quantize.cu 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. #include "quantize.cuh"
  2. #include <cstdint>
  3. static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx0_padded) {
  4. const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
  5. if (ix0 >= kx0_padded) {
  6. return;
  7. }
  8. const int64_t ix1 = blockIdx.y;
  9. const int64_t i_padded = ix1*kx0_padded + ix0;
  10. block_q8_1 * y = (block_q8_1 *) vy;
  11. const int64_t ib = i_padded / QK8_1; // block index
  12. const int64_t iqs = i_padded % QK8_1; // quant index
  13. const float xi = ix0 < kx ? x[ix1*kx + ix0] : 0.0f;
  14. float amax = fabsf(xi);
  15. float sum = xi;
  16. amax = warp_reduce_max(amax);
  17. sum = warp_reduce_sum(sum);
  18. const float d = amax / 127;
  19. const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
  20. y[ib].qs[iqs] = q;
  21. if (iqs > 0) {
  22. return;
  23. }
  24. reinterpret_cast<half&>(y[ib].ds.x) = d;
  25. reinterpret_cast<half&>(y[ib].ds.y) = sum;
  26. }
  27. template <mmq_q8_1_ds_layout ds_layout>
  28. static __global__ void quantize_mmq_q8_1(
  29. const float * __restrict__ x, void * __restrict__ vy, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) {
  30. constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32;
  31. constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32;
  32. const int64_t ix0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
  33. if (ix0 >= kx0_padded) {
  34. return;
  35. }
  36. const float4 * x4 = (const float4 *) x;
  37. const int64_t ix1 = kx1*blockIdx.z + blockIdx.y;
  38. block_q8_1_mmq * y = (block_q8_1_mmq *) vy;
  39. const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel
  40. const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel
  41. const int64_t iqs = ix0 % (4*QK8_1); // quant index in block
  42. // Load 4 floats per thread and calculate max. abs. value between them:
  43. const float4 xi = ix0 < kx0 ? x4[(ix1*kx0 + ix0)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
  44. float amax = fabsf(xi.x);
  45. amax = fmaxf(amax, fabsf(xi.y));
  46. amax = fmaxf(amax, fabsf(xi.z));
  47. amax = fmaxf(amax, fabsf(xi.w));
  48. // Exchange max. abs. value between vals_per_scale/4 threads.
  49. #pragma unroll
  50. for (int offset = vals_per_scale/8; offset > 0; offset >>= 1) {
  51. amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, offset, WARP_SIZE));
  52. }
  53. float sum;
  54. if (ds_layout != MMQ_Q8_1_DS_LAYOUT_D4) {
  55. sum = xi.x + xi.y + xi.z + xi.w;
  56. // Exchange calculate sum across vals_per_sum/4 threads.
  57. #pragma unroll
  58. for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
  59. sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
  60. }
  61. }
  62. const float d_inv = 127.0f / amax;
  63. char4 q;
  64. q.x = roundf(xi.x*d_inv);
  65. q.y = roundf(xi.y*d_inv);
  66. q.z = roundf(xi.z*d_inv);
  67. q.w = roundf(xi.w*d_inv);
  68. // Write back 4 int8 values as a single 32 bit value for better memroy bandwidth:
  69. char4 * yqs4 = (char4 *) y[ib].qs;
  70. yqs4[iqs/4] = q;
  71. if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6) {
  72. if (iqs % 16 != 0 || iqs >= 96) {
  73. return;
  74. }
  75. y[ib].d2s6[2 + iqs/16] = sum;
  76. if (iqs % 64 != 0) {
  77. return;
  78. }
  79. const float d = 1.0f / d_inv;
  80. y[ib].d2s6[iqs/64] = d;
  81. return;
  82. }
  83. if (iqs % 32 != 0) {
  84. return;
  85. }
  86. const float d = 1.0f / d_inv;
  87. if (ds_layout == MMQ_Q8_1_DS_LAYOUT_DS4) {
  88. y[ib].ds4[iqs/32] = make_half2(d, sum);
  89. } else {
  90. y[ib].d4[iqs/32] = d;
  91. }
  92. }
  93. void quantize_row_q8_1_cuda(
  94. const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels,
  95. const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) {
  96. GGML_ASSERT(kx0_padded % QK8_1 == 0);
  97. const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
  98. const dim3 num_blocks(block_num_x, kx1*channels, 1);
  99. const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
  100. quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx0_padded);
  101. GGML_UNUSED(type_x);
  102. }
  103. void quantize_mmq_q8_1_cuda(
  104. const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels,
  105. const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) {
  106. GGML_ASSERT(kx0_padded % (4*QK8_1) == 0);
  107. const int64_t block_num_x = (kx0_padded + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
  108. const dim3 num_blocks(block_num_x, kx1, channels);
  109. const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE_MMQ, 1, 1);
  110. switch (mmq_get_q8_1_ds_layout(type_x)) {
  111. case MMQ_Q8_1_DS_LAYOUT_D4:
  112. quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D4>
  113. <<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
  114. break;
  115. case MMQ_Q8_1_DS_LAYOUT_DS4:
  116. quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_DS4>
  117. <<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
  118. break;
  119. case MMQ_Q8_1_DS_LAYOUT_D2S6:
  120. quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D2S6>
  121. <<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
  122. break;
  123. default:
  124. GGML_ABORT("fatal error");
  125. break;
  126. }
  127. }