  2345. if (inst.slices.empty()) {
  2346. // no slices, just return the resized image
  2347. return output;
  2348. }
  2349. // resize to refined size
  2350. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2351. if (inst.padding_refined) {
  2352. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2353. } else {
  2354. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2355. }
  2356. // create slices
  2357. for (const auto & slice : inst.slices) {
  2358. int x = slice.x;
  2359. int y = slice.y;
  2360. int w = slice.size.width;
  2361. int h = slice.size.height;
  2362. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2363. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2364. output.push_back(std::move(img_slice));
  2365. }
  2366. return output;
  2367. }
  2368. private:
  2369. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2370. int width = original_size.width;
  2371. int height = original_size.height;
  2372. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2373. float r = static_cast<float>(width) / height;
  2374. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2375. width = static_cast<int>(height * r);
  2376. }
  2377. clip_image_size res;
  2378. res.width = ensure_divide(width, patch_size);
  2379. res.height = ensure_divide(height, patch_size);
  2380. return res;
  2381. }
  2382. /**
  2383. * Selects the best resolution from a list of possible resolutions based on the original size.
  2384. *
  2385. * @param original_size The original size of the image
  2386. * @param possible_resolutions A list of possible resolutions
  2387. * @return The best fit resolution
  2388. */
  2389. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2390. int original_width = original_size.width;
  2391. int original_height = original_size.height;
  2392. clip_image_size best_fit;
  2393. int max_effective_resolution = 0;
  2394. int min_wasted_resolution = std::numeric_limits<int>::max();
  2395. for (const auto & resolution : possible_resolutions) {
  2396. int width = resolution.width;
  2397. int height = resolution.height;
  2398. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  2399. int downscaled_width = static_cast<int>(original_width * scale);
  2400. int downscaled_height = static_cast<int>(original_height * scale);
  2401. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  2402. int wasted_resolution = (width * height) - effective_resolution;
  2403. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  2404. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  2405. max_effective_resolution = effective_resolution;
  2406. min_wasted_resolution = wasted_resolution;
  2407. best_fit = resolution;
  2408. }
  2409. }
  2410. return best_fit;
  2411. }
  2412. // used by llava 1.6 with custom list of pinpoints
  2413. static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
  2414. std::vector<clip_image_size> possible_resolutions;
  2415. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2416. possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
  2417. }
  2418. return select_best_resolution(original_size, possible_resolutions);
  2419. }
  2420. static int ensure_divide(int length, int patch_size) {
  2421. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2422. }
  2423. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2424. int width = original_size.width;
  2425. int height = original_size.height;
  2426. int grid_x = grid.width;
  2427. int grid_y = grid.height;
  2428. int refine_width = ensure_divide(width, grid_x);
  2429. int refine_height = ensure_divide(height, grid_y);
  2430. clip_image_size grid_size;
  2431. grid_size.width = refine_width / grid_x;
  2432. grid_size.height = refine_height / grid_y;
  2433. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2434. int best_grid_width = best_grid_size.width;
  2435. int best_grid_height = best_grid_size.height;
  2436. clip_image_size refine_size;
  2437. refine_size.width = best_grid_width * grid_x;
  2438. refine_size.height = best_grid_height * grid_y;
  2439. return refine_size;
  2440. }
  2441. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2442. std::vector<int> candidate_split_grids_nums;
  2443. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2444. if (i == 1 || i > max_slice_nums) {
  2445. continue;
  2446. }
  2447. candidate_split_grids_nums.push_back(i);
  2448. }
  2449. std::vector<clip_image_size> candidate_grids;
  2450. for (int split_grids_nums : candidate_split_grids_nums) {
  2451. int m = 1;
  2452. while (m <= split_grids_nums) {
  2453. if (split_grids_nums % m == 0) {
  2454. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2455. }
  2456. ++m;
  2457. }
  2458. }
  2459. clip_image_size best_grid{1, 1};
  2460. float min_error = std::numeric_limits<float>::infinity();
  2461. for (const auto& grid : candidate_grids) {
  2462. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2463. if (error < min_error) {
  2464. best_grid = grid;
  2465. min_error = error;
  2466. }
  2467. }
  2468. return best_grid;
  2469. }
  2470. };
  2471. // TODO @ngxson : decprecate the load_image_size singleton pattern
  2472. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  2473. const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
  2474. return inst.grid_size.width;
  2475. }
  2476. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2477. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2478. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2479. clip_image_size original_size{img->nx, img->ny};
  2480. bool pad_to_square = true;
  2481. auto & params = ctx->vision_model.hparams;
  2482. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2483. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  2484. pad_to_square = false;
  2485. }
  2486. if (clip_is_minicpmv(ctx)) {
  2487. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2488. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2489. for (size_t i = 0; i < imgs.size(); ++i) {
  2490. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2491. clip_image_f32_ptr res(clip_image_f32_init());
  2492. normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
  2493. res_imgs->entries.push_back(std::move(res));
  2494. }
  2495. return true;
  2496. }
  2497. else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2498. clip_image_u8 resized;
  2499. auto patch_size = params.patch_size * 2;
  2500. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  2501. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  2502. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2503. // clip_image_f32_ptr res(clip_image_f32_init());
  2504. normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
  2505. // res_imgs->data[0] = *res;
  2506. res_imgs->entries.push_back(std::move(img_f32));
  2507. return true;
  2508. }
  2509. else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
  2510. || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
  2511. || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3
  2512. || ctx->proj_type == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  2513. ) {
  2514. clip_image_u8 resized_image;
  2515. int sz = params.image_size;
  2516. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  2517. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2518. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2519. normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
  2520. res_imgs->entries.push_back(std::move(img_f32));
  2521. return true;
  2522. }
  2523. else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
  2524. clip_image_u8 resized_image;
  2525. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  2526. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  2527. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2528. normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
  2529. res_imgs->entries.push_back(std::move(img_f32));
  2530. return true;
  2531. }
  2532. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  2533. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2534. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  2535. if (pad_to_square) {
  2536. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  2537. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2538. const int longer_side = std::max(img->nx, img->ny);
  2539. temp->nx = longer_side;
  2540. temp->ny = longer_side;
  2541. temp->buf.resize(3 * longer_side * longer_side);
  2542. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  2543. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2544. // resize the image to the target_size
  2545. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  2546. clip_image_f32_ptr res(clip_image_f32_init());
  2547. normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  2548. res_imgs->entries.push_back(std::move(res));
  2549. return true;
  2550. } else if (!params.image_grid_pinpoints.empty()) {
  2551. // "spatial_unpad" with "anyres" processing for llava-1.6
  2552. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2553. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2554. for (size_t i = 0; i < imgs.size(); ++i) {
  2555. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2556. clip_image_f32_ptr res(clip_image_f32_init());
  2557. normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
  2558. res_imgs->entries.push_back(std::move(res));
  2559. }
  2560. return true;
  2561. }
  2562. GGML_ASSERT(false && "Unknown image preprocessing type");
  2563. }
  2564. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2565. return ctx->vision_model.image_newline;
  2566. }
  2567. void clip_free(clip_ctx * ctx) {
  2568. if (ctx == nullptr) {
  2569. return;
  2570. }
  2571. delete ctx;
  2572. }
  2573. // deprecated
  2574. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2575. const int32_t nx = ctx->vision_model.hparams.image_size;
  2576. const int32_t ny = ctx->vision_model.hparams.image_size;
  2577. return clip_embd_nbytes_by_img(ctx, nx, ny);
  2578. }
  2579. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  2580. clip_image_f32 img;
  2581. img.nx = img_w;
  2582. img.ny = img_h;
  2583. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2584. }
  2585. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  2586. return ctx->vision_model.hparams.image_size;
  2587. }
  2588. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  2589. return ctx->vision_model.hparams.patch_size;
  2590. }
  2591. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  2592. return ctx->vision_model.hparams.n_embd;
  2593. }
  2594. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2595. return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  2596. }
  2597. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  2598. if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
  2599. return &ctx->vision_model.hparams.image_grid_pinpoints.front();
  2600. }
  2601. return nullptr;
  2602. }
  2603. size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
  2604. return ctx->vision_model.hparams.image_grid_pinpoints.size();
  2605. }
  2606. // deprecated
  2607. int clip_n_patches(const struct clip_ctx * ctx) {
  2608. clip_image_f32 img;
  2609. img.nx = ctx->vision_model.hparams.image_size;
  2610. img.ny = ctx->vision_model.hparams.image_size;
  2611. return clip_n_output_tokens(ctx, &img);
  2612. }
  2613. // deprecated
  2614. int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2615. return clip_n_output_tokens(ctx, img);
  2616. }
  2617. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2618. const auto & params = ctx->vision_model.hparams;
  2619. const int n_total = clip_n_output_tokens(ctx, img);
  2620. if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2621. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  2622. }
  2623. return n_total;
  2624. }
  2625. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2626. const auto & params = ctx->vision_model.hparams;
  2627. if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2628. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  2629. }
  2630. return 1;
  2631. }
  2632. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2633. const auto & params = ctx->vision_model.hparams;
  2634. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2635. if (ctx->proj_type == PROJECTOR_TYPE_LDP
  2636. || ctx->proj_type == PROJECTOR_TYPE_LDPV2
  2637. || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  2638. n_patches /= 4;
  2639. if (ctx->vision_model.mm_glm_tok_boi) {
  2640. n_patches += 2; // for BOI and EOI token embeddings
  2641. }
  2642. } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
  2643. if (ctx->minicpmv_version == 2) {
  2644. n_patches = 96;
  2645. }
  2646. else if (ctx->minicpmv_version == 3) {
  2647. n_patches = 64;
  2648. }
  2649. else if (ctx->minicpmv_version == 4) {
  2650. n_patches = 64;
  2651. }
  2652. else {
  2653. GGML_ABORT("Unknown minicpmv version");
  2654. }
  2655. } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2656. int patch_size = params.patch_size * 2;
  2657. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  2658. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  2659. n_patches = x_patch * y_patch;
  2660. } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  2661. int n_per_side = params.image_size / params.patch_size;
  2662. int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
  2663. n_patches = n_per_side_2d_pool * n_per_side_2d_pool;
  2664. } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 || ctx->proj_type == PROJECTOR_TYPE_INTERNVL) {
  2665. // both W and H are divided by proj_scale_factor
  2666. n_patches /= (params.proj_scale_factor * params.proj_scale_factor);
  2667. } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
  2668. int n_merge = params.spatial_merge_size;
  2669. int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
  2670. int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
  2671. n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  2672. }
  2673. return n_patches;
  2674. }
  2675. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  2676. assert(embed_dim % 2 == 0);
  2677. int H = pos.size();
  2678. int W = pos[0].size();
  2679. std::vector<float> omega(embed_dim / 2);
  2680. for (int i = 0; i < embed_dim / 2; ++i) {
  2681. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2682. }
  2683. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2684. for (int h = 0; h < H; ++h) {
  2685. for (int w = 0; w < W; ++w) {
  2686. for (int d = 0; d < embed_dim / 2; ++d) {
  2687. float out_value = pos[h][w] * omega[d];
  2688. emb[h][w][d] = sin(out_value);
  2689. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2690. }
  2691. }
  2692. }
  2693. return emb;
  2694. }
  2695. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  2696. assert(embed_dim % 2 == 0);
  2697. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  2698. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  2699. int H = emb_h.size();
  2700. int W = emb_h[0].size();
  2701. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2702. for (int h = 0; h < H; ++h) {
  2703. for (int w = 0; w < W; ++w) {
  2704. for (int d = 0; d < embed_dim / 2; ++d) {
  2705. emb[h][w][d] = emb_h[h][w][d];
  2706. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  2707. }
  2708. }
  2709. }
  2710. return emb;
  2711. }
  2712. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  2713. int grid_h_size = image_size.first;
  2714. int grid_w_size = image_size.second;
  2715. std::vector<float> grid_h(grid_h_size);
  2716. std::vector<float> grid_w(grid_w_size);
  2717. for (int i = 0; i < grid_h_size; ++i) {
  2718. grid_h[i] = static_cast<float>(i);
  2719. }
  2720. for (int i = 0; i < grid_w_size; ++i) {
  2721. grid_w[i] = static_cast<float>(i);
  2722. }
  2723. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  2724. for (int h = 0; h < grid_h_size; ++h) {
  2725. for (int w = 0; w < grid_w_size; ++w) {
  2726. grid[h][w] = grid_w[w];
  2727. }
  2728. }
  2729. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  2730. for (int h = 0; h < grid_h_size; ++h) {
  2731. for (int w = 0; w < grid_w_size; ++w) {
  2732. grid_2d[0][h][w] = grid_h[h];
  2733. grid_2d[1][h][w] = grid_w[w];
  2734. }
  2735. }
  2736. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2737. int H = image_size.first;
  2738. int W = image_size.second;
  2739. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2740. for (int h = 0; h < H; ++h) {
  2741. for (int w = 0; w < W; ++w) {
  2742. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2743. }
  2744. }
  2745. return pos_embed_2d;
  2746. }
  2747. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2748. clip_image_f32_batch imgs;
  2749. clip_image_f32_ptr img_copy(clip_image_f32_init());
  2750. *img_copy = *img;
  2751. imgs.entries.push_back(std::move(img_copy));
  2752. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2753. }
  2754. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  2755. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  2756. int batch_size = imgs.entries.size();
  2757. // TODO @ngxson : implement batch size > 1 as a loop
  2758. // we don't need true batching support because the cgraph will gonna be big anyway
  2759. if (batch_size != 1) {
  2760. return false; // only support batch size of 1
  2761. }
  2762. // build the inference graph
  2763. ggml_backend_sched_reset(ctx->sched.get());
  2764. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  2765. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  2766. // set inputs
  2767. const auto & model = ctx->vision_model;
  2768. const auto & hparams = model.hparams;
  2769. const int image_size_width = imgs.entries[0]->nx;
  2770. const int image_size_height = imgs.entries[0]->ny;
  2771. const int patch_size = hparams.patch_size;
  2772. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2773. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  2774. const int pos_w = ctx->load_image_size.width / patch_size;
  2775. const int pos_h = ctx->load_image_size.height / patch_size;
  2776. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  2777. auto get_inp_tensor = [&gf](const char * name) {
  2778. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  2779. if (inp == nullptr) {
  2780. GGML_ABORT("Failed to get tensor %s", name);
  2781. }
  2782. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  2783. GGML_ABORT("Tensor %s is not an input tensor", name);
  2784. }
  2785. return inp;
  2786. };
  2787. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  2788. ggml_tensor * cur = get_inp_tensor(name);
  2789. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  2790. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  2791. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  2792. };
  2793. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  2794. ggml_tensor * cur = get_inp_tensor(name);
  2795. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  2796. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  2797. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  2798. };
  2799. // set input pixel values
  2800. {
  2801. size_t nelem = 0;
  2802. for (const auto & img : imgs.entries) {
  2803. nelem += img->nx * img->ny * 3;
  2804. }
  2805. std::vector<float> inp_raw(nelem);
  2806. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  2807. //
  2808. // ┌──W──┐
  2809. // │ H │ channel = R
  2810. // ├─────┤ │
  2811. // │ H │ channel = G
  2812. // ├─────┤ │
  2813. // │ H │ channel = B
  2814. // └─────┘ │
  2815. // ──────┘ x B
  2816. for (size_t i = 0; i < imgs.entries.size(); i++) {
  2817. const int nx = imgs.entries[i]->nx;
  2818. const int ny = imgs.entries[i]->ny;
  2819. const int n = nx * ny;
  2820. for (int b = 0; b < batch_size; b++) {
  2821. float * batch_entry = inp_raw.data() + b * (3*n);
  2822. for (int y = 0; y < ny; y++) {
  2823. for (int x = 0; x < nx; x++) {
  2824. size_t base_src = 3*(y * nx + x); // idx of the first channel
  2825. size_t base_dst = y * nx + x; // idx of the first channel
  2826. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  2827. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  2828. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  2829. }
  2830. }
  2831. }
  2832. }
  2833. set_input_f32("inp_raw", inp_raw);
  2834. }
  2835. // set input per projector
  2836. switch (ctx->proj_type) {
  2837. case PROJECTOR_TYPE_MINICPMV:
  2838. {
  2839. // inspired from siglip:
  2840. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2841. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2842. std::vector<int32_t> positions(pos_h * pos_w);
  2843. int bucket_coords_h[1024];
  2844. int bucket_coords_w[1024];
  2845. for (int i = 0; i < pos_h; i++){
  2846. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2847. }
  2848. for (int i = 0; i < pos_w; i++){
  2849. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2850. }
  2851. for (int i = 0, id = 0; i < pos_h; i++){
  2852. for (int j = 0; j < pos_w; j++){
  2853. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2854. }
  2855. }
  2856. set_input_i32("positions", positions);
  2857. // inspired from resampler of Qwen-VL:
  2858. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2859. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2860. int embed_dim = clip_n_mmproj_embd(ctx);
  2861. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  2862. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2863. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  2864. for(int i = 0; i < pos_w * pos_h; ++i){
  2865. for(int j = 0; j < embed_dim; ++j){
  2866. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  2867. }
  2868. }
  2869. set_input_f32("pos_embed", pos_embed);
  2870. } break;
  2871. case PROJECTOR_TYPE_QWEN2VL:
  2872. {
  2873. const int merge_ratio = 2;
  2874. const int pw = image_size_width / patch_size;
  2875. const int ph = image_size_height / patch_size;
  2876. std::vector<int> positions(n_pos * 4);
  2877. int ptr = 0;
  2878. for (int y = 0; y < ph; y += merge_ratio) {
  2879. for (int x = 0; x < pw; x += merge_ratio) {
  2880. for (int dy = 0; dy < 2; dy++) {
  2881. for (int dx = 0; dx < 2; dx++) {
  2882. positions[ ptr] = y + dy;
  2883. positions[ num_patches + ptr] = x + dx;
  2884. positions[2 * num_patches + ptr] = y + dy;
  2885. positions[3 * num_patches + ptr] = x + dx;
  2886. ptr++;
  2887. }
  2888. }
  2889. }
  2890. }
  2891. set_input_i32("positions", positions);
  2892. } break;
  2893. case PROJECTOR_TYPE_QWEN25VL:
  2894. {
  2895. // pw * ph = number of tokens output by ViT after apply patch merger
  2896. // ipw * ipw = number of vision token been processed inside ViT
  2897. const int merge_ratio = 2;
  2898. const int pw = image_size_width / patch_size / merge_ratio;
  2899. const int ph = image_size_height / patch_size / merge_ratio;
  2900. const int ipw = image_size_width / patch_size;
  2901. const int iph = image_size_height / patch_size;
  2902. std::vector<int> idx (ph * pw);
  2903. std::vector<int> inv_idx(ph * pw);
  2904. if (use_window_attn) {
  2905. const int attn_window_size = 112;
  2906. const int grid_window = attn_window_size / patch_size / merge_ratio;
  2907. int dst = 0;
  2908. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  2909. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  2910. int mask_row = 0;
  2911. for (int y = 0; y < ph; y += grid_window) {
  2912. for (int x = 0; x < pw; x += grid_window) {
  2913. const int win_h = std::min(grid_window, ph - y);
  2914. const int win_w = std::min(grid_window, pw - x);
  2915. const int dst_0 = dst;
  2916. // group all tokens belong to the same window togather (to a continue range)
  2917. for (int dy = 0; dy < win_h; dy++) {
  2918. for (int dx = 0; dx < win_w; dx++) {
  2919. const int src = (y + dy) * pw + (x + dx);
  2920. GGML_ASSERT(src < (int)idx.size());
  2921. GGML_ASSERT(dst < (int)inv_idx.size());
  2922. idx [src] = dst;
  2923. inv_idx[dst] = src;
  2924. dst++;
  2925. }
  2926. }
  2927. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  2928. int row_offset = mask_row * (ipw * iph);
  2929. std::fill(
  2930. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  2931. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  2932. 0.0);
  2933. mask_row++;
  2934. }
  2935. }
  2936. }
  2937. set_input_i32("window_idx", idx);
  2938. set_input_i32("inv_window_idx", inv_idx);
  2939. set_input_f32("window_mask", mask);
  2940. } else {
  2941. for (int i = 0; i < ph * pw; i++) {
  2942. idx[i] = i;
  2943. }
  2944. }
  2945. const int mpow = merge_ratio * merge_ratio;
  2946. std::vector<int> positions(n_pos * 4);
  2947. int ptr = 0;
  2948. for (int y = 0; y < iph; y += merge_ratio) {
  2949. for (int x = 0; x < ipw; x += merge_ratio) {
  2950. for (int dy = 0; dy < 2; dy++) {
  2951. for (int dx = 0; dx < 2; dx++) {
  2952. auto remap = idx[ptr / mpow];
  2953. remap = (remap * mpow) + (ptr % mpow);
  2954. positions[ remap] = y + dy;
  2955. positions[ num_patches + remap] = x + dx;
  2956. positions[2 * num_patches + remap] = y + dy;
  2957. positions[3 * num_patches + remap] = x + dx;
  2958. ptr++;
  2959. }
  2960. }
  2961. }
  2962. }
  2963. set_input_i32("positions", positions);
  2964. } break;
  2965. case PROJECTOR_TYPE_PIXTRAL:
  2966. {
  2967. // set the 2D positions
  2968. int n_patches_per_col = image_size_width / patch_size;
  2969. std::vector<int> pos_data(n_pos);
  2970. // dimension H
  2971. for (int i = 0; i < n_pos; i++) {
  2972. pos_data[i] = i / n_patches_per_col;
  2973. }
  2974. set_input_i32("pos_h", pos_data);
  2975. // dimension W
  2976. for (int i = 0; i < n_pos; i++) {
  2977. pos_data[i] = i % n_patches_per_col;
  2978. }
  2979. set_input_i32("pos_w", pos_data);
  2980. } break;
  2981. case PROJECTOR_TYPE_GLM_EDGE:
  2982. {
  2983. // llava and other models
  2984. std::vector<int32_t> positions(n_pos);
  2985. for (int i = 0; i < n_pos; i++) {
  2986. positions[i] = i;
  2987. }
  2988. set_input_i32("positions", positions);
  2989. } break;
  2990. case PROJECTOR_TYPE_MLP:
  2991. case PROJECTOR_TYPE_MLP_NORM:
  2992. case PROJECTOR_TYPE_LDP:
  2993. case PROJECTOR_TYPE_LDPV2:
  2994. {
  2995. // llava and other models
  2996. std::vector<int32_t> positions(n_pos);
  2997. for (int i = 0; i < n_pos; i++) {
  2998. positions[i] = i;
  2999. }
  3000. set_input_i32("positions", positions);
  3001. // The patches vector is used to get rows to index into the embeds with;
  3002. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3003. // when retrieving the rows.
  3004. int patch_offset = model.class_embedding ? 1 : 0;
  3005. std::vector<int32_t> patches(num_patches);
  3006. for (int i = 0; i < num_patches; i++) {
  3007. patches[i] = i + patch_offset;
  3008. }
  3009. set_input_i32("patches", patches);
  3010. } break;
  3011. case PROJECTOR_TYPE_GEMMA3:
  3012. case PROJECTOR_TYPE_IDEFICS3:
  3013. case PROJECTOR_TYPE_INTERNVL:
  3014. {
  3015. // do nothing
  3016. } break;
  3017. default:
  3018. GGML_ABORT("Unknown projector type");
  3019. }
  3020. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3021. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3022. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3023. if (reg) {
  3024. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3025. if (ggml_backend_set_n_threads_fn) {
  3026. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3027. }
  3028. }
  3029. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3030. if (status != GGML_STATUS_SUCCESS) {
  3031. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3032. return false;
  3033. }
  3034. // the last node is the embedding tensor
  3035. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3036. // sanity check (only support batch size of 1 for now)
  3037. const int n_tokens_out = embeddings->ne[1];
  3038. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3039. if (n_tokens_out != expected_n_tokens_out) {
  3040. LOG_ERR("%s: expected %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3041. GGML_ABORT("Invalid number of output tokens");
  3042. }
  3043. // copy the embeddings to the location passed by the user
  3044. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3045. return true;
  3046. }
  3047. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  3048. assert(itype < GGML_TYPE_COUNT);
  3049. ggml_type type = static_cast<ggml_type>(itype);
  3050. auto * ctx_clip = clip_init(fname_inp, clip_context_params{
  3051. /* use_gpu */ false,
  3052. /* verbosity */ GGML_LOG_LEVEL_ERROR,
  3053. });
  3054. const auto & ctx_src = ctx_clip->ctx_gguf.get();
  3055. const auto & ctx_data = ctx_clip->ctx_data.get();
  3056. auto * ctx_out = gguf_init_empty();
  3057. gguf_set_kv(ctx_out, ctx_src);
  3058. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  3059. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  3060. auto fout = std::ofstream(fname_out, std::ios::binary);
  3061. const int n_tensors = gguf_get_n_tensors(ctx_src);
  3062. for (int i = 0; i < n_tensors; ++i) {
  3063. const char * name = gguf_get_tensor_name(ctx_src, i);
  3064. ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  3065. gguf_add_tensor(ctx_out, cur);
  3066. }
  3067. const size_t meta_size = gguf_get_meta_size(ctx_out);
  3068. for (size_t i = 0; i < meta_size; ++i) {
  3069. fout.put(0);
  3070. }
  3071. // regexes of tensor names to be quantized
  3072. const std::vector<std::string> k_names = {
  3073. ".*weight",
  3074. };
  3075. std::vector<uint8_t> work(512);
  3076. std::vector<float> conv_buf(512);
  3077. size_t total_size_org = 0;
  3078. size_t total_size_new = 0;
  3079. for (int i = 0; i < n_tensors; ++i) {
  3080. const std::string name = gguf_get_tensor_name(ctx_src, i);
  3081. ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  3082. enum ggml_type new_type;
  3083. void * new_data;
  3084. size_t new_size;
  3085. bool quantize = false;
  3086. for (const auto & s : k_names) {
  3087. if (std::regex_match(name, std::regex(s))) {
  3088. quantize = true;
  3089. break;
  3090. }
  3091. }
  3092. // quantize only 2D tensors and bigger than block size
  3093. quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
  3094. if (quantize) {
  3095. new_type = type;
  3096. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  3097. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  3098. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  3099. }
  3100. const size_t n_elms = ggml_nelements(cur);
  3101. float * f32_data;
  3102. switch (cur->type) {
  3103. case GGML_TYPE_F32:
  3104. f32_data = (float *)cur->data;
  3105. break;
  3106. case GGML_TYPE_F16:
  3107. if (conv_buf.size() < n_elms) {
  3108. conv_buf.resize(n_elms);
  3109. }
  3110. for (size_t j = 0; j < n_elms; ++j) {
  3111. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  3112. }
  3113. f32_data = (float *)conv_buf.data();
  3114. break;
  3115. default:
  3116. LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
  3117. gguf_free(ctx_out);
  3118. return false;
  3119. }
  3120. if (work.size() < n_elms * 4) {
  3121. work.resize(n_elms * 4);
  3122. }
  3123. new_data = work.data();
  3124. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  3125. } else {
  3126. new_type = cur->type;
  3127. new_data = cur->data;
  3128. new_size = ggml_nbytes(cur);
  3129. }
  3130. const size_t orig_size = ggml_nbytes(cur);
  3131. total_size_org += orig_size;
  3132. total_size_new += new_size;
  3133. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  3134. GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
  3135. gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
  3136. fout.write((const char *)new_data, new_size);
  3137. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  3138. for (size_t j = 0; j < pad; ++j) {
  3139. fout.put(0);
  3140. }
  3141. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  3142. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  3143. }
  3144. // go back to beginning of file and write the updated metadata
  3145. fout.seekp(0, std::ios::beg);
  3146. std::vector<uint8_t> meta(meta_size);
  3147. gguf_get_meta_data(ctx_out, meta.data());
  3148. fout.write((const char *)meta.data(), meta_size);
  3149. fout.close();
  3150. clip_free(ctx_clip);
  3151. gguf_free(ctx_out);
  3152. {
  3153. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  3154. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  3155. }
  3156. return true;
  3157. }
  3158. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3159. switch (ctx->proj_type) {
  3160. case PROJECTOR_TYPE_LDP:
  3161. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  3162. case PROJECTOR_TYPE_LDPV2:
  3163. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  3164. case PROJECTOR_TYPE_MLP:
  3165. case PROJECTOR_TYPE_PIXTRAL:
  3166. return ctx->vision_model.mm_2_w->ne[1];
  3167. case PROJECTOR_TYPE_MLP_NORM:
  3168. return ctx->vision_model.mm_3_b->ne[0];
  3169. case PROJECTOR_TYPE_MINICPMV:
  3170. if (ctx->minicpmv_version == 2) {
  3171. return 4096;
  3172. } else if (ctx->minicpmv_version == 3) {
  3173. return 3584;
  3174. } else if (ctx->minicpmv_version == 4) {
  3175. return 3584;
  3176. }
  3177. GGML_ABORT("Unknown minicpmv version");
  3178. case PROJECTOR_TYPE_GLM_EDGE:
  3179. return ctx->vision_model.mm_model_mlp_3_w->ne[1];
  3180. case PROJECTOR_TYPE_QWEN2VL:
  3181. case PROJECTOR_TYPE_QWEN25VL:
  3182. return ctx->vision_model.mm_1_b->ne[0];
  3183. case PROJECTOR_TYPE_GEMMA3:
  3184. return ctx->vision_model.mm_input_proj_w->ne[0];
  3185. case PROJECTOR_TYPE_IDEFICS3:
  3186. return ctx->vision_model.projection->ne[1];
  3187. case PROJECTOR_TYPE_INTERNVL:
  3188. return ctx->vision_model.mm_3_w->ne[1];
  3189. default:
  3190. GGML_ABORT("Unknown projector type");
  3191. }
  3192. }
  3193. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3194. if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
  3195. return ctx->minicpmv_version;
  3196. }
  3197. return 0;
  3198. }
  3199. bool clip_is_glm(const struct clip_ctx * ctx) {
  3200. return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
  3201. }
  3202. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3203. return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
  3204. }
  3205. bool clip_is_llava(const struct clip_ctx * ctx) {
  3206. return ctx->has_llava_projector;
  3207. }
  3208. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3209. return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
  3210. }
  3211. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3212. clip_image_f32 clip_img;
  3213. clip_img.buf.resize(h * w * 3);
  3214. for (int i = 0; i < h*w*3; i++)
  3215. {
  3216. clip_img.buf[i] = img[i];
  3217. }
  3218. clip_img.nx = w;
  3219. clip_img.ny = h;
  3220. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3221. return true;
  3222. }
  3223. //
  3224. // API used internally with mtmd
  3225. //
  3226. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3227. return ctx->proj_type;
  3228. }