ggml.c 642 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. ggml_collect_imatrix_t g_imatrix_collect = NULL;
  334. void ggml_set_imatrix_collection(ggml_collect_imatrix_t imatrix_collect) {
  335. g_imatrix_collect = imatrix_collect;
  336. }
  337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  338. [GGML_TYPE_I8] = {
  339. .type_name = "i8",
  340. .blck_size = 1,
  341. .type_size = sizeof(int8_t),
  342. .is_quantized = false,
  343. },
  344. [GGML_TYPE_I16] = {
  345. .type_name = "i16",
  346. .blck_size = 1,
  347. .type_size = sizeof(int16_t),
  348. .is_quantized = false,
  349. },
  350. [GGML_TYPE_I32] = {
  351. .type_name = "i32",
  352. .blck_size = 1,
  353. .type_size = sizeof(int32_t),
  354. .is_quantized = false,
  355. },
  356. [GGML_TYPE_F32] = {
  357. .type_name = "f32",
  358. .blck_size = 1,
  359. .type_size = sizeof(float),
  360. .is_quantized = false,
  361. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  362. .vec_dot_type = GGML_TYPE_F32,
  363. },
  364. [GGML_TYPE_F16] = {
  365. .type_name = "f16",
  366. .blck_size = 1,
  367. .type_size = sizeof(ggml_fp16_t),
  368. .is_quantized = false,
  369. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  370. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  371. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  373. .vec_dot_type = GGML_TYPE_F16,
  374. },
  375. [GGML_TYPE_Q4_0] = {
  376. .type_name = "q4_0",
  377. .blck_size = QK4_0,
  378. .type_size = sizeof(block_q4_0),
  379. .is_quantized = true,
  380. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  381. .from_float = quantize_row_q4_0,
  382. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  383. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  384. .vec_dot_type = GGML_TYPE_Q8_0,
  385. },
  386. [GGML_TYPE_Q4_1] = {
  387. .type_name = "q4_1",
  388. .blck_size = QK4_1,
  389. .type_size = sizeof(block_q4_1),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  392. .from_float = quantize_row_q4_1,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  394. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  395. .vec_dot_type = GGML_TYPE_Q8_1,
  396. },
  397. [4] = { // GGML_TYPE_Q4_2
  398. .type_name = "DEPRECATED",
  399. .blck_size = 0,
  400. .type_size = 0,
  401. .is_quantized = false,
  402. .to_float = NULL,
  403. .from_float = NULL,
  404. .from_float_reference = NULL,
  405. .vec_dot = NULL,
  406. .vec_dot_type = GGML_TYPE_COUNT,
  407. },
  408. [5] = { // GGML_TYPE_Q4_3
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [GGML_TYPE_Q5_0] = {
  420. .type_name = "q5_0",
  421. .blck_size = QK5_0,
  422. .type_size = sizeof(block_q5_0),
  423. .is_quantized = true,
  424. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  425. .from_float = quantize_row_q5_0,
  426. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  427. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  428. .vec_dot_type = GGML_TYPE_Q8_0,
  429. },
  430. [GGML_TYPE_Q5_1] = {
  431. .type_name = "q5_1",
  432. .blck_size = QK5_1,
  433. .type_size = sizeof(block_q5_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  436. .from_float = quantize_row_q5_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  438. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. },
  441. [GGML_TYPE_Q8_0] = {
  442. .type_name = "q8_0",
  443. .blck_size = QK8_0,
  444. .type_size = sizeof(block_q8_0),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  447. .from_float = quantize_row_q8_0,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  449. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  450. .vec_dot_type = GGML_TYPE_Q8_0,
  451. },
  452. [GGML_TYPE_Q8_1] = {
  453. .type_name = "q8_1",
  454. .blck_size = QK8_1,
  455. .type_size = sizeof(block_q8_1),
  456. .is_quantized = true,
  457. .from_float = quantize_row_q8_1,
  458. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  459. .vec_dot_type = GGML_TYPE_Q8_1,
  460. },
  461. [GGML_TYPE_Q2_K] = {
  462. .type_name = "q2_K",
  463. .blck_size = QK_K,
  464. .type_size = sizeof(block_q2_K),
  465. .is_quantized = true,
  466. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  467. .from_float = quantize_row_q2_K,
  468. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  469. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  470. .vec_dot_type = GGML_TYPE_Q8_K,
  471. },
  472. [GGML_TYPE_Q3_K] = {
  473. .type_name = "q3_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q3_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  478. .from_float = quantize_row_q3_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  480. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q4_K] = {
  484. .type_name = "q4_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q4_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  489. .from_float = quantize_row_q4_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  491. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q5_K] = {
  495. .type_name = "q5_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q5_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  500. .from_float = quantize_row_q5_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  502. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q6_K] = {
  506. .type_name = "q6_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q6_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  511. .from_float = quantize_row_q6_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  513. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_IQ2_XXS] = {
  517. .type_name = "iq2_xxs",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_iq2_xxs),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  522. .from_float = quantize_row_iq2_xxs,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference,
  524. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_IQ2_XS] = {
  528. .type_name = "iq2_xs",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_iq2_xs),
  531. .is_quantized = true,
  532. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  533. .from_float = quantize_row_iq2_xs,
  534. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xs_reference,
  535. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  536. .vec_dot_type = GGML_TYPE_Q8_K,
  537. },
  538. [GGML_TYPE_Q8_K] = {
  539. .type_name = "q8_K",
  540. .blck_size = QK_K,
  541. .type_size = sizeof(block_q8_K),
  542. .is_quantized = true,
  543. .from_float = quantize_row_q8_K,
  544. }
  545. };
  546. // For internal test use
  547. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  548. GGML_ASSERT(type < GGML_TYPE_COUNT);
  549. return type_traits[type];
  550. }
  551. //
  552. // simd mappings
  553. //
  554. #if defined(__ARM_NEON)
  555. #if !defined(__aarch64__)
  556. // 64-bit compatibility
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. #endif
  561. #endif
  562. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  563. // we then implement the fundamental computation operations below using only these macros
  564. // adding support for new architectures requires to define the corresponding SIMD macros
  565. //
  566. // GGML_F32_STEP / GGML_F16_STEP
  567. // number of elements to process in a single step
  568. //
  569. // GGML_F32_EPR / GGML_F16_EPR
  570. // number of elements to fit in a single register
  571. //
  572. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  573. #define GGML_SIMD
  574. // F32 NEON
  575. #define GGML_F32_STEP 16
  576. #define GGML_F32_EPR 4
  577. #define GGML_F32x4 float32x4_t
  578. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  579. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  580. #define GGML_F32x4_LOAD vld1q_f32
  581. #define GGML_F32x4_STORE vst1q_f32
  582. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  583. #define GGML_F32x4_ADD vaddq_f32
  584. #define GGML_F32x4_MUL vmulq_f32
  585. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  586. #define GGML_F32x4_REDUCE(res, x) \
  587. { \
  588. int offset = GGML_F32_ARR >> 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. offset >>= 1; \
  597. for (int i = 0; i < offset; ++i) { \
  598. x[i] = vaddq_f32(x[i], x[offset+i]); \
  599. } \
  600. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  601. }
  602. #define GGML_F32_VEC GGML_F32x4
  603. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  604. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  605. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  606. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  607. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  608. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  609. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  610. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  611. // F16 NEON
  612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  613. #define GGML_F16_STEP 32
  614. #define GGML_F16_EPR 8
  615. #define GGML_F16x8 float16x8_t
  616. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  617. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  618. #define GGML_F16x8_LOAD vld1q_f16
  619. #define GGML_F16x8_STORE vst1q_f16
  620. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  621. #define GGML_F16x8_ADD vaddq_f16
  622. #define GGML_F16x8_MUL vmulq_f16
  623. #define GGML_F16x8_REDUCE(res, x) \
  624. do { \
  625. int offset = GGML_F16_ARR >> 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. offset >>= 1; \
  634. for (int i = 0; i < offset; ++i) { \
  635. x[i] = vaddq_f16(x[i], x[offset+i]); \
  636. } \
  637. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  638. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  639. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  640. } while (0)
  641. #define GGML_F16_VEC GGML_F16x8
  642. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  643. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  644. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  645. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  646. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  647. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  648. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  649. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  650. #else
  651. // if FP16 vector arithmetic is not supported, we use FP32 instead
  652. // and take advantage of the vcvt_ functions to convert to/from FP16
  653. #define GGML_F16_STEP 16
  654. #define GGML_F16_EPR 4
  655. #define GGML_F32Cx4 float32x4_t
  656. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  657. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  658. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  659. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  660. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  661. #define GGML_F32Cx4_ADD vaddq_f32
  662. #define GGML_F32Cx4_MUL vmulq_f32
  663. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  664. #define GGML_F16_VEC GGML_F32Cx4
  665. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  666. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  667. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  668. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  669. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  670. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  671. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  672. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  673. #endif
  674. #elif defined(__AVX__)
  675. #define GGML_SIMD
  676. // F32 AVX
  677. #define GGML_F32_STEP 32
  678. #define GGML_F32_EPR 8
  679. #define GGML_F32x8 __m256
  680. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  681. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  682. #define GGML_F32x8_LOAD _mm256_loadu_ps
  683. #define GGML_F32x8_STORE _mm256_storeu_ps
  684. #if defined(__FMA__)
  685. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  686. #else
  687. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  688. #endif
  689. #define GGML_F32x8_ADD _mm256_add_ps
  690. #define GGML_F32x8_MUL _mm256_mul_ps
  691. #define GGML_F32x8_REDUCE(res, x) \
  692. do { \
  693. int offset = GGML_F32_ARR >> 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. offset >>= 1; \
  702. for (int i = 0; i < offset; ++i) { \
  703. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  704. } \
  705. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  706. _mm256_extractf128_ps(x[0], 1)); \
  707. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  708. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  709. } while (0)
  710. // TODO: is this optimal ?
  711. #define GGML_F32_VEC GGML_F32x8
  712. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  713. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  714. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  715. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  716. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  717. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  718. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  719. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  720. // F16 AVX
  721. #define GGML_F16_STEP 32
  722. #define GGML_F16_EPR 8
  723. // F16 arithmetic is not supported by AVX, so we use F32 instead
  724. #define GGML_F32Cx8 __m256
  725. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  726. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  727. #if defined(__F16C__)
  728. // the _mm256_cvt intrinsics require F16C
  729. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  730. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  731. #else
  732. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  733. float tmp[8];
  734. for (int i = 0; i < 8; i++) {
  735. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  736. }
  737. return _mm256_loadu_ps(tmp);
  738. }
  739. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  740. float arr[8];
  741. _mm256_storeu_ps(arr, y);
  742. for (int i = 0; i < 8; i++)
  743. x[i] = GGML_FP32_TO_FP16(arr[i]);
  744. }
  745. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  746. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  747. #endif
  748. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  749. #define GGML_F32Cx8_ADD _mm256_add_ps
  750. #define GGML_F32Cx8_MUL _mm256_mul_ps
  751. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  752. #define GGML_F16_VEC GGML_F32Cx8
  753. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  754. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  755. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  757. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  758. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  759. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  760. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  761. #elif defined(__POWER9_VECTOR__)
  762. #define GGML_SIMD
  763. // F32 POWER9
  764. #define GGML_F32_STEP 32
  765. #define GGML_F32_EPR 4
  766. #define GGML_F32x4 vector float
  767. #define GGML_F32x4_ZERO 0.0f
  768. #define GGML_F32x4_SET1 vec_splats
  769. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  770. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  771. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  772. #define GGML_F32x4_ADD vec_add
  773. #define GGML_F32x4_MUL vec_mul
  774. #define GGML_F32x4_REDUCE(res, x) \
  775. { \
  776. int offset = GGML_F32_ARR >> 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vec_add(x[i], x[offset+i]); \
  787. } \
  788. res = vec_extract(x[0], 0) + \
  789. vec_extract(x[0], 1) + \
  790. vec_extract(x[0], 2) + \
  791. vec_extract(x[0], 3); \
  792. }
  793. #define GGML_F32_VEC GGML_F32x4
  794. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  795. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  796. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  797. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  798. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  799. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  800. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  801. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  802. // F16 POWER9
  803. #define GGML_F16_STEP GGML_F32_STEP
  804. #define GGML_F16_EPR GGML_F32_EPR
  805. #define GGML_F16_VEC GGML_F32x4
  806. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  807. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  808. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  809. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  810. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  811. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  812. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  813. vec_extract_fp32_from_shortl(vec_xl(0, p))
  814. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  815. #define GGML_F16_VEC_STORE(p, r, i) \
  816. if (i & 0x1) \
  817. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  818. r[i - GGML_ENDIAN_BYTE(0)]), \
  819. 0, p - GGML_F16_EPR)
  820. #elif defined(__wasm_simd128__)
  821. #define GGML_SIMD
  822. // F32 WASM
  823. #define GGML_F32_STEP 16
  824. #define GGML_F32_EPR 4
  825. #define GGML_F32x4 v128_t
  826. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  827. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  828. #define GGML_F32x4_LOAD wasm_v128_load
  829. #define GGML_F32x4_STORE wasm_v128_store
  830. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  831. #define GGML_F32x4_ADD wasm_f32x4_add
  832. #define GGML_F32x4_MUL wasm_f32x4_mul
  833. #define GGML_F32x4_REDUCE(res, x) \
  834. { \
  835. int offset = GGML_F32_ARR >> 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  846. } \
  847. res = wasm_f32x4_extract_lane(x[0], 0) + \
  848. wasm_f32x4_extract_lane(x[0], 1) + \
  849. wasm_f32x4_extract_lane(x[0], 2) + \
  850. wasm_f32x4_extract_lane(x[0], 3); \
  851. }
  852. #define GGML_F32_VEC GGML_F32x4
  853. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  854. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  855. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  856. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  857. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  858. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  859. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  860. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  861. // F16 WASM
  862. #define GGML_F16_STEP 16
  863. #define GGML_F16_EPR 4
  864. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  865. float tmp[4];
  866. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  867. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  868. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  869. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  870. return wasm_v128_load(tmp);
  871. }
  872. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  873. float tmp[4];
  874. wasm_v128_store(tmp, x);
  875. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  876. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  877. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  878. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  879. }
  880. #define GGML_F16x4 v128_t
  881. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  882. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  883. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  884. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  885. #define GGML_F16x4_FMA GGML_F32x4_FMA
  886. #define GGML_F16x4_ADD wasm_f32x4_add
  887. #define GGML_F16x4_MUL wasm_f32x4_mul
  888. #define GGML_F16x4_REDUCE(res, x) \
  889. { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  901. } \
  902. res = wasm_f32x4_extract_lane(x[0], 0) + \
  903. wasm_f32x4_extract_lane(x[0], 1) + \
  904. wasm_f32x4_extract_lane(x[0], 2) + \
  905. wasm_f32x4_extract_lane(x[0], 3); \
  906. }
  907. #define GGML_F16_VEC GGML_F16x4
  908. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  913. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  914. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  916. #elif defined(__SSE3__)
  917. #define GGML_SIMD
  918. // F32 SSE
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 __m128
  922. #define GGML_F32x4_ZERO _mm_setzero_ps()
  923. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  924. #define GGML_F32x4_LOAD _mm_loadu_ps
  925. #define GGML_F32x4_STORE _mm_storeu_ps
  926. #if defined(__FMA__)
  927. // TODO: Does this work?
  928. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  929. #else
  930. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  931. #endif
  932. #define GGML_F32x4_ADD _mm_add_ps
  933. #define GGML_F32x4_MUL _mm_mul_ps
  934. #define GGML_F32x4_REDUCE(res, x) \
  935. { \
  936. int offset = GGML_F32_ARR >> 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. offset >>= 1; \
  945. for (int i = 0; i < offset; ++i) { \
  946. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  947. } \
  948. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  949. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  950. }
  951. // TODO: is this optimal ?
  952. #define GGML_F32_VEC GGML_F32x4
  953. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  954. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  955. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  956. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  957. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  958. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  959. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  960. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  961. // F16 SSE
  962. #define GGML_F16_STEP 32
  963. #define GGML_F16_EPR 4
  964. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  965. float tmp[4];
  966. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  967. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  968. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  969. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  970. return _mm_loadu_ps(tmp);
  971. }
  972. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  973. float arr[4];
  974. _mm_storeu_ps(arr, y);
  975. x[0] = GGML_FP32_TO_FP16(arr[0]);
  976. x[1] = GGML_FP32_TO_FP16(arr[1]);
  977. x[2] = GGML_FP32_TO_FP16(arr[2]);
  978. x[3] = GGML_FP32_TO_FP16(arr[3]);
  979. }
  980. #define GGML_F32Cx4 __m128
  981. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  982. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  983. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  984. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  985. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  986. #define GGML_F32Cx4_ADD _mm_add_ps
  987. #define GGML_F32Cx4_MUL _mm_mul_ps
  988. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  989. #define GGML_F16_VEC GGML_F32Cx4
  990. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  991. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  992. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  993. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  994. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  995. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  996. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  997. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  998. #endif
  999. // GGML_F32_ARR / GGML_F16_ARR
  1000. // number of registers to use per step
  1001. #ifdef GGML_SIMD
  1002. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1003. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1004. #endif
  1005. //
  1006. // fundamental operations
  1007. //
  1008. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1009. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1010. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1011. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1012. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1013. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1014. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1015. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1016. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1017. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1018. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1019. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1020. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1021. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1022. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1023. #ifdef GGML_SIMD
  1024. float sumf = 0.0f;
  1025. const int np = (n & ~(GGML_F32_STEP - 1));
  1026. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1027. GGML_F32_VEC ax[GGML_F32_ARR];
  1028. GGML_F32_VEC ay[GGML_F32_ARR];
  1029. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1030. for (int j = 0; j < GGML_F32_ARR; j++) {
  1031. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1032. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1033. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1034. }
  1035. }
  1036. // reduce sum0..sum3 to sum0
  1037. GGML_F32_VEC_REDUCE(sumf, sum);
  1038. // leftovers
  1039. for (int i = np; i < n; ++i) {
  1040. sumf += x[i]*y[i];
  1041. }
  1042. #else
  1043. // scalar
  1044. ggml_float sumf = 0.0;
  1045. for (int i = 0; i < n; ++i) {
  1046. sumf += (ggml_float)(x[i]*y[i]);
  1047. }
  1048. #endif
  1049. *s = sumf;
  1050. }
  1051. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1052. ggml_float sumf = 0.0;
  1053. #if defined(GGML_SIMD)
  1054. const int np = (n & ~(GGML_F16_STEP - 1));
  1055. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1056. GGML_F16_VEC ax[GGML_F16_ARR];
  1057. GGML_F16_VEC ay[GGML_F16_ARR];
  1058. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1059. for (int j = 0; j < GGML_F16_ARR; j++) {
  1060. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1061. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1062. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1063. }
  1064. }
  1065. // reduce sum0..sum3 to sum0
  1066. GGML_F16_VEC_REDUCE(sumf, sum);
  1067. // leftovers
  1068. for (int i = np; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #else
  1072. for (int i = 0; i < n; ++i) {
  1073. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1074. }
  1075. #endif
  1076. *s = sumf;
  1077. }
  1078. // compute GGML_VEC_DOT_UNROLL dot products at once
  1079. // xs - x row stride in bytes
  1080. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1081. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1082. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1083. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1084. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1085. }
  1086. #if defined(GGML_SIMD)
  1087. const int np = (n & ~(GGML_F16_STEP - 1));
  1088. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1089. GGML_F16_VEC ax[GGML_F16_ARR];
  1090. GGML_F16_VEC ay[GGML_F16_ARR];
  1091. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1092. for (int j = 0; j < GGML_F16_ARR; j++) {
  1093. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1094. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1095. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1096. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1097. }
  1098. }
  1099. }
  1100. // reduce sum0..sum3 to sum0
  1101. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1102. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1103. }
  1104. // leftovers
  1105. for (int i = np; i < n; ++i) {
  1106. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1107. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1108. }
  1109. }
  1110. #else
  1111. for (int i = 0; i < n; ++i) {
  1112. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1113. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. }
  1116. #endif
  1117. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1118. s[i] = sumf[i];
  1119. }
  1120. }
  1121. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1122. #if defined(GGML_SIMD)
  1123. const int np = (n & ~(GGML_F32_STEP - 1));
  1124. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1125. GGML_F32_VEC ax[GGML_F32_ARR];
  1126. GGML_F32_VEC ay[GGML_F32_ARR];
  1127. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1128. for (int j = 0; j < GGML_F32_ARR; j++) {
  1129. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1130. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1131. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1132. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1133. }
  1134. }
  1135. // leftovers
  1136. for (int i = np; i < n; ++i) {
  1137. y[i] += x[i]*v;
  1138. }
  1139. #else
  1140. // scalar
  1141. for (int i = 0; i < n; ++i) {
  1142. y[i] += x[i]*v;
  1143. }
  1144. #endif
  1145. }
  1146. // xs and vs are byte strides of x and v
  1147. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1148. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1149. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1150. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1151. x[i] = (const float *) ((const char *) xv + i*xs);
  1152. v[i] = (const float *) ((const char *) vv + i*vs);
  1153. }
  1154. #if defined(GGML_SIMD)
  1155. const int np = (n & ~(GGML_F32_STEP - 1));
  1156. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1157. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1158. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1159. }
  1160. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1161. GGML_F32_VEC ay[GGML_F32_ARR];
  1162. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1163. for (int j = 0; j < GGML_F32_ARR; j++) {
  1164. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1165. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1166. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1167. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1168. }
  1169. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1170. }
  1171. }
  1172. // leftovers
  1173. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1174. for (int i = np; i < n; ++i) {
  1175. y[i] += x[k][i]*v[k][0];
  1176. }
  1177. }
  1178. #else
  1179. // scalar
  1180. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[k][i]*v[k][0];
  1183. }
  1184. }
  1185. #endif
  1186. }
  1187. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1188. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1189. #if defined(GGML_USE_ACCELERATE)
  1190. vDSP_vsmul(y, 1, &v, y, 1, n);
  1191. #elif defined(GGML_SIMD)
  1192. const int np = (n & ~(GGML_F32_STEP - 1));
  1193. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1194. GGML_F32_VEC ay[GGML_F32_ARR];
  1195. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1196. for (int j = 0; j < GGML_F32_ARR; j++) {
  1197. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1198. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1199. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1200. }
  1201. }
  1202. // leftovers
  1203. for (int i = np; i < n; ++i) {
  1204. y[i] *= v;
  1205. }
  1206. #else
  1207. // scalar
  1208. for (int i = 0; i < n; ++i) {
  1209. y[i] *= v;
  1210. }
  1211. #endif
  1212. }
  1213. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1214. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1215. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1216. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1217. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1218. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1219. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1220. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1221. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1222. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1223. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1224. static const float GELU_COEF_A = 0.044715f;
  1225. static const float GELU_QUICK_COEF = -1.702f;
  1226. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1227. inline static float ggml_gelu_f32(float x) {
  1228. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1229. }
  1230. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1231. const uint16_t * i16 = (const uint16_t *) x;
  1232. for (int i = 0; i < n; ++i) {
  1233. y[i] = ggml_table_gelu_f16[i16[i]];
  1234. }
  1235. }
  1236. #ifdef GGML_GELU_FP16
  1237. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1238. uint16_t t;
  1239. for (int i = 0; i < n; ++i) {
  1240. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1241. memcpy(&t, &fp16, sizeof(uint16_t));
  1242. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1243. }
  1244. }
  1245. #else
  1246. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1247. for (int i = 0; i < n; ++i) {
  1248. y[i] = ggml_gelu_f32(x[i]);
  1249. }
  1250. }
  1251. #endif
  1252. inline static float ggml_gelu_quick_f32(float x) {
  1253. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1254. }
  1255. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_GELU_QUICK_FP16
  1262. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_gelu_quick_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. // Sigmoid Linear Unit (SiLU) function
  1278. inline static float ggml_silu_f32(float x) {
  1279. return x/(1.0f + expf(-x));
  1280. }
  1281. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1282. // const uint16_t * i16 = (const uint16_t *) x;
  1283. // for (int i = 0; i < n; ++i) {
  1284. // y[i] = ggml_table_silu_f16[i16[i]];
  1285. // }
  1286. //}
  1287. #ifdef GGML_SILU_FP16
  1288. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1289. uint16_t t;
  1290. for (int i = 0; i < n; ++i) {
  1291. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1292. memcpy(&t, &fp16, sizeof(uint16_t));
  1293. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1294. }
  1295. }
  1296. #else
  1297. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1298. for (int i = 0; i < n; ++i) {
  1299. y[i] = ggml_silu_f32(x[i]);
  1300. }
  1301. }
  1302. #endif
  1303. inline static float ggml_silu_backward_f32(float x, float dy) {
  1304. const float s = 1.0f/(1.0f + expf(-x));
  1305. return dy*s*(1.0f + x*(1.0f - s));
  1306. }
  1307. #ifdef GGML_SILU_FP16
  1308. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1309. for (int i = 0; i < n; ++i) {
  1310. // we did not use x[i] to compute forward silu but its f16 equivalent
  1311. // take derivative at f16 of x[i]:
  1312. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1313. float usedx = GGML_FP16_TO_FP32(fp16);
  1314. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1315. }
  1316. }
  1317. #else
  1318. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1319. for (int i = 0; i < n; ++i) {
  1320. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1321. }
  1322. }
  1323. #endif
  1324. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1325. #ifndef GGML_USE_ACCELERATE
  1326. ggml_float sum = 0.0;
  1327. for (int i = 0; i < n; ++i) {
  1328. sum += (ggml_float)x[i];
  1329. }
  1330. *s = sum;
  1331. #else
  1332. vDSP_sve(x, 1, s, n);
  1333. #endif
  1334. }
  1335. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1336. ggml_float sum = 0.0;
  1337. for (int i = 0; i < n; ++i) {
  1338. sum += (ggml_float)x[i];
  1339. }
  1340. *s = sum;
  1341. }
  1342. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1343. float sum = 0.0f;
  1344. for (int i = 0; i < n; ++i) {
  1345. sum += GGML_FP16_TO_FP32(x[i]);
  1346. }
  1347. *s = sum;
  1348. }
  1349. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1350. #ifndef GGML_USE_ACCELERATE
  1351. float max = -INFINITY;
  1352. for (int i = 0; i < n; ++i) {
  1353. max = MAX(max, x[i]);
  1354. }
  1355. *s = max;
  1356. #else
  1357. vDSP_maxv(x, 1, s, n);
  1358. #endif
  1359. }
  1360. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1361. ggml_vec_norm_f32(n, s, x);
  1362. *s = 1.f/(*s);
  1363. }
  1364. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1365. float max = -INFINITY;
  1366. int idx = 0;
  1367. for (int i = 0; i < n; ++i) {
  1368. max = MAX(max, x[i]);
  1369. if (max == x[i]) { idx = i; }
  1370. }
  1371. *s = idx;
  1372. }
  1373. //
  1374. // data types
  1375. //
  1376. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1377. "NONE",
  1378. "DUP",
  1379. "ADD",
  1380. "ADD1",
  1381. "ACC",
  1382. "SUB",
  1383. "MUL",
  1384. "DIV",
  1385. "SQR",
  1386. "SQRT",
  1387. "LOG",
  1388. "SUM",
  1389. "SUM_ROWS",
  1390. "MEAN",
  1391. "ARGMAX",
  1392. "REPEAT",
  1393. "REPEAT_BACK",
  1394. "CONCAT",
  1395. "SILU_BACK",
  1396. "NORM",
  1397. "RMS_NORM",
  1398. "RMS_NORM_BACK",
  1399. "GROUP_NORM",
  1400. "MUL_MAT",
  1401. "MUL_MAT_ID",
  1402. "OUT_PROD",
  1403. "SCALE",
  1404. "SET",
  1405. "CPY",
  1406. "CONT",
  1407. "RESHAPE",
  1408. "VIEW",
  1409. "PERMUTE",
  1410. "TRANSPOSE",
  1411. "GET_ROWS",
  1412. "GET_ROWS_BACK",
  1413. "DIAG",
  1414. "DIAG_MASK_INF",
  1415. "DIAG_MASK_ZERO",
  1416. "SOFT_MAX",
  1417. "SOFT_MAX_BACK",
  1418. "ROPE",
  1419. "ROPE_BACK",
  1420. "ALIBI",
  1421. "CLAMP",
  1422. "CONV_TRANSPOSE_1D",
  1423. "IM2COL",
  1424. "CONV_TRANSPOSE_2D",
  1425. "POOL_1D",
  1426. "POOL_2D",
  1427. "UPSCALE",
  1428. "PAD",
  1429. "ARGSORT",
  1430. "LEAKY_RELU",
  1431. "FLASH_ATTN",
  1432. "FLASH_FF",
  1433. "FLASH_ATTN_BACK",
  1434. "WIN_PART",
  1435. "WIN_UNPART",
  1436. "GET_REL_POS",
  1437. "ADD_REL_POS",
  1438. "UNARY",
  1439. "MAP_UNARY",
  1440. "MAP_BINARY",
  1441. "MAP_CUSTOM1_F32",
  1442. "MAP_CUSTOM2_F32",
  1443. "MAP_CUSTOM3_F32",
  1444. "MAP_CUSTOM1",
  1445. "MAP_CUSTOM2",
  1446. "MAP_CUSTOM3",
  1447. "CROSS_ENTROPY_LOSS",
  1448. "CROSS_ENTROPY_LOSS_BACK",
  1449. };
  1450. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1451. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1452. "none",
  1453. "x",
  1454. "x+y",
  1455. "x+y",
  1456. "view(x,nb,offset)+=y->x",
  1457. "x-y",
  1458. "x*y",
  1459. "x/y",
  1460. "x^2",
  1461. "√x",
  1462. "log(x)",
  1463. "Σx",
  1464. "Σx_k",
  1465. "Σx/n",
  1466. "argmax(x)",
  1467. "repeat(x)",
  1468. "repeat_back(x)",
  1469. "concat(x, y)",
  1470. "silu_back(x)",
  1471. "norm(x)",
  1472. "rms_norm(x)",
  1473. "rms_norm_back(x)",
  1474. "group_norm(x)",
  1475. "X*Y",
  1476. "X[i]*Y",
  1477. "X*Y",
  1478. "x*v",
  1479. "y-\\>view(x)",
  1480. "x-\\>y",
  1481. "cont(x)",
  1482. "reshape(x)",
  1483. "view(x)",
  1484. "permute(x)",
  1485. "transpose(x)",
  1486. "get_rows(x)",
  1487. "get_rows_back(x)",
  1488. "diag(x)",
  1489. "diag_mask_inf(x)",
  1490. "diag_mask_zero(x)",
  1491. "soft_max(x)",
  1492. "soft_max_back(x)",
  1493. "rope(x)",
  1494. "rope_back(x)",
  1495. "alibi(x)",
  1496. "clamp(x)",
  1497. "conv_transpose_1d(x)",
  1498. "im2col(x)",
  1499. "conv_transpose_2d(x)",
  1500. "pool_1d(x)",
  1501. "pool_2d(x)",
  1502. "upscale(x)",
  1503. "pad(x)",
  1504. "argsort(x)",
  1505. "leaky_relu(x)",
  1506. "flash_attn(x)",
  1507. "flash_ff(x)",
  1508. "flash_attn_back(x)",
  1509. "win_part(x)",
  1510. "win_unpart(x)",
  1511. "get_rel_pos(x)",
  1512. "add_rel_pos(x)",
  1513. "unary(x)",
  1514. "f(x)",
  1515. "f(x,y)",
  1516. "custom_f32(x)",
  1517. "custom_f32(x,y)",
  1518. "custom_f32(x,y,z)",
  1519. "custom(x)",
  1520. "custom(x,y)",
  1521. "custom(x,y,z)",
  1522. "cross_entropy_loss(x,y)",
  1523. "cross_entropy_loss_back(x,y)",
  1524. };
  1525. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1526. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1527. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1528. "ABS",
  1529. "SGN",
  1530. "NEG",
  1531. "STEP",
  1532. "TANH",
  1533. "ELU",
  1534. "RELU",
  1535. "GELU",
  1536. "GELU_QUICK",
  1537. "SILU",
  1538. };
  1539. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1540. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1541. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1542. // WARN:
  1543. // Mis-configuration can lead to problem that's hard to reason about:
  1544. // * At best it crash or talks nosense.
  1545. // * At worst it talks slightly difference but hard to perceive.
  1546. //
  1547. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1548. // Take care about compile options (e.g., GGML_USE_xxx).
  1549. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1550. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1551. static void ggml_setup_op_has_task_pass(void) {
  1552. { // INIT
  1553. bool * p = GGML_OP_HAS_INIT;
  1554. p[GGML_OP_ACC ] = true;
  1555. p[GGML_OP_MUL_MAT ] = true;
  1556. p[GGML_OP_MUL_MAT_ID ] = true;
  1557. p[GGML_OP_OUT_PROD ] = true;
  1558. p[GGML_OP_SET ] = true;
  1559. p[GGML_OP_GET_ROWS_BACK ] = true;
  1560. p[GGML_OP_DIAG_MASK_INF ] = true;
  1561. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1562. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1563. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1564. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1565. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1566. p[GGML_OP_ADD_REL_POS ] = true;
  1567. }
  1568. { // FINALIZE
  1569. bool * p = GGML_OP_HAS_FINALIZE;
  1570. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1571. }
  1572. }
  1573. //
  1574. // ggml context
  1575. //
  1576. struct ggml_context {
  1577. size_t mem_size;
  1578. void * mem_buffer;
  1579. bool mem_buffer_owned;
  1580. bool no_alloc;
  1581. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1582. int n_objects;
  1583. struct ggml_object * objects_begin;
  1584. struct ggml_object * objects_end;
  1585. struct ggml_scratch scratch;
  1586. struct ggml_scratch scratch_save;
  1587. };
  1588. struct ggml_context_container {
  1589. bool used;
  1590. struct ggml_context context;
  1591. };
  1592. //
  1593. // NUMA support
  1594. //
  1595. #define GGML_NUMA_MAX_NODES 8
  1596. #define GGML_NUMA_MAX_CPUS 512
  1597. struct ggml_numa_node {
  1598. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1599. uint32_t n_cpus;
  1600. };
  1601. struct ggml_numa_nodes {
  1602. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1603. uint32_t n_nodes;
  1604. uint32_t total_cpus; // hardware threads on system
  1605. };
  1606. //
  1607. // ggml state
  1608. //
  1609. struct ggml_state {
  1610. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1611. struct ggml_numa_nodes numa;
  1612. };
  1613. // global state
  1614. static struct ggml_state g_state;
  1615. static atomic_int g_state_barrier = 0;
  1616. // barrier via spin lock
  1617. inline static void ggml_critical_section_start(void) {
  1618. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1619. while (processing > 0) {
  1620. // wait for other threads to finish
  1621. atomic_fetch_sub(&g_state_barrier, 1);
  1622. sched_yield(); // TODO: reconsider this
  1623. processing = atomic_fetch_add(&g_state_barrier, 1);
  1624. }
  1625. }
  1626. // TODO: make this somehow automatically executed
  1627. // some sort of "sentry" mechanism
  1628. inline static void ggml_critical_section_end(void) {
  1629. atomic_fetch_sub(&g_state_barrier, 1);
  1630. }
  1631. void ggml_numa_init(void) {
  1632. if (g_state.numa.n_nodes > 0) {
  1633. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1634. return;
  1635. }
  1636. #ifdef __linux__
  1637. struct stat st;
  1638. char path[256];
  1639. int rv;
  1640. // enumerate nodes
  1641. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1642. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1643. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1644. if (stat(path, &st) != 0) { break; }
  1645. ++g_state.numa.n_nodes;
  1646. }
  1647. // enumerate CPUs
  1648. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1649. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1650. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1651. if (stat(path, &st) != 0) { break; }
  1652. ++g_state.numa.total_cpus;
  1653. }
  1654. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1655. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1656. g_state.numa.n_nodes = 0;
  1657. return;
  1658. }
  1659. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1660. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1661. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1662. node->n_cpus = 0;
  1663. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1664. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1665. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1666. if (stat(path, &st) == 0) {
  1667. node->cpus[node->n_cpus++] = c;
  1668. GGML_PRINT_DEBUG(" %u", c);
  1669. }
  1670. }
  1671. GGML_PRINT_DEBUG("\n");
  1672. }
  1673. if (ggml_is_numa()) {
  1674. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1675. if (fptr != NULL) {
  1676. char buf[42];
  1677. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1678. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1679. }
  1680. fclose(fptr);
  1681. }
  1682. }
  1683. #else
  1684. // TODO
  1685. #endif
  1686. }
  1687. bool ggml_is_numa(void) {
  1688. return g_state.numa.n_nodes > 1;
  1689. }
  1690. ////////////////////////////////////////////////////////////////////////////////
  1691. void ggml_print_object(const struct ggml_object * obj) {
  1692. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1693. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1694. }
  1695. void ggml_print_objects(const struct ggml_context * ctx) {
  1696. struct ggml_object * obj = ctx->objects_begin;
  1697. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1698. while (obj != NULL) {
  1699. ggml_print_object(obj);
  1700. obj = obj->next;
  1701. }
  1702. GGML_PRINT("%s: --- end ---\n", __func__);
  1703. }
  1704. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1706. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1707. }
  1708. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1709. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1710. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1711. }
  1712. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1713. size_t nbytes;
  1714. size_t blck_size = ggml_blck_size(tensor->type);
  1715. if (blck_size == 1) {
  1716. nbytes = ggml_type_size(tensor->type);
  1717. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1718. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1719. }
  1720. }
  1721. else {
  1722. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1723. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1724. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1725. }
  1726. }
  1727. return nbytes;
  1728. }
  1729. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1730. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1731. }
  1732. int ggml_blck_size(enum ggml_type type) {
  1733. return type_traits[type].blck_size;
  1734. }
  1735. size_t ggml_type_size(enum ggml_type type) {
  1736. return type_traits[type].type_size;
  1737. }
  1738. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1739. assert(ne % ggml_blck_size(type) == 0);
  1740. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1741. }
  1742. double ggml_type_sizef(enum ggml_type type) {
  1743. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1744. }
  1745. const char * ggml_type_name(enum ggml_type type) {
  1746. return type_traits[type].type_name;
  1747. }
  1748. bool ggml_is_quantized(enum ggml_type type) {
  1749. return type_traits[type].is_quantized;
  1750. }
  1751. const char * ggml_op_name(enum ggml_op op) {
  1752. return GGML_OP_NAME[op];
  1753. }
  1754. const char * ggml_op_symbol(enum ggml_op op) {
  1755. return GGML_OP_SYMBOL[op];
  1756. }
  1757. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1758. return GGML_UNARY_OP_NAME[op];
  1759. }
  1760. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1761. if (t->op == GGML_OP_UNARY) {
  1762. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1763. return ggml_unary_op_name(uop);
  1764. }
  1765. else {
  1766. return ggml_op_name(t->op);
  1767. }
  1768. }
  1769. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1770. return ggml_type_size(tensor->type);
  1771. }
  1772. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1775. }
  1776. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1778. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1779. }
  1780. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1783. }
  1784. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1785. return tensor->ne[3] == 1;
  1786. }
  1787. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1788. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1789. if (tensor->ne[i] > 1) {
  1790. return i + 1;
  1791. }
  1792. }
  1793. return 1;
  1794. }
  1795. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1796. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1797. return (t0->ne[0] == t1->ne[0]) &&
  1798. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1799. (t1->ne[3]%t0->ne[3] == 0);
  1800. }
  1801. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1802. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1803. return (t0->ne[1] == t1->ne[1]) &&
  1804. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1805. (t1->ne[3]%t0->ne[3] == 0);
  1806. }
  1807. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1808. enum ggml_type wtype = GGML_TYPE_COUNT;
  1809. switch (ftype) {
  1810. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1811. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1812. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1813. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1814. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1815. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1816. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1817. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1818. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1819. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1820. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1821. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1822. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1823. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1824. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1825. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1826. }
  1827. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1828. return wtype;
  1829. }
  1830. size_t ggml_tensor_overhead(void) {
  1831. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1832. }
  1833. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1834. return tensor->nb[0] > tensor->nb[1];
  1835. }
  1836. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1837. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1838. return
  1839. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1840. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1841. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1842. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1843. }
  1844. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1845. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1846. return
  1847. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1848. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1849. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1850. }
  1851. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1854. }
  1855. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1857. return
  1858. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1859. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1860. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1861. }
  1862. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1863. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1864. return
  1865. (t0->ne[0] == t1->ne[0] ) &&
  1866. (t0->ne[1] == t1->ne[1] ) &&
  1867. (t0->ne[2] == t1->ne[2] ) &&
  1868. (t0->ne[3] == t1->ne[3] );
  1869. }
  1870. // check if t1 can be represented as a repeatition of t0
  1871. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1872. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1873. return
  1874. (t1->ne[0]%t0->ne[0] == 0) &&
  1875. (t1->ne[1]%t0->ne[1] == 0) &&
  1876. (t1->ne[2]%t0->ne[2] == 0) &&
  1877. (t1->ne[3]%t0->ne[3] == 0);
  1878. }
  1879. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1880. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1881. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1882. }
  1883. static inline int ggml_up32(int n) {
  1884. return (n + 31) & ~31;
  1885. }
  1886. //static inline int ggml_up64(int n) {
  1887. // return (n + 63) & ~63;
  1888. //}
  1889. static inline int ggml_up(int n, int m) {
  1890. // assert m is a power of 2
  1891. GGML_ASSERT((m & (m - 1)) == 0);
  1892. return (n + m - 1) & ~(m - 1);
  1893. }
  1894. // assert that pointer is aligned to GGML_MEM_ALIGN
  1895. #define ggml_assert_aligned(ptr) \
  1896. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1897. ////////////////////////////////////////////////////////////////////////////////
  1898. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1899. // make this function thread safe
  1900. ggml_critical_section_start();
  1901. static bool is_first_call = true;
  1902. if (is_first_call) {
  1903. // initialize time system (required on Windows)
  1904. ggml_time_init();
  1905. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1906. {
  1907. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1908. ggml_fp16_t ii;
  1909. for (int i = 0; i < (1 << 16); ++i) {
  1910. uint16_t ui = i;
  1911. memcpy(&ii, &ui, sizeof(ii));
  1912. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1913. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1914. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1915. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1916. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1917. }
  1918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1919. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1920. }
  1921. // initialize g_state
  1922. {
  1923. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1924. g_state = (struct ggml_state) {
  1925. /*.contexts =*/ { { 0 } },
  1926. /*.numa =*/ {
  1927. .n_nodes = 0,
  1928. .total_cpus = 0,
  1929. },
  1930. };
  1931. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1932. g_state.contexts[i].used = false;
  1933. }
  1934. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1935. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1936. }
  1937. #if defined(GGML_USE_CUBLAS)
  1938. ggml_init_cublas();
  1939. #elif defined(GGML_USE_CLBLAST)
  1940. ggml_cl_init();
  1941. #endif
  1942. ggml_setup_op_has_task_pass();
  1943. is_first_call = false;
  1944. }
  1945. // find non-used context in g_state
  1946. struct ggml_context * ctx = NULL;
  1947. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1948. if (!g_state.contexts[i].used) {
  1949. g_state.contexts[i].used = true;
  1950. ctx = &g_state.contexts[i].context;
  1951. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1952. break;
  1953. }
  1954. }
  1955. if (ctx == NULL) {
  1956. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1957. ggml_critical_section_end();
  1958. return NULL;
  1959. }
  1960. // allow to call ggml_init with 0 size
  1961. if (params.mem_size == 0) {
  1962. params.mem_size = GGML_MEM_ALIGN;
  1963. }
  1964. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1965. *ctx = (struct ggml_context) {
  1966. /*.mem_size =*/ mem_size,
  1967. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1968. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1969. /*.no_alloc =*/ params.no_alloc,
  1970. /*.no_alloc_save =*/ params.no_alloc,
  1971. /*.n_objects =*/ 0,
  1972. /*.objects_begin =*/ NULL,
  1973. /*.objects_end =*/ NULL,
  1974. /*.scratch =*/ { 0, 0, NULL, },
  1975. /*.scratch_save =*/ { 0, 0, NULL, },
  1976. };
  1977. GGML_ASSERT(ctx->mem_buffer != NULL);
  1978. ggml_assert_aligned(ctx->mem_buffer);
  1979. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1980. ggml_critical_section_end();
  1981. return ctx;
  1982. }
  1983. void ggml_free(struct ggml_context * ctx) {
  1984. if (ctx == NULL) {
  1985. return;
  1986. }
  1987. // make this function thread safe
  1988. ggml_critical_section_start();
  1989. bool found = false;
  1990. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1991. if (&g_state.contexts[i].context == ctx) {
  1992. g_state.contexts[i].used = false;
  1993. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1994. __func__, i, ggml_used_mem(ctx));
  1995. if (ctx->mem_buffer_owned) {
  1996. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1997. }
  1998. found = true;
  1999. break;
  2000. }
  2001. }
  2002. if (!found) {
  2003. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2004. }
  2005. ggml_critical_section_end();
  2006. }
  2007. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2008. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2009. }
  2010. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2011. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2012. ctx->scratch = scratch;
  2013. return result;
  2014. }
  2015. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2016. return ctx->no_alloc;
  2017. }
  2018. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2019. ctx->no_alloc = no_alloc;
  2020. }
  2021. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2022. return ctx->mem_buffer;
  2023. }
  2024. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2025. return ctx->mem_size;
  2026. }
  2027. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2028. size_t max_size = 0;
  2029. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2030. max_size = MAX(max_size, ggml_nbytes(tensor));
  2031. }
  2032. return max_size;
  2033. }
  2034. // IMPORTANT:
  2035. // when creating "opt" tensors, always save and load the scratch buffer
  2036. // this is an error prone process, but it is necessary to support inplace
  2037. // operators when using scratch buffers
  2038. // TODO: implement a better way
  2039. static void ggml_scratch_save(struct ggml_context * ctx) {
  2040. // this is needed to allow opt tensors to store their data
  2041. // TODO: again, need to find a better way
  2042. ctx->no_alloc_save = ctx->no_alloc;
  2043. ctx->no_alloc = false;
  2044. ctx->scratch_save = ctx->scratch;
  2045. ctx->scratch.data = NULL;
  2046. }
  2047. static void ggml_scratch_load(struct ggml_context * ctx) {
  2048. ctx->no_alloc = ctx->no_alloc_save;
  2049. ctx->scratch = ctx->scratch_save;
  2050. }
  2051. ////////////////////////////////////////////////////////////////////////////////
  2052. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2053. // always insert objects at the end of the context's memory pool
  2054. struct ggml_object * obj_cur = ctx->objects_end;
  2055. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2056. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2057. const size_t cur_end = cur_offs + cur_size;
  2058. // align to GGML_MEM_ALIGN
  2059. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2060. char * const mem_buffer = ctx->mem_buffer;
  2061. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2062. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2063. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2064. __func__, cur_end + size_needed, ctx->mem_size);
  2065. assert(false);
  2066. return NULL;
  2067. }
  2068. *obj_new = (struct ggml_object) {
  2069. .offs = cur_end + GGML_OBJECT_SIZE,
  2070. .size = size_needed,
  2071. .next = NULL,
  2072. .type = type,
  2073. };
  2074. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2075. if (obj_cur != NULL) {
  2076. obj_cur->next = obj_new;
  2077. } else {
  2078. // this is the first object in this context
  2079. ctx->objects_begin = obj_new;
  2080. }
  2081. ctx->objects_end = obj_new;
  2082. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2083. return obj_new;
  2084. }
  2085. static struct ggml_tensor * ggml_new_tensor_impl(
  2086. struct ggml_context * ctx,
  2087. enum ggml_type type,
  2088. int n_dims,
  2089. const int64_t * ne,
  2090. struct ggml_tensor * view_src,
  2091. size_t view_offs) {
  2092. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2093. // find the base tensor and absolute offset
  2094. if (view_src != NULL && view_src->view_src != NULL) {
  2095. view_offs += view_src->view_offs;
  2096. view_src = view_src->view_src;
  2097. }
  2098. size_t data_size = ggml_row_size(type, ne[0]);
  2099. for (int i = 1; i < n_dims; i++) {
  2100. data_size *= ne[i];
  2101. }
  2102. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2103. void * data = view_src != NULL ? view_src->data : NULL;
  2104. if (data != NULL) {
  2105. data = (char *) data + view_offs;
  2106. }
  2107. size_t obj_alloc_size = 0;
  2108. if (view_src == NULL && !ctx->no_alloc) {
  2109. if (ctx->scratch.data != NULL) {
  2110. // allocate tensor data in the scratch buffer
  2111. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2112. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2113. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2114. assert(false);
  2115. return NULL;
  2116. }
  2117. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2118. ctx->scratch.offs += data_size;
  2119. } else {
  2120. // allocate tensor data in the context's memory pool
  2121. obj_alloc_size = data_size;
  2122. }
  2123. }
  2124. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2125. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2126. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2127. *result = (struct ggml_tensor) {
  2128. /*.type =*/ type,
  2129. /*.backend =*/ GGML_BACKEND_CPU,
  2130. /*.buffer =*/ NULL,
  2131. /*.ne =*/ { 1, 1, 1, 1 },
  2132. /*.nb =*/ { 0, 0, 0, 0 },
  2133. /*.op =*/ GGML_OP_NONE,
  2134. /*.op_params =*/ { 0 },
  2135. /*.is_param =*/ false,
  2136. /*.grad =*/ NULL,
  2137. /*.src =*/ { NULL },
  2138. /*.perf_runs =*/ 0,
  2139. /*.perf_cycles =*/ 0,
  2140. /*.perf_time_us =*/ 0,
  2141. /*.view_src =*/ view_src,
  2142. /*.view_offs =*/ view_offs,
  2143. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2144. /*.name =*/ { 0 },
  2145. /*.extra =*/ NULL,
  2146. /*.padding =*/ { 0 },
  2147. };
  2148. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2149. //ggml_assert_aligned(result->data);
  2150. for (int i = 0; i < n_dims; i++) {
  2151. result->ne[i] = ne[i];
  2152. }
  2153. result->nb[0] = ggml_type_size(type);
  2154. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2155. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2156. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2157. }
  2158. ctx->n_objects++;
  2159. return result;
  2160. }
  2161. struct ggml_tensor * ggml_new_tensor(
  2162. struct ggml_context * ctx,
  2163. enum ggml_type type,
  2164. int n_dims,
  2165. const int64_t * ne) {
  2166. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2167. }
  2168. struct ggml_tensor * ggml_new_tensor_1d(
  2169. struct ggml_context * ctx,
  2170. enum ggml_type type,
  2171. int64_t ne0) {
  2172. return ggml_new_tensor(ctx, type, 1, &ne0);
  2173. }
  2174. struct ggml_tensor * ggml_new_tensor_2d(
  2175. struct ggml_context * ctx,
  2176. enum ggml_type type,
  2177. int64_t ne0,
  2178. int64_t ne1) {
  2179. const int64_t ne[2] = { ne0, ne1 };
  2180. return ggml_new_tensor(ctx, type, 2, ne);
  2181. }
  2182. struct ggml_tensor * ggml_new_tensor_3d(
  2183. struct ggml_context * ctx,
  2184. enum ggml_type type,
  2185. int64_t ne0,
  2186. int64_t ne1,
  2187. int64_t ne2) {
  2188. const int64_t ne[3] = { ne0, ne1, ne2 };
  2189. return ggml_new_tensor(ctx, type, 3, ne);
  2190. }
  2191. struct ggml_tensor * ggml_new_tensor_4d(
  2192. struct ggml_context * ctx,
  2193. enum ggml_type type,
  2194. int64_t ne0,
  2195. int64_t ne1,
  2196. int64_t ne2,
  2197. int64_t ne3) {
  2198. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2199. return ggml_new_tensor(ctx, type, 4, ne);
  2200. }
  2201. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2202. ggml_scratch_save(ctx);
  2203. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2204. ggml_scratch_load(ctx);
  2205. ggml_set_i32(result, value);
  2206. return result;
  2207. }
  2208. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2209. ggml_scratch_save(ctx);
  2210. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2211. ggml_scratch_load(ctx);
  2212. ggml_set_f32(result, value);
  2213. return result;
  2214. }
  2215. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2216. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2217. }
  2218. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2219. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2220. assert(params_size <= GGML_MAX_OP_PARAMS);
  2221. memcpy(tensor->op_params, params, params_size);
  2222. }
  2223. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2224. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2225. return ((const int32_t *)(tensor->op_params))[i];
  2226. }
  2227. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2228. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2229. ((int32_t *)(tensor->op_params))[i] = value;
  2230. }
  2231. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2232. memset(tensor->data, 0, ggml_nbytes(tensor));
  2233. return tensor;
  2234. }
  2235. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2236. const int n = ggml_nrows(tensor);
  2237. const int nc = tensor->ne[0];
  2238. const size_t n1 = tensor->nb[1];
  2239. char * const data = tensor->data;
  2240. switch (tensor->type) {
  2241. case GGML_TYPE_I8:
  2242. {
  2243. assert(tensor->nb[0] == sizeof(int8_t));
  2244. for (int i = 0; i < n; i++) {
  2245. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2246. }
  2247. } break;
  2248. case GGML_TYPE_I16:
  2249. {
  2250. assert(tensor->nb[0] == sizeof(int16_t));
  2251. for (int i = 0; i < n; i++) {
  2252. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2253. }
  2254. } break;
  2255. case GGML_TYPE_I32:
  2256. {
  2257. assert(tensor->nb[0] == sizeof(int32_t));
  2258. for (int i = 0; i < n; i++) {
  2259. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2260. }
  2261. } break;
  2262. case GGML_TYPE_F16:
  2263. {
  2264. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2265. for (int i = 0; i < n; i++) {
  2266. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2267. }
  2268. } break;
  2269. case GGML_TYPE_F32:
  2270. {
  2271. assert(tensor->nb[0] == sizeof(float));
  2272. for (int i = 0; i < n; i++) {
  2273. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2274. }
  2275. } break;
  2276. default:
  2277. {
  2278. GGML_ASSERT(false);
  2279. } break;
  2280. }
  2281. return tensor;
  2282. }
  2283. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2284. const int n = ggml_nrows(tensor);
  2285. const int nc = tensor->ne[0];
  2286. const size_t n1 = tensor->nb[1];
  2287. char * const data = tensor->data;
  2288. switch (tensor->type) {
  2289. case GGML_TYPE_I8:
  2290. {
  2291. assert(tensor->nb[0] == sizeof(int8_t));
  2292. for (int i = 0; i < n; i++) {
  2293. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2294. }
  2295. } break;
  2296. case GGML_TYPE_I16:
  2297. {
  2298. assert(tensor->nb[0] == sizeof(int16_t));
  2299. for (int i = 0; i < n; i++) {
  2300. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2301. }
  2302. } break;
  2303. case GGML_TYPE_I32:
  2304. {
  2305. assert(tensor->nb[0] == sizeof(int32_t));
  2306. for (int i = 0; i < n; i++) {
  2307. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2308. }
  2309. } break;
  2310. case GGML_TYPE_F16:
  2311. {
  2312. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2313. for (int i = 0; i < n; i++) {
  2314. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2315. }
  2316. } break;
  2317. case GGML_TYPE_F32:
  2318. {
  2319. assert(tensor->nb[0] == sizeof(float));
  2320. for (int i = 0; i < n; i++) {
  2321. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2322. }
  2323. } break;
  2324. default:
  2325. {
  2326. GGML_ASSERT(false);
  2327. } break;
  2328. }
  2329. return tensor;
  2330. }
  2331. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2332. const int64_t ne2 = tensor->ne[2];
  2333. const int64_t ne1 = tensor->ne[1];
  2334. const int64_t ne0 = tensor->ne[0];
  2335. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2336. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2337. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2338. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2339. if (i0) {
  2340. * i0 = i0_;
  2341. }
  2342. if (i1) {
  2343. * i1 = i1_;
  2344. }
  2345. if (i2) {
  2346. * i2 = i2_;
  2347. }
  2348. if (i3) {
  2349. * i3 = i3_;
  2350. }
  2351. }
  2352. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2353. if (!ggml_is_contiguous(tensor)) {
  2354. int64_t id[4] = { 0, 0, 0, 0 };
  2355. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2356. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2357. }
  2358. switch (tensor->type) {
  2359. case GGML_TYPE_I8:
  2360. {
  2361. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2362. return ((int8_t *)(tensor->data))[i];
  2363. }
  2364. case GGML_TYPE_I16:
  2365. {
  2366. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2367. return ((int16_t *)(tensor->data))[i];
  2368. }
  2369. case GGML_TYPE_I32:
  2370. {
  2371. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2372. return ((int32_t *)(tensor->data))[i];
  2373. }
  2374. case GGML_TYPE_F16:
  2375. {
  2376. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2377. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2378. }
  2379. case GGML_TYPE_F32:
  2380. {
  2381. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2382. return ((float *)(tensor->data))[i];
  2383. }
  2384. default:
  2385. {
  2386. GGML_ASSERT(false);
  2387. }
  2388. }
  2389. return 0.0f;
  2390. }
  2391. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2392. if (!ggml_is_contiguous(tensor)) {
  2393. int64_t id[4] = { 0, 0, 0, 0 };
  2394. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2395. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2396. return;
  2397. }
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2402. ((int8_t *)(tensor->data))[i] = value;
  2403. } break;
  2404. case GGML_TYPE_I16:
  2405. {
  2406. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2407. ((int16_t *)(tensor->data))[i] = value;
  2408. } break;
  2409. case GGML_TYPE_I32:
  2410. {
  2411. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2412. ((int32_t *)(tensor->data))[i] = value;
  2413. } break;
  2414. case GGML_TYPE_F16:
  2415. {
  2416. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2417. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2418. } break;
  2419. case GGML_TYPE_F32:
  2420. {
  2421. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2422. ((float *)(tensor->data))[i] = value;
  2423. } break;
  2424. default:
  2425. {
  2426. GGML_ASSERT(false);
  2427. } break;
  2428. }
  2429. }
  2430. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2431. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2432. switch (tensor->type) {
  2433. case GGML_TYPE_I8:
  2434. return ((int8_t *) data)[0];
  2435. case GGML_TYPE_I16:
  2436. return ((int16_t *) data)[0];
  2437. case GGML_TYPE_I32:
  2438. return ((int32_t *) data)[0];
  2439. case GGML_TYPE_F16:
  2440. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2441. case GGML_TYPE_F32:
  2442. return ((float *) data)[0];
  2443. default:
  2444. GGML_ASSERT(false);
  2445. }
  2446. return 0.0f;
  2447. }
  2448. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2449. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2450. switch (tensor->type) {
  2451. case GGML_TYPE_I8:
  2452. {
  2453. ((int8_t *)(data))[0] = value;
  2454. } break;
  2455. case GGML_TYPE_I16:
  2456. {
  2457. ((int16_t *)(data))[0] = value;
  2458. } break;
  2459. case GGML_TYPE_I32:
  2460. {
  2461. ((int32_t *)(data))[0] = value;
  2462. } break;
  2463. case GGML_TYPE_F16:
  2464. {
  2465. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2466. } break;
  2467. case GGML_TYPE_F32:
  2468. {
  2469. ((float *)(data))[0] = value;
  2470. } break;
  2471. default:
  2472. {
  2473. GGML_ASSERT(false);
  2474. } break;
  2475. }
  2476. }
  2477. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2478. if (!ggml_is_contiguous(tensor)) {
  2479. int64_t id[4] = { 0, 0, 0, 0 };
  2480. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2481. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2482. }
  2483. switch (tensor->type) {
  2484. case GGML_TYPE_I8:
  2485. {
  2486. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2487. return ((int8_t *)(tensor->data))[i];
  2488. }
  2489. case GGML_TYPE_I16:
  2490. {
  2491. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2492. return ((int16_t *)(tensor->data))[i];
  2493. }
  2494. case GGML_TYPE_I32:
  2495. {
  2496. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2497. return ((int32_t *)(tensor->data))[i];
  2498. }
  2499. case GGML_TYPE_F16:
  2500. {
  2501. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2502. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2503. }
  2504. case GGML_TYPE_F32:
  2505. {
  2506. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2507. return ((float *)(tensor->data))[i];
  2508. }
  2509. default:
  2510. {
  2511. GGML_ASSERT(false);
  2512. }
  2513. }
  2514. return 0.0f;
  2515. }
  2516. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2517. if (!ggml_is_contiguous(tensor)) {
  2518. int64_t id[4] = { 0, 0, 0, 0 };
  2519. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2520. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2521. return;
  2522. }
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. {
  2526. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2527. ((int8_t *)(tensor->data))[i] = value;
  2528. } break;
  2529. case GGML_TYPE_I16:
  2530. {
  2531. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2532. ((int16_t *)(tensor->data))[i] = value;
  2533. } break;
  2534. case GGML_TYPE_I32:
  2535. {
  2536. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2537. ((int32_t *)(tensor->data))[i] = value;
  2538. } break;
  2539. case GGML_TYPE_F16:
  2540. {
  2541. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2542. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2543. } break;
  2544. case GGML_TYPE_F32:
  2545. {
  2546. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2547. ((float *)(tensor->data))[i] = value;
  2548. } break;
  2549. default:
  2550. {
  2551. GGML_ASSERT(false);
  2552. } break;
  2553. }
  2554. }
  2555. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2556. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2557. switch (tensor->type) {
  2558. case GGML_TYPE_I8:
  2559. return ((int8_t *) data)[0];
  2560. case GGML_TYPE_I16:
  2561. return ((int16_t *) data)[0];
  2562. case GGML_TYPE_I32:
  2563. return ((int32_t *) data)[0];
  2564. case GGML_TYPE_F16:
  2565. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2566. case GGML_TYPE_F32:
  2567. return ((float *) data)[0];
  2568. default:
  2569. GGML_ASSERT(false);
  2570. }
  2571. return 0.0f;
  2572. }
  2573. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2574. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2575. switch (tensor->type) {
  2576. case GGML_TYPE_I8:
  2577. {
  2578. ((int8_t *)(data))[0] = value;
  2579. } break;
  2580. case GGML_TYPE_I16:
  2581. {
  2582. ((int16_t *)(data))[0] = value;
  2583. } break;
  2584. case GGML_TYPE_I32:
  2585. {
  2586. ((int32_t *)(data))[0] = value;
  2587. } break;
  2588. case GGML_TYPE_F16:
  2589. {
  2590. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2591. } break;
  2592. case GGML_TYPE_F32:
  2593. {
  2594. ((float *)(data))[0] = value;
  2595. } break;
  2596. default:
  2597. {
  2598. GGML_ASSERT(false);
  2599. } break;
  2600. }
  2601. }
  2602. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2603. return tensor->data;
  2604. }
  2605. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2606. assert(tensor->type == GGML_TYPE_F32);
  2607. return (float *)(tensor->data);
  2608. }
  2609. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2610. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2611. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2612. }
  2613. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2614. return tensor->name;
  2615. }
  2616. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2617. strncpy(tensor->name, name, sizeof(tensor->name));
  2618. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2619. return tensor;
  2620. }
  2621. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2622. va_list args;
  2623. va_start(args, fmt);
  2624. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2625. va_end(args);
  2626. return tensor;
  2627. }
  2628. struct ggml_tensor * ggml_view_tensor(
  2629. struct ggml_context * ctx,
  2630. struct ggml_tensor * src) {
  2631. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2632. ggml_format_name(result, "%s (view)", src->name);
  2633. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2634. result->nb[i] = src->nb[i];
  2635. }
  2636. return result;
  2637. }
  2638. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2639. struct ggml_object * obj = ctx->objects_begin;
  2640. char * const mem_buffer = ctx->mem_buffer;
  2641. while (obj != NULL) {
  2642. if (obj->type == GGML_OBJECT_TENSOR) {
  2643. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2644. }
  2645. obj = obj->next;
  2646. }
  2647. return NULL;
  2648. }
  2649. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2650. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2651. obj = obj->next;
  2652. char * const mem_buffer = ctx->mem_buffer;
  2653. while (obj != NULL) {
  2654. if (obj->type == GGML_OBJECT_TENSOR) {
  2655. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2656. }
  2657. obj = obj->next;
  2658. }
  2659. return NULL;
  2660. }
  2661. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2662. struct ggml_object * obj = ctx->objects_begin;
  2663. char * const mem_buffer = ctx->mem_buffer;
  2664. while (obj != NULL) {
  2665. if (obj->type == GGML_OBJECT_TENSOR) {
  2666. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2667. if (strcmp(cur->name, name) == 0) {
  2668. return cur;
  2669. }
  2670. }
  2671. obj = obj->next;
  2672. }
  2673. return NULL;
  2674. }
  2675. ////////////////////////////////////////////////////////////////////////////////
  2676. // ggml_dup
  2677. static struct ggml_tensor * ggml_dup_impl(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a,
  2680. bool inplace) {
  2681. bool is_node = false;
  2682. if (!inplace && (a->grad)) {
  2683. is_node = true;
  2684. }
  2685. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2686. result->op = GGML_OP_DUP;
  2687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2688. result->src[0] = a;
  2689. return result;
  2690. }
  2691. struct ggml_tensor * ggml_dup(
  2692. struct ggml_context * ctx,
  2693. struct ggml_tensor * a) {
  2694. return ggml_dup_impl(ctx, a, false);
  2695. }
  2696. struct ggml_tensor * ggml_dup_inplace(
  2697. struct ggml_context * ctx,
  2698. struct ggml_tensor * a) {
  2699. return ggml_dup_impl(ctx, a, true);
  2700. }
  2701. // ggml_add
  2702. static struct ggml_tensor * ggml_add_impl(
  2703. struct ggml_context * ctx,
  2704. struct ggml_tensor * a,
  2705. struct ggml_tensor * b,
  2706. bool inplace) {
  2707. GGML_ASSERT(ggml_can_repeat(b, a));
  2708. bool is_node = false;
  2709. if (!inplace && (a->grad || b->grad)) {
  2710. // TODO: support backward pass for broadcasting
  2711. GGML_ASSERT(ggml_are_same_shape(a, b));
  2712. is_node = true;
  2713. }
  2714. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2715. result->op = GGML_OP_ADD;
  2716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2717. result->src[0] = a;
  2718. result->src[1] = b;
  2719. return result;
  2720. }
  2721. struct ggml_tensor * ggml_add(
  2722. struct ggml_context * ctx,
  2723. struct ggml_tensor * a,
  2724. struct ggml_tensor * b) {
  2725. return ggml_add_impl(ctx, a, b, false);
  2726. }
  2727. struct ggml_tensor * ggml_add_inplace(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. struct ggml_tensor * b) {
  2731. return ggml_add_impl(ctx, a, b, true);
  2732. }
  2733. // ggml_add_cast
  2734. static struct ggml_tensor * ggml_add_cast_impl(
  2735. struct ggml_context * ctx,
  2736. struct ggml_tensor * a,
  2737. struct ggml_tensor * b,
  2738. enum ggml_type type) {
  2739. // TODO: support less-strict constraint
  2740. // GGML_ASSERT(ggml_can_repeat(b, a));
  2741. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2742. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2743. bool is_node = false;
  2744. if (a->grad || b->grad) {
  2745. // TODO: support backward pass for broadcasting
  2746. GGML_ASSERT(ggml_are_same_shape(a, b));
  2747. is_node = true;
  2748. }
  2749. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2750. result->op = GGML_OP_ADD;
  2751. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2752. result->src[0] = a;
  2753. result->src[1] = b;
  2754. return result;
  2755. }
  2756. struct ggml_tensor * ggml_add_cast(
  2757. struct ggml_context * ctx,
  2758. struct ggml_tensor * a,
  2759. struct ggml_tensor * b,
  2760. enum ggml_type type) {
  2761. return ggml_add_cast_impl(ctx, a, b, type);
  2762. }
  2763. // ggml_add1
  2764. static struct ggml_tensor * ggml_add1_impl(
  2765. struct ggml_context * ctx,
  2766. struct ggml_tensor * a,
  2767. struct ggml_tensor * b,
  2768. bool inplace) {
  2769. GGML_ASSERT(ggml_is_scalar(b));
  2770. GGML_ASSERT(ggml_is_padded_1d(a));
  2771. bool is_node = false;
  2772. if (a->grad || b->grad) {
  2773. is_node = true;
  2774. }
  2775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2776. result->op = GGML_OP_ADD1;
  2777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2778. result->src[0] = a;
  2779. result->src[1] = b;
  2780. return result;
  2781. }
  2782. struct ggml_tensor * ggml_add1(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a,
  2785. struct ggml_tensor * b) {
  2786. return ggml_add1_impl(ctx, a, b, false);
  2787. }
  2788. struct ggml_tensor * ggml_add1_inplace(
  2789. struct ggml_context * ctx,
  2790. struct ggml_tensor * a,
  2791. struct ggml_tensor * b) {
  2792. return ggml_add1_impl(ctx, a, b, true);
  2793. }
  2794. // ggml_acc
  2795. static struct ggml_tensor * ggml_acc_impl(
  2796. struct ggml_context * ctx,
  2797. struct ggml_tensor * a,
  2798. struct ggml_tensor * b,
  2799. size_t nb1,
  2800. size_t nb2,
  2801. size_t nb3,
  2802. size_t offset,
  2803. bool inplace) {
  2804. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2805. GGML_ASSERT(ggml_is_contiguous(a));
  2806. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2807. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2808. bool is_node = false;
  2809. if (!inplace && (a->grad || b->grad)) {
  2810. is_node = true;
  2811. }
  2812. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2813. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2814. ggml_set_op_params(result, params, sizeof(params));
  2815. result->op = GGML_OP_ACC;
  2816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2817. result->src[0] = a;
  2818. result->src[1] = b;
  2819. return result;
  2820. }
  2821. struct ggml_tensor * ggml_acc(
  2822. struct ggml_context * ctx,
  2823. struct ggml_tensor * a,
  2824. struct ggml_tensor * b,
  2825. size_t nb1,
  2826. size_t nb2,
  2827. size_t nb3,
  2828. size_t offset) {
  2829. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2830. }
  2831. struct ggml_tensor * ggml_acc_inplace(
  2832. struct ggml_context * ctx,
  2833. struct ggml_tensor * a,
  2834. struct ggml_tensor * b,
  2835. size_t nb1,
  2836. size_t nb2,
  2837. size_t nb3,
  2838. size_t offset) {
  2839. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2840. }
  2841. // ggml_sub
  2842. static struct ggml_tensor * ggml_sub_impl(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a,
  2845. struct ggml_tensor * b,
  2846. bool inplace) {
  2847. GGML_ASSERT(ggml_are_same_shape(a, b));
  2848. bool is_node = false;
  2849. if (!inplace && (a->grad || b->grad)) {
  2850. is_node = true;
  2851. }
  2852. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2853. result->op = GGML_OP_SUB;
  2854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2855. result->src[0] = a;
  2856. result->src[1] = b;
  2857. return result;
  2858. }
  2859. struct ggml_tensor * ggml_sub(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. struct ggml_tensor * b) {
  2863. return ggml_sub_impl(ctx, a, b, false);
  2864. }
  2865. struct ggml_tensor * ggml_sub_inplace(
  2866. struct ggml_context * ctx,
  2867. struct ggml_tensor * a,
  2868. struct ggml_tensor * b) {
  2869. return ggml_sub_impl(ctx, a, b, true);
  2870. }
  2871. // ggml_mul
  2872. static struct ggml_tensor * ggml_mul_impl(
  2873. struct ggml_context * ctx,
  2874. struct ggml_tensor * a,
  2875. struct ggml_tensor * b,
  2876. bool inplace) {
  2877. GGML_ASSERT(ggml_can_repeat(b, a));
  2878. bool is_node = false;
  2879. if (!inplace && (a->grad || b->grad)) {
  2880. // TODO: support backward pass for broadcasting
  2881. GGML_ASSERT(ggml_are_same_shape(a, b));
  2882. is_node = true;
  2883. }
  2884. if (inplace) {
  2885. GGML_ASSERT(!is_node);
  2886. }
  2887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2888. result->op = GGML_OP_MUL;
  2889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2890. result->src[0] = a;
  2891. result->src[1] = b;
  2892. return result;
  2893. }
  2894. struct ggml_tensor * ggml_mul(
  2895. struct ggml_context * ctx,
  2896. struct ggml_tensor * a,
  2897. struct ggml_tensor * b) {
  2898. return ggml_mul_impl(ctx, a, b, false);
  2899. }
  2900. struct ggml_tensor * ggml_mul_inplace(
  2901. struct ggml_context * ctx,
  2902. struct ggml_tensor * a,
  2903. struct ggml_tensor * b) {
  2904. return ggml_mul_impl(ctx, a, b, true);
  2905. }
  2906. // ggml_div
  2907. static struct ggml_tensor * ggml_div_impl(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a,
  2910. struct ggml_tensor * b,
  2911. bool inplace) {
  2912. GGML_ASSERT(ggml_can_repeat(b, a));
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad || b->grad)) {
  2915. is_node = true;
  2916. }
  2917. if (inplace) {
  2918. GGML_ASSERT(!is_node);
  2919. }
  2920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2921. result->op = GGML_OP_DIV;
  2922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2923. result->src[0] = a;
  2924. result->src[1] = b;
  2925. return result;
  2926. }
  2927. struct ggml_tensor * ggml_div(
  2928. struct ggml_context * ctx,
  2929. struct ggml_tensor * a,
  2930. struct ggml_tensor * b) {
  2931. return ggml_div_impl(ctx, a, b, false);
  2932. }
  2933. struct ggml_tensor * ggml_div_inplace(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. struct ggml_tensor * b) {
  2937. return ggml_div_impl(ctx, a, b, true);
  2938. }
  2939. // ggml_sqr
  2940. static struct ggml_tensor * ggml_sqr_impl(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a,
  2943. bool inplace) {
  2944. bool is_node = false;
  2945. if (!inplace && (a->grad)) {
  2946. is_node = true;
  2947. }
  2948. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2949. result->op = GGML_OP_SQR;
  2950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2951. result->src[0] = a;
  2952. return result;
  2953. }
  2954. struct ggml_tensor * ggml_sqr(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a) {
  2957. return ggml_sqr_impl(ctx, a, false);
  2958. }
  2959. struct ggml_tensor * ggml_sqr_inplace(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a) {
  2962. return ggml_sqr_impl(ctx, a, true);
  2963. }
  2964. // ggml_sqrt
  2965. static struct ggml_tensor * ggml_sqrt_impl(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a,
  2968. bool inplace) {
  2969. bool is_node = false;
  2970. if (!inplace && (a->grad)) {
  2971. is_node = true;
  2972. }
  2973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2974. result->op = GGML_OP_SQRT;
  2975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2976. result->src[0] = a;
  2977. return result;
  2978. }
  2979. struct ggml_tensor * ggml_sqrt(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. return ggml_sqrt_impl(ctx, a, false);
  2983. }
  2984. struct ggml_tensor * ggml_sqrt_inplace(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. return ggml_sqrt_impl(ctx, a, true);
  2988. }
  2989. // ggml_log
  2990. static struct ggml_tensor * ggml_log_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. bool inplace) {
  2994. bool is_node = false;
  2995. if (!inplace && (a->grad)) {
  2996. is_node = true;
  2997. }
  2998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2999. result->op = GGML_OP_LOG;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src[0] = a;
  3002. return result;
  3003. }
  3004. struct ggml_tensor * ggml_log(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a) {
  3007. return ggml_log_impl(ctx, a, false);
  3008. }
  3009. struct ggml_tensor * ggml_log_inplace(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a) {
  3012. return ggml_log_impl(ctx, a, true);
  3013. }
  3014. // ggml_sum
  3015. struct ggml_tensor * ggml_sum(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a) {
  3018. bool is_node = false;
  3019. if (a->grad) {
  3020. is_node = true;
  3021. }
  3022. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3023. result->op = GGML_OP_SUM;
  3024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3025. result->src[0] = a;
  3026. return result;
  3027. }
  3028. // ggml_sum_rows
  3029. struct ggml_tensor * ggml_sum_rows(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a) {
  3032. bool is_node = false;
  3033. if (a->grad) {
  3034. is_node = true;
  3035. }
  3036. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3037. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3038. ne[i] = a->ne[i];
  3039. }
  3040. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3041. result->op = GGML_OP_SUM_ROWS;
  3042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3043. result->src[0] = a;
  3044. return result;
  3045. }
  3046. // ggml_mean
  3047. struct ggml_tensor * ggml_mean(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a) {
  3050. bool is_node = false;
  3051. if (a->grad) {
  3052. GGML_ASSERT(false); // TODO: implement
  3053. is_node = true;
  3054. }
  3055. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3056. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3057. result->op = GGML_OP_MEAN;
  3058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3059. result->src[0] = a;
  3060. return result;
  3061. }
  3062. // ggml_argmax
  3063. struct ggml_tensor * ggml_argmax(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a) {
  3066. GGML_ASSERT(ggml_is_matrix(a));
  3067. bool is_node = false;
  3068. if (a->grad) {
  3069. GGML_ASSERT(false);
  3070. is_node = true;
  3071. }
  3072. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3073. result->op = GGML_OP_ARGMAX;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. // ggml_repeat
  3079. struct ggml_tensor * ggml_repeat(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a,
  3082. struct ggml_tensor * b) {
  3083. GGML_ASSERT(ggml_can_repeat(a, b));
  3084. bool is_node = false;
  3085. if (a->grad) {
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3089. result->op = GGML_OP_REPEAT;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. return result;
  3093. }
  3094. // ggml_repeat_back
  3095. struct ggml_tensor * ggml_repeat_back(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a,
  3098. struct ggml_tensor * b) {
  3099. GGML_ASSERT(ggml_can_repeat(b, a));
  3100. bool is_node = false;
  3101. if (a->grad) {
  3102. is_node = true;
  3103. }
  3104. if (ggml_are_same_shape(a, b) && !is_node) {
  3105. return a;
  3106. }
  3107. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3108. result->op = GGML_OP_REPEAT_BACK;
  3109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3110. result->src[0] = a;
  3111. return result;
  3112. }
  3113. // ggml_concat
  3114. struct ggml_tensor * ggml_concat(
  3115. struct ggml_context* ctx,
  3116. struct ggml_tensor* a,
  3117. struct ggml_tensor* b) {
  3118. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3119. bool is_node = false;
  3120. if (a->grad || b->grad) {
  3121. is_node = true;
  3122. }
  3123. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3124. result->op = GGML_OP_CONCAT;
  3125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3126. result->src[0] = a;
  3127. result->src[1] = b;
  3128. return result;
  3129. }
  3130. // ggml_abs
  3131. struct ggml_tensor * ggml_abs(
  3132. struct ggml_context * ctx,
  3133. struct ggml_tensor * a) {
  3134. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3135. }
  3136. struct ggml_tensor * ggml_abs_inplace(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a) {
  3139. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3140. }
  3141. // ggml_sgn
  3142. struct ggml_tensor * ggml_sgn(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a) {
  3145. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3146. }
  3147. struct ggml_tensor * ggml_sgn_inplace(
  3148. struct ggml_context * ctx,
  3149. struct ggml_tensor * a) {
  3150. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3151. }
  3152. // ggml_neg
  3153. struct ggml_tensor * ggml_neg(
  3154. struct ggml_context * ctx,
  3155. struct ggml_tensor * a) {
  3156. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3157. }
  3158. struct ggml_tensor * ggml_neg_inplace(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a) {
  3161. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3162. }
  3163. // ggml_step
  3164. struct ggml_tensor * ggml_step(
  3165. struct ggml_context * ctx,
  3166. struct ggml_tensor * a) {
  3167. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3168. }
  3169. struct ggml_tensor * ggml_step_inplace(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a) {
  3172. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3173. }
  3174. // ggml_tanh
  3175. struct ggml_tensor * ggml_tanh(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a) {
  3178. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3179. }
  3180. struct ggml_tensor * ggml_tanh_inplace(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a) {
  3183. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3184. }
  3185. // ggml_elu
  3186. struct ggml_tensor * ggml_elu(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3190. }
  3191. struct ggml_tensor * ggml_elu_inplace(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a) {
  3194. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3195. }
  3196. // ggml_relu
  3197. struct ggml_tensor * ggml_relu(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3201. }
  3202. struct ggml_tensor * ggml_relu_inplace(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a) {
  3205. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3206. }
  3207. // ggml_leaky_relu
  3208. struct ggml_tensor * ggml_leaky_relu(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3211. bool is_node = false;
  3212. if (!inplace && (a->grad)) {
  3213. is_node = true;
  3214. }
  3215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3216. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3217. result->op = GGML_OP_LEAKY_RELU;
  3218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3219. result->src[0] = a;
  3220. return result;
  3221. }
  3222. // ggml_gelu
  3223. struct ggml_tensor * ggml_gelu(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3227. }
  3228. struct ggml_tensor * ggml_gelu_inplace(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a) {
  3231. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3232. }
  3233. // ggml_gelu_quick
  3234. struct ggml_tensor * ggml_gelu_quick(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a) {
  3237. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3238. }
  3239. struct ggml_tensor * ggml_gelu_quick_inplace(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a) {
  3242. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3243. }
  3244. // ggml_silu
  3245. struct ggml_tensor * ggml_silu(
  3246. struct ggml_context * ctx,
  3247. struct ggml_tensor * a) {
  3248. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3249. }
  3250. struct ggml_tensor * ggml_silu_inplace(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a) {
  3253. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3254. }
  3255. // ggml_silu_back
  3256. struct ggml_tensor * ggml_silu_back(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a,
  3259. struct ggml_tensor * b) {
  3260. bool is_node = false;
  3261. if (a->grad || b->grad) {
  3262. // TODO: implement backward
  3263. is_node = true;
  3264. }
  3265. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3266. result->op = GGML_OP_SILU_BACK;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src[0] = a;
  3269. result->src[1] = b;
  3270. return result;
  3271. }
  3272. // ggml_norm
  3273. static struct ggml_tensor * ggml_norm_impl(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a,
  3276. float eps,
  3277. bool inplace) {
  3278. bool is_node = false;
  3279. if (!inplace && (a->grad)) {
  3280. GGML_ASSERT(false); // TODO: implement backward
  3281. is_node = true;
  3282. }
  3283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3284. ggml_set_op_params(result, &eps, sizeof(eps));
  3285. result->op = GGML_OP_NORM;
  3286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3287. result->src[0] = a;
  3288. return result;
  3289. }
  3290. struct ggml_tensor * ggml_norm(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. float eps) {
  3294. return ggml_norm_impl(ctx, a, eps, false);
  3295. }
  3296. struct ggml_tensor * ggml_norm_inplace(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a,
  3299. float eps) {
  3300. return ggml_norm_impl(ctx, a, eps, true);
  3301. }
  3302. // ggml_rms_norm
  3303. static struct ggml_tensor * ggml_rms_norm_impl(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a,
  3306. float eps,
  3307. bool inplace) {
  3308. bool is_node = false;
  3309. if (!inplace && (a->grad)) {
  3310. is_node = true;
  3311. }
  3312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3313. ggml_set_op_params(result, &eps, sizeof(eps));
  3314. result->op = GGML_OP_RMS_NORM;
  3315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3316. result->src[0] = a;
  3317. return result;
  3318. }
  3319. struct ggml_tensor * ggml_rms_norm(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. float eps) {
  3323. return ggml_rms_norm_impl(ctx, a, eps, false);
  3324. }
  3325. struct ggml_tensor * ggml_rms_norm_inplace(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. float eps) {
  3329. return ggml_rms_norm_impl(ctx, a, eps, true);
  3330. }
  3331. // ggml_rms_norm_back
  3332. struct ggml_tensor * ggml_rms_norm_back(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. struct ggml_tensor * b,
  3336. float eps) {
  3337. bool is_node = false;
  3338. if (a->grad) {
  3339. // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3343. ggml_set_op_params(result, &eps, sizeof(eps));
  3344. result->op = GGML_OP_RMS_NORM_BACK;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src[0] = a;
  3347. result->src[1] = b;
  3348. return result;
  3349. }
  3350. // ggml_group_norm
  3351. static struct ggml_tensor * ggml_group_norm_impl(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. int n_groups,
  3355. bool inplace) {
  3356. bool is_node = false;
  3357. if (!inplace && (a->grad)) {
  3358. GGML_ASSERT(false); // TODO: implement backward
  3359. is_node = true;
  3360. }
  3361. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3362. result->op_params[0] = n_groups;
  3363. result->op = GGML_OP_GROUP_NORM;
  3364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3365. result->src[0] = a;
  3366. return result;
  3367. }
  3368. struct ggml_tensor * ggml_group_norm(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a,
  3371. int n_groups) {
  3372. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3373. }
  3374. struct ggml_tensor * ggml_group_norm_inplace(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a,
  3377. int n_groups) {
  3378. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3379. }
  3380. // ggml_mul_mat
  3381. struct ggml_tensor * ggml_mul_mat(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. struct ggml_tensor * b) {
  3385. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3386. GGML_ASSERT(!ggml_is_transposed(a));
  3387. bool is_node = false;
  3388. if (a->grad || b->grad) {
  3389. is_node = true;
  3390. }
  3391. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3392. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3393. result->op = GGML_OP_MUL_MAT;
  3394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3395. result->src[0] = a;
  3396. result->src[1] = b;
  3397. return result;
  3398. }
  3399. void ggml_mul_mat_set_prec(
  3400. struct ggml_tensor * a,
  3401. enum ggml_prec prec) {
  3402. const int32_t prec_i32 = (int32_t) prec;
  3403. ggml_set_op_params_i32(a, 0, prec_i32);
  3404. }
  3405. // ggml_mul_mat_id
  3406. struct ggml_tensor * ggml_mul_mat_id(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * const as[],
  3409. int n_as,
  3410. struct ggml_tensor * ids,
  3411. int id,
  3412. struct ggml_tensor * b) {
  3413. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3414. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3415. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3416. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3417. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3418. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3419. bool is_node = false;
  3420. if (as[0]->grad || b->grad) {
  3421. is_node = true;
  3422. }
  3423. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3424. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3425. ggml_set_op_params_i32(result, 0, id);
  3426. ggml_set_op_params_i32(result, 1, n_as);
  3427. result->op = GGML_OP_MUL_MAT_ID;
  3428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3429. result->src[0] = ids;
  3430. result->src[1] = b;
  3431. for (int i = 0; i < n_as; i++) {
  3432. struct ggml_tensor * a = as[i];
  3433. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3434. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3435. GGML_ASSERT(!ggml_is_transposed(a));
  3436. result->src[i + 2] = a;
  3437. }
  3438. return result;
  3439. }
  3440. // ggml_out_prod
  3441. struct ggml_tensor * ggml_out_prod(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a,
  3444. struct ggml_tensor * b) {
  3445. GGML_ASSERT(ggml_can_out_prod(a, b));
  3446. GGML_ASSERT(!ggml_is_transposed(a));
  3447. bool is_node = false;
  3448. if (a->grad || b->grad) {
  3449. is_node = true;
  3450. }
  3451. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3452. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3454. result->op = GGML_OP_OUT_PROD;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src[0] = a;
  3457. result->src[1] = b;
  3458. return result;
  3459. }
  3460. // ggml_scale
  3461. static struct ggml_tensor * ggml_scale_impl(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. float s,
  3465. bool inplace) {
  3466. GGML_ASSERT(ggml_is_padded_1d(a));
  3467. bool is_node = false;
  3468. if (a->grad) {
  3469. is_node = true;
  3470. }
  3471. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3472. ggml_set_op_params(result, &s, sizeof(s));
  3473. result->op = GGML_OP_SCALE;
  3474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3475. result->src[0] = a;
  3476. return result;
  3477. }
  3478. struct ggml_tensor * ggml_scale(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. float s) {
  3482. return ggml_scale_impl(ctx, a, s, false);
  3483. }
  3484. struct ggml_tensor * ggml_scale_inplace(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. float s) {
  3488. return ggml_scale_impl(ctx, a, s, true);
  3489. }
  3490. // ggml_set
  3491. static struct ggml_tensor * ggml_set_impl(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b,
  3495. size_t nb1,
  3496. size_t nb2,
  3497. size_t nb3,
  3498. size_t offset,
  3499. bool inplace) {
  3500. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3501. bool is_node = false;
  3502. if (a->grad || b->grad) {
  3503. is_node = true;
  3504. }
  3505. // make a view of the destination
  3506. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3507. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3508. ggml_set_op_params(result, params, sizeof(params));
  3509. result->op = GGML_OP_SET;
  3510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3511. result->src[0] = a;
  3512. result->src[1] = b;
  3513. return result;
  3514. }
  3515. struct ggml_tensor * ggml_set(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b,
  3519. size_t nb1,
  3520. size_t nb2,
  3521. size_t nb3,
  3522. size_t offset) {
  3523. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3524. }
  3525. struct ggml_tensor * ggml_set_inplace(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a,
  3528. struct ggml_tensor * b,
  3529. size_t nb1,
  3530. size_t nb2,
  3531. size_t nb3,
  3532. size_t offset) {
  3533. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3534. }
  3535. struct ggml_tensor * ggml_set_1d(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b,
  3539. size_t offset) {
  3540. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3541. }
  3542. struct ggml_tensor * ggml_set_1d_inplace(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b,
  3546. size_t offset) {
  3547. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3548. }
  3549. struct ggml_tensor * ggml_set_2d(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a,
  3552. struct ggml_tensor * b,
  3553. size_t nb1,
  3554. size_t offset) {
  3555. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3556. }
  3557. struct ggml_tensor * ggml_set_2d_inplace(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. struct ggml_tensor * b,
  3561. size_t nb1,
  3562. size_t offset) {
  3563. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3564. }
  3565. // ggml_cpy
  3566. static struct ggml_tensor * ggml_cpy_impl(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. struct ggml_tensor * b) {
  3570. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3571. bool is_node = false;
  3572. if (a->grad || b->grad) {
  3573. // inplace is false and either one have a grad
  3574. is_node = true;
  3575. }
  3576. // make a view of the destination
  3577. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3578. if (strlen(b->name) > 0) {
  3579. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3580. } else {
  3581. ggml_format_name(result, "%s (copy)", a->name);
  3582. }
  3583. result->op = GGML_OP_CPY;
  3584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3585. result->src[0] = a;
  3586. result->src[1] = b;
  3587. return result;
  3588. }
  3589. struct ggml_tensor * ggml_cpy(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. struct ggml_tensor * b) {
  3593. return ggml_cpy_impl(ctx, a, b);
  3594. }
  3595. struct ggml_tensor * ggml_cast(
  3596. struct ggml_context * ctx,
  3597. struct ggml_tensor * a,
  3598. enum ggml_type type) {
  3599. bool is_node = false;
  3600. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3601. ggml_format_name(result, "%s (copy)", a->name);
  3602. result->op = GGML_OP_CPY;
  3603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3604. result->src[0] = a;
  3605. result->src[1] = result;
  3606. return result;
  3607. }
  3608. // ggml_cont
  3609. static struct ggml_tensor * ggml_cont_impl(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a) {
  3612. bool is_node = false;
  3613. if (a->grad) {
  3614. is_node = true;
  3615. }
  3616. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3617. ggml_format_name(result, "%s (cont)", a->name);
  3618. result->op = GGML_OP_CONT;
  3619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3620. result->src[0] = a;
  3621. return result;
  3622. }
  3623. struct ggml_tensor * ggml_cont(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a) {
  3626. return ggml_cont_impl(ctx, a);
  3627. }
  3628. // make contiguous, with new shape
  3629. GGML_API struct ggml_tensor * ggml_cont_1d(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a,
  3632. int64_t ne0) {
  3633. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3634. }
  3635. GGML_API struct ggml_tensor * ggml_cont_2d(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. int64_t ne0,
  3639. int64_t ne1) {
  3640. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3641. }
  3642. GGML_API struct ggml_tensor * ggml_cont_3d(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a,
  3645. int64_t ne0,
  3646. int64_t ne1,
  3647. int64_t ne2) {
  3648. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3649. }
  3650. struct ggml_tensor * ggml_cont_4d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. int64_t ne2,
  3656. int64_t ne3) {
  3657. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3658. bool is_node = false;
  3659. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3660. ggml_format_name(result, "%s (cont)", a->name);
  3661. result->op = GGML_OP_CONT;
  3662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3663. result->src[0] = a;
  3664. return result;
  3665. }
  3666. // ggml_reshape
  3667. struct ggml_tensor * ggml_reshape(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b) {
  3671. GGML_ASSERT(ggml_is_contiguous(a));
  3672. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3673. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3674. bool is_node = false;
  3675. if (a->grad) {
  3676. is_node = true;
  3677. }
  3678. if (b->grad) {
  3679. // gradient propagation is not supported
  3680. //GGML_ASSERT(false);
  3681. }
  3682. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3683. ggml_format_name(result, "%s (reshaped)", a->name);
  3684. result->op = GGML_OP_RESHAPE;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src[0] = a;
  3687. return result;
  3688. }
  3689. struct ggml_tensor * ggml_reshape_1d(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. int64_t ne0) {
  3693. GGML_ASSERT(ggml_is_contiguous(a));
  3694. GGML_ASSERT(ggml_nelements(a) == ne0);
  3695. bool is_node = false;
  3696. if (a->grad) {
  3697. is_node = true;
  3698. }
  3699. const int64_t ne[1] = { ne0 };
  3700. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3701. ggml_format_name(result, "%s (reshaped)", a->name);
  3702. result->op = GGML_OP_RESHAPE;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src[0] = a;
  3705. return result;
  3706. }
  3707. struct ggml_tensor * ggml_reshape_2d(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a,
  3710. int64_t ne0,
  3711. int64_t ne1) {
  3712. GGML_ASSERT(ggml_is_contiguous(a));
  3713. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3714. bool is_node = false;
  3715. if (a->grad) {
  3716. is_node = true;
  3717. }
  3718. const int64_t ne[2] = { ne0, ne1 };
  3719. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3720. ggml_format_name(result, "%s (reshaped)", a->name);
  3721. result->op = GGML_OP_RESHAPE;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_reshape_3d(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. int64_t ne0,
  3730. int64_t ne1,
  3731. int64_t ne2) {
  3732. GGML_ASSERT(ggml_is_contiguous(a));
  3733. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3734. bool is_node = false;
  3735. if (a->grad) {
  3736. is_node = true;
  3737. }
  3738. const int64_t ne[3] = { ne0, ne1, ne2 };
  3739. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3740. ggml_format_name(result, "%s (reshaped)", a->name);
  3741. result->op = GGML_OP_RESHAPE;
  3742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3743. result->src[0] = a;
  3744. return result;
  3745. }
  3746. struct ggml_tensor * ggml_reshape_4d(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. int64_t ne0,
  3750. int64_t ne1,
  3751. int64_t ne2,
  3752. int64_t ne3) {
  3753. GGML_ASSERT(ggml_is_contiguous(a));
  3754. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3755. bool is_node = false;
  3756. if (a->grad) {
  3757. is_node = true;
  3758. }
  3759. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3760. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3761. ggml_format_name(result, "%s (reshaped)", a->name);
  3762. result->op = GGML_OP_RESHAPE;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src[0] = a;
  3765. return result;
  3766. }
  3767. static struct ggml_tensor * ggml_view_impl(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. int n_dims,
  3771. const int64_t * ne,
  3772. size_t offset) {
  3773. bool is_node = false;
  3774. if (a->grad) {
  3775. is_node = true;
  3776. }
  3777. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3778. ggml_format_name(result, "%s (view)", a->name);
  3779. ggml_set_op_params(result, &offset, sizeof(offset));
  3780. result->op = GGML_OP_VIEW;
  3781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3782. result->src[0] = a;
  3783. return result;
  3784. }
  3785. // ggml_view_1d
  3786. struct ggml_tensor * ggml_view_1d(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. int64_t ne0,
  3790. size_t offset) {
  3791. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3792. return result;
  3793. }
  3794. // ggml_view_2d
  3795. struct ggml_tensor * ggml_view_2d(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. int64_t ne0,
  3799. int64_t ne1,
  3800. size_t nb1,
  3801. size_t offset) {
  3802. const int64_t ne[2] = { ne0, ne1 };
  3803. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3804. result->nb[1] = nb1;
  3805. result->nb[2] = result->nb[1]*ne1;
  3806. result->nb[3] = result->nb[2];
  3807. return result;
  3808. }
  3809. // ggml_view_3d
  3810. struct ggml_tensor * ggml_view_3d(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a,
  3813. int64_t ne0,
  3814. int64_t ne1,
  3815. int64_t ne2,
  3816. size_t nb1,
  3817. size_t nb2,
  3818. size_t offset) {
  3819. const int64_t ne[3] = { ne0, ne1, ne2 };
  3820. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3821. result->nb[1] = nb1;
  3822. result->nb[2] = nb2;
  3823. result->nb[3] = result->nb[2]*ne2;
  3824. return result;
  3825. }
  3826. // ggml_view_4d
  3827. struct ggml_tensor * ggml_view_4d(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. int64_t ne0,
  3831. int64_t ne1,
  3832. int64_t ne2,
  3833. int64_t ne3,
  3834. size_t nb1,
  3835. size_t nb2,
  3836. size_t nb3,
  3837. size_t offset) {
  3838. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3839. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3840. result->nb[1] = nb1;
  3841. result->nb[2] = nb2;
  3842. result->nb[3] = nb3;
  3843. return result;
  3844. }
  3845. // ggml_permute
  3846. struct ggml_tensor * ggml_permute(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. int axis0,
  3850. int axis1,
  3851. int axis2,
  3852. int axis3) {
  3853. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3854. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3855. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3856. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3857. GGML_ASSERT(axis0 != axis1);
  3858. GGML_ASSERT(axis0 != axis2);
  3859. GGML_ASSERT(axis0 != axis3);
  3860. GGML_ASSERT(axis1 != axis2);
  3861. GGML_ASSERT(axis1 != axis3);
  3862. GGML_ASSERT(axis2 != axis3);
  3863. bool is_node = false;
  3864. if (a->grad) {
  3865. is_node = true;
  3866. }
  3867. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3868. ggml_format_name(result, "%s (permuted)", a->name);
  3869. int ne[GGML_MAX_DIMS];
  3870. int nb[GGML_MAX_DIMS];
  3871. ne[axis0] = a->ne[0];
  3872. ne[axis1] = a->ne[1];
  3873. ne[axis2] = a->ne[2];
  3874. ne[axis3] = a->ne[3];
  3875. nb[axis0] = a->nb[0];
  3876. nb[axis1] = a->nb[1];
  3877. nb[axis2] = a->nb[2];
  3878. nb[axis3] = a->nb[3];
  3879. result->ne[0] = ne[0];
  3880. result->ne[1] = ne[1];
  3881. result->ne[2] = ne[2];
  3882. result->ne[3] = ne[3];
  3883. result->nb[0] = nb[0];
  3884. result->nb[1] = nb[1];
  3885. result->nb[2] = nb[2];
  3886. result->nb[3] = nb[3];
  3887. result->op = GGML_OP_PERMUTE;
  3888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3889. result->src[0] = a;
  3890. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3891. ggml_set_op_params(result, params, sizeof(params));
  3892. return result;
  3893. }
  3894. // ggml_transpose
  3895. struct ggml_tensor * ggml_transpose(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a) {
  3898. bool is_node = false;
  3899. if (a->grad) {
  3900. is_node = true;
  3901. }
  3902. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3903. ggml_format_name(result, "%s (transposed)", a->name);
  3904. result->ne[0] = a->ne[1];
  3905. result->ne[1] = a->ne[0];
  3906. result->nb[0] = a->nb[1];
  3907. result->nb[1] = a->nb[0];
  3908. result->op = GGML_OP_TRANSPOSE;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src[0] = a;
  3911. return result;
  3912. }
  3913. // ggml_get_rows
  3914. struct ggml_tensor * ggml_get_rows(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b) {
  3918. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3919. GGML_ASSERT(b->ne[3] == 1);
  3920. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3921. bool is_node = false;
  3922. if (a->grad || b->grad) {
  3923. is_node = true;
  3924. }
  3925. // TODO: implement non F32 return
  3926. enum ggml_type type = GGML_TYPE_F32;
  3927. if (a->type == GGML_TYPE_I32) {
  3928. type = a->type;
  3929. }
  3930. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3931. result->op = GGML_OP_GET_ROWS;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src[0] = a;
  3934. result->src[1] = b;
  3935. return result;
  3936. }
  3937. // ggml_get_rows_back
  3938. struct ggml_tensor * ggml_get_rows_back(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b,
  3942. struct ggml_tensor * c) {
  3943. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3944. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3945. bool is_node = false;
  3946. if (a->grad || b->grad) {
  3947. is_node = true;
  3948. }
  3949. // TODO: implement non F32 return
  3950. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3951. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3952. result->op = GGML_OP_GET_ROWS_BACK;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src[0] = a;
  3955. result->src[1] = b;
  3956. return result;
  3957. }
  3958. // ggml_diag
  3959. struct ggml_tensor * ggml_diag(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a) {
  3962. GGML_ASSERT(a->ne[1] == 1);
  3963. bool is_node = false;
  3964. if (a->grad) {
  3965. is_node = true;
  3966. }
  3967. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3968. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3969. result->op = GGML_OP_DIAG;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. return result;
  3973. }
  3974. // ggml_diag_mask_inf
  3975. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. int n_past,
  3979. bool inplace) {
  3980. bool is_node = false;
  3981. if (a->grad) {
  3982. is_node = true;
  3983. }
  3984. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3985. int32_t params[] = { n_past };
  3986. ggml_set_op_params(result, params, sizeof(params));
  3987. result->op = GGML_OP_DIAG_MASK_INF;
  3988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3989. result->src[0] = a;
  3990. return result;
  3991. }
  3992. struct ggml_tensor * ggml_diag_mask_inf(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. int n_past) {
  3996. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3997. }
  3998. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a,
  4001. int n_past) {
  4002. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4003. }
  4004. // ggml_diag_mask_zero
  4005. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. int n_past,
  4009. bool inplace) {
  4010. bool is_node = false;
  4011. if (a->grad) {
  4012. is_node = true;
  4013. }
  4014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4015. int32_t params[] = { n_past };
  4016. ggml_set_op_params(result, params, sizeof(params));
  4017. result->op = GGML_OP_DIAG_MASK_ZERO;
  4018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4019. result->src[0] = a;
  4020. return result;
  4021. }
  4022. struct ggml_tensor * ggml_diag_mask_zero(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a,
  4025. int n_past) {
  4026. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4027. }
  4028. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. int n_past) {
  4032. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4033. }
  4034. // ggml_soft_max
  4035. static struct ggml_tensor * ggml_soft_max_impl(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. struct ggml_tensor * mask,
  4039. float scale,
  4040. bool inplace) {
  4041. GGML_ASSERT(ggml_is_contiguous(a));
  4042. if (mask) {
  4043. GGML_ASSERT(ggml_is_contiguous(mask));
  4044. GGML_ASSERT(mask->ne[2] == 1);
  4045. GGML_ASSERT(mask->ne[3] == 1);
  4046. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4047. }
  4048. bool is_node = false;
  4049. if (a->grad) {
  4050. is_node = true;
  4051. }
  4052. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4053. float params[] = { scale };
  4054. ggml_set_op_params(result, params, sizeof(params));
  4055. result->op = GGML_OP_SOFT_MAX;
  4056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4057. result->src[0] = a;
  4058. result->src[1] = mask;
  4059. return result;
  4060. }
  4061. struct ggml_tensor * ggml_soft_max(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a) {
  4064. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4065. }
  4066. struct ggml_tensor * ggml_soft_max_inplace(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a) {
  4069. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4070. }
  4071. struct ggml_tensor * ggml_soft_max_ext(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * mask,
  4075. float scale) {
  4076. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4077. }
  4078. // ggml_soft_max_back
  4079. static struct ggml_tensor * ggml_soft_max_back_impl(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b,
  4083. bool inplace) {
  4084. bool is_node = false;
  4085. if (a->grad || b->grad) {
  4086. is_node = true; // TODO : implement backward pass
  4087. }
  4088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4089. result->op = GGML_OP_SOFT_MAX_BACK;
  4090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4091. result->src[0] = a;
  4092. result->src[1] = b;
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_soft_max_back(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. struct ggml_tensor * b) {
  4099. return ggml_soft_max_back_impl(ctx, a, b, false);
  4100. }
  4101. struct ggml_tensor * ggml_soft_max_back_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. return ggml_soft_max_back_impl(ctx, a, b, true);
  4106. }
  4107. // ggml_rope
  4108. static struct ggml_tensor * ggml_rope_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b,
  4112. int n_dims,
  4113. int mode,
  4114. int n_ctx,
  4115. int n_orig_ctx,
  4116. float freq_base,
  4117. float freq_scale,
  4118. float ext_factor,
  4119. float attn_factor,
  4120. float beta_fast,
  4121. float beta_slow,
  4122. float xpos_base,
  4123. bool xpos_down,
  4124. bool inplace) {
  4125. GGML_ASSERT(ggml_is_vector(b));
  4126. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4127. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4128. bool is_node = false;
  4129. if (a->grad) {
  4130. is_node = true;
  4131. }
  4132. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4133. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4134. memcpy(params + 5, &freq_base, sizeof(float));
  4135. memcpy(params + 6, &freq_scale, sizeof(float));
  4136. memcpy(params + 7, &ext_factor, sizeof(float));
  4137. memcpy(params + 8, &attn_factor, sizeof(float));
  4138. memcpy(params + 9, &beta_fast, sizeof(float));
  4139. memcpy(params + 10, &beta_slow, sizeof(float));
  4140. memcpy(params + 11, &xpos_base, sizeof(float));
  4141. memcpy(params + 12, &xpos_down, sizeof(bool));
  4142. ggml_set_op_params(result, params, sizeof(params));
  4143. result->op = GGML_OP_ROPE;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src[0] = a;
  4146. result->src[1] = b;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_rope(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. struct ggml_tensor * b,
  4153. int n_dims,
  4154. int mode,
  4155. int n_ctx) {
  4156. return ggml_rope_impl(
  4157. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4158. );
  4159. }
  4160. struct ggml_tensor * ggml_rope_inplace(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b,
  4164. int n_dims,
  4165. int mode,
  4166. int n_ctx) {
  4167. return ggml_rope_impl(
  4168. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4169. );
  4170. }
  4171. struct ggml_tensor * ggml_rope_custom(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b,
  4175. int n_dims,
  4176. int mode,
  4177. int n_ctx,
  4178. int n_orig_ctx,
  4179. float freq_base,
  4180. float freq_scale,
  4181. float ext_factor,
  4182. float attn_factor,
  4183. float beta_fast,
  4184. float beta_slow) {
  4185. return ggml_rope_impl(
  4186. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4187. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4188. );
  4189. }
  4190. struct ggml_tensor * ggml_rope_custom_inplace(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a,
  4193. struct ggml_tensor * b,
  4194. int n_dims,
  4195. int mode,
  4196. int n_ctx,
  4197. int n_orig_ctx,
  4198. float freq_base,
  4199. float freq_scale,
  4200. float ext_factor,
  4201. float attn_factor,
  4202. float beta_fast,
  4203. float beta_slow) {
  4204. return ggml_rope_impl(
  4205. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4206. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4207. );
  4208. }
  4209. struct ggml_tensor * ggml_rope_xpos_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. struct ggml_tensor * b,
  4213. int n_dims,
  4214. float base,
  4215. bool down) {
  4216. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4217. }
  4218. // ggml_rope_back
  4219. struct ggml_tensor * ggml_rope_back(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. struct ggml_tensor * b,
  4223. int n_dims,
  4224. int mode,
  4225. int n_ctx,
  4226. int n_orig_ctx,
  4227. float freq_base,
  4228. float freq_scale,
  4229. float ext_factor,
  4230. float attn_factor,
  4231. float beta_fast,
  4232. float beta_slow,
  4233. float xpos_base,
  4234. bool xpos_down) {
  4235. GGML_ASSERT(ggml_is_vector(b));
  4236. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4237. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4238. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4239. bool is_node = false;
  4240. if (a->grad) {
  4241. is_node = false; // TODO: implement backward
  4242. }
  4243. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4244. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4245. memcpy(params + 5, &freq_base, sizeof(float));
  4246. memcpy(params + 6, &freq_scale, sizeof(float));
  4247. memcpy(params + 7, &ext_factor, sizeof(float));
  4248. memcpy(params + 8, &attn_factor, sizeof(float));
  4249. memcpy(params + 9, &beta_fast, sizeof(float));
  4250. memcpy(params + 10, &beta_slow, sizeof(float));
  4251. memcpy(params + 11, &xpos_base, sizeof(float));
  4252. memcpy(params + 12, &xpos_down, sizeof(bool));
  4253. ggml_set_op_params(result, params, sizeof(params));
  4254. result->op = GGML_OP_ROPE_BACK;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src[0] = a;
  4257. result->src[1] = b;
  4258. return result;
  4259. }
  4260. // ggml_alibi
  4261. struct ggml_tensor * ggml_alibi(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. int n_past,
  4265. int n_head,
  4266. float bias_max) {
  4267. GGML_ASSERT(n_past >= 0);
  4268. bool is_node = false;
  4269. if (a->grad) {
  4270. GGML_ASSERT(false); // TODO: implement backward
  4271. is_node = true;
  4272. }
  4273. // TODO: when implement backward, fix this:
  4274. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4275. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4276. int32_t op_params[3] = { n_past, n_head };
  4277. memcpy(op_params + 2, &bias_max, sizeof(float));
  4278. ggml_set_op_params(result, op_params, sizeof(op_params));
  4279. result->op = GGML_OP_ALIBI;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src[0] = a;
  4282. return result;
  4283. }
  4284. // ggml_clamp
  4285. struct ggml_tensor * ggml_clamp(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. float min,
  4289. float max) {
  4290. bool is_node = false;
  4291. if (a->grad) {
  4292. GGML_ASSERT(false); // TODO: implement backward
  4293. is_node = true;
  4294. }
  4295. // TODO: when implement backward, fix this:
  4296. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4297. float params[] = { min, max };
  4298. ggml_set_op_params(result, params, sizeof(params));
  4299. result->op = GGML_OP_CLAMP;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src[0] = a;
  4302. return result;
  4303. }
  4304. // ggml_conv_1d
  4305. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4306. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4307. }
  4308. GGML_API struct ggml_tensor * ggml_conv_1d(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b,
  4312. int s0,
  4313. int p0,
  4314. int d0) {
  4315. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4316. struct ggml_tensor * result =
  4317. ggml_mul_mat(ctx,
  4318. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4319. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4320. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4321. return result;
  4322. }
  4323. // ggml_conv_1d_ph
  4324. struct ggml_tensor* ggml_conv_1d_ph(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b,
  4328. int s,
  4329. int d) {
  4330. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4331. }
  4332. // ggml_conv_transpose_1d
  4333. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4334. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4335. }
  4336. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. struct ggml_tensor * b,
  4340. int s0,
  4341. int p0,
  4342. int d0) {
  4343. GGML_ASSERT(ggml_is_matrix(b));
  4344. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4345. GGML_ASSERT(a->ne[3] == 1);
  4346. GGML_ASSERT(p0 == 0);
  4347. GGML_ASSERT(d0 == 1);
  4348. bool is_node = false;
  4349. if (a->grad || b->grad) {
  4350. GGML_ASSERT(false); // TODO: implement backward
  4351. is_node = true;
  4352. }
  4353. const int64_t ne[4] = {
  4354. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4355. a->ne[1], b->ne[2], 1,
  4356. };
  4357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4358. int32_t params[] = { s0, p0, d0 };
  4359. ggml_set_op_params(result, params, sizeof(params));
  4360. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4362. result->src[0] = a;
  4363. result->src[1] = b;
  4364. return result;
  4365. }
  4366. // ggml_conv_2d
  4367. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4368. // a: [OC,IC, KH, KW]
  4369. // b: [N, IC, IH, IW]
  4370. // result: [N, OH, OW, IC*KH*KW]
  4371. struct ggml_tensor * ggml_im2col(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b,
  4375. int s0,
  4376. int s1,
  4377. int p0,
  4378. int p1,
  4379. int d0,
  4380. int d1,
  4381. bool is_2D) {
  4382. if(is_2D) {
  4383. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4384. } else {
  4385. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4386. }
  4387. bool is_node = false;
  4388. if (a->grad || b->grad) {
  4389. GGML_ASSERT(false); // TODO: implement backward
  4390. is_node = true;
  4391. }
  4392. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4393. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4394. const int64_t ne[4] = {
  4395. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4396. OW,
  4397. is_2D ? OH : b->ne[2],
  4398. is_2D ? b->ne[3] : 1,
  4399. };
  4400. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4401. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4402. ggml_set_op_params(result, params, sizeof(params));
  4403. result->op = GGML_OP_IM2COL;
  4404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4405. result->src[0] = a;
  4406. result->src[1] = b;
  4407. return result;
  4408. }
  4409. // a: [OC,IC, KH, KW]
  4410. // b: [N, IC, IH, IW]
  4411. // result: [N, OC, OH, OW]
  4412. struct ggml_tensor * ggml_conv_2d(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. struct ggml_tensor * b,
  4416. int s0,
  4417. int s1,
  4418. int p0,
  4419. int p1,
  4420. int d0,
  4421. int d1) {
  4422. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4423. struct ggml_tensor * result =
  4424. ggml_mul_mat(ctx,
  4425. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4426. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4427. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4428. return result;
  4429. }
  4430. // ggml_conv_2d_sk_p0
  4431. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. struct ggml_tensor * b) {
  4435. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4436. }
  4437. // ggml_conv_2d_s1_ph
  4438. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4443. }
  4444. // ggml_conv_transpose_2d_p0
  4445. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4446. return (ins - 1) * s - 2 * p + ks;
  4447. }
  4448. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. struct ggml_tensor * b,
  4452. int stride) {
  4453. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4454. bool is_node = false;
  4455. if (a->grad || b->grad) {
  4456. GGML_ASSERT(false); // TODO: implement backward
  4457. is_node = true;
  4458. }
  4459. const int64_t ne[4] = {
  4460. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4461. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4462. a->ne[2], b->ne[3],
  4463. };
  4464. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4465. ggml_set_op_params_i32(result, 0, stride);
  4466. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src[0] = a;
  4469. result->src[1] = b;
  4470. return result;
  4471. }
  4472. // ggml_pool_*
  4473. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4474. return (ins + 2 * p - ks) / s + 1;
  4475. }
  4476. // ggml_pool_1d
  4477. struct ggml_tensor * ggml_pool_1d(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. enum ggml_op_pool op,
  4481. int k0,
  4482. int s0,
  4483. int p0) {
  4484. bool is_node = false;
  4485. if (a->grad) {
  4486. GGML_ASSERT(false); // TODO: implement backward
  4487. is_node = true;
  4488. }
  4489. const int64_t ne[2] = {
  4490. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4491. a->ne[1],
  4492. };
  4493. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4494. int32_t params[] = { op, k0, s0, p0 };
  4495. ggml_set_op_params(result, params, sizeof(params));
  4496. result->op = GGML_OP_POOL_1D;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. return result;
  4500. }
  4501. // ggml_pool_2d
  4502. struct ggml_tensor * ggml_pool_2d(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. enum ggml_op_pool op,
  4506. int k0,
  4507. int k1,
  4508. int s0,
  4509. int s1,
  4510. float p0,
  4511. float p1) {
  4512. bool is_node = false;
  4513. if (a->grad) {
  4514. GGML_ASSERT(false); // TODO: implement backward
  4515. is_node = true;
  4516. }
  4517. const int64_t ne[3] = {
  4518. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4519. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4520. a->ne[2],
  4521. };
  4522. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4523. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4524. ggml_set_op_params(result, params, sizeof(params));
  4525. result->op = GGML_OP_POOL_2D;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. return result;
  4529. }
  4530. // ggml_upscale
  4531. static struct ggml_tensor * ggml_upscale_impl(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. int scale_factor) {
  4535. bool is_node = false;
  4536. if (a->grad) {
  4537. GGML_ASSERT(false); // TODO: implement backward
  4538. is_node = true;
  4539. }
  4540. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4541. a->ne[0] * scale_factor,
  4542. a->ne[1] * scale_factor,
  4543. a->ne[2], a->ne[3]);
  4544. result->op = GGML_OP_UPSCALE;
  4545. result->op_params[0] = scale_factor;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. return result;
  4549. }
  4550. struct ggml_tensor * ggml_pad(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. int p0, int p1, int p2, int p3) {
  4554. bool is_node = false;
  4555. if (a->grad) {
  4556. GGML_ASSERT(false); // TODO: implement backward
  4557. is_node = true;
  4558. }
  4559. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4560. a->ne[0] + p0,
  4561. a->ne[1] + p1,
  4562. a->ne[2] + p2,
  4563. a->ne[3] + p3);
  4564. result->op = GGML_OP_PAD;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src[0] = a;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_upscale(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int scale_factor) {
  4573. return ggml_upscale_impl(ctx, a, scale_factor);
  4574. }
  4575. // ggml_argsort
  4576. struct ggml_tensor * ggml_argsort(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. enum ggml_sort_order order) {
  4580. bool is_node = false;
  4581. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4582. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4583. result->op = GGML_OP_ARGSORT;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src[0] = a;
  4586. return result;
  4587. }
  4588. // ggml_top_k
  4589. struct ggml_tensor * ggml_top_k(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. int k) {
  4593. GGML_ASSERT(a->ne[0] >= k);
  4594. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4595. result = ggml_view_4d(ctx, result,
  4596. k, result->ne[1], result->ne[2], result->ne[3],
  4597. result->nb[1], result->nb[2], result->nb[3],
  4598. 0);
  4599. return result;
  4600. }
  4601. // ggml_flash_attn
  4602. struct ggml_tensor * ggml_flash_attn(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * q,
  4605. struct ggml_tensor * k,
  4606. struct ggml_tensor * v,
  4607. bool masked) {
  4608. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4609. // TODO: check if vT can be multiplied by (k*qT)
  4610. bool is_node = false;
  4611. if (q->grad || k->grad || v->grad) {
  4612. is_node = true;
  4613. }
  4614. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4615. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4616. int32_t t = masked ? 1 : 0;
  4617. ggml_set_op_params(result, &t, sizeof(t));
  4618. result->op = GGML_OP_FLASH_ATTN;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = q;
  4621. result->src[1] = k;
  4622. result->src[2] = v;
  4623. return result;
  4624. }
  4625. // ggml_flash_ff
  4626. struct ggml_tensor * ggml_flash_ff(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. struct ggml_tensor * b0,
  4630. struct ggml_tensor * b1,
  4631. struct ggml_tensor * c0,
  4632. struct ggml_tensor * c1) {
  4633. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4634. // TODO: more checks
  4635. bool is_node = false;
  4636. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4637. is_node = true;
  4638. }
  4639. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4640. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4641. result->op = GGML_OP_FLASH_FF;
  4642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4643. result->src[0] = a;
  4644. result->src[1] = b0;
  4645. result->src[2] = b1;
  4646. result->src[3] = c0;
  4647. result->src[4] = c1;
  4648. return result;
  4649. }
  4650. // ggml_flash_attn_back
  4651. struct ggml_tensor * ggml_flash_attn_back(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * q,
  4654. struct ggml_tensor * k,
  4655. struct ggml_tensor * v,
  4656. struct ggml_tensor * d,
  4657. bool masked) {
  4658. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4659. // TODO: check if vT can be multiplied by (k*qT)
  4660. // d shape [D,N,ne2,ne3]
  4661. // q shape [D,N,ne2,ne3]
  4662. // k shape [D,M,kvne2,ne3]
  4663. // v shape [M,D,kvne2,ne3]
  4664. const int64_t D = q->ne[0];
  4665. const int64_t N = q->ne[1];
  4666. const int64_t M = k->ne[1];
  4667. const int64_t ne2 = q->ne[2];
  4668. const int64_t ne3 = q->ne[3];
  4669. const int64_t kvne2 = k->ne[2];
  4670. GGML_ASSERT(k->ne[0] == D);
  4671. GGML_ASSERT(v->ne[0] == M);
  4672. GGML_ASSERT(v->ne[1] == D);
  4673. GGML_ASSERT(d->ne[0] == D);
  4674. GGML_ASSERT(d->ne[1] == N);
  4675. GGML_ASSERT(k->ne[2] == kvne2);
  4676. GGML_ASSERT(k->ne[3] == ne3);
  4677. GGML_ASSERT(v->ne[2] == kvne2);
  4678. GGML_ASSERT(v->ne[3] == ne3);
  4679. GGML_ASSERT(d->ne[2] == ne2);
  4680. GGML_ASSERT(d->ne[3] == ne3);
  4681. GGML_ASSERT(ne2 % kvne2 == 0);
  4682. bool is_node = false;
  4683. if (q->grad || k->grad || v->grad) {
  4684. // when using this operation (in backwards pass) these grads are set.
  4685. // we don't want to create (big) grad of our result, so is_node is false.
  4686. is_node = false;
  4687. }
  4688. // store gradients of q, k and v as continuous tensors concatenated in result.
  4689. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4690. const int64_t elem_q = ggml_nelements(q);
  4691. const int64_t elem_k = ggml_nelements(k);
  4692. const int64_t elem_v = ggml_nelements(v);
  4693. enum ggml_type result_type = GGML_TYPE_F32;
  4694. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4695. const size_t tsize = ggml_type_size(result_type);
  4696. const size_t offs_q = 0;
  4697. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4698. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4699. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4700. const size_t nelements = (end + tsize - 1)/tsize;
  4701. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4702. int32_t masked_i = masked ? 1 : 0;
  4703. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4704. result->op = GGML_OP_FLASH_ATTN_BACK;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src[0] = q;
  4707. result->src[1] = k;
  4708. result->src[2] = v;
  4709. result->src[3] = d;
  4710. return result;
  4711. }
  4712. // ggml_win_part
  4713. struct ggml_tensor * ggml_win_part(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. int w) {
  4717. GGML_ASSERT(a->ne[3] == 1);
  4718. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4719. bool is_node = false;
  4720. if (a->grad) {
  4721. GGML_ASSERT(false); // TODO: implement backward
  4722. is_node = true;
  4723. }
  4724. // padding
  4725. const int px = (w - a->ne[1]%w)%w;
  4726. const int py = (w - a->ne[2]%w)%w;
  4727. const int npx = (px + a->ne[1])/w;
  4728. const int npy = (py + a->ne[2])/w;
  4729. const int np = npx*npy;
  4730. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4731. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4732. int32_t params[] = { npx, npy, w };
  4733. ggml_set_op_params(result, params, sizeof(params));
  4734. result->op = GGML_OP_WIN_PART;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src[0] = a;
  4737. return result;
  4738. }
  4739. // ggml_win_unpart
  4740. struct ggml_tensor * ggml_win_unpart(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. int w0,
  4744. int h0,
  4745. int w) {
  4746. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4747. bool is_node = false;
  4748. if (a->grad) {
  4749. GGML_ASSERT(false); // TODO: implement backward
  4750. is_node = true;
  4751. }
  4752. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4753. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4754. int32_t params[] = { w };
  4755. ggml_set_op_params(result, params, sizeof(params));
  4756. result->op = GGML_OP_WIN_UNPART;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. // ggml_get_rel_pos
  4762. struct ggml_tensor * ggml_get_rel_pos(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a,
  4765. int qh,
  4766. int kh) {
  4767. GGML_ASSERT(qh == kh);
  4768. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4769. bool is_node = false;
  4770. if (a->grad) {
  4771. GGML_ASSERT(false); // TODO: implement backward
  4772. is_node = true;
  4773. }
  4774. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4775. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4776. result->op = GGML_OP_GET_REL_POS;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. return result;
  4780. }
  4781. // ggml_add_rel_pos
  4782. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * pw,
  4786. struct ggml_tensor * ph,
  4787. bool inplace) {
  4788. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4789. GGML_ASSERT(ggml_is_contiguous(a));
  4790. GGML_ASSERT(ggml_is_contiguous(pw));
  4791. GGML_ASSERT(ggml_is_contiguous(ph));
  4792. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4793. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4794. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4795. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4796. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4797. bool is_node = false;
  4798. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4799. is_node = true;
  4800. }
  4801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4802. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4803. result->op = GGML_OP_ADD_REL_POS;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. result->src[1] = pw;
  4807. result->src[2] = ph;
  4808. return result;
  4809. }
  4810. struct ggml_tensor * ggml_add_rel_pos(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. struct ggml_tensor * pw,
  4814. struct ggml_tensor * ph) {
  4815. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4816. }
  4817. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * pw,
  4821. struct ggml_tensor * ph) {
  4822. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4823. }
  4824. // gmml_unary
  4825. static struct ggml_tensor * ggml_unary_impl(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. enum ggml_unary_op op,
  4829. bool inplace) {
  4830. bool is_node = false;
  4831. if (!inplace && (a->grad)) {
  4832. is_node = true;
  4833. }
  4834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4835. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4836. result->op = GGML_OP_UNARY;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src[0] = a;
  4839. return result;
  4840. }
  4841. struct ggml_tensor * ggml_unary(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. enum ggml_unary_op op) {
  4845. return ggml_unary_impl(ctx, a, op, false);
  4846. }
  4847. struct ggml_tensor * ggml_unary_inplace(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. enum ggml_unary_op op) {
  4851. return ggml_unary_impl(ctx, a, op, true);
  4852. }
  4853. // ggml_map_unary
  4854. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. const ggml_unary_op_f32_t fun,
  4858. bool inplace) {
  4859. bool is_node = false;
  4860. if (!inplace && a->grad) {
  4861. is_node = true;
  4862. }
  4863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4864. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4865. result->op = GGML_OP_MAP_UNARY;
  4866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4867. result->src[0] = a;
  4868. return result;
  4869. }
  4870. struct ggml_tensor * ggml_map_unary_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. const ggml_unary_op_f32_t fun) {
  4874. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4875. }
  4876. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. const ggml_unary_op_f32_t fun) {
  4880. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4881. }
  4882. // ggml_map_binary
  4883. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b,
  4887. const ggml_binary_op_f32_t fun,
  4888. bool inplace) {
  4889. GGML_ASSERT(ggml_are_same_shape(a, b));
  4890. bool is_node = false;
  4891. if (!inplace && (a->grad || b->grad)) {
  4892. is_node = true;
  4893. }
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4896. result->op = GGML_OP_MAP_BINARY;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. result->src[1] = b;
  4900. return result;
  4901. }
  4902. struct ggml_tensor * ggml_map_binary_f32(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * b,
  4906. const ggml_binary_op_f32_t fun) {
  4907. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4908. }
  4909. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. struct ggml_tensor * b,
  4913. const ggml_binary_op_f32_t fun) {
  4914. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4915. }
  4916. // ggml_map_custom1_f32
  4917. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. const ggml_custom1_op_f32_t fun,
  4921. bool inplace) {
  4922. bool is_node = false;
  4923. if (!inplace && a->grad) {
  4924. is_node = true;
  4925. }
  4926. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4927. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4928. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4930. result->src[0] = a;
  4931. return result;
  4932. }
  4933. struct ggml_tensor * ggml_map_custom1_f32(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. const ggml_custom1_op_f32_t fun) {
  4937. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4938. }
  4939. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. const ggml_custom1_op_f32_t fun) {
  4943. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4944. }
  4945. // ggml_map_custom2_f32
  4946. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. struct ggml_tensor * b,
  4950. const ggml_custom2_op_f32_t fun,
  4951. bool inplace) {
  4952. bool is_node = false;
  4953. if (!inplace && (a->grad || b->grad)) {
  4954. is_node = true;
  4955. }
  4956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4957. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4958. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4960. result->src[0] = a;
  4961. result->src[1] = b;
  4962. return result;
  4963. }
  4964. struct ggml_tensor * ggml_map_custom2_f32(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b,
  4968. const ggml_custom2_op_f32_t fun) {
  4969. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4970. }
  4971. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. struct ggml_tensor * b,
  4975. const ggml_custom2_op_f32_t fun) {
  4976. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4977. }
  4978. // ggml_map_custom3_f32
  4979. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. struct ggml_tensor * b,
  4983. struct ggml_tensor * c,
  4984. const ggml_custom3_op_f32_t fun,
  4985. bool inplace) {
  4986. bool is_node = false;
  4987. if (!inplace && (a->grad || b->grad || c->grad)) {
  4988. is_node = true;
  4989. }
  4990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4991. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4992. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src[0] = a;
  4995. result->src[1] = b;
  4996. result->src[2] = c;
  4997. return result;
  4998. }
  4999. struct ggml_tensor * ggml_map_custom3_f32(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. struct ggml_tensor * c,
  5004. const ggml_custom3_op_f32_t fun) {
  5005. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5006. }
  5007. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. struct ggml_tensor * c,
  5012. const ggml_custom3_op_f32_t fun) {
  5013. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5014. }
  5015. // ggml_map_custom1
  5016. struct ggml_map_custom1_op_params {
  5017. ggml_custom1_op_t fun;
  5018. int n_tasks;
  5019. void * userdata;
  5020. };
  5021. static struct ggml_tensor * ggml_map_custom1_impl(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. const ggml_custom1_op_t fun,
  5025. int n_tasks,
  5026. void * userdata,
  5027. bool inplace) {
  5028. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5029. bool is_node = false;
  5030. if (!inplace && a->grad) {
  5031. is_node = true;
  5032. }
  5033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. struct ggml_map_custom1_op_params params = {
  5035. /*.fun =*/ fun,
  5036. /*.n_tasks =*/ n_tasks,
  5037. /*.userdata =*/ userdata
  5038. };
  5039. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5040. result->op = GGML_OP_MAP_CUSTOM1;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = a;
  5043. return result;
  5044. }
  5045. struct ggml_tensor * ggml_map_custom1(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. const ggml_custom1_op_t fun,
  5049. int n_tasks,
  5050. void * userdata) {
  5051. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5052. }
  5053. struct ggml_tensor * ggml_map_custom1_inplace(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. const ggml_custom1_op_t fun,
  5057. int n_tasks,
  5058. void * userdata) {
  5059. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5060. }
  5061. // ggml_map_custom2
  5062. struct ggml_map_custom2_op_params {
  5063. ggml_custom2_op_t fun;
  5064. int n_tasks;
  5065. void * userdata;
  5066. };
  5067. static struct ggml_tensor * ggml_map_custom2_impl(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. struct ggml_tensor * b,
  5071. const ggml_custom2_op_t fun,
  5072. int n_tasks,
  5073. void * userdata,
  5074. bool inplace) {
  5075. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5076. bool is_node = false;
  5077. if (!inplace && (a->grad || b->grad)) {
  5078. is_node = true;
  5079. }
  5080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5081. struct ggml_map_custom2_op_params params = {
  5082. /*.fun =*/ fun,
  5083. /*.n_tasks =*/ n_tasks,
  5084. /*.userdata =*/ userdata
  5085. };
  5086. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5087. result->op = GGML_OP_MAP_CUSTOM2;
  5088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5089. result->src[0] = a;
  5090. result->src[1] = b;
  5091. return result;
  5092. }
  5093. struct ggml_tensor * ggml_map_custom2(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b,
  5097. const ggml_custom2_op_t fun,
  5098. int n_tasks,
  5099. void * userdata) {
  5100. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5101. }
  5102. struct ggml_tensor * ggml_map_custom2_inplace(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b,
  5106. const ggml_custom2_op_t fun,
  5107. int n_tasks,
  5108. void * userdata) {
  5109. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5110. }
  5111. // ggml_map_custom3
  5112. struct ggml_map_custom3_op_params {
  5113. ggml_custom3_op_t fun;
  5114. int n_tasks;
  5115. void * userdata;
  5116. };
  5117. static struct ggml_tensor * ggml_map_custom3_impl(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. struct ggml_tensor * b,
  5121. struct ggml_tensor * c,
  5122. const ggml_custom3_op_t fun,
  5123. int n_tasks,
  5124. void * userdata,
  5125. bool inplace) {
  5126. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5127. bool is_node = false;
  5128. if (!inplace && (a->grad || b->grad || c->grad)) {
  5129. is_node = true;
  5130. }
  5131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5132. struct ggml_map_custom3_op_params params = {
  5133. /*.fun =*/ fun,
  5134. /*.n_tasks =*/ n_tasks,
  5135. /*.userdata =*/ userdata
  5136. };
  5137. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5138. result->op = GGML_OP_MAP_CUSTOM3;
  5139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5140. result->src[0] = a;
  5141. result->src[1] = b;
  5142. result->src[2] = c;
  5143. return result;
  5144. }
  5145. struct ggml_tensor * ggml_map_custom3(
  5146. struct ggml_context * ctx,
  5147. struct ggml_tensor * a,
  5148. struct ggml_tensor * b,
  5149. struct ggml_tensor * c,
  5150. const ggml_custom3_op_t fun,
  5151. int n_tasks,
  5152. void * userdata) {
  5153. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5154. }
  5155. struct ggml_tensor * ggml_map_custom3_inplace(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b,
  5159. struct ggml_tensor * c,
  5160. const ggml_custom3_op_t fun,
  5161. int n_tasks,
  5162. void * userdata) {
  5163. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5164. }
  5165. // ggml_cross_entropy_loss
  5166. struct ggml_tensor * ggml_cross_entropy_loss(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. struct ggml_tensor * b) {
  5170. GGML_ASSERT(ggml_are_same_shape(a, b));
  5171. bool is_node = false;
  5172. if (a->grad || b->grad) {
  5173. is_node = true;
  5174. }
  5175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5176. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5178. result->src[0] = a;
  5179. result->src[1] = b;
  5180. return result;
  5181. }
  5182. // ggml_cross_entropy_loss_back
  5183. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. struct ggml_tensor * b,
  5187. struct ggml_tensor * c) {
  5188. GGML_ASSERT(ggml_are_same_shape(a, b));
  5189. GGML_ASSERT(ggml_is_scalar(c));
  5190. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5191. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5192. result->grad = NULL;
  5193. result->src[0] = a;
  5194. result->src[1] = b;
  5195. result->src[2] = c;
  5196. return result;
  5197. }
  5198. ////////////////////////////////////////////////////////////////////////////////
  5199. void ggml_set_param(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * tensor) {
  5202. tensor->is_param = true;
  5203. GGML_ASSERT(tensor->grad == NULL);
  5204. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5205. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5206. }
  5207. // ggml_compute_forward_dup
  5208. static void ggml_compute_forward_dup_same_cont(
  5209. const struct ggml_compute_params * params,
  5210. const struct ggml_tensor * src0,
  5211. struct ggml_tensor * dst) {
  5212. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5213. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5214. GGML_ASSERT(src0->type == dst->type);
  5215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5216. return;
  5217. }
  5218. const size_t nb00 = src0->nb[0];
  5219. const size_t nb0 = dst->nb[0];
  5220. const int ith = params->ith; // thread index
  5221. const int nth = params->nth; // number of threads
  5222. // parallelize by elements
  5223. const int ne = ggml_nelements(dst);
  5224. const int dr = (ne + nth - 1) / nth;
  5225. const int ie0 = dr * ith;
  5226. const int ie1 = MIN(ie0 + dr, ne);
  5227. if (ie0 < ie1) {
  5228. memcpy(
  5229. ((char *) dst->data + ie0*nb0),
  5230. ((char *) src0->data + ie0*nb00),
  5231. (ie1 - ie0) * ggml_type_size(src0->type));
  5232. }
  5233. }
  5234. static void ggml_compute_forward_dup_f16(
  5235. const struct ggml_compute_params * params,
  5236. const struct ggml_tensor * src0,
  5237. struct ggml_tensor * dst) {
  5238. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5240. return;
  5241. }
  5242. GGML_TENSOR_UNARY_OP_LOCALS
  5243. const int ith = params->ith; // thread index
  5244. const int nth = params->nth; // number of threads
  5245. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5246. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5247. return;
  5248. }
  5249. // parallelize by rows
  5250. const int nr = ne01;
  5251. // number of rows per thread
  5252. const int dr = (nr + nth - 1) / nth;
  5253. // row range for this thread
  5254. const int ir0 = dr * ith;
  5255. const int ir1 = MIN(ir0 + dr, nr);
  5256. if (src0->type == dst->type &&
  5257. ne00 == ne0 &&
  5258. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5259. // copy by rows
  5260. const size_t rs = ne00*nb00;
  5261. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5262. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5263. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5264. memcpy(
  5265. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5266. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5267. rs);
  5268. }
  5269. }
  5270. }
  5271. return;
  5272. }
  5273. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5274. if (ggml_is_contiguous(dst)) {
  5275. if (nb00 == sizeof(ggml_fp16_t)) {
  5276. if (dst->type == GGML_TYPE_F16) {
  5277. size_t id = 0;
  5278. const size_t rs = ne00 * nb00;
  5279. char * dst_ptr = (char *) dst->data;
  5280. for (int i03 = 0; i03 < ne03; i03++) {
  5281. for (int i02 = 0; i02 < ne02; i02++) {
  5282. id += rs * ir0;
  5283. for (int i01 = ir0; i01 < ir1; i01++) {
  5284. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5285. memcpy(dst_ptr + id, src0_ptr, rs);
  5286. id += rs;
  5287. }
  5288. id += rs * (ne01 - ir1);
  5289. }
  5290. }
  5291. } else if (dst->type == GGML_TYPE_F32) {
  5292. size_t id = 0;
  5293. float * dst_ptr = (float *) dst->data;
  5294. for (int i03 = 0; i03 < ne03; i03++) {
  5295. for (int i02 = 0; i02 < ne02; i02++) {
  5296. id += ne00 * ir0;
  5297. for (int i01 = ir0; i01 < ir1; i01++) {
  5298. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5299. for (int i00 = 0; i00 < ne00; i00++) {
  5300. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5301. id++;
  5302. }
  5303. }
  5304. id += ne00 * (ne01 - ir1);
  5305. }
  5306. }
  5307. } else if (type_traits[dst->type].from_float) {
  5308. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5309. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5310. size_t id = 0;
  5311. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5312. char * dst_ptr = (char *) dst->data;
  5313. for (int i03 = 0; i03 < ne03; i03++) {
  5314. for (int i02 = 0; i02 < ne02; i02++) {
  5315. id += rs * ir0;
  5316. for (int i01 = ir0; i01 < ir1; i01++) {
  5317. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5318. for (int i00 = 0; i00 < ne00; i00++) {
  5319. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5320. }
  5321. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5322. id += rs;
  5323. }
  5324. id += rs * (ne01 - ir1);
  5325. }
  5326. }
  5327. } else {
  5328. GGML_ASSERT(false); // TODO: implement
  5329. }
  5330. } else {
  5331. //printf("%s: this is not optimal - fix me\n", __func__);
  5332. if (dst->type == GGML_TYPE_F32) {
  5333. size_t id = 0;
  5334. float * dst_ptr = (float *) dst->data;
  5335. for (int i03 = 0; i03 < ne03; i03++) {
  5336. for (int i02 = 0; i02 < ne02; i02++) {
  5337. id += ne00 * ir0;
  5338. for (int i01 = ir0; i01 < ir1; i01++) {
  5339. for (int i00 = 0; i00 < ne00; i00++) {
  5340. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5341. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5342. id++;
  5343. }
  5344. }
  5345. id += ne00 * (ne01 - ir1);
  5346. }
  5347. }
  5348. } else if (dst->type == GGML_TYPE_F16) {
  5349. size_t id = 0;
  5350. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5351. for (int i03 = 0; i03 < ne03; i03++) {
  5352. for (int i02 = 0; i02 < ne02; i02++) {
  5353. id += ne00 * ir0;
  5354. for (int i01 = ir0; i01 < ir1; i01++) {
  5355. for (int i00 = 0; i00 < ne00; i00++) {
  5356. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5357. dst_ptr[id] = *src0_ptr;
  5358. id++;
  5359. }
  5360. }
  5361. id += ne00 * (ne01 - ir1);
  5362. }
  5363. }
  5364. } else {
  5365. GGML_ASSERT(false); // TODO: implement
  5366. }
  5367. }
  5368. return;
  5369. }
  5370. // dst counters
  5371. int64_t i10 = 0;
  5372. int64_t i11 = 0;
  5373. int64_t i12 = 0;
  5374. int64_t i13 = 0;
  5375. if (dst->type == GGML_TYPE_F16) {
  5376. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5377. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5378. i10 += ne00 * ir0;
  5379. while (i10 >= ne0) {
  5380. i10 -= ne0;
  5381. if (++i11 == ne1) {
  5382. i11 = 0;
  5383. if (++i12 == ne2) {
  5384. i12 = 0;
  5385. if (++i13 == ne3) {
  5386. i13 = 0;
  5387. }
  5388. }
  5389. }
  5390. }
  5391. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5392. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5393. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5394. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5395. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5396. if (++i10 == ne00) {
  5397. i10 = 0;
  5398. if (++i11 == ne01) {
  5399. i11 = 0;
  5400. if (++i12 == ne02) {
  5401. i12 = 0;
  5402. if (++i13 == ne03) {
  5403. i13 = 0;
  5404. }
  5405. }
  5406. }
  5407. }
  5408. }
  5409. }
  5410. i10 += ne00 * (ne01 - ir1);
  5411. while (i10 >= ne0) {
  5412. i10 -= ne0;
  5413. if (++i11 == ne1) {
  5414. i11 = 0;
  5415. if (++i12 == ne2) {
  5416. i12 = 0;
  5417. if (++i13 == ne3) {
  5418. i13 = 0;
  5419. }
  5420. }
  5421. }
  5422. }
  5423. }
  5424. }
  5425. } else if (dst->type == GGML_TYPE_F32) {
  5426. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5427. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5428. i10 += ne00 * ir0;
  5429. while (i10 >= ne0) {
  5430. i10 -= ne0;
  5431. if (++i11 == ne1) {
  5432. i11 = 0;
  5433. if (++i12 == ne2) {
  5434. i12 = 0;
  5435. if (++i13 == ne3) {
  5436. i13 = 0;
  5437. }
  5438. }
  5439. }
  5440. }
  5441. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5442. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5443. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5444. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5445. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5446. if (++i10 == ne0) {
  5447. i10 = 0;
  5448. if (++i11 == ne1) {
  5449. i11 = 0;
  5450. if (++i12 == ne2) {
  5451. i12 = 0;
  5452. if (++i13 == ne3) {
  5453. i13 = 0;
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. }
  5460. i10 += ne00 * (ne01 - ir1);
  5461. while (i10 >= ne0) {
  5462. i10 -= ne0;
  5463. if (++i11 == ne1) {
  5464. i11 = 0;
  5465. if (++i12 == ne2) {
  5466. i12 = 0;
  5467. if (++i13 == ne3) {
  5468. i13 = 0;
  5469. }
  5470. }
  5471. }
  5472. }
  5473. }
  5474. }
  5475. } else {
  5476. GGML_ASSERT(false); // TODO: implement
  5477. }
  5478. }
  5479. static void ggml_compute_forward_dup_f32(
  5480. const struct ggml_compute_params * params,
  5481. const struct ggml_tensor * src0,
  5482. struct ggml_tensor * dst) {
  5483. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5485. return;
  5486. }
  5487. GGML_TENSOR_UNARY_OP_LOCALS
  5488. const int ith = params->ith; // thread index
  5489. const int nth = params->nth; // number of threads
  5490. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5491. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5492. return;
  5493. }
  5494. // parallelize by rows
  5495. const int nr = ne01;
  5496. // number of rows per thread
  5497. const int dr = (nr + nth - 1) / nth;
  5498. // row range for this thread
  5499. const int ir0 = dr * ith;
  5500. const int ir1 = MIN(ir0 + dr, nr);
  5501. if (src0->type == dst->type &&
  5502. ne00 == ne0 &&
  5503. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5504. // copy by rows
  5505. const size_t rs = ne00*nb00;
  5506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5508. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5509. memcpy(
  5510. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5511. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5512. rs);
  5513. }
  5514. }
  5515. }
  5516. return;
  5517. }
  5518. if (ggml_is_contiguous(dst)) {
  5519. // TODO: simplify
  5520. if (nb00 == sizeof(float)) {
  5521. if (dst->type == GGML_TYPE_F32) {
  5522. size_t id = 0;
  5523. const size_t rs = ne00 * nb00;
  5524. char * dst_ptr = (char *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += rs * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5530. memcpy(dst_ptr + id, src0_ptr, rs);
  5531. id += rs;
  5532. }
  5533. id += rs * (ne01 - ir1);
  5534. }
  5535. }
  5536. } else if (type_traits[dst->type].from_float) {
  5537. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5538. size_t id = 0;
  5539. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5540. char * dst_ptr = (char *) dst->data;
  5541. for (int i03 = 0; i03 < ne03; i03++) {
  5542. for (int i02 = 0; i02 < ne02; i02++) {
  5543. id += rs * ir0;
  5544. for (int i01 = ir0; i01 < ir1; i01++) {
  5545. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5546. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5547. id += rs;
  5548. }
  5549. id += rs * (ne01 - ir1);
  5550. }
  5551. }
  5552. } else {
  5553. GGML_ASSERT(false); // TODO: implement
  5554. }
  5555. } else {
  5556. //printf("%s: this is not optimal - fix me\n", __func__);
  5557. if (dst->type == GGML_TYPE_F32) {
  5558. size_t id = 0;
  5559. float * dst_ptr = (float *) dst->data;
  5560. for (int i03 = 0; i03 < ne03; i03++) {
  5561. for (int i02 = 0; i02 < ne02; i02++) {
  5562. id += ne00 * ir0;
  5563. for (int i01 = ir0; i01 < ir1; i01++) {
  5564. for (int i00 = 0; i00 < ne00; i00++) {
  5565. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5566. dst_ptr[id] = *src0_ptr;
  5567. id++;
  5568. }
  5569. }
  5570. id += ne00 * (ne01 - ir1);
  5571. }
  5572. }
  5573. } else if (dst->type == GGML_TYPE_F16) {
  5574. size_t id = 0;
  5575. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5576. for (int i03 = 0; i03 < ne03; i03++) {
  5577. for (int i02 = 0; i02 < ne02; i02++) {
  5578. id += ne00 * ir0;
  5579. for (int i01 = ir0; i01 < ir1; i01++) {
  5580. for (int i00 = 0; i00 < ne00; i00++) {
  5581. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5582. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5583. id++;
  5584. }
  5585. }
  5586. id += ne00 * (ne01 - ir1);
  5587. }
  5588. }
  5589. } else {
  5590. GGML_ASSERT(false); // TODO: implement
  5591. }
  5592. }
  5593. return;
  5594. }
  5595. // dst counters
  5596. int64_t i10 = 0;
  5597. int64_t i11 = 0;
  5598. int64_t i12 = 0;
  5599. int64_t i13 = 0;
  5600. if (dst->type == GGML_TYPE_F32) {
  5601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5603. i10 += ne00 * ir0;
  5604. while (i10 >= ne0) {
  5605. i10 -= ne0;
  5606. if (++i11 == ne1) {
  5607. i11 = 0;
  5608. if (++i12 == ne2) {
  5609. i12 = 0;
  5610. if (++i13 == ne3) {
  5611. i13 = 0;
  5612. }
  5613. }
  5614. }
  5615. }
  5616. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5617. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5618. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5619. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5620. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5621. if (++i10 == ne0) {
  5622. i10 = 0;
  5623. if (++i11 == ne1) {
  5624. i11 = 0;
  5625. if (++i12 == ne2) {
  5626. i12 = 0;
  5627. if (++i13 == ne3) {
  5628. i13 = 0;
  5629. }
  5630. }
  5631. }
  5632. }
  5633. }
  5634. }
  5635. i10 += ne00 * (ne01 - ir1);
  5636. while (i10 >= ne0) {
  5637. i10 -= ne0;
  5638. if (++i11 == ne1) {
  5639. i11 = 0;
  5640. if (++i12 == ne2) {
  5641. i12 = 0;
  5642. if (++i13 == ne3) {
  5643. i13 = 0;
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. } else if (dst->type == GGML_TYPE_F16) {
  5651. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5652. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5653. i10 += ne00 * ir0;
  5654. while (i10 >= ne0) {
  5655. i10 -= ne0;
  5656. if (++i11 == ne1) {
  5657. i11 = 0;
  5658. if (++i12 == ne2) {
  5659. i12 = 0;
  5660. if (++i13 == ne3) {
  5661. i13 = 0;
  5662. }
  5663. }
  5664. }
  5665. }
  5666. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5667. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5668. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5669. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5670. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5671. if (++i10 == ne0) {
  5672. i10 = 0;
  5673. if (++i11 == ne1) {
  5674. i11 = 0;
  5675. if (++i12 == ne2) {
  5676. i12 = 0;
  5677. if (++i13 == ne3) {
  5678. i13 = 0;
  5679. }
  5680. }
  5681. }
  5682. }
  5683. }
  5684. }
  5685. i10 += ne00 * (ne01 - ir1);
  5686. while (i10 >= ne0) {
  5687. i10 -= ne0;
  5688. if (++i11 == ne1) {
  5689. i11 = 0;
  5690. if (++i12 == ne2) {
  5691. i12 = 0;
  5692. if (++i13 == ne3) {
  5693. i13 = 0;
  5694. }
  5695. }
  5696. }
  5697. }
  5698. }
  5699. }
  5700. } else {
  5701. GGML_ASSERT(false); // TODO: implement
  5702. }
  5703. }
  5704. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5705. static void ggml_compute_forward_dup_bytes(
  5706. const struct ggml_compute_params * params,
  5707. const struct ggml_tensor * src0,
  5708. struct ggml_tensor * dst) {
  5709. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5710. GGML_ASSERT(src0->type == dst->type);
  5711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5712. return;
  5713. }
  5714. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5715. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5716. return;
  5717. }
  5718. GGML_TENSOR_UNARY_OP_LOCALS;
  5719. const size_t type_size = ggml_type_size(src0->type);
  5720. const int ith = params->ith; // thread index
  5721. const int nth = params->nth; // number of threads
  5722. // parallelize by rows
  5723. const int nr = ne01;
  5724. // number of rows per thread
  5725. const int dr = (nr + nth - 1) / nth;
  5726. // row range for this thread
  5727. const int ir0 = dr * ith;
  5728. const int ir1 = MIN(ir0 + dr, nr);
  5729. if (src0->type == dst->type &&
  5730. ne00 == ne0 &&
  5731. nb00 == type_size && nb0 == type_size) {
  5732. // copy by rows
  5733. const size_t rs = ne00 * type_size;
  5734. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5735. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5736. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5737. memcpy(
  5738. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5739. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5740. rs);
  5741. }
  5742. }
  5743. }
  5744. return;
  5745. }
  5746. if (ggml_is_contiguous(dst)) {
  5747. size_t id = 0;
  5748. char * dst_ptr = (char *) dst->data;
  5749. const size_t rs = ne00 * type_size;
  5750. if (nb00 == type_size) {
  5751. // src0 is contigous on first dimension, copy by rows
  5752. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5753. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5754. id += rs * ir0;
  5755. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5756. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5757. memcpy(dst_ptr + id, src0_ptr, rs);
  5758. id += rs;
  5759. }
  5760. id += rs * (ne01 - ir1);
  5761. }
  5762. }
  5763. } else {
  5764. //printf("%s: this is not optimal - fix me\n", __func__);
  5765. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5766. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5767. id += rs * ir0;
  5768. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5769. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5770. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5771. memcpy(dst_ptr + id, src0_ptr, type_size);
  5772. id += type_size;
  5773. }
  5774. }
  5775. id += rs * (ne01 - ir1);
  5776. }
  5777. }
  5778. }
  5779. return;
  5780. }
  5781. // dst counters
  5782. int64_t i10 = 0;
  5783. int64_t i11 = 0;
  5784. int64_t i12 = 0;
  5785. int64_t i13 = 0;
  5786. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5787. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5788. i10 += ne00 * ir0;
  5789. while (i10 >= ne0) {
  5790. i10 -= ne0;
  5791. if (++i11 == ne1) {
  5792. i11 = 0;
  5793. if (++i12 == ne2) {
  5794. i12 = 0;
  5795. if (++i13 == ne3) {
  5796. i13 = 0;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5802. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5803. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5804. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5805. memcpy(dst_ptr, src0_ptr, type_size);
  5806. if (++i10 == ne0) {
  5807. i10 = 0;
  5808. if (++i11 == ne1) {
  5809. i11 = 0;
  5810. if (++i12 == ne2) {
  5811. i12 = 0;
  5812. if (++i13 == ne3) {
  5813. i13 = 0;
  5814. }
  5815. }
  5816. }
  5817. }
  5818. }
  5819. }
  5820. i10 += ne00 * (ne01 - ir1);
  5821. while (i10 >= ne0) {
  5822. i10 -= ne0;
  5823. if (++i11 == ne1) {
  5824. i11 = 0;
  5825. if (++i12 == ne2) {
  5826. i12 = 0;
  5827. if (++i13 == ne3) {
  5828. i13 = 0;
  5829. }
  5830. }
  5831. }
  5832. }
  5833. }
  5834. }
  5835. }
  5836. static void ggml_compute_forward_dup(
  5837. const struct ggml_compute_params * params,
  5838. const struct ggml_tensor * src0,
  5839. struct ggml_tensor * dst) {
  5840. if (src0->type == dst->type) {
  5841. ggml_compute_forward_dup_bytes(params, src0, dst);
  5842. return;
  5843. }
  5844. switch (src0->type) {
  5845. case GGML_TYPE_F16:
  5846. {
  5847. ggml_compute_forward_dup_f16(params, src0, dst);
  5848. } break;
  5849. case GGML_TYPE_F32:
  5850. {
  5851. ggml_compute_forward_dup_f32(params, src0, dst);
  5852. } break;
  5853. default:
  5854. {
  5855. GGML_ASSERT(false);
  5856. } break;
  5857. }
  5858. }
  5859. // ggml_compute_forward_add
  5860. static void ggml_compute_forward_add_f32(
  5861. const struct ggml_compute_params * params,
  5862. const struct ggml_tensor * src0,
  5863. const struct ggml_tensor * src1,
  5864. struct ggml_tensor * dst) {
  5865. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5867. return;
  5868. }
  5869. const int ith = params->ith;
  5870. const int nth = params->nth;
  5871. const int nr = ggml_nrows(src0);
  5872. GGML_TENSOR_BINARY_OP_LOCALS
  5873. GGML_ASSERT( nb0 == sizeof(float));
  5874. GGML_ASSERT(nb00 == sizeof(float));
  5875. // rows per thread
  5876. const int dr = (nr + nth - 1)/nth;
  5877. // row range for this thread
  5878. const int ir0 = dr*ith;
  5879. const int ir1 = MIN(ir0 + dr, nr);
  5880. if (nb10 == sizeof(float)) {
  5881. for (int ir = ir0; ir < ir1; ++ir) {
  5882. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5883. const int64_t i03 = ir/(ne02*ne01);
  5884. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5885. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5886. const int64_t i13 = i03 % ne13;
  5887. const int64_t i12 = i02 % ne12;
  5888. const int64_t i11 = i01 % ne11;
  5889. const int64_t nr0 = ne00 / ne10;
  5890. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5891. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5892. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5893. for (int64_t r = 0; r < nr0; ++r) {
  5894. #ifdef GGML_USE_ACCELERATE
  5895. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5896. #else
  5897. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5898. #endif
  5899. }
  5900. }
  5901. } else {
  5902. // src1 is not contiguous
  5903. for (int ir = ir0; ir < ir1; ++ir) {
  5904. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5905. const int64_t i03 = ir/(ne02*ne01);
  5906. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5907. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5908. const int64_t i13 = i03 % ne13;
  5909. const int64_t i12 = i02 % ne12;
  5910. const int64_t i11 = i01 % ne11;
  5911. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5912. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5913. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5914. const int64_t i10 = i0 % ne10;
  5915. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5916. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5917. }
  5918. }
  5919. }
  5920. }
  5921. static void ggml_compute_forward_add_f16_f32(
  5922. const struct ggml_compute_params * params,
  5923. const struct ggml_tensor * src0,
  5924. const struct ggml_tensor * src1,
  5925. struct ggml_tensor * dst) {
  5926. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5928. return;
  5929. }
  5930. const int ith = params->ith;
  5931. const int nth = params->nth;
  5932. const int nr = ggml_nrows(src0);
  5933. GGML_TENSOR_BINARY_OP_LOCALS
  5934. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5935. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5936. if (dst->type == GGML_TYPE_F32) {
  5937. GGML_ASSERT( nb0 == sizeof(float));
  5938. }
  5939. else {
  5940. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5941. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5942. }
  5943. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5944. // rows per thread
  5945. const int dr = (nr + nth - 1)/nth;
  5946. // row range for this thread
  5947. const int ir0 = dr*ith;
  5948. const int ir1 = MIN(ir0 + dr, nr);
  5949. if (nb10 == sizeof(float)) {
  5950. if (dst->type == GGML_TYPE_F16) {
  5951. for (int ir = ir0; ir < ir1; ++ir) {
  5952. // src0, src1 and dst are same shape => same indices
  5953. const int i3 = ir/(ne2*ne1);
  5954. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5955. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5956. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5957. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5958. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5959. for (int i = 0; i < ne0; i++) {
  5960. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5961. }
  5962. }
  5963. } else {
  5964. for (int ir = ir0; ir < ir1; ++ir) {
  5965. // src0, src1 and dst are same shape => same indices
  5966. const int i3 = ir/(ne2*ne1);
  5967. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5968. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5969. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5970. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5971. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5972. for (int i = 0; i < ne0; i++) {
  5973. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5974. }
  5975. }
  5976. }
  5977. }
  5978. else {
  5979. // src1 is not contiguous
  5980. GGML_ASSERT(false);
  5981. }
  5982. }
  5983. static void ggml_compute_forward_add_f16_f16(
  5984. const struct ggml_compute_params * params,
  5985. const struct ggml_tensor * src0,
  5986. const struct ggml_tensor * src1,
  5987. struct ggml_tensor * dst) {
  5988. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5990. return;
  5991. }
  5992. const int ith = params->ith;
  5993. const int nth = params->nth;
  5994. const int nr = ggml_nrows(src0);
  5995. GGML_TENSOR_BINARY_OP_LOCALS
  5996. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5997. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5998. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5999. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6000. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6001. // rows per thread
  6002. const int dr = (nr + nth - 1)/nth;
  6003. // row range for this thread
  6004. const int ir0 = dr*ith;
  6005. const int ir1 = MIN(ir0 + dr, nr);
  6006. if (nb10 == sizeof(ggml_fp16_t)) {
  6007. for (int ir = ir0; ir < ir1; ++ir) {
  6008. // src0, src1 and dst are same shape => same indices
  6009. const int i3 = ir/(ne2*ne1);
  6010. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6011. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6012. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6013. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6014. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6015. for (int i = 0; i < ne0; i++) {
  6016. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6017. }
  6018. }
  6019. }
  6020. else {
  6021. // src1 is not contiguous
  6022. GGML_ASSERT(false);
  6023. }
  6024. }
  6025. static void ggml_compute_forward_add_q_f32(
  6026. const struct ggml_compute_params * params,
  6027. const struct ggml_tensor * src0,
  6028. const struct ggml_tensor * src1,
  6029. struct ggml_tensor * dst) {
  6030. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6032. return;
  6033. }
  6034. const int nr = ggml_nrows(src0);
  6035. GGML_TENSOR_BINARY_OP_LOCALS
  6036. const int ith = params->ith;
  6037. const int nth = params->nth;
  6038. const enum ggml_type type = src0->type;
  6039. const enum ggml_type dtype = dst->type;
  6040. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6041. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6042. // we don't support permuted src0 or src1
  6043. GGML_ASSERT(nb00 == ggml_type_size(type));
  6044. GGML_ASSERT(nb10 == sizeof(float));
  6045. // dst cannot be transposed or permuted
  6046. GGML_ASSERT(nb0 <= nb1);
  6047. GGML_ASSERT(nb1 <= nb2);
  6048. GGML_ASSERT(nb2 <= nb3);
  6049. GGML_ASSERT(ggml_is_quantized(src0->type));
  6050. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6051. // rows per thread
  6052. const int dr = (nr + nth - 1)/nth;
  6053. // row range for this thread
  6054. const int ir0 = dr*ith;
  6055. const int ir1 = MIN(ir0 + dr, nr);
  6056. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6057. for (int ir = ir0; ir < ir1; ++ir) {
  6058. // src0 indices
  6059. const int i03 = ir/(ne02*ne01);
  6060. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6061. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6062. // src1 and dst are same shape as src0 => same indices
  6063. const int i13 = i03;
  6064. const int i12 = i02;
  6065. const int i11 = i01;
  6066. const int i3 = i03;
  6067. const int i2 = i02;
  6068. const int i1 = i01;
  6069. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6070. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6071. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6072. assert(ne00 % 32 == 0);
  6073. // unquantize row from src0 to temp buffer
  6074. dequantize_row_q(src0_row, wdata, ne00);
  6075. // add src1
  6076. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6077. // quantize row to dst
  6078. if (quantize_row_q != NULL) {
  6079. quantize_row_q(wdata, dst_row, ne00);
  6080. } else {
  6081. memcpy(dst_row, wdata, ne0*nb0);
  6082. }
  6083. }
  6084. }
  6085. static void ggml_compute_forward_add(
  6086. const struct ggml_compute_params * params,
  6087. const struct ggml_tensor * src0,
  6088. const struct ggml_tensor * src1,
  6089. struct ggml_tensor * dst) {
  6090. switch (src0->type) {
  6091. case GGML_TYPE_F32:
  6092. {
  6093. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6094. } break;
  6095. case GGML_TYPE_F16:
  6096. {
  6097. if (src1->type == GGML_TYPE_F16) {
  6098. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6099. }
  6100. else if (src1->type == GGML_TYPE_F32) {
  6101. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6102. }
  6103. else {
  6104. GGML_ASSERT(false);
  6105. }
  6106. } break;
  6107. case GGML_TYPE_Q4_0:
  6108. case GGML_TYPE_Q4_1:
  6109. case GGML_TYPE_Q5_0:
  6110. case GGML_TYPE_Q5_1:
  6111. case GGML_TYPE_Q8_0:
  6112. case GGML_TYPE_Q2_K:
  6113. case GGML_TYPE_Q3_K:
  6114. case GGML_TYPE_Q4_K:
  6115. case GGML_TYPE_Q5_K:
  6116. case GGML_TYPE_Q6_K:
  6117. case GGML_TYPE_IQ2_XXS:
  6118. case GGML_TYPE_IQ2_XS:
  6119. {
  6120. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6121. } break;
  6122. default:
  6123. {
  6124. GGML_ASSERT(false);
  6125. } break;
  6126. }
  6127. }
  6128. // ggml_compute_forward_add1
  6129. static void ggml_compute_forward_add1_f32(
  6130. const struct ggml_compute_params * params,
  6131. const struct ggml_tensor * src0,
  6132. const struct ggml_tensor * src1,
  6133. struct ggml_tensor * dst) {
  6134. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6135. GGML_ASSERT(ggml_is_scalar(src1));
  6136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6137. return;
  6138. }
  6139. const int ith = params->ith;
  6140. const int nth = params->nth;
  6141. const int nr = ggml_nrows(src0);
  6142. GGML_TENSOR_UNARY_OP_LOCALS
  6143. GGML_ASSERT( nb0 == sizeof(float));
  6144. GGML_ASSERT(nb00 == sizeof(float));
  6145. // rows per thread
  6146. const int dr = (nr + nth - 1)/nth;
  6147. // row range for this thread
  6148. const int ir0 = dr*ith;
  6149. const int ir1 = MIN(ir0 + dr, nr);
  6150. for (int ir = ir0; ir < ir1; ++ir) {
  6151. // src0 and dst are same shape => same indices
  6152. const int i3 = ir/(ne2*ne1);
  6153. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6154. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6155. #ifdef GGML_USE_ACCELERATE
  6156. UNUSED(ggml_vec_add1_f32);
  6157. vDSP_vadd(
  6158. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6159. (float *) ((char *) src1->data), 0,
  6160. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6161. ne0);
  6162. #else
  6163. ggml_vec_add1_f32(ne0,
  6164. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6165. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6166. *(float *) src1->data);
  6167. #endif
  6168. }
  6169. }
  6170. static void ggml_compute_forward_add1_f16_f32(
  6171. const struct ggml_compute_params * params,
  6172. const struct ggml_tensor * src0,
  6173. const struct ggml_tensor * src1,
  6174. struct ggml_tensor * dst) {
  6175. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6176. GGML_ASSERT(ggml_is_scalar(src1));
  6177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6178. return;
  6179. }
  6180. // scalar to add
  6181. const float v = *(float *) src1->data;
  6182. const int ith = params->ith;
  6183. const int nth = params->nth;
  6184. const int nr = ggml_nrows(src0);
  6185. GGML_TENSOR_UNARY_OP_LOCALS
  6186. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6187. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6188. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6189. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6190. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6191. // rows per thread
  6192. const int dr = (nr + nth - 1)/nth;
  6193. // row range for this thread
  6194. const int ir0 = dr*ith;
  6195. const int ir1 = MIN(ir0 + dr, nr);
  6196. for (int ir = ir0; ir < ir1; ++ir) {
  6197. // src0 and dst are same shape => same indices
  6198. const int i3 = ir/(ne2*ne1);
  6199. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6200. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6201. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6202. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6203. for (int i = 0; i < ne0; i++) {
  6204. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6205. }
  6206. }
  6207. }
  6208. static void ggml_compute_forward_add1_f16_f16(
  6209. const struct ggml_compute_params * params,
  6210. const struct ggml_tensor * src0,
  6211. const struct ggml_tensor * src1,
  6212. struct ggml_tensor * dst) {
  6213. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6214. GGML_ASSERT(ggml_is_scalar(src1));
  6215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6216. return;
  6217. }
  6218. // scalar to add
  6219. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6220. const int ith = params->ith;
  6221. const int nth = params->nth;
  6222. const int nr = ggml_nrows(src0);
  6223. GGML_TENSOR_UNARY_OP_LOCALS
  6224. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6225. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6226. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6227. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6228. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6229. // rows per thread
  6230. const int dr = (nr + nth - 1)/nth;
  6231. // row range for this thread
  6232. const int ir0 = dr*ith;
  6233. const int ir1 = MIN(ir0 + dr, nr);
  6234. for (int ir = ir0; ir < ir1; ++ir) {
  6235. // src0 and dst are same shape => same indices
  6236. const int i3 = ir/(ne2*ne1);
  6237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6239. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6240. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6241. for (int i = 0; i < ne0; i++) {
  6242. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6243. }
  6244. }
  6245. }
  6246. static void ggml_compute_forward_add1_q_f32(
  6247. const struct ggml_compute_params * params,
  6248. const struct ggml_tensor * src0,
  6249. const struct ggml_tensor * src1,
  6250. struct ggml_tensor * dst) {
  6251. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6252. GGML_ASSERT(ggml_is_scalar(src1));
  6253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6254. return;
  6255. }
  6256. // scalar to add
  6257. const float v = *(float *) src1->data;
  6258. const int ith = params->ith;
  6259. const int nth = params->nth;
  6260. const int nr = ggml_nrows(src0);
  6261. GGML_TENSOR_UNARY_OP_LOCALS
  6262. const enum ggml_type type = src0->type;
  6263. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6264. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6265. // we don't support permuted src0
  6266. GGML_ASSERT(nb00 == ggml_type_size(type));
  6267. // dst cannot be transposed or permuted
  6268. GGML_ASSERT(nb0 <= nb1);
  6269. GGML_ASSERT(nb1 <= nb2);
  6270. GGML_ASSERT(nb2 <= nb3);
  6271. GGML_ASSERT(ggml_is_quantized(src0->type));
  6272. GGML_ASSERT(dst->type == src0->type);
  6273. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6274. // rows per thread
  6275. const int dr = (nr + nth - 1)/nth;
  6276. // row range for this thread
  6277. const int ir0 = dr*ith;
  6278. const int ir1 = MIN(ir0 + dr, nr);
  6279. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6280. for (int ir = ir0; ir < ir1; ++ir) {
  6281. // src0 and dst are same shape => same indices
  6282. const int i3 = ir/(ne2*ne1);
  6283. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6284. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6285. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6286. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6287. assert(ne0 % 32 == 0);
  6288. // unquantize row from src0 to temp buffer
  6289. dequantize_row_q(src0_row, wdata, ne0);
  6290. // add src1
  6291. ggml_vec_acc1_f32(ne0, wdata, v);
  6292. // quantize row to dst
  6293. quantize_row_q(wdata, dst_row, ne0);
  6294. }
  6295. }
  6296. static void ggml_compute_forward_add1(
  6297. const struct ggml_compute_params * params,
  6298. const struct ggml_tensor * src0,
  6299. const struct ggml_tensor * src1,
  6300. struct ggml_tensor * dst) {
  6301. switch (src0->type) {
  6302. case GGML_TYPE_F32:
  6303. {
  6304. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6305. } break;
  6306. case GGML_TYPE_F16:
  6307. {
  6308. if (src1->type == GGML_TYPE_F16) {
  6309. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6310. }
  6311. else if (src1->type == GGML_TYPE_F32) {
  6312. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6313. }
  6314. else {
  6315. GGML_ASSERT(false);
  6316. }
  6317. } break;
  6318. case GGML_TYPE_Q4_0:
  6319. case GGML_TYPE_Q4_1:
  6320. case GGML_TYPE_Q5_0:
  6321. case GGML_TYPE_Q5_1:
  6322. case GGML_TYPE_Q8_0:
  6323. case GGML_TYPE_Q8_1:
  6324. case GGML_TYPE_Q2_K:
  6325. case GGML_TYPE_Q3_K:
  6326. case GGML_TYPE_Q4_K:
  6327. case GGML_TYPE_Q5_K:
  6328. case GGML_TYPE_Q6_K:
  6329. case GGML_TYPE_IQ2_XXS:
  6330. case GGML_TYPE_IQ2_XS:
  6331. {
  6332. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6333. } break;
  6334. default:
  6335. {
  6336. GGML_ASSERT(false);
  6337. } break;
  6338. }
  6339. }
  6340. // ggml_compute_forward_acc
  6341. static void ggml_compute_forward_acc_f32(
  6342. const struct ggml_compute_params * params,
  6343. const struct ggml_tensor * src0,
  6344. const struct ggml_tensor * src1,
  6345. struct ggml_tensor * dst) {
  6346. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6347. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6348. // view src0 and dst with these strides and data offset inbytes during acc
  6349. // nb0 is implicitly element_size because src0 and dst are contiguous
  6350. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6351. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6352. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6353. size_t offset = ((int32_t *) dst->op_params)[3];
  6354. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6355. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6356. // memcpy needs to be synchronized across threads to avoid race conditions.
  6357. // => do it in INIT phase
  6358. memcpy(
  6359. ((char *) dst->data),
  6360. ((char *) src0->data),
  6361. ggml_nbytes(dst));
  6362. }
  6363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6364. return;
  6365. }
  6366. const int ith = params->ith;
  6367. const int nth = params->nth;
  6368. const int nr = ggml_nrows(src1);
  6369. const int nc = src1->ne[0];
  6370. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6371. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6372. // src0 and dst as viewed during acc
  6373. const size_t nb0 = ggml_element_size(src0);
  6374. const size_t nb00 = nb0;
  6375. const size_t nb01 = nb1;
  6376. const size_t nb02 = nb2;
  6377. const size_t nb03 = nb3;
  6378. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6379. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6380. GGML_ASSERT(nb10 == sizeof(float));
  6381. // rows per thread
  6382. const int dr = (nr + nth - 1)/nth;
  6383. // row range for this thread
  6384. const int ir0 = dr*ith;
  6385. const int ir1 = MIN(ir0 + dr, nr);
  6386. for (int ir = ir0; ir < ir1; ++ir) {
  6387. // src0 and dst are viewed with shape of src1 and offset
  6388. // => same indices
  6389. const int i3 = ir/(ne12*ne11);
  6390. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6391. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6392. #ifdef GGML_USE_ACCELERATE
  6393. vDSP_vadd(
  6394. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6396. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6397. #else
  6398. ggml_vec_add_f32(nc,
  6399. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6400. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6401. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6402. #endif
  6403. }
  6404. }
  6405. static void ggml_compute_forward_acc(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. const struct ggml_tensor * src1,
  6409. struct ggml_tensor * dst) {
  6410. switch (src0->type) {
  6411. case GGML_TYPE_F32:
  6412. {
  6413. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6414. } break;
  6415. case GGML_TYPE_F16:
  6416. case GGML_TYPE_Q4_0:
  6417. case GGML_TYPE_Q4_1:
  6418. case GGML_TYPE_Q5_0:
  6419. case GGML_TYPE_Q5_1:
  6420. case GGML_TYPE_Q8_0:
  6421. case GGML_TYPE_Q8_1:
  6422. case GGML_TYPE_Q2_K:
  6423. case GGML_TYPE_Q3_K:
  6424. case GGML_TYPE_Q4_K:
  6425. case GGML_TYPE_Q5_K:
  6426. case GGML_TYPE_Q6_K:
  6427. case GGML_TYPE_IQ2_XXS:
  6428. case GGML_TYPE_IQ2_XS:
  6429. default:
  6430. {
  6431. GGML_ASSERT(false);
  6432. } break;
  6433. }
  6434. }
  6435. // ggml_compute_forward_sub
  6436. static void ggml_compute_forward_sub_f32(
  6437. const struct ggml_compute_params * params,
  6438. const struct ggml_tensor * src0,
  6439. const struct ggml_tensor * src1,
  6440. struct ggml_tensor * dst) {
  6441. assert(params->ith == 0);
  6442. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6444. return;
  6445. }
  6446. const int nr = ggml_nrows(src0);
  6447. GGML_TENSOR_BINARY_OP_LOCALS
  6448. GGML_ASSERT( nb0 == sizeof(float));
  6449. GGML_ASSERT(nb00 == sizeof(float));
  6450. if (nb10 == sizeof(float)) {
  6451. for (int ir = 0; ir < nr; ++ir) {
  6452. // src0, src1 and dst are same shape => same indices
  6453. const int i3 = ir/(ne2*ne1);
  6454. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6455. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6456. #ifdef GGML_USE_ACCELERATE
  6457. vDSP_vsub(
  6458. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6459. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6460. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6461. ne0);
  6462. #else
  6463. ggml_vec_sub_f32(ne0,
  6464. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6465. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6466. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6467. #endif
  6468. // }
  6469. // }
  6470. }
  6471. } else {
  6472. // src1 is not contiguous
  6473. for (int ir = 0; ir < nr; ++ir) {
  6474. // src0, src1 and dst are same shape => same indices
  6475. const int i3 = ir/(ne2*ne1);
  6476. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6477. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6478. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6479. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6480. for (int i0 = 0; i0 < ne0; i0++) {
  6481. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6482. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6483. }
  6484. }
  6485. }
  6486. }
  6487. static void ggml_compute_forward_sub(
  6488. const struct ggml_compute_params * params,
  6489. const struct ggml_tensor * src0,
  6490. const struct ggml_tensor * src1,
  6491. struct ggml_tensor * dst) {
  6492. switch (src0->type) {
  6493. case GGML_TYPE_F32:
  6494. {
  6495. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6496. } break;
  6497. default:
  6498. {
  6499. GGML_ASSERT(false);
  6500. } break;
  6501. }
  6502. }
  6503. // ggml_compute_forward_mul
  6504. static void ggml_compute_forward_mul_f32(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. const struct ggml_tensor * src1,
  6508. struct ggml_tensor * dst) {
  6509. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6511. return;
  6512. }
  6513. const int ith = params->ith;
  6514. const int nth = params->nth;
  6515. #ifdef GGML_USE_CLBLAST
  6516. if (src1->backend == GGML_BACKEND_GPU) {
  6517. // TODO: OpenCL kernel support full broadcast
  6518. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6519. if (ith == 0) {
  6520. ggml_cl_mul(src0, src1, dst);
  6521. }
  6522. return;
  6523. }
  6524. #endif
  6525. const int64_t nr = ggml_nrows(src0);
  6526. GGML_TENSOR_BINARY_OP_LOCALS
  6527. GGML_ASSERT( nb0 == sizeof(float));
  6528. GGML_ASSERT(nb00 == sizeof(float));
  6529. if (nb10 == sizeof(float)) {
  6530. for (int64_t ir = ith; ir < nr; ir += nth) {
  6531. // src0 and dst are same shape => same indices
  6532. const int64_t i03 = ir/(ne02*ne01);
  6533. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6534. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6535. const int64_t i13 = i03 % ne13;
  6536. const int64_t i12 = i02 % ne12;
  6537. const int64_t i11 = i01 % ne11;
  6538. const int64_t nr0 = ne00 / ne10;
  6539. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6540. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6541. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6542. for (int64_t r = 0 ; r < nr0; ++r) {
  6543. #ifdef GGML_USE_ACCELERATE
  6544. UNUSED(ggml_vec_mul_f32);
  6545. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6546. #else
  6547. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6548. #endif
  6549. }
  6550. }
  6551. } else {
  6552. // src1 is not contiguous
  6553. for (int64_t ir = ith; ir < nr; ir += nth) {
  6554. // src0 and dst are same shape => same indices
  6555. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6556. const int64_t i03 = ir/(ne02*ne01);
  6557. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6558. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6559. const int64_t i13 = i03 % ne13;
  6560. const int64_t i12 = i02 % ne12;
  6561. const int64_t i11 = i01 % ne11;
  6562. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6563. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6564. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6565. const int64_t i10 = i0 % ne10;
  6566. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6567. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6568. }
  6569. }
  6570. }
  6571. }
  6572. static void ggml_compute_forward_mul(
  6573. const struct ggml_compute_params * params,
  6574. const struct ggml_tensor * src0,
  6575. const struct ggml_tensor * src1,
  6576. struct ggml_tensor * dst) {
  6577. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6578. switch (src0->type) {
  6579. case GGML_TYPE_F32:
  6580. {
  6581. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6582. } break;
  6583. default:
  6584. {
  6585. GGML_ASSERT(false);
  6586. } break;
  6587. }
  6588. }
  6589. // ggml_compute_forward_div
  6590. static void ggml_compute_forward_div_f32(
  6591. const struct ggml_compute_params * params,
  6592. const struct ggml_tensor * src0,
  6593. const struct ggml_tensor * src1,
  6594. struct ggml_tensor * dst) {
  6595. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6597. return;
  6598. }
  6599. const int ith = params->ith;
  6600. const int nth = params->nth;
  6601. const int64_t nr = ggml_nrows(src0);
  6602. GGML_TENSOR_BINARY_OP_LOCALS
  6603. GGML_ASSERT( nb0 == sizeof(float));
  6604. GGML_ASSERT(nb00 == sizeof(float));
  6605. if (nb10 == sizeof(float)) {
  6606. for (int64_t ir = ith; ir < nr; ir += nth) {
  6607. // src0 and dst are same shape => same indices
  6608. const int64_t i03 = ir/(ne02*ne01);
  6609. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6610. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6611. const int64_t i13 = i03 % ne13;
  6612. const int64_t i12 = i02 % ne12;
  6613. const int64_t i11 = i01 % ne11;
  6614. const int64_t nr0 = ne00 / ne10;
  6615. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6616. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6617. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6618. for (int64_t r = 0; r < nr0; ++r) {
  6619. #ifdef GGML_USE_ACCELERATE
  6620. UNUSED(ggml_vec_div_f32);
  6621. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6622. #else
  6623. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6624. #endif
  6625. }
  6626. }
  6627. } else {
  6628. // src1 is not contiguous
  6629. for (int64_t ir = ith; ir < nr; ir += nth) {
  6630. // src0 and dst are same shape => same indices
  6631. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6632. const int64_t i03 = ir/(ne02*ne01);
  6633. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6634. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6635. const int64_t i13 = i03 % ne13;
  6636. const int64_t i12 = i02 % ne12;
  6637. const int64_t i11 = i01 % ne11;
  6638. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6639. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6640. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6641. const int64_t i10 = i0 % ne10;
  6642. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6643. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6644. }
  6645. }
  6646. }
  6647. }
  6648. static void ggml_compute_forward_div(
  6649. const struct ggml_compute_params * params,
  6650. const struct ggml_tensor * src0,
  6651. const struct ggml_tensor * src1,
  6652. struct ggml_tensor * dst) {
  6653. switch (src0->type) {
  6654. case GGML_TYPE_F32:
  6655. {
  6656. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6657. } break;
  6658. default:
  6659. {
  6660. GGML_ASSERT(false);
  6661. } break;
  6662. }
  6663. }
  6664. // ggml_compute_forward_sqr
  6665. static void ggml_compute_forward_sqr_f32(
  6666. const struct ggml_compute_params * params,
  6667. const struct ggml_tensor * src0,
  6668. struct ggml_tensor * dst) {
  6669. assert(params->ith == 0);
  6670. assert(ggml_are_same_shape(src0, dst));
  6671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6672. return;
  6673. }
  6674. const int n = ggml_nrows(src0);
  6675. const int nc = src0->ne[0];
  6676. assert( dst->nb[0] == sizeof(float));
  6677. assert(src0->nb[0] == sizeof(float));
  6678. for (int i = 0; i < n; i++) {
  6679. ggml_vec_sqr_f32(nc,
  6680. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6681. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6682. }
  6683. }
  6684. static void ggml_compute_forward_sqr(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. struct ggml_tensor * dst) {
  6688. switch (src0->type) {
  6689. case GGML_TYPE_F32:
  6690. {
  6691. ggml_compute_forward_sqr_f32(params, src0, dst);
  6692. } break;
  6693. default:
  6694. {
  6695. GGML_ASSERT(false);
  6696. } break;
  6697. }
  6698. }
  6699. // ggml_compute_forward_sqrt
  6700. static void ggml_compute_forward_sqrt_f32(
  6701. const struct ggml_compute_params * params,
  6702. const struct ggml_tensor * src0,
  6703. struct ggml_tensor * dst) {
  6704. assert(params->ith == 0);
  6705. assert(ggml_are_same_shape(src0, dst));
  6706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6707. return;
  6708. }
  6709. const int n = ggml_nrows(src0);
  6710. const int nc = src0->ne[0];
  6711. assert( dst->nb[0] == sizeof(float));
  6712. assert(src0->nb[0] == sizeof(float));
  6713. for (int i = 0; i < n; i++) {
  6714. ggml_vec_sqrt_f32(nc,
  6715. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6716. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6717. }
  6718. }
  6719. static void ggml_compute_forward_sqrt(
  6720. const struct ggml_compute_params * params,
  6721. const struct ggml_tensor * src0,
  6722. struct ggml_tensor * dst) {
  6723. switch (src0->type) {
  6724. case GGML_TYPE_F32:
  6725. {
  6726. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6727. } break;
  6728. default:
  6729. {
  6730. GGML_ASSERT(false);
  6731. } break;
  6732. }
  6733. }
  6734. // ggml_compute_forward_log
  6735. static void ggml_compute_forward_log_f32(
  6736. const struct ggml_compute_params * params,
  6737. const struct ggml_tensor * src0,
  6738. struct ggml_tensor * dst) {
  6739. GGML_ASSERT(params->ith == 0);
  6740. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6742. return;
  6743. }
  6744. const int n = ggml_nrows(src0);
  6745. const int nc = src0->ne[0];
  6746. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6747. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6748. for (int i = 0; i < n; i++) {
  6749. ggml_vec_log_f32(nc,
  6750. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6751. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6752. }
  6753. }
  6754. static void ggml_compute_forward_log(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. struct ggml_tensor * dst) {
  6758. switch (src0->type) {
  6759. case GGML_TYPE_F32:
  6760. {
  6761. ggml_compute_forward_log_f32(params, src0, dst);
  6762. } break;
  6763. default:
  6764. {
  6765. GGML_ASSERT(false);
  6766. } break;
  6767. }
  6768. }
  6769. // ggml_compute_forward_sum
  6770. static void ggml_compute_forward_sum_f32(
  6771. const struct ggml_compute_params * params,
  6772. const struct ggml_tensor * src0,
  6773. struct ggml_tensor * dst) {
  6774. assert(params->ith == 0);
  6775. assert(ggml_is_scalar(dst));
  6776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6777. return;
  6778. }
  6779. assert(ggml_is_scalar(dst));
  6780. assert(src0->nb[0] == sizeof(float));
  6781. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6782. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6783. ggml_float sum = 0;
  6784. ggml_float row_sum = 0;
  6785. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6786. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6787. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6788. ggml_vec_sum_f32_ggf(ne00,
  6789. &row_sum,
  6790. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6791. sum += row_sum;
  6792. }
  6793. }
  6794. }
  6795. ((float *) dst->data)[0] = sum;
  6796. }
  6797. static void ggml_compute_forward_sum_f16(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. struct ggml_tensor * dst) {
  6801. assert(params->ith == 0);
  6802. assert(ggml_is_scalar(dst));
  6803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6804. return;
  6805. }
  6806. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6807. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6808. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6809. float sum = 0;
  6810. float row_sum = 0;
  6811. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6812. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6813. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6814. ggml_vec_sum_f16_ggf(ne00,
  6815. &row_sum,
  6816. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6817. sum += row_sum;
  6818. }
  6819. }
  6820. }
  6821. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6822. }
  6823. static void ggml_compute_forward_sum(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. struct ggml_tensor * dst) {
  6827. switch (src0->type) {
  6828. case GGML_TYPE_F32:
  6829. {
  6830. ggml_compute_forward_sum_f32(params, src0, dst);
  6831. } break;
  6832. case GGML_TYPE_F16:
  6833. {
  6834. ggml_compute_forward_sum_f16(params, src0, dst);
  6835. } break;
  6836. default:
  6837. {
  6838. GGML_ASSERT(false);
  6839. } break;
  6840. }
  6841. }
  6842. // ggml_compute_forward_sum_rows
  6843. static void ggml_compute_forward_sum_rows_f32(
  6844. const struct ggml_compute_params * params,
  6845. const struct ggml_tensor * src0,
  6846. struct ggml_tensor * dst) {
  6847. GGML_ASSERT(params->ith == 0);
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6852. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6853. GGML_TENSOR_UNARY_OP_LOCALS
  6854. GGML_ASSERT(ne0 == 1);
  6855. GGML_ASSERT(ne1 == ne01);
  6856. GGML_ASSERT(ne2 == ne02);
  6857. GGML_ASSERT(ne3 == ne03);
  6858. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6859. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6860. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6861. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6862. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6863. float row_sum = 0;
  6864. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6865. dst_row[0] = row_sum;
  6866. }
  6867. }
  6868. }
  6869. }
  6870. static void ggml_compute_forward_sum_rows(
  6871. const struct ggml_compute_params * params,
  6872. const struct ggml_tensor * src0,
  6873. struct ggml_tensor * dst) {
  6874. switch (src0->type) {
  6875. case GGML_TYPE_F32:
  6876. {
  6877. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6878. } break;
  6879. default:
  6880. {
  6881. GGML_ASSERT(false);
  6882. } break;
  6883. }
  6884. }
  6885. // ggml_compute_forward_mean
  6886. static void ggml_compute_forward_mean_f32(
  6887. const struct ggml_compute_params * params,
  6888. const struct ggml_tensor * src0,
  6889. struct ggml_tensor * dst) {
  6890. assert(params->ith == 0);
  6891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6892. return;
  6893. }
  6894. assert(src0->nb[0] == sizeof(float));
  6895. GGML_TENSOR_UNARY_OP_LOCALS
  6896. assert(ne0 == 1);
  6897. assert(ne1 == ne01);
  6898. assert(ne2 == ne02);
  6899. assert(ne3 == ne03);
  6900. UNUSED(ne0);
  6901. UNUSED(ne1);
  6902. UNUSED(ne2);
  6903. UNUSED(ne3);
  6904. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6905. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6906. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6907. ggml_vec_sum_f32(ne00,
  6908. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6909. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6910. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6911. }
  6912. }
  6913. }
  6914. }
  6915. static void ggml_compute_forward_mean(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. switch (src0->type) {
  6920. case GGML_TYPE_F32:
  6921. {
  6922. ggml_compute_forward_mean_f32(params, src0, dst);
  6923. } break;
  6924. default:
  6925. {
  6926. GGML_ASSERT(false);
  6927. } break;
  6928. }
  6929. }
  6930. // ggml_compute_forward_argmax
  6931. static void ggml_compute_forward_argmax_f32(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. assert(params->ith == 0);
  6936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6937. return;
  6938. }
  6939. assert(src0->nb[0] == sizeof(float));
  6940. assert(dst->nb[0] == sizeof(float));
  6941. const int64_t ne00 = src0->ne[0];
  6942. const int64_t ne01 = src0->ne[1];
  6943. const size_t nb01 = src0->nb[1];
  6944. const size_t nb0 = dst->nb[0];
  6945. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6946. float * src = (float *) ((char *) src0->data + i1*nb01);
  6947. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6948. int v = 0;
  6949. ggml_vec_argmax_f32(ne00, &v, src);
  6950. dst_[0] = v;
  6951. }
  6952. }
  6953. static void ggml_compute_forward_argmax(
  6954. const struct ggml_compute_params * params,
  6955. const struct ggml_tensor * src0,
  6956. struct ggml_tensor * dst) {
  6957. switch (src0->type) {
  6958. case GGML_TYPE_F32:
  6959. {
  6960. ggml_compute_forward_argmax_f32(params, src0, dst);
  6961. } break;
  6962. default:
  6963. {
  6964. GGML_ASSERT(false);
  6965. } break;
  6966. }
  6967. }
  6968. // ggml_compute_forward_repeat
  6969. static void ggml_compute_forward_repeat_f32(
  6970. const struct ggml_compute_params * params,
  6971. const struct ggml_tensor * src0,
  6972. struct ggml_tensor * dst) {
  6973. GGML_ASSERT(params->ith == 0);
  6974. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6976. return;
  6977. }
  6978. GGML_TENSOR_UNARY_OP_LOCALS
  6979. // guaranteed to be an integer due to the check in ggml_can_repeat
  6980. const int nr0 = (int)(ne0/ne00);
  6981. const int nr1 = (int)(ne1/ne01);
  6982. const int nr2 = (int)(ne2/ne02);
  6983. const int nr3 = (int)(ne3/ne03);
  6984. // TODO: support for transposed / permuted tensors
  6985. GGML_ASSERT(nb0 == sizeof(float));
  6986. GGML_ASSERT(nb00 == sizeof(float));
  6987. // TODO: maybe this is not optimal?
  6988. for (int i3 = 0; i3 < nr3; i3++) {
  6989. for (int k3 = 0; k3 < ne03; k3++) {
  6990. for (int i2 = 0; i2 < nr2; i2++) {
  6991. for (int k2 = 0; k2 < ne02; k2++) {
  6992. for (int i1 = 0; i1 < nr1; i1++) {
  6993. for (int k1 = 0; k1 < ne01; k1++) {
  6994. for (int i0 = 0; i0 < nr0; i0++) {
  6995. ggml_vec_cpy_f32(ne00,
  6996. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6997. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6998. }
  6999. }
  7000. }
  7001. }
  7002. }
  7003. }
  7004. }
  7005. }
  7006. static void ggml_compute_forward_repeat_f16(
  7007. const struct ggml_compute_params * params,
  7008. const struct ggml_tensor * src0,
  7009. struct ggml_tensor * dst) {
  7010. GGML_ASSERT(params->ith == 0);
  7011. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7013. return;
  7014. }
  7015. GGML_TENSOR_UNARY_OP_LOCALS
  7016. // guaranteed to be an integer due to the check in ggml_can_repeat
  7017. const int nr0 = (int)(ne0/ne00);
  7018. const int nr1 = (int)(ne1/ne01);
  7019. const int nr2 = (int)(ne2/ne02);
  7020. const int nr3 = (int)(ne3/ne03);
  7021. // TODO: support for transposed / permuted tensors
  7022. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7023. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7024. // TODO: maybe this is not optimal?
  7025. for (int i3 = 0; i3 < nr3; i3++) {
  7026. for (int k3 = 0; k3 < ne03; k3++) {
  7027. for (int i2 = 0; i2 < nr2; i2++) {
  7028. for (int k2 = 0; k2 < ne02; k2++) {
  7029. for (int i1 = 0; i1 < nr1; i1++) {
  7030. for (int k1 = 0; k1 < ne01; k1++) {
  7031. for (int i0 = 0; i0 < nr0; i0++) {
  7032. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7033. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7034. // ggml_vec_cpy_f16(ne00, y, x)
  7035. for (int i = 0; i < ne00; ++i) {
  7036. y[i] = x[i];
  7037. }
  7038. }
  7039. }
  7040. }
  7041. }
  7042. }
  7043. }
  7044. }
  7045. }
  7046. static void ggml_compute_forward_repeat(
  7047. const struct ggml_compute_params * params,
  7048. const struct ggml_tensor * src0,
  7049. struct ggml_tensor * dst) {
  7050. switch (src0->type) {
  7051. case GGML_TYPE_F16:
  7052. case GGML_TYPE_I16:
  7053. {
  7054. ggml_compute_forward_repeat_f16(params, src0, dst);
  7055. } break;
  7056. case GGML_TYPE_F32:
  7057. case GGML_TYPE_I32:
  7058. {
  7059. ggml_compute_forward_repeat_f32(params, src0, dst);
  7060. } break;
  7061. default:
  7062. {
  7063. GGML_ASSERT(false);
  7064. } break;
  7065. }
  7066. }
  7067. // ggml_compute_forward_repeat_back
  7068. static void ggml_compute_forward_repeat_back_f32(
  7069. const struct ggml_compute_params * params,
  7070. const struct ggml_tensor * src0,
  7071. struct ggml_tensor * dst) {
  7072. GGML_ASSERT(params->ith == 0);
  7073. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7075. return;
  7076. }
  7077. GGML_TENSOR_UNARY_OP_LOCALS
  7078. // guaranteed to be an integer due to the check in ggml_can_repeat
  7079. const int nr0 = (int)(ne00/ne0);
  7080. const int nr1 = (int)(ne01/ne1);
  7081. const int nr2 = (int)(ne02/ne2);
  7082. const int nr3 = (int)(ne03/ne3);
  7083. // TODO: support for transposed / permuted tensors
  7084. GGML_ASSERT(nb0 == sizeof(float));
  7085. GGML_ASSERT(nb00 == sizeof(float));
  7086. if (ggml_is_contiguous(dst)) {
  7087. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7088. } else {
  7089. for (int k3 = 0; k3 < ne3; k3++) {
  7090. for (int k2 = 0; k2 < ne2; k2++) {
  7091. for (int k1 = 0; k1 < ne1; k1++) {
  7092. ggml_vec_set_f32(ne0,
  7093. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7094. 0);
  7095. }
  7096. }
  7097. }
  7098. }
  7099. // TODO: maybe this is not optimal?
  7100. for (int i3 = 0; i3 < nr3; i3++) {
  7101. for (int k3 = 0; k3 < ne3; k3++) {
  7102. for (int i2 = 0; i2 < nr2; i2++) {
  7103. for (int k2 = 0; k2 < ne2; k2++) {
  7104. for (int i1 = 0; i1 < nr1; i1++) {
  7105. for (int k1 = 0; k1 < ne1; k1++) {
  7106. for (int i0 = 0; i0 < nr0; i0++) {
  7107. ggml_vec_acc_f32(ne0,
  7108. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7109. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7110. }
  7111. }
  7112. }
  7113. }
  7114. }
  7115. }
  7116. }
  7117. }
  7118. static void ggml_compute_forward_repeat_back(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. switch (src0->type) {
  7123. case GGML_TYPE_F32:
  7124. {
  7125. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7126. } break;
  7127. default:
  7128. {
  7129. GGML_ASSERT(false);
  7130. } break;
  7131. }
  7132. }
  7133. // ggml_compute_forward_concat
  7134. static void ggml_compute_forward_concat_f32(
  7135. const struct ggml_compute_params * params,
  7136. const struct ggml_tensor * src0,
  7137. const struct ggml_tensor * src1,
  7138. struct ggml_tensor * dst) {
  7139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7140. return;
  7141. }
  7142. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7143. const int ith = params->ith;
  7144. const int nth = params->nth;
  7145. GGML_TENSOR_BINARY_OP_LOCALS
  7146. // TODO: support for transposed / permuted tensors
  7147. GGML_ASSERT(nb0 == sizeof(float));
  7148. GGML_ASSERT(nb00 == sizeof(float));
  7149. GGML_ASSERT(nb10 == sizeof(float));
  7150. for (int i3 = 0; i3 < ne3; i3++) {
  7151. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7152. if (i2 < ne02) { // src0
  7153. for (int i1 = 0; i1 < ne1; i1++) {
  7154. for (int i0 = 0; i0 < ne0; i0++) {
  7155. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7156. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7157. *y = *x;
  7158. }
  7159. }
  7160. } // src1
  7161. else {
  7162. for (int i1 = 0; i1 < ne1; i1++) {
  7163. for (int i0 = 0; i0 < ne0; i0++) {
  7164. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7165. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7166. *y = *x;
  7167. }
  7168. }
  7169. }
  7170. }
  7171. }
  7172. }
  7173. static void ggml_compute_forward_concat(
  7174. const struct ggml_compute_params* params,
  7175. const struct ggml_tensor* src0,
  7176. const struct ggml_tensor* src1,
  7177. struct ggml_tensor* dst) {
  7178. switch (src0->type) {
  7179. case GGML_TYPE_F32:
  7180. case GGML_TYPE_I32:
  7181. {
  7182. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7183. } break;
  7184. default:
  7185. {
  7186. GGML_ASSERT(false);
  7187. } break;
  7188. }
  7189. }
  7190. // ggml_compute_forward_abs
  7191. static void ggml_compute_forward_abs_f32(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. struct ggml_tensor * dst) {
  7195. assert(params->ith == 0);
  7196. assert(ggml_are_same_shape(src0, dst));
  7197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7198. return;
  7199. }
  7200. const int n = ggml_nrows(src0);
  7201. const int nc = src0->ne[0];
  7202. assert(dst->nb[0] == sizeof(float));
  7203. assert(src0->nb[0] == sizeof(float));
  7204. for (int i = 0; i < n; i++) {
  7205. ggml_vec_abs_f32(nc,
  7206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7208. }
  7209. }
  7210. static void ggml_compute_forward_abs(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. struct ggml_tensor * dst) {
  7214. switch (src0->type) {
  7215. case GGML_TYPE_F32:
  7216. {
  7217. ggml_compute_forward_abs_f32(params, src0, dst);
  7218. } break;
  7219. default:
  7220. {
  7221. GGML_ASSERT(false);
  7222. } break;
  7223. }
  7224. }
  7225. // ggml_compute_forward_sgn
  7226. static void ggml_compute_forward_sgn_f32(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. struct ggml_tensor * dst) {
  7230. assert(params->ith == 0);
  7231. assert(ggml_are_same_shape(src0, dst));
  7232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7233. return;
  7234. }
  7235. const int n = ggml_nrows(src0);
  7236. const int nc = src0->ne[0];
  7237. assert(dst->nb[0] == sizeof(float));
  7238. assert(src0->nb[0] == sizeof(float));
  7239. for (int i = 0; i < n; i++) {
  7240. ggml_vec_sgn_f32(nc,
  7241. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7242. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7243. }
  7244. }
  7245. static void ggml_compute_forward_sgn(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. struct ggml_tensor * dst) {
  7249. switch (src0->type) {
  7250. case GGML_TYPE_F32:
  7251. {
  7252. ggml_compute_forward_sgn_f32(params, src0, dst);
  7253. } break;
  7254. default:
  7255. {
  7256. GGML_ASSERT(false);
  7257. } break;
  7258. }
  7259. }
  7260. // ggml_compute_forward_neg
  7261. static void ggml_compute_forward_neg_f32(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. struct ggml_tensor * dst) {
  7265. assert(params->ith == 0);
  7266. assert(ggml_are_same_shape(src0, dst));
  7267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7268. return;
  7269. }
  7270. const int n = ggml_nrows(src0);
  7271. const int nc = src0->ne[0];
  7272. assert(dst->nb[0] == sizeof(float));
  7273. assert(src0->nb[0] == sizeof(float));
  7274. for (int i = 0; i < n; i++) {
  7275. ggml_vec_neg_f32(nc,
  7276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7278. }
  7279. }
  7280. static void ggml_compute_forward_neg(
  7281. const struct ggml_compute_params * params,
  7282. const struct ggml_tensor * src0,
  7283. struct ggml_tensor * dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_neg_f32(params, src0, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_step
  7296. static void ggml_compute_forward_step_f32(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. assert(params->ith == 0);
  7301. assert(ggml_are_same_shape(src0, dst));
  7302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7303. return;
  7304. }
  7305. const int n = ggml_nrows(src0);
  7306. const int nc = src0->ne[0];
  7307. assert(dst->nb[0] == sizeof(float));
  7308. assert(src0->nb[0] == sizeof(float));
  7309. for (int i = 0; i < n; i++) {
  7310. ggml_vec_step_f32(nc,
  7311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7313. }
  7314. }
  7315. static void ggml_compute_forward_step(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. struct ggml_tensor * dst) {
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_step_f32(params, src0, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_tanh
  7331. static void ggml_compute_forward_tanh_f32(
  7332. const struct ggml_compute_params * params,
  7333. const struct ggml_tensor * src0,
  7334. struct ggml_tensor * dst) {
  7335. assert(params->ith == 0);
  7336. assert(ggml_are_same_shape(src0, dst));
  7337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7338. return;
  7339. }
  7340. const int n = ggml_nrows(src0);
  7341. const int nc = src0->ne[0];
  7342. assert(dst->nb[0] == sizeof(float));
  7343. assert(src0->nb[0] == sizeof(float));
  7344. for (int i = 0; i < n; i++) {
  7345. ggml_vec_tanh_f32(nc,
  7346. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7347. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7348. }
  7349. }
  7350. static void ggml_compute_forward_tanh(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_tanh_f32(params, src0, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_elu
  7366. static void ggml_compute_forward_elu_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. struct ggml_tensor * dst) {
  7370. assert(params->ith == 0);
  7371. assert(ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. const int n = ggml_nrows(src0);
  7376. const int nc = src0->ne[0];
  7377. assert(dst->nb[0] == sizeof(float));
  7378. assert(src0->nb[0] == sizeof(float));
  7379. for (int i = 0; i < n; i++) {
  7380. ggml_vec_elu_f32(nc,
  7381. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7382. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7383. }
  7384. }
  7385. static void ggml_compute_forward_elu(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. switch (src0->type) {
  7390. case GGML_TYPE_F32:
  7391. {
  7392. ggml_compute_forward_elu_f32(params, src0, dst);
  7393. } break;
  7394. default:
  7395. {
  7396. GGML_ASSERT(false);
  7397. } break;
  7398. }
  7399. }
  7400. // ggml_compute_forward_relu
  7401. static void ggml_compute_forward_relu_f32(
  7402. const struct ggml_compute_params * params,
  7403. const struct ggml_tensor * src0,
  7404. struct ggml_tensor * dst) {
  7405. assert(params->ith == 0);
  7406. assert(ggml_are_same_shape(src0, dst));
  7407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7408. return;
  7409. }
  7410. const int n = ggml_nrows(src0);
  7411. const int nc = src0->ne[0];
  7412. assert(dst->nb[0] == sizeof(float));
  7413. assert(src0->nb[0] == sizeof(float));
  7414. for (int i = 0; i < n; i++) {
  7415. ggml_vec_relu_f32(nc,
  7416. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7417. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7418. }
  7419. }
  7420. static void ggml_compute_forward_relu(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. struct ggml_tensor * dst) {
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_relu_f32(params, src0, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_gelu
  7436. static void ggml_compute_forward_gelu_f32(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. struct ggml_tensor * dst) {
  7440. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7441. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7442. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7444. return;
  7445. }
  7446. const int ith = params->ith;
  7447. const int nth = params->nth;
  7448. const int nc = src0->ne[0];
  7449. const int nr = ggml_nrows(src0);
  7450. // rows per thread
  7451. const int dr = (nr + nth - 1)/nth;
  7452. // row range for this thread
  7453. const int ir0 = dr*ith;
  7454. const int ir1 = MIN(ir0 + dr, nr);
  7455. for (int i1 = ir0; i1 < ir1; i1++) {
  7456. ggml_vec_gelu_f32(nc,
  7457. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7458. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7459. #ifndef NDEBUG
  7460. for (int k = 0; k < nc; k++) {
  7461. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7462. UNUSED(x);
  7463. assert(!isnan(x));
  7464. assert(!isinf(x));
  7465. }
  7466. #endif
  7467. }
  7468. }
  7469. static void ggml_compute_forward_gelu(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. struct ggml_tensor * dst) {
  7473. switch (src0->type) {
  7474. case GGML_TYPE_F32:
  7475. {
  7476. ggml_compute_forward_gelu_f32(params, src0, dst);
  7477. } break;
  7478. default:
  7479. {
  7480. GGML_ASSERT(false);
  7481. } break;
  7482. }
  7483. }
  7484. // ggml_compute_forward_gelu_quick
  7485. static void ggml_compute_forward_gelu_quick_f32(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. struct ggml_tensor * dst) {
  7489. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7490. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7491. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7493. return;
  7494. }
  7495. const int ith = params->ith;
  7496. const int nth = params->nth;
  7497. const int nc = src0->ne[0];
  7498. const int nr = ggml_nrows(src0);
  7499. // rows per thread
  7500. const int dr = (nr + nth - 1)/nth;
  7501. // row range for this thread
  7502. const int ir0 = dr*ith;
  7503. const int ir1 = MIN(ir0 + dr, nr);
  7504. for (int i1 = ir0; i1 < ir1; i1++) {
  7505. ggml_vec_gelu_quick_f32(nc,
  7506. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7507. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7508. #ifndef NDEBUG
  7509. for (int k = 0; k < nc; k++) {
  7510. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7511. UNUSED(x);
  7512. assert(!isnan(x));
  7513. assert(!isinf(x));
  7514. }
  7515. #endif
  7516. }
  7517. }
  7518. static void ggml_compute_forward_gelu_quick(
  7519. const struct ggml_compute_params * params,
  7520. const struct ggml_tensor * src0,
  7521. struct ggml_tensor * dst) {
  7522. switch (src0->type) {
  7523. case GGML_TYPE_F32:
  7524. {
  7525. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7526. } break;
  7527. default:
  7528. {
  7529. GGML_ASSERT(false);
  7530. } break;
  7531. }
  7532. }
  7533. // ggml_compute_forward_silu
  7534. static void ggml_compute_forward_silu_f32(
  7535. const struct ggml_compute_params * params,
  7536. const struct ggml_tensor * src0,
  7537. struct ggml_tensor * dst) {
  7538. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7539. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7540. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7542. return;
  7543. }
  7544. const int ith = params->ith;
  7545. const int nth = params->nth;
  7546. const int nc = src0->ne[0];
  7547. const int nr = ggml_nrows(src0);
  7548. // rows per thread
  7549. const int dr = (nr + nth - 1)/nth;
  7550. // row range for this thread
  7551. const int ir0 = dr*ith;
  7552. const int ir1 = MIN(ir0 + dr, nr);
  7553. for (int i1 = ir0; i1 < ir1; i1++) {
  7554. ggml_vec_silu_f32(nc,
  7555. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7556. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7557. #ifndef NDEBUG
  7558. for (int k = 0; k < nc; k++) {
  7559. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7560. UNUSED(x);
  7561. assert(!isnan(x));
  7562. assert(!isinf(x));
  7563. }
  7564. #endif
  7565. }
  7566. }
  7567. static void ggml_compute_forward_silu(
  7568. const struct ggml_compute_params * params,
  7569. const struct ggml_tensor * src0,
  7570. struct ggml_tensor * dst) {
  7571. switch (src0->type) {
  7572. case GGML_TYPE_F32:
  7573. {
  7574. ggml_compute_forward_silu_f32(params, src0, dst);
  7575. } break;
  7576. default:
  7577. {
  7578. GGML_ASSERT(false);
  7579. } break;
  7580. }
  7581. }
  7582. // ggml_compute_forward_leaky_relu
  7583. static void ggml_compute_forward_leaky_relu_f32(
  7584. const struct ggml_compute_params * params,
  7585. const struct ggml_tensor * src0,
  7586. struct ggml_tensor * dst) {
  7587. assert(params->ith == 0);
  7588. assert(ggml_are_same_shape(src0, dst));
  7589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7590. return;
  7591. }
  7592. const int n = ggml_nrows(src0);
  7593. const int nc = src0->ne[0];
  7594. float negative_slope;
  7595. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7596. assert(dst->nb[0] == sizeof(float));
  7597. assert(src0->nb[0] == sizeof(float));
  7598. for (int i = 0; i < n; i++) {
  7599. ggml_vec_leaky_relu_f32(nc,
  7600. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7601. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7602. }
  7603. }
  7604. static void ggml_compute_forward_leaky_relu(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. struct ggml_tensor * dst) {
  7608. switch (src0->type) {
  7609. case GGML_TYPE_F32:
  7610. {
  7611. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7612. } break;
  7613. default:
  7614. {
  7615. GGML_ASSERT(false);
  7616. } break;
  7617. }
  7618. }
  7619. // ggml_compute_forward_silu_back
  7620. static void ggml_compute_forward_silu_back_f32(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. const struct ggml_tensor * grad,
  7624. struct ggml_tensor * dst) {
  7625. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7626. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7627. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7628. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7629. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7631. return;
  7632. }
  7633. const int ith = params->ith;
  7634. const int nth = params->nth;
  7635. const int nc = src0->ne[0];
  7636. const int nr = ggml_nrows(src0);
  7637. // rows per thread
  7638. const int dr = (nr + nth - 1)/nth;
  7639. // row range for this thread
  7640. const int ir0 = dr*ith;
  7641. const int ir1 = MIN(ir0 + dr, nr);
  7642. for (int i1 = ir0; i1 < ir1; i1++) {
  7643. ggml_vec_silu_backward_f32(nc,
  7644. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7645. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7646. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7647. #ifndef NDEBUG
  7648. for (int k = 0; k < nc; k++) {
  7649. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7650. UNUSED(x);
  7651. assert(!isnan(x));
  7652. assert(!isinf(x));
  7653. }
  7654. #endif
  7655. }
  7656. }
  7657. static void ggml_compute_forward_silu_back(
  7658. const struct ggml_compute_params * params,
  7659. const struct ggml_tensor * src0,
  7660. const struct ggml_tensor * grad,
  7661. struct ggml_tensor * dst) {
  7662. switch (src0->type) {
  7663. case GGML_TYPE_F32:
  7664. {
  7665. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7666. } break;
  7667. default:
  7668. {
  7669. GGML_ASSERT(false);
  7670. } break;
  7671. }
  7672. }
  7673. // ggml_compute_forward_norm
  7674. static void ggml_compute_forward_norm_f32(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. struct ggml_tensor * dst) {
  7678. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7680. return;
  7681. }
  7682. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7683. const int ith = params->ith;
  7684. const int nth = params->nth;
  7685. GGML_TENSOR_UNARY_OP_LOCALS
  7686. float eps;
  7687. memcpy(&eps, dst->op_params, sizeof(float));
  7688. GGML_ASSERT(eps > 0.0f);
  7689. // TODO: optimize
  7690. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7692. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7693. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7694. ggml_float sum = 0.0;
  7695. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7696. sum += (ggml_float)x[i00];
  7697. }
  7698. float mean = sum/ne00;
  7699. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7700. ggml_float sum2 = 0.0;
  7701. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7702. float v = x[i00] - mean;
  7703. y[i00] = v;
  7704. sum2 += (ggml_float)(v*v);
  7705. }
  7706. float variance = sum2/ne00;
  7707. const float scale = 1.0f/sqrtf(variance + eps);
  7708. ggml_vec_scale_f32(ne00, y, scale);
  7709. }
  7710. }
  7711. }
  7712. }
  7713. static void ggml_compute_forward_norm(
  7714. const struct ggml_compute_params * params,
  7715. const struct ggml_tensor * src0,
  7716. struct ggml_tensor * dst) {
  7717. switch (src0->type) {
  7718. case GGML_TYPE_F32:
  7719. {
  7720. ggml_compute_forward_norm_f32(params, src0, dst);
  7721. } break;
  7722. default:
  7723. {
  7724. GGML_ASSERT(false);
  7725. } break;
  7726. }
  7727. }
  7728. // ggml_compute_forward_group_rms_norm
  7729. static void ggml_compute_forward_rms_norm_f32(
  7730. const struct ggml_compute_params * params,
  7731. const struct ggml_tensor * src0,
  7732. struct ggml_tensor * dst) {
  7733. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7735. return;
  7736. }
  7737. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7738. const int ith = params->ith;
  7739. const int nth = params->nth;
  7740. GGML_TENSOR_UNARY_OP_LOCALS
  7741. float eps;
  7742. memcpy(&eps, dst->op_params, sizeof(float));
  7743. GGML_ASSERT(eps > 0.0f);
  7744. // TODO: optimize
  7745. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7747. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7748. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7749. ggml_float sum = 0.0;
  7750. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7751. sum += (ggml_float)(x[i00] * x[i00]);
  7752. }
  7753. const float mean = sum/ne00;
  7754. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7755. memcpy(y, x, ne00 * sizeof(float));
  7756. // for (int i00 = 0; i00 < ne00; i00++) {
  7757. // y[i00] = x[i00];
  7758. // }
  7759. const float scale = 1.0f/sqrtf(mean + eps);
  7760. ggml_vec_scale_f32(ne00, y, scale);
  7761. }
  7762. }
  7763. }
  7764. }
  7765. static void ggml_compute_forward_rms_norm(
  7766. const struct ggml_compute_params * params,
  7767. const struct ggml_tensor * src0,
  7768. struct ggml_tensor * dst) {
  7769. switch (src0->type) {
  7770. case GGML_TYPE_F32:
  7771. {
  7772. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7773. } break;
  7774. default:
  7775. {
  7776. GGML_ASSERT(false);
  7777. } break;
  7778. }
  7779. }
  7780. static void ggml_compute_forward_rms_norm_back_f32(
  7781. const struct ggml_compute_params * params,
  7782. const struct ggml_tensor * src0,
  7783. const struct ggml_tensor * src1,
  7784. struct ggml_tensor * dst) {
  7785. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7787. return;
  7788. }
  7789. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7790. const int ith = params->ith;
  7791. const int nth = params->nth;
  7792. GGML_TENSOR_BINARY_OP_LOCALS
  7793. float eps;
  7794. memcpy(&eps, dst->op_params, sizeof(float));
  7795. // TODO: optimize
  7796. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7797. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7798. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7799. // src1 is same shape as src0 => same indices
  7800. const int64_t i11 = i01;
  7801. const int64_t i12 = i02;
  7802. const int64_t i13 = i03;
  7803. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7804. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7805. ggml_float sum_xx = 0.0;
  7806. ggml_float sum_xdz = 0.0;
  7807. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7808. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7809. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7810. }
  7811. //const float mean = (float)(sum_xx)/ne00;
  7812. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7813. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7814. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7815. // we could cache rms from forward pass to improve performance.
  7816. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7817. //const float rms = sqrtf(mean_eps);
  7818. const float rrms = 1.0f / sqrtf(mean_eps);
  7819. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7820. {
  7821. // z = rms_norm(x)
  7822. //
  7823. // rms_norm(src0) =
  7824. // scale(
  7825. // src0,
  7826. // div(
  7827. // 1,
  7828. // sqrt(
  7829. // add(
  7830. // scale(
  7831. // sum(
  7832. // sqr(
  7833. // src0)),
  7834. // (1.0/N)),
  7835. // eps))));
  7836. // postorder:
  7837. // ## op args grad
  7838. // 00 param src0 grad[#00]
  7839. // 01 const 1
  7840. // 02 sqr (#00) grad[#02]
  7841. // 03 sum (#02) grad[#03]
  7842. // 04 const 1/N
  7843. // 05 scale (#03, #04) grad[#05]
  7844. // 06 const eps
  7845. // 07 add (#05, #06) grad[#07]
  7846. // 08 sqrt (#07) grad[#08]
  7847. // 09 div (#01,#08) grad[#09]
  7848. // 10 scale (#00,#09) grad[#10]
  7849. //
  7850. // backward pass, given grad[#10]
  7851. // #10: scale
  7852. // grad[#00] += scale(grad[#10],#09)
  7853. // grad[#09] += sum(mul(grad[#10],#00))
  7854. // #09: div
  7855. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7856. // #08: sqrt
  7857. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7858. // #07: add
  7859. // grad[#05] += grad[#07]
  7860. // #05: scale
  7861. // grad[#03] += scale(grad[#05],#04)
  7862. // #03: sum
  7863. // grad[#02] += repeat(grad[#03], #02)
  7864. // #02:
  7865. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7866. //
  7867. // substitute and simplify:
  7868. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7869. // grad[#02] = repeat(grad[#03], #02)
  7870. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7871. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7872. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7873. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7874. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7875. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7876. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7877. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7878. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7879. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7880. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7881. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7882. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7883. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7884. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7885. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7886. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7887. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7888. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7889. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7890. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7891. // a = b*c + d*e
  7892. // a = b*c*f/f + d*e*f/f
  7893. // a = (b*c*f + d*e*f)*(1/f)
  7894. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7895. // a = (b + d*e/c)*c
  7896. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7897. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7898. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7899. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7900. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7901. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7902. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7903. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7904. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7905. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7906. }
  7907. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7908. // post-order:
  7909. // dx := x
  7910. // dx := scale(dx,-mean_xdz/mean_eps)
  7911. // dx := add(dx, dz)
  7912. // dx := scale(dx, rrms)
  7913. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7914. ggml_vec_cpy_f32 (ne00, dx, x);
  7915. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7916. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7917. ggml_vec_acc_f32 (ne00, dx, dz);
  7918. ggml_vec_scale_f32(ne00, dx, rrms);
  7919. }
  7920. }
  7921. }
  7922. }
  7923. static void ggml_compute_forward_rms_norm_back(
  7924. const struct ggml_compute_params * params,
  7925. const struct ggml_tensor * src0,
  7926. const struct ggml_tensor * src1,
  7927. struct ggml_tensor * dst) {
  7928. switch (src0->type) {
  7929. case GGML_TYPE_F32:
  7930. {
  7931. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7932. } break;
  7933. default:
  7934. {
  7935. GGML_ASSERT(false);
  7936. } break;
  7937. }
  7938. }
  7939. // ggml_compute_forward_group_norm
  7940. static void ggml_compute_forward_group_norm_f32(
  7941. const struct ggml_compute_params * params,
  7942. const struct ggml_tensor * src0,
  7943. struct ggml_tensor * dst) {
  7944. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7946. return;
  7947. }
  7948. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7949. const int ith = params->ith;
  7950. const int nth = params->nth;
  7951. GGML_TENSOR_UNARY_OP_LOCALS
  7952. const float eps = 1e-6f; // TODO: make this a parameter
  7953. // TODO: optimize
  7954. int n_channels = src0->ne[2];
  7955. int n_groups = dst->op_params[0];
  7956. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7957. for (int i = ith; i < n_groups; i+=nth) {
  7958. int start = i * n_channels_per_group;
  7959. int end = start + n_channels_per_group;
  7960. if (end > n_channels) {
  7961. end = n_channels;
  7962. }
  7963. int step = end - start;
  7964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7965. ggml_float sum = 0.0;
  7966. for (int64_t i02 = start; i02 < end; i02++) {
  7967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7968. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7969. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7970. sum += (ggml_float)x[i00];
  7971. }
  7972. }
  7973. }
  7974. float mean = sum / (ne00 * ne01 * step);
  7975. ggml_float sum2 = 0.0;
  7976. for (int64_t i02 = start; i02 < end; i02++) {
  7977. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7978. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7979. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7980. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7981. float v = x[i00] - mean;
  7982. y[i00] = v;
  7983. sum2 += (ggml_float)(v * v);
  7984. }
  7985. }
  7986. }
  7987. float variance = sum2 / (ne00 * ne01 * step);
  7988. const float scale = 1.0f / sqrtf(variance + eps);
  7989. for (int64_t i02 = start; i02 < end; i02++) {
  7990. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7991. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7992. ggml_vec_scale_f32(ne00, y, scale);
  7993. }
  7994. }
  7995. }
  7996. }
  7997. }
  7998. static void ggml_compute_forward_group_norm(
  7999. const struct ggml_compute_params * params,
  8000. const struct ggml_tensor * src0,
  8001. struct ggml_tensor * dst) {
  8002. switch (src0->type) {
  8003. case GGML_TYPE_F32:
  8004. {
  8005. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8006. } break;
  8007. default:
  8008. {
  8009. GGML_ASSERT(false);
  8010. } break;
  8011. }
  8012. }
  8013. // ggml_compute_forward_mul_mat
  8014. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8015. // helper function to determine if it is better to use BLAS or not
  8016. // for large matrices, BLAS is faster
  8017. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8018. const struct ggml_tensor * src0 = dst->src[0];
  8019. const struct ggml_tensor * src1 = dst->src[1];
  8020. //const int64_t ne00 = src0->ne[0];
  8021. //const int64_t ne01 = src0->ne[1];
  8022. const int64_t ne10 = src1->ne[0];
  8023. const int64_t ne0 = dst->ne[0];
  8024. const int64_t ne1 = dst->ne[1];
  8025. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8026. // all the experts for each batch element and the processing would become incredibly slow
  8027. // TODO: find the optimal values for these
  8028. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8029. ggml_is_contiguous(src0) &&
  8030. ggml_is_contiguous(src1) &&
  8031. //src0->type == GGML_TYPE_F32 &&
  8032. src1->type == GGML_TYPE_F32 &&
  8033. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8034. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8035. return true;
  8036. }
  8037. return false;
  8038. }
  8039. #endif
  8040. static void ggml_compute_forward_mul_mat(
  8041. const struct ggml_compute_params * params,
  8042. const struct ggml_tensor * src0,
  8043. const struct ggml_tensor * src1,
  8044. struct ggml_tensor * dst) {
  8045. int64_t t0 = ggml_perf_time_us();
  8046. UNUSED(t0);
  8047. GGML_TENSOR_BINARY_OP_LOCALS
  8048. const int ith = params->ith;
  8049. const int nth = params->nth;
  8050. if (ith == 1 && g_imatrix_collect) {
  8051. g_imatrix_collect(src0, src1);
  8052. }
  8053. const enum ggml_type type = src0->type;
  8054. const bool src1_cont = ggml_is_contiguous(src1);
  8055. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8056. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8057. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8058. GGML_ASSERT(ne0 == ne01);
  8059. GGML_ASSERT(ne1 == ne11);
  8060. GGML_ASSERT(ne2 == ne12);
  8061. GGML_ASSERT(ne3 == ne13);
  8062. // we don't support permuted src0 or src1
  8063. GGML_ASSERT(nb00 == ggml_type_size(type));
  8064. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8065. // dst cannot be transposed or permuted
  8066. GGML_ASSERT(nb0 == sizeof(float));
  8067. GGML_ASSERT(nb0 <= nb1);
  8068. GGML_ASSERT(nb1 <= nb2);
  8069. GGML_ASSERT(nb2 <= nb3);
  8070. // broadcast factors
  8071. const int64_t r2 = ne12/ne02;
  8072. const int64_t r3 = ne13/ne03;
  8073. // nb01 >= nb00 - src0 is not transposed
  8074. // compute by src0 rows
  8075. #if defined(GGML_USE_CLBLAST)
  8076. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8077. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8078. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8079. }
  8080. return;
  8081. }
  8082. #endif
  8083. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8084. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8085. if (params->ith != 0) {
  8086. return;
  8087. }
  8088. if (params->type == GGML_TASK_INIT) {
  8089. return;
  8090. }
  8091. if (params->type == GGML_TASK_FINALIZE) {
  8092. return;
  8093. }
  8094. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8095. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8096. // broadcast src0 into src1 across 2nd,3rd dimension
  8097. const int64_t i03 = i13/r3;
  8098. const int64_t i02 = i12/r2;
  8099. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8100. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8101. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8102. if (type != GGML_TYPE_F32) {
  8103. float * const wdata = params->wdata;
  8104. ggml_to_float_t const to_float = type_traits[type].to_float;
  8105. size_t id = 0;
  8106. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8107. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8108. id += ne00;
  8109. }
  8110. assert(id*sizeof(float) <= params->wsize);
  8111. x = wdata;
  8112. }
  8113. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8114. ne1, ne01, ne10,
  8115. 1.0f, y, ne10,
  8116. x, ne00,
  8117. 0.0f, d, ne01);
  8118. }
  8119. }
  8120. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8121. return;
  8122. }
  8123. #endif
  8124. if (params->type == GGML_TASK_INIT) {
  8125. if (src1->type != vec_dot_type) {
  8126. char * wdata = params->wdata;
  8127. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8128. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8129. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8130. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8131. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8132. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8133. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8134. wdata += row_size;
  8135. }
  8136. }
  8137. }
  8138. }
  8139. return;
  8140. }
  8141. if (params->type == GGML_TASK_FINALIZE) {
  8142. return;
  8143. }
  8144. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8145. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8146. const int64_t nr0 = ne01; // src0 rows
  8147. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8148. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8149. // distribute the thread work across the inner or outer loop based on which one is larger
  8150. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8151. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8152. const int64_t ith0 = ith % nth0;
  8153. const int64_t ith1 = ith / nth0;
  8154. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8155. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8156. const int64_t ir010 = dr0*ith0;
  8157. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8158. const int64_t ir110 = dr1*ith1;
  8159. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8160. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8161. // threads with no work simply yield (not sure if it helps)
  8162. if (ir010 >= ir011 || ir110 >= ir111) {
  8163. sched_yield();
  8164. return;
  8165. }
  8166. assert(ne12 % ne02 == 0);
  8167. assert(ne13 % ne03 == 0);
  8168. // block-tiling attempt
  8169. const int64_t blck_0 = 16;
  8170. const int64_t blck_1 = 16;
  8171. // attempt to reduce false-sharing (does not seem to make a difference)
  8172. float tmp[16];
  8173. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8174. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8175. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8176. const int64_t i13 = (ir1/(ne12*ne1));
  8177. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8178. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8179. // broadcast src0 into src1
  8180. const int64_t i03 = i13/r3;
  8181. const int64_t i02 = i12/r2;
  8182. const int64_t i1 = i11;
  8183. const int64_t i2 = i12;
  8184. const int64_t i3 = i13;
  8185. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8186. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8187. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8188. // the original src1 data pointer, so we should index using the indices directly
  8189. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8190. const char * src1_col = (const char *) wdata +
  8191. (src1_cont || src1->type != vec_dot_type
  8192. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8193. : (i11*nb11 + i12*nb12 + i13*nb13));
  8194. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8195. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8196. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8197. //}
  8198. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8199. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8200. }
  8201. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8202. }
  8203. }
  8204. }
  8205. }
  8206. // ggml_compute_forward_mul_mat_id
  8207. static void ggml_compute_forward_mul_mat_id(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * ids,
  8210. const struct ggml_tensor * src1,
  8211. struct ggml_tensor * dst) {
  8212. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8213. GGML_TENSOR_BINARY_OP_LOCALS
  8214. const int ith = params->ith;
  8215. const int nth = params->nth;
  8216. const enum ggml_type type = src0->type;
  8217. const bool src1_cont = ggml_is_contiguous(src1);
  8218. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8219. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8220. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8221. GGML_ASSERT(ne0 == ne01);
  8222. GGML_ASSERT(ne1 == ne11);
  8223. GGML_ASSERT(ne2 == ne12);
  8224. GGML_ASSERT(ne3 == ne13);
  8225. // we don't support permuted src0 or src1
  8226. GGML_ASSERT(nb00 == ggml_type_size(type));
  8227. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8228. // dst cannot be transposed or permuted
  8229. GGML_ASSERT(nb0 == sizeof(float));
  8230. GGML_ASSERT(nb0 <= nb1);
  8231. GGML_ASSERT(nb1 <= nb2);
  8232. GGML_ASSERT(nb2 <= nb3);
  8233. // broadcast factors
  8234. const int64_t r2 = ne12/ne02;
  8235. const int64_t r3 = ne13/ne03;
  8236. // row groups
  8237. const int id = ggml_get_op_params_i32(dst, 0);
  8238. const int n_as = ggml_get_op_params_i32(dst, 1);
  8239. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8240. (char *) params->wdata :
  8241. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8242. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8243. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8244. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8245. if (params->type == GGML_TASK_INIT) {
  8246. char * wdata = params->wdata;
  8247. if (src1->type != vec_dot_type) {
  8248. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8249. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8250. assert(src1->type == GGML_TYPE_F32);
  8251. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8252. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8253. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8254. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8255. wdata += row_size;
  8256. }
  8257. }
  8258. }
  8259. }
  8260. // initialize matrix_row_counts
  8261. GGML_ASSERT(wdata == wdata_src1_end);
  8262. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8263. // group rows by src0 matrix
  8264. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8265. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8266. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8267. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8268. matrix_row_counts[row_id] += 1;
  8269. }
  8270. return;
  8271. }
  8272. if (params->type == GGML_TASK_FINALIZE) {
  8273. return;
  8274. }
  8275. // compute each matrix multiplication in sequence
  8276. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8277. const int64_t cne1 = matrix_row_counts[cur_a];
  8278. if (cne1 == 0) {
  8279. continue;
  8280. }
  8281. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8282. if (ith == 1 && g_imatrix_collect) {
  8283. g_imatrix_collect(src0_cur, src1);
  8284. }
  8285. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8286. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8287. const int64_t nr0 = ne01; // src0 rows
  8288. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8289. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8290. // distribute the thread work across the inner or outer loop based on which one is larger
  8291. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8292. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8293. const int64_t ith0 = ith % nth0;
  8294. const int64_t ith1 = ith / nth0;
  8295. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8296. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8297. const int64_t ir010 = dr0*ith0;
  8298. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8299. const int64_t ir110 = dr1*ith1;
  8300. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8301. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8302. // threads with no work simply yield (not sure if it helps)
  8303. if (ir010 >= ir011 || ir110 >= ir111) {
  8304. sched_yield();
  8305. continue;
  8306. }
  8307. assert(ne12 % ne02 == 0);
  8308. assert(ne13 % ne03 == 0);
  8309. // block-tiling attempt
  8310. const int64_t blck_0 = 16;
  8311. const int64_t blck_1 = 16;
  8312. // attempt to reduce false-sharing (does not seem to make a difference)
  8313. float tmp[16];
  8314. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8315. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8316. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8317. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8318. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8319. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8320. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8321. // broadcast src0 into src1
  8322. const int64_t i03 = i13/r3;
  8323. const int64_t i02 = i12/r2;
  8324. const int64_t i1 = i11;
  8325. const int64_t i2 = i12;
  8326. const int64_t i3 = i13;
  8327. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8328. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8329. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8330. // the original src1 data pointer, so we should index using the indices directly
  8331. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8332. const char * src1_col = (const char *) wdata +
  8333. (src1_cont || src1->type != vec_dot_type
  8334. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8335. : (i11*nb11 + i12*nb12 + i13*nb13));
  8336. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8337. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8338. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8339. //}
  8340. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8341. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8342. }
  8343. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8344. }
  8345. }
  8346. }
  8347. }
  8348. #undef MMID_MATRIX_ROW
  8349. }
  8350. // ggml_compute_forward_out_prod
  8351. static void ggml_compute_forward_out_prod_f32(
  8352. const struct ggml_compute_params * params,
  8353. const struct ggml_tensor * src0,
  8354. const struct ggml_tensor * src1,
  8355. struct ggml_tensor * dst) {
  8356. // int64_t t0 = ggml_perf_time_us();
  8357. // UNUSED(t0);
  8358. GGML_TENSOR_BINARY_OP_LOCALS
  8359. const int ith = params->ith;
  8360. const int nth = params->nth;
  8361. GGML_ASSERT(ne0 == ne00);
  8362. GGML_ASSERT(ne1 == ne10);
  8363. GGML_ASSERT(ne2 == ne02);
  8364. GGML_ASSERT(ne02 == ne12);
  8365. GGML_ASSERT(ne3 == ne13);
  8366. GGML_ASSERT(ne03 == ne13);
  8367. // we don't support permuted src0 or src1
  8368. GGML_ASSERT(nb00 == sizeof(float));
  8369. // dst cannot be transposed or permuted
  8370. GGML_ASSERT(nb0 == sizeof(float));
  8371. // GGML_ASSERT(nb0 <= nb1);
  8372. // GGML_ASSERT(nb1 <= nb2);
  8373. // GGML_ASSERT(nb2 <= nb3);
  8374. // nb01 >= nb00 - src0 is not transposed
  8375. // compute by src0 rows
  8376. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8377. // TODO: #if defined(GGML_USE_CLBLAST)
  8378. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8379. bool use_blas = ggml_is_matrix(src0) &&
  8380. ggml_is_matrix(src1) &&
  8381. ggml_is_contiguous(src0) &&
  8382. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8383. #endif
  8384. if (params->type == GGML_TASK_INIT) {
  8385. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8386. if (use_blas) {
  8387. return;
  8388. }
  8389. #endif
  8390. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8391. return;
  8392. }
  8393. if (params->type == GGML_TASK_FINALIZE) {
  8394. return;
  8395. }
  8396. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8397. if (use_blas) {
  8398. if (params->ith != 0) { // All threads other than the first do no work.
  8399. return;
  8400. }
  8401. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8402. // src0: (k,n)
  8403. // src1: (k,m)
  8404. // dst: (m,n)
  8405. //
  8406. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8407. // Also expressed as (major,minor)
  8408. // a: (m,k): so src1 transposed
  8409. // b: (k,n): so src0
  8410. // c: (m,n)
  8411. //
  8412. // However, if ggml_is_transposed(src1) is true, then
  8413. // src1->data already contains a transposed version, so sgemm mustn't
  8414. // transpose it further.
  8415. int n = src0->ne[0];
  8416. int k = src0->ne[1];
  8417. int m = src1->ne[0];
  8418. int transposeA, lda;
  8419. if (!ggml_is_transposed(src1)) {
  8420. transposeA = CblasTrans;
  8421. lda = m;
  8422. } else {
  8423. transposeA = CblasNoTrans;
  8424. lda = k;
  8425. }
  8426. float * a = (float *) ((char *) src1->data);
  8427. float * b = (float *) ((char *) src0->data);
  8428. float * c = (float *) ((char *) dst->data);
  8429. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8430. return;
  8431. }
  8432. #endif
  8433. // dst[:,:,:,:] = 0
  8434. // for i2,i3:
  8435. // for i1:
  8436. // for i01:
  8437. // for i0:
  8438. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8439. // parallelize by last three dimensions
  8440. // total rows in dst
  8441. const int64_t nr = ne1*ne2*ne3;
  8442. // rows per thread
  8443. const int64_t dr = (nr + nth - 1)/nth;
  8444. // row range for this thread
  8445. const int64_t ir0 = dr*ith;
  8446. const int64_t ir1 = MIN(ir0 + dr, nr);
  8447. // block-tiling attempt
  8448. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8449. const int64_t blck_1 = 16;
  8450. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8451. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8452. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8453. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8454. for (int64_t ir = bir; ir < bir1; ++ir) {
  8455. // dst indices
  8456. const int64_t i3 = ir/(ne2*ne1);
  8457. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8458. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8459. const int64_t i02 = i2;
  8460. const int64_t i03 = i3;
  8461. //const int64_t i10 = i1;
  8462. const int64_t i12 = i2;
  8463. const int64_t i13 = i3;
  8464. #if GGML_VEC_MAD_UNROLL > 2
  8465. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8466. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8467. const int64_t i11 = i01;
  8468. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8469. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8470. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8471. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8472. }
  8473. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8474. const int64_t i11 = i01;
  8475. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8476. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8477. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8478. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8479. }
  8480. #else
  8481. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8482. const int64_t i11 = i01;
  8483. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8484. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8485. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8486. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8487. }
  8488. #endif
  8489. }
  8490. }
  8491. }
  8492. //int64_t t1 = ggml_perf_time_us();
  8493. //static int64_t acc = 0;
  8494. //acc += t1 - t0;
  8495. //if (t1 - t0 > 10) {
  8496. // printf("\n");
  8497. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8498. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8499. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8500. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8501. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8502. //}
  8503. }
  8504. static void ggml_compute_forward_out_prod_q_f32(
  8505. const struct ggml_compute_params * params,
  8506. const struct ggml_tensor * src0,
  8507. const struct ggml_tensor * src1,
  8508. struct ggml_tensor * dst) {
  8509. // int64_t t0 = ggml_perf_time_us();
  8510. // UNUSED(t0);
  8511. GGML_TENSOR_BINARY_OP_LOCALS;
  8512. const int ith = params->ith;
  8513. const int nth = params->nth;
  8514. const enum ggml_type type = src0->type;
  8515. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8516. GGML_ASSERT(ne02 == ne12);
  8517. GGML_ASSERT(ne03 == ne13);
  8518. GGML_ASSERT(ne2 == ne12);
  8519. GGML_ASSERT(ne3 == ne13);
  8520. // we don't support permuted src0 dim0
  8521. GGML_ASSERT(nb00 == ggml_type_size(type));
  8522. // dst dim0 cannot be transposed or permuted
  8523. GGML_ASSERT(nb0 == sizeof(float));
  8524. // GGML_ASSERT(nb0 <= nb1);
  8525. // GGML_ASSERT(nb1 <= nb2);
  8526. // GGML_ASSERT(nb2 <= nb3);
  8527. GGML_ASSERT(ne0 == ne00);
  8528. GGML_ASSERT(ne1 == ne10);
  8529. GGML_ASSERT(ne2 == ne02);
  8530. GGML_ASSERT(ne3 == ne03);
  8531. // nb01 >= nb00 - src0 is not transposed
  8532. // compute by src0 rows
  8533. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8534. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8535. if (params->type == GGML_TASK_INIT) {
  8536. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8537. return;
  8538. }
  8539. if (params->type == GGML_TASK_FINALIZE) {
  8540. return;
  8541. }
  8542. // parallelize by last three dimensions
  8543. // total rows in dst
  8544. const int64_t nr = ne1*ne2*ne3;
  8545. // rows per thread
  8546. const int64_t dr = (nr + nth - 1)/nth;
  8547. // row range for this thread
  8548. const int64_t ir0 = dr*ith;
  8549. const int64_t ir1 = MIN(ir0 + dr, nr);
  8550. // dst[:,:,:,:] = 0
  8551. // for i2,i3:
  8552. // for i1:
  8553. // for i01:
  8554. // for i0:
  8555. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8556. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8557. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8558. // dst indices
  8559. const int64_t i3 = ir/(ne2*ne1);
  8560. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8561. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8562. const int64_t i02 = i2;
  8563. const int64_t i03 = i3;
  8564. //const int64_t i10 = i1;
  8565. const int64_t i12 = i2;
  8566. const int64_t i13 = i3;
  8567. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8568. const int64_t i11 = i01;
  8569. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8570. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8571. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8572. dequantize_row_q(s0, wdata, ne0);
  8573. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8574. }
  8575. }
  8576. //int64_t t1 = ggml_perf_time_us();
  8577. //static int64_t acc = 0;
  8578. //acc += t1 - t0;
  8579. //if (t1 - t0 > 10) {
  8580. // printf("\n");
  8581. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8582. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8583. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8584. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8585. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8586. //}
  8587. }
  8588. static void ggml_compute_forward_out_prod(
  8589. const struct ggml_compute_params * params,
  8590. const struct ggml_tensor * src0,
  8591. const struct ggml_tensor * src1,
  8592. struct ggml_tensor * dst) {
  8593. switch (src0->type) {
  8594. case GGML_TYPE_Q4_0:
  8595. case GGML_TYPE_Q4_1:
  8596. case GGML_TYPE_Q5_0:
  8597. case GGML_TYPE_Q5_1:
  8598. case GGML_TYPE_Q8_0:
  8599. case GGML_TYPE_Q2_K:
  8600. case GGML_TYPE_Q3_K:
  8601. case GGML_TYPE_Q4_K:
  8602. case GGML_TYPE_Q5_K:
  8603. case GGML_TYPE_Q6_K:
  8604. case GGML_TYPE_IQ2_XXS:
  8605. case GGML_TYPE_IQ2_XS:
  8606. {
  8607. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8608. } break;
  8609. case GGML_TYPE_F16:
  8610. {
  8611. GGML_ASSERT(false); // todo
  8612. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8613. } break;
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_scale
  8625. static void ggml_compute_forward_scale_f32(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. struct ggml_tensor * dst) {
  8629. GGML_ASSERT(ggml_is_contiguous(src0));
  8630. GGML_ASSERT(ggml_is_contiguous(dst));
  8631. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8633. return;
  8634. }
  8635. // scale factor
  8636. float v;
  8637. memcpy(&v, dst->op_params, sizeof(float));
  8638. const int ith = params->ith;
  8639. const int nth = params->nth;
  8640. const int nc = src0->ne[0];
  8641. const int nr = ggml_nrows(src0);
  8642. // rows per thread
  8643. const int dr = (nr + nth - 1)/nth;
  8644. // row range for this thread
  8645. const int ir0 = dr*ith;
  8646. const int ir1 = MIN(ir0 + dr, nr);
  8647. const size_t nb01 = src0->nb[1];
  8648. const size_t nb1 = dst->nb[1];
  8649. for (int i1 = ir0; i1 < ir1; i1++) {
  8650. if (dst->data != src0->data) {
  8651. // src0 is same shape as dst => same indices
  8652. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8653. }
  8654. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8655. }
  8656. }
  8657. static void ggml_compute_forward_scale(
  8658. const struct ggml_compute_params * params,
  8659. const struct ggml_tensor * src0,
  8660. struct ggml_tensor * dst) {
  8661. switch (src0->type) {
  8662. case GGML_TYPE_F32:
  8663. {
  8664. ggml_compute_forward_scale_f32(params, src0, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_set
  8673. static void ggml_compute_forward_set_f32(
  8674. const struct ggml_compute_params * params,
  8675. const struct ggml_tensor * src0,
  8676. const struct ggml_tensor * src1,
  8677. struct ggml_tensor * dst) {
  8678. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8679. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8680. // view src0 and dst with these strides and data offset inbytes during set
  8681. // nb0 is implicitly element_size because src0 and dst are contiguous
  8682. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8683. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8684. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8685. size_t offset = ((int32_t *) dst->op_params)[3];
  8686. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8687. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8688. // memcpy needs to be synchronized across threads to avoid race conditions.
  8689. // => do it in INIT phase
  8690. memcpy(
  8691. ((char *) dst->data),
  8692. ((char *) src0->data),
  8693. ggml_nbytes(dst));
  8694. }
  8695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8696. return;
  8697. }
  8698. const int ith = params->ith;
  8699. const int nth = params->nth;
  8700. const int nr = ggml_nrows(src1);
  8701. const int nc = src1->ne[0];
  8702. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8703. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8704. // src0 and dst as viewed during set
  8705. const size_t nb0 = ggml_element_size(src0);
  8706. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8707. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8708. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8709. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8710. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8711. GGML_ASSERT(nb10 == sizeof(float));
  8712. // rows per thread
  8713. const int dr = (nr + nth - 1)/nth;
  8714. // row range for this thread
  8715. const int ir0 = dr*ith;
  8716. const int ir1 = MIN(ir0 + dr, nr);
  8717. for (int ir = ir0; ir < ir1; ++ir) {
  8718. // src0 and dst are viewed with shape of src1 and offset
  8719. // => same indices
  8720. const int i3 = ir/(ne12*ne11);
  8721. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8722. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8723. ggml_vec_cpy_f32(nc,
  8724. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8725. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8726. }
  8727. }
  8728. static void ggml_compute_forward_set(
  8729. const struct ggml_compute_params * params,
  8730. const struct ggml_tensor * src0,
  8731. const struct ggml_tensor * src1,
  8732. struct ggml_tensor * dst) {
  8733. switch (src0->type) {
  8734. case GGML_TYPE_F32:
  8735. {
  8736. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8737. } break;
  8738. case GGML_TYPE_F16:
  8739. case GGML_TYPE_Q4_0:
  8740. case GGML_TYPE_Q4_1:
  8741. case GGML_TYPE_Q5_0:
  8742. case GGML_TYPE_Q5_1:
  8743. case GGML_TYPE_Q8_0:
  8744. case GGML_TYPE_Q8_1:
  8745. case GGML_TYPE_Q2_K:
  8746. case GGML_TYPE_Q3_K:
  8747. case GGML_TYPE_Q4_K:
  8748. case GGML_TYPE_Q5_K:
  8749. case GGML_TYPE_Q6_K:
  8750. case GGML_TYPE_IQ2_XXS:
  8751. case GGML_TYPE_IQ2_XS:
  8752. default:
  8753. {
  8754. GGML_ASSERT(false);
  8755. } break;
  8756. }
  8757. }
  8758. // ggml_compute_forward_cpy
  8759. static void ggml_compute_forward_cpy(
  8760. const struct ggml_compute_params * params,
  8761. const struct ggml_tensor * src0,
  8762. struct ggml_tensor * dst) {
  8763. ggml_compute_forward_dup(params, src0, dst);
  8764. }
  8765. // ggml_compute_forward_cont
  8766. static void ggml_compute_forward_cont(
  8767. const struct ggml_compute_params * params,
  8768. const struct ggml_tensor * src0,
  8769. struct ggml_tensor * dst) {
  8770. ggml_compute_forward_dup(params, src0, dst);
  8771. }
  8772. // ggml_compute_forward_reshape
  8773. static void ggml_compute_forward_reshape(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0,
  8776. struct ggml_tensor * dst) {
  8777. // NOP
  8778. UNUSED(params);
  8779. UNUSED(src0);
  8780. UNUSED(dst);
  8781. }
  8782. // ggml_compute_forward_view
  8783. static void ggml_compute_forward_view(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0) {
  8786. // NOP
  8787. UNUSED(params);
  8788. UNUSED(src0);
  8789. }
  8790. // ggml_compute_forward_permute
  8791. static void ggml_compute_forward_permute(
  8792. const struct ggml_compute_params * params,
  8793. const struct ggml_tensor * src0) {
  8794. // NOP
  8795. UNUSED(params);
  8796. UNUSED(src0);
  8797. }
  8798. // ggml_compute_forward_transpose
  8799. static void ggml_compute_forward_transpose(
  8800. const struct ggml_compute_params * params,
  8801. const struct ggml_tensor * src0) {
  8802. // NOP
  8803. UNUSED(params);
  8804. UNUSED(src0);
  8805. }
  8806. // ggml_compute_forward_get_rows
  8807. static void ggml_compute_forward_get_rows_q(
  8808. const struct ggml_compute_params * params,
  8809. const struct ggml_tensor * src0,
  8810. const struct ggml_tensor * src1,
  8811. struct ggml_tensor * dst) {
  8812. assert(params->ith == 0);
  8813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8814. return;
  8815. }
  8816. GGML_TENSOR_BINARY_OP_LOCALS
  8817. const int64_t nc = ne00;
  8818. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8819. const enum ggml_type type = src0->type;
  8820. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8821. assert(ne0 == nc);
  8822. assert(ne02 == ne11);
  8823. assert(nb00 == ggml_type_size(type));
  8824. assert(ggml_nrows(dst) == nr);
  8825. // TODO: multi-thread
  8826. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8827. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8828. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8829. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8830. dequantize_row_q(
  8831. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8832. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8833. }
  8834. }
  8835. }
  8836. }
  8837. static void ggml_compute_forward_get_rows_f16(
  8838. const struct ggml_compute_params * params,
  8839. const struct ggml_tensor * src0,
  8840. const struct ggml_tensor * src1,
  8841. struct ggml_tensor * dst) {
  8842. assert(params->ith == 0);
  8843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8844. return;
  8845. }
  8846. GGML_TENSOR_BINARY_OP_LOCALS
  8847. const int64_t nc = ne00;
  8848. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8849. assert(ne0 == nc);
  8850. assert(ne02 == ne11);
  8851. assert(nb00 == sizeof(ggml_fp16_t));
  8852. assert(ggml_nrows(dst) == nr);
  8853. // TODO: multi-thread
  8854. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8855. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8856. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8857. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8858. ggml_fp16_to_fp32_row(
  8859. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8860. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8861. }
  8862. }
  8863. }
  8864. }
  8865. static void ggml_compute_forward_get_rows_f32(
  8866. const struct ggml_compute_params * params,
  8867. const struct ggml_tensor * src0,
  8868. const struct ggml_tensor * src1,
  8869. struct ggml_tensor * dst) {
  8870. assert(params->ith == 0);
  8871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8872. return;
  8873. }
  8874. GGML_TENSOR_BINARY_OP_LOCALS
  8875. const int64_t nc = ne00;
  8876. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8877. assert(ne0 == nc);
  8878. assert(ne02 == ne11);
  8879. assert(nb00 == sizeof(float));
  8880. assert(ggml_nrows(dst) == nr);
  8881. // TODO: multi-thread
  8882. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8883. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8884. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8885. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8886. ggml_vec_cpy_f32(nc,
  8887. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8888. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8889. }
  8890. }
  8891. }
  8892. }
  8893. static void ggml_compute_forward_get_rows(
  8894. const struct ggml_compute_params * params,
  8895. const struct ggml_tensor * src0,
  8896. const struct ggml_tensor * src1,
  8897. struct ggml_tensor * dst) {
  8898. switch (src0->type) {
  8899. case GGML_TYPE_Q4_0:
  8900. case GGML_TYPE_Q4_1:
  8901. case GGML_TYPE_Q5_0:
  8902. case GGML_TYPE_Q5_1:
  8903. case GGML_TYPE_Q8_0:
  8904. case GGML_TYPE_Q8_1:
  8905. case GGML_TYPE_Q2_K:
  8906. case GGML_TYPE_Q3_K:
  8907. case GGML_TYPE_Q4_K:
  8908. case GGML_TYPE_Q5_K:
  8909. case GGML_TYPE_Q6_K:
  8910. case GGML_TYPE_IQ2_XXS:
  8911. case GGML_TYPE_IQ2_XS:
  8912. {
  8913. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8914. } break;
  8915. case GGML_TYPE_F16:
  8916. {
  8917. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8918. } break;
  8919. case GGML_TYPE_F32:
  8920. case GGML_TYPE_I32:
  8921. {
  8922. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8923. } break;
  8924. default:
  8925. {
  8926. GGML_ASSERT(false);
  8927. } break;
  8928. }
  8929. //static bool first = true;
  8930. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8931. //if (first) {
  8932. // first = false;
  8933. //} else {
  8934. // for (int k = 0; k < dst->ne[1]; ++k) {
  8935. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8936. // for (int i = 0; i < 16; ++i) {
  8937. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8938. // }
  8939. // printf("\n");
  8940. // }
  8941. // printf("\n");
  8942. // }
  8943. // printf("\n");
  8944. // exit(0);
  8945. //}
  8946. }
  8947. // ggml_compute_forward_get_rows_back
  8948. static void ggml_compute_forward_get_rows_back_f32_f16(
  8949. const struct ggml_compute_params * params,
  8950. const struct ggml_tensor * src0,
  8951. const struct ggml_tensor * src1,
  8952. struct ggml_tensor * dst) {
  8953. GGML_ASSERT(params->ith == 0);
  8954. GGML_ASSERT(ggml_is_contiguous(dst));
  8955. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8956. if (params->type == GGML_TASK_INIT) {
  8957. memset(dst->data, 0, ggml_nbytes(dst));
  8958. }
  8959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8960. return;
  8961. }
  8962. const int nc = src0->ne[0];
  8963. const int nr = ggml_nelements(src1);
  8964. GGML_ASSERT( dst->ne[0] == nc);
  8965. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8966. for (int i = 0; i < nr; ++i) {
  8967. const int r = ((int32_t *) src1->data)[i];
  8968. for (int j = 0; j < nc; ++j) {
  8969. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8970. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8971. }
  8972. }
  8973. }
  8974. static void ggml_compute_forward_get_rows_back_f32(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. struct ggml_tensor * dst) {
  8979. GGML_ASSERT(params->ith == 0);
  8980. GGML_ASSERT(ggml_is_contiguous(dst));
  8981. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8982. if (params->type == GGML_TASK_INIT) {
  8983. memset(dst->data, 0, ggml_nbytes(dst));
  8984. }
  8985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8986. return;
  8987. }
  8988. const int nc = src0->ne[0];
  8989. const int nr = ggml_nelements(src1);
  8990. GGML_ASSERT( dst->ne[0] == nc);
  8991. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8992. for (int i = 0; i < nr; ++i) {
  8993. const int r = ((int32_t *) src1->data)[i];
  8994. ggml_vec_add_f32(nc,
  8995. (float *) ((char *) dst->data + r*dst->nb[1]),
  8996. (float *) ((char *) dst->data + r*dst->nb[1]),
  8997. (float *) ((char *) src0->data + i*src0->nb[1]));
  8998. }
  8999. }
  9000. static void ggml_compute_forward_get_rows_back(
  9001. const struct ggml_compute_params * params,
  9002. const struct ggml_tensor * src0,
  9003. const struct ggml_tensor * src1,
  9004. struct ggml_tensor * dst) {
  9005. switch (src0->type) {
  9006. case GGML_TYPE_F16:
  9007. {
  9008. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9009. } break;
  9010. case GGML_TYPE_F32:
  9011. {
  9012. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9013. } break;
  9014. default:
  9015. {
  9016. GGML_ASSERT(false);
  9017. } break;
  9018. }
  9019. //static bool first = true;
  9020. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9021. //if (first) {
  9022. // first = false;
  9023. //} else {
  9024. // for (int k = 0; k < dst->ne[1]; ++k) {
  9025. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9026. // for (int i = 0; i < 16; ++i) {
  9027. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9028. // }
  9029. // printf("\n");
  9030. // }
  9031. // printf("\n");
  9032. // }
  9033. // printf("\n");
  9034. // exit(0);
  9035. //}
  9036. }
  9037. // ggml_compute_forward_diag
  9038. static void ggml_compute_forward_diag_f32(
  9039. const struct ggml_compute_params * params,
  9040. const struct ggml_tensor * src0,
  9041. struct ggml_tensor * dst) {
  9042. GGML_ASSERT(params->ith == 0);
  9043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9044. return;
  9045. }
  9046. // TODO: handle transposed/permuted matrices
  9047. GGML_TENSOR_UNARY_OP_LOCALS
  9048. GGML_ASSERT(ne00 == ne0);
  9049. GGML_ASSERT(ne00 == ne1);
  9050. GGML_ASSERT(ne01 == 1);
  9051. GGML_ASSERT(ne02 == ne2);
  9052. GGML_ASSERT(ne03 == ne3);
  9053. GGML_ASSERT(nb00 == sizeof(float));
  9054. GGML_ASSERT(nb0 == sizeof(float));
  9055. for (int i3 = 0; i3 < ne3; i3++) {
  9056. for (int i2 = 0; i2 < ne2; i2++) {
  9057. for (int i1 = 0; i1 < ne1; i1++) {
  9058. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9059. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9060. for (int i0 = 0; i0 < i1; i0++) {
  9061. d[i0] = 0;
  9062. }
  9063. d[i1] = s[i1];
  9064. for (int i0 = i1+1; i0 < ne0; i0++) {
  9065. d[i0] = 0;
  9066. }
  9067. }
  9068. }
  9069. }
  9070. }
  9071. static void ggml_compute_forward_diag(
  9072. const struct ggml_compute_params * params,
  9073. const struct ggml_tensor * src0,
  9074. struct ggml_tensor * dst) {
  9075. switch (src0->type) {
  9076. case GGML_TYPE_F32:
  9077. {
  9078. ggml_compute_forward_diag_f32(params, src0, dst);
  9079. } break;
  9080. default:
  9081. {
  9082. GGML_ASSERT(false);
  9083. } break;
  9084. }
  9085. }
  9086. // ggml_compute_forward_diag_mask_inf
  9087. static void ggml_compute_forward_diag_mask_f32(
  9088. const struct ggml_compute_params * params,
  9089. const struct ggml_tensor * src0,
  9090. struct ggml_tensor * dst,
  9091. const float value) {
  9092. const int ith = params->ith;
  9093. const int nth = params->nth;
  9094. const int n_past = ((int32_t *) dst->op_params)[0];
  9095. const bool inplace = src0->data == dst->data;
  9096. GGML_ASSERT(n_past >= 0);
  9097. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9098. // memcpy needs to be synchronized across threads to avoid race conditions.
  9099. // => do it in INIT phase
  9100. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9101. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9102. memcpy(
  9103. ((char *) dst->data),
  9104. ((char *) src0->data),
  9105. ggml_nbytes(dst));
  9106. }
  9107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9108. return;
  9109. }
  9110. // TODO: handle transposed/permuted matrices
  9111. const int n = ggml_nrows(src0);
  9112. const int nc = src0->ne[0];
  9113. const int nr = src0->ne[1];
  9114. const int nz = n/nr;
  9115. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9116. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9117. for (int k = 0; k < nz; k++) {
  9118. for (int j = ith; j < nr; j += nth) {
  9119. for (int i = n_past; i < nc; i++) {
  9120. if (i > n_past + j) {
  9121. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9122. }
  9123. }
  9124. }
  9125. }
  9126. }
  9127. static void ggml_compute_forward_diag_mask_inf(
  9128. const struct ggml_compute_params * params,
  9129. const struct ggml_tensor * src0,
  9130. struct ggml_tensor * dst) {
  9131. switch (src0->type) {
  9132. case GGML_TYPE_F32:
  9133. {
  9134. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9135. } break;
  9136. default:
  9137. {
  9138. GGML_ASSERT(false);
  9139. } break;
  9140. }
  9141. }
  9142. static void ggml_compute_forward_diag_mask_zero(
  9143. const struct ggml_compute_params * params,
  9144. const struct ggml_tensor * src0,
  9145. struct ggml_tensor * dst) {
  9146. switch (src0->type) {
  9147. case GGML_TYPE_F32:
  9148. {
  9149. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9150. } break;
  9151. default:
  9152. {
  9153. GGML_ASSERT(false);
  9154. } break;
  9155. }
  9156. }
  9157. // ggml_compute_forward_soft_max
  9158. static void ggml_compute_forward_soft_max_f32(
  9159. const struct ggml_compute_params * params,
  9160. const struct ggml_tensor * src0,
  9161. const struct ggml_tensor * src1,
  9162. struct ggml_tensor * dst) {
  9163. assert(ggml_is_contiguous(dst));
  9164. assert(ggml_are_same_shape(src0, dst));
  9165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9166. return;
  9167. }
  9168. float scale = 1.0f;
  9169. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9170. // TODO: handle transposed/permuted matrices
  9171. const int ith = params->ith;
  9172. const int nth = params->nth;
  9173. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9174. const int nc = src0->ne[0];
  9175. const int nr = ggml_nrows(src0);
  9176. // rows per thread
  9177. const int dr = (nr + nth - 1)/nth;
  9178. // row range for this thread
  9179. const int ir0 = dr*ith;
  9180. const int ir1 = MIN(ir0 + dr, nr);
  9181. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9182. for (int i1 = ir0; i1 < ir1; i1++) {
  9183. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9184. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9185. // broadcast the mask across rows
  9186. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9187. ggml_vec_cpy_f32 (nc, wp, sp);
  9188. ggml_vec_scale_f32(nc, wp, scale);
  9189. if (mp) {
  9190. ggml_vec_acc_f32(nc, wp, mp);
  9191. }
  9192. #ifndef NDEBUG
  9193. for (int i = 0; i < nc; ++i) {
  9194. //printf("p[%d] = %f\n", i, p[i]);
  9195. assert(!isnan(wp[i]));
  9196. }
  9197. #endif
  9198. float max = -INFINITY;
  9199. ggml_vec_max_f32(nc, &max, wp);
  9200. ggml_float sum = 0.0;
  9201. uint16_t scvt;
  9202. for (int i = 0; i < nc; i++) {
  9203. if (wp[i] == -INFINITY) {
  9204. dp[i] = 0.0f;
  9205. } else {
  9206. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9207. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9208. memcpy(&scvt, &s, sizeof(scvt));
  9209. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9210. sum += (ggml_float)val;
  9211. dp[i] = val;
  9212. }
  9213. }
  9214. assert(sum > 0.0);
  9215. sum = 1.0/sum;
  9216. ggml_vec_scale_f32(nc, dp, sum);
  9217. #ifndef NDEBUG
  9218. for (int i = 0; i < nc; ++i) {
  9219. assert(!isnan(dp[i]));
  9220. assert(!isinf(dp[i]));
  9221. }
  9222. #endif
  9223. }
  9224. }
  9225. static void ggml_compute_forward_soft_max(
  9226. const struct ggml_compute_params * params,
  9227. const struct ggml_tensor * src0,
  9228. const struct ggml_tensor * src1,
  9229. struct ggml_tensor * dst) {
  9230. switch (src0->type) {
  9231. case GGML_TYPE_F32:
  9232. {
  9233. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9234. } break;
  9235. default:
  9236. {
  9237. GGML_ASSERT(false);
  9238. } break;
  9239. }
  9240. }
  9241. // ggml_compute_forward_soft_max_back
  9242. static void ggml_compute_forward_soft_max_back_f32(
  9243. const struct ggml_compute_params * params,
  9244. const struct ggml_tensor * src0,
  9245. const struct ggml_tensor * src1,
  9246. struct ggml_tensor * dst) {
  9247. GGML_ASSERT(ggml_is_contiguous(src0));
  9248. GGML_ASSERT(ggml_is_contiguous(src1));
  9249. GGML_ASSERT(ggml_is_contiguous(dst));
  9250. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9251. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9253. return;
  9254. }
  9255. // TODO: handle transposed/permuted matrices
  9256. const int ith = params->ith;
  9257. const int nth = params->nth;
  9258. const int nc = src0->ne[0];
  9259. const int nr = ggml_nrows(src0);
  9260. // rows per thread
  9261. const int dr = (nr + nth - 1)/nth;
  9262. // row range for this thread
  9263. const int ir0 = dr*ith;
  9264. const int ir1 = MIN(ir0 + dr, nr);
  9265. for (int i1 = ir0; i1 < ir1; i1++) {
  9266. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9267. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9268. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9269. #ifndef NDEBUG
  9270. for (int i = 0; i < nc; ++i) {
  9271. //printf("p[%d] = %f\n", i, p[i]);
  9272. assert(!isnan(dy[i]));
  9273. assert(!isnan(y[i]));
  9274. }
  9275. #endif
  9276. // Jii = yi - yi*yi
  9277. // Jij = -yi*yj
  9278. // J = diag(y)-y.T*y
  9279. // dx = J * dy
  9280. // dxk = sum_i(Jki * dyi)
  9281. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9282. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9283. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9284. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9285. // dxk = -yk * dot(y, dy) + yk*dyk
  9286. // dxk = yk * (- dot(y, dy) + dyk)
  9287. // dxk = yk * (dyk - dot(y, dy))
  9288. //
  9289. // post-order:
  9290. // dot_y_dy := dot(y, dy)
  9291. // dx := dy
  9292. // dx := dx - dot_y_dy
  9293. // dx := dx * y
  9294. // linear runtime, no additional memory
  9295. float dot_y_dy = 0;
  9296. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9297. ggml_vec_cpy_f32 (nc, dx, dy);
  9298. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9299. ggml_vec_mul_f32 (nc, dx, dx, y);
  9300. #ifndef NDEBUG
  9301. for (int i = 0; i < nc; ++i) {
  9302. assert(!isnan(dx[i]));
  9303. assert(!isinf(dx[i]));
  9304. }
  9305. #endif
  9306. }
  9307. }
  9308. static void ggml_compute_forward_soft_max_back(
  9309. const struct ggml_compute_params * params,
  9310. const struct ggml_tensor * src0,
  9311. const struct ggml_tensor * src1,
  9312. struct ggml_tensor * dst) {
  9313. switch (src0->type) {
  9314. case GGML_TYPE_F32:
  9315. {
  9316. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9317. } break;
  9318. default:
  9319. {
  9320. GGML_ASSERT(false);
  9321. } break;
  9322. }
  9323. }
  9324. // ggml_compute_forward_alibi
  9325. static void ggml_compute_forward_alibi_f32(
  9326. const struct ggml_compute_params * params,
  9327. const struct ggml_tensor * src0,
  9328. struct ggml_tensor * dst) {
  9329. assert(params->ith == 0);
  9330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9331. return;
  9332. }
  9333. //const int n_past = ((int32_t *) dst->op_params)[0];
  9334. const int n_head = ((int32_t *) dst->op_params)[1];
  9335. float max_bias;
  9336. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9337. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9338. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9339. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9340. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9341. const int64_t n = ggml_nrows(src0);
  9342. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9343. const size_t nb0 = src0->nb[0];
  9344. const size_t nb1 = src0->nb[1];
  9345. const size_t nb2 = src0->nb[2];
  9346. //const int nb3 = src0->nb[3];
  9347. GGML_ASSERT(nb0 == sizeof(float));
  9348. GGML_ASSERT(n_head == ne2);
  9349. // add alibi to src0 (KQ_scaled)
  9350. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9351. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9352. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9353. for (int64_t i = 0; i < ne0; i++) {
  9354. for (int64_t j = 0; j < ne1; j++) {
  9355. for (int64_t k = 0; k < ne2_ne3; k++) {
  9356. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9357. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9358. // TODO: k*nb2 or k*nb3
  9359. float m_k;
  9360. if (k < n_heads_log2_floor) {
  9361. m_k = powf(m0, k + 1);
  9362. } else {
  9363. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9364. }
  9365. pdst[0] = i * m_k + src[0];
  9366. }
  9367. }
  9368. }
  9369. }
  9370. static void ggml_compute_forward_alibi_f16(
  9371. const struct ggml_compute_params * params,
  9372. const struct ggml_tensor * src0,
  9373. struct ggml_tensor * dst) {
  9374. assert(params->ith == 0);
  9375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9376. return;
  9377. }
  9378. //const int n_past = ((int32_t *) dst->op_params)[0];
  9379. const int n_head = ((int32_t *) dst->op_params)[1];
  9380. float max_bias;
  9381. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9382. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9383. const int ne1 = src0->ne[1]; // seq_len_without_past
  9384. const int ne2 = src0->ne[2]; // n_head -> this is k
  9385. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9386. const int n = ggml_nrows(src0);
  9387. const int ne2_ne3 = n/ne1; // ne2*ne3
  9388. const int nb0 = src0->nb[0];
  9389. const int nb1 = src0->nb[1];
  9390. const int nb2 = src0->nb[2];
  9391. //const int nb3 = src0->nb[3];
  9392. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9393. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9394. GGML_ASSERT(n_head == ne2);
  9395. // add alibi to src0 (KQ_scaled)
  9396. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9397. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9398. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9399. for (int i = 0; i < ne0; i++) {
  9400. for (int j = 0; j < ne1; j++) {
  9401. for (int k = 0; k < ne2_ne3; k++) {
  9402. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9403. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9404. // TODO: k*nb2 or k*nb3
  9405. float m_k;
  9406. if (k < n_heads_log2_floor) {
  9407. m_k = powf(m0, k + 1);
  9408. } else {
  9409. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9410. }
  9411. // we return F32
  9412. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9413. }
  9414. }
  9415. }
  9416. }
  9417. static void ggml_compute_forward_alibi(
  9418. const struct ggml_compute_params * params,
  9419. const struct ggml_tensor * src0,
  9420. struct ggml_tensor * dst) {
  9421. switch (src0->type) {
  9422. case GGML_TYPE_F16:
  9423. {
  9424. ggml_compute_forward_alibi_f16(params, src0, dst);
  9425. } break;
  9426. case GGML_TYPE_F32:
  9427. {
  9428. ggml_compute_forward_alibi_f32(params, src0, dst);
  9429. } break;
  9430. case GGML_TYPE_Q4_0:
  9431. case GGML_TYPE_Q4_1:
  9432. case GGML_TYPE_Q5_0:
  9433. case GGML_TYPE_Q5_1:
  9434. case GGML_TYPE_Q8_0:
  9435. case GGML_TYPE_Q8_1:
  9436. case GGML_TYPE_Q2_K:
  9437. case GGML_TYPE_Q3_K:
  9438. case GGML_TYPE_Q4_K:
  9439. case GGML_TYPE_Q5_K:
  9440. case GGML_TYPE_Q6_K:
  9441. case GGML_TYPE_IQ2_XXS:
  9442. case GGML_TYPE_IQ2_XS:
  9443. case GGML_TYPE_Q8_K:
  9444. case GGML_TYPE_I8:
  9445. case GGML_TYPE_I16:
  9446. case GGML_TYPE_I32:
  9447. case GGML_TYPE_COUNT:
  9448. {
  9449. GGML_ASSERT(false);
  9450. } break;
  9451. }
  9452. }
  9453. // ggml_compute_forward_clamp
  9454. static void ggml_compute_forward_clamp_f32(
  9455. const struct ggml_compute_params * params,
  9456. const struct ggml_tensor * src0,
  9457. struct ggml_tensor * dst) {
  9458. assert(params->ith == 0);
  9459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9460. return;
  9461. }
  9462. float min;
  9463. float max;
  9464. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9465. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9466. const int ith = params->ith;
  9467. const int nth = params->nth;
  9468. const int n = ggml_nrows(src0);
  9469. const int nc = src0->ne[0];
  9470. const size_t nb00 = src0->nb[0];
  9471. const size_t nb01 = src0->nb[1];
  9472. const size_t nb0 = dst->nb[0];
  9473. const size_t nb1 = dst->nb[1];
  9474. GGML_ASSERT( nb0 == sizeof(float));
  9475. GGML_ASSERT(nb00 == sizeof(float));
  9476. for (int j = ith; j < n; j += nth) {
  9477. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9478. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9479. for (int i = 0; i < nc; i++) {
  9480. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9481. }
  9482. }
  9483. }
  9484. static void ggml_compute_forward_clamp(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * src0,
  9487. struct ggml_tensor * dst) {
  9488. switch (src0->type) {
  9489. case GGML_TYPE_F32:
  9490. {
  9491. ggml_compute_forward_clamp_f32(params, src0, dst);
  9492. } break;
  9493. case GGML_TYPE_F16:
  9494. case GGML_TYPE_Q4_0:
  9495. case GGML_TYPE_Q4_1:
  9496. case GGML_TYPE_Q5_0:
  9497. case GGML_TYPE_Q5_1:
  9498. case GGML_TYPE_Q8_0:
  9499. case GGML_TYPE_Q8_1:
  9500. case GGML_TYPE_Q2_K:
  9501. case GGML_TYPE_Q3_K:
  9502. case GGML_TYPE_Q4_K:
  9503. case GGML_TYPE_Q5_K:
  9504. case GGML_TYPE_Q6_K:
  9505. case GGML_TYPE_IQ2_XXS:
  9506. case GGML_TYPE_IQ2_XS:
  9507. case GGML_TYPE_Q8_K:
  9508. case GGML_TYPE_I8:
  9509. case GGML_TYPE_I16:
  9510. case GGML_TYPE_I32:
  9511. case GGML_TYPE_COUNT:
  9512. {
  9513. GGML_ASSERT(false);
  9514. } break;
  9515. }
  9516. }
  9517. // ggml_compute_forward_rope
  9518. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9519. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9520. return 1 - MIN(1, MAX(0, y));
  9521. }
  9522. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9523. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9524. static void rope_yarn(
  9525. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9526. float * cos_theta, float * sin_theta
  9527. ) {
  9528. // Get n-d rotational scaling corrected for extrapolation
  9529. float theta_interp = freq_scale * theta_extrap;
  9530. float theta = theta_interp;
  9531. if (ext_factor != 0.0f) {
  9532. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9533. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9534. // Get n-d magnitude scaling corrected for interpolation
  9535. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9536. }
  9537. *cos_theta = cosf(theta) * mscale;
  9538. *sin_theta = sinf(theta) * mscale;
  9539. }
  9540. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9541. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9542. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9543. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9544. }
  9545. void ggml_rope_yarn_corr_dims(
  9546. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9547. ) {
  9548. // start and end correction dims
  9549. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9550. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9551. }
  9552. static void ggml_compute_forward_rope_f32(
  9553. const struct ggml_compute_params * params,
  9554. const struct ggml_tensor * src0,
  9555. const struct ggml_tensor * src1,
  9556. struct ggml_tensor * dst,
  9557. const bool forward) {
  9558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9559. return;
  9560. }
  9561. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9562. // these two only relevant for xPos RoPE:
  9563. float xpos_base;
  9564. bool xpos_down;
  9565. //const int n_past = ((int32_t *) dst->op_params)[0];
  9566. const int n_dims = ((int32_t *) dst->op_params)[1];
  9567. const int mode = ((int32_t *) dst->op_params)[2];
  9568. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9569. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9570. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9571. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9572. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9573. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9574. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9575. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9576. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9577. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9578. GGML_TENSOR_UNARY_OP_LOCALS
  9579. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9580. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9581. GGML_ASSERT(nb00 == sizeof(float));
  9582. const int ith = params->ith;
  9583. const int nth = params->nth;
  9584. const int nr = ggml_nrows(dst);
  9585. GGML_ASSERT(n_dims <= ne0);
  9586. GGML_ASSERT(n_dims % 2 == 0);
  9587. // rows per thread
  9588. const int dr = (nr + nth - 1)/nth;
  9589. // row range for this thread
  9590. const int ir0 = dr*ith;
  9591. const int ir1 = MIN(ir0 + dr, nr);
  9592. // row index used to determine which thread to use
  9593. int ir = 0;
  9594. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9595. const float inv_ndims = -1.f/n_dims;
  9596. float corr_dims[2];
  9597. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9598. const bool is_neox = mode & 2;
  9599. const bool is_glm = mode & 4;
  9600. // backward process uses inverse rotation by cos and sin.
  9601. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9602. // this essentially just switches the sign of sin.
  9603. const float sin_sign = forward ? 1.0f : -1.0f;
  9604. const int32_t * pos = (const int32_t *) src1->data;
  9605. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9606. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9607. const int64_t p = pos[i2];
  9608. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9609. if (ir++ < ir0) continue;
  9610. if (ir > ir1) break;
  9611. float theta_base = (float)p;
  9612. if (is_glm) {
  9613. theta_base = MIN(p, n_ctx - 2);
  9614. float block_theta = MAX(p - (n_ctx - 2), 0);
  9615. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9616. const float cos_theta = cosf(theta_base);
  9617. const float sin_theta = sinf(theta_base) * sin_sign;
  9618. const float cos_block_theta = cosf(block_theta);
  9619. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9620. theta_base *= theta_scale;
  9621. block_theta *= theta_scale;
  9622. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9623. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9624. const float x0 = src[0];
  9625. const float x1 = src[n_dims/2];
  9626. const float x2 = src[n_dims];
  9627. const float x3 = src[n_dims/2*3];
  9628. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9629. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9630. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9631. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9632. }
  9633. } else if (!is_neox) {
  9634. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9635. float cos_theta, sin_theta;
  9636. rope_yarn(
  9637. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9638. );
  9639. sin_theta *= sin_sign;
  9640. // zeta scaling for xPos only:
  9641. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9642. if (xpos_down) zeta = 1.0f / zeta;
  9643. theta_base *= theta_scale;
  9644. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9645. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9646. const float x0 = src[0];
  9647. const float x1 = src[1];
  9648. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9649. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9650. }
  9651. } else {
  9652. // TODO: this might be wrong for ne0 != n_dims - need double check
  9653. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9654. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9655. theta_base *= freq_scale;
  9656. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9657. if (ic < n_dims) {
  9658. const int64_t ib = 0;
  9659. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9660. float cur_rot = inv_ndims * ic - ib;
  9661. float cos_theta, sin_theta;
  9662. rope_yarn(
  9663. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9664. &cos_theta, &sin_theta
  9665. );
  9666. sin_theta *= sin_sign;
  9667. theta_base *= theta_scale;
  9668. const int64_t i0 = ib*n_dims + ic/2;
  9669. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9670. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9671. const float x0 = src[0];
  9672. const float x1 = src[n_dims/2];
  9673. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9674. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9675. } else {
  9676. const int64_t i0 = ic;
  9677. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9678. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9679. dst_data[0] = src[0];
  9680. dst_data[1] = src[1];
  9681. }
  9682. }
  9683. }
  9684. }
  9685. }
  9686. }
  9687. }
  9688. static void ggml_compute_forward_rope_f16(
  9689. const struct ggml_compute_params * params,
  9690. const struct ggml_tensor * src0,
  9691. const struct ggml_tensor * src1,
  9692. struct ggml_tensor * dst,
  9693. const bool forward) {
  9694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9695. return;
  9696. }
  9697. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9698. //const int n_past = ((int32_t *) dst->op_params)[0];
  9699. const int n_dims = ((int32_t *) dst->op_params)[1];
  9700. const int mode = ((int32_t *) dst->op_params)[2];
  9701. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9702. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9703. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9704. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9705. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9706. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9707. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9708. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9709. GGML_TENSOR_UNARY_OP_LOCALS
  9710. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9711. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9712. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9713. const int ith = params->ith;
  9714. const int nth = params->nth;
  9715. const int nr = ggml_nrows(dst);
  9716. GGML_ASSERT(n_dims <= ne0);
  9717. GGML_ASSERT(n_dims % 2 == 0);
  9718. // rows per thread
  9719. const int dr = (nr + nth - 1)/nth;
  9720. // row range for this thread
  9721. const int ir0 = dr*ith;
  9722. const int ir1 = MIN(ir0 + dr, nr);
  9723. // row index used to determine which thread to use
  9724. int ir = 0;
  9725. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9726. const float inv_ndims = -1.f/n_dims;
  9727. float corr_dims[2];
  9728. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9729. const bool is_neox = mode & 2;
  9730. const bool is_glm = mode & 4;
  9731. // backward process uses inverse rotation by cos and sin.
  9732. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9733. // this essentially just switches the sign of sin.
  9734. const float sin_sign = forward ? 1.0f : -1.0f;
  9735. const int32_t * pos = (const int32_t *) src1->data;
  9736. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9737. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9738. const int64_t p = pos[i2];
  9739. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9740. if (ir++ < ir0) continue;
  9741. if (ir > ir1) break;
  9742. float theta_base = (float)p;
  9743. if (is_glm) {
  9744. theta_base = MIN(p, n_ctx - 2);
  9745. float block_theta = MAX(p - (n_ctx - 2), 0);
  9746. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9747. const float cos_theta = cosf(theta_base);
  9748. const float sin_theta = sinf(theta_base) * sin_sign;
  9749. const float cos_block_theta = cosf(block_theta);
  9750. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9751. theta_base *= theta_scale;
  9752. block_theta *= theta_scale;
  9753. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9754. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9755. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9756. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9757. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9758. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9759. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9760. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9761. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9762. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9763. }
  9764. } else if (!is_neox) {
  9765. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9766. float cos_theta, sin_theta;
  9767. rope_yarn(
  9768. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9769. );
  9770. sin_theta *= sin_sign;
  9771. theta_base *= theta_scale;
  9772. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9773. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9774. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9775. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9776. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9777. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9778. }
  9779. } else {
  9780. // TODO: this might be wrong for ne0 != n_dims - need double check
  9781. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9782. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9783. theta_base *= freq_scale;
  9784. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9785. if (ic < n_dims) {
  9786. const int64_t ib = 0;
  9787. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9788. float cur_rot = inv_ndims * ic - ib;
  9789. float cos_theta, sin_theta;
  9790. rope_yarn(
  9791. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9792. &cos_theta, &sin_theta
  9793. );
  9794. sin_theta *= sin_sign;
  9795. theta_base *= theta_scale;
  9796. const int64_t i0 = ib*n_dims + ic/2;
  9797. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9798. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9799. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9800. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9801. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9802. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9803. } else {
  9804. const int64_t i0 = ic;
  9805. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9806. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9807. dst_data[0] = src[0];
  9808. dst_data[1] = src[1];
  9809. }
  9810. }
  9811. }
  9812. }
  9813. }
  9814. }
  9815. }
  9816. static void ggml_compute_forward_rope(
  9817. const struct ggml_compute_params * params,
  9818. const struct ggml_tensor * src0,
  9819. const struct ggml_tensor * src1,
  9820. struct ggml_tensor * dst) {
  9821. switch (src0->type) {
  9822. case GGML_TYPE_F16:
  9823. {
  9824. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9825. } break;
  9826. case GGML_TYPE_F32:
  9827. {
  9828. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9829. } break;
  9830. default:
  9831. {
  9832. GGML_ASSERT(false);
  9833. } break;
  9834. }
  9835. }
  9836. // ggml_compute_forward_rope_back
  9837. static void ggml_compute_forward_rope_back(
  9838. const struct ggml_compute_params * params,
  9839. const struct ggml_tensor * src0,
  9840. const struct ggml_tensor * src1,
  9841. struct ggml_tensor * dst) {
  9842. switch (src0->type) {
  9843. case GGML_TYPE_F16:
  9844. {
  9845. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9846. } break;
  9847. case GGML_TYPE_F32:
  9848. {
  9849. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9850. } break;
  9851. default:
  9852. {
  9853. GGML_ASSERT(false);
  9854. } break;
  9855. }
  9856. }
  9857. // ggml_compute_forward_conv_transpose_1d
  9858. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9859. const struct ggml_compute_params * params,
  9860. const struct ggml_tensor * src0,
  9861. const struct ggml_tensor * src1,
  9862. struct ggml_tensor * dst) {
  9863. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9864. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9865. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9866. int64_t t0 = ggml_perf_time_us();
  9867. UNUSED(t0);
  9868. GGML_TENSOR_BINARY_OP_LOCALS
  9869. const int ith = params->ith;
  9870. const int nth = params->nth;
  9871. const int nk = ne00*ne01*ne02;
  9872. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9873. GGML_ASSERT(nb10 == sizeof(float));
  9874. if (params->type == GGML_TASK_INIT) {
  9875. memset(params->wdata, 0, params->wsize);
  9876. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9877. {
  9878. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9880. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9881. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9882. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9883. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9884. dst_data[i00*ne02 + i02] = src[i00];
  9885. }
  9886. }
  9887. }
  9888. }
  9889. // permute source data (src1) from (L x Cin) to (Cin x L)
  9890. {
  9891. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9892. ggml_fp16_t * dst_data = wdata;
  9893. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9894. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9895. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9896. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9897. }
  9898. }
  9899. }
  9900. // need to zero dst since we are accumulating into it
  9901. memset(dst->data, 0, ggml_nbytes(dst));
  9902. return;
  9903. }
  9904. if (params->type == GGML_TASK_FINALIZE) {
  9905. return;
  9906. }
  9907. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9908. // total rows in dst
  9909. const int nr = ne1;
  9910. // rows per thread
  9911. const int dr = (nr + nth - 1)/nth;
  9912. // row range for this thread
  9913. const int ir0 = dr*ith;
  9914. const int ir1 = MIN(ir0 + dr, nr);
  9915. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9916. ggml_fp16_t * const wdata_src = wdata + nk;
  9917. for (int i1 = ir0; i1 < ir1; i1++) {
  9918. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9919. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9920. for (int i10 = 0; i10 < ne10; i10++) {
  9921. const int i1n = i10*ne11;
  9922. for (int i00 = 0; i00 < ne00; i00++) {
  9923. float v = 0;
  9924. ggml_vec_dot_f16(ne02, &v,
  9925. (ggml_fp16_t *) wdata_src + i1n,
  9926. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9927. dst_data[i10*s0 + i00] += v;
  9928. }
  9929. }
  9930. }
  9931. }
  9932. static void ggml_compute_forward_conv_transpose_1d_f32(
  9933. const struct ggml_compute_params * params,
  9934. const struct ggml_tensor * src0,
  9935. const struct ggml_tensor * src1,
  9936. struct ggml_tensor * dst) {
  9937. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9938. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9939. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9940. int64_t t0 = ggml_perf_time_us();
  9941. UNUSED(t0);
  9942. GGML_TENSOR_BINARY_OP_LOCALS
  9943. const int ith = params->ith;
  9944. const int nth = params->nth;
  9945. const int nk = ne00*ne01*ne02;
  9946. GGML_ASSERT(nb00 == sizeof(float));
  9947. GGML_ASSERT(nb10 == sizeof(float));
  9948. if (params->type == GGML_TASK_INIT) {
  9949. memset(params->wdata, 0, params->wsize);
  9950. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9951. {
  9952. float * const wdata = (float *) params->wdata + 0;
  9953. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9954. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9955. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9956. float * dst_data = wdata + i01*ne00*ne02;
  9957. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9958. dst_data[i00*ne02 + i02] = src[i00];
  9959. }
  9960. }
  9961. }
  9962. }
  9963. // prepare source data (src1)
  9964. {
  9965. float * const wdata = (float *) params->wdata + nk;
  9966. float * dst_data = wdata;
  9967. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9968. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9969. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9970. dst_data[i10*ne11 + i11] = src[i10];
  9971. }
  9972. }
  9973. }
  9974. // need to zero dst since we are accumulating into it
  9975. memset(dst->data, 0, ggml_nbytes(dst));
  9976. return;
  9977. }
  9978. if (params->type == GGML_TASK_FINALIZE) {
  9979. return;
  9980. }
  9981. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9982. // total rows in dst
  9983. const int nr = ne1;
  9984. // rows per thread
  9985. const int dr = (nr + nth - 1)/nth;
  9986. // row range for this thread
  9987. const int ir0 = dr*ith;
  9988. const int ir1 = MIN(ir0 + dr, nr);
  9989. float * const wdata = (float *) params->wdata + 0;
  9990. float * const wdata_src = wdata + nk;
  9991. for (int i1 = ir0; i1 < ir1; i1++) {
  9992. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9993. float * wdata_kernel = wdata + i1*ne02*ne00;
  9994. for (int i10 = 0; i10 < ne10; i10++) {
  9995. const int i1n = i10*ne11;
  9996. for (int i00 = 0; i00 < ne00; i00++) {
  9997. float v = 0;
  9998. ggml_vec_dot_f32(ne02, &v,
  9999. wdata_src + i1n,
  10000. wdata_kernel + i00*ne02);
  10001. dst_data[i10*s0 + i00] += v;
  10002. }
  10003. }
  10004. }
  10005. }
  10006. static void ggml_compute_forward_conv_transpose_1d(
  10007. const struct ggml_compute_params * params,
  10008. const struct ggml_tensor * src0,
  10009. const struct ggml_tensor * src1,
  10010. struct ggml_tensor * dst) {
  10011. switch (src0->type) {
  10012. case GGML_TYPE_F16:
  10013. {
  10014. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10015. } break;
  10016. case GGML_TYPE_F32:
  10017. {
  10018. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10019. } break;
  10020. default:
  10021. {
  10022. GGML_ASSERT(false);
  10023. } break;
  10024. }
  10025. }
  10026. // src0: kernel [OC, IC, KH, KW]
  10027. // src1: image [N, IC, IH, IW]
  10028. // dst: result [N, OH, OW, IC*KH*KW]
  10029. static void ggml_compute_forward_im2col_f16(
  10030. const struct ggml_compute_params * params,
  10031. const struct ggml_tensor * src0,
  10032. const struct ggml_tensor * src1,
  10033. struct ggml_tensor * dst) {
  10034. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10035. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10036. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10037. int64_t t0 = ggml_perf_time_us();
  10038. UNUSED(t0);
  10039. GGML_TENSOR_BINARY_OP_LOCALS;
  10040. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10041. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10042. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10043. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10044. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10045. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10046. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10047. const int ith = params->ith;
  10048. const int nth = params->nth;
  10049. const int64_t N = is_2D ? ne13 : ne12;
  10050. const int64_t IC = is_2D ? ne12 : ne11;
  10051. const int64_t IH = is_2D ? ne11 : 1;
  10052. const int64_t IW = ne10;
  10053. const int64_t KH = is_2D ? ne01 : 1;
  10054. const int64_t KW = ne00;
  10055. const int64_t OH = is_2D ? ne2 : 1;
  10056. const int64_t OW = ne1;
  10057. int ofs0 = is_2D ? nb13 : nb12;
  10058. int ofs1 = is_2D ? nb12 : nb11;
  10059. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10060. GGML_ASSERT(nb10 == sizeof(float));
  10061. if (params->type == GGML_TASK_INIT) {
  10062. return;
  10063. }
  10064. if (params->type == GGML_TASK_FINALIZE) {
  10065. return;
  10066. }
  10067. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10068. {
  10069. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10070. for (int64_t in = 0; in < N; in++) {
  10071. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10072. for (int64_t iow = 0; iow < OW; iow++) {
  10073. for (int64_t iic = ith; iic < IC; iic += nth) {
  10074. // micro kernel
  10075. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10076. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10077. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10078. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10079. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10080. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10081. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10082. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10083. } else {
  10084. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10085. }
  10086. }
  10087. }
  10088. }
  10089. }
  10090. }
  10091. }
  10092. }
  10093. }
  10094. static void ggml_compute_forward_im2col(
  10095. const struct ggml_compute_params * params,
  10096. const struct ggml_tensor * src0,
  10097. const struct ggml_tensor * src1,
  10098. struct ggml_tensor * dst) {
  10099. switch (src0->type) {
  10100. case GGML_TYPE_F16:
  10101. {
  10102. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10103. } break;
  10104. case GGML_TYPE_F32:
  10105. {
  10106. GGML_ASSERT(false);
  10107. } break;
  10108. default:
  10109. {
  10110. GGML_ASSERT(false);
  10111. } break;
  10112. }
  10113. }
  10114. // ggml_compute_forward_conv_transpose_2d
  10115. static void ggml_compute_forward_conv_transpose_2d(
  10116. const struct ggml_compute_params * params,
  10117. const struct ggml_tensor * src0,
  10118. const struct ggml_tensor * src1,
  10119. struct ggml_tensor * dst) {
  10120. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10121. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10122. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10123. int64_t t0 = ggml_perf_time_us();
  10124. UNUSED(t0);
  10125. GGML_TENSOR_BINARY_OP_LOCALS
  10126. const int ith = params->ith;
  10127. const int nth = params->nth;
  10128. const int nk = ne00*ne01*ne02*ne03;
  10129. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10130. GGML_ASSERT(nb10 == sizeof(float));
  10131. if (params->type == GGML_TASK_INIT) {
  10132. memset(params->wdata, 0, params->wsize);
  10133. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10134. {
  10135. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10136. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10137. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10138. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10139. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10140. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10141. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10142. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10143. }
  10144. }
  10145. }
  10146. }
  10147. }
  10148. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10149. {
  10150. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10151. for (int i12 = 0; i12 < ne12; i12++) {
  10152. for (int i11 = 0; i11 < ne11; i11++) {
  10153. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10154. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10155. for (int i10 = 0; i10 < ne10; i10++) {
  10156. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10157. }
  10158. }
  10159. }
  10160. }
  10161. memset(dst->data, 0, ggml_nbytes(dst));
  10162. return;
  10163. }
  10164. if (params->type == GGML_TASK_FINALIZE) {
  10165. return;
  10166. }
  10167. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10168. // total patches in dst
  10169. const int np = ne2;
  10170. // patches per thread
  10171. const int dp = (np + nth - 1)/nth;
  10172. // patch range for this thread
  10173. const int ip0 = dp*ith;
  10174. const int ip1 = MIN(ip0 + dp, np);
  10175. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10176. ggml_fp16_t * const wdata_src = wdata + nk;
  10177. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10178. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10179. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10180. for (int i11 = 0; i11 < ne11; i11++) {
  10181. for (int i10 = 0; i10 < ne10; i10++) {
  10182. const int i1n = i11*ne10*ne12 + i10*ne12;
  10183. for (int i01 = 0; i01 < ne01; i01++) {
  10184. for (int i00 = 0; i00 < ne00; i00++) {
  10185. float v = 0;
  10186. ggml_vec_dot_f16(ne03, &v,
  10187. wdata_src + i1n,
  10188. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10189. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10190. }
  10191. }
  10192. }
  10193. }
  10194. }
  10195. }
  10196. // ggml_compute_forward_pool_1d_sk_p0
  10197. static void ggml_compute_forward_pool_1d_sk_p0(
  10198. const struct ggml_compute_params * params,
  10199. const enum ggml_op_pool op,
  10200. const struct ggml_tensor * src,
  10201. const int k,
  10202. struct ggml_tensor * dst) {
  10203. assert(src->type == GGML_TYPE_F32);
  10204. assert(params->ith == 0);
  10205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10206. return;
  10207. }
  10208. const char * cdata = (const char *)src->data;
  10209. const char * const data_end = cdata + ggml_nbytes(src);
  10210. float * drow = (float *)dst->data;
  10211. const int64_t rs = dst->ne[0];
  10212. while (cdata < data_end) {
  10213. const float * const srow = (const float *)cdata;
  10214. int j = 0;
  10215. for (int64_t i = 0; i < rs; ++i) {
  10216. switch (op) {
  10217. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10218. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10219. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10220. }
  10221. for (int ki = 0; ki < k; ++ki) {
  10222. switch (op) {
  10223. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10224. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10225. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10226. }
  10227. ++j;
  10228. }
  10229. switch (op) {
  10230. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10231. case GGML_OP_POOL_MAX: break;
  10232. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10233. }
  10234. }
  10235. cdata += src->nb[1];
  10236. drow += rs;
  10237. }
  10238. }
  10239. // ggml_compute_forward_pool_1d
  10240. static void ggml_compute_forward_pool_1d(
  10241. const struct ggml_compute_params * params,
  10242. const struct ggml_tensor * src0,
  10243. struct ggml_tensor * dst) {
  10244. const int32_t * opts = (const int32_t *)dst->op_params;
  10245. enum ggml_op_pool op = opts[0];
  10246. const int k0 = opts[1];
  10247. const int s0 = opts[2];
  10248. const int p0 = opts[3];
  10249. GGML_ASSERT(p0 == 0); // padding not supported
  10250. GGML_ASSERT(k0 == s0); // only s = k supported
  10251. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10252. }
  10253. // ggml_compute_forward_pool_2d
  10254. static void ggml_compute_forward_pool_2d(
  10255. const struct ggml_compute_params * params,
  10256. const struct ggml_tensor * src,
  10257. struct ggml_tensor * dst) {
  10258. assert(src->type == GGML_TYPE_F32);
  10259. assert(params->ith == 0);
  10260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10261. return;
  10262. }
  10263. const int32_t * opts = (const int32_t *)dst->op_params;
  10264. enum ggml_op_pool op = opts[0];
  10265. const int k0 = opts[1];
  10266. const int k1 = opts[2];
  10267. const int s0 = opts[3];
  10268. const int s1 = opts[4];
  10269. const int p0 = opts[5];
  10270. const int p1 = opts[6];
  10271. const char * cdata = (const char*)src->data;
  10272. const char * const data_end = cdata + ggml_nbytes(src);
  10273. const int64_t px = dst->ne[0];
  10274. const int64_t py = dst->ne[1];
  10275. const int64_t pa = px * py;
  10276. float * dplane = (float *)dst->data;
  10277. const int ka = k0 * k1;
  10278. const int offset0 = -p0;
  10279. const int offset1 = -p1;
  10280. while (cdata < data_end) {
  10281. for (int oy = 0; oy < py; ++oy) {
  10282. float * const drow = dplane + oy * px;
  10283. for (int ox = 0; ox < px; ++ox) {
  10284. float * const out = drow + ox;
  10285. switch (op) {
  10286. case GGML_OP_POOL_AVG: *out = 0; break;
  10287. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10288. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10289. }
  10290. const int ix = offset0 + ox * s0;
  10291. const int iy = offset1 + oy * s1;
  10292. for (int ky = 0; ky < k1; ++ky) {
  10293. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10294. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10295. for (int kx = 0; kx < k0; ++kx) {
  10296. int j = ix + kx;
  10297. if (j < 0 || j >= src->ne[0]) continue;
  10298. switch (op) {
  10299. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10300. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10301. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10302. }
  10303. }
  10304. }
  10305. switch (op) {
  10306. case GGML_OP_POOL_AVG: *out /= ka; break;
  10307. case GGML_OP_POOL_MAX: break;
  10308. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10309. }
  10310. }
  10311. }
  10312. cdata += src->nb[2];
  10313. dplane += pa;
  10314. }
  10315. }
  10316. // ggml_compute_forward_upscale
  10317. static void ggml_compute_forward_upscale_f32(
  10318. const struct ggml_compute_params * params,
  10319. const struct ggml_tensor * src0,
  10320. struct ggml_tensor * dst) {
  10321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10322. return;
  10323. }
  10324. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10325. const int ith = params->ith;
  10326. const int nth = params->nth;
  10327. GGML_TENSOR_UNARY_OP_LOCALS
  10328. const int scale_factor = dst->op_params[0];
  10329. // TODO: optimize
  10330. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10331. const int64_t i03 = i3;
  10332. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10333. const int64_t i02 = i2;
  10334. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10335. const int64_t i01 = i1 / scale_factor;
  10336. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10337. const int64_t i00 = i0 / scale_factor;
  10338. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10339. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10340. *y = *x;
  10341. }
  10342. }
  10343. }
  10344. }
  10345. }
  10346. static void ggml_compute_forward_upscale(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. struct ggml_tensor * dst) {
  10350. switch (src0->type) {
  10351. case GGML_TYPE_F32:
  10352. {
  10353. ggml_compute_forward_upscale_f32(params, src0, dst);
  10354. } break;
  10355. default:
  10356. {
  10357. GGML_ASSERT(false);
  10358. } break;
  10359. }
  10360. }
  10361. // ggml_compute_forward_pad
  10362. static void ggml_compute_forward_pad_f32(
  10363. const struct ggml_compute_params * params,
  10364. const struct ggml_tensor * src0,
  10365. struct ggml_tensor * dst) {
  10366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10367. return;
  10368. }
  10369. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10370. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10371. const int ith = params->ith;
  10372. const int nth = params->nth;
  10373. GGML_TENSOR_UNARY_OP_LOCALS
  10374. float * dst_ptr = (float *) dst->data;
  10375. // TODO: optimize
  10376. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10377. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10378. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10379. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10380. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10381. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10382. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10383. dst_ptr[dst_idx] = *src_ptr;
  10384. } else {
  10385. dst_ptr[dst_idx] = 0;
  10386. }
  10387. }
  10388. }
  10389. }
  10390. }
  10391. }
  10392. static void ggml_compute_forward_pad(
  10393. const struct ggml_compute_params * params,
  10394. const struct ggml_tensor * src0,
  10395. struct ggml_tensor * dst) {
  10396. switch (src0->type) {
  10397. case GGML_TYPE_F32:
  10398. {
  10399. ggml_compute_forward_pad_f32(params, src0, dst);
  10400. } break;
  10401. default:
  10402. {
  10403. GGML_ASSERT(false);
  10404. } break;
  10405. }
  10406. }
  10407. // ggml_compute_forward_argsort
  10408. static void ggml_compute_forward_argsort_f32(
  10409. const struct ggml_compute_params * params,
  10410. const struct ggml_tensor * src0,
  10411. struct ggml_tensor * dst) {
  10412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10413. return;
  10414. }
  10415. GGML_TENSOR_UNARY_OP_LOCALS
  10416. GGML_ASSERT(nb0 == sizeof(float));
  10417. const int ith = params->ith;
  10418. const int nth = params->nth;
  10419. const int64_t nr = ggml_nrows(src0);
  10420. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10421. for (int64_t i = ith; i < nr; i += nth) {
  10422. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10423. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10424. for (int64_t j = 0; j < ne0; j++) {
  10425. dst_data[j] = j;
  10426. }
  10427. // C doesn't have a functional sort, so we do a bubble sort instead
  10428. for (int64_t j = 0; j < ne0; j++) {
  10429. for (int64_t k = j + 1; k < ne0; k++) {
  10430. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10431. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10432. int32_t tmp = dst_data[j];
  10433. dst_data[j] = dst_data[k];
  10434. dst_data[k] = tmp;
  10435. }
  10436. }
  10437. }
  10438. }
  10439. }
  10440. static void ggml_compute_forward_argsort(
  10441. const struct ggml_compute_params * params,
  10442. const struct ggml_tensor * src0,
  10443. struct ggml_tensor * dst) {
  10444. switch (src0->type) {
  10445. case GGML_TYPE_F32:
  10446. {
  10447. ggml_compute_forward_argsort_f32(params, src0, dst);
  10448. } break;
  10449. default:
  10450. {
  10451. GGML_ASSERT(false);
  10452. } break;
  10453. }
  10454. }
  10455. // ggml_compute_forward_flash_attn
  10456. static void ggml_compute_forward_flash_attn_f32(
  10457. const struct ggml_compute_params * params,
  10458. const struct ggml_tensor * q,
  10459. const struct ggml_tensor * k,
  10460. const struct ggml_tensor * v,
  10461. const bool masked,
  10462. struct ggml_tensor * dst) {
  10463. int64_t t0 = ggml_perf_time_us();
  10464. UNUSED(t0);
  10465. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10466. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10467. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10468. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10469. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10470. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10471. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10472. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10473. const int ith = params->ith;
  10474. const int nth = params->nth;
  10475. const int64_t D = neq0;
  10476. const int64_t N = neq1;
  10477. const int64_t P = nek1 - N;
  10478. const int64_t M = P + N;
  10479. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10480. GGML_ASSERT(ne0 == D);
  10481. GGML_ASSERT(ne1 == N);
  10482. GGML_ASSERT(P >= 0);
  10483. GGML_ASSERT(nbq0 == sizeof(float));
  10484. GGML_ASSERT(nbk0 == sizeof(float));
  10485. GGML_ASSERT(nbv0 == sizeof(float));
  10486. GGML_ASSERT(neq0 == D);
  10487. GGML_ASSERT(nek0 == D);
  10488. GGML_ASSERT(nev1 == D);
  10489. GGML_ASSERT(neq1 == N);
  10490. GGML_ASSERT(nek1 == N + P);
  10491. GGML_ASSERT(nev1 == D);
  10492. // dst cannot be transposed or permuted
  10493. GGML_ASSERT(nb0 == sizeof(float));
  10494. GGML_ASSERT(nb0 <= nb1);
  10495. GGML_ASSERT(nb1 <= nb2);
  10496. GGML_ASSERT(nb2 <= nb3);
  10497. if (params->type == GGML_TASK_INIT) {
  10498. return;
  10499. }
  10500. if (params->type == GGML_TASK_FINALIZE) {
  10501. return;
  10502. }
  10503. // parallelize by q rows using ggml_vec_dot_f32
  10504. // total rows in q
  10505. const int nr = neq1*neq2*neq3;
  10506. // rows per thread
  10507. const int dr = (nr + nth - 1)/nth;
  10508. // row range for this thread
  10509. const int ir0 = dr*ith;
  10510. const int ir1 = MIN(ir0 + dr, nr);
  10511. const float scale = 1.0f/sqrtf(D);
  10512. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10513. for (int ir = ir0; ir < ir1; ++ir) {
  10514. // q indices
  10515. const int iq3 = ir/(neq2*neq1);
  10516. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10517. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10518. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10519. for (int i = M; i < Mup; ++i) {
  10520. S[i] = -INFINITY;
  10521. }
  10522. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10523. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10524. // k indices
  10525. const int ik3 = iq3;
  10526. const int ik2 = iq2 % nek2;
  10527. const int ik1 = ic;
  10528. // S indices
  10529. const int i1 = ik1;
  10530. ggml_vec_dot_f32(neq0,
  10531. S + i1,
  10532. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10533. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10534. }
  10535. // scale
  10536. ggml_vec_scale_f32(masked_begin, S, scale);
  10537. for (int64_t i = masked_begin; i < M; i++) {
  10538. S[i] = -INFINITY;
  10539. }
  10540. // softmax
  10541. // exclude known -INF S[..] values from max and loop
  10542. // dont forget to set their SW values to zero
  10543. {
  10544. float max = -INFINITY;
  10545. ggml_vec_max_f32(masked_begin, &max, S);
  10546. ggml_float sum = 0.0;
  10547. {
  10548. #ifdef GGML_SOFT_MAX_ACCELERATE
  10549. max = -max;
  10550. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10551. vvexpf(S, S, &Mup);
  10552. ggml_vec_sum_f32(Mup, &sum, S);
  10553. #else
  10554. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10555. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10556. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10557. if (i >= masked_begin) {
  10558. break;
  10559. }
  10560. float * SS = S + i;
  10561. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10562. if (i + j >= masked_begin) {
  10563. break;
  10564. } else if (SS[j] == -INFINITY) {
  10565. SS[j] = 0.0f;
  10566. } else {
  10567. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10568. const float val = expf(SS[j] - max);
  10569. #else
  10570. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10571. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10572. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10573. #endif
  10574. sump[j] += (ggml_float)val;
  10575. SS[j] = val;
  10576. }
  10577. }
  10578. }
  10579. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10580. sum += sump[i];
  10581. }
  10582. #endif
  10583. }
  10584. assert(sum > 0.0);
  10585. sum = 1.0/sum;
  10586. ggml_vec_scale_f32(masked_begin, S, sum);
  10587. #ifndef NDEBUG
  10588. for (int i = 0; i < masked_begin; ++i) {
  10589. assert(!isnan(S[i]));
  10590. assert(!isinf(S[i]));
  10591. }
  10592. #endif
  10593. }
  10594. for (int64_t ic = 0; ic < nev1; ++ic) {
  10595. // dst indices
  10596. const int i1 = iq1;
  10597. const int i2 = iq2;
  10598. const int i3 = iq3;
  10599. // v indices
  10600. const int iv2 = iq2 % nev2;
  10601. const int iv3 = iq3;
  10602. ggml_vec_dot_f32(masked_begin,
  10603. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10604. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10605. S);
  10606. }
  10607. }
  10608. }
  10609. static void ggml_compute_forward_flash_attn_f16(
  10610. const struct ggml_compute_params * params,
  10611. const struct ggml_tensor * q,
  10612. const struct ggml_tensor * k,
  10613. const struct ggml_tensor * v,
  10614. const bool masked,
  10615. struct ggml_tensor * dst) {
  10616. int64_t t0 = ggml_perf_time_us();
  10617. UNUSED(t0);
  10618. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10619. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10620. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10621. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10622. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10623. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10624. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10625. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10626. const int ith = params->ith;
  10627. const int nth = params->nth;
  10628. const int64_t D = neq0;
  10629. const int64_t N = neq1;
  10630. const int64_t P = nek1 - N;
  10631. const int64_t M = P + N;
  10632. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10633. GGML_ASSERT(ne0 == D);
  10634. GGML_ASSERT(ne1 == N);
  10635. GGML_ASSERT(P >= 0);
  10636. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10637. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10638. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10639. GGML_ASSERT(neq0 == D);
  10640. GGML_ASSERT(nek0 == D);
  10641. GGML_ASSERT(nev1 == D);
  10642. GGML_ASSERT(neq1 == N);
  10643. GGML_ASSERT(nek1 == N + P);
  10644. GGML_ASSERT(nev1 == D);
  10645. // dst cannot be transposed or permuted
  10646. GGML_ASSERT(nb0 == sizeof(float));
  10647. GGML_ASSERT(nb0 <= nb1);
  10648. GGML_ASSERT(nb1 <= nb2);
  10649. GGML_ASSERT(nb2 <= nb3);
  10650. if (params->type == GGML_TASK_INIT) {
  10651. return;
  10652. }
  10653. if (params->type == GGML_TASK_FINALIZE) {
  10654. return;
  10655. }
  10656. // parallelize by q rows using ggml_vec_dot_f32
  10657. // total rows in q
  10658. const int nr = neq1*neq2*neq3;
  10659. // rows per thread
  10660. const int dr = (nr + nth - 1)/nth;
  10661. // row range for this thread
  10662. const int ir0 = dr*ith;
  10663. const int ir1 = MIN(ir0 + dr, nr);
  10664. const float scale = 1.0f/sqrtf(D);
  10665. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10666. for (int ir = ir0; ir < ir1; ++ir) {
  10667. // q indices
  10668. const int iq3 = ir/(neq2*neq1);
  10669. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10670. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10671. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10672. for (int i = M; i < Mup; ++i) {
  10673. S[i] = -INFINITY;
  10674. }
  10675. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10676. for (int64_t ic = 0; ic < nek1; ++ic) {
  10677. // k indices
  10678. const int ik3 = iq3;
  10679. const int ik2 = iq2 % nek2;
  10680. const int ik1 = ic;
  10681. // S indices
  10682. const int i1 = ik1;
  10683. ggml_vec_dot_f16(neq0,
  10684. S + i1,
  10685. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10686. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10687. }
  10688. } else {
  10689. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10690. // k indices
  10691. const int ik3 = iq3;
  10692. const int ik2 = iq2 % nek2;
  10693. const int ik1 = ic;
  10694. // S indices
  10695. const int i1 = ik1;
  10696. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10697. S + i1,
  10698. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10699. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10700. }
  10701. }
  10702. // scale
  10703. ggml_vec_scale_f32(nek1, S, scale);
  10704. if (masked) {
  10705. for (int64_t i = P; i < M; i++) {
  10706. if (i > P + iq1) {
  10707. S[i] = -INFINITY;
  10708. }
  10709. }
  10710. }
  10711. // softmax
  10712. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10713. // dont forget to set their S values to zero
  10714. {
  10715. float max = -INFINITY;
  10716. ggml_vec_max_f32(M, &max, S);
  10717. ggml_float sum = 0.0;
  10718. {
  10719. #ifdef GGML_SOFT_MAX_ACCELERATE
  10720. max = -max;
  10721. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10722. vvexpf(S, S, &Mup);
  10723. ggml_vec_sum_f32(Mup, &sum, S);
  10724. #else
  10725. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10726. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10727. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10728. float * SS = S + i;
  10729. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10730. if (SS[j] == -INFINITY) {
  10731. SS[j] = 0.0f;
  10732. } else {
  10733. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10734. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10735. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10736. sump[j] += (ggml_float)val;
  10737. SS[j] = val;
  10738. }
  10739. }
  10740. }
  10741. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10742. sum += sump[i];
  10743. }
  10744. #endif
  10745. }
  10746. assert(sum > 0.0);
  10747. sum = 1.0/sum;
  10748. ggml_vec_scale_f32(M, S, sum);
  10749. #ifndef NDEBUG
  10750. for (int i = 0; i < M; ++i) {
  10751. assert(!isnan(S[i]));
  10752. assert(!isinf(S[i]));
  10753. }
  10754. #endif
  10755. }
  10756. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10757. for (int64_t i = 0; i < M; i++) {
  10758. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10759. }
  10760. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10761. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10762. for (int64_t ic = 0; ic < nev1; ++ic) {
  10763. // dst indices
  10764. const int i1 = iq1;
  10765. const int i2 = iq2;
  10766. const int i3 = iq3;
  10767. // v indices
  10768. const int iv2 = iq2 % nev2;
  10769. const int iv3 = iq3;
  10770. ggml_vec_dot_f16(nev0,
  10771. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10772. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10773. S16);
  10774. }
  10775. } else {
  10776. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10777. // dst indices
  10778. const int i1 = iq1;
  10779. const int i2 = iq2;
  10780. const int i3 = iq3;
  10781. // v indices
  10782. const int iv2 = iq2 % nev2;
  10783. const int iv3 = iq3;
  10784. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10785. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10786. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10787. S16);
  10788. }
  10789. }
  10790. }
  10791. }
  10792. static void ggml_compute_forward_flash_attn(
  10793. const struct ggml_compute_params * params,
  10794. const struct ggml_tensor * q,
  10795. const struct ggml_tensor * k,
  10796. const struct ggml_tensor * v,
  10797. const bool masked,
  10798. struct ggml_tensor * dst) {
  10799. switch (q->type) {
  10800. case GGML_TYPE_F16:
  10801. {
  10802. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10803. } break;
  10804. case GGML_TYPE_F32:
  10805. {
  10806. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10807. } break;
  10808. default:
  10809. {
  10810. GGML_ASSERT(false);
  10811. } break;
  10812. }
  10813. }
  10814. // ggml_compute_forward_flash_ff
  10815. static void ggml_compute_forward_flash_ff_f16(
  10816. const struct ggml_compute_params * params,
  10817. const struct ggml_tensor * a, // F16
  10818. const struct ggml_tensor * b0, // F16 fc_w
  10819. const struct ggml_tensor * b1, // F32 fc_b
  10820. const struct ggml_tensor * c0, // F16 proj_w
  10821. const struct ggml_tensor * c1, // F32 proj_b
  10822. struct ggml_tensor * dst) {
  10823. int64_t t0 = ggml_perf_time_us();
  10824. UNUSED(t0);
  10825. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10826. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10827. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10828. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10829. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10830. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10831. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10832. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10833. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10834. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10835. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10836. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10837. const int ith = params->ith;
  10838. const int nth = params->nth;
  10839. const int64_t D = nea0;
  10840. //const int64_t N = nea1;
  10841. const int64_t M = neb01;
  10842. GGML_ASSERT(ne0 == nea0);
  10843. GGML_ASSERT(ne1 == nea1);
  10844. GGML_ASSERT(ne2 == nea2);
  10845. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10846. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10847. GGML_ASSERT(nbb10 == sizeof(float));
  10848. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10849. GGML_ASSERT(nbc10 == sizeof(float));
  10850. GGML_ASSERT(neb00 == D);
  10851. GGML_ASSERT(neb01 == M);
  10852. GGML_ASSERT(neb10 == M);
  10853. GGML_ASSERT(neb11 == 1);
  10854. GGML_ASSERT(nec00 == M);
  10855. GGML_ASSERT(nec01 == D);
  10856. GGML_ASSERT(nec10 == D);
  10857. GGML_ASSERT(nec11 == 1);
  10858. // dst cannot be transposed or permuted
  10859. GGML_ASSERT(nb0 == sizeof(float));
  10860. GGML_ASSERT(nb0 <= nb1);
  10861. GGML_ASSERT(nb1 <= nb2);
  10862. GGML_ASSERT(nb2 <= nb3);
  10863. if (params->type == GGML_TASK_INIT) {
  10864. return;
  10865. }
  10866. if (params->type == GGML_TASK_FINALIZE) {
  10867. return;
  10868. }
  10869. // parallelize by a rows using ggml_vec_dot_f32
  10870. // total rows in a
  10871. const int nr = nea1*nea2*nea3;
  10872. // rows per thread
  10873. const int dr = (nr + nth - 1)/nth;
  10874. // row range for this thread
  10875. const int ir0 = dr*ith;
  10876. const int ir1 = MIN(ir0 + dr, nr);
  10877. for (int ir = ir0; ir < ir1; ++ir) {
  10878. // a indices
  10879. const int ia3 = ir/(nea2*nea1);
  10880. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10881. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10882. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10883. for (int64_t ic = 0; ic < neb01; ++ic) {
  10884. // b0 indices
  10885. const int ib03 = ia3;
  10886. const int ib02 = ia2;
  10887. const int ib01 = ic;
  10888. // S indices
  10889. const int i1 = ib01;
  10890. ggml_vec_dot_f16(nea0,
  10891. S + i1,
  10892. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10893. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10894. }
  10895. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10896. //ggml_vec_gelu_f32(neb01, S, S);
  10897. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10898. for (int64_t i = 0; i < M; i++) {
  10899. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10900. }
  10901. ggml_vec_gelu_f16(neb01, S16, S16);
  10902. {
  10903. // dst indices
  10904. const int i1 = ia1;
  10905. const int i2 = ia2;
  10906. const int i3 = ia3;
  10907. for (int64_t ic = 0; ic < nec01; ++ic) {
  10908. ggml_vec_dot_f16(neb01,
  10909. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10910. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10911. S16);
  10912. }
  10913. ggml_vec_add_f32(nec01,
  10914. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10915. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10916. (float *) c1->data);
  10917. }
  10918. }
  10919. }
  10920. static void ggml_compute_forward_flash_ff(
  10921. const struct ggml_compute_params * params,
  10922. const struct ggml_tensor * a,
  10923. const struct ggml_tensor * b0,
  10924. const struct ggml_tensor * b1,
  10925. const struct ggml_tensor * c0,
  10926. const struct ggml_tensor * c1,
  10927. struct ggml_tensor * dst) {
  10928. switch (b0->type) {
  10929. case GGML_TYPE_F16:
  10930. {
  10931. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10932. } break;
  10933. case GGML_TYPE_F32:
  10934. {
  10935. GGML_ASSERT(false); // TODO
  10936. } break;
  10937. default:
  10938. {
  10939. GGML_ASSERT(false);
  10940. } break;
  10941. }
  10942. }
  10943. // ggml_compute_forward_flash_attn_back
  10944. static void ggml_compute_forward_flash_attn_back_f32(
  10945. const struct ggml_compute_params * params,
  10946. const struct ggml_tensor * q,
  10947. const struct ggml_tensor * k,
  10948. const struct ggml_tensor * v,
  10949. const struct ggml_tensor * d,
  10950. const bool masked,
  10951. struct ggml_tensor * dst) {
  10952. int64_t t0 = ggml_perf_time_us();
  10953. UNUSED(t0);
  10954. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10955. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10956. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10957. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10958. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10959. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10960. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10961. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10962. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10963. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10964. const int ith = params->ith;
  10965. const int nth = params->nth;
  10966. const int64_t D = neq0;
  10967. const int64_t N = neq1;
  10968. const int64_t P = nek1 - N;
  10969. const int64_t M = P + N;
  10970. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10971. const int mxDM = MAX(D, Mup);
  10972. // GGML_ASSERT(ne0 == D);
  10973. // GGML_ASSERT(ne1 == N);
  10974. GGML_ASSERT(P >= 0);
  10975. GGML_ASSERT(nbq0 == sizeof(float));
  10976. GGML_ASSERT(nbk0 == sizeof(float));
  10977. GGML_ASSERT(nbv0 == sizeof(float));
  10978. GGML_ASSERT(neq0 == D);
  10979. GGML_ASSERT(nek0 == D);
  10980. GGML_ASSERT(nev1 == D);
  10981. GGML_ASSERT(ned0 == D);
  10982. GGML_ASSERT(neq1 == N);
  10983. GGML_ASSERT(nek1 == N + P);
  10984. GGML_ASSERT(nev1 == D);
  10985. GGML_ASSERT(ned1 == N);
  10986. // dst cannot be transposed or permuted
  10987. GGML_ASSERT(nb0 == sizeof(float));
  10988. GGML_ASSERT(nb0 <= nb1);
  10989. GGML_ASSERT(nb1 <= nb2);
  10990. GGML_ASSERT(nb2 <= nb3);
  10991. if (params->type == GGML_TASK_INIT) {
  10992. if (ith == 0) {
  10993. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10994. }
  10995. return;
  10996. }
  10997. if (params->type == GGML_TASK_FINALIZE) {
  10998. return;
  10999. }
  11000. const int64_t elem_q = ggml_nelements(q);
  11001. const int64_t elem_k = ggml_nelements(k);
  11002. enum ggml_type result_type = dst->type;
  11003. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11004. const size_t tsize = ggml_type_size(result_type);
  11005. const size_t offs_q = 0;
  11006. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11007. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11008. void * grad_q = (char *) dst->data;
  11009. void * grad_k = (char *) dst->data + offs_k;
  11010. void * grad_v = (char *) dst->data + offs_v;
  11011. const size_t nbgq1 = nb0*neq0;
  11012. const size_t nbgq2 = nb0*neq0*neq1;
  11013. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11014. const size_t nbgk1 = nb0*nek0;
  11015. const size_t nbgk2 = nb0*nek0*nek1;
  11016. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11017. const size_t nbgv1 = nb0*nev0;
  11018. const size_t nbgv2 = nb0*nev0*nev1;
  11019. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11020. // parallelize by k rows using ggml_vec_dot_f32
  11021. // total rows in k
  11022. const int nr = nek2*nek3;
  11023. // rows per thread
  11024. const int dr = (nr + nth - 1)/nth;
  11025. // row range for this thread
  11026. const int ir0 = dr*ith;
  11027. const int ir1 = MIN(ir0 + dr, nr);
  11028. const float scale = 1.0f/sqrtf(D);
  11029. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11030. // how often k2 (and v2) is repeated in q2
  11031. int nrep = neq2/nek2;
  11032. for (int ir = ir0; ir < ir1; ++ir) {
  11033. // q indices
  11034. const int ik3 = ir/(nek2);
  11035. const int ik2 = ir - ik3*nek2;
  11036. const int iq3 = ik3;
  11037. const int id3 = ik3;
  11038. const int iv3 = ik3;
  11039. const int iv2 = ik2;
  11040. for (int irep = 0; irep < nrep; ++irep) {
  11041. const int iq2 = ik2 + irep*nek2;
  11042. const int id2 = iq2;
  11043. // (ik2 + irep*nek2) % nek2 == ik2
  11044. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11045. const int id1 = iq1;
  11046. // not sure about CACHE_LINE_SIZE_F32..
  11047. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11048. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11049. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11050. for (int i = M; i < Mup; ++i) {
  11051. S[i] = -INFINITY;
  11052. }
  11053. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11054. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11055. // k indices
  11056. const int ik1 = ic;
  11057. // S indices
  11058. const int i1 = ik1;
  11059. ggml_vec_dot_f32(neq0,
  11060. S + i1,
  11061. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11062. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11063. }
  11064. // scale
  11065. ggml_vec_scale_f32(masked_begin, S, scale);
  11066. for (int64_t i = masked_begin; i < M; i++) {
  11067. S[i] = -INFINITY;
  11068. }
  11069. // softmax
  11070. // exclude known -INF S[..] values from max and loop
  11071. // dont forget to set their SM values to zero
  11072. {
  11073. float max = -INFINITY;
  11074. ggml_vec_max_f32(masked_begin, &max, S);
  11075. ggml_float sum = 0.0;
  11076. {
  11077. #ifdef GGML_SOFT_MAX_ACCELERATE
  11078. max = -max;
  11079. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11080. vvexpf(SM, SM, &Mup);
  11081. ggml_vec_sum_f32(Mup, &sum, SM);
  11082. #else
  11083. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11084. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11085. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11086. if (i >= masked_begin) {
  11087. break;
  11088. }
  11089. float * SR = S + i;
  11090. float * SW = SM + i;
  11091. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11092. if (i + j >= masked_begin) {
  11093. break;
  11094. } else if (SR[j] == -INFINITY) {
  11095. SW[j] = 0.0f;
  11096. } else {
  11097. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11098. const float val = expf(SR[j] - max);
  11099. #else
  11100. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11101. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11102. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11103. #endif
  11104. sump[j] += (ggml_float)val;
  11105. SW[j] = val;
  11106. }
  11107. }
  11108. }
  11109. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11110. sum += sump[i];
  11111. }
  11112. #endif
  11113. }
  11114. assert(sum > 0.0);
  11115. sum = 1.0/sum;
  11116. ggml_vec_scale_f32(masked_begin, SM, sum);
  11117. }
  11118. // step-by-step explanation
  11119. {
  11120. // forward-process shape grads from backward process
  11121. // parallel_for ik2,ik3:
  11122. // for irep:
  11123. // iq2 = ik2 + irep*nek2
  11124. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11125. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11126. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11127. // for iq1:
  11128. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11129. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11130. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11131. // S0 = -Inf [D,1,1,1]
  11132. // ~S1[i] = dot(kcur[:D,i], qcur)
  11133. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11134. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11135. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11136. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11137. // ~S5[i] = dot(vcur[:,i], S4)
  11138. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11139. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11140. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11141. // dst backward-/ grad[dst] = d
  11142. //
  11143. // output gradients with their dependencies:
  11144. //
  11145. // grad[kcur] = grad[S1].T @ qcur
  11146. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11147. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11148. // grad[S4] = grad[S5] @ vcur
  11149. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11150. // grad[qcur] = grad[S1] @ kcur
  11151. // grad[vcur] = grad[S5].T @ S4
  11152. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11153. //
  11154. // in post-order:
  11155. //
  11156. // S1 = qcur @ kcur.T
  11157. // S2 = S1 * scale
  11158. // S3 = diag_mask_inf(S2, P)
  11159. // S4 = softmax(S3)
  11160. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11161. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11162. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11163. // grad[qcur] = grad[S1] @ kcur
  11164. // grad[kcur] = grad[S1].T @ qcur
  11165. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11166. //
  11167. // using less variables (SM=S4):
  11168. //
  11169. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11170. // SM = softmax(S)
  11171. // S = d[:D,iq1,iq2,iq3] @ vcur
  11172. // dot_SM_gradSM = dot(SM, S)
  11173. // S = SM * (S - dot(SM, S))
  11174. // S = diag_mask_zero(S, P) * scale
  11175. //
  11176. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11177. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11178. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11179. }
  11180. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11181. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11182. // for ic:
  11183. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11184. // exclude known future zero S[..] values from operation
  11185. ggml_vec_set_f32(masked_begin, S, 0);
  11186. for (int64_t ic = 0; ic < D; ++ic) {
  11187. ggml_vec_mad_f32(masked_begin,
  11188. S,
  11189. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11190. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11191. }
  11192. // S = SM * (S - dot(SM, S))
  11193. float dot_SM_gradSM = 0;
  11194. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11195. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11196. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11197. // S = diag_mask_zero(S, P) * scale
  11198. // already done by above ggml_vec_set_f32
  11199. // exclude known zero S[..] values from operation
  11200. ggml_vec_scale_f32(masked_begin, S, scale);
  11201. // S shape [M,1]
  11202. // SM shape [M,1]
  11203. // kcur shape [D,M]
  11204. // qcur shape [D,1]
  11205. // vcur shape [M,D]
  11206. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11207. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11208. // for ic:
  11209. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11210. // exclude known zero S[..] values from loop
  11211. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11212. ggml_vec_mad_f32(D,
  11213. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11214. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11215. S[ic]);
  11216. }
  11217. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11218. // for ic:
  11219. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11220. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11221. // exclude known zero S[..] values from loop
  11222. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11223. ggml_vec_mad_f32(D,
  11224. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11225. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11226. S[ic]);
  11227. }
  11228. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11229. // for ic:
  11230. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11231. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11232. // exclude known zero SM[..] values from mad
  11233. for (int64_t ic = 0; ic < D; ++ic) {
  11234. ggml_vec_mad_f32(masked_begin,
  11235. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11236. SM,
  11237. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11238. }
  11239. }
  11240. }
  11241. }
  11242. }
  11243. static void ggml_compute_forward_flash_attn_back(
  11244. const struct ggml_compute_params * params,
  11245. const struct ggml_tensor * q,
  11246. const struct ggml_tensor * k,
  11247. const struct ggml_tensor * v,
  11248. const struct ggml_tensor * d,
  11249. const bool masked,
  11250. struct ggml_tensor * dst) {
  11251. switch (q->type) {
  11252. case GGML_TYPE_F32:
  11253. {
  11254. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11255. } break;
  11256. default:
  11257. {
  11258. GGML_ASSERT(false);
  11259. } break;
  11260. }
  11261. }
  11262. // ggml_compute_forward_win_part
  11263. static void ggml_compute_forward_win_part_f32(
  11264. const struct ggml_compute_params * params,
  11265. const struct ggml_tensor * src0,
  11266. struct ggml_tensor * dst) {
  11267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11268. return;
  11269. }
  11270. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11271. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11272. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11273. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11274. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11275. assert(ne00 == ne0);
  11276. assert(ne3 == nep0*nep1);
  11277. // TODO: optimize / multi-thread
  11278. for (int py = 0; py < nep1; ++py) {
  11279. for (int px = 0; px < nep0; ++px) {
  11280. const int64_t i3 = py*nep0 + px;
  11281. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11282. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11283. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11284. const int64_t i02 = py*w + i2;
  11285. const int64_t i01 = px*w + i1;
  11286. const int64_t i00 = i0;
  11287. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11288. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11289. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11290. ((float *) dst->data)[i] = 0.0f;
  11291. } else {
  11292. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11293. }
  11294. }
  11295. }
  11296. }
  11297. }
  11298. }
  11299. }
  11300. static void ggml_compute_forward_win_part(
  11301. const struct ggml_compute_params * params,
  11302. const struct ggml_tensor * src0,
  11303. struct ggml_tensor * dst) {
  11304. switch (src0->type) {
  11305. case GGML_TYPE_F32:
  11306. {
  11307. ggml_compute_forward_win_part_f32(params, src0, dst);
  11308. } break;
  11309. default:
  11310. {
  11311. GGML_ASSERT(false);
  11312. } break;
  11313. }
  11314. }
  11315. // ggml_compute_forward_win_unpart
  11316. static void ggml_compute_forward_win_unpart_f32(
  11317. const struct ggml_compute_params * params,
  11318. const struct ggml_tensor * src0,
  11319. struct ggml_tensor * dst) {
  11320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11321. return;
  11322. }
  11323. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11324. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11325. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11326. // padding
  11327. const int px = (w - ne1%w)%w;
  11328. //const int py = (w - ne2%w)%w;
  11329. const int npx = (px + ne1)/w;
  11330. //const int npy = (py + ne2)/w;
  11331. assert(ne0 == ne00);
  11332. // TODO: optimize / multi-thread
  11333. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11334. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11335. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11336. const int ip2 = i2/w;
  11337. const int ip1 = i1/w;
  11338. const int64_t i02 = i2%w;
  11339. const int64_t i01 = i1%w;
  11340. const int64_t i00 = i0;
  11341. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11342. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11343. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11344. }
  11345. }
  11346. }
  11347. }
  11348. static void ggml_compute_forward_win_unpart(
  11349. const struct ggml_compute_params * params,
  11350. const struct ggml_tensor * src0,
  11351. struct ggml_tensor * dst) {
  11352. switch (src0->type) {
  11353. case GGML_TYPE_F32:
  11354. {
  11355. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11356. } break;
  11357. default:
  11358. {
  11359. GGML_ASSERT(false);
  11360. } break;
  11361. }
  11362. }
  11363. //gmml_compute_forward_unary
  11364. static void ggml_compute_forward_unary(
  11365. const struct ggml_compute_params * params,
  11366. const struct ggml_tensor * src0,
  11367. struct ggml_tensor * dst) {
  11368. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11369. switch (op) {
  11370. case GGML_UNARY_OP_ABS:
  11371. {
  11372. ggml_compute_forward_abs(params, src0, dst);
  11373. } break;
  11374. case GGML_UNARY_OP_SGN:
  11375. {
  11376. ggml_compute_forward_sgn(params, src0, dst);
  11377. } break;
  11378. case GGML_UNARY_OP_NEG:
  11379. {
  11380. ggml_compute_forward_neg(params, src0, dst);
  11381. } break;
  11382. case GGML_UNARY_OP_STEP:
  11383. {
  11384. ggml_compute_forward_step(params, src0, dst);
  11385. } break;
  11386. case GGML_UNARY_OP_TANH:
  11387. {
  11388. ggml_compute_forward_tanh(params, src0, dst);
  11389. } break;
  11390. case GGML_UNARY_OP_ELU:
  11391. {
  11392. ggml_compute_forward_elu(params, src0, dst);
  11393. } break;
  11394. case GGML_UNARY_OP_RELU:
  11395. {
  11396. ggml_compute_forward_relu(params, src0, dst);
  11397. } break;
  11398. case GGML_UNARY_OP_GELU:
  11399. {
  11400. ggml_compute_forward_gelu(params, src0, dst);
  11401. } break;
  11402. case GGML_UNARY_OP_GELU_QUICK:
  11403. {
  11404. ggml_compute_forward_gelu_quick(params, src0, dst);
  11405. } break;
  11406. case GGML_UNARY_OP_SILU:
  11407. {
  11408. ggml_compute_forward_silu(params, src0, dst);
  11409. } break;
  11410. default:
  11411. {
  11412. GGML_ASSERT(false);
  11413. } break;
  11414. }
  11415. }
  11416. // ggml_compute_forward_get_rel_pos
  11417. static void ggml_compute_forward_get_rel_pos_f16(
  11418. const struct ggml_compute_params * params,
  11419. const struct ggml_tensor * src0,
  11420. struct ggml_tensor * dst) {
  11421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11422. return;
  11423. }
  11424. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11425. GGML_TENSOR_UNARY_OP_LOCALS
  11426. const int64_t w = ne1;
  11427. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11428. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11429. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11430. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11431. const int64_t pos = (w - i1 - 1) + i2;
  11432. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11433. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11434. }
  11435. }
  11436. }
  11437. }
  11438. static void ggml_compute_forward_get_rel_pos(
  11439. const struct ggml_compute_params * params,
  11440. const struct ggml_tensor * src0,
  11441. struct ggml_tensor * dst) {
  11442. switch (src0->type) {
  11443. case GGML_TYPE_F16:
  11444. {
  11445. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11446. } break;
  11447. default:
  11448. {
  11449. GGML_ASSERT(false);
  11450. } break;
  11451. }
  11452. }
  11453. // ggml_compute_forward_add_rel_pos
  11454. static void ggml_compute_forward_add_rel_pos_f32(
  11455. const struct ggml_compute_params * params,
  11456. const struct ggml_tensor * src0,
  11457. const struct ggml_tensor * src1,
  11458. const struct ggml_tensor * src2,
  11459. struct ggml_tensor * dst) {
  11460. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11461. if (!inplace && params->type == GGML_TASK_INIT) {
  11462. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11463. return;
  11464. }
  11465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11466. return;
  11467. }
  11468. int64_t t0 = ggml_perf_time_us();
  11469. UNUSED(t0);
  11470. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11471. float * src1_data = (float *) src1->data;
  11472. float * src2_data = (float *) src2->data;
  11473. float * dst_data = (float *) dst->data;
  11474. const int64_t ne10 = src1->ne[0];
  11475. const int64_t ne11 = src1->ne[1];
  11476. const int64_t ne12 = src1->ne[2];
  11477. const int64_t ne13 = src1->ne[3];
  11478. const int ith = params->ith;
  11479. const int nth = params->nth;
  11480. // total patches in dst
  11481. const int np = ne13;
  11482. // patches per thread
  11483. const int dp = (np + nth - 1)/nth;
  11484. // patch range for this thread
  11485. const int ip0 = dp*ith;
  11486. const int ip1 = MIN(ip0 + dp, np);
  11487. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11488. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11489. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11490. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11491. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11492. const int64_t jp0 = jp1 + i10;
  11493. const float src1_e = src1_data[jp0];
  11494. const float src2_e = src2_data[jp0];
  11495. const int64_t jdh = jp0 * ne10;
  11496. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11497. for (int64_t j = 0; j < ne10; ++j) {
  11498. dst_data[jdh + j ] += src2_e;
  11499. dst_data[jdw + j*ne10] += src1_e;
  11500. }
  11501. }
  11502. }
  11503. }
  11504. }
  11505. }
  11506. static void ggml_compute_forward_add_rel_pos(
  11507. const struct ggml_compute_params * params,
  11508. const struct ggml_tensor * src0,
  11509. const struct ggml_tensor * src1,
  11510. const struct ggml_tensor * src2,
  11511. struct ggml_tensor * dst) {
  11512. switch (src0->type) {
  11513. case GGML_TYPE_F32:
  11514. {
  11515. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11516. } break;
  11517. default:
  11518. {
  11519. GGML_ASSERT(false);
  11520. } break;
  11521. }
  11522. }
  11523. // ggml_compute_forward_map_unary
  11524. static void ggml_compute_forward_map_unary_f32(
  11525. const struct ggml_compute_params * params,
  11526. const struct ggml_tensor * src0,
  11527. struct ggml_tensor * dst,
  11528. const ggml_unary_op_f32_t fun) {
  11529. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11530. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11531. return;
  11532. }
  11533. const int n = ggml_nrows(src0);
  11534. const int nc = src0->ne[0];
  11535. assert( dst->nb[0] == sizeof(float));
  11536. assert(src0->nb[0] == sizeof(float));
  11537. for (int i = 0; i < n; i++) {
  11538. fun(nc,
  11539. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11540. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11541. }
  11542. }
  11543. static void ggml_compute_forward_map_unary(
  11544. const struct ggml_compute_params * params,
  11545. const struct ggml_tensor * src0,
  11546. struct ggml_tensor * dst,
  11547. const ggml_unary_op_f32_t fun) {
  11548. switch (src0->type) {
  11549. case GGML_TYPE_F32:
  11550. {
  11551. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11552. } break;
  11553. default:
  11554. {
  11555. GGML_ASSERT(false);
  11556. } break;
  11557. }
  11558. }
  11559. // ggml_compute_forward_map_binary
  11560. static void ggml_compute_forward_map_binary_f32(
  11561. const struct ggml_compute_params * params,
  11562. const struct ggml_tensor * src0,
  11563. const struct ggml_tensor * src1,
  11564. struct ggml_tensor * dst,
  11565. const ggml_binary_op_f32_t fun) {
  11566. assert(params->ith == 0);
  11567. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11569. return;
  11570. }
  11571. const int n = ggml_nrows(src0);
  11572. const int nc = src0->ne[0];
  11573. assert( dst->nb[0] == sizeof(float));
  11574. assert(src0->nb[0] == sizeof(float));
  11575. assert(src1->nb[0] == sizeof(float));
  11576. for (int i = 0; i < n; i++) {
  11577. fun(nc,
  11578. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11579. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11580. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11581. }
  11582. }
  11583. static void ggml_compute_forward_map_binary(
  11584. const struct ggml_compute_params * params,
  11585. const struct ggml_tensor * src0,
  11586. const struct ggml_tensor * src1,
  11587. struct ggml_tensor * dst,
  11588. const ggml_binary_op_f32_t fun) {
  11589. switch (src0->type) {
  11590. case GGML_TYPE_F32:
  11591. {
  11592. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11593. } break;
  11594. default:
  11595. {
  11596. GGML_ASSERT(false);
  11597. } break;
  11598. }
  11599. }
  11600. // ggml_compute_forward_map_custom1
  11601. static void ggml_compute_forward_map_custom1_f32(
  11602. const struct ggml_compute_params * params,
  11603. const struct ggml_tensor * a,
  11604. struct ggml_tensor * dst,
  11605. const ggml_custom1_op_f32_t fun) {
  11606. assert(params->ith == 0);
  11607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11608. return;
  11609. }
  11610. fun(dst, a);
  11611. }
  11612. // ggml_compute_forward_map_custom2
  11613. static void ggml_compute_forward_map_custom2_f32(
  11614. const struct ggml_compute_params * params,
  11615. const struct ggml_tensor * a,
  11616. const struct ggml_tensor * b,
  11617. struct ggml_tensor * dst,
  11618. const ggml_custom2_op_f32_t fun) {
  11619. assert(params->ith == 0);
  11620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11621. return;
  11622. }
  11623. fun(dst, a, b);
  11624. }
  11625. // ggml_compute_forward_map_custom3
  11626. static void ggml_compute_forward_map_custom3_f32(
  11627. const struct ggml_compute_params * params,
  11628. const struct ggml_tensor * a,
  11629. const struct ggml_tensor * b,
  11630. const struct ggml_tensor * c,
  11631. struct ggml_tensor * dst,
  11632. const ggml_custom3_op_f32_t fun) {
  11633. assert(params->ith == 0);
  11634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11635. return;
  11636. }
  11637. fun(dst, a, b, c);
  11638. }
  11639. // ggml_compute_forward_map_custom1
  11640. static void ggml_compute_forward_map_custom1(
  11641. const struct ggml_compute_params * params,
  11642. const struct ggml_tensor * a,
  11643. struct ggml_tensor * dst) {
  11644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11645. return;
  11646. }
  11647. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11648. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11649. }
  11650. // ggml_compute_forward_map_custom2
  11651. static void ggml_compute_forward_map_custom2(
  11652. const struct ggml_compute_params * params,
  11653. const struct ggml_tensor * a,
  11654. const struct ggml_tensor * b,
  11655. struct ggml_tensor * dst) {
  11656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11657. return;
  11658. }
  11659. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11660. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11661. }
  11662. // ggml_compute_forward_map_custom3
  11663. static void ggml_compute_forward_map_custom3(
  11664. const struct ggml_compute_params * params,
  11665. const struct ggml_tensor * a,
  11666. const struct ggml_tensor * b,
  11667. const struct ggml_tensor * c,
  11668. struct ggml_tensor * dst) {
  11669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11670. return;
  11671. }
  11672. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11673. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11674. }
  11675. // ggml_compute_forward_cross_entropy_loss
  11676. static void ggml_compute_forward_cross_entropy_loss_f32(
  11677. const struct ggml_compute_params * params,
  11678. const struct ggml_tensor * src0,
  11679. const struct ggml_tensor * src1,
  11680. struct ggml_tensor * dst) {
  11681. GGML_ASSERT(ggml_is_contiguous(src0));
  11682. GGML_ASSERT(ggml_is_contiguous(src1));
  11683. GGML_ASSERT(ggml_is_scalar(dst));
  11684. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11685. const int ith = params->ith;
  11686. const int nth = params->nth;
  11687. float * sums = (float *) params->wdata;
  11688. // TODO: handle transposed/permuted matrices
  11689. const int nc = src0->ne[0];
  11690. const int nr = ggml_nrows(src0);
  11691. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11692. if (params->type == GGML_TASK_INIT) {
  11693. if (ith == 0) {
  11694. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11695. }
  11696. return;
  11697. }
  11698. if (params->type == GGML_TASK_FINALIZE) {
  11699. if (ith == 0) {
  11700. float * dp = (float *) dst->data;
  11701. ggml_vec_sum_f32(nth, dp, sums);
  11702. dp[0] *= -1.0f / (float) nr;
  11703. }
  11704. return;
  11705. }
  11706. const double eps = 1e-9;
  11707. // rows per thread
  11708. const int dr = (nr + nth - 1)/nth;
  11709. // row range for this thread
  11710. const int ir0 = dr*ith;
  11711. const int ir1 = MIN(ir0 + dr, nr);
  11712. for (int i1 = ir0; i1 < ir1; i1++) {
  11713. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11714. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11715. float * st = ((float *) params->wdata) + nth + ith*nc;
  11716. #ifndef NDEBUG
  11717. for (int i = 0; i < nc; ++i) {
  11718. //printf("p[%d] = %f\n", i, p[i]);
  11719. assert(!isnan(s0[i]));
  11720. assert(!isnan(s1[i]));
  11721. }
  11722. #endif
  11723. // soft_max
  11724. ggml_float sum = 0.0;
  11725. {
  11726. float max = -INFINITY;
  11727. ggml_vec_max_f32(nc, &max, s0);
  11728. uint16_t scvt; UNUSED(scvt);
  11729. for (int i = 0; i < nc; i++) {
  11730. if (s0[i] == -INFINITY) {
  11731. st[i] = 0.0f;
  11732. } else {
  11733. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11734. const float s = s0[i] - max;
  11735. const float val = expf(s);
  11736. #else
  11737. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11738. memcpy(&scvt, &s, sizeof(scvt));
  11739. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11740. #endif
  11741. sum += (ggml_float)val;
  11742. st[i] = val;
  11743. }
  11744. }
  11745. assert(sum > 0.0);
  11746. // sum = 1.0/sum;
  11747. }
  11748. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11749. sum = (1.0 - eps) / sum;
  11750. ggml_vec_scale_f32(nc, st, sum);
  11751. ggml_vec_add1_f32(nc, st, st, eps);
  11752. ggml_vec_log_f32(nc, st, st);
  11753. ggml_vec_mul_f32(nc, st, st, s1);
  11754. float st_sum = 0;
  11755. ggml_vec_sum_f32(nc, &st_sum, st);
  11756. sums[ith] += st_sum;
  11757. #ifndef NDEBUG
  11758. for (int i = 0; i < nc; ++i) {
  11759. assert(!isnan(st[i]));
  11760. assert(!isinf(st[i]));
  11761. }
  11762. #endif
  11763. }
  11764. }
  11765. static void ggml_compute_forward_cross_entropy_loss(
  11766. const struct ggml_compute_params * params,
  11767. const struct ggml_tensor * src0,
  11768. const struct ggml_tensor * src1,
  11769. struct ggml_tensor * dst) {
  11770. switch (src0->type) {
  11771. case GGML_TYPE_F32:
  11772. {
  11773. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11774. } break;
  11775. default:
  11776. {
  11777. GGML_ASSERT(false);
  11778. } break;
  11779. }
  11780. }
  11781. // ggml_compute_forward_cross_entropy_loss_back
  11782. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11783. const struct ggml_compute_params * params,
  11784. const struct ggml_tensor * src0,
  11785. const struct ggml_tensor * src1,
  11786. const struct ggml_tensor * opt0,
  11787. struct ggml_tensor * dst) {
  11788. GGML_ASSERT(ggml_is_contiguous(dst));
  11789. GGML_ASSERT(ggml_is_contiguous(src0));
  11790. GGML_ASSERT(ggml_is_contiguous(src1));
  11791. GGML_ASSERT(ggml_is_contiguous(opt0));
  11792. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11793. const int64_t ith = params->ith;
  11794. const int64_t nth = params->nth;
  11795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11796. return;
  11797. }
  11798. const double eps = 1e-9;
  11799. // TODO: handle transposed/permuted matrices
  11800. const int64_t nc = src0->ne[0];
  11801. const int64_t nr = ggml_nrows(src0);
  11802. // rows per thread
  11803. const int64_t dr = (nr + nth - 1)/nth;
  11804. // row range for this thread
  11805. const int64_t ir0 = dr*ith;
  11806. const int64_t ir1 = MIN(ir0 + dr, nr);
  11807. float * d = (float *) opt0->data;
  11808. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11809. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11810. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11811. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11812. #ifndef NDEBUG
  11813. for (int i = 0; i < nc; ++i) {
  11814. //printf("p[%d] = %f\n", i, p[i]);
  11815. assert(!isnan(s0[i]));
  11816. assert(!isnan(s1[i]));
  11817. }
  11818. #endif
  11819. // soft_max
  11820. ggml_float sum = 0.0;
  11821. {
  11822. float max = -INFINITY;
  11823. ggml_vec_max_f32(nc, &max, s0);
  11824. uint16_t scvt; UNUSED(scvt);
  11825. for (int i = 0; i < nc; i++) {
  11826. if (s0[i] == -INFINITY) {
  11827. ds0[i] = 0.0f;
  11828. } else {
  11829. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11830. const float s = s0[i] - max;
  11831. const float val = expf(s);
  11832. #else
  11833. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11834. memcpy(&scvt, &s, sizeof(scvt));
  11835. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11836. #endif
  11837. sum += (ggml_float)val;
  11838. ds0[i] = val;
  11839. }
  11840. }
  11841. assert(sum > 0.0);
  11842. sum = (1.0 - eps)/sum;
  11843. }
  11844. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11845. ggml_vec_scale_f32(nc, ds0, sum);
  11846. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11847. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11848. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11849. #ifndef NDEBUG
  11850. for (int i = 0; i < nc; ++i) {
  11851. assert(!isnan(ds0[i]));
  11852. assert(!isinf(ds0[i]));
  11853. }
  11854. #endif
  11855. }
  11856. }
  11857. static void ggml_compute_forward_cross_entropy_loss_back(
  11858. const struct ggml_compute_params * params,
  11859. const struct ggml_tensor * src0,
  11860. const struct ggml_tensor * src1,
  11861. const struct ggml_tensor * opt0,
  11862. struct ggml_tensor * dst) {
  11863. switch (src0->type) {
  11864. case GGML_TYPE_F32:
  11865. {
  11866. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11867. } break;
  11868. default:
  11869. {
  11870. GGML_ASSERT(false);
  11871. } break;
  11872. }
  11873. }
  11874. /////////////////////////////////
  11875. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11876. GGML_ASSERT(params);
  11877. if (tensor->op == GGML_OP_NONE) {
  11878. return;
  11879. }
  11880. #ifdef GGML_USE_CUBLAS
  11881. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11882. if (skip_cpu) {
  11883. return;
  11884. }
  11885. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11886. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11887. #endif // GGML_USE_CUBLAS
  11888. switch (tensor->op) {
  11889. case GGML_OP_DUP:
  11890. {
  11891. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11892. } break;
  11893. case GGML_OP_ADD:
  11894. {
  11895. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11896. } break;
  11897. case GGML_OP_ADD1:
  11898. {
  11899. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11900. } break;
  11901. case GGML_OP_ACC:
  11902. {
  11903. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11904. } break;
  11905. case GGML_OP_SUB:
  11906. {
  11907. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11908. } break;
  11909. case GGML_OP_MUL:
  11910. {
  11911. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11912. } break;
  11913. case GGML_OP_DIV:
  11914. {
  11915. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11916. } break;
  11917. case GGML_OP_SQR:
  11918. {
  11919. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11920. } break;
  11921. case GGML_OP_SQRT:
  11922. {
  11923. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11924. } break;
  11925. case GGML_OP_LOG:
  11926. {
  11927. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_SUM:
  11930. {
  11931. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_SUM_ROWS:
  11934. {
  11935. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_MEAN:
  11938. {
  11939. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11940. } break;
  11941. case GGML_OP_ARGMAX:
  11942. {
  11943. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11944. } break;
  11945. case GGML_OP_REPEAT:
  11946. {
  11947. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_REPEAT_BACK:
  11950. {
  11951. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11952. } break;
  11953. case GGML_OP_CONCAT:
  11954. {
  11955. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11956. } break;
  11957. case GGML_OP_SILU_BACK:
  11958. {
  11959. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11960. } break;
  11961. case GGML_OP_NORM:
  11962. {
  11963. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11964. } break;
  11965. case GGML_OP_RMS_NORM:
  11966. {
  11967. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11968. } break;
  11969. case GGML_OP_RMS_NORM_BACK:
  11970. {
  11971. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11972. } break;
  11973. case GGML_OP_GROUP_NORM:
  11974. {
  11975. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11976. } break;
  11977. case GGML_OP_MUL_MAT:
  11978. {
  11979. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11980. } break;
  11981. case GGML_OP_MUL_MAT_ID:
  11982. {
  11983. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11984. } break;
  11985. case GGML_OP_OUT_PROD:
  11986. {
  11987. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11988. } break;
  11989. case GGML_OP_SCALE:
  11990. {
  11991. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11992. } break;
  11993. case GGML_OP_SET:
  11994. {
  11995. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11996. } break;
  11997. case GGML_OP_CPY:
  11998. {
  11999. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12000. } break;
  12001. case GGML_OP_CONT:
  12002. {
  12003. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12004. } break;
  12005. case GGML_OP_RESHAPE:
  12006. {
  12007. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12008. } break;
  12009. case GGML_OP_VIEW:
  12010. {
  12011. ggml_compute_forward_view(params, tensor->src[0]);
  12012. } break;
  12013. case GGML_OP_PERMUTE:
  12014. {
  12015. ggml_compute_forward_permute(params, tensor->src[0]);
  12016. } break;
  12017. case GGML_OP_TRANSPOSE:
  12018. {
  12019. ggml_compute_forward_transpose(params, tensor->src[0]);
  12020. } break;
  12021. case GGML_OP_GET_ROWS:
  12022. {
  12023. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12024. } break;
  12025. case GGML_OP_GET_ROWS_BACK:
  12026. {
  12027. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12028. } break;
  12029. case GGML_OP_DIAG:
  12030. {
  12031. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12032. } break;
  12033. case GGML_OP_DIAG_MASK_INF:
  12034. {
  12035. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12036. } break;
  12037. case GGML_OP_DIAG_MASK_ZERO:
  12038. {
  12039. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12040. } break;
  12041. case GGML_OP_SOFT_MAX:
  12042. {
  12043. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12044. } break;
  12045. case GGML_OP_SOFT_MAX_BACK:
  12046. {
  12047. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12048. } break;
  12049. case GGML_OP_ROPE:
  12050. {
  12051. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12052. } break;
  12053. case GGML_OP_ROPE_BACK:
  12054. {
  12055. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12056. } break;
  12057. case GGML_OP_ALIBI:
  12058. {
  12059. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12060. } break;
  12061. case GGML_OP_CLAMP:
  12062. {
  12063. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12064. } break;
  12065. case GGML_OP_CONV_TRANSPOSE_1D:
  12066. {
  12067. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12068. } break;
  12069. case GGML_OP_IM2COL:
  12070. {
  12071. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12072. } break;
  12073. case GGML_OP_CONV_TRANSPOSE_2D:
  12074. {
  12075. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12076. } break;
  12077. case GGML_OP_POOL_1D:
  12078. {
  12079. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12080. } break;
  12081. case GGML_OP_POOL_2D:
  12082. {
  12083. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12084. } break;
  12085. case GGML_OP_UPSCALE:
  12086. {
  12087. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12088. } break;
  12089. case GGML_OP_PAD:
  12090. {
  12091. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12092. } break;
  12093. case GGML_OP_ARGSORT:
  12094. {
  12095. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12096. } break;
  12097. case GGML_OP_LEAKY_RELU:
  12098. {
  12099. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12100. } break;
  12101. case GGML_OP_FLASH_ATTN:
  12102. {
  12103. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12104. GGML_ASSERT(t == 0 || t == 1);
  12105. const bool masked = t != 0;
  12106. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12107. } break;
  12108. case GGML_OP_FLASH_FF:
  12109. {
  12110. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12111. } break;
  12112. case GGML_OP_FLASH_ATTN_BACK:
  12113. {
  12114. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12115. GGML_ASSERT(t == 0 || t == 1);
  12116. bool masked = t != 0;
  12117. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12118. } break;
  12119. case GGML_OP_WIN_PART:
  12120. {
  12121. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12122. } break;
  12123. case GGML_OP_WIN_UNPART:
  12124. {
  12125. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12126. } break;
  12127. case GGML_OP_UNARY:
  12128. {
  12129. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12130. } break;
  12131. case GGML_OP_GET_REL_POS:
  12132. {
  12133. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12134. } break;
  12135. case GGML_OP_ADD_REL_POS:
  12136. {
  12137. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12138. } break;
  12139. case GGML_OP_MAP_UNARY:
  12140. {
  12141. ggml_unary_op_f32_t fun;
  12142. memcpy(&fun, tensor->op_params, sizeof(fun));
  12143. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12144. }
  12145. break;
  12146. case GGML_OP_MAP_BINARY:
  12147. {
  12148. ggml_binary_op_f32_t fun;
  12149. memcpy(&fun, tensor->op_params, sizeof(fun));
  12150. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12151. }
  12152. break;
  12153. case GGML_OP_MAP_CUSTOM1_F32:
  12154. {
  12155. ggml_custom1_op_f32_t fun;
  12156. memcpy(&fun, tensor->op_params, sizeof(fun));
  12157. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12158. }
  12159. break;
  12160. case GGML_OP_MAP_CUSTOM2_F32:
  12161. {
  12162. ggml_custom2_op_f32_t fun;
  12163. memcpy(&fun, tensor->op_params, sizeof(fun));
  12164. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12165. }
  12166. break;
  12167. case GGML_OP_MAP_CUSTOM3_F32:
  12168. {
  12169. ggml_custom3_op_f32_t fun;
  12170. memcpy(&fun, tensor->op_params, sizeof(fun));
  12171. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12172. }
  12173. break;
  12174. case GGML_OP_MAP_CUSTOM1:
  12175. {
  12176. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12177. }
  12178. break;
  12179. case GGML_OP_MAP_CUSTOM2:
  12180. {
  12181. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12182. }
  12183. break;
  12184. case GGML_OP_MAP_CUSTOM3:
  12185. {
  12186. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12187. }
  12188. break;
  12189. case GGML_OP_CROSS_ENTROPY_LOSS:
  12190. {
  12191. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12192. }
  12193. break;
  12194. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12195. {
  12196. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12197. }
  12198. break;
  12199. case GGML_OP_NONE:
  12200. {
  12201. // nop
  12202. } break;
  12203. case GGML_OP_COUNT:
  12204. {
  12205. GGML_ASSERT(false);
  12206. } break;
  12207. }
  12208. }
  12209. ////////////////////////////////////////////////////////////////////////////////
  12210. static size_t ggml_hash_size(size_t min_sz) {
  12211. // next primes after powers of two
  12212. static const size_t primes[] = {
  12213. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12214. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12215. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12216. 16777259, 33554467, 67108879, 134217757, 268435459,
  12217. 536870923, 1073741827, 2147483659
  12218. };
  12219. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12220. // find the smallest prime that is larger or equal to min_sz
  12221. size_t l = 0;
  12222. size_t r = n_primes;
  12223. while (l < r) {
  12224. size_t m = (l + r)/2;
  12225. if (primes[m] < min_sz) {
  12226. l = m + 1;
  12227. } else {
  12228. r = m;
  12229. }
  12230. }
  12231. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12232. return sz;
  12233. }
  12234. static size_t ggml_hash(const void * p) {
  12235. return (size_t)p;
  12236. }
  12237. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12238. size_t h = ggml_hash(key) % hash_set.size;
  12239. // linear probing
  12240. size_t i = h;
  12241. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12242. i = (i + 1) % hash_set.size;
  12243. if (i == h) {
  12244. // visited all hash table entries -> not found
  12245. return GGML_HASHTABLE_FULL;
  12246. }
  12247. }
  12248. return i;
  12249. }
  12250. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12251. size_t i = ggml_hash_find(hash_set, key);
  12252. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12253. }
  12254. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12255. size_t i = ggml_hash_find(hash_set, key);
  12256. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12257. if (hash_set.keys[i] == key) {
  12258. return GGML_HASHTABLE_ALREADY_EXISTS;
  12259. }
  12260. // insert
  12261. GGML_ASSERT(hash_set.keys[i] == NULL);
  12262. hash_set.keys[i] = key;
  12263. return i;
  12264. }
  12265. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12266. size_t i = ggml_hash_find(hash_set, key);
  12267. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12268. hash_set.keys[i] = key;
  12269. return i;
  12270. }
  12271. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12272. size = ggml_hash_size(size);
  12273. struct ggml_hash_set result;
  12274. result.size = size;
  12275. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12276. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12277. return result;
  12278. }
  12279. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12280. free(hash_set.keys);
  12281. }
  12282. struct hash_map {
  12283. struct ggml_hash_set set;
  12284. struct ggml_tensor ** vals;
  12285. };
  12286. static struct hash_map * ggml_new_hash_map(size_t size) {
  12287. struct hash_map * result = malloc(sizeof(struct hash_map));
  12288. result->set = ggml_hash_set_new(size);
  12289. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12290. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12291. return result;
  12292. }
  12293. static void ggml_hash_map_free(struct hash_map * map) {
  12294. ggml_hash_set_free(map->set);
  12295. free(map->vals);
  12296. free(map);
  12297. }
  12298. // gradient checkpointing
  12299. static struct ggml_tensor * ggml_recompute_graph_node(
  12300. struct ggml_context * ctx,
  12301. struct ggml_cgraph * graph,
  12302. struct hash_map * replacements,
  12303. struct ggml_tensor * node) {
  12304. if (node == NULL) {
  12305. return NULL;
  12306. }
  12307. if (node->is_param) {
  12308. return node;
  12309. }
  12310. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12311. return node;
  12312. }
  12313. int count_children = 0;
  12314. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12315. if (node->src[k]) {
  12316. ++count_children;
  12317. }
  12318. }
  12319. if (count_children == 0) {
  12320. return node;
  12321. }
  12322. size_t i = ggml_hash_find(replacements->set, node);
  12323. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12324. if (replacements->set.keys[i] == node) {
  12325. return replacements->vals[i];
  12326. }
  12327. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12328. // insert clone into replacements
  12329. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12330. replacements->set.keys[i] = node;
  12331. replacements->vals[i] = clone;
  12332. clone->op = node->op;
  12333. clone->grad = node->grad;
  12334. clone->is_param = node->is_param;
  12335. clone->extra = node->extra;
  12336. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12337. clone->nb[k] = node->nb[k];
  12338. }
  12339. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12340. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12341. }
  12342. if (node->view_src != NULL) {
  12343. clone->data = (node->view_src->data == NULL)
  12344. ? NULL // view_src not yet allocated
  12345. : (char *) node->view_src->data // view_src already allocated
  12346. + node->view_offs;
  12347. clone->view_src = node->view_src;
  12348. clone->view_offs = node->view_offs;
  12349. }
  12350. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12351. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12352. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12353. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12354. return clone;
  12355. }
  12356. void ggml_build_backward_gradient_checkpointing(
  12357. struct ggml_context * ctx,
  12358. struct ggml_cgraph * gf,
  12359. struct ggml_cgraph * gb,
  12360. struct ggml_cgraph * gb_tmp,
  12361. struct ggml_tensor * * checkpoints,
  12362. int n_checkpoints) {
  12363. ggml_graph_cpy(gf, gb_tmp);
  12364. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12365. if (n_checkpoints <= 0) {
  12366. ggml_graph_cpy(gb_tmp, gb);
  12367. return;
  12368. }
  12369. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12370. // insert checkpoints in replacements
  12371. for (int i = 0; i < n_checkpoints; ++i) {
  12372. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12373. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12374. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12375. replacements->set.keys[k] = checkpoints[i];
  12376. replacements->vals[k] = checkpoints[i];
  12377. }
  12378. ggml_graph_cpy(gf, gb);
  12379. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12380. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12381. // by recomputing them from checkpoints
  12382. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12383. struct ggml_tensor * node = gb_tmp->nodes[i];
  12384. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12385. // insert new tensors recomputing src, reusing already made replacements,
  12386. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12387. // recurse for input tensors,
  12388. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12389. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12390. }
  12391. // insert rewritten backward node with replacements made into resulting backward graph gb
  12392. ggml_build_forward_expand(gb, node);
  12393. }
  12394. ggml_hash_map_free(replacements);
  12395. }
  12396. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12397. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12398. if (ggml_hash_contains(zero_table, a)) {
  12399. return b;
  12400. } else {
  12401. return ggml_add_impl(ctx, a, b, false);
  12402. }
  12403. }
  12404. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12405. if (ggml_hash_contains(zero_table, a)) {
  12406. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12407. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12408. } else {
  12409. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12410. }
  12411. }
  12412. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12413. if (ggml_hash_contains(zero_table, a)) {
  12414. return ggml_repeat(ctx, b, a);
  12415. } else {
  12416. return ggml_add1_impl(ctx, a, b, false);
  12417. }
  12418. }
  12419. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12420. if (ggml_hash_contains(zero_table, a)) {
  12421. return ggml_neg(ctx, b);
  12422. } else {
  12423. return ggml_sub_impl(ctx, a, b, false);
  12424. }
  12425. }
  12426. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12427. struct ggml_tensor * src0 = tensor->src[0];
  12428. struct ggml_tensor * src1 = tensor->src[1];
  12429. switch (tensor->op) {
  12430. case GGML_OP_DUP:
  12431. {
  12432. if (src0->grad) {
  12433. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12434. }
  12435. } break;
  12436. case GGML_OP_ADD:
  12437. {
  12438. if (src0->grad) {
  12439. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12440. }
  12441. if (src1->grad) {
  12442. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12443. }
  12444. } break;
  12445. case GGML_OP_ADD1:
  12446. {
  12447. if (src0->grad) {
  12448. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12449. }
  12450. if (src1->grad) {
  12451. src1->grad = ggml_add_or_set(ctx,
  12452. src1->grad,
  12453. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12454. zero_table);
  12455. }
  12456. } break;
  12457. case GGML_OP_ACC:
  12458. {
  12459. if (src0->grad) {
  12460. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12461. }
  12462. if (src1->grad) {
  12463. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12464. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12465. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12466. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12467. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12468. tensor->grad,
  12469. src1->grad->ne[0],
  12470. src1->grad->ne[1],
  12471. src1->grad->ne[2],
  12472. src1->grad->ne[3],
  12473. nb1, nb2, nb3, offset);
  12474. src1->grad =
  12475. ggml_add_or_set(ctx,
  12476. src1->grad,
  12477. ggml_reshape(ctx,
  12478. ggml_cont(ctx, tensor_grad_view),
  12479. src1->grad),
  12480. zero_table);
  12481. }
  12482. } break;
  12483. case GGML_OP_SUB:
  12484. {
  12485. if (src0->grad) {
  12486. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12487. }
  12488. if (src1->grad) {
  12489. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12490. }
  12491. } break;
  12492. case GGML_OP_MUL:
  12493. {
  12494. if (src0->grad) {
  12495. src0->grad =
  12496. ggml_add_or_set(ctx,
  12497. src0->grad,
  12498. ggml_mul(ctx, src1, tensor->grad),
  12499. zero_table);
  12500. }
  12501. if (src1->grad) {
  12502. src1->grad =
  12503. ggml_add_or_set(ctx,
  12504. src1->grad,
  12505. ggml_mul(ctx, src0, tensor->grad),
  12506. zero_table);
  12507. }
  12508. } break;
  12509. case GGML_OP_DIV:
  12510. {
  12511. if (src0->grad) {
  12512. src0->grad =
  12513. ggml_add_or_set(ctx,
  12514. src0->grad,
  12515. ggml_div(ctx, tensor->grad, src1),
  12516. zero_table);
  12517. }
  12518. if (src1->grad) {
  12519. src1->grad =
  12520. ggml_sub_or_set(ctx,
  12521. src1->grad,
  12522. ggml_mul(ctx,
  12523. tensor->grad,
  12524. ggml_div(ctx, tensor, src1)),
  12525. zero_table);
  12526. }
  12527. } break;
  12528. case GGML_OP_SQR:
  12529. {
  12530. if (src0->grad) {
  12531. src0->grad =
  12532. ggml_add_or_set(ctx,
  12533. src0->grad,
  12534. ggml_scale(ctx,
  12535. ggml_mul(ctx, src0, tensor->grad),
  12536. 2.0f),
  12537. zero_table);
  12538. }
  12539. } break;
  12540. case GGML_OP_SQRT:
  12541. {
  12542. if (src0->grad) {
  12543. src0->grad =
  12544. ggml_add_or_set(ctx,
  12545. src0->grad,
  12546. ggml_scale(ctx,
  12547. ggml_div(ctx,
  12548. tensor->grad,
  12549. tensor),
  12550. 0.5f),
  12551. zero_table);
  12552. }
  12553. } break;
  12554. case GGML_OP_LOG:
  12555. {
  12556. if (src0->grad) {
  12557. src0->grad =
  12558. ggml_add_or_set(ctx,
  12559. src0->grad,
  12560. ggml_div(ctx,
  12561. tensor->grad,
  12562. src0),
  12563. zero_table);
  12564. }
  12565. } break;
  12566. case GGML_OP_SUM:
  12567. {
  12568. if (src0->grad) {
  12569. src0->grad =
  12570. ggml_add1_or_set(ctx,
  12571. src0->grad,
  12572. tensor->grad,
  12573. zero_table);
  12574. }
  12575. } break;
  12576. case GGML_OP_SUM_ROWS:
  12577. {
  12578. if (src0->grad) {
  12579. src0->grad =
  12580. ggml_add_or_set(ctx,
  12581. src0->grad,
  12582. ggml_repeat(ctx,
  12583. tensor->grad,
  12584. src0->grad),
  12585. zero_table);
  12586. }
  12587. } break;
  12588. case GGML_OP_MEAN:
  12589. case GGML_OP_ARGMAX:
  12590. {
  12591. GGML_ASSERT(false); // TODO: implement
  12592. } break;
  12593. case GGML_OP_REPEAT:
  12594. {
  12595. // necessary for llama
  12596. if (src0->grad) {
  12597. src0->grad = ggml_add_or_set(ctx,
  12598. src0->grad,
  12599. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12600. zero_table);
  12601. }
  12602. } break;
  12603. case GGML_OP_REPEAT_BACK:
  12604. {
  12605. if (src0->grad) {
  12606. // TODO: test this
  12607. src0->grad = ggml_add_or_set(ctx,
  12608. src0->grad,
  12609. ggml_repeat(ctx, tensor->grad, src0->grad),
  12610. zero_table);
  12611. }
  12612. } break;
  12613. case GGML_OP_CONCAT:
  12614. {
  12615. GGML_ASSERT(false); // TODO: implement
  12616. } break;
  12617. case GGML_OP_SILU_BACK:
  12618. {
  12619. GGML_ASSERT(false); // TODO: not implemented
  12620. } break;
  12621. case GGML_OP_NORM:
  12622. {
  12623. GGML_ASSERT(false); // TODO: not implemented
  12624. } break;
  12625. case GGML_OP_RMS_NORM:
  12626. {
  12627. // necessary for llama
  12628. if (src0->grad) {
  12629. float eps;
  12630. memcpy(&eps, tensor->op_params, sizeof(float));
  12631. src0->grad = ggml_add_or_set(ctx,
  12632. src0->grad,
  12633. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12634. zero_table);
  12635. }
  12636. } break;
  12637. case GGML_OP_RMS_NORM_BACK:
  12638. {
  12639. GGML_ASSERT(false); // TODO: not implemented
  12640. } break;
  12641. case GGML_OP_GROUP_NORM:
  12642. {
  12643. GGML_ASSERT(false); // TODO: not implemented
  12644. } break;
  12645. case GGML_OP_MUL_MAT:
  12646. {
  12647. // https://cs231n.github.io/optimization-2/#staged
  12648. // # forward pass
  12649. // s0 = np.random.randn(5, 10)
  12650. // s1 = np.random.randn(10, 3)
  12651. // t = s0.dot(s1)
  12652. // # now suppose we had the gradient on t from above in the circuit
  12653. // dt = np.random.randn(*t.shape) # same shape as t
  12654. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12655. // ds1 = t.T.dot(dt)
  12656. // tensor.shape [m,p,qq,rr]
  12657. // src0.shape [n,m,q1,r1]
  12658. // src1.shape [n,p,qq,rr]
  12659. // necessary for llama
  12660. if (src0->grad) {
  12661. struct ggml_tensor * s1_tg =
  12662. ggml_out_prod(ctx, // [n,m,qq,rr]
  12663. src1, // [n,p,qq,rr]
  12664. tensor->grad); // [m,p,qq,rr]
  12665. const int64_t qq = s1_tg->ne[2];
  12666. const int64_t rr = s1_tg->ne[3];
  12667. const int64_t q1 = src0->ne[2];
  12668. const int64_t r1 = src0->ne[3];
  12669. const bool ne2_broadcasted = qq > q1;
  12670. const bool ne3_broadcasted = rr > r1;
  12671. if (ne2_broadcasted || ne3_broadcasted) {
  12672. // sum broadcast repetitions of s1_tg into shape of src0
  12673. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12674. }
  12675. src0->grad =
  12676. ggml_add_or_set(ctx,
  12677. src0->grad, // [n,m,q1,r1]
  12678. s1_tg, // [n,m,q1,r1]
  12679. zero_table);
  12680. }
  12681. if (src1->grad) {
  12682. src1->grad =
  12683. ggml_add_or_set(ctx,
  12684. src1->grad, // [n,p,qq,rr]
  12685. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12686. // ggml_cont(ctx, // [m,n,q1,r1]
  12687. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12688. // tensor->grad), // [m,p,qq,rr]
  12689. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12690. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12691. // // and then use ggml_out_prod
  12692. ggml_out_prod(ctx, // [n,p,qq,rr]
  12693. src0, // [n,m,q1,r1]
  12694. ggml_transpose(ctx, // [p,m,qq,rr]
  12695. tensor->grad)), // [m,p,qq,rr]
  12696. zero_table);
  12697. }
  12698. } break;
  12699. case GGML_OP_MUL_MAT_ID:
  12700. {
  12701. GGML_ASSERT(false); // TODO: not implemented
  12702. } break;
  12703. case GGML_OP_OUT_PROD:
  12704. {
  12705. GGML_ASSERT(false); // TODO: not implemented
  12706. } break;
  12707. case GGML_OP_SCALE:
  12708. {
  12709. // necessary for llama
  12710. if (src0->grad) {
  12711. float s;
  12712. memcpy(&s, tensor->op_params, sizeof(float));
  12713. src0->grad =
  12714. ggml_add_or_set(ctx,
  12715. src0->grad,
  12716. ggml_scale_impl(ctx, tensor->grad, s, false),
  12717. zero_table);
  12718. }
  12719. } break;
  12720. case GGML_OP_SET:
  12721. {
  12722. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12723. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12724. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12725. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12726. struct ggml_tensor * tensor_grad_view = NULL;
  12727. if (src0->grad || src1->grad) {
  12728. GGML_ASSERT(src0->type == tensor->type);
  12729. GGML_ASSERT(tensor->grad->type == tensor->type);
  12730. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12731. tensor_grad_view = ggml_view_4d(ctx,
  12732. tensor->grad,
  12733. src1->grad->ne[0],
  12734. src1->grad->ne[1],
  12735. src1->grad->ne[2],
  12736. src1->grad->ne[3],
  12737. nb1, nb2, nb3, offset);
  12738. }
  12739. if (src0->grad) {
  12740. src0->grad = ggml_add_or_set(ctx,
  12741. src0->grad,
  12742. ggml_acc_impl(ctx,
  12743. tensor->grad,
  12744. ggml_neg(ctx, tensor_grad_view),
  12745. nb1, nb2, nb3, offset, false),
  12746. zero_table);
  12747. }
  12748. if (src1->grad) {
  12749. src1->grad =
  12750. ggml_add_or_set(ctx,
  12751. src1->grad,
  12752. ggml_reshape(ctx,
  12753. ggml_cont(ctx, tensor_grad_view),
  12754. src1->grad),
  12755. zero_table);
  12756. }
  12757. } break;
  12758. case GGML_OP_CPY:
  12759. {
  12760. // necessary for llama
  12761. // cpy overwrites value of src1 by src0 and returns view(src1)
  12762. // the overwriting is mathematically equivalent to:
  12763. // tensor = src0 * 1 + src1 * 0
  12764. if (src0->grad) {
  12765. // dsrc0 = dtensor * 1
  12766. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12767. }
  12768. if (src1->grad) {
  12769. // dsrc1 = dtensor * 0 -> noop
  12770. }
  12771. } break;
  12772. case GGML_OP_CONT:
  12773. {
  12774. // same as cpy
  12775. if (src0->grad) {
  12776. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12777. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12778. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12779. }
  12780. } break;
  12781. case GGML_OP_RESHAPE:
  12782. {
  12783. // necessary for llama
  12784. if (src0->grad) {
  12785. src0->grad =
  12786. ggml_add_or_set(ctx, src0->grad,
  12787. ggml_reshape(ctx,
  12788. ggml_is_contiguous(tensor->grad)
  12789. ? tensor->grad
  12790. : ggml_cont(ctx, tensor->grad),
  12791. src0->grad),
  12792. zero_table);
  12793. }
  12794. } break;
  12795. case GGML_OP_VIEW:
  12796. {
  12797. // necessary for llama
  12798. if (src0->grad) {
  12799. size_t offset;
  12800. memcpy(&offset, tensor->op_params, sizeof(offset));
  12801. size_t nb1 = tensor->nb[1];
  12802. size_t nb2 = tensor->nb[2];
  12803. size_t nb3 = tensor->nb[3];
  12804. if (src0->type != src0->grad->type) {
  12805. // gradient is typically F32, but src0 could be other type
  12806. size_t ng = ggml_element_size(src0->grad);
  12807. size_t n0 = ggml_element_size(src0);
  12808. GGML_ASSERT(offset % n0 == 0);
  12809. GGML_ASSERT(nb1 % n0 == 0);
  12810. GGML_ASSERT(nb2 % n0 == 0);
  12811. GGML_ASSERT(nb3 % n0 == 0);
  12812. offset = (offset / n0) * ng;
  12813. nb1 = (nb1 / n0) * ng;
  12814. nb2 = (nb2 / n0) * ng;
  12815. nb3 = (nb3 / n0) * ng;
  12816. }
  12817. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12818. }
  12819. } break;
  12820. case GGML_OP_PERMUTE:
  12821. {
  12822. // necessary for llama
  12823. if (src0->grad) {
  12824. int32_t * axes = (int32_t *) tensor->op_params;
  12825. int axis0 = axes[0] & 0x3;
  12826. int axis1 = axes[1] & 0x3;
  12827. int axis2 = axes[2] & 0x3;
  12828. int axis3 = axes[3] & 0x3;
  12829. int axes_backward[4] = {0,0,0,0};
  12830. axes_backward[axis0] = 0;
  12831. axes_backward[axis1] = 1;
  12832. axes_backward[axis2] = 2;
  12833. axes_backward[axis3] = 3;
  12834. src0->grad =
  12835. ggml_add_or_set(ctx, src0->grad,
  12836. ggml_permute(ctx,
  12837. tensor->grad,
  12838. axes_backward[0],
  12839. axes_backward[1],
  12840. axes_backward[2],
  12841. axes_backward[3]),
  12842. zero_table);
  12843. }
  12844. } break;
  12845. case GGML_OP_TRANSPOSE:
  12846. {
  12847. // necessary for llama
  12848. if (src0->grad) {
  12849. src0->grad =
  12850. ggml_add_or_set(ctx, src0->grad,
  12851. ggml_transpose(ctx, tensor->grad),
  12852. zero_table);
  12853. }
  12854. } break;
  12855. case GGML_OP_GET_ROWS:
  12856. {
  12857. // necessary for llama (only for tokenizer)
  12858. if (src0->grad) {
  12859. src0->grad =
  12860. ggml_add_or_set(ctx, src0->grad,
  12861. // last ggml_get_rows_back argument src0->grad is only
  12862. // necessary to setup correct output shape
  12863. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12864. zero_table);
  12865. }
  12866. if (src1->grad) {
  12867. // noop
  12868. }
  12869. } break;
  12870. case GGML_OP_GET_ROWS_BACK:
  12871. {
  12872. GGML_ASSERT(false); // TODO: not implemented
  12873. } break;
  12874. case GGML_OP_DIAG:
  12875. {
  12876. GGML_ASSERT(false); // TODO: not implemented
  12877. } break;
  12878. case GGML_OP_DIAG_MASK_INF:
  12879. {
  12880. // necessary for llama
  12881. if (src0->grad) {
  12882. const int n_past = ((int32_t *) tensor->op_params)[0];
  12883. src0->grad =
  12884. ggml_add_or_set(ctx, src0->grad,
  12885. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12886. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12887. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12888. zero_table);
  12889. }
  12890. } break;
  12891. case GGML_OP_DIAG_MASK_ZERO:
  12892. {
  12893. // necessary for llama
  12894. if (src0->grad) {
  12895. const int n_past = ((int32_t *) tensor->op_params)[0];
  12896. src0->grad =
  12897. ggml_add_or_set(ctx, src0->grad,
  12898. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12899. zero_table);
  12900. }
  12901. } break;
  12902. case GGML_OP_SOFT_MAX:
  12903. {
  12904. // necessary for llama
  12905. if (src0->grad) {
  12906. src0->grad =
  12907. ggml_add_or_set(ctx, src0->grad,
  12908. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12909. zero_table);
  12910. }
  12911. } break;
  12912. case GGML_OP_SOFT_MAX_BACK:
  12913. {
  12914. GGML_ASSERT(false); // TODO: not implemented
  12915. } break;
  12916. case GGML_OP_ROPE:
  12917. {
  12918. // necessary for llama
  12919. if (src0->grad) {
  12920. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12921. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12922. const int mode = ((int32_t *) tensor->op_params)[2];
  12923. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12924. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12925. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12926. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12927. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12928. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12929. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12930. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12931. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12932. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12933. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12934. src0->grad = ggml_add_or_set(ctx,
  12935. src0->grad,
  12936. ggml_rope_back(ctx,
  12937. tensor->grad,
  12938. src1,
  12939. n_dims,
  12940. mode,
  12941. n_ctx,
  12942. n_orig_ctx,
  12943. freq_base,
  12944. freq_scale,
  12945. ext_factor,
  12946. attn_factor,
  12947. beta_fast,
  12948. beta_slow,
  12949. xpos_base,
  12950. xpos_down),
  12951. zero_table);
  12952. }
  12953. } break;
  12954. case GGML_OP_ROPE_BACK:
  12955. {
  12956. if (src0->grad) {
  12957. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12958. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12959. const int mode = ((int32_t *) tensor->op_params)[2];
  12960. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12961. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12962. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12963. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12964. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12965. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12966. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12967. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12968. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12969. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12970. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12971. src0->grad = ggml_add_or_set(ctx,
  12972. src0->grad,
  12973. ggml_rope_impl(ctx,
  12974. tensor->grad,
  12975. src1,
  12976. n_dims,
  12977. mode,
  12978. n_ctx,
  12979. n_orig_ctx,
  12980. freq_base,
  12981. freq_scale,
  12982. ext_factor,
  12983. attn_factor,
  12984. beta_fast,
  12985. beta_slow,
  12986. xpos_base,
  12987. xpos_down,
  12988. false),
  12989. zero_table);
  12990. }
  12991. } break;
  12992. case GGML_OP_ALIBI:
  12993. {
  12994. GGML_ASSERT(false); // TODO: not implemented
  12995. } break;
  12996. case GGML_OP_CLAMP:
  12997. {
  12998. GGML_ASSERT(false); // TODO: not implemented
  12999. } break;
  13000. case GGML_OP_CONV_TRANSPOSE_1D:
  13001. {
  13002. GGML_ASSERT(false); // TODO: not implemented
  13003. } break;
  13004. case GGML_OP_IM2COL:
  13005. {
  13006. GGML_ASSERT(false); // TODO: not implemented
  13007. } break;
  13008. case GGML_OP_CONV_TRANSPOSE_2D:
  13009. {
  13010. GGML_ASSERT(false); // TODO: not implemented
  13011. } break;
  13012. case GGML_OP_POOL_1D:
  13013. {
  13014. GGML_ASSERT(false); // TODO: not implemented
  13015. } break;
  13016. case GGML_OP_POOL_2D:
  13017. {
  13018. GGML_ASSERT(false); // TODO: not implemented
  13019. } break;
  13020. case GGML_OP_UPSCALE:
  13021. {
  13022. GGML_ASSERT(false); // TODO: not implemented
  13023. } break;
  13024. case GGML_OP_PAD:
  13025. {
  13026. GGML_ASSERT(false); // TODO: not implemented
  13027. } break;
  13028. case GGML_OP_ARGSORT:
  13029. {
  13030. GGML_ASSERT(false); // TODO: not implemented
  13031. } break;
  13032. case GGML_OP_LEAKY_RELU:
  13033. {
  13034. GGML_ASSERT(false); // TODO: not implemented
  13035. } break;
  13036. case GGML_OP_FLASH_ATTN:
  13037. {
  13038. struct ggml_tensor * flash_grad = NULL;
  13039. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13040. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13041. GGML_ASSERT(t == 0 || t == 1);
  13042. bool masked = t != 0;
  13043. flash_grad =
  13044. ggml_flash_attn_back(ctx,
  13045. src0,
  13046. src1,
  13047. tensor->src[2],
  13048. tensor->grad,
  13049. masked);
  13050. }
  13051. struct ggml_tensor * src2 = tensor->src[2];
  13052. const int64_t elem_q = ggml_nelements(src0);
  13053. const int64_t elem_k = ggml_nelements(src1);
  13054. const int64_t elem_v = ggml_nelements(src2);
  13055. enum ggml_type result_type = flash_grad->type;
  13056. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13057. const size_t tsize = ggml_type_size(result_type);
  13058. const size_t offs_q = 0;
  13059. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13060. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13061. if (src0->grad) {
  13062. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13063. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13064. src0->grad = ggml_add_or_set(ctx,
  13065. src0->grad,
  13066. grad_q,
  13067. zero_table);
  13068. }
  13069. if (src1->grad) {
  13070. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13071. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13072. src1->grad = ggml_add_or_set(ctx,
  13073. src1->grad,
  13074. grad_k,
  13075. zero_table);
  13076. }
  13077. if (src2->grad) {
  13078. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13079. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13080. src2->grad = ggml_add_or_set(ctx,
  13081. src2->grad,
  13082. grad_v,
  13083. zero_table);
  13084. }
  13085. } break;
  13086. case GGML_OP_FLASH_FF:
  13087. {
  13088. GGML_ASSERT(false); // not supported
  13089. } break;
  13090. case GGML_OP_FLASH_ATTN_BACK:
  13091. {
  13092. GGML_ASSERT(false); // not supported
  13093. } break;
  13094. case GGML_OP_WIN_PART:
  13095. case GGML_OP_WIN_UNPART:
  13096. case GGML_OP_UNARY:
  13097. {
  13098. switch (ggml_get_unary_op(tensor)) {
  13099. case GGML_UNARY_OP_ABS:
  13100. {
  13101. if (src0->grad) {
  13102. src0->grad =
  13103. ggml_add_or_set(ctx,
  13104. src0->grad,
  13105. ggml_mul(ctx,
  13106. ggml_sgn(ctx, src0),
  13107. tensor->grad),
  13108. zero_table);
  13109. }
  13110. } break;
  13111. case GGML_UNARY_OP_SGN:
  13112. {
  13113. if (src0->grad) {
  13114. // noop
  13115. }
  13116. } break;
  13117. case GGML_UNARY_OP_NEG:
  13118. {
  13119. if (src0->grad) {
  13120. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13121. }
  13122. } break;
  13123. case GGML_UNARY_OP_STEP:
  13124. {
  13125. if (src0->grad) {
  13126. // noop
  13127. }
  13128. } break;
  13129. case GGML_UNARY_OP_TANH:
  13130. {
  13131. GGML_ASSERT(false); // TODO: not implemented
  13132. } break;
  13133. case GGML_UNARY_OP_ELU:
  13134. {
  13135. GGML_ASSERT(false); // TODO: not implemented
  13136. } break;
  13137. case GGML_UNARY_OP_RELU:
  13138. {
  13139. if (src0->grad) {
  13140. src0->grad = ggml_add_or_set(ctx,
  13141. src0->grad,
  13142. ggml_mul(ctx,
  13143. ggml_step(ctx, src0),
  13144. tensor->grad),
  13145. zero_table);
  13146. }
  13147. } break;
  13148. case GGML_UNARY_OP_GELU:
  13149. {
  13150. GGML_ASSERT(false); // TODO: not implemented
  13151. } break;
  13152. case GGML_UNARY_OP_GELU_QUICK:
  13153. {
  13154. GGML_ASSERT(false); // TODO: not implemented
  13155. } break;
  13156. case GGML_UNARY_OP_SILU:
  13157. {
  13158. // necessary for llama
  13159. if (src0->grad) {
  13160. src0->grad = ggml_add_or_set(ctx,
  13161. src0->grad,
  13162. ggml_silu_back(ctx, src0, tensor->grad),
  13163. zero_table);
  13164. }
  13165. } break;
  13166. default:
  13167. GGML_ASSERT(false);
  13168. }
  13169. } break;
  13170. case GGML_OP_GET_REL_POS:
  13171. case GGML_OP_ADD_REL_POS:
  13172. case GGML_OP_MAP_UNARY:
  13173. case GGML_OP_MAP_BINARY:
  13174. case GGML_OP_MAP_CUSTOM1_F32:
  13175. case GGML_OP_MAP_CUSTOM2_F32:
  13176. case GGML_OP_MAP_CUSTOM3_F32:
  13177. case GGML_OP_MAP_CUSTOM1:
  13178. case GGML_OP_MAP_CUSTOM2:
  13179. case GGML_OP_MAP_CUSTOM3:
  13180. {
  13181. GGML_ASSERT(false); // not supported
  13182. } break;
  13183. case GGML_OP_CROSS_ENTROPY_LOSS:
  13184. {
  13185. if (src0->grad) {
  13186. src0->grad = ggml_add_or_set(ctx,
  13187. src0->grad,
  13188. ggml_cross_entropy_loss_back(ctx,
  13189. src0,
  13190. src1,
  13191. tensor->grad),
  13192. zero_table);
  13193. }
  13194. } break;
  13195. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13196. {
  13197. GGML_ASSERT(false); // not supported
  13198. } break;
  13199. case GGML_OP_NONE:
  13200. {
  13201. // nop
  13202. } break;
  13203. case GGML_OP_COUNT:
  13204. {
  13205. GGML_ASSERT(false);
  13206. } break;
  13207. }
  13208. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13209. if (tensor->src[i] && tensor->src[i]->grad) {
  13210. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13211. }
  13212. }
  13213. }
  13214. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13215. if (node->grad == NULL) {
  13216. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13217. // it can also happen during forward pass, if the user performs computations with constants
  13218. if (node->op != GGML_OP_NONE) {
  13219. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13220. }
  13221. }
  13222. // check if already visited
  13223. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13224. return;
  13225. }
  13226. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13227. const int k =
  13228. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13229. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13230. /* unknown order, just fall back to using i*/ i;
  13231. if (node->src[k]) {
  13232. ggml_visit_parents(cgraph, node->src[k]);
  13233. }
  13234. }
  13235. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13236. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13237. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13238. if (strlen(node->name) == 0) {
  13239. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13240. }
  13241. cgraph->leafs[cgraph->n_leafs] = node;
  13242. cgraph->n_leafs++;
  13243. } else {
  13244. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13245. if (strlen(node->name) == 0) {
  13246. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13247. }
  13248. cgraph->nodes[cgraph->n_nodes] = node;
  13249. if (cgraph->grads) {
  13250. cgraph->grads[cgraph->n_nodes] = node->grad;
  13251. }
  13252. cgraph->n_nodes++;
  13253. }
  13254. }
  13255. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13256. if (!expand) {
  13257. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13258. ggml_graph_clear(cgraph);
  13259. }
  13260. const int n0 = cgraph->n_nodes;
  13261. UNUSED(n0);
  13262. ggml_visit_parents(cgraph, tensor);
  13263. const int n_new = cgraph->n_nodes - n0;
  13264. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13265. if (n_new > 0) {
  13266. // the last added node should always be starting point
  13267. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13268. }
  13269. }
  13270. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13271. ggml_build_forward_impl(cgraph, tensor, true);
  13272. }
  13273. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13274. GGML_ASSERT(gf->n_nodes > 0);
  13275. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13276. if (keep) {
  13277. for (int i = 0; i < gf->n_nodes; i++) {
  13278. struct ggml_tensor * node = gf->nodes[i];
  13279. if (node->grad) {
  13280. node->grad = ggml_dup_tensor(ctx, node);
  13281. gf->grads[i] = node->grad;
  13282. }
  13283. }
  13284. }
  13285. // remember original gradients which start with zero values
  13286. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13287. for (int i = 0; i < gf->n_nodes; i++) {
  13288. if (gf->grads[i]) {
  13289. ggml_hash_insert(zero_table, gf->grads[i]);
  13290. }
  13291. }
  13292. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13293. struct ggml_tensor * node = gf->nodes[i];
  13294. // inplace operations to add gradients are not created by ggml_compute_backward
  13295. // use allocator to automatically make inplace operations
  13296. if (node->grad) {
  13297. ggml_compute_backward(ctx, node, zero_table);
  13298. }
  13299. }
  13300. for (int i = 0; i < gf->n_nodes; i++) {
  13301. struct ggml_tensor * node = gf->nodes[i];
  13302. if (node->is_param) {
  13303. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13304. ggml_build_forward_expand(gb, node->grad);
  13305. }
  13306. }
  13307. ggml_hash_set_free(zero_table);
  13308. }
  13309. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13310. size_t nbytes = sizeof(struct ggml_cgraph);
  13311. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13312. if (grads) {
  13313. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13314. }
  13315. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13316. return nbytes;
  13317. }
  13318. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13319. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13320. }
  13321. size_t ggml_graph_overhead(void) {
  13322. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13323. }
  13324. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13325. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13326. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13327. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13328. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13329. size_t hash_size = ggml_hash_size(size * 2);
  13330. struct ggml_tensor ** nodes_ptr = data_start;
  13331. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13332. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13333. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13334. // check that we allocated the correct amount of memory
  13335. assert(obj_size == (size_t) (
  13336. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13337. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13338. *cgraph = (struct ggml_cgraph) {
  13339. /*.size =*/ size,
  13340. /*.n_nodes =*/ 0,
  13341. /*.n_leafs =*/ 0,
  13342. /*.nodes =*/ nodes_ptr,
  13343. /*.grads =*/ grads_ptr,
  13344. /*.leafs =*/ leafs_ptr,
  13345. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13346. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13347. /*.perf_runs =*/ 0,
  13348. /*.perf_cycles =*/ 0,
  13349. /*.perf_time_us =*/ 0,
  13350. };
  13351. return cgraph;
  13352. }
  13353. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13354. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13355. }
  13356. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13357. struct ggml_cgraph cgraph = {
  13358. /*.size =*/ 0,
  13359. /*.n_nodes =*/ i1 - i0,
  13360. /*.n_leafs =*/ 0,
  13361. /*.nodes =*/ cgraph0->nodes + i0,
  13362. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13363. /*.leafs =*/ NULL,
  13364. /*.hash_table =*/ { 0, NULL },
  13365. /*.order =*/ cgraph0->order,
  13366. /*.perf_runs =*/ 0,
  13367. /*.perf_cycles =*/ 0,
  13368. /*.perf_time_us =*/ 0,
  13369. };
  13370. return cgraph;
  13371. }
  13372. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13373. GGML_ASSERT(dst->size >= src->n_leafs);
  13374. GGML_ASSERT(dst->size >= src->n_nodes);
  13375. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13376. dst->n_leafs = src->n_leafs;
  13377. dst->n_nodes = src->n_nodes;
  13378. dst->order = src->order;
  13379. for (int i = 0; i < src->n_leafs; ++i) {
  13380. dst->leafs[i] = src->leafs[i];
  13381. }
  13382. for (int i = 0; i < src->n_nodes; ++i) {
  13383. dst->nodes[i] = src->nodes[i];
  13384. }
  13385. if (src->grads) {
  13386. GGML_ASSERT(dst->grads != NULL);
  13387. for (int i = 0; i < src->n_nodes; ++i) {
  13388. dst->grads[i] = src->grads[i];
  13389. }
  13390. }
  13391. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13392. if (src->visited_hash_table.keys[i]) {
  13393. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13394. }
  13395. }
  13396. }
  13397. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13398. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13399. ggml_graph_cpy(cgraph, result);
  13400. return result;
  13401. }
  13402. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13403. GGML_ASSERT(cgraph->grads != NULL);
  13404. for (int i = 0; i < cgraph->n_nodes; i++) {
  13405. struct ggml_tensor * grad = cgraph->grads[i];
  13406. if (grad) {
  13407. ggml_set_zero(grad);
  13408. }
  13409. }
  13410. }
  13411. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13412. cgraph->n_leafs = 0;
  13413. cgraph->n_nodes = 0;
  13414. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13415. }
  13416. //
  13417. // thread data
  13418. //
  13419. // synchronization is done via busy loops
  13420. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13421. //
  13422. #ifdef __APPLE__
  13423. //#include <os/lock.h>
  13424. //
  13425. //typedef os_unfair_lock ggml_lock_t;
  13426. //
  13427. //#define ggml_lock_init(x) UNUSED(x)
  13428. //#define ggml_lock_destroy(x) UNUSED(x)
  13429. //#define ggml_lock_lock os_unfair_lock_lock
  13430. //#define ggml_lock_unlock os_unfair_lock_unlock
  13431. //
  13432. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13433. typedef int ggml_lock_t;
  13434. #define ggml_lock_init(x) UNUSED(x)
  13435. #define ggml_lock_destroy(x) UNUSED(x)
  13436. #define ggml_lock_lock(x) UNUSED(x)
  13437. #define ggml_lock_unlock(x) UNUSED(x)
  13438. #define GGML_LOCK_INITIALIZER 0
  13439. typedef pthread_t ggml_thread_t;
  13440. #define ggml_thread_create pthread_create
  13441. #define ggml_thread_join pthread_join
  13442. #else
  13443. //typedef pthread_spinlock_t ggml_lock_t;
  13444. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13445. //#define ggml_lock_destroy pthread_spin_destroy
  13446. //#define ggml_lock_lock pthread_spin_lock
  13447. //#define ggml_lock_unlock pthread_spin_unlock
  13448. typedef int ggml_lock_t;
  13449. #define ggml_lock_init(x) UNUSED(x)
  13450. #define ggml_lock_destroy(x) UNUSED(x)
  13451. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13452. #define ggml_lock_lock(x) _mm_pause()
  13453. #else
  13454. #define ggml_lock_lock(x) UNUSED(x)
  13455. #endif
  13456. #define ggml_lock_unlock(x) UNUSED(x)
  13457. #define GGML_LOCK_INITIALIZER 0
  13458. typedef pthread_t ggml_thread_t;
  13459. #define ggml_thread_create pthread_create
  13460. #define ggml_thread_join pthread_join
  13461. #endif
  13462. // Android's libc implementation "bionic" does not support setting affinity
  13463. #if defined(__linux__) && !defined(__BIONIC__)
  13464. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13465. if (!ggml_is_numa()) {
  13466. return;
  13467. }
  13468. // run thread on node_num thread_n / (threads per node)
  13469. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13470. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13471. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13472. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13473. CPU_ZERO_S(setsize, cpus);
  13474. for (size_t i = 0; i < node->n_cpus; ++i) {
  13475. CPU_SET_S(node->cpus[i], setsize, cpus);
  13476. }
  13477. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13478. if (rv) {
  13479. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13480. strerror(rv));
  13481. }
  13482. CPU_FREE(cpus);
  13483. }
  13484. static void clear_numa_thread_affinity(void) {
  13485. if (!ggml_is_numa()) {
  13486. return;
  13487. }
  13488. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13489. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13490. CPU_ZERO_S(setsize, cpus);
  13491. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13492. CPU_SET_S(i, setsize, cpus);
  13493. }
  13494. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13495. if (rv) {
  13496. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13497. strerror(rv));
  13498. }
  13499. CPU_FREE(cpus);
  13500. }
  13501. #else
  13502. // TODO: Windows etc.
  13503. // (the linux implementation may also work on BSD, someone should test)
  13504. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13505. static void clear_numa_thread_affinity(void) {}
  13506. #endif
  13507. struct ggml_compute_state_shared {
  13508. const struct ggml_cgraph * cgraph;
  13509. const struct ggml_cplan * cplan;
  13510. int64_t perf_node_start_cycles;
  13511. int64_t perf_node_start_time_us;
  13512. const int n_threads;
  13513. // synchronization primitives
  13514. atomic_int n_active; // num active threads
  13515. atomic_int node_n; // active graph node
  13516. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13517. void * abort_callback_data;
  13518. };
  13519. struct ggml_compute_state {
  13520. ggml_thread_t thrd;
  13521. int ith;
  13522. struct ggml_compute_state_shared * shared;
  13523. };
  13524. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13525. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13526. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13527. node->perf_runs++;
  13528. node->perf_cycles += cycles_cur;
  13529. node->perf_time_us += time_us_cur;
  13530. }
  13531. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13532. int n_tasks = 0;
  13533. switch (node->op) {
  13534. case GGML_OP_CPY:
  13535. case GGML_OP_DUP:
  13536. case GGML_OP_ADD:
  13537. case GGML_OP_ADD1:
  13538. case GGML_OP_ACC:
  13539. {
  13540. n_tasks = n_threads;
  13541. } break;
  13542. case GGML_OP_SUB:
  13543. case GGML_OP_SQR:
  13544. case GGML_OP_SQRT:
  13545. case GGML_OP_LOG:
  13546. case GGML_OP_SUM:
  13547. case GGML_OP_SUM_ROWS:
  13548. case GGML_OP_MEAN:
  13549. case GGML_OP_ARGMAX:
  13550. case GGML_OP_REPEAT:
  13551. case GGML_OP_REPEAT_BACK:
  13552. case GGML_OP_LEAKY_RELU:
  13553. {
  13554. n_tasks = 1;
  13555. } break;
  13556. case GGML_OP_UNARY:
  13557. switch (ggml_get_unary_op(node)) {
  13558. case GGML_UNARY_OP_ABS:
  13559. case GGML_UNARY_OP_SGN:
  13560. case GGML_UNARY_OP_NEG:
  13561. case GGML_UNARY_OP_STEP:
  13562. case GGML_UNARY_OP_TANH:
  13563. case GGML_UNARY_OP_ELU:
  13564. case GGML_UNARY_OP_RELU:
  13565. {
  13566. n_tasks = 1;
  13567. } break;
  13568. case GGML_UNARY_OP_GELU:
  13569. case GGML_UNARY_OP_GELU_QUICK:
  13570. case GGML_UNARY_OP_SILU:
  13571. {
  13572. n_tasks = n_threads;
  13573. } break;
  13574. default:
  13575. GGML_ASSERT(false);
  13576. }
  13577. break;
  13578. case GGML_OP_SILU_BACK:
  13579. case GGML_OP_MUL:
  13580. case GGML_OP_DIV:
  13581. case GGML_OP_NORM:
  13582. case GGML_OP_RMS_NORM:
  13583. case GGML_OP_RMS_NORM_BACK:
  13584. case GGML_OP_GROUP_NORM:
  13585. case GGML_OP_CONCAT:
  13586. {
  13587. n_tasks = n_threads;
  13588. } break;
  13589. case GGML_OP_MUL_MAT:
  13590. {
  13591. n_tasks = n_threads;
  13592. // TODO: use different scheduling for different matrix sizes
  13593. //const int nr0 = ggml_nrows(node->src[0]);
  13594. //const int nr1 = ggml_nrows(node->src[1]);
  13595. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13596. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13597. } break;
  13598. case GGML_OP_MUL_MAT_ID:
  13599. {
  13600. n_tasks = n_threads;
  13601. } break;
  13602. case GGML_OP_OUT_PROD:
  13603. {
  13604. n_tasks = n_threads;
  13605. } break;
  13606. case GGML_OP_SCALE:
  13607. case GGML_OP_SET:
  13608. case GGML_OP_CONT:
  13609. case GGML_OP_RESHAPE:
  13610. case GGML_OP_VIEW:
  13611. case GGML_OP_PERMUTE:
  13612. case GGML_OP_TRANSPOSE:
  13613. case GGML_OP_GET_ROWS:
  13614. case GGML_OP_GET_ROWS_BACK:
  13615. case GGML_OP_DIAG:
  13616. {
  13617. n_tasks = 1;
  13618. } break;
  13619. case GGML_OP_DIAG_MASK_ZERO:
  13620. case GGML_OP_DIAG_MASK_INF:
  13621. case GGML_OP_SOFT_MAX_BACK:
  13622. case GGML_OP_ROPE:
  13623. case GGML_OP_ROPE_BACK:
  13624. case GGML_OP_ADD_REL_POS:
  13625. {
  13626. n_tasks = n_threads;
  13627. } break;
  13628. case GGML_OP_ALIBI:
  13629. {
  13630. n_tasks = 1; //TODO
  13631. } break;
  13632. case GGML_OP_CLAMP:
  13633. {
  13634. n_tasks = 1; //TODO
  13635. } break;
  13636. case GGML_OP_SOFT_MAX:
  13637. {
  13638. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13639. } break;
  13640. case GGML_OP_CONV_TRANSPOSE_1D:
  13641. {
  13642. n_tasks = n_threads;
  13643. } break;
  13644. case GGML_OP_IM2COL:
  13645. {
  13646. n_tasks = n_threads;
  13647. } break;
  13648. case GGML_OP_CONV_TRANSPOSE_2D:
  13649. {
  13650. n_tasks = n_threads;
  13651. } break;
  13652. case GGML_OP_POOL_1D:
  13653. case GGML_OP_POOL_2D:
  13654. {
  13655. n_tasks = 1;
  13656. } break;
  13657. case GGML_OP_UPSCALE:
  13658. {
  13659. n_tasks = n_threads;
  13660. } break;
  13661. case GGML_OP_PAD:
  13662. {
  13663. n_tasks = n_threads;
  13664. } break;
  13665. case GGML_OP_ARGSORT:
  13666. {
  13667. n_tasks = n_threads;
  13668. } break;
  13669. case GGML_OP_FLASH_ATTN:
  13670. {
  13671. n_tasks = n_threads;
  13672. } break;
  13673. case GGML_OP_FLASH_FF:
  13674. {
  13675. n_tasks = n_threads;
  13676. } break;
  13677. case GGML_OP_FLASH_ATTN_BACK:
  13678. {
  13679. n_tasks = n_threads;
  13680. } break;
  13681. case GGML_OP_WIN_PART:
  13682. case GGML_OP_WIN_UNPART:
  13683. case GGML_OP_GET_REL_POS:
  13684. case GGML_OP_MAP_UNARY:
  13685. case GGML_OP_MAP_BINARY:
  13686. case GGML_OP_MAP_CUSTOM1_F32:
  13687. case GGML_OP_MAP_CUSTOM2_F32:
  13688. case GGML_OP_MAP_CUSTOM3_F32:
  13689. {
  13690. n_tasks = 1;
  13691. } break;
  13692. case GGML_OP_MAP_CUSTOM1:
  13693. {
  13694. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13695. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13696. n_tasks = n_threads;
  13697. } else {
  13698. n_tasks = MIN(p->n_tasks, n_threads);
  13699. }
  13700. } break;
  13701. case GGML_OP_MAP_CUSTOM2:
  13702. {
  13703. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13704. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13705. n_tasks = n_threads;
  13706. } else {
  13707. n_tasks = MIN(p->n_tasks, n_threads);
  13708. }
  13709. } break;
  13710. case GGML_OP_MAP_CUSTOM3:
  13711. {
  13712. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13713. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13714. n_tasks = n_threads;
  13715. } else {
  13716. n_tasks = MIN(p->n_tasks, n_threads);
  13717. }
  13718. } break;
  13719. case GGML_OP_CROSS_ENTROPY_LOSS:
  13720. {
  13721. n_tasks = n_threads;
  13722. } break;
  13723. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13724. {
  13725. n_tasks = n_threads;
  13726. } break;
  13727. case GGML_OP_NONE:
  13728. {
  13729. n_tasks = 1;
  13730. } break;
  13731. case GGML_OP_COUNT:
  13732. {
  13733. GGML_ASSERT(false);
  13734. } break;
  13735. default:
  13736. {
  13737. fprintf(stderr, "%s: op not implemented: ", __func__);
  13738. if (node->op < GGML_OP_COUNT) {
  13739. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13740. } else {
  13741. fprintf(stderr, "%d\n", node->op);
  13742. }
  13743. GGML_ASSERT(false);
  13744. } break;
  13745. }
  13746. assert(n_tasks > 0);
  13747. return n_tasks;
  13748. }
  13749. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13750. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13751. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13752. const struct ggml_cplan * cplan = state->shared->cplan;
  13753. const int n_threads = state->shared->n_threads;
  13754. set_numa_thread_affinity(state->ith, n_threads);
  13755. int node_n = -1;
  13756. while (true) {
  13757. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13758. state->shared->node_n += 1;
  13759. return (thread_ret_t) GGML_EXIT_ABORTED;
  13760. }
  13761. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13762. // all other threads are finished and spinning
  13763. // do finalize and init here so we don't have synchronize again
  13764. struct ggml_compute_params params = {
  13765. /*.type =*/ GGML_TASK_FINALIZE,
  13766. /*.ith =*/ 0,
  13767. /*.nth =*/ 0,
  13768. /*.wsize =*/ cplan->work_size,
  13769. /*.wdata =*/ cplan->work_data,
  13770. };
  13771. if (node_n != -1) {
  13772. /* FINALIZE */
  13773. struct ggml_tensor * node = cgraph->nodes[node_n];
  13774. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13775. params.nth = ggml_get_n_tasks(node, n_threads);
  13776. ggml_compute_forward(&params, node);
  13777. }
  13778. ggml_graph_compute_perf_stats_node(node, state->shared);
  13779. }
  13780. // distribute new work or execute it direct if 1T
  13781. while (++node_n < cgraph->n_nodes) {
  13782. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13783. struct ggml_tensor * node = cgraph->nodes[node_n];
  13784. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13785. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13786. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13787. params.nth = n_tasks;
  13788. /* INIT */
  13789. if (GGML_OP_HAS_INIT[node->op]) {
  13790. params.type = GGML_TASK_INIT;
  13791. ggml_compute_forward(&params, node);
  13792. }
  13793. if (n_tasks == 1) {
  13794. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13795. // they do something more efficient than spinning (?)
  13796. params.type = GGML_TASK_COMPUTE;
  13797. ggml_compute_forward(&params, node);
  13798. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13799. params.type = GGML_TASK_FINALIZE;
  13800. ggml_compute_forward(&params, node);
  13801. }
  13802. ggml_graph_compute_perf_stats_node(node, state->shared);
  13803. } else {
  13804. break;
  13805. }
  13806. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13807. break;
  13808. }
  13809. }
  13810. atomic_store(&state->shared->n_active, n_threads);
  13811. atomic_store(&state->shared->node_n, node_n);
  13812. } else {
  13813. // wait for other threads to finish
  13814. const int last = node_n;
  13815. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13816. while (true) {
  13817. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13818. // depending on the workload and the operating system.
  13819. // since it is not clear what is the best approach, it should potentially become user-configurable
  13820. // ref: https://github.com/ggerganov/ggml/issues/291
  13821. // UPD: adding the do_yield flag seems to resolve the issue universally
  13822. if (do_yield) {
  13823. sched_yield();
  13824. }
  13825. node_n = atomic_load(&state->shared->node_n);
  13826. if (node_n != last) break;
  13827. };
  13828. }
  13829. // check if we should stop
  13830. if (node_n >= cgraph->n_nodes) break;
  13831. /* COMPUTE */
  13832. struct ggml_tensor * node = cgraph->nodes[node_n];
  13833. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13834. struct ggml_compute_params params = {
  13835. /*.type =*/ GGML_TASK_COMPUTE,
  13836. /*.ith =*/ state->ith,
  13837. /*.nth =*/ n_tasks,
  13838. /*.wsize =*/ cplan->work_size,
  13839. /*.wdata =*/ cplan->work_data,
  13840. };
  13841. if (state->ith < n_tasks) {
  13842. ggml_compute_forward(&params, node);
  13843. }
  13844. }
  13845. return GGML_EXIT_SUCCESS;
  13846. }
  13847. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  13848. if (n_threads <= 0) {
  13849. n_threads = GGML_DEFAULT_N_THREADS;
  13850. }
  13851. size_t work_size = 0;
  13852. struct ggml_cplan cplan;
  13853. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13854. // thread scheduling for the different operations + work buffer size estimation
  13855. for (int i = 0; i < cgraph->n_nodes; i++) {
  13856. struct ggml_tensor * node = cgraph->nodes[i];
  13857. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13858. size_t cur = 0;
  13859. switch (node->op) {
  13860. case GGML_OP_CPY:
  13861. case GGML_OP_DUP:
  13862. {
  13863. if (ggml_is_quantized(node->type)) {
  13864. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13865. }
  13866. } break;
  13867. case GGML_OP_ADD:
  13868. case GGML_OP_ADD1:
  13869. {
  13870. if (ggml_is_quantized(node->src[0]->type)) {
  13871. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13872. }
  13873. } break;
  13874. case GGML_OP_ACC:
  13875. {
  13876. if (ggml_is_quantized(node->src[0]->type)) {
  13877. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13878. }
  13879. } break;
  13880. case GGML_OP_MUL_MAT:
  13881. {
  13882. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13883. #if defined(GGML_USE_CLBLAST)
  13884. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13885. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13886. } else
  13887. #endif
  13888. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13889. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13890. if (node->src[0]->type != GGML_TYPE_F32) {
  13891. // here we need memory just for single 2D matrix from src0
  13892. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13893. }
  13894. } else
  13895. #endif
  13896. if (node->src[1]->type != vec_dot_type) {
  13897. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13898. }
  13899. } break;
  13900. case GGML_OP_MUL_MAT_ID:
  13901. {
  13902. cur = 0;
  13903. const struct ggml_tensor * src0 = node->src[2];
  13904. const struct ggml_tensor * src1 = node->src[1];
  13905. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13906. if (src1->type != vec_dot_type) {
  13907. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13908. }
  13909. const int n_as = ggml_get_op_params_i32(node, 1);
  13910. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  13911. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13912. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13913. } break;
  13914. case GGML_OP_OUT_PROD:
  13915. {
  13916. if (ggml_is_quantized(node->src[0]->type)) {
  13917. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13918. }
  13919. } break;
  13920. case GGML_OP_SOFT_MAX:
  13921. {
  13922. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13923. } break;
  13924. case GGML_OP_CONV_TRANSPOSE_1D:
  13925. {
  13926. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13927. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13928. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13929. const int64_t ne00 = node->src[0]->ne[0]; // K
  13930. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13931. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13932. const int64_t ne10 = node->src[1]->ne[0]; // L
  13933. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13934. if (node->src[0]->type == GGML_TYPE_F16 &&
  13935. node->src[1]->type == GGML_TYPE_F32) {
  13936. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13937. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13938. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13939. node->src[1]->type == GGML_TYPE_F32) {
  13940. cur += sizeof(float)*ne00*ne01*ne02;
  13941. cur += sizeof(float)*ne10*ne11;
  13942. } else {
  13943. GGML_ASSERT(false);
  13944. }
  13945. } break;
  13946. case GGML_OP_CONV_TRANSPOSE_2D:
  13947. {
  13948. const int64_t ne00 = node->src[0]->ne[0]; // W
  13949. const int64_t ne01 = node->src[0]->ne[1]; // H
  13950. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13951. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13952. const int64_t ne10 = node->src[1]->ne[0]; // W
  13953. const int64_t ne11 = node->src[1]->ne[1]; // H
  13954. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13955. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13956. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13957. } break;
  13958. case GGML_OP_FLASH_ATTN:
  13959. {
  13960. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13961. if (node->src[1]->type == GGML_TYPE_F32) {
  13962. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13963. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13964. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13965. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13966. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13967. }
  13968. } break;
  13969. case GGML_OP_FLASH_FF:
  13970. {
  13971. if (node->src[1]->type == GGML_TYPE_F32) {
  13972. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13973. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13974. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13975. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13976. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13977. }
  13978. } break;
  13979. case GGML_OP_FLASH_ATTN_BACK:
  13980. {
  13981. const int64_t D = node->src[0]->ne[0];
  13982. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13983. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13984. if (node->src[1]->type == GGML_TYPE_F32) {
  13985. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13986. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13987. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13988. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13989. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13990. }
  13991. } break;
  13992. case GGML_OP_CROSS_ENTROPY_LOSS:
  13993. {
  13994. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13995. } break;
  13996. case GGML_OP_COUNT:
  13997. {
  13998. GGML_ASSERT(false);
  13999. } break;
  14000. default:
  14001. break;
  14002. }
  14003. work_size = MAX(work_size, cur);
  14004. }
  14005. if (work_size > 0) {
  14006. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14007. }
  14008. cplan.n_threads = n_threads;
  14009. cplan.work_size = work_size;
  14010. cplan.work_data = NULL;
  14011. return cplan;
  14012. }
  14013. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14014. {
  14015. GGML_ASSERT(cplan);
  14016. GGML_ASSERT(cplan->n_threads > 0);
  14017. if (cplan->work_size > 0) {
  14018. GGML_ASSERT(cplan->work_data);
  14019. }
  14020. }
  14021. const int n_threads = cplan->n_threads;
  14022. struct ggml_compute_state_shared state_shared = {
  14023. /*.cgraph =*/ cgraph,
  14024. /*.cgraph_plan =*/ cplan,
  14025. /*.perf_node_start_cycles =*/ 0,
  14026. /*.perf_node_start_time_us =*/ 0,
  14027. /*.n_threads =*/ n_threads,
  14028. /*.n_active =*/ n_threads,
  14029. /*.node_n =*/ -1,
  14030. /*.abort_callback =*/ NULL,
  14031. /*.abort_callback_data =*/ NULL,
  14032. };
  14033. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14034. // create thread pool
  14035. if (n_threads > 1) {
  14036. for (int j = 1; j < n_threads; ++j) {
  14037. workers[j] = (struct ggml_compute_state) {
  14038. .thrd = 0,
  14039. .ith = j,
  14040. .shared = &state_shared,
  14041. };
  14042. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14043. GGML_ASSERT(rc == 0);
  14044. UNUSED(rc);
  14045. }
  14046. }
  14047. workers[0].ith = 0;
  14048. workers[0].shared = &state_shared;
  14049. const int64_t perf_start_cycles = ggml_perf_cycles();
  14050. const int64_t perf_start_time_us = ggml_perf_time_us();
  14051. // this is a work thread too
  14052. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14053. // don't leave affinity set on the main thread
  14054. clear_numa_thread_affinity();
  14055. // join or kill thread pool
  14056. if (n_threads > 1) {
  14057. for (int j = 1; j < n_threads; j++) {
  14058. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14059. GGML_ASSERT(rc == 0);
  14060. }
  14061. }
  14062. // performance stats (graph)
  14063. {
  14064. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14065. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14066. cgraph->perf_runs++;
  14067. cgraph->perf_cycles += perf_cycles_cur;
  14068. cgraph->perf_time_us += perf_time_us_cur;
  14069. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14070. __func__, cgraph->perf_runs,
  14071. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14072. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14073. (double) perf_time_us_cur / 1000.0,
  14074. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14075. }
  14076. return compute_status;
  14077. }
  14078. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14079. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14080. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14081. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14082. ggml_graph_compute(cgraph, &cplan);
  14083. }
  14084. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14085. for (int i = 0; i < cgraph->n_leafs; i++) {
  14086. struct ggml_tensor * leaf = cgraph->leafs[i];
  14087. if (strcmp(leaf->name, name) == 0) {
  14088. return leaf;
  14089. }
  14090. }
  14091. for (int i = 0; i < cgraph->n_nodes; i++) {
  14092. struct ggml_tensor * node = cgraph->nodes[i];
  14093. if (strcmp(node->name, name) == 0) {
  14094. return node;
  14095. }
  14096. }
  14097. return NULL;
  14098. }
  14099. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14100. const int64_t * ne = tensor->ne;
  14101. const size_t * nb = tensor->nb;
  14102. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14103. ggml_type_name(tensor->type),
  14104. ggml_op_name (tensor->op),
  14105. ggml_n_dims(tensor),
  14106. ne[0], ne[1], ne[2], ne[3],
  14107. nb[0], nb[1], nb[2], nb[3],
  14108. tensor->data,
  14109. tensor->name);
  14110. }
  14111. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14112. const int64_t * ne = tensor->ne;
  14113. const size_t * nb = tensor->nb;
  14114. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14115. arg,
  14116. ggml_type_name(tensor->type),
  14117. ggml_op_name (tensor->op),
  14118. ggml_n_dims(tensor),
  14119. ne[0], ne[1], ne[2], ne[3],
  14120. nb[0], nb[1], nb[2], nb[3],
  14121. tensor->data,
  14122. tensor->name);
  14123. }
  14124. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14125. uint64_t size_eval = 0;
  14126. // compute size of intermediate results
  14127. // TODO: does not take into account scratch buffers !!!!
  14128. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14129. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14130. }
  14131. // print
  14132. {
  14133. FILE * fout = stdout;
  14134. fprintf(fout, "\n");
  14135. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14136. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14137. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14138. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14139. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14140. // header
  14141. fprintf(fout, "\n");
  14142. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14143. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14144. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14145. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14146. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14147. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14148. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14149. }
  14150. // header
  14151. fprintf(fout, "\n");
  14152. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14153. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14154. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14155. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14156. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14157. if (cgraph->nodes[i]->src[j]) {
  14158. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14159. }
  14160. }
  14161. fprintf(fout, "\n");
  14162. }
  14163. fprintf(fout, "\n");
  14164. }
  14165. // write binary data
  14166. {
  14167. FILE * fout = fopen(fname, "wb");
  14168. if (!fout) {
  14169. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14170. return;
  14171. }
  14172. // header
  14173. {
  14174. const uint32_t magic = GGML_FILE_MAGIC;
  14175. const uint32_t version = GGML_FILE_VERSION;
  14176. const uint32_t n_leafs = cgraph->n_leafs;
  14177. const uint32_t n_nodes = cgraph->n_nodes;
  14178. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14179. fwrite(&version, sizeof(uint32_t), 1, fout);
  14180. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14181. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14182. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14183. }
  14184. // leafs
  14185. {
  14186. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14187. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14188. const uint32_t type = tensor->type;
  14189. const uint32_t op = tensor->op;
  14190. fwrite(&type, sizeof(uint32_t), 1, fout);
  14191. fwrite(&op, sizeof(uint32_t), 1, fout);
  14192. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14193. const uint64_t ne = tensor->ne[j];
  14194. const uint64_t nb = tensor->nb[j];
  14195. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14196. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14197. }
  14198. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14199. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14200. // dump the data
  14201. // TODO: pad this to 32 byte boundary
  14202. {
  14203. const size_t size = ggml_nbytes(tensor);
  14204. fwrite(tensor->data, sizeof(char), size, fout);
  14205. }
  14206. }
  14207. }
  14208. // nodes
  14209. {
  14210. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14211. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14212. const uint32_t type = tensor->type;
  14213. const uint32_t op = tensor->op;
  14214. fwrite(&type, sizeof(uint32_t), 1, fout);
  14215. fwrite(&op, sizeof(uint32_t), 1, fout);
  14216. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14217. const uint64_t ne = tensor->ne[j];
  14218. const uint64_t nb = tensor->nb[j];
  14219. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14220. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14221. }
  14222. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14223. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14224. // output the op arguments
  14225. {
  14226. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14227. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14228. args[j] = tensor->src[j];
  14229. }
  14230. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14231. if (args[j]) {
  14232. int32_t idx = -1;
  14233. // check if leaf
  14234. {
  14235. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14236. if (args[j] == cgraph->leafs[k]) {
  14237. idx = k;
  14238. break;
  14239. }
  14240. }
  14241. }
  14242. // check if node
  14243. if (idx == -1) {
  14244. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14245. if (args[j] == cgraph->nodes[k]) {
  14246. idx = cgraph->n_leafs + k;
  14247. break;
  14248. }
  14249. }
  14250. }
  14251. if (idx == -1) {
  14252. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14253. fclose(fout);
  14254. return;
  14255. }
  14256. fwrite(&idx, sizeof(int32_t), 1, fout);
  14257. } else {
  14258. const int32_t nul = -1;
  14259. fwrite(&nul, sizeof(int32_t), 1, fout);
  14260. }
  14261. }
  14262. }
  14263. }
  14264. }
  14265. fclose(fout);
  14266. }
  14267. }
  14268. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14269. assert(*ctx_data == NULL);
  14270. assert(*ctx_eval == NULL);
  14271. struct ggml_cgraph * result = NULL;
  14272. struct ggml_tensor * data = NULL;
  14273. // read file into data
  14274. {
  14275. FILE * fin = fopen(fname, "rb");
  14276. if (!fin) {
  14277. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14278. return result;
  14279. }
  14280. size_t fsize = 0;
  14281. fseek(fin, 0, SEEK_END);
  14282. fsize = ftell(fin);
  14283. fseek(fin, 0, SEEK_SET);
  14284. // create the data context
  14285. {
  14286. const size_t overhead = 1*ggml_tensor_overhead();
  14287. struct ggml_init_params params = {
  14288. .mem_size = fsize + overhead,
  14289. .mem_buffer = NULL,
  14290. .no_alloc = false,
  14291. };
  14292. *ctx_data = ggml_init(params);
  14293. if (!*ctx_data) {
  14294. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14295. fclose(fin);
  14296. return result;
  14297. }
  14298. }
  14299. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14300. {
  14301. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14302. if (ret != fsize) {
  14303. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14304. fclose(fin);
  14305. return result;
  14306. }
  14307. }
  14308. fclose(fin);
  14309. }
  14310. // populate result
  14311. {
  14312. char * ptr = (char *) data->data;
  14313. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14314. if (magic != GGML_FILE_MAGIC) {
  14315. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14316. return result;
  14317. }
  14318. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14319. if (version != GGML_FILE_VERSION) {
  14320. fprintf(stderr, "%s: invalid version number\n", __func__);
  14321. return result;
  14322. }
  14323. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14324. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14325. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14326. const int graph_size = MAX(n_leafs, n_nodes);
  14327. // create the data context
  14328. {
  14329. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14330. struct ggml_init_params params = {
  14331. .mem_size = size_eval + overhead,
  14332. .mem_buffer = NULL,
  14333. .no_alloc = true,
  14334. };
  14335. *ctx_eval = ggml_init(params);
  14336. if (!*ctx_eval) {
  14337. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14338. return result;
  14339. }
  14340. }
  14341. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14342. result->n_leafs = n_leafs;
  14343. result->n_nodes = n_nodes;
  14344. // leafs
  14345. {
  14346. uint32_t type;
  14347. uint32_t op;
  14348. for (uint32_t i = 0; i < n_leafs; ++i) {
  14349. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14350. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14351. int64_t ne[GGML_MAX_DIMS];
  14352. size_t nb[GGML_MAX_DIMS];
  14353. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14354. uint64_t ne_cur;
  14355. uint64_t nb_cur;
  14356. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14357. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14358. ne[j] = ne_cur;
  14359. nb[j] = nb_cur;
  14360. }
  14361. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14362. tensor->op = (enum ggml_op) op;
  14363. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14364. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14365. tensor->data = (void *) ptr;
  14366. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14367. tensor->nb[j] = nb[j];
  14368. }
  14369. result->leafs[i] = tensor;
  14370. ptr += ggml_nbytes(tensor);
  14371. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14372. }
  14373. }
  14374. ggml_set_no_alloc(*ctx_eval, false);
  14375. // nodes
  14376. {
  14377. uint32_t type;
  14378. uint32_t op;
  14379. for (uint32_t i = 0; i < n_nodes; ++i) {
  14380. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14381. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14382. enum ggml_op eop = (enum ggml_op) op;
  14383. int64_t ne[GGML_MAX_DIMS];
  14384. size_t nb[GGML_MAX_DIMS];
  14385. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14386. uint64_t ne_cur;
  14387. uint64_t nb_cur;
  14388. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14389. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14390. ne[j] = ne_cur;
  14391. nb[j] = nb_cur;
  14392. }
  14393. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14394. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14395. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14396. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14397. // parse args
  14398. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14399. const int32_t arg_idx = ptr_arg_idx[j];
  14400. if (arg_idx == -1) {
  14401. continue;
  14402. }
  14403. if (arg_idx < result->n_leafs) {
  14404. args[j] = result->leafs[arg_idx];
  14405. } else {
  14406. args[j] = result->nodes[arg_idx - result->n_leafs];
  14407. }
  14408. }
  14409. // create the tensor
  14410. // "view" operations are handled differently
  14411. // TODO: handle inplace ops - currently a copy is always made
  14412. struct ggml_tensor * tensor = NULL;
  14413. switch (eop) {
  14414. // TODO: implement other view ops
  14415. case GGML_OP_RESHAPE:
  14416. {
  14417. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14418. } break;
  14419. case GGML_OP_VIEW:
  14420. {
  14421. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14422. size_t offs;
  14423. memcpy(&offs, ptr_op_params, sizeof(offs));
  14424. tensor->data = ((char *) tensor->data) + offs;
  14425. } break;
  14426. case GGML_OP_TRANSPOSE:
  14427. {
  14428. tensor = ggml_transpose(*ctx_eval, args[0]);
  14429. } break;
  14430. case GGML_OP_PERMUTE:
  14431. {
  14432. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14433. } break;
  14434. default:
  14435. {
  14436. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14437. tensor->op = eop;
  14438. } break;
  14439. }
  14440. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14441. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14442. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14443. tensor->nb[j] = nb[j];
  14444. }
  14445. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14446. tensor->src[j] = args[j];
  14447. }
  14448. result->nodes[i] = tensor;
  14449. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14450. }
  14451. }
  14452. }
  14453. return result;
  14454. }
  14455. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14456. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14457. GGML_PRINT("=== GRAPH ===\n");
  14458. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14459. for (int i = 0; i < cgraph->n_nodes; i++) {
  14460. struct ggml_tensor * node = cgraph->nodes[i];
  14461. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14462. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14463. i,
  14464. node->ne[0], node->ne[1], node->ne[2],
  14465. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14466. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14467. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14468. (double) node->perf_time_us / 1000.0,
  14469. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14470. }
  14471. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14472. for (int i = 0; i < cgraph->n_leafs; i++) {
  14473. struct ggml_tensor * node = cgraph->leafs[i];
  14474. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14475. i,
  14476. node->ne[0], node->ne[1],
  14477. ggml_op_name(node->op),
  14478. ggml_get_name(node));
  14479. }
  14480. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14481. if (perf_total_per_op_us[i] == 0) {
  14482. continue;
  14483. }
  14484. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14485. }
  14486. GGML_PRINT("========================================\n");
  14487. }
  14488. // check if node is part of the graph
  14489. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14490. if (cgraph == NULL) {
  14491. return true;
  14492. }
  14493. for (int i = 0; i < cgraph->n_nodes; i++) {
  14494. if (cgraph->nodes[i] == node) {
  14495. return true;
  14496. }
  14497. }
  14498. return false;
  14499. }
  14500. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14501. for (int i = 0; i < cgraph->n_nodes; i++) {
  14502. struct ggml_tensor * parent = cgraph->nodes[i];
  14503. if (parent->grad == node) {
  14504. return parent;
  14505. }
  14506. }
  14507. return NULL;
  14508. }
  14509. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14510. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14511. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14512. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14513. gparent0 ? (void *) gparent0 : (void *) parent,
  14514. gparent0 ? "g" : "x",
  14515. gparent ? (void *) gparent : (void *) node,
  14516. gparent ? "g" : "x",
  14517. gparent ? "empty" : "vee",
  14518. gparent ? "dashed" : "solid",
  14519. label);
  14520. }
  14521. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14522. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14523. (void *) parent, "x",
  14524. (void *) node, "x",
  14525. label);
  14526. }
  14527. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14528. char color[16];
  14529. FILE * fp = fopen(filename, "w");
  14530. GGML_ASSERT(fp);
  14531. fprintf(fp, "digraph G {\n");
  14532. fprintf(fp, " newrank = true;\n");
  14533. fprintf(fp, " rankdir = LR;\n");
  14534. for (int i = 0; i < gb->n_nodes; i++) {
  14535. struct ggml_tensor * node = gb->nodes[i];
  14536. if (ggml_graph_get_parent(gb, node) != NULL) {
  14537. continue;
  14538. }
  14539. if (node->is_param) {
  14540. snprintf(color, sizeof(color), "yellow");
  14541. } else if (node->grad) {
  14542. if (ggml_graph_find(gf, node)) {
  14543. snprintf(color, sizeof(color), "green");
  14544. } else {
  14545. snprintf(color, sizeof(color), "lightblue");
  14546. }
  14547. } else {
  14548. snprintf(color, sizeof(color), "white");
  14549. }
  14550. fprintf(fp, " \"%p\" [ "
  14551. "style = filled; fillcolor = %s; shape = record; "
  14552. "label=\"",
  14553. (void *) node, color);
  14554. if (strlen(node->name) > 0) {
  14555. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14556. } else {
  14557. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14558. }
  14559. if (ggml_is_matrix(node)) {
  14560. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14561. } else {
  14562. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14563. }
  14564. if (node->grad) {
  14565. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14566. } else {
  14567. fprintf(fp, "\"; ]\n");
  14568. }
  14569. }
  14570. for (int i = 0; i < gb->n_leafs; i++) {
  14571. struct ggml_tensor * node = gb->leafs[i];
  14572. snprintf(color, sizeof(color), "pink");
  14573. fprintf(fp, " \"%p\" [ "
  14574. "style = filled; fillcolor = %s; shape = record; "
  14575. "label=\"<x>",
  14576. (void *) node, color);
  14577. if (strlen(node->name) > 0) {
  14578. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14579. } else {
  14580. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14581. }
  14582. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14583. if (ggml_nelements(node) < 5) {
  14584. fprintf(fp, " | (");
  14585. for (int j = 0; j < ggml_nelements(node); j++) {
  14586. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14587. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14588. }
  14589. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14590. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14591. }
  14592. else {
  14593. fprintf(fp, "#");
  14594. }
  14595. if (j < ggml_nelements(node) - 1) {
  14596. fprintf(fp, ", ");
  14597. }
  14598. }
  14599. fprintf(fp, ")");
  14600. }
  14601. fprintf(fp, "\"; ]\n");
  14602. }
  14603. for (int i = 0; i < gb->n_nodes; i++) {
  14604. struct ggml_tensor * node = gb->nodes[i];
  14605. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14606. if (node->src[j]) {
  14607. char label[16];
  14608. snprintf(label, sizeof(label), "src %d", j);
  14609. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14610. }
  14611. }
  14612. }
  14613. for (int i = 0; i < gb->n_leafs; i++) {
  14614. struct ggml_tensor * node = gb->leafs[i];
  14615. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14616. if (node->src[j]) {
  14617. char label[16];
  14618. snprintf(label, sizeof(label), "src %d", j);
  14619. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14620. }
  14621. }
  14622. }
  14623. fprintf(fp, "}\n");
  14624. fclose(fp);
  14625. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14626. }
  14627. ////////////////////////////////////////////////////////////////////////////////
  14628. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14629. int i = 0;
  14630. for (int p = 0; p < np; ++p) {
  14631. const int64_t ne = ggml_nelements(ps[p]) ;
  14632. // TODO: add function to set tensor from array
  14633. for (int64_t j = 0; j < ne; ++j) {
  14634. ggml_set_f32_1d(ps[p], j, x[i++]);
  14635. }
  14636. }
  14637. }
  14638. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14639. int i = 0;
  14640. for (int p = 0; p < np; ++p) {
  14641. const int64_t ne = ggml_nelements(ps[p]) ;
  14642. // TODO: add function to get all elements at once
  14643. for (int64_t j = 0; j < ne; ++j) {
  14644. x[i++] = ggml_get_f32_1d(ps[p], j);
  14645. }
  14646. }
  14647. }
  14648. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14649. int64_t i = 0;
  14650. for (int p = 0; p < np; ++p) {
  14651. const int64_t ne = ggml_nelements(ps[p]) ;
  14652. // TODO: add function to get all elements at once
  14653. for (int64_t j = 0; j < ne; ++j) {
  14654. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14655. }
  14656. }
  14657. }
  14658. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14659. int64_t i = 0;
  14660. for (int p = 0; p < np; ++p) {
  14661. const int64_t ne = ggml_nelements(ps[p]) ;
  14662. // TODO: add function to get all elements at once
  14663. for (int64_t j = 0; j < ne; ++j) {
  14664. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14665. }
  14666. }
  14667. }
  14668. //
  14669. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14670. //
  14671. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14672. //
  14673. static enum ggml_opt_result ggml_opt_adam(
  14674. struct ggml_context * ctx,
  14675. struct ggml_opt_context * opt,
  14676. struct ggml_opt_params params,
  14677. struct ggml_tensor * f,
  14678. struct ggml_cgraph * gf,
  14679. struct ggml_cgraph * gb,
  14680. ggml_opt_callback callback,
  14681. void * callback_data) {
  14682. GGML_ASSERT(ggml_is_scalar(f));
  14683. // these will store the parameters we want to optimize
  14684. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14685. int np = 0;
  14686. int64_t nx = 0;
  14687. for (int i = 0; i < gf->n_nodes; ++i) {
  14688. if (gf->nodes[i]->is_param) {
  14689. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14690. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14691. ps[np++] = gf->nodes[i];
  14692. nx += ggml_nelements(gf->nodes[i]);
  14693. }
  14694. }
  14695. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14696. int iter = opt->iter;
  14697. ggml_opt_init(opt->ctx, opt, params, nx);
  14698. opt->iter = iter;
  14699. }
  14700. // constants
  14701. float sched = params.adam.sched;
  14702. const float alpha = params.adam.alpha;
  14703. const float decay = params.adam.decay * alpha;
  14704. const float beta1 = params.adam.beta1;
  14705. const float beta2 = params.adam.beta2;
  14706. const float eps = params.adam.eps;
  14707. const float gclip = params.adam.gclip;
  14708. const int decay_min_ndim = params.adam.decay_min_ndim;
  14709. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14710. const float accum_norm = 1.0f / (float) n_accum;
  14711. float * g = opt->adam.g->data; // gradients
  14712. float * m = opt->adam.m->data; // first moment
  14713. float * v = opt->adam.v->data; // second moment
  14714. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14715. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14716. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14717. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14718. bool cancel = false;
  14719. // compute the function value
  14720. float fx = 0;
  14721. ggml_set_zero(opt->adam.g);
  14722. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14723. if (callback) {
  14724. callback(callback_data, accum_step, &sched, &cancel);
  14725. if (cancel) {
  14726. return GGML_OPT_CANCEL;
  14727. }
  14728. }
  14729. // ggml_graph_reset (gf);
  14730. ggml_set_f32 (f->grad, 1.0f);
  14731. ggml_graph_compute(gb, &cplan);
  14732. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14733. fx += ggml_get_f32_1d(f, 0);
  14734. }
  14735. fx *= accum_norm;
  14736. opt->adam.fx_prev = fx;
  14737. opt->adam.fx_best = opt->adam.fx_prev;
  14738. if (pf) {
  14739. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14740. }
  14741. opt->loss_before = opt->adam.fx_prev;
  14742. opt->loss_after = opt->adam.fx_prev;
  14743. // initialize
  14744. if (opt->just_initialized) {
  14745. opt->adam.n_no_improvement = 0;
  14746. opt->just_initialized = false;
  14747. }
  14748. float * fx_best = &opt->adam.fx_best;
  14749. float * fx_prev = &opt->adam.fx_prev;
  14750. int * n_no_improvement = &opt->adam.n_no_improvement;
  14751. int iter0 = opt->iter;
  14752. // run the optimizer
  14753. for (int t = 0; t < params.adam.n_iter; ++t) {
  14754. opt->iter = iter0 + t + 1;
  14755. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14756. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14757. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14758. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14759. for (int i = 0; i < np; ++i) {
  14760. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14761. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14762. }
  14763. const int64_t t_start_wall = ggml_time_us();
  14764. const int64_t t_start_cpu = ggml_cycles();
  14765. UNUSED(t_start_wall);
  14766. UNUSED(t_start_cpu);
  14767. {
  14768. float gnorm = 1.0f;
  14769. if (gclip > 0.0f) {
  14770. // gradient clipping
  14771. ggml_float sum = 0.0;
  14772. for (int64_t i = 0; i < nx; ++i) {
  14773. sum += (ggml_float)(g[i]*g[i]);
  14774. }
  14775. ggml_float norm = sqrt(sum);
  14776. if (norm > (ggml_float) gclip) {
  14777. gnorm = (float) ((ggml_float) gclip / norm);
  14778. }
  14779. }
  14780. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14781. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14782. int64_t i = 0;
  14783. for (int p = 0; p < np; ++p) {
  14784. const int64_t ne = ggml_nelements(ps[p]);
  14785. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14786. for (int64_t j = 0; j < ne; ++j) {
  14787. float x = ggml_get_f32_1d(ps[p], j);
  14788. float g_ = g[i]*gnorm;
  14789. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14790. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14791. float mh = m[i]*beta1h;
  14792. float vh = v[i]*beta2h;
  14793. vh = sqrtf(vh) + eps;
  14794. x = x*(1.0f - p_decay) - mh/vh;
  14795. ggml_set_f32_1d(ps[p], j, x);
  14796. ++i;
  14797. }
  14798. }
  14799. }
  14800. fx = 0;
  14801. ggml_set_zero(opt->adam.g);
  14802. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14803. if (callback) {
  14804. callback(callback_data, accum_step, &sched, &cancel);
  14805. if (cancel) {
  14806. return GGML_OPT_CANCEL;;
  14807. }
  14808. }
  14809. // ggml_graph_reset (gf);
  14810. ggml_set_f32 (f->grad, 1.0f);
  14811. ggml_graph_compute(gb, &cplan);
  14812. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14813. fx += ggml_get_f32_1d(f, 0);
  14814. }
  14815. fx *= accum_norm;
  14816. opt->loss_after = fx;
  14817. // check convergence
  14818. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14819. GGML_PRINT_DEBUG("converged\n");
  14820. return GGML_OPT_OK;
  14821. }
  14822. // delta-based convergence test
  14823. if (pf != NULL) {
  14824. // need at least params.past iterations to start checking for convergence
  14825. if (params.past <= iter0 + t) {
  14826. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14827. if (fabsf(rate) < params.delta) {
  14828. return GGML_OPT_OK;
  14829. }
  14830. }
  14831. pf[(iter0 + t)%params.past] = fx;
  14832. }
  14833. // check for improvement
  14834. if (params.max_no_improvement > 0) {
  14835. if (fx_best[0] > fx) {
  14836. fx_best[0] = fx;
  14837. n_no_improvement[0] = 0;
  14838. } else {
  14839. ++n_no_improvement[0];
  14840. if (n_no_improvement[0] >= params.max_no_improvement) {
  14841. return GGML_OPT_OK;
  14842. }
  14843. }
  14844. }
  14845. fx_prev[0] = fx;
  14846. {
  14847. const int64_t t_end_cpu = ggml_cycles();
  14848. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14849. UNUSED(t_end_cpu);
  14850. const int64_t t_end_wall = ggml_time_us();
  14851. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14852. UNUSED(t_end_wall);
  14853. }
  14854. }
  14855. return GGML_OPT_DID_NOT_CONVERGE;
  14856. }
  14857. //
  14858. // L-BFGS
  14859. //
  14860. // the L-BFGS implementation below is based on the following implementation:
  14861. //
  14862. // https://github.com/chokkan/liblbfgs
  14863. //
  14864. struct ggml_lbfgs_iteration_data {
  14865. float alpha;
  14866. float ys;
  14867. float * s;
  14868. float * y;
  14869. };
  14870. static enum ggml_opt_result linesearch_backtracking(
  14871. const struct ggml_opt_params * params,
  14872. int nx,
  14873. float * x,
  14874. float * fx,
  14875. float * g,
  14876. float * d,
  14877. float * step,
  14878. const float * xp,
  14879. struct ggml_tensor * f,
  14880. struct ggml_cgraph * gb,
  14881. struct ggml_cplan * cplan,
  14882. const int np,
  14883. struct ggml_tensor * ps[],
  14884. bool * cancel,
  14885. ggml_opt_callback callback,
  14886. void * callback_data) {
  14887. int count = 0;
  14888. float width = 0.0f;
  14889. float dg = 0.0f;
  14890. float finit = 0.0f;
  14891. float dginit = 0.0f;
  14892. float dgtest = 0.0f;
  14893. const float dec = 0.5f;
  14894. const float inc = 2.1f;
  14895. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14896. const float accum_norm = 1.0f / (float) n_accum;
  14897. if (*step <= 0.f) {
  14898. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14899. }
  14900. // compute the initial gradient in the search direction
  14901. ggml_vec_dot_f32(nx, &dginit, g, d);
  14902. // make sure that d points to a descent direction
  14903. if (0 < dginit) {
  14904. return GGML_LINESEARCH_FAIL;
  14905. }
  14906. // initialize local variables
  14907. finit = *fx;
  14908. dgtest = params->lbfgs.ftol*dginit;
  14909. while (true) {
  14910. ggml_vec_cpy_f32(nx, x, xp);
  14911. ggml_vec_mad_f32(nx, x, d, *step);
  14912. // evaluate the function and gradient values
  14913. {
  14914. ggml_opt_set_params(np, ps, x);
  14915. *fx = 0;
  14916. memset(g, 0, sizeof(float)*nx);
  14917. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14918. if (callback) {
  14919. // LBFG-S does not support learning rate -> ignore learning schedule
  14920. float sched = 0;
  14921. callback(callback_data, accum_step, &sched, cancel);
  14922. if (*cancel) {
  14923. return GGML_OPT_CANCEL;
  14924. }
  14925. }
  14926. // ggml_graph_reset (gf);
  14927. ggml_set_f32 (f->grad, 1.0f);
  14928. ggml_graph_compute(gb, cplan);
  14929. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14930. *fx += ggml_get_f32_1d(f, 0);
  14931. }
  14932. *fx *= accum_norm;
  14933. }
  14934. ++count;
  14935. if (*fx > finit + (*step)*dgtest) {
  14936. width = dec;
  14937. } else {
  14938. // Armijo condition is satisfied
  14939. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14940. return count;
  14941. }
  14942. ggml_vec_dot_f32(nx, &dg, g, d);
  14943. // check the Wolfe condition
  14944. if (dg < params->lbfgs.wolfe * dginit) {
  14945. width = inc;
  14946. } else {
  14947. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14948. // regular Wolfe conditions
  14949. return count;
  14950. }
  14951. if(dg > -params->lbfgs.wolfe*dginit) {
  14952. width = dec;
  14953. } else {
  14954. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14955. return count;
  14956. }
  14957. }
  14958. }
  14959. if (*step < params->lbfgs.min_step) {
  14960. return GGML_LINESEARCH_MINIMUM_STEP;
  14961. }
  14962. if (*step > params->lbfgs.max_step) {
  14963. return GGML_LINESEARCH_MAXIMUM_STEP;
  14964. }
  14965. if (params->lbfgs.max_linesearch <= count) {
  14966. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14967. }
  14968. (*step) *= width;
  14969. }
  14970. GGML_UNREACHABLE();
  14971. }
  14972. static enum ggml_opt_result ggml_opt_lbfgs(
  14973. struct ggml_context * ctx,
  14974. struct ggml_opt_context * opt,
  14975. struct ggml_opt_params params,
  14976. struct ggml_tensor * f,
  14977. struct ggml_cgraph * gf,
  14978. struct ggml_cgraph * gb,
  14979. ggml_opt_callback callback,
  14980. void * callback_data) {
  14981. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14982. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14983. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14984. return GGML_OPT_INVALID_WOLFE;
  14985. }
  14986. }
  14987. const int m = params.lbfgs.m;
  14988. // these will store the parameters we want to optimize
  14989. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14990. int np = 0;
  14991. int nx = 0;
  14992. for (int i = 0; i < gf->n_nodes; ++i) {
  14993. if (gf->nodes[i]->is_param) {
  14994. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14995. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14996. ps[np++] = gf->nodes[i];
  14997. nx += ggml_nelements(gf->nodes[i]);
  14998. }
  14999. }
  15000. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15001. int iter = opt->iter;
  15002. ggml_opt_init(ctx, opt, params, nx);
  15003. opt->iter = iter;
  15004. }
  15005. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15006. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15007. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15008. float * x = opt->lbfgs.x->data; // current parameters
  15009. float * xp = opt->lbfgs.xp->data; // previous parameters
  15010. float * g = opt->lbfgs.g->data; // current gradient
  15011. float * gp = opt->lbfgs.gp->data; // previous gradient
  15012. float * d = opt->lbfgs.d->data; // search direction
  15013. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15014. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15015. const float accum_norm = 1.0f / (float) n_accum;
  15016. float fx = 0.0f; // cost function value
  15017. float xnorm = 0.0f; // ||x||
  15018. float gnorm = 0.0f; // ||g||
  15019. // initialize x from the graph nodes
  15020. ggml_opt_get_params(np, ps, x);
  15021. // the L-BFGS memory
  15022. float * lm_alpha = opt->lbfgs.lmal->data;
  15023. float * lm_ys = opt->lbfgs.lmys->data;
  15024. float * lm_s = opt->lbfgs.lms->data;
  15025. float * lm_y = opt->lbfgs.lmy->data;
  15026. bool cancel = false;
  15027. // evaluate the function value and its gradient
  15028. {
  15029. ggml_opt_set_params(np, ps, x);
  15030. fx = 0;
  15031. memset(g, 0, sizeof(float)*nx);
  15032. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15033. if (callback) {
  15034. // LBFG-S does not support learning rate -> ignore learning schedule
  15035. float sched = 0;
  15036. callback(callback_data, accum_step, &sched, &cancel);
  15037. if (cancel) {
  15038. return GGML_OPT_CANCEL;
  15039. }
  15040. }
  15041. // ggml_graph_reset (gf);
  15042. ggml_set_f32 (f->grad, 1.0f);
  15043. ggml_graph_compute(gb, &cplan);
  15044. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15045. fx += ggml_get_f32_1d(f, 0);
  15046. }
  15047. fx *= accum_norm;
  15048. opt->loss_before = fx;
  15049. opt->loss_after = fx;
  15050. }
  15051. // search direction = -gradient
  15052. ggml_vec_neg_f32(nx, d, g);
  15053. // ||x||, ||g||
  15054. ggml_vec_norm_f32(nx, &xnorm, x);
  15055. ggml_vec_norm_f32(nx, &gnorm, g);
  15056. if (xnorm < 1.0f) {
  15057. xnorm = 1.0f;
  15058. }
  15059. // already optimized
  15060. if (gnorm/xnorm <= params.lbfgs.eps) {
  15061. return GGML_OPT_OK;
  15062. }
  15063. if (opt->just_initialized) {
  15064. if (pf) {
  15065. pf[0] = fx;
  15066. }
  15067. opt->lbfgs.fx_best = fx;
  15068. // initial step
  15069. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15070. opt->lbfgs.j = 0;
  15071. opt->lbfgs.k = 1;
  15072. opt->lbfgs.end = 0;
  15073. opt->lbfgs.n_no_improvement = 0;
  15074. opt->just_initialized = false;
  15075. }
  15076. float * fx_best = &opt->lbfgs.fx_best;
  15077. float * step = &opt->lbfgs.step;
  15078. int * j = &opt->lbfgs.j;
  15079. int * k = &opt->lbfgs.k;
  15080. int * end = &opt->lbfgs.end;
  15081. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15082. int ls = 0;
  15083. int bound = 0;
  15084. float ys = 0.0f;
  15085. float yy = 0.0f;
  15086. float beta = 0.0f;
  15087. int it = 0;
  15088. while (true) {
  15089. // store the current position and gradient vectors
  15090. ggml_vec_cpy_f32(nx, xp, x);
  15091. ggml_vec_cpy_f32(nx, gp, g);
  15092. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15093. // to determine if the optimization should be cancelled
  15094. // this is a simple change, but not doing this atm, since I don't have a nice
  15095. // way to test and don't want to break something with so many changes lined up
  15096. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15097. if (cancel) {
  15098. return GGML_OPT_CANCEL;
  15099. }
  15100. if (ls < 0) {
  15101. // linesearch failed - go back to the previous point and return
  15102. ggml_vec_cpy_f32(nx, x, xp);
  15103. ggml_vec_cpy_f32(nx, g, gp);
  15104. return ls;
  15105. }
  15106. opt->loss_after = fx;
  15107. ggml_vec_norm_f32(nx, &xnorm, x);
  15108. ggml_vec_norm_f32(nx, &gnorm, g);
  15109. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15110. if (xnorm < 1.0f) {
  15111. xnorm = 1.0f;
  15112. }
  15113. if (gnorm/xnorm <= params.lbfgs.eps) {
  15114. // converged
  15115. return GGML_OPT_OK;
  15116. }
  15117. // delta-based convergence test
  15118. if (pf != NULL) {
  15119. // need at least params.past iterations to start checking for convergence
  15120. if (params.past <= k[0]) {
  15121. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15122. if (fabsf(rate) < params.delta) {
  15123. return GGML_OPT_OK;
  15124. }
  15125. }
  15126. pf[k[0]%params.past] = fx;
  15127. }
  15128. // check for improvement
  15129. if (params.max_no_improvement > 0) {
  15130. if (fx < fx_best[0]) {
  15131. fx_best[0] = fx;
  15132. n_no_improvement[0] = 0;
  15133. } else {
  15134. n_no_improvement[0]++;
  15135. if (n_no_improvement[0] >= params.max_no_improvement) {
  15136. return GGML_OPT_OK;
  15137. }
  15138. }
  15139. }
  15140. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15141. // reached the maximum number of iterations
  15142. return GGML_OPT_DID_NOT_CONVERGE;
  15143. }
  15144. // update vectors s and y:
  15145. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15146. // y_{k+1} = g_{k+1} - g_{k}.
  15147. //
  15148. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15149. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15150. // compute scalars ys and yy:
  15151. // ys = y^t \cdot s -> 1 / \rho.
  15152. // yy = y^t \cdot y.
  15153. //
  15154. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15155. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15156. lm_ys[end[0]] = ys;
  15157. // find new search direction
  15158. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15159. bound = (m <= k[0]) ? m : k[0];
  15160. k[0]++;
  15161. it++;
  15162. end[0] = (end[0] + 1)%m;
  15163. // initialize search direction with -g
  15164. ggml_vec_neg_f32(nx, d, g);
  15165. j[0] = end[0];
  15166. for (int i = 0; i < bound; ++i) {
  15167. j[0] = (j[0] + m - 1) % m;
  15168. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15169. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15170. lm_alpha[j[0]] /= lm_ys[j[0]];
  15171. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15172. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15173. }
  15174. ggml_vec_scale_f32(nx, d, ys/yy);
  15175. for (int i = 0; i < bound; ++i) {
  15176. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15177. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15178. beta /= lm_ys[j[0]];
  15179. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15180. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15181. j[0] = (j[0] + 1)%m;
  15182. }
  15183. step[0] = 1.0;
  15184. }
  15185. GGML_UNREACHABLE();
  15186. }
  15187. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15188. struct ggml_opt_params result;
  15189. switch (type) {
  15190. case GGML_OPT_ADAM:
  15191. {
  15192. result = (struct ggml_opt_params) {
  15193. .type = GGML_OPT_ADAM,
  15194. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15195. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15196. .past = 0,
  15197. .delta = 1e-5f,
  15198. .max_no_improvement = 100,
  15199. .print_forward_graph = true,
  15200. .print_backward_graph = true,
  15201. .n_gradient_accumulation = 1,
  15202. .adam = {
  15203. .n_iter = 10000,
  15204. .sched = 1.000f,
  15205. .decay = 0.0f,
  15206. .decay_min_ndim = 2,
  15207. .alpha = 0.001f,
  15208. .beta1 = 0.9f,
  15209. .beta2 = 0.999f,
  15210. .eps = 1e-8f,
  15211. .eps_f = 1e-5f,
  15212. .eps_g = 1e-3f,
  15213. .gclip = 0.0f,
  15214. },
  15215. };
  15216. } break;
  15217. case GGML_OPT_LBFGS:
  15218. {
  15219. result = (struct ggml_opt_params) {
  15220. .type = GGML_OPT_LBFGS,
  15221. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15222. .n_threads = 1,
  15223. .past = 0,
  15224. .delta = 1e-5f,
  15225. .max_no_improvement = 0,
  15226. .print_forward_graph = true,
  15227. .print_backward_graph = true,
  15228. .n_gradient_accumulation = 1,
  15229. .lbfgs = {
  15230. .m = 6,
  15231. .n_iter = 100,
  15232. .max_linesearch = 20,
  15233. .eps = 1e-5f,
  15234. .ftol = 1e-4f,
  15235. .wolfe = 0.9f,
  15236. .min_step = 1e-20f,
  15237. .max_step = 1e+20f,
  15238. .linesearch = GGML_LINESEARCH_DEFAULT,
  15239. },
  15240. };
  15241. } break;
  15242. }
  15243. return result;
  15244. }
  15245. GGML_API void ggml_opt_init(
  15246. struct ggml_context * ctx,
  15247. struct ggml_opt_context * opt,
  15248. struct ggml_opt_params params,
  15249. int64_t nx) {
  15250. opt->ctx = ctx;
  15251. opt->params = params;
  15252. opt->iter = 0;
  15253. opt->nx = nx;
  15254. opt->just_initialized = true;
  15255. if (opt->ctx == NULL) {
  15256. struct ggml_init_params ctx_opt_params;
  15257. if (opt->params.type == GGML_OPT_ADAM) {
  15258. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15259. if (opt->params.past > 0) {
  15260. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15261. }
  15262. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15263. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15264. if (opt->params.past > 0) {
  15265. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15266. }
  15267. }
  15268. ctx_opt_params.mem_buffer = NULL;
  15269. ctx_opt_params.no_alloc = false;
  15270. opt->ctx = ggml_init(ctx_opt_params);
  15271. }
  15272. switch (opt->params.type) {
  15273. case GGML_OPT_ADAM:
  15274. {
  15275. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15276. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15277. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15278. opt->adam.pf = params.past > 0
  15279. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15280. : NULL;
  15281. ggml_set_zero(opt->adam.m);
  15282. ggml_set_zero(opt->adam.v);
  15283. if (opt->adam.pf) {
  15284. ggml_set_zero(opt->adam.pf);
  15285. }
  15286. } break;
  15287. case GGML_OPT_LBFGS:
  15288. {
  15289. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15290. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15291. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15292. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15293. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15294. opt->lbfgs.pf = params.past > 0
  15295. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15296. : NULL;
  15297. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15298. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15299. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15300. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15301. ggml_set_zero(opt->lbfgs.x);
  15302. ggml_set_zero(opt->lbfgs.xp);
  15303. ggml_set_zero(opt->lbfgs.g);
  15304. ggml_set_zero(opt->lbfgs.gp);
  15305. ggml_set_zero(opt->lbfgs.d);
  15306. if (opt->lbfgs.pf) {
  15307. ggml_set_zero(opt->lbfgs.pf);
  15308. }
  15309. ggml_set_zero(opt->lbfgs.lmal);
  15310. ggml_set_zero(opt->lbfgs.lmys);
  15311. ggml_set_zero(opt->lbfgs.lms);
  15312. ggml_set_zero(opt->lbfgs.lmy);
  15313. } break;
  15314. }
  15315. }
  15316. enum ggml_opt_result ggml_opt(
  15317. struct ggml_context * ctx,
  15318. struct ggml_opt_params params,
  15319. struct ggml_tensor * f) {
  15320. bool free_ctx = false;
  15321. if (ctx == NULL) {
  15322. struct ggml_init_params params_ctx = {
  15323. .mem_size = 16*1024*1024,
  15324. .mem_buffer = NULL,
  15325. .no_alloc = false,
  15326. };
  15327. ctx = ggml_init(params_ctx);
  15328. if (ctx == NULL) {
  15329. return GGML_OPT_NO_CONTEXT;
  15330. }
  15331. free_ctx = true;
  15332. }
  15333. enum ggml_opt_result result = GGML_OPT_OK;
  15334. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15335. ggml_opt_init(ctx, opt, params, 0);
  15336. result = ggml_opt_resume(ctx, opt, f);
  15337. if (free_ctx) {
  15338. ggml_free(ctx);
  15339. }
  15340. return result;
  15341. }
  15342. enum ggml_opt_result ggml_opt_resume(
  15343. struct ggml_context * ctx,
  15344. struct ggml_opt_context * opt,
  15345. struct ggml_tensor * f) {
  15346. // build forward + backward compute graphs
  15347. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15348. ggml_build_forward_expand(gf, f);
  15349. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15350. ggml_build_backward_expand(ctx, gf, gb, true);
  15351. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15352. }
  15353. enum ggml_opt_result ggml_opt_resume_g(
  15354. struct ggml_context * ctx,
  15355. struct ggml_opt_context * opt,
  15356. struct ggml_tensor * f,
  15357. struct ggml_cgraph * gf,
  15358. struct ggml_cgraph * gb,
  15359. ggml_opt_callback callback,
  15360. void * callback_data) {
  15361. // build forward + backward compute graphs
  15362. enum ggml_opt_result result = GGML_OPT_OK;
  15363. switch (opt->params.type) {
  15364. case GGML_OPT_ADAM:
  15365. {
  15366. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15367. } break;
  15368. case GGML_OPT_LBFGS:
  15369. {
  15370. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15371. } break;
  15372. }
  15373. if (opt->params.print_forward_graph) {
  15374. ggml_graph_print (gf);
  15375. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15376. }
  15377. if (opt->params.print_backward_graph) {
  15378. ggml_graph_print (gb);
  15379. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15380. }
  15381. return result;
  15382. }
  15383. ////////////////////////////////////////////////////////////////////////////////
  15384. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15385. assert(k % QK4_0 == 0);
  15386. const int nb = k / QK4_0;
  15387. for (int b = 0; b < n; b += k) {
  15388. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15389. quantize_row_q4_0_reference(src + b, y, k);
  15390. for (int i = 0; i < nb; i++) {
  15391. for (int j = 0; j < QK4_0; j += 2) {
  15392. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15393. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15394. hist[vi0]++;
  15395. hist[vi1]++;
  15396. }
  15397. }
  15398. }
  15399. return (n/QK4_0*sizeof(block_q4_0));
  15400. }
  15401. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15402. assert(k % QK4_1 == 0);
  15403. const int nb = k / QK4_1;
  15404. for (int b = 0; b < n; b += k) {
  15405. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15406. quantize_row_q4_1_reference(src + b, y, k);
  15407. for (int i = 0; i < nb; i++) {
  15408. for (int j = 0; j < QK4_1; j += 2) {
  15409. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15410. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15411. hist[vi0]++;
  15412. hist[vi1]++;
  15413. }
  15414. }
  15415. }
  15416. return (n/QK4_1*sizeof(block_q4_1));
  15417. }
  15418. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15419. assert(k % QK5_0 == 0);
  15420. const int nb = k / QK5_0;
  15421. for (int b = 0; b < n; b += k) {
  15422. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15423. quantize_row_q5_0_reference(src + b, y, k);
  15424. for (int i = 0; i < nb; i++) {
  15425. uint32_t qh;
  15426. memcpy(&qh, &y[i].qh, sizeof(qh));
  15427. for (int j = 0; j < QK5_0; j += 2) {
  15428. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15429. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15430. // cast to 16 bins
  15431. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15432. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15433. hist[vi0]++;
  15434. hist[vi1]++;
  15435. }
  15436. }
  15437. }
  15438. return (n/QK5_0*sizeof(block_q5_0));
  15439. }
  15440. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15441. assert(k % QK5_1 == 0);
  15442. const int nb = k / QK5_1;
  15443. for (int b = 0; b < n; b += k) {
  15444. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15445. quantize_row_q5_1_reference(src + b, y, k);
  15446. for (int i = 0; i < nb; i++) {
  15447. uint32_t qh;
  15448. memcpy(&qh, &y[i].qh, sizeof(qh));
  15449. for (int j = 0; j < QK5_1; j += 2) {
  15450. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15451. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15452. // cast to 16 bins
  15453. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15454. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15455. hist[vi0]++;
  15456. hist[vi1]++;
  15457. }
  15458. }
  15459. }
  15460. return (n/QK5_1*sizeof(block_q5_1));
  15461. }
  15462. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15463. assert(k % QK8_0 == 0);
  15464. const int nb = k / QK8_0;
  15465. for (int b = 0; b < n; b += k) {
  15466. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15467. quantize_row_q8_0_reference(src + b, y, k);
  15468. for (int i = 0; i < nb; i++) {
  15469. for (int j = 0; j < QK8_0; ++j) {
  15470. const int8_t vi = y[i].qs[j];
  15471. hist[vi/16 + 8]++;
  15472. }
  15473. }
  15474. }
  15475. return (n/QK8_0*sizeof(block_q8_0));
  15476. }
  15477. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15478. size_t result = 0;
  15479. switch (type) {
  15480. case GGML_TYPE_Q4_0:
  15481. {
  15482. GGML_ASSERT(start % QK4_0 == 0);
  15483. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15484. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15485. } break;
  15486. case GGML_TYPE_Q4_1:
  15487. {
  15488. GGML_ASSERT(start % QK4_1 == 0);
  15489. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15490. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15491. } break;
  15492. case GGML_TYPE_Q5_0:
  15493. {
  15494. GGML_ASSERT(start % QK5_0 == 0);
  15495. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15496. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15497. } break;
  15498. case GGML_TYPE_Q5_1:
  15499. {
  15500. GGML_ASSERT(start % QK5_1 == 0);
  15501. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15502. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15503. } break;
  15504. case GGML_TYPE_Q8_0:
  15505. {
  15506. GGML_ASSERT(start % QK8_0 == 0);
  15507. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15508. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15509. } break;
  15510. case GGML_TYPE_Q2_K:
  15511. {
  15512. GGML_ASSERT(start % QK_K == 0);
  15513. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15514. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15515. } break;
  15516. case GGML_TYPE_Q3_K:
  15517. {
  15518. GGML_ASSERT(start % QK_K == 0);
  15519. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15520. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15521. } break;
  15522. case GGML_TYPE_Q4_K:
  15523. {
  15524. GGML_ASSERT(start % QK_K == 0);
  15525. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15526. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15527. } break;
  15528. case GGML_TYPE_Q5_K:
  15529. {
  15530. GGML_ASSERT(start % QK_K == 0);
  15531. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15532. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15533. } break;
  15534. case GGML_TYPE_Q6_K:
  15535. {
  15536. GGML_ASSERT(start % QK_K == 0);
  15537. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15538. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15539. } break;
  15540. case GGML_TYPE_IQ2_XXS:
  15541. {
  15542. GGML_ASSERT(start % QK_K == 0);
  15543. block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K;
  15544. result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist);
  15545. } break;
  15546. case GGML_TYPE_IQ2_XS:
  15547. {
  15548. GGML_ASSERT(start % QK_K == 0);
  15549. block_iq2_xs * block = (block_iq2_xs*)dst + start / QK_K;
  15550. result = ggml_quantize_iq2_xs(src + start, block, n, n, hist);
  15551. } break;
  15552. case GGML_TYPE_F16:
  15553. {
  15554. int elemsize = sizeof(ggml_fp16_t);
  15555. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15556. result = n * elemsize;
  15557. } break;
  15558. case GGML_TYPE_F32:
  15559. {
  15560. int elemsize = sizeof(float);
  15561. result = n * elemsize;
  15562. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15563. } break;
  15564. default:
  15565. assert(false);
  15566. }
  15567. return result;
  15568. }
  15569. ////////////////////////////////////////////////////////////////////////////////
  15570. struct gguf_str {
  15571. uint64_t n; // GGUFv2
  15572. char * data;
  15573. };
  15574. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15575. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15576. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15577. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15578. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15579. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15580. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15581. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15582. [GGUF_TYPE_BOOL] = sizeof(bool),
  15583. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15584. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15585. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15586. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15587. [GGUF_TYPE_ARRAY] = 0, // undefined
  15588. };
  15589. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15590. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15591. [GGUF_TYPE_UINT8] = "u8",
  15592. [GGUF_TYPE_INT8] = "i8",
  15593. [GGUF_TYPE_UINT16] = "u16",
  15594. [GGUF_TYPE_INT16] = "i16",
  15595. [GGUF_TYPE_UINT32] = "u32",
  15596. [GGUF_TYPE_INT32] = "i32",
  15597. [GGUF_TYPE_FLOAT32] = "f32",
  15598. [GGUF_TYPE_BOOL] = "bool",
  15599. [GGUF_TYPE_STRING] = "str",
  15600. [GGUF_TYPE_ARRAY] = "arr",
  15601. [GGUF_TYPE_UINT64] = "u64",
  15602. [GGUF_TYPE_INT64] = "i64",
  15603. [GGUF_TYPE_FLOAT64] = "f64",
  15604. };
  15605. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15606. union gguf_value {
  15607. uint8_t uint8;
  15608. int8_t int8;
  15609. uint16_t uint16;
  15610. int16_t int16;
  15611. uint32_t uint32;
  15612. int32_t int32;
  15613. float float32;
  15614. uint64_t uint64;
  15615. int64_t int64;
  15616. double float64;
  15617. bool bool_;
  15618. struct gguf_str str;
  15619. struct {
  15620. enum gguf_type type;
  15621. uint64_t n; // GGUFv2
  15622. void * data;
  15623. } arr;
  15624. };
  15625. struct gguf_kv {
  15626. struct gguf_str key;
  15627. enum gguf_type type;
  15628. union gguf_value value;
  15629. };
  15630. struct gguf_header {
  15631. char magic[4];
  15632. uint32_t version;
  15633. uint64_t n_tensors; // GGUFv2
  15634. uint64_t n_kv; // GGUFv2
  15635. };
  15636. struct gguf_tensor_info {
  15637. struct gguf_str name;
  15638. uint32_t n_dims;
  15639. uint64_t ne[GGML_MAX_DIMS];
  15640. enum ggml_type type;
  15641. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15642. // for writing API
  15643. const void * data;
  15644. size_t size;
  15645. };
  15646. struct gguf_context {
  15647. struct gguf_header header;
  15648. struct gguf_kv * kv;
  15649. struct gguf_tensor_info * infos;
  15650. size_t alignment;
  15651. size_t offset; // offset of `data` from beginning of file
  15652. size_t size; // size of `data` in bytes
  15653. //uint8_t * padding;
  15654. void * data;
  15655. };
  15656. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15657. const size_t n = fread(dst, 1, size, file);
  15658. *offset += n;
  15659. return n == size;
  15660. }
  15661. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15662. p->n = 0;
  15663. p->data = NULL;
  15664. bool ok = true;
  15665. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15666. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15667. return ok;
  15668. }
  15669. struct gguf_context * gguf_init_empty(void) {
  15670. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15671. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15672. ctx->header.version = GGUF_VERSION;
  15673. ctx->header.n_tensors = 0;
  15674. ctx->header.n_kv = 0;
  15675. ctx->kv = NULL;
  15676. ctx->infos = NULL;
  15677. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15678. ctx->offset = 0;
  15679. ctx->size = 0;
  15680. ctx->data = NULL;
  15681. return ctx;
  15682. }
  15683. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15684. FILE * file = fopen(fname, "rb");
  15685. if (!file) {
  15686. return NULL;
  15687. }
  15688. // offset from start of file
  15689. size_t offset = 0;
  15690. char magic[4];
  15691. // check the magic before making allocations
  15692. {
  15693. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15694. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15695. if (magic[i] != GGUF_MAGIC[i]) {
  15696. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15697. fclose(file);
  15698. return NULL;
  15699. }
  15700. }
  15701. }
  15702. bool ok = true;
  15703. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15704. // read the header
  15705. {
  15706. strncpy(ctx->header.magic, magic, 4);
  15707. ctx->kv = NULL;
  15708. ctx->infos = NULL;
  15709. ctx->data = NULL;
  15710. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15711. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15712. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15713. if (ctx->header.version == 1) {
  15714. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15715. fclose(file);
  15716. gguf_free(ctx);
  15717. return NULL;
  15718. }
  15719. if (!ok) {
  15720. fprintf(stderr, "%s: failed to read header\n", __func__);
  15721. fclose(file);
  15722. gguf_free(ctx);
  15723. return NULL;
  15724. }
  15725. }
  15726. // read the kv pairs
  15727. {
  15728. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15729. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15730. struct gguf_kv * kv = &ctx->kv[i];
  15731. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15732. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15733. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15734. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15735. switch (kv->type) {
  15736. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15737. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15738. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15739. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15740. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15741. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15742. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15743. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15744. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15745. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15746. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15747. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15748. case GGUF_TYPE_ARRAY:
  15749. {
  15750. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15751. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15752. switch (kv->value.arr.type) {
  15753. case GGUF_TYPE_UINT8:
  15754. case GGUF_TYPE_INT8:
  15755. case GGUF_TYPE_UINT16:
  15756. case GGUF_TYPE_INT16:
  15757. case GGUF_TYPE_UINT32:
  15758. case GGUF_TYPE_INT32:
  15759. case GGUF_TYPE_FLOAT32:
  15760. case GGUF_TYPE_UINT64:
  15761. case GGUF_TYPE_INT64:
  15762. case GGUF_TYPE_FLOAT64:
  15763. case GGUF_TYPE_BOOL:
  15764. {
  15765. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15766. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15767. } break;
  15768. case GGUF_TYPE_STRING:
  15769. {
  15770. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15771. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15772. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15773. }
  15774. } break;
  15775. case GGUF_TYPE_ARRAY:
  15776. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15777. }
  15778. } break;
  15779. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15780. }
  15781. if (!ok) {
  15782. break;
  15783. }
  15784. }
  15785. if (!ok) {
  15786. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15787. fclose(file);
  15788. gguf_free(ctx);
  15789. return NULL;
  15790. }
  15791. }
  15792. // read the tensor infos
  15793. {
  15794. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15795. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15796. struct gguf_tensor_info * info = &ctx->infos[i];
  15797. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15798. info->ne[j] = 1;
  15799. }
  15800. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15801. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15802. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15803. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15804. }
  15805. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15806. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15807. if (!ok) {
  15808. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15809. fclose(file);
  15810. gguf_free(ctx);
  15811. return NULL;
  15812. }
  15813. }
  15814. }
  15815. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15816. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15817. if (alignment_idx != -1) {
  15818. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15819. }
  15820. // we require the data section to be aligned, so take into account any padding
  15821. {
  15822. const size_t offset_pad = offset % ctx->alignment;
  15823. if (offset_pad != 0) {
  15824. offset += ctx->alignment - offset_pad;
  15825. fseek(file, offset, SEEK_SET);
  15826. }
  15827. }
  15828. // store the current file offset - this is where the data section starts
  15829. ctx->offset = offset;
  15830. // compute the total size of the data section, taking into account the alignment
  15831. {
  15832. ctx->size = 0;
  15833. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15834. struct gguf_tensor_info * info = &ctx->infos[i];
  15835. const int64_t ne =
  15836. (int64_t) info->ne[0] *
  15837. (int64_t) info->ne[1] *
  15838. (int64_t) info->ne[2] *
  15839. (int64_t) info->ne[3];
  15840. if (ne % ggml_blck_size(info->type) != 0) {
  15841. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15842. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  15843. fclose(file);
  15844. gguf_free(ctx);
  15845. return NULL;
  15846. }
  15847. const size_t size_cur = ggml_row_size(info->type, ne);
  15848. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15849. }
  15850. }
  15851. // load the tensor data only if requested
  15852. if (params.ctx != NULL) {
  15853. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15854. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15855. // the ggml_tensor structs to the appropriate locations in the binary blob
  15856. // compute the exact size needed for the new ggml_context
  15857. const size_t mem_size =
  15858. params.no_alloc ?
  15859. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15860. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15861. struct ggml_init_params pdata = {
  15862. .mem_size = mem_size,
  15863. .mem_buffer = NULL,
  15864. .no_alloc = params.no_alloc,
  15865. };
  15866. *params.ctx = ggml_init(pdata);
  15867. struct ggml_context * ctx_data = *params.ctx;
  15868. struct ggml_tensor * data = NULL;
  15869. if (!params.no_alloc) {
  15870. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15871. ok = ok && data != NULL;
  15872. // read the binary blob with the tensor data
  15873. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15874. if (!ok) {
  15875. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15876. fclose(file);
  15877. ggml_free(ctx_data);
  15878. gguf_free(ctx);
  15879. return NULL;
  15880. }
  15881. ctx->data = data->data;
  15882. }
  15883. ggml_set_no_alloc(ctx_data, true);
  15884. // create the tensors
  15885. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15886. const int64_t ne[GGML_MAX_DIMS] = {
  15887. ctx->infos[i].ne[0],
  15888. ctx->infos[i].ne[1],
  15889. ctx->infos[i].ne[2],
  15890. ctx->infos[i].ne[3],
  15891. };
  15892. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15893. ok = ok && cur != NULL;
  15894. ggml_set_name(cur, ctx->infos[i].name.data);
  15895. if (!ok) {
  15896. break;
  15897. }
  15898. // point the data member to the appropriate location in the binary blob using the tensor infos
  15899. if (!params.no_alloc) {
  15900. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15901. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15902. }
  15903. }
  15904. if (!ok) {
  15905. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15906. fclose(file);
  15907. ggml_free(ctx_data);
  15908. gguf_free(ctx);
  15909. return NULL;
  15910. }
  15911. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15912. }
  15913. fclose(file);
  15914. return ctx;
  15915. }
  15916. void gguf_free(struct gguf_context * ctx) {
  15917. if (ctx == NULL) {
  15918. return;
  15919. }
  15920. if (ctx->kv) {
  15921. // free string memory - not great..
  15922. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15923. struct gguf_kv * kv = &ctx->kv[i];
  15924. if (kv->key.data) {
  15925. free(kv->key.data);
  15926. }
  15927. if (kv->type == GGUF_TYPE_STRING) {
  15928. if (kv->value.str.data) {
  15929. free(kv->value.str.data);
  15930. }
  15931. }
  15932. if (kv->type == GGUF_TYPE_ARRAY) {
  15933. if (kv->value.arr.data) {
  15934. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15935. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15936. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15937. if (str->data) {
  15938. free(str->data);
  15939. }
  15940. }
  15941. }
  15942. free(kv->value.arr.data);
  15943. }
  15944. }
  15945. }
  15946. free(ctx->kv);
  15947. }
  15948. if (ctx->infos) {
  15949. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15950. struct gguf_tensor_info * info = &ctx->infos[i];
  15951. if (info->name.data) {
  15952. free(info->name.data);
  15953. }
  15954. }
  15955. free(ctx->infos);
  15956. }
  15957. GGML_ALIGNED_FREE(ctx);
  15958. }
  15959. const char * gguf_type_name(enum gguf_type type) {
  15960. return GGUF_TYPE_NAME[type];
  15961. }
  15962. int gguf_get_version(const struct gguf_context * ctx) {
  15963. return ctx->header.version;
  15964. }
  15965. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15966. return ctx->alignment;
  15967. }
  15968. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15969. return ctx->offset;
  15970. }
  15971. void * gguf_get_data(const struct gguf_context * ctx) {
  15972. return ctx->data;
  15973. }
  15974. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15975. return ctx->header.n_kv;
  15976. }
  15977. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15978. // return -1 if key not found
  15979. int keyfound = -1;
  15980. const int n_kv = gguf_get_n_kv(ctx);
  15981. for (int i = 0; i < n_kv; ++i) {
  15982. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15983. keyfound = i;
  15984. break;
  15985. }
  15986. }
  15987. return keyfound;
  15988. }
  15989. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15990. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15991. return ctx->kv[key_id].key.data;
  15992. }
  15993. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15994. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15995. return ctx->kv[key_id].type;
  15996. }
  15997. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15998. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15999. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16000. return ctx->kv[key_id].value.arr.type;
  16001. }
  16002. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16003. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16004. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16005. return ctx->kv[key_id].value.arr.data;
  16006. }
  16007. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16008. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16009. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16010. struct gguf_kv * kv = &ctx->kv[key_id];
  16011. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16012. return str->data;
  16013. }
  16014. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16015. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16016. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16017. return ctx->kv[key_id].value.arr.n;
  16018. }
  16019. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16020. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16021. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16022. return ctx->kv[key_id].value.uint8;
  16023. }
  16024. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16025. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16026. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16027. return ctx->kv[key_id].value.int8;
  16028. }
  16029. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16030. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16031. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16032. return ctx->kv[key_id].value.uint16;
  16033. }
  16034. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16035. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16036. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16037. return ctx->kv[key_id].value.int16;
  16038. }
  16039. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16040. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16041. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16042. return ctx->kv[key_id].value.uint32;
  16043. }
  16044. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16045. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16046. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16047. return ctx->kv[key_id].value.int32;
  16048. }
  16049. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16050. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16051. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16052. return ctx->kv[key_id].value.float32;
  16053. }
  16054. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16055. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16056. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16057. return ctx->kv[key_id].value.uint64;
  16058. }
  16059. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16060. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16061. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16062. return ctx->kv[key_id].value.int64;
  16063. }
  16064. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16065. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16066. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16067. return ctx->kv[key_id].value.float64;
  16068. }
  16069. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16070. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16071. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16072. return ctx->kv[key_id].value.bool_;
  16073. }
  16074. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16075. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16076. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16077. return ctx->kv[key_id].value.str.data;
  16078. }
  16079. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16080. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16081. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16082. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16083. return &ctx->kv[key_id].value;
  16084. }
  16085. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16086. return ctx->header.n_tensors;
  16087. }
  16088. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16089. // return -1 if tensor not found
  16090. int tensorfound = -1;
  16091. const int n_tensors = gguf_get_n_tensors(ctx);
  16092. for (int i = 0; i < n_tensors; ++i) {
  16093. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16094. tensorfound = i;
  16095. break;
  16096. }
  16097. }
  16098. return tensorfound;
  16099. }
  16100. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16101. return ctx->infos[i].offset;
  16102. }
  16103. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16104. return ctx->infos[i].name.data;
  16105. }
  16106. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16107. return ctx->infos[i].type;
  16108. }
  16109. // returns the index
  16110. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16111. const int idx = gguf_find_key(ctx, key);
  16112. if (idx >= 0) {
  16113. return idx;
  16114. }
  16115. const int n_kv = gguf_get_n_kv(ctx);
  16116. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16117. ctx->kv[n_kv].key.n = strlen(key);
  16118. ctx->kv[n_kv].key.data = strdup(key);
  16119. ctx->header.n_kv++;
  16120. return n_kv;
  16121. }
  16122. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16123. const int idx = gguf_get_or_add_key(ctx, key);
  16124. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16125. ctx->kv[idx].value.uint8 = val;
  16126. }
  16127. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16128. const int idx = gguf_get_or_add_key(ctx, key);
  16129. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16130. ctx->kv[idx].value.int8 = val;
  16131. }
  16132. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16133. const int idx = gguf_get_or_add_key(ctx, key);
  16134. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16135. ctx->kv[idx].value.uint16 = val;
  16136. }
  16137. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16138. const int idx = gguf_get_or_add_key(ctx, key);
  16139. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16140. ctx->kv[idx].value.int16 = val;
  16141. }
  16142. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16143. const int idx = gguf_get_or_add_key(ctx, key);
  16144. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16145. ctx->kv[idx].value.uint32 = val;
  16146. }
  16147. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16148. const int idx = gguf_get_or_add_key(ctx, key);
  16149. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16150. ctx->kv[idx].value.int32 = val;
  16151. }
  16152. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16153. const int idx = gguf_get_or_add_key(ctx, key);
  16154. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16155. ctx->kv[idx].value.float32 = val;
  16156. }
  16157. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16158. const int idx = gguf_get_or_add_key(ctx, key);
  16159. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16160. ctx->kv[idx].value.uint64 = val;
  16161. }
  16162. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16163. const int idx = gguf_get_or_add_key(ctx, key);
  16164. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16165. ctx->kv[idx].value.int64 = val;
  16166. }
  16167. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16168. const int idx = gguf_get_or_add_key(ctx, key);
  16169. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16170. ctx->kv[idx].value.float64 = val;
  16171. }
  16172. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16173. const int idx = gguf_get_or_add_key(ctx, key);
  16174. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16175. ctx->kv[idx].value.bool_ = val;
  16176. }
  16177. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16178. const int idx = gguf_get_or_add_key(ctx, key);
  16179. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16180. ctx->kv[idx].value.str.n = strlen(val);
  16181. ctx->kv[idx].value.str.data = strdup(val);
  16182. }
  16183. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16184. const int idx = gguf_get_or_add_key(ctx, key);
  16185. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16186. ctx->kv[idx].value.arr.type = type;
  16187. ctx->kv[idx].value.arr.n = n;
  16188. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16189. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16190. }
  16191. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16192. const int idx = gguf_get_or_add_key(ctx, key);
  16193. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16194. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16195. ctx->kv[idx].value.arr.n = n;
  16196. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16197. for (int i = 0; i < n; i++) {
  16198. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16199. str->n = strlen(data[i]);
  16200. str->data = strdup(data[i]);
  16201. }
  16202. }
  16203. // set or add KV pairs from another context
  16204. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16205. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16206. switch (src->kv[i].type) {
  16207. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16208. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16209. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16210. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16211. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16212. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16213. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16214. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16215. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16216. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16217. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16218. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16219. case GGUF_TYPE_ARRAY:
  16220. {
  16221. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16222. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16223. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16224. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16225. }
  16226. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16227. free((void *)data);
  16228. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16229. GGML_ASSERT(false && "nested arrays not supported");
  16230. } else {
  16231. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16232. }
  16233. } break;
  16234. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16235. }
  16236. }
  16237. }
  16238. void gguf_add_tensor(
  16239. struct gguf_context * ctx,
  16240. const struct ggml_tensor * tensor) {
  16241. const int idx = ctx->header.n_tensors;
  16242. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16243. ctx->infos[idx].name.n = strlen(tensor->name);
  16244. ctx->infos[idx].name.data = strdup(tensor->name);
  16245. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16246. ctx->infos[idx].ne[i] = 1;
  16247. }
  16248. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16249. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16250. ctx->infos[idx].ne[i] = tensor->ne[i];
  16251. }
  16252. ctx->infos[idx].type = tensor->type;
  16253. ctx->infos[idx].offset = 0;
  16254. ctx->infos[idx].data = tensor->data;
  16255. ctx->infos[idx].size = ggml_nbytes(tensor);
  16256. if (ctx->header.n_tensors > 0) {
  16257. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16258. }
  16259. ctx->header.n_tensors++;
  16260. }
  16261. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16262. const int idx = gguf_find_tensor(ctx, name);
  16263. if (idx < 0) {
  16264. GGML_ASSERT(false && "tensor not found");
  16265. }
  16266. ctx->infos[idx].type = type;
  16267. }
  16268. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16269. const int idx = gguf_find_tensor(ctx, name);
  16270. if (idx < 0) {
  16271. GGML_ASSERT(false && "tensor not found");
  16272. }
  16273. ctx->infos[idx].data = data;
  16274. ctx->infos[idx].size = size;
  16275. // update offsets
  16276. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16277. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16278. }
  16279. }
  16280. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16281. // fwrite(&val->n, sizeof(val->n), 1, file);
  16282. // fwrite(val->data, sizeof(char), val->n, file);
  16283. //}
  16284. //
  16285. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16286. // fwrite(val, sizeof(char), size, file);
  16287. //}
  16288. struct gguf_buf {
  16289. void * data;
  16290. size_t size;
  16291. size_t offset;
  16292. };
  16293. static struct gguf_buf gguf_buf_init(size_t size) {
  16294. struct gguf_buf buf = {
  16295. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16296. /*buf.size =*/ size,
  16297. /*buf.offset =*/ 0,
  16298. };
  16299. return buf;
  16300. }
  16301. static void gguf_buf_free(struct gguf_buf buf) {
  16302. if (buf.data) {
  16303. free(buf.data);
  16304. }
  16305. }
  16306. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16307. if (buf->offset + size > buf->size) {
  16308. buf->size = 1.5*(buf->offset + size);
  16309. if (buf->data) {
  16310. buf->data = realloc(buf->data, buf->size);
  16311. }
  16312. }
  16313. }
  16314. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16315. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16316. if (buf->data) {
  16317. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16318. }
  16319. buf->offset += sizeof(val->n);
  16320. if (buf->data) {
  16321. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16322. }
  16323. buf->offset += val->n;
  16324. }
  16325. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16326. gguf_buf_grow(buf, el_size);
  16327. if (buf->data) {
  16328. memcpy((char *) buf->data + buf->offset, val, el_size);
  16329. }
  16330. buf->offset += el_size;
  16331. }
  16332. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16333. // write header
  16334. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16335. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16336. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16337. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16338. // write key-value pairs
  16339. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16340. struct gguf_kv * kv = &ctx->kv[i];
  16341. gguf_bwrite_str(buf, &kv->key);
  16342. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16343. switch (kv->type) {
  16344. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16345. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16346. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16347. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16348. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16349. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16350. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16351. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16352. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16353. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16354. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16355. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16356. case GGUF_TYPE_ARRAY:
  16357. {
  16358. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16359. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16360. switch (kv->value.arr.type) {
  16361. case GGUF_TYPE_UINT8:
  16362. case GGUF_TYPE_INT8:
  16363. case GGUF_TYPE_UINT16:
  16364. case GGUF_TYPE_INT16:
  16365. case GGUF_TYPE_UINT32:
  16366. case GGUF_TYPE_INT32:
  16367. case GGUF_TYPE_FLOAT32:
  16368. case GGUF_TYPE_UINT64:
  16369. case GGUF_TYPE_INT64:
  16370. case GGUF_TYPE_FLOAT64:
  16371. case GGUF_TYPE_BOOL:
  16372. {
  16373. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16374. } break;
  16375. case GGUF_TYPE_STRING:
  16376. {
  16377. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16378. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16379. }
  16380. } break;
  16381. case GGUF_TYPE_ARRAY:
  16382. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16383. }
  16384. } break;
  16385. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16386. }
  16387. }
  16388. // write tensor infos
  16389. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16390. struct gguf_tensor_info * info = &ctx->infos[i];
  16391. gguf_bwrite_str(buf, &info->name);
  16392. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16393. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16394. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16395. }
  16396. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16397. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16398. }
  16399. // we require the data section to be aligned, so take into account any padding
  16400. {
  16401. const size_t offset = buf->offset;
  16402. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16403. if (offset_pad != offset) {
  16404. uint8_t pad = 0;
  16405. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16406. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16407. }
  16408. }
  16409. }
  16410. if (only_meta) {
  16411. return;
  16412. }
  16413. size_t offset = 0;
  16414. // write tensor data
  16415. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16416. struct gguf_tensor_info * info = &ctx->infos[i];
  16417. const size_t size = info->size;
  16418. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16419. gguf_bwrite_el(buf, info->data, size);
  16420. if (size_pad != size) {
  16421. uint8_t pad = 0;
  16422. for (size_t j = 0; j < size_pad - size; ++j) {
  16423. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16424. }
  16425. }
  16426. GGML_ASSERT(offset == info->offset);
  16427. offset += size_pad;
  16428. }
  16429. }
  16430. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16431. FILE * file = fopen(fname, "wb");
  16432. if (!file) {
  16433. GGML_ASSERT(false && "failed to open file for writing");
  16434. }
  16435. struct gguf_buf buf = gguf_buf_init(16*1024);
  16436. gguf_write_to_buf(ctx, &buf, only_meta);
  16437. fwrite(buf.data, 1, buf.offset, file);
  16438. gguf_buf_free(buf);
  16439. fclose(file);
  16440. }
  16441. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16442. // no allocs - only compute size
  16443. struct gguf_buf buf = gguf_buf_init(0);
  16444. gguf_write_to_buf(ctx, &buf, true);
  16445. return buf.offset;
  16446. }
  16447. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16448. struct gguf_buf buf = gguf_buf_init(16*1024);
  16449. gguf_write_to_buf(ctx, &buf, true);
  16450. memcpy(data, buf.data, buf.offset);
  16451. gguf_buf_free(buf);
  16452. }
  16453. ////////////////////////////////////////////////////////////////////////////////
  16454. int ggml_cpu_has_avx(void) {
  16455. #if defined(__AVX__)
  16456. return 1;
  16457. #else
  16458. return 0;
  16459. #endif
  16460. }
  16461. int ggml_cpu_has_avx_vnni(void) {
  16462. #if defined(__AVXVNNI__)
  16463. return 1;
  16464. #else
  16465. return 0;
  16466. #endif
  16467. }
  16468. int ggml_cpu_has_avx2(void) {
  16469. #if defined(__AVX2__)
  16470. return 1;
  16471. #else
  16472. return 0;
  16473. #endif
  16474. }
  16475. int ggml_cpu_has_avx512(void) {
  16476. #if defined(__AVX512F__)
  16477. return 1;
  16478. #else
  16479. return 0;
  16480. #endif
  16481. }
  16482. int ggml_cpu_has_avx512_vbmi(void) {
  16483. #if defined(__AVX512VBMI__)
  16484. return 1;
  16485. #else
  16486. return 0;
  16487. #endif
  16488. }
  16489. int ggml_cpu_has_avx512_vnni(void) {
  16490. #if defined(__AVX512VNNI__)
  16491. return 1;
  16492. #else
  16493. return 0;
  16494. #endif
  16495. }
  16496. int ggml_cpu_has_fma(void) {
  16497. #if defined(__FMA__)
  16498. return 1;
  16499. #else
  16500. return 0;
  16501. #endif
  16502. }
  16503. int ggml_cpu_has_neon(void) {
  16504. #if defined(__ARM_NEON)
  16505. return 1;
  16506. #else
  16507. return 0;
  16508. #endif
  16509. }
  16510. int ggml_cpu_has_arm_fma(void) {
  16511. #if defined(__ARM_FEATURE_FMA)
  16512. return 1;
  16513. #else
  16514. return 0;
  16515. #endif
  16516. }
  16517. int ggml_cpu_has_metal(void) {
  16518. #if defined(GGML_USE_METAL)
  16519. return 1;
  16520. #else
  16521. return 0;
  16522. #endif
  16523. }
  16524. int ggml_cpu_has_f16c(void) {
  16525. #if defined(__F16C__)
  16526. return 1;
  16527. #else
  16528. return 0;
  16529. #endif
  16530. }
  16531. int ggml_cpu_has_fp16_va(void) {
  16532. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16533. return 1;
  16534. #else
  16535. return 0;
  16536. #endif
  16537. }
  16538. int ggml_cpu_has_wasm_simd(void) {
  16539. #if defined(__wasm_simd128__)
  16540. return 1;
  16541. #else
  16542. return 0;
  16543. #endif
  16544. }
  16545. int ggml_cpu_has_blas(void) {
  16546. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16547. return 1;
  16548. #else
  16549. return 0;
  16550. #endif
  16551. }
  16552. int ggml_cpu_has_cublas(void) {
  16553. #if defined(GGML_USE_CUBLAS)
  16554. return 1;
  16555. #else
  16556. return 0;
  16557. #endif
  16558. }
  16559. int ggml_cpu_has_clblast(void) {
  16560. #if defined(GGML_USE_CLBLAST)
  16561. return 1;
  16562. #else
  16563. return 0;
  16564. #endif
  16565. }
  16566. int ggml_cpu_has_gpublas(void) {
  16567. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16568. }
  16569. int ggml_cpu_has_sse3(void) {
  16570. #if defined(__SSE3__)
  16571. return 1;
  16572. #else
  16573. return 0;
  16574. #endif
  16575. }
  16576. int ggml_cpu_has_ssse3(void) {
  16577. #if defined(__SSSE3__)
  16578. return 1;
  16579. #else
  16580. return 0;
  16581. #endif
  16582. }
  16583. int ggml_cpu_has_vsx(void) {
  16584. #if defined(__POWER9_VECTOR__)
  16585. return 1;
  16586. #else
  16587. return 0;
  16588. #endif
  16589. }
  16590. ////////////////////////////////////////////////////////////////////////////////